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1. Introduction

This paper complements our earlier work [A 2010, 2011, 2012] in proving a conjec-
ture of Deser and Schwimmer [1993] regarding the algebraic structure of “global
conformal invariants”. It provides a (rather technical) proof of certain lemmas
announced in [A 2010, 2012].

We recall that a global conformal invariant is an integral of a natural scalar-
valued function of Riemannian metrics,

∫
Mn P(g) dVg, which remains invariant

under conformal rescalings of the underlying metric.1 More precisely, P(g) is
assumed to be a linear combination, P(g)=

∑
l∈L alC l(g), where each C l(g) is a

complete contraction in the form

(1-1) contrl(
∇
(m1)R⊗ · · ·⊗∇(ms)R

)
;

here each factor ∇(m)R stands for the mth iterated covariant derivative of the cur-
vature tensor R, ∇ is the Levi-Civita connection of the metric g and R is the
curvature associated to this connection. The contractions are taken with respect to
the quadratic form gi j . In the present paper, along with [A 2011, 2012], we prove:

Theorem. Assume that P(g) =
∑

l∈L alC l(g), where each C l(g) is a complete
contraction in the form (1-1), with weight −n. Assume that for every closed Rie-
mannian manifold (Mn, g) and every φ ∈ C∞(Mn),∫

Mn
P(e2φg) dVe2φg =

∫
Mn

P(g) dVg.

We claim that P(g) can then be expressed in the form

P(g)=W (g)+ divi T i (g)+Pfaff(Rijkl).

Here W (g) stands for a local conformal invariant of weight −n (meaning that
W (e2φg) = e−nφW (g) for every φ ∈ C∞(Mn)), divi T i (g) is the divergence of a
Riemannian vector field of weight −n + 1, and Pfaff(Rijkl) is the Pfaffian of the
curvature tensor.

Before we discuss the position of the present paper in the entire work [A 2010,
2011, 2012] we digress to describe the relation between the present series of papers
with classical and recent work on scalar local invariants in various geometries.

Broad discussion. The theory of local invariants of Riemannian structures (and
indeed, of more general geometries, such as conformal, projective, or CR) has a
long history. As discussed in [A 2012], the original foundations of this field were
laid in the work of Hermann Weyl and Élie Cartan; see [Weyl 1939; Cartan 1896].
The task of writing out local invariants of a given geometry is intimately connected

1See the introduction of [A 2012] for a detailed discussion of the Deser–Schwimmer conjecture,
and for background on scalar Riemannian invariants.
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with understanding polynomials in a space of tensors with given symmetries; these
polynomials are required to remain invariant under the action of a Lie group on
the components of the tensors. In particular, the problem of writing down all local
Riemannian invariants reduces to understanding the invariants of the orthogonal
group.

In more recent times, a major program was laid out by C. Fefferman [1976]
aimed at finding all scalar local invariants in CR geometry. This was motivated by
the problem of understanding the local invariants that appear in the asymptotic ex-
pansion of the Bergman and Szegő kernels of strictly pseudoconvex CR manifolds,
in a similar way to Riemannian invariants that appear in the asymptotic expansion
of the heat kernel; the study of the local invariants in the singularities of these
kernels led to important breakthroughs in [Bailey et al. 1994b] and more recently
by Hirachi [2000]. This program was later extended to conformal geometry in
[Fefferman and Graham 1985]. Both these geometries belong to a broader class of
structures, the parabolic geometries; these admit a principal bundle whose struc-
ture group is a parabolic subgroup P of a semisimple Lie group G, and a Cartan
connection on that principle bundle (see the introduction in [Čap and Gover 2002]).
An important question in the study of these structures is the problem of constructing
all their local invariants, which can be thought of as the natural, intrinsic scalars
of these structures.

In the context of conformal geometry, the first (modern) landmark in understand-
ing local conformal invariants was the work of Fefferman and Graham [1985],
where they introduced the ambient metric. This allows one to construct local
conformal invariants of any order in odd dimensions, and up to order n

2 in even
dimensions. The question is then whether all invariants arise via this construction.

The subsequent work of Bailey–Eastwood–Graham [1994b] proved that this is
indeed true in odd dimensions; in even dimensions, they proved that the result
holds when the weight (in absolute value) is bounded by the dimension. The
ambient metric construction in even dimensions was recently extended by Gra-
ham and Hirachi [2008]; this enables them to identify in a satisfactory way all
local conformal invariants, even when the weight (in absolute value) exceeds the
dimension.

An alternative construction of local conformal invariants can be obtained via
the tractor calculus introduced by Bailey et al. [1994a]. This construction bears
a strong resemblance to the Cartan conformal connection, and to the work of
T.Y. Thomas [1934]. The tractor calculus has proven to be very universal; trac-
tor bundles have been constructed [Čap and Gover 2002] for an entire class of
parabolic geometries. The relation between the conformal tractor calculus and the
Fefferman–Graham ambient metric has been elucidated in [Čap and Gover 2003].



4 SPYROS ALEXAKIS

The present paper, along with [A 2010, 2011, 2012], while pertaining to the
question above (given that it ultimately deals with the algebraic form of local
Riemannian and conformal invariants), nonetheless addresses a different type of
problem: We here consider Riemannian invariants P(g) for which the integral∫

Mn P(g) dVg remains invariant under conformal changes of the underlying met-
ric; we then seek to understand the possible algebraic form of the integrand P(g),
ultimately proving that it can be decomposed in the way that Deser and Schwim-
mer asserted. It is thus not surprising that the prior work on the construction and
understanding of local conformal invariants, in [A 2011] and in the second chapter
of [A 2012], plays a central role in this endeavor.

On the other hand, a central element of our proof are the “Main algebraic
propositions” 2.28, 3.27, 3.28 in [A 2012]; these deal exclusively with algebraic
properties of the classical scalar Riemannian invariants. (These “main algebraic
propositions” are discussed in brief below. A generalization of these propositions is
the Proposition 1.1 below). The “Fundamental proposition 1.1” makes no reference
to integration; it is purely a statement concerning local Riemannian invariants.
Thus, while the author was led to led to the main algebraic propositions in [A
2012] out of the strategy that he felt was necessary to solve the Deser–Schwimmer
conjecture, they can be thought of as results of an independent interest. The proof
of these propositions, presented in the second part of [A 2012] (and certain claims
announced there proven in the present paper), is in fact not particularly intuitive.
It is the author’s sincere hope that deeper insight (and hopefully a more intuitive
proof) will be obtained in the future as to why these algebraic propositions hold.

Let us now discuss the position of the present paper in the entire work [A 2010,
2011, 2012] in more detail: In the first part of [A 2012] (complemented by [A
2011]) we proved that the Deser–Schwimmer conjecture holds, provided one can
show certain “main algebraic propositions,” announced in Chapters 2 and 3 in [A
2012]. In [A 2010] (which is reproduced in Chapter 4 of [A 2012] — for conve-
nience we refer to propositions and lemmas in [A 2010]; the same propositions can
be found in [A 2012] with different numbering) we claimed a more general propo-
sition which implies the “main algebraic propositions;” this new “Fundamental
proposition” 2.1 in [A 2010]2 is to be proven by an induction of four parameters.
In [A 2010] we also reduced the inductive step of Proposition 2.1 to three lemmas
(in particular we distinguished Cases I, II, III of Proposition 2.1 by examining
the tensor fields appearing in its hypothesis, see (1-7) below; Lemmas 3.1, 3.2,
3.5 in [A 2010]3 correspond to these three cases). We proved that these three
lemmas imply the inductive step of the Fundamental proposition in Cases I, II, III
respectively, apart from certain special cases which were deferred to the present

2This is reproduced as Proposition 4.13 in [A 2012].
3These correspond respectively to Lemmas 4.16, 4.19 and 4.24 in [A 2012].
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paper. In these special cases we will derive Proposition 2.1 in [A 2010] directly,4 in
Section 3. Now, in proving that the inductive step of Proposition 1.1 follows from
Lemmas 3.1, 3.2, 3.5 in [A 2010] we asserted certain technical lemmas, whose
proof was deferred to the present paper. These were Lemmas 4.6, 4.8, and 4.7, 4.9
in [A 2010];5 also, the proof of Lemma A.1 in [A 2010] was deferred to the present
paper. We prove all these lemmas from [A 2010] in Section 2.

For reference purposes, and for the reader’s convenience, we recall the precise
formulation of the “Fundamental proposition” 2.1 in [A 2010], referring the reader
to [A 2010] for a definition of many of the terms appearing in the formulation. First
however, we will recall (schematically) the first “Main algebraic proposition” 2.28
in [A 2012]; this is a special case of Proposition 2.1 in [A 2010], and provides a
simpler version of it.

A simpler version of Proposition 2.1 in [A 2010]. Given a Riemannian metric
g over an n-dimensional manifold Mn and auxiliary C∞ scalar-valued functions
�1, . . . , �p defined over Mn , the objects of study are linear combinations of tensor
fields

∑
l∈L alC l,i1...iα

g , where each C l,i1...iα
g is a partial contraction with α free

indices, in the form

(1-2) pcontr
(
∇
(m)R⊗ · · ·⊗∇(ms)R⊗∇(b1)�1⊗ · · ·⊗∇

(bm)�p
)
;

here ∇(m)R stands for the mth covariant derivative of the curvature tensor R,6

and ∇(b)�h stands for the bth covariant derivative of the function �h . A partial
contraction means that we have list of pairs of indices (a, b), . . . , (c, d) in (1-2), that
are contracted against each other via the metric gi j . The remaining indices (which
are not contracted against another index in (1-2)) are the free indices i1, . . . , iα .

The “Main algebraic proposition” 2.28 in [A 2012] (roughly) asserts the follow-
ing: Let

∑
l∈Lµ alC l,i1...iµ

g stand for a linear combination of partial contractions in
the form (1-2), where each C l,i1...iµ

g has a given number σ1 of factors and a given
number p of factor ∇(b)�h . Assume also that σ1+ p ≥ 3, each bi ≥ 2,7 and that
for each contracting pair of indices (a, b) in any given C l,i1...iµ

g , the indices a, b do
not belong to the same factor. Assume also the rank µ> 0 is fixed and each partial
contraction C l,i1...iµ

g , l ∈ Lµ has a given weight−n+µ.8 Let also
∑

l∈L>µ alC l,i1...iylg
stand for a (formal) linear combination of partial contractions of weight −n+ yl ,
with all the properties of the terms indexed in Lµ, except that now all the partial
contractions have a different rank yl , and each yl > µ.

4By this we mean without recourse to the Lemmas 3.1, 3.2, 3.5 in [A 2010].
5These correspond to Lemmas 4.35, 4.41, 4.37 and 4.42 in [A 2012].
6In particular it is a tensor of rank m + 4; if we write out its free indices it would be in the form

∇
(m)
r1...rm Rijkl.

7bi ≥ 2 means that the function �i is differentiated at least twice.
8See [A 2012] for a precise definition of weight.
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Assume also that the local equation

(1-3)
∑
l∈Lµ

al X divi1 . . . X diviµ C l,i1...iµ
g +

∑
l∈L>µ

al X divi1 . . . X diviyl
C

l,i1...iyl
g = 0

holds modulo complete contractions with σ + 1 factors. Here, given a partial con-
traction C l,i1...iα

g in the form (1-2) X divis [C
l,i1...iα
g ] stands for sum of σ − 1 terms

in divis [C
l,i1...iα
g ] where the derivative ∇ is is not allowed to hit the factor to which

the free index is belongs.9

The “Main algebraic proposition” 2.28 in [A 2012] says that there exists a linear
combination of partial contractions in the form (1-2),

∑
h∈H ahCh,i1...iµ+1

g , with all
the properties of the terms indexed in L>µ, and all with rank (µ+ 1), so that

(1-4)
∑
l∈L1

alC
l,(i1...iµ)
g +

∑
h∈H

ah X diviµ+1 C l,(i1...iµ)iµ+1
g = 0;

the above holds modulo terms of length σ + 1. The symbol (. . . ) means that we
are symmetrizing over the indices between parentheses.

In [A 2010] we set up a multiple induction by which we will prove the “main
algebraic propositions” in Chapters 2, 3 in [A 2012]. The inductive step is proven
in the “Fundamental proposition” 2.1 in [A 2010], which we reproduce here in
Proposition 1.1. This deals with tensor fields in the forms

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(ms)Rijkl⊗∇
(b1)�1(1-5)

⊗ · · ·⊗∇
(bp)�p⊗∇φ1⊗ · · ·⊗∇φu

)
,

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(1-6)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 ⊗ · · ·⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
.

(See the introduction in [A 2010] for a detailed description of the above form.) In
keeping with the conventions introduced in [A 2010], we remark that a complete
or partial contraction in the above form will be called “acceptable” if each bi ≥ 2,
for 1≤ i ≤ p.10

9Recall that given a partial contraction Cl,i1...iα
g in the form (1-2) with σ factors, divis Cl,i1...iα

g
is a sum of σ partial contractions of rank α−1. The first summand arises by adding a derivative ∇is

onto the first factor T1 and then contracting the upper index is against the free index is ; the second
summand arises by adding a derivative ∇is onto the second factor T2 and then contracting the upper
index is against the free index is and so on.

10In other words, we are requiring each function �i is differentiated at least twice.
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Proposition 1.1. Consider two linear combinations of acceptable tensor fields in
the form (1-6), ∑

l∈Lµ

alC
l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu),

∑
l∈L>µ

alC
l,i1...iβl
g (�1, . . . , �p, φ1, . . . , φu),

where each tensor field above has real length σ ≥ 3 and a given simple character
Eκsimp. We assume that for each l ∈ L>µ, βl ≥ µ+ 1. We also assume that none of
the tensor fields of maximal refined double character in Lµ are “forbidden” (see
Definition 2.12 in [A 2010]).

We denote by ∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)

a generic linear combination of complete contractions (not necessarily acceptable)
in the form (1-5) that are simply subsequent to Eκsimp.11 We assume that

(1-7)
∑
l∈Lµ

al X divi1 . . . X diviα

×C l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
l∈L>µ

al X divi1 . . . X diviβl

×C
l,i1...iβl
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)= 0.

We draw our conclusion with a little more notation: We break the index set Lµ
into subsets L z, z ∈ Z (Z is finite), with the rule that each L z indexes tensor fields
with the same refined double character, and conversely two tensor fields with the
same refined double character must be indexed in the same L z . For each index set
L z , we denote the refined double character in question by EL z . Consider the subsets
L z that index the tensor fields of maximal refined double character.12 We assume
that the index set of those z is ZMax ⊂ Z.

We claim that for each z ∈ ZMax there is some linear combination of acceptable
(µ+1)-tensor fields,

11Of course if Def (Eκsimp)=∅ then by definition
∑

j∈J · · · = 0.
12Note that in any set S of µ-refined double characters with the same simple character there is

going to be a subset S′ consisting of the maximal refined double characters.
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∑
r∈Rz

ar Cr,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu),

where each
Cr,i1...iµ+1

g (�1, . . . , �p, φ1, . . . , φu)

has a µ-double character EL z
1 and also the same set of factors S∗∇(ν)Rijkl as in EL z

contain special free indices, so that

(1-8)
∑
l∈L z

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)∇i1υ . . .∇iµυ

−

∑
r∈Rz

ar X diviµ+1 Cr,i1...iµ+1
g (�1, . . . , �p, φ1, . . . , φu)∇i1υ . . .∇iµυ

=

∑
t∈T1

atC
t,i1...iµ
g (�1, . . . , �p, , φ1, . . . , φu)∇i1υ . . .∇iµυ,

modulo complete contractions of length ≥ σ + u+µ+ 1. Here each

C t,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

is acceptable and is either simply or doubly subsequent to EL z .13

(See the first section in [A 2010] for a description of the notions of real length,
acceptable tensor fields, simple character, refined double character, maximal re-
fined double character, simply subsequent, strongly doubly subsequent.) We prove
Proposition 1.1 by a multiple induction on the parameters −n (the weight of the
complete contractions appearing in (1-7)), σ (the total number of factors in the
form ∇(m)Rijkl, S∗∇(ν)Rijkl,∇

(A)�h among the partial contractions in (1-7)),14 8

(the number of factors ∇φ1, . . . ,∇φu appearing in (1-7)), and σ1 + σ2 (the total
number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl). When 8 = 0, Proposition 1.1 coincides
with the “Main algebraic proposition” 2.28 in [A 2012] outlined above.15

2. Proof of the technical lemmas from [A 2010]

2A. Restatement of the technical Lemmas 4.6–4.9 from [A 2010]. We start by
recalling a definition from [A 2010] that will be used frequently in the present
paper:

13Recall that “simply subsequent” means that the simple character of C
t,i1...iµ
g is subsequent to

Simp( ELz).
14The partial contractions in (1-7) are assumed to all have the same simple character–this implies

that they all have the same number of factors ∇(m)Rijkl, S∗∇(ν)Rijkl, ∇(A)�h respectively.
15Similarly, the “Main algebraic propositions” 3.27 and 3.28 in Chapter 3 of [A 2012] coincide

with Proposition 1.1 above when 8= 1.
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Definition. Consider any partial contraction in the form (1-6). We consider any set
of indices, {x1, . . . , xs } belonging to a factor T , which is either in the form ∇(B)�h

or ∇(m)Rijkl. We assume that these indices are not free and are not contracting
against a factor ∇φh .

If the indices belong to a factor T in the form ∇(B)�h then {x1, . . . , xs } are
removable provided B ≥ s+ 2.

Now, we consider indices that belong to a factor T in the form ∇(m)Rijkl (and
are not free and do not contract against a factor ∇φh). Any such index x which
is a derivative index will be removable. Furthermore, if T has at least two free
derivative indices, then if neither of the indices i , j are free we will say one of i , j

is removable; accordingly, if neither of k, l is free then we will say that one of k, l

is removable. Moreover, if T has one free derivative index then: if none of the
indices i , j are free we will say that one of the indices i , j is removable; on the
other hand if one of the indices i , j is also free and none of the indices k, l are free
then we will say that one of the indices k, l is removable.

Now, we consider a set of indices {x1, . . . , xs } that belong to a factor T in the form
S∗∇(ν)r1...rν Rijkl; if {x1, . . . , xs} ⊂ {r1 . . . rν, j} and none of them are free and none of
them contract against a factor∇φx , then we will say this set of indices is removable.
Furthermore, we will say that the indices k, l in such a factor are removable if
neither k nor l is free and ν > 0 and at least one of the indices r1, . . . , rν , j is free.

For the two Lemmas 2.1 and 2.2 we will consider tensor fields in the form

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(2-1)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl⊗∇Y

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 · · · ⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
.

(Notice this is the same as the form (1-6), but for the fact that we have inserted a
factor ∇Y in the second line.) We recall that for a partial contraction C i1...ih

g in the
above form, X∗ divir C i1...ih

g stands for the sublinear combination in the divergence
divir C i1...ih

g where the derivative ∇ ir is not allowed to hit the factor to which ir

belongs, nor any factor ∇φx , nor the factor ∇Y .
The claims whose proof was deferred to the present paper are then as follows:

Lemma 2.1. Assume that

(2-2)
∑
h∈H2

ah X∗ divi1 . . . X∗ diviah
C

h,i1...iah
g (�1, . . . , �p, Y, φ1, . . . , φu′)

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu′),
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where all tensor fields have rank ah ≥ α. All tensor fields have a given u-simple
character Eκ ′simp, for which σ ≥ 4. Moreover, we assume that if we formally treat the
factor ∇Y as a factor ∇φu′+1 in the above equation, then the inductive assumption
of Proposition 1.1 can be applied. (See Subsection 3.1 in [A 2010] for a strict
discussion of the multiparameter induction by which we prove Proposition 1.1.)

The conclusion (under various assumptions which we will explain below) is:
Denote by H2,α ⊂ H2 the index set of tensor fields with rank α in (2-2).

We claim that there is a linear combination of acceptable16 tensor fields∑
d∈D

adCd,i1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu),

each with a simple character Eκ ′simp, so that

(2-3)
∑

h∈H2,α

ahCh,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu′)∇i1υ . . .∇iαυ

− X∗ diviα+1

∑
d∈D

adCd,i1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu′)∇i1υ . . .∇iαυ

=

∑
t∈T

atC t
g(�1, . . . , �p, Y, φ1, . . . , φu′, υ

α).

The linear combination on the right-hand side stands for a generic linear combina-
tion of complete contractions in the form (2-1) with a factor ∇Y and with a simple
character that is subsequent to Eκ ′simp.

The assumption under which (2-3) holds is that there should be no tensor fields
of rank α in (2-2) that are “bad”. Here “bad” means the following:

If σ2 = 0 in Eκ ′simp then a tensor field in the form (2-1) is “bad” provided:

(1) The factor ∇Y contains a free index.

(2) If we formally erase the factor ∇Y (which contains a free index), then the re-
sulting tensor field should have no removable indices,17 and no free indices.18

Moreover, any factors S∗Rijkl should be simple.

If σ2 > 0 in Eκ ′simp then a tensor field in the form (2-1) is “bad” provided:

(1) The factor ∇Y contains a free index.

(2) If we formally erase the factor ∇Y (which contains a free index), then the
resulting tensor field should have no removable indices, any factors S∗Rijkl

should be simple, any factor ∇(2)ab �h should have at most one of the indices
a, b free or contracting against a factor ∇φs .

16“Acceptable” in the sense that each factor �i is differentiated at least twice).
17Thus, the tensor field should consist of factors S∗Rijkl,∇

(2)�h , and factors ∇(m)r1...rm Rijkl with
all the indices r1 , . . . , rm contracting against factors ∇φh .

18That is α = 1 in (2-2).
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(3) Any factor ∇(m)Rijkl can contain at most one (necessarily special, by virtue of
(2)) free index.

Furthermore, we claim that the proof of this lemma will only rely on the induc-
tive assumption of Proposition 1.1. Moreover, we claim that if none of the tensor
fields indexed in H2 (in (2-2)) have a free index in ∇Y , then we may assume that
none of the tensor fields indexed in D in (2-3) have that property either.

Lemma 2.2. We assume that (2-2) holds for σ = 3. We also assume that for each
of the tensor fields in Hα,∗

2
19 there is at least one removable index. We then have

two claims:
First, the conclusion of Lemma 2.1 holds in this setting. Second, we can write

(2-4)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu′)

=

∑
q∈Q

aq X divi1 . . . X divia′
Cq,i1...ia′

g (�1, . . . , �p, Y, φ1, . . . , φu′)

+

∑
t∈T

atC t
g(�1, . . . , �p, Y, φ1, . . . , φu′),

where the linear combination
∑

q∈Q aqCq,i1...ia′
g stands for a generic linear combi-

nation of tensor fields in the form

pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl(2-5)

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl⊗∇
(B)Y

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φz1 · · · ⊗∇φzw

⊗∇φ′zw+1
⊗ · · ·⊗∇φ′zw+d

⊗ · · ·⊗∇φ̃zw+d+1 ⊗ · · ·⊗∇φ̃zw+d+y

)
,

with B ≥ 2, with a simple character Eκ ′simp and with each a′ ≥ α. The acceptable
complete contractions C t

g(�1, . . . , �p, Y, φ1, . . . , φu′) are simply subsequent to
Eκ ′simp. X divi here means that ∇i is not allowed to hit the factors ∇φh (but it is
allowed to hit ∇(B)Y ).

For our next two lemmas, we will be considering tensor fields in the general
form

(2-6) contr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(ms)Rijkl

⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νb)Rijkl

⊗∇
(B,+)
r1...rB

(∇aω1∇bω2−∇bω1∇aω1)

⊗∇
(d1)�p⊗ · · ·⊗∇

(dp)�p⊗∇φ1⊗ · · ·⊗∇φu
)
;

19Recall from [A 2010] that Hα,∗
2 is the index set of tensor fields of rank α in (2-2) with a free

index in the factor ∇Y .
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here ∇(B,+)r1...rB (. . . ) stands for the sublinear combination in ∇(B)r1...rB (. . . ) where each
derivative ∇ri is not allowed to hit the factor ∇ω2.

We also recall from [A 2010] that X+ divi stands for the sublinear combination
in X divi where ∇i is in addition not allowed to hit the factor ∇ω2 (it is allowed to
hit the factor ∇(B)ω1).

Lemma 2.3. Consider a linear combination of partial contractions,∑
x∈X

axC x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu′),

where each of the tensor fields C x,i1...ia
g is in the form (2-6) with B = 0 (and is

antisymmetric in the factors ∇aω1,∇bω2 by definition), with rank a ≥ α and real
length σ ≥4.20 We assume that all these tensor fields have a given simple character
which we denote by Eκ ′simp (we use u′ instead of u to stress that this lemma holds in
generality). We assume that

(2-7)
∑
x∈X

ax X∗ divi1 . . . X∗ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)= 0,

where X∗ divi stands for the sublinear combination in X divi where ∇i is in addi-
tion not allowed to hit the factors ∇ω1,∇ω2. The contractions C j here are simply
subsequent to Eκ ′simp. We assume that if we formally treat the factors ∇ω1,∇ω2 as
factors ∇φu+1,∇φu+2 (disregarding whether they are contracting against special
indices) in the above, then the inductive assumption of Proposition 1.1 applies.

The conclusion we will draw (under various hypotheses that we will explain
below) is that we can write

(2-8)
∑
x∈X

ax X+ divi1 . . . X+ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
x∈X ′

ax X+ divi1 . . . X+ divia C x,i1...ia
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)= 0,

where the tensor fields indexed in X ′ on the right-hand side are in the form (2-6)
with B > 0. All the other sublinear combinations are as above.

Assumptions needed for (2-8): We claim that (2-8) holds under certain assump-
tions on the α-tensor fields in (2-7) that have rank α and have a free index in one

20 Recall that in the definition of “real length” in this setting, we count each factor ∇(m)R,
S∗∇(ν)R, ∇(B)�x once, the two factors ∇(a)ω1, ∇ω2 as one, and the factors ∇φ, ∇φ′, ∇φ̃ as
nothing.
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of the factors ∇ω1,∇ω2 (say in ∇ω1 without loss of generality) — we denote the
index set of those tensor fields by Xα,∗

⊂ X.
The assumption we need in order for the claim to hold is that no tensor field

indexed in Xα,∗ should be “bad”. A tensor field is “bad” if it has the property that
when we erase the expression ∇[aω1∇b]ω2 (and make the index that contracted
against b into a free index) then the resulting tensor field will have no removable
indices, and all factors S∗Rijkl will be simple.

Lemma 2.4. We assume that (2-7) holds, where now the tensor fields have length
σ = 3. We also assume that for each of the tensor fields indexed in X , there is a
removable index in each of the real factors. We then claim that the conclusion of
Lemma 2.3 is still true in this setting.

For the most part, the remainder of this paper is devoted to proving the above
lemmas. However, we first state and prove some further technical claims, one of
which appeared as Lemma A.1 in [A 2010].21

2B. Two more technical lemmas. We claim that an analogue of Lemma 4.10 in
[A 2010]22 can be derived for tensor fields with a given simple character Eκsimp, and
where rather than having one additional factor ∇φu+1 (which is not encoded in the
simple character Eκsimp), we have two additional factors ∇aφu+1,∇bφu+2.

Lemma 2.5. Consider a linear combination∑
l∈L

alC
l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

of acceptable tensor fields in the form (1-6) with a given u-simple character Eκsimp.
Assume that the minimum rank among those tensor fields above is α ≥ 2. Assume
that

(2-9)
∑
l∈L

al X∗ divi3 . . . X∗ diviβ C l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2

+

∑
j∈J

a j C j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2 = 0;

here X∗ divi means that ∇ i is in addition not allowed to hit either of the fac-
tors ∇φu+1, ∇φu+2. We also assume that if we formally treat the factors ∇φu+1,
∇φu+2 as factors ∇φu+1, ∇φu+2 then (2-9) falls under the inductive assumption of
Proposition 1.1 (with respect to the parameters (n, σ,8, u)). Denote by Lα ⊂ L

21Its proof was also deferred to the present paper.
22This corresponds to Lemma 4.44 in [A 2012].



14 SPYROS ALEXAKIS

the index set of terms with rank α. We additionally assume that none of the ten-
sor fields C l,i1...iβ

g (�1, . . . , �p, φ1, . . . , φu) are “forbidden,” in the sense defined
above Proposition 2.1 in [A 2010].

We then claim that there exists a linear combination of (α+1)-tensor fields with
a u-simple character Eκsimp (indexed in Y below) so that

(2-10)
∑
l∈Lα

alC l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ

= X∗ diviα+1

∑
y∈Y

ayC l,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2φu+2∇i3υ . . .∇iαυ.

We also claim that we can write

(2-11)
∑
l∈L

al X divi3 . . . X diviβ C l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
q∈Q1

aq X divi3 . . . X diviα

×Cq,i3...iα
g (�1, . . . , �p, φ1, . . . , φu+2)∇i1φu+1∇i2φu+2

+

∑
q∈Q2

aq X divi3 . . . X diviα

×Cq,i3...iα
g (�1, . . . , �p, φ1, . . . , φu+2),

where the tensor fields indexed in Q1 are acceptable with a u-simple character
Eκsimp and with a factor ∇(2)φu+1 and a factor ∇φu+2. The tensor fields indexed in
Q2 are acceptable with a u-simple character Eκsimp and with a factor ∇(2)φu+2 and
a factor ∇φu+1.

Proof of Lemma 2.5. We may divide the index set Lα into subsets LαI , LαI I ac-
cording to whether the two factors ∇φu+1,∇φu+2 are contracting against the same
factor or not — we will then prove our claim for those two index sets separately.
Our claim for the index set LαI I follows by a straightforward adaptation of the proof
of Lemma 4.10 in [A 2010]. (Notice that the forbidden cases of the present lemma
are exactly in correspondence with the forbidden cases of that lemma.) Therefore,
we now prove our claim for the index set LαI :

We denote by L I ⊂ L , JI ⊂ J the index sets of terms for which the two factors
∇φu+1,∇φu+2 are contracting against the same factor. It then follows that (2-9)
holds with the index sets L , J replaced by L I , JI — denote the resulting new equa-
tion by New(2-9). Now, for each tensor field C l,i1...iβ

g and each complete contraction
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C j
g , we let Sym[C l,i1...iβ

g ], Sym[C l,i1...iβ
g ], AntSym[C j

g ],AntSym[C j
g ] stand for the

tensor field/complete contraction that arises from C l,i1...iβ
g ,C j

g by symmetrizing (re-
spectively antisymmetrizing) the indices a, b in the two factors ∇aφu+1,∇bφu+2.
We accordingly derive two new equations from New(2-9), which we denote by
New(2-9)Sym and New(2-9)AntSym.

We will then prove the claim separately for the tensor fields in the sublinear com-
bination

∑
l∈LαI

al Sym[C]l,i1...iα
g and the tensor fields in the sublinear combination∑

l∈LαI
al AntSym[C]l,i1...iα

g .
The claim (2-10) for the sublinear combination

∑
l∈LαI

al AntSym[C]l,i1...iα
g fol-

lows directly from the arguments in the proof of Lemma 2.3 (see this proof below).
Therefore it suffices to show our claim for

∑
l∈LαI

al Sym[C]l,i1...iα
g .

We prove this claim as follows: We divide the index set LαI according to the
form of the factor against which the two factors ∇φu+1,∇φu+2 contract: List
out the nongeneric factors {T1, . . . , Ta} in Eκsimp.23 Then, for each k ≤ a we let
LαI,k stand for the index set of terms for which the factors ∇φu+1,∇φu+2 are
contracting against the factor Tk . We also let LαI,a+1 stand for the index set of
terms for which the factors ∇φu+1,∇φu+2 are contracting against a generic fac-
tor ∇(m)Rijkl. We will prove our claim for each of the sublinear combinations∑

l∈LαI,a+1
al Sym[C]l,i1...iα

g separately.
We first observe that for each k≤ a+1, we may obtain a new true equation from

(2-9) by replacing L by L I,a+1 — denote the resulting equation by (2-9)I,Sym,k .
Therefore, for each k ≤ a + 1 for which Tk is in the form ∇(p)�h , our claim
follows straightforwardly by applying Corollary 1 from [A 2010].24

Now, we consider the case where the factor Tk is in the form S∗∇(ν)Rabcd : In
that case we denote by L I,k,] the index set of terms for which one of the factors
∇φu+1,∇φu+2 is contracting against a special index in Tk . In particular, we will
let LαI,k,] ⊂ L I,k,] stand for the index set of terms with rank α. We will then show
that two equations hold:

23Recall from [A 2010] that the nongeneric factors in Eκsimp are all the factors in the form
∇
(A)�h , S∗∇(ν)Rijkl, and also all the factors ∇(m)Rijkl that contract against at least one factor ∇φs .

24This corresponds to Corollary 4.14 in [A 2012]. There is no danger of falling under a “forbidden
case,” since we started with tensor fields which were not forbidden.
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First, we claim that there exists a linear combination of tensor fields as claimed
in (2-10) so that

∑
l∈LαI,k,]

al Sym[C]l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)(2-12)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

−

∑
y∈Y

ay X diviα+1 C y,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 17

=

∑
l∈LαOK

al X diviα+1 C l,i1...iα iα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ,

where the tensor fields in LαOK have all the properties of the terms in L I,k , rank α
and furthermore none of the factors∇φu+1,∇φu+2 are contracting against a special
index.

Then (under the assumption that LαI,k,] =∅) we claim that we can write

(2-13)
∑

l∈L I,k,]

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
l∈L I,k,OK

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

+

∑
j∈J

a j Sym[C] j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

where the tensor fields in L I,k,OK have all the properties of the terms in L I,k ,
but they additionally have rank ≥ α + 1 and furthermore none of the factors
∇φu+1,∇φu+2 are contracting against a special index.

If we can show the above two equations, then we are reduced to showing our
claim under the additional assumption that no tensor field indexed in L in Sym(2-9)
has any factors∇φu+1,∇φu+2 that contract against a special index in Tk . Under that
assumption, we may additionally assume that none of the complete contractions
indexed in J in (2-9) have that property.25 Therefore, we may then erase the factor
∇φu+1 from all the complete contractions and tensor fields in (2-9)k by virtue of
the operation Erase, introduced in the Appendix in [A 2012] — our claim then
follows by applying Corollary 1 from [A 2010] to the resulting equation and then
reintroducing the erased factor ∇φu+1. �

Outline of the proofs of (2-12) and (2-13). First we prove (2-12): Suppose without
loss of generality that Tk contracts against ∇φ̃1 and ∇φ′2, . . . ,∇φ

′

h ; then replace
the two factors ∇aφ1,∇bφu+1 by gab and then apply Ricto�p+1,26 (obtaining a
new true equation) an then apply the eraser to the resulting true equation. We then
apply Corollary 1 from [A 2010] to the resulting equation,27 and finally we replace

25This can be derived by repeating the proof of (2-12), (2-13).
26See the relevant lemma in the Appendix of [A 2012].
27Since the factor ∇φu+2 survives this operation, and since we started out with terms that were

not “forbidden,” there is no danger of falling under a “forbidden case” of Corollary 1 from [A 2010].
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the factor ∇(b)r1...rb�p+1 by an expression

S∗∇(b+h−1)
y2...yhr1...rb−1

Ri jkrb∇
i φ̃1∇

jφu+2∇
kφu+1∇

y2φ′2 . . .∇
yhφ′h .

As in the proof of Lemma 4.10 in [A 2010], we derive our claim. Then (2-13) is
proven by iteratively applying this step and making each ∇υ into an X div at every
stage.

We analogously show our claim when the factor Tk is in the form ∇(m)Rijkl:
In that case we denote by L I,k,] the index set of terms for which both the factors
∇φu+1,∇φu+2 are contracting against a special index in Tk . We will then show
two claims:

First, that there exists a linear combination of partial contractions (indexed in Y
below) as claimed in (2-10) so that

(2-14)
∑

l∈LαI,k,]

al Sym[C]l,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

=

∑
y∈Y

ay X diviα+1 C y,i1...iα+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
l∈LαOK

al X diviα+1 C l,i1...iα iα+1
g ∇i1φu+1∇i2ω∇i3υ . . .∇iαυ

+

∑
j∈J

a j C j,i1...iα
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1∇i2ω∇i3υ . . .∇iαυ,

where the tensor fields in LαOK have all the properties of the terms in L I,k , but they
additionally have rank α and furthermore one of the factors ∇φu+1,∇φu+2 does
not contract against a special index. Then (under the assumption that LαI,k,] = ∅)
we denote by L I,k,] the sublinear combination of terms in L I,k where both factors
∇φu+1 or ∇φu+1 contract against a special index in Tk . We claim that we can write

(2-15)
∑

l∈L I,k,]

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

=

∑
l∈L I,k,OK

al X divi3 . . . X diviβ

×Sym[C]l,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2

+

∑
j∈J

a j Sym[C] j,i1i2
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1∇i2φu+2,

where the tensor fields in L I,k,OK have all the properties of the terms in L I,k , but
they additionally have rank ≥ α + 1 and furthermore one of the factors ∇φu+1,
∇φu+2 does not contract against a special index.



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 19

If we can show the above two equations, then we are reduced to showing our
claim under the additional assumption that no tensor field indexed in L in Sym(2-9)
has the two factors ∇φu+1,∇φu+2, contracting against a special index in Tk . Under
that assumption, we may additionally assume that none of the complete contrac-
tions indexed in J in (2-9) have that property. Therefore, we may then erase the
factor ∇φu+1 from all the complete contractions and tensor fields in (2-9)k — our
claim then follows by applying Lemma 4.10 in [A 2010] to the resulting equation28

and then reintroducing the erased factor ∇φu+1. �

Outline of the proofs of (2-14) and (2-15). First we prove (2-14). Suppose without
loss of generality that Tk contracts against ∇φ1, . . . ,∇φh (possibly with h = 0);
then replace the two factors ∇aφ1,∇bφu+1 by gab and then apply Ricto�p+1 (ob-
taining a new true equation), and then apply the eraser to the factors ∇φ1, . . . ,∇φh

in the resulting true equation. Then (apart from the cases, discussed below, where
the above operation may lead to a “forbidden case” of Corollary 1 in [A 2010]),
we apply that corollary to the resulting equation, and finally we replace the factor
∇
(b)
r1...rb�p+1 by an expression

∇
(b+h)
s1...shr1...rb−2

Rirb−1krb∇
iφu+1∇

kφu+2∇
s1φ1 . . .∇

shφh .

As in the proof of Lemma 4.10 in [A 2010], we derive our claim. Then (2-14) is
proven by iteratively applying this step and making each ∇υ into an X div at every
stage (again, provided we never encounter “forbidden cases”). If we do encounter
forbidden cases, then our claims follow by just making the factors ∇φu+1,∇φu+2

into X divs and then applying Corollary 1 in [A 2012] to the resulting equation
(the resulting equation is not forbidden, since it will contain a factor ∇(m)Rijkl with
two free indices), and in the end renaming two factors ∇υ as ∇φu+1,∇φu+2. �

A further generalization: Proof of Lemma A.1 from [A 2010]. We remark that
on a few occasions later in this series of papers we will be using a generalized ver-
sion of the Lemma 2.5. The generalized version asserts that the claim of Lemma 2.5
remains true, for the general case where rather than one or two “additional” factors
∇φu+1,∇φu+2 we have β ≥ 3 “additional” factors ∇φu+1, . . . ,∇φu+β . Moreover,
in that case there are no “forbidden cases”.

Lemma 2.6. Let∑
l∈L1

alC
l,i1...iµ,iµ+1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu),

∑
l∈L2

alC
l,i1...ibl ,ibl+1...ibl+β
g (�1, . . . , �p, φ1, . . . , φu),

28Notice that there is no danger of falling under a “forbidden case” of that lemma, since there
will be a nonsimple factor S∗∇(ν)Rijkl by virtue of the factor ∇φu+2.
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stand for two linear combinations of acceptable tensor fields in the form (1-6),
each with u-simple character Eκsimp. We assume that the terms indexed in L1 have
rank µ+β, while the ones indexed in L2 have rank greater than µ+β.

Assume that

(2-16)
∑
l∈L1

al X diviβ+1 . . . X diviµ+β

×C l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
l∈L2

al X diviβ+1 . . . X divibl

×C
l,i1...ibl+β
g (�1, . . . , �p, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu+β)= 0,

modulo terms of length ≥ σ + u+ β + 1. Furthermore, we assume that the above
equation falls under the inductive assumption of Proposition 2.1 in [A 2010] (with
regard to the parameter weights, σ,8, p). We are not excluding any “forbidden
cases”.

We claim that there exists a linear combination of (µ+β+1)-tensor fields in the
form (1-6) with u-simple character Eκsimp and length σ + u (indexed in H below)
such that

(2-17)
∑
l∈L1

alC
l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ

+

∑
h∈H

ah X diviµ+β+1 C l,i1...iµ+β+1
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφβ+1∇i1υ . . .∇iβ+µυ

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu+β, υ

µ)= 0,

modulo terms of length ≥ σ + u + β + µ+ 1. The terms indexed in J here are
u-simply subsequent to Eκsimp.

Proof of Lemma 2.6. The proof of the above is a straightforward adaptation of the
proof of Lemma 2.5, except for the cases where the tensor fields C l,i1...iµ,iµ+1...iµ+β

g
are “bad,” where “bad” in this case means that all factors are in the form Rijkl,
S∗Rijkl, ∇(2)�h ,29 and in addition each factor ∇(2)�h contracts against at most one
factor ∇φh, 1≤ h ≤ u+β. So we now focus on that case.

29Notice that if this property holds for one of the terms C
l,i1...iµ,iµ+1...iµ+β
g , then it will hold for

all of them by weight considerations.
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The “bad” case. Let us observe that by weight considerations, all tensor fields in
(2-9) must now have rank µ.

We recall that this special proof applies only in the case where there are special
free indices in factors S∗Rijkl among the tensor fields of minimum rank in (2-9).
(If there were no such terms, then the regular proof of Lemma 2.5 would apply.)
We distinguish three cases: Either p > 0, or p = 0 and σ1 > 0, or p = σ1 = 0 and
σ2 > 0. We will prove the above by an induction on the parameters (weight), σ :
Suppose that the weight of the terms in (2-16) is −K and the real length is σ ≥ 3.
We assume that the lemma holds when the Equation (2-16) consists of terms with
weight −K ′, K ′ < K , or of terms with weight −K and real length σ ′, 3≤ σ ′ < σ .

The case p > 0. We first consider the µ-tensor fields in (2-9) with the extra factor
∇φu+1 contracting against a factor ∇(2)�h . Denote the index set of those terms by
Lµ. We will first prove that

(2-18)
∑
l∈Lµ

alC
l,i1...iµ+β
g (�1, . . . , �p, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

It suffices to prove the above for the sublinear combination of µ-tensor fields
where ∇φu+1 contracts against ∇(2)�1. (2-18) will then follow by relabeling the
functions �1, . . . , �p and repeating this step p times.

We start by a preparatory claim: Let us denote by Lµ,] ⊂ Lµ the index set of
µ-tensor fields for which the factor ∇(2)�1 contains a free index, say the index i1

without loss of generality. We will first prove that

(2-19)
∑

l∈Lµ,]

alC
l,i1...iµ
g ∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Proof of (2-19). We will use the technique (introduced in Subsection 3.1 of [A
2011]) of “inverse integration by parts” followed by the silly divergence formula.

Let us denote by Ĉ l
g the complete contraction that arises from each C l,i1...iµ+β

g

by formally erasing the expression ∇(2)si1
�1∇

sφu+1 and then making all free indices

iβ+1, . . . , iβ+µ into internal contractions.30 Then, the “inverse integration by parts”
implies a new integral equation

(2-20)
∫

Mn

∑
l∈Lµ

alĈ l
g +

∑
j∈J

a j C j
g +

∑
z∈Z

azC z
g dVg = 0.

Here the complete contractions indexed in J have length σ +u and u factors ∇φu ,
but they are simply subsequent to the simple character Eκsimp. The terms indexed in

30We recall that to “make a free index iy into an internal contraction” means that we add a
derivative ∇iy onto the factor Tiy to which the free index iy belongs. The new derivative index
∇

iy is then contracted against the index iy in Tiy .
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Z either have length ≥ σ + u+ 1 or have length σ + u, but also have at least one
factor ∇(B)φh with B ≥ 2.

Now, in the above, we consider the complete contractions indexed in Lµ,]⊂ Lµ
and we “pull out” the expression 1∇t�1∇

tφu+1 to write∑
l∈Lµ,]

alĈ l
g =

∑
l∈Lµ,]

alC l
g · (1∇t�1∇

tφ1).

Now, we consider the silly divergence formula applied to (2-20) obtained by
integrating by parts with respect to the function �1. If we denote the integrand
in (2-20) by Fg, we denote the resulting (local) equation by silly[Fg] = 0. We
consider the sublinear combination silly∗[Fg] which consists of terms with length
σ+u, µ internal contractions and u−1+β factors ∇φh, h≥2, and a factor1φu+1.
Clearly, this sublinear combination must vanish separately modulo longer terms,

silly∗[Fg] = 0.

The above equation can be expressed as

(2-21) Spread∇
s ,∇s

[ ∑
l∈Lµ,]

alC l
g

]
·�1 ·1φu+1 = 0.

(Here Spread∇
s ,∇s is a formal operation that acts on complete contractions in the

form (1-5) by hitting a factor T in the form ∇(m)Rijkl or ∇(p)�h with a derivative
∇

s and then hitting another factor T ′ 6= T in the form ∇(m)Rijkl or ∇(p)�h with a
derivative ∇s that contracts against ∇s and then adding over all the terms we can
thus obtain.) Now, using the fact that (2-21) holds formally, we derive31

(2-22)
∑

l∈Lµ,]

alC l
g = 0.

Thus, applying the operation Subυ µ− 1 times to the above and then multiplying
by ∇i1i2�1∇

i1υ∇ i2φu+1 we derive (2-19). So for the rest of this proof we may
assume that Lµ,] =∅. �

Now we prove our claim under the additional assumption that for the tensor
fields indexed in Lµ, the factor ∇(2)�1 contains no free index.

We again refer to (2-20) and perform integrations by parts with respect to the
factor ∇(B)�1. We denote the resulting local equation by silly[Lg] = 0. We pick
out the sublinear combination silly∗[Lg] of terms with σ +u factors, u+β factors
∇φh , µ internal contractions, with u+β−1 factors ∇φh , h ≥ 2, and a factor 1φ1.
This sublinear combination must vanish separately, silly∗[Lg] = 0; the resulting
new true equation can be described easily: Let us denote by Ĉ l, j1

g the 1-vector

31This can be proven by using the operation Erase[. . . ], see the Appendix in [A 2010].
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field that arises from C l,i1...iµ
g , l ∈ Lµ,∗ by formally erasing the factor ∇(2)js �1∇

sφ1,
making the index j that contracted against j into a free index j1 , and making all
the free indices i1, . . . , iµ into internal contractions. (Denote by Eκ ′simp the simple
character of these vector fields.) Then the equation silly∗[Lg]= 0 can be expressed
in the form

(2-23)
∑

l∈Lµ,∗

al{X div j1 Ĉ l, j1
g }1φ1+

∑
j∈J

a j C j
g1φ1 = 0;

here the complete contractions C j
g are simply subsequent to Eκ ′simp. The above holds

modulo terms of length≥σ+u+1. Now, we apply the operation Subω µ times (see
the Appendix in [A 2012]). In the case σ > 3, we apply the inductive assumption
of our Lemma 2.6 to the resulting equation (notice that the above falls under the
inductive assumption of this lemma since we have lowered the weight in absolute
value); we ensure that Lemma 2.6 can be applied by just labeling one of the factors
∇ω into ∇φu+1. We derive (due to weight considerations) that there can not be
tensor fields of higher rank, thus

(2-24)
∑
l∈Lµ

al Subµ−1
ω

[
Ĉ l, j1

g
]
∇i1υ1φ1 = 0.

Now, formally replacing the factor ∇i1υ by ∇(2)j1t�1∇
tφ1, and then setting ω = υ,

we derive the claim of our lemma. In the case σ = 3 (2-24) follows by inspection,
since the only two possible cases are σ2 = 2 and σ1 = 2; in the first case there
are only two possible partial contractions in Lµ while in the second there are four.
Equation (2-23) (by inspection) implies that the coefficients of all these tensor
fields must vanish, which is equivalent to (2-24).

Now, we will prove our claim under the additional assumption Lµ=∅ (still for
p>0). We again refer to (2-20) and again consider the same equation silly[Lg]=0
as above. We now pick out the sublinear combination of terms with σ +u factors,
u+β factors ∇φh , and µ internal contractions. We derive that

(2-25)
∑
l∈Lµ

al X div j1 X div j2 Ĉ l, j1 j2
g +

∑
j∈J

a j C j
g = 0;

here the terms Ĉ l, j1 j2
g arise from the µ-tensor fields C li1...iµ

g by replacing all µ free
indices by internal contractions, erasing the factor ∇(2)jk �1 and making the indices
j , k into free indices j1, j2 . Now, applying Subω µ times, and then applying the
inductive assumption of Lemma 4.10 in [A 2010] (this applies by length consid-
erations as above for σ > 3; while if σ = 3 the claim (2-26) will again follow by
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inspection) we derive that

(2-26)
∑
l∈Lµ

alĈ l, j1 j2
g ∇ j1υ∇ j2υ = 0.

Replacing the expression ∇ j1υ∇ j2υ by a factor ∇(2)j1 j2�2 and then setting ω = υ,
we derive our claim in the case p > 0.

The case p = 0, σ1 > 0. We will reduce to the previous case: We let L1
µ be the

index set of µ-tensor fields where the factor T1 = S∗Rijkl∇
i φ̃1 contains a special

free index (say the index k is the free index iβ+1 without loss of generality). We will
prove our claim for the index set L1

µ; if we can prove this, then clearly our lemma
will follow by induction.

To prove this claim, we consider the first conformal variation of our hypothesis,
Image1

Y [Lg] = 0, and we pick out the sublinear combination of terms with length
σ+u+β, where the factor ∇(ν)S∗Rijkl∇

i φ̃1 has been replaced by a factor ∇(ν+2)Y ,
and the factor ∇φ1 now contracts against a factor T2 = Rijkl. This sublinear com-
bination vanishes separately, thus we derive a new local equation. To describe the
resulting equation, we denote by

Ĉ l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

the (µ−1)-tensor field that arises from

C l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

by formally replacing the factor T1 = S∗Rijkl∇
i φ̃1 by ∇(2)jl Y and also adding a

derivative index ∇i∗ onto the factor T2 = Rijkl and then contracting that index i∗
against an (added anew) factor ∇φ1. Denote the (u − 1)-simple character of the
above (the one defined by ∇φ2, . . . ,∇φu) by Eκ ′simp. We then have an equation

(2-27)∑
l∈L1

µ

al X diviβ+2 . . . X diviβ+µ Ĉ l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

+

∑
h∈H

ah X diviβ+1 . . . X diviµ+β C l,i2...iµ+β
g (Y, φ1, . . . , φu)∇i1φu+1 . . .∇iβφu+β

=

∑
j∈J

a j C
j,iµ+1...iβ
g (Y, φ1, . . . , φu)∇iµ+1φu+1 . . .∇iβφu+β .

The terms indexed in H are acceptable, have a (u− 1)-simple character Eκ ′simp and
the factor ∇φ1 contracts against an internal index (without loss of generality, say
the index i in the factor T2= Rijkl); writing that factor as S∗Rijkl∇

i φ̃1, we denote the
resulting u-simple factor by κ̃simp. The terms indexed in J are simply subsequent
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to Eκ ′simp. Now, applying the inductive assumption of Lemma 2.6,32 we derive that

(2-28)
∑
h∈H

ahC l,i2...iµ+β
g (Y, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβ+1φu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Thus, we may assume without loss of generality that H = ∅ in (2-27). Now, we
again apply Lemma 2.6 to (2-27) (under that additional assumption), and we derive
that

(2-29)
∑
l∈L1

µ

alĈ
l,i1...îβ+1...iµ+β
g (Y, φ1, . . . , φu)

×∇i1φu+1 . . .∇iβφu+β∇iβ+1υ . . .∇iβ+µυ = 0.

Now, erasing the factor ∇φ1 from the above, and then formally replacing the factor
∇
(2)
ab Y by S∗Ri(ab)l∇

i φ̃1∇
lυ, we derive our claim.

The case p = 0, σ1 = 0. In this case σ = σ2. In other words, all factors in Eκsimp

are simple factors in the form S∗Rijkl∇
i φ̃h . We recall that in this case all µ-tensor

fields in (2-9) must have at most one free index in any factor S∗Rijkl. In that case,
we will prove our claim in a more convoluted manner, again reducing ourselves to
the inductive assumption of Proposition 2.1 in [A 2010].

A key observation is that by the definition of the special cases, µ + β ≤ σ2.
In the case of strict inequality, we see (by a counting argument) that at least one
of the special indices in one of the factors S∗Rijkl must contract against a special
index in another factor S∗Rabcd . In the case µ+ β = σ2 this remains true, except
for the terms for which the β factors ∇φu+h contract against special indices, say
the indices k , in β factors Ty = S∗Rikl∇

i φ̃y , and moreover these factors must not
contain a free index, and all other factors S∗Rikl contain exactly one free index,
which must be special. In this subcase, we will prove our claim for all µ-tensor
fields excluding this particular “bad” sublinear combination; we will prove our
claim for this sublinear combination in the end.

We will now proceed to normalize the different (µ+β)-tensor fields in (2-9).
A normalized tensor field will be in the form (1-6), with possibly certain pairs of
indices in certain of the factors S∗Rijkl being symmetrized over.

Let us first introduce a few definitions: Given each C l,i1...iµ
g , we list out the

factors T1, . . . Tσ2 in the form S∗Rikl . Here Ta is the factor for which the index i

is contracting against the factor ∇φ̃a . We say that factors S∗Rikl are of type I if
they contain no free index. We say they are of type II if they contain a special free
index. We say they are of type III if they contain a nonspecial free index.

Given any tensor field C l,i1...iµ
g in the form (1-6), pick out the pairs of factors

Tα, Tβ in the form S∗Rijkl for which a special index in Tα contracts against a special

32The terms indexed in L1
µ are now simply subsequent to κ̃simp.
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index in Tβ . (Call such particular contractions “special-to-special” particular con-
tractions.) Now, in any C l,i1...iµ

g we define an ordering among all its factors S∗Rijkl:
The factor Ta = S∗Rikl∇

i φ̃a is more important than Tb = S∗Ri ′ j ′k′l ′∇
i ′ φ̃b if a < b.

Now, consider a tensor field C l,i1...iµ
g and list out all the pairs of factors Ta, Tb

with a special-to-special particular contraction. We say that (Ta, Tb) is the most
important pair of factors with a special-to-special particular contraction33 if any
other such pair (Tc, Td)

34 has either Tc less important than Ta or Ta = Tc and Td

less important than Tb.
Now, consider a tensor field C l,i1...iµ

g and consider the most important pair of
factors (Ta, Tb) with a special-to-special particular contraction. Assume without
loss of generality that the index l in Ta = S∗Rijkl∇

i φ̃a contracts against the index
l ′ in Tb = S∗Ri ′ j ′k′l ′∇

i ′ φ̃b. We say that C l,i1...iµ
g is normalized if both factors Ta, Tb

are normalized. The factor Ta = S∗Rikl∇
i φ̃a is normalized if: Either the index j

contracts against a factor Tc that is more important than Tb, or if the indices j , k are
symmetrized. If Ta is of type II, then we require that the index j in Tb= S∗Ri j (free)l

must contract against a special index of some other factor Tc, and moreover Tc must
be more important than Tb. If Ta is of type III, then it is automatically normalized.
The same definition applies to Tb, where any reference to Tb must be replaced by
a reference to Ta .

Let us now prove that we may assume without loss of generality that all µ-
tensor fields in (2-9) are normalized: Consider a C l,i1...iµ

g in (2-9) for which the
most important pair of factors with a special-to-special particular contraction is
the pair (Ta, Tb). We will prove that we can write

(2-30) C l,i1...iµ+β
g = C̃ l,i1...iµ+β

g +

∑
t∈T

atC
t,i1...iµ+β
g ;

here the term C̃ l,i1...iµ+β
g is normalized, the most important pair of factors with

a special-to-special particular contraction is the pair (Ta, Tb), and moreover its
refined double character is the same as for C l,i1...iµ+β

g . Each term C t,i1...iµ+β
g has

either the same, or a doubly subsequent refined double character to C l,i1...iµ+β
g ;

moreover in the first case its most important pair of factors with a special-to-special
particular contraction will be less important than the pair (Ta, Tb). In the second
case the most important pair will either be (Ta, Tb) or a less important pair.

Clearly, if we can prove the above, then by iterative repetition we may assume
without loss of generality that all (µ+β)-tensor fields in (2-9) are normalized.

Proof of (2-30). Pick out the most important pair of factors with a special-to-
special particular contraction is the pair (Ta, Tb) in C l,i1...iµ+β

g . Let us first normalize

33Assume without loss of generality that Ta is more important than Tb.
34Again assume without loss of generality that Tc is more important than Td .
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Ta . If Ta is of type III, there is nothing to do. If it is of type II and already
normalized, there is again nothing to do. If it is of type II and not normalized, then
we interchange the indices j , k . The resulting factor is normalized. The correction
term we obtain by virtue of the first Bianchi identity is also normalized (it is of
type III). Moreover, the resulting tensor field is doubly subsequent to C l,i1...iµ+β

g .
Finally, if the factor Ta is of type I, we inquire on the factor Tc against which j in
Ta = S∗Rijkl contracts: If it is more important than Tb, then we leave Ta as it is;
it is already normalized. If not, we symmetrize j , k . The resulting tensor field is
normalized. The correction term we obtain by virtue of the first Bianchi identity
will then have the same refined double character as C l,i1...iµ+β

g , and moreover its
most important pair of factors with a special-to-special particular contraction is
less important than that pair (Ta, Tb). �

We may now prove the claim of Lemma 2.6 in this special case, under the
additional assumption that all tensor fields in (2-9) are normalized. We list out the
most important pair of special-to-special particular contractions in each C l,i1...iµ+β

g ,
and denote it by (a, b)l . We let (α, β) stand for the lexicographically minimal pair
among the list (a, b)l, l ∈ Lµ. We denote by L(α,β)µ ⊂ Lµ the index set of terms
with a special-to-special particular contraction among the terms Tα, Tβ . We will
prove that

(2-31)
∑

l∈L(α,β)µ

alC
l,i1...iµ+β
g ∇i1υ . . .∇iµυ = 0.

Clearly, the above will imply our claim, by iterative repetition.35

Proof of (2-31). Consider Image2
Y1,Y2
[Lg] = 0 and pick out the sublinear combina-

tion where the factors Tα, Tβ are replaced by ∇(A)Y1⊗ g,∇(B)Y2⊗ g, and the two
factors ∇φ̃α,∇φ̃β contract against each other. The resulting sublinear combination
must vanish separately. We erase the expression∇t φ̃α∇

t φ̃β ,36 and derive a new true
equation in the form

(2-32)
∑

l∈L(α,β)µ

al X divi1 . . . X diviµC̃ l,i1...iµ+β
g (�1, Y1, Y2)+

∑
j∈J

a j C j
g (�1, Y1, Y2)= 0;

here the tensor fields C̃ l,i1...iµ+β
g (�1, Y1, Y2) arise from the tensor fields C l,i1...iµ+β

g by
replacing the expression ∇ i φ̃αS∗Rijkl⊗S∗Ri ′ jk

l
∇

i ′ φ̃β with ∇ jkY1⊗∇ j ′k′Y2 (notice
we have lowered the weight in absolute value).

35In the subcaseµ+β=σ2 it will only imply it for the “excluded” sublinear combination defined
above.

36Denote the resulting (u− 2)-simple character by Eκ ′′′simp.
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Now, applying the inductive assumption of Lemma 2.6 to the above,37 we derive

(2-33)
∑

l∈L(α,β)µ

alC̃
l,i1...iµ+β
g (�1, Y1, Y2)∇i1υ . . .∇iµυ = 0.

The proof of (2-31) is only one step away. Let us start with an important obser-
vation: For each given complete contraction above, examine the factor ∇(2)zx Y1; it
either contracts against no factor ∇υ or against one factor ∇υ.38 In the first case,
the factor∇(2)zx Y1 must have arisen from a factor S∗Rijkl of type I. In fact, the indices
z, x correspond to the indices j , k in the original factor, and we can even determine
their position: Since the pair (α, β) is the most important pair in (2-9), at most
one of the indices z, x can contract against a special index in a more important
factor than Tβ . If one of them does (say z), then that index must have been the
index j in Tα = S∗Rikl . If none of them does, then the two indices z, x must be
symmetrized over, since the two indices j , k in Tα to which they correspond were
symmetrized over. Now, these two separate sublinear combinations in (2-33) must
vanish separately (this can be proven using the eraser from the Appendix in [A
2012]), and furthermore in the first case, we may assume that the index z (which
contracts against a special index in a more important factor than Tβ) occupies
the leftmost position in ∇(2)zx Y1 and is not permuted in the formal permutations of
indices that make (2-33) hold formally).

On the other hand, consider the terms in (2-33) with the factor∇(2)Y1 contracting
against a factor ∇υ. By examining the index y in the factor ∇(2)yt Y1∇

tυ, we can
determine the type of factor in C l,i1...iµ+β

g from which the factor ∇(2)Y1 arose: If the
index y contracts against a special index in a factor S∗Rijkl which is more important
than Tβ , then ∇(2)Y1 can only have arisen from a factor of type II in C l,i1...iµ+β

g . In
fact, the index y in ∇(2)Y1 must correspond to the index j in S∗Ri j (free)l in Tα. If
the index y in ∇(2)yt Y1∇

tυ does not contract against a special index in a factor Tc

which is more important than Tβ , then the factor ∇(2)Y1 can only have arisen from
a factor of type III in C l,i1...iµ+β

g . In fact, the index y in ∇(2)Y1 must correspond to
the index k in S∗Ri(free)kl in Tα.

The same analysis can be repeated for the factor ∇(2)Y2, with any reference to
the factor Tβ now replaced by the factor Tα.

In view of the above analysis, we can break the left-hand side of (2-33) into
four sublinear combinations that vanish separately (depending on whether ∇(2)Y1,
∇
(2)Y2 contract against a factor ∇υ or not). Then in each of the four sublinear

combinations, we can arrange that in the formal permutations that make the left-
hand side of (2-33) formally zero, the two indices in the factors ∇(2)Y1,∇

(2)Y2 are

37We have lowered the weight in absolute value.
38The two corresponding sublinear combinations vanish separately, of course.
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not permuted (by virtue of the remarks above). In view of this and the analysis in
the previous paragraph, we can then replace the two factors ∇(2)zx Y1,∇

(2)
qwY2 by an

expression ∇ i φ̃αS∗Ri zxl ⊗ S∗Ri ′qw
l
∇

i ′ φ̃β , in such a way that the resulting linear
combination vanishes formally without permuting the two indices q , w, q ′, w′ . This
proves our claim, except for the subcase µ+ β = σ2 where we only derive our
claim for all terms except for the “bad sublinear combination”. We now prove our
claim for that case.

The “bad sublinear combination”. We break up the left-hand side of (2-16) accord-
ing to which factor Ts the factor ∇φu+1 contracts — denote the index set of those
terms by L K

µ . Denote the resulting sublinear combinations by L K
g , K = 1, . . . , σ2.

Given any K , we consider the equation Image1
Y [Lg] = 0, and we pick out the sub-

linear combination where the term ∇(B)S∗Rijkl∇
i φ̃K is replaced by ∇(B+2)Y , and

the factor∇φK now contracts against the factor∇φu+1. This sublinear combination
must vanish separately. We then again perform the “inverse integration by parts”
to this true equation (deriving an integral equation), and then we consider the silly
divergence formula for this integral equation, obtained by integrating by parts with
respect to ∇(B)Y . We pick out the sublinear combination with σ+u+β factors, µ
internal contractions and u+β factors ∇φh , and an expression ∇sφu+1∇

s φ̃K This
gives us a new true local equation,

(2-34)
∑
l∈L K

µ

al X∗ div j1 X∗ div j2 C̃ l, j1 j2
g +

∑
j∈J

a j C j
g = 0.

Here the tensor fields C̃ l, j1 j2
g arise from C l,i1...iµ

g by formally replacing all µ free
indices with internal contractions, and also replacing∇xφu+1⊗S∗Ri( jk)

x
∇

i φ̃K with
∇xφu+1∇

s φ̃K⊗Y , and then making the indices j , k that contracted against j , k into
free indices j1, j2 . X∗ div j stands for the sublinear combination in X div j where
∇

j is not allowed to hit the factor Y . Now, applying the inductive assumption of
Lemma 2.6 to the above,39 we derive that∑

l∈L K
µ

alC̃ l,1 j2
g ∇ j1ω∇ j2ω = 0.

We replace ∇xφK∇xφu+1∇ j1ω∇ j2ω∇lY with ∇lφu+1S∗Ri( j1 j2)l∇
i φ̃K and then re-

place all internal contractions by factors ∇υ (applying the operation Subυ from the
Appendix in [A 2012]). The resulting (true) equation is precisely our remaining
claim for the “bad” sublinear combination. �

39We have lowered the weight in absolute value.
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2C. Proof of Lemmas 4.6, 4.8 in [A 2010]: The main part. We first write down
the form of the complete and partial contractions that we are dealing with in Lem-
mas 2.1 and 2.3. In the setting of Lemma 2.1 we recall that the tensor fields Ch,i1...iα

indexed in H2 (in the hypothesis of Lemma 2.1) are all partial contractions in the
form

(2-35) pcontr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇Y ⊗∇φz1 · · · ⊗∇φz f

⊗∇φ′z f+1
⊗ · · ·⊗∇φ′z f+d

⊗ · · ·⊗∇φ̃z f+d+1 ⊗ · · ·⊗∇φ̃z f+d+y

)
,

where we let f +d+ y= u′. The main assumption here is that all tensor fields have
the same u′-simple character (the one defined by∇φ1, . . . ,∇φu′), which we denote
by Eκ+simp. The other main assumption is that if we formally treat the factor ∇Y as
a function ∇φu+1, then the hypothesis of Lemma 2.1 falls under the inductive
assumptions of Proposition 1.1 (i.e., the weight, real length, 8 and p are as in our
inductive assumption of Proposition 1.1).

In the setting of Lemma 2.3 we recall that we are dealing with complete and
partial contractions in the form

(2-36) contr
(
∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ1 )Rijkl⊗ S∗∇(ν1)Rijkl⊗ · · ·⊗ S∗∇(νt )Rijkl

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗[∇ω1⊗∇ω2]⊗∇φz1 · · · ⊗∇φz f

⊗∇φ′z f+1
⊗ · · ·⊗∇φ′z f+d

⊗ · · ·⊗ φ̃z f+d+1 ⊗ · · ·⊗ φ̃z f+d+y

)
,

where we let f+d+y=u′. The main assumption here is that all partial contractions
have the same u′-simple character (the one defined by ∇φ1, . . . ,∇φu′), which we
denote by Eκ+simp. The other main assumption is that if we formally treat the factors
∇ω1,∇ω2 as factors ∇φu+1,∇φu+2, then the hypothesis of Lemma 2.3 falls under
the inductive assumptions of Proposition 1.1 (i.e., the weight, real length, 8 and p
are as in our inductive assumption of Proposition 1.1).

Note. From now on, we will be writing u′ = u, for simplicity. We will also be
writing Eκ+simp = Eκsimp, for simplicity. We will also be labeling the indices i1, . . . , iα
as iπ+1, . . . , iα+1 .

New induction. We will now prove the two Lemmas 2.1 and 2.3 by a new induction
on the weight of the complete contractions in the hypotheses of those lemmas.
We will assume that these two lemmas are true when the weight of the complete
contractions in their hypotheses is −W , for any W < K ≤ n. We will then show
our lemmas for weight −K .

Reduce Lemma 2.1 to two lemmas. In order to show Lemma 2.1, we further break
up H2 into subsets: We say that h ∈ Ha

2 if Ch,iπ+1...iα+1 has a free index (say the
free index iα+1 without loss of generality) belonging to the factor ∇Y . On the other



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 31

hand, we say that h ∈ H b
2 if the index in the factor ∇Y is not free. Lemma 2.1 will

then follow from Lemmas 2.7 and 2.8 below.

Lemma 2.7. There exists a linear combination of acceptable (α−π+1)-tensor
fields,

∑
v∈V avC

v,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu), where the index iα+1 be-

longs to the factor ∇Y , with a simple character Eκsimp, so that

(2-37)
∑

h∈Ha
2

ahCh,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ

=

∑
v∈V

avX∗ diviα+2 Cv,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iα+1υ

+

∑
j∈J

a j C j,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ.

Each C j is simply subsequent to Eκsimp.

We observe that if we can show our first claim, then we can assume, with no
loss of generality, that Ha

2 =∅, since it immediately follows from the above that

(2-38)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα+1 Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
v∈V

avX∗ diviπ+1 . . . X∗ diviα+1 X∗ diviα+2

×Cv,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each complete contraction C j is subsequent to Eκsimp. (Note that one of the
free indices in the tensor fields Cv,iπ+1...iα+2

g will belong to the factor ∇Y.)
The second claim, in the setting of Lemma 2.1 is:

Lemma 2.8. We assume Ha
2 = ∅. We then claim that modulo complete contrac-

tions of length ≥ σ + u+ 1,

(2-39)
∑
h∈H2

ahCh,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iα+1υ

=

∑
t∈T

at X∗ diviα+2 C t,iπ+1...iα+2
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iα+1υ

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j is acceptable and subsequent to Eκsimp.
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We observe that if we can show the above two lemmas then Lemma 2.1 will
follow. (Notice that replacing by the right-hand side of (2-38) into the hypothesis
of Lemma 2.1, we do not introduce 1-forbidden terms.)

We make two analogous claims for Lemma 2.3:

Reduce Lemma 2.3 to two lemmas. We say that h ∈ Ha
2 if Ch,iπ+1...iα+1 has a free

index belonging to one of the factors ∇ω1,∇ω2. On the other hand, we say that
h ∈ H b

2 if none of the factors ∇ω1,∇ω2 in Ch,iπ+1...iα+1 contains a free index.
(Observe that we may assume with no loss of generality that there are no tensor
fields Ch,iπ+1...iα+1 with free indices in both factors ∇ω1,∇ω2 — this is by virtue
of the antisymmetry of the factors ∇ω1,∇ω2.) We make two claims. First:

Lemma 2.9. There is a linear combination of acceptable (α−π+1)-tensor fields,∑
v∈V avC

v,iπ+1...iα+2
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu), in the form (2-35) with a

simple character Eκsimp, so that

(2-40)
∑

h∈Ha
2

ah X+ diviπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
v∈V

avX+ diviπ+1 . . . X+ diviα+1 X+ diviα+2

×Cv,iπ+1...iα+2
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
q∈Q

aq X+ diviπ+1 . . . X+ diviα+1

×Cq,iπ+1...iα+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu).

(Recall that by definition the complete contractions indexed in Q have a factor
∇
(2)ω1.)

We observe that if we can show our first claim, then we can, with no loss of
generality, assume that Ha

2 =∅.
Second claim:

Lemma 2.10. We assume Ha
2 =∅, and that for some k ≥ 1, we can write

(2-41)
∑

h∈Hb
2

ax X+ diviπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
t∈Tk

at X+ diviπ+1 . . . X+ diviα+k

×C t,iπ+1...iα+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)
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+

∑
q∈Q

aq X+ divπ+1 . . . X+ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the last two linear combinations on the left-hand side of the equality are
generic linear combinations in the form described in the claim of Lemma 2.3.40

On the other hand,∑
t∈Tk

atC t,iπ+1...iα+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

is a linear combination of acceptable (α−π+k)-tensor fields in the form (2-36)
with a simple character Eκsimp, and with two antisymmetric factors ∇ω1,∇ω2 that
do not contain a free index. We then claim that modulo complete contractions of
length ≥ σ + u+ 1 we can write

(2-42)
∑
t∈Tk

at X+ divi1 . . . X+ divia+k

×C t,i1...ia+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

=

∑
t∈Tk+1

at X+ diviπ+1 . . . X+ divia+k+1

×C t,iπ+1...ia+k+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

+

∑
q∈Q

aq X+ divi1 . . . X+ divia+1

×Cq,i1...ia+1
g (�1, . . . , �p,∇+[ω1, ω2], φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

with the same notational conventions as above.

We observe that if we can show the above two claims, then Lemma 2.3 will
follow by iterative repetition of the second claim.

We will now show the four lemmas above.

Proof of Lemmas 2.8 and 2.10. Lemma 2.8 is a direct consequence of Lemma 4.10
in [A 2010].41 Lemma 2.10 can be proven in two steps: First, by Lemma 2.5 we
derive that there exists a linear combination of acceptable (a+k+1)-tensor fields

40In Lemma 2.3, Q is called V .
41Observe that our hypotheses on the tensor fields in the equation in Lemma 2.1 not being “bad”

ensure that we do not fall under the “forbidden” cases of Lemma 4.10 in [A 2010].
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(indexed in X below) with a u-simple character Eκsimp so that

(2-43)
∑
t∈Tk

atC t,i1...ia+k
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)∇i1υ . . .∇ia+kυ

−

∑
t∈Tk+1

at X∗ divia+k+1 C t,iπ+1...ia+k+1
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu)

×∇i1υ . . .∇ia+kυ

=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu, υ

a+k),

where the complete contractions indexed in J have length σ + a + k + 1 and are
simply subsequent to Eκsimp. Then, making each factor ∇υ in the above into an
X+ div, we derive Lemma 2.10. �

Proof of Lemma 2.7. We have denoted by Eκsimp the simple character of our tensor
fields. We distinguish two cases: In Case A there is a factor ∇(m)Rijkl in Eκsimp, and
in Case B there is no such factor.

We denote α+ 1= γ , for brevity.
Now we break the set H b

2 into subsets: In Case A we say that h ∈ H b,+
2 if ∇Y

contracts against an internal index of a factor ∇(m)Rijkl. In Case B we say that
h ∈ H b,+

2 if ∇Y contracts against one of the indices k, l in a factor S∗∇(ν)Rijkl.
We define H b,−

2 = H b
2 \ H b,+

2 .
In each of the above cases and subcases we treat the term ∇Y as a term ∇φu+1

in our lemma hypothesis. Then, by applying the first claim in Lemma 4.10 in [A
2010]42 to our lemma hypothesis and then making each ∇υ into an X∗ div, we
derive that we can write

(2-44) X∗ diviπ+1 . . . X∗ diviγ

∑
h∈Hb,+

2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu)

= X∗ diviπ+1 . . . X∗ diviγ

∑
h∈Hb,∗,−

2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where
∑

h∈Hb,∗,−
2

ahCh,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) stands for a generic

linear combination as defined above (i.e., it is in the general form
∑

h∈Hb
2
. . . but

the factor ∇Y is not contracting against a special index in any factor ∇(m)Rijkl

42By weight considerations, since we started out with no “bad terms” in Lemma 2.1, we will not
encounter no “forbidden tensor fields” for Lemma 4.10 in [A 2010].
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or S∗∇(ν)Rijkl).43 On the other hand, each C j
g (�1, . . . , �p, Y, φ1, . . . , φu) is a

complete contraction with a simple character that is subsequent to Eκsimp.
Thus, by virtue of (2-44), we reduce ourselves to the case where H b,+

2 =∅. We
will then show Lemma 2.7 separately in Cases A and B, under the assumption that
H b,+

2 =∅.

Proof of Lemma 2.7 in Case A. We will define the C-crucial factor, for the purposes
of this proof only: We denote by Set the set of numbers u for which ∇φu contracts
against one of the factors ∇(m)Rijkl. If Set 6= ∅, we define u+ to be the minimum
element of Set, and we pick out the factor ∇(m)Rijkl in each Ch against which
∇φu+ contracts. We call that factor ∇(m)Rijkl C-crucial. If Set = ∅, we will say
the C-crucial factors and will mean any of the factors ∇(m)Rijkl.

Now we pick out the subset H b,∗
2 ⊂ H b

2 , that is defined by the rule h ∈ H b,∗
2 if

∇Y contracts against the (one of the) C-crucial factor.
Now, for each h ∈ Ha

2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

the sublinear combination in X∗ diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu) that

arises when ∇iγ hits the (one of the) C-crucial factor.44 It then follows that

(2-45)∑
h∈Ha

2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
h∈Hb,∗

2

ah X∗ diviπ+1 . . . X∗ diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j
g has the factor ∇Y contracting against the C-crucial factor ∇(m)Rijkl

and is simply subsequent to Eκsimp.
Denote the (u+1)-simple character (the one defined by ∇φ1, . . . ,∇φu+1=∇Y )

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) by Eκ ′simp. (Ob-

serve that they all have the same (u+ 1)-simple character.)

43Recall that a special index in a factor ∇(m)Rijkl is an internal index, while a special index in a
factor S∗∇(ν)Rijkl is an index k , l .

44Recall that iγ is the free index that belongs to ∇Y .
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We observe that by applying Corollary 1 in [A 2010] to (2-45) (all tensor fields
are acceptable and have the same simple character Eκ ′simp),45 we obtain

(2-46)
∑

h∈Ha
2

ah Hit diviγ Ch,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
u∈U

au X diviα+1 Cu,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in U are acceptable (we are treating ∇Y as a factor
∇φu+1), have a simple character Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

But then, our first claim follows almost immediately. We recall the operation
Erase∇Y [. . . ] from the Appendix in [A 2012] which acts on the complete con-
tractions in the above by erasing the factor ∇Y and the (derivative) index that it
contracts against. Then, since (2-46) holds formally, we have that the tensor field
required for Lemma 2.7 is∑

u∈U

au Erase∇Y [Cu,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)] · ∇iγ Y.

Proof of Lemma 2.7 in Case B. We again distinguish two subcases: In Subcase (i)
there is some nonsimple factor S∗∇(ν)Rijkl in Eκsimp or a nonsimple factor ∇(B)�x

contracting against two factors ∇φ′h in Eκsimp. In Subcase (ii) there are no such
factors.

In Subcase (i), we arbitrarily pick out one factor S∗∇(ν)Rijkl or ∇(B)�x with the
properties described above and call it the D-crucial factor. In this first subcase we
will show our claim for the whole sublinear combination

∑
h∈Ha

2
. . . in one piece.

In Subcase (ii), we will introduce some notation: We will examine each factor
T = S∗∇(ν)Rijkl, T = ∇(B)�x in each tensor field Ch,iπ+1...iα,iα+1

g and define its
“measure” as follows: If T = S∗∇(ν)Rijkl then its “measure” will stand for its total
number of free indices plus 1

2 . If T = ∇(B)�x then its “measure” will stand for
its total number of free indices plus the number of factors ∇φh against which it
contracts.

We divide the index set Ha
2 into subsets according to the measure of any given

factor. We denote by M the maximum measure among all factors among the ten-
sor fields Ch,iπ+1...iα,iα+1

g , h ∈ Ha
2 . We denote by H 2,∗

a ⊂ Ha
2 the index set of the

tensor fields that contain a factor of maximum measure. We will show the claim of

45Notice that by weight considerations, since we started out with no “bad” terms in the hypothesis
of Lemma 2.1, there is no danger of falling under a “forbidden case” of that corollary.
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Lemma 2.7 for the sublinear combination
∑

h∈H2,∗
a
. . . . Clearly, if we can do this,

then Lemma 2.7 will follow by induction.
We will prove Lemma 2.7 in the second subcase (which is the hardest). The

proof in the first subcase follows by the same argument, only by disregarding any
reference to M free indices belonging to a given factor and so on.

Proof of Lemma 2.7 in Case B for the sublinear combination
∑

h∈H2,∗
a
. . . . We

will further divide H 2,∗
a into subsets, H 2,∗,k

a , k = 1, . . . , σ , according to the factor
of maximum measure: First, we order the factors S∗∇(ν)Rijkl, . . .∇

(p)�h in Eκsimp,
and label them T1, . . . , Tσ (observe each factor is well-defined in Eκsimp, because
we are in Case B). We then say that h ∈ Ha,∗,1

2 if in Cu,iπ+1...iα
g the factor T1 has

measure M . We say that h ∈ Ha,∗,2
2 if in Cu,iπ+1...iα

g the factor T2 has measure M
and T1 has measure less than M , and so on. We will then prove our claim for each
of the index sets h ∈ Ha,∗,k

2 :46 We arbitrarily pick a k ≤ K and show our claim for∑
h∈H2,∗,k

a
. . . .

For the purposes of this proof, we call the factor Tk the D-crucial factor.
Now we pick out the subset H b,k

2 ⊂ H b
2 , that is defined by the rule h ∈ H b,k

2 if
and only if ∇Y is contracting against the D-crucial factor Tk .

Now, for each h ∈ Ha
2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

the sublinear combination in X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu) that

arises when ∇iγ hits the D-crucial factor.47 It then follows that

(2-47)
∑

h∈Ha
2

ah X diviπ+1 . . . X diviαHit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
h∈Hb,k

2

ah X diviπ+1 . . . X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where each C j
g has the factor ∇Y contracting against the D-crucial factor and is

simply subsequent to Eκsimp.
Denote the (u+1)-simple character (the one defined by ∇φ1, . . . , ∇φu+1=∇Y )

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, Y, φ1, . . . , φu) by Eκ ′simp. (Ob-

serve that they all have the same (u+ 1)-simple character.)
We apply Corollary 1 in [A 2010] to (2-47) (all tensor fields are acceptable and

have the same simple character Eκ ′simp) and then pick out the sublinear combination

46Again we observe that if we can prove this then Lemma 2.7 in Case B will follow by induction.
47Recall that iγ = iα+1 belongs to ∇Y by hypothesis.
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where there are M factors ∇υ or ∇φh or ∇φ′h contracting against Tk , obtaining

(2-48)
∑

h∈Ha,∗,k
2

ah Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
u∈U

au X diviα+1Ch,iπ+1...iα,iα+1
g (�1, . . . , �p, Y, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in U are acceptable and have a simple character
Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

Now, observe that if M ≥ 3
2 , we can apply the eraser to ∇Y (see the Appendix

in [A 2012]) and the index it contracts against in the D-crucial factor and derive
our conclusion as in Case A.

On the other hand, in the remaining cases48 the above argument cannot be di-
rectly applied. In those cases, we derive our claim as follows:

In the case M = 1 the D-crucial factor is of the form ∇(p)�h , then we cannot
directly derive our claim by the above argument, because if for some tensor fields in
U above we have ∇Y contracting according to the pattern ∇i Y∇ i j�h∇ jψ (where
ψ = υ or ψ = φh), then we will not obtain acceptable tensor fields after we apply
the eraser. Therefore, if M = 1 and the D-crucial factor is of the form ∇(p)�h , we
apply Lemma 4.6 in [A 2010] to (2-48) (treating the factors ∇υ as factors ∇φ)49 to
obtain a new equation in the form (2-48), where for any tensor field indexed in U
the factor ∇Y contracts against a factor ∇(l)�h , l ≥ 3.50 Then, applying the eraser
as explained, we derive our Lemma 2.7 in this case.

When M = 1
2 or M = 0, then we first apply the inductive assumptions of Corol-

laries 3 and 2 in [A 2010] (respectively) to (2-48),51 in order to assume with no
loss of generality that for each tensor field indexed in U there, the factor ∇Y either
contracts against a factor ∇(B)�h , B ≥ 3 or a factor S∗∇(ν)Rijkl, ν ≥ 1. Then the
eraser can be applied and it produces acceptable tensor fields. Hence, applying
Erase∇Y to (2-48) we derive our claim. �

48Observe that the remaining cases are when M = 0, M = 1
2 , M = 1.

49Furthermore, we can observe that we do not fall under a “forbidden case” of Lemma 4.1 in [A
2010], by weight considerations, and since the tensor fields in our lemma assumption are not “bad”.

50Note that the weight becomes less negative, hence Lemma 4.10 in [A 2010] applies.
51By our assumptions there will be a removable index in these cases. Hence our extra require-

ments of those lemmas are fulfilled.
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Proof of Lemma 2.9. We rewrite the hypothesis of Lemma 2.3 (which is also the
hypothesis of Lemma 2.9) as

(2-49)
∑
h∈H2

ah X∗ diviπ+1 . . . X∗ diviα+1

{
Ch,i1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu).

Here the operation Switch interchanges the indices a and b in the two factors ∇aω1,
∇bω2.

Notational conventions: We have again denoted by Ha
2 ⊂ H2 the index set of

those vector fields for which one of the free indices (say iα+1) belongs to a factor
∇ω1 or ∇ω2. With no loss of generality we assume that for each h ∈ Ha

2 , the index
iα+1 belongs to the factor ∇ω1. We can clearly do this, due to the antisymmetry of
the factors ∇ω1,∇ω2.

We have defined H b
2 = H2 \ Ha

2 . For each h ∈ H b
2 we denote by Tω1, Tω2 the

factors against which ∇ω1,∇ω2 contract. Also, for each h ∈ Ha
2 we will denote

by Tω2 the factor against which ∇ω2 contracts.52

For each h ∈ H2, we will call the factors Tω1, Tω2 against which ∇ω1 or ∇ω2

are contracting “problematic” in the following cases: If Tω1 or Tω2 is of the form
∇
(m)Rijkl and ∇ω1 or ∇ω2 contracts against an internal index; or if Tω1 or Tω2 is of

the form S∗∇(ν)Rijkl and the factor ∇ω1 or ∇ω2 contracts against one of the indices
k or l .

We then define a few subsets of Ha
2 , H b

2 :

Definition. We define H b
2,∗∗ to be the index set of the tensor fields Ch,iπ+1...iα+1

g

for which ∇ω1,∇ω2 contract against different factors and both Tω1 and Tω2 are
problematic.

We define Ha
2,∗ ⊂ Ha

2 to be the index set of the tensor fields Ch,iπ+1...iα+1
g s for

which Tω2 is problematic.
We define H b

2,∗ to stand for the index set of the tensor fields Ch,iπ+1...iα+1
g s for

which either Tω1 = Tω2 or Tω1 6= Tω2 and one of the factors Tω1, Tω2 is problematic.

Abusing notation, we will use the symbols
∑

h∈Hb
2,∗

and so on to denote generic
linear combinations as above, when these symbols appear in the right-hand sides
of the equations below.

52Note that the definition of Tω1 , Tω2 depends on h; however, to simplify notation we suppress
the index h that should appear in Tω1 , Tω2 .
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We then state three preparatory claims. First, we claim that we can write

(2-50)
∑

h∈Hb
2,∗∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
h∈Hb

2,∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the linear combination
∑

h∈Hb
2,∗
. . . on the right-hand side stands for a generic

linear combination in the form described above. Observe that if we can show
(2-50) then we may assume with no loss of generality that H b

2,∗∗=∅ in our lemma
hypothesis.

Then, assuming that H b
2,∗∗=∅ in our lemma hypothesis we will show that there

exists a linear combination of (α−π+1)-tensor fields (indexed in X below) which
are in the form (2-5) with a simple character Eκsimp so that

(2-51)
∑

h∈Ha
2,∗

ah
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

− X∗ diviα+2

∑
x∈X

ax
{
C x,i1...iα+1iα+2

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

+

∑
h∈Hb

2,∗

ah
{
Ch,i1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
∇iπ+1υ . . .∇iα+1υ

=

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu, υ

α−π ).

We observe that if we can show the above, we may then assume that Ha
2,∗ =∅

(and H b
2,∗∗ =∅) in the hypothesis of Lemma 2.9.
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Finally, under the assumption that H b
2,∗∗ = Ha

2,∗ = ∅ in our lemma hypothesis,
we will show that we can write

(2-52)
∑

h∈Hb
2,∗

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
=

∑
h∈Hb

2,OK

ah X+ diviπ+1 . . . X+ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
j∈J

a j C j
g (�1, . . . , �p, [ω1, ω2], φ1, . . . , φu),

where the sublinear combination
∑

h∈Hb
2,OK

. . . on the right-hand side stands for a
generic linear combination of acceptable tensor fields in the form (2-5) with simple
character Eκsimp, with no free indices in the factors ∇ω1,∇ω2 and where the factors
Tω1, Tω2 are not problematic. Therefore, if we can show the above equations, we
are reduced to showing Lemma 2.9 under the assumptions that H 2

a,∗ = H 2
b,∗∗ =

H 2
b,∗ =∅.

Sketch of the proof of (2-50), (2-51), (2-52). Equation (2-50) follows by reiterat-
ing the proof of the first claim of Lemma 4.10 in [A 2010].53 (2-51) follows by
reiterating the proof of the first claim of Lemma 4.10 in [A 2010], but rather than
applying Corollary 1 [A 2010] in that proof, we now apply Lemma 2.7 (which we
have shown).54 Finally, the claim of (2-52) for the sublinear combination in H b

2,∗
where Tω1 6= Tω2 follows by applying Lemma 2.5.55 We can then show that the
remaining sublinear combination in

∑
h∈Hb

2,∗
. . . must vanish separately (modulo

a linear combination
∑

j∈J . . . ) by picking out the sublinear combination in the
hypothesis of Lemma 2.10 where both factors ∇ω1,∇ω2 are contracting against
the same factor. �

Now, under these additional assumptions that H 2
a,∗= H 2

b,∗∗= H 2
b,∗=∅, we will

show our claim by distinguishing two cases: In Case A there is a factor ∇(m)Rijkl

53By the additional restrictions imposed on the assumption of Lemma 2.3 there is no danger of
falling under a “forbidden case” of Corollary 1 in [A 2010].

54Observe that the assumption that Lemma 2.3 does not include “forbidden cases” ensures that
we will not need to apply Lemma 2.7 in a “forbidden case”.

55In this case there will be a factor ∇ω1 or ∇ω2 contracting against a nonspecial index; therefore
there is no danger of falling under a “forbidden” case of Lemma 2.7.
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in Eκsimp; in Case B there is no such factor. An important note: We may now use
Lemma 2.7, which we have proven earlier in this section.

Proof of Lemma 2.9 in Case A. We define the (set of) C-crucial factors (which will
necessarily be of the form ∇(m)Rijkl) as in the setting of Lemma 2.7. First we prove
a mini-claim which only applies to the case where the C-crucial factor is unique.

Mini-claim, when the C-crucial factor is unique. We then consider the tensor
fields Ch,iπ+1...iα+1

g , h ∈ Ha
2 for which ∇ω2 contracts against the C-crucial factor.

Notice that by our hypothesis that H 2
a,∗ =∅, it follows that ∇ω2 contracts against

a derivative index in the C-crucial factor. Denote by Ha,+
2 ⊂ Ha

2 the index set of
these tensor fields.

We observe that for each h ∈ Ha,+
2 we can now construct a tensor field by

erasing the index in the factor ∇(m)Rijkl that contracts against the factor ∇ω2 and
making the index in ∇ω2 into a free index iβ . We denote this tensor field by
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu). By the analogous operation we
obtain a tensor field Switch[Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)].
It follows that in the case where the C-crucial factor is unique, for each h∈Ha,+

2 ,

(2-53) X∗ diviπ+1 . . . X∗ diviα+1

{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
= X∗ diviπ+1 . . . X∗ diviα+1 X∗ diviβ

×
{
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1iβ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
+

∑
r∈R

ar X∗ diviπ+1 . . . X∗ diviα+1

×
{
Cr,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]r,iπ+1...iα+1(�1, . . . , �p, ω1, ω2, φ1, . . . , φu)
}

+

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where each tensor field Cr,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu) has the factor

∇ω2 contracting against some factor other than the C-crucial factor.
But we observe that

(2-54) X∗ diviπ+1 . . . X∗ diviα+1 X∗ diviβ

×
{
Ch,iπ+1...iα+1iβ

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1iβ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
= 0.



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 43

Therefore, in the case Set 6= ∅ or Set = ∅ and σ1 = 1, we have now reduced
Lemma 2.9 to the case where Ha,+

2 =∅.
Now (under the assumption that Ha,+

2 =∅ when the C-crucial factor is unique)
we consider the sublinear combination Special in the hypothesis of Lemma 2.9 that
consists of complete contractions with∇ω1 contracting against the C-crucial factor
while the factor∇ω2 is contracting against some other factor. (If Set=∅ and σ1>1
Special stands for the sublinear combination where ∇ω1 is contracting against a
generic C-crucial factor and ∇ω2 is contracting against some other factor.) In
particular, for each h ∈ Ha

2 , since Ha,+
2 =∅ we see that the sublinear combination

in

(2-55)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα+1

×
{
Ch,iπ+1...iα+1

g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

}
that belongs to Special is precisely∑
h∈Ha

2

ah X∗ diviπ+1 . . . X∗ diviα

×Hit diviα+1 Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu);

(in the case Set = ∅ and σ1 > 1, Hit diviα+1 just means that ∇iγ can hit any factor
∇
(m)Rijkl that is not contracting against ∇ω2; recall that in the other cases it means

that it must hit the unique C-crucial factor).
We also consider the tensor fields Ch,iπ+1...iα+1 , Switch[C]h,iπ+1...iα+1 , h ∈ H b

2 ,
for which ∇ω1 contracts against the C-crucial factor and ∇ω2 does not (or, if
there are multiple C-crucial factors, where ∇ω1,∇ω2 contract against different C-
crucial factors). For this proof, we index all those tensor fields in H b,9

2 and we
will denote them by Ch,iπ+1...iα+1

g .
Thus we derive

(2-56)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈Hb,9

2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu).

We group up the vector fields on the left-hand side according to their weak (u+
2)-characters56 (defined by ∇φ1, . . . ,∇φu,∇ω1,∇ω2). (Recall that we started off

56See [A 2010] for a definition of this notion.
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with complete contractions with the same u-simple characters — so the only new
information that we are taking into account is what type of factor ∇ω2 contracts
against.) We consider the set of weak simple characters that we have obtained. We
denote this set by {Eκ1, . . . EκB}, and we respectively have the index sets Ha,Eκ f

2 and
H b,Eκ f

2 .

We will show our Lemma 2.9 by replacing the index set Ha
2 by any Ha,Eκ f

2 ,
f ≤ B.

It follows that for each f ≤ B,

(2-57)
∑

h∈H
a,Eκ f
2

ah X∗ diviπ+1 . . . X∗ diviα Hit diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈H

b,Eκ f
2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where the complete contractions C j
g have a u-simple character that is subsequent

to Eκsimp. We will show our claim for each of the index sets H b,Eκ f
2 separately.

Now, we treat the factors ∇ω1,∇ω2 in the above as factors ∇φu+1,∇φu+2. We
see that since H b

2,∗∗ = H 2
b,∗ = H 2

a,∗ =∅, all the tensor fields in the above have the
same (u+ 2)-simple character.

Our claim (Lemma 2.9) for the index set Ha,Eκ f
2 then follows: First, apply the

operator Erase∇ω1[. . . ] to (2-57).57 We are then left with tensor fields (denote them
by

Ch,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu), h ∈ Ha,Eκ f

2 ,

Ch,iπ+1...iα+1
g (�1, . . . , �p, ω2, φ1, . . . , φu), h ∈ H b,Eκ f

2 ,

respectively) with the same (u + 1)-simple character; say Eκsimp, f . We can then
apply Corollary 1 from [A 2010] (since we have weight −n+ 2k, k > 0 by virtue
of the eraser — notice that by weight considerations, since we started out with no
“bad” tensor fields, there is no danger of falling under a “forbidden case”), to derive
that there is a linear combination of acceptable α-tensor fields indexed in V below,
with (u+ 1)-simple character Eκsimp, f , so that∑

h∈H
a,Eκ f
2

ahCh,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ(2-58)

57See the relevant lemma in the Appendix of [A 2012].



DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS 45

−

∑
v∈V

avX∗ diviα+1Cv,iπ+1...iα+1
g (�1, . . . , �p, ω2, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

=

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ,

where each complete contraction indexed in J is (u+1)-subsequent to Eκsimp, f . In
this setting X∗ divi just means that in addition to the restrictions imposed on X divi

we are not allowed to hit the factor ∇ω2.
Then, if we multiply the above equation by an expression ∇iω1∇

iυ and then
antisymmetrize the indices a, b in the factors ∇aω1,∇bω2 and finally make all ∇υs
into X+ divs, we derive our claim. �

Proof of Lemma 2.9 in Case B (when σ1 = 0). Our proof follows the same pattern
as the proof of Lemma 2.7 in Case B.

We again define the “measure” of each factor in each tensor field Ch,iπ+1...iα+1
g

as in the proof of Case B in Lemma 2.7. Again, let M stand for the maximum
measure among all factors in all tensor fields Ch,iπ+1...iα+1

g , h ∈ Ha
2 . We denote by

Ha,M
2 ⊂ Ha

2 the index set of the tensor fields for which some factor has measure
M .

We will further divide H 2,M
a into subsets H 2,M,k

a , k= 1, . . . , σ , according to the
factor which has measure M : First, we order the factors S∗∇(ν)Rijkl, . . .∇

(p)�h

in Eκsimp, and label them T1, . . . , Tσ (observe each factor is well-defined in Eκsimp,
because we are in Case B). We then say that h ∈ Ha,M,1

2 if in Ch,iπ+1...iα
g , T1 has

measure M . We say that h ∈ Ha,M,2
2 if in Ch,iπ+1...iα

g , T2 has measure M and T1

has measure less than M , and so on. We will then prove our claim for each of
the index sets h ∈ Ha,M,k

2 .58 We arbitrarily pick a k ≤ σ and show our claim for∑
h∈H2,M,k

a
. . . .

For the purposes of this proof, we call the factor Tk the D-crucial factor (in this
setting the D-crucial factor is unique).

Now, we pick out the subset H b,k,+
2 ⊂ H b

2 that is defined by the rule h ∈ H b,k
2

if and only if ∇ω1 contracts against the D-crucial factor Tk . We also pick out the
subset H b,k,−

2 ⊂ H b
2 that is defined by the rule h ∈ H b,k

2 if and only if ∇ω2 contracts
against the D-crucial factor Tk . Finally, we define Ha,̃

2 ⊂ Ha
2 , Ha,−

2 ⊂ Ha
2 to stand

for the index set of tensor fields for which ∇ω2 contracts against the D-crucial
factor.

Now, for each h ∈ Ha
2 we denote by

Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

58Again we observe that if we can prove this then Lemma 2.9 in Case B will follow by induction.
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the sublinear combination in X diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

that arises when ∇iγ hits the D-crucial factor. It then follows that

(2-59)
∑

h∈Ha
2

ah X∗ diviπ+1 . . . X∗ diviα

×Hit diviγ Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−

∑
h∈Ha,̃

2

ah X∗ diviπ+1 . . . X∗ diviα+1

×Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

+

∑
h∈Hb,k,+

2

ah X diviπ+1 . . . X diviγ

×Ch,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

−

∑
h∈Hb,k,−

2

ah X diviπ+1 . . . X diviγ

×Switch[C]h,iπ+1...iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu),

where each C j
g has the factor ∇ω1 contracting against the D-crucial factor and is

simply subsequent to Eκsimp.
We now denote the (u+1)-simple character (the one defined by ∇φ1, . . . ,∇ω1)

of the tensor fields Hit diviγ Ch,iπ+1...iα,iγ
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu) by Eκ ′simp.

(Observe that they all have the same (u+ 1)-simple character.)
We observe that just applying Lemma 2.1 to (2-59) (all tensor fields are accept-

able and have the same simple character Eκ ′simp — we treat ∇ω1 as a factor ∇φu+1

and the factor ∇ω2 as a factor ∇Y ) and we then pick out the sublinear combination
where there are M factors ∇υ contracting against Tk , we obtain

(2-60)
∑

h∈Ha,∗,k
2

ah Hit diviγ Ch,iπ+1...iα
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ

+

∑
x∈X

ax X diviα+1 C x,iπ+1...iα,iα+1
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)

×∇iπ+1υ . . .∇iαυ

+

∑
j∈J

a j C j,iπ+1...iα
g (�1, . . . , �p, ω1, ω2, φ1, . . . , φu)∇iπ+1υ . . .∇iαυ = 0,

where the tensor fields indexed in X are acceptable and have a (u + 1)-simple
character Eκ ′simp and each C j is simply subsequent to Eκ ′simp.

Now, observe that if M ≥ 3
2 then we can apply the Eraser (from the Appendix

in [A 2012]) to ∇ω1 and the index it contracts against in the D-crucial factor and
derive our conclusion as in Case A.
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The remaining cases are when M = 1,M = 1
2 and M = 0. The first one is easier,

so we proceed to show our claim in that case. The two subcases M = 1
2 ,M = 0

will be discussed in the next subsection.
In the case M = 1, i.e., the D-crucial factor is of the form ∇(p)�h , then we

cannot derive our claim, because of the possibility that some tensor fields indexed
in X above have ∇ω1 contracting according to the pattern ∇iω1∇

i j�h∇ jψ , where
ψ=υ orψ=φh . Therefore, in this setting, we first apply the eraser twice to remove
the expression ∇(2)i j �h∇

iψ∇ jω1 and then apply Corollary 2 from [A 2010]59 to
(2-60) (observe that (2-60) now falls under the inductive assumption of Lemma 4.6
in [A 2010] since we have lowered the weight60 to obtain a new equation in the
form (2-60), where each tensor field in X has the factor ∇ω1 contracting against
a factor ∇(l)�h , l ≥ 3. Then, applying the eraser as explained, we derive our
Lemma 2.9 in this case.

The cases M = 1
2 , M = 0. Notice that in these cases we must have α = π , by

virtue of the definition of maximal “measure” above. We will then prove our claim
by proving a more general claim by induction, in the next subsection. �

2D. The remaining cases of Lemma 2.9. We prove our claim in these cases via an
induction. In order to give a detailed proof, we will restate our lemma hypothesis
in this case (with a slight change of notation).

The hypothesis of the remaining cases of Lemma 2.9. Recall that we assume that

(2-61)
∑
x∈Xa

ax X∗ divi1 C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])

+

∑
x∈Xb

ax X∗ divi1 C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu)= 0

holds modulo complete contractions of length ≥ σ +u+3 (σ ≥ 3 — here σ stands
for u+ p — see the next equation). We denote the weight of the complete contrac-
tions in the above by −K . The tensor fields in the above equation are each in the
form

(2-62) pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νu)Rxz j ′k′l ′

⊗∇
(a1)�1⊗ · · ·⊗∇

(ap)�p⊗[∇ω1⊗∇ω2]⊗∇
x1 φ̃1⊗ · · ·⊗∇

xu φ̃z
)
.

59Recall that we showed in [A 2010] that this is a corollary of Lemma 4.6 in [A 2010], which we
have now shown.

60There is no danger of falling under a “forbidden case” of Lemma 2.1 by weight considerations
since we are assuming that none of the tensor fields of minimum rank in the assumption of Lemma 2.3
are “bad”.
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We recall that the u-simple character of the above has been denoted by Eκsimp. Recall
that we are now assuming that all the factors ∇(ai )�x in Eκsimp are acceptable.61 The
complete contractions indexed in J in (2-61) are simply subsequent to Eκsimp. We
also recall that X∗ divi stands for the sublinear combination in X divi where ∇i is
not allowed to hit either of the factors ∇ω1,∇ω2.

We recall that the tensor fields indexed in Xa have the free index i1 belonging to
the factor ∇ω1. The tensor fields indexed in Xb have the free index i1 not belonging
to any of the factors ∇ω1,∇ω2.

We recall the key assumption that for each of the tensor fields indexed in Xa ,
there is at least one removable index in each tensor field

C x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2]),

x ∈ Xa .62

In order to complete our proof of Lemma 2.9, we will show that we can write

(2-63)
∑
x∈Xa

axC x,i1
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])∇i1υ

=

∑
x∈X ′

ax X∗ divi2 . . . X∗ divia

×C x,i1...ia
g (�1, . . . , �p, φ1, . . . , φu, [ω1, ω2])∇i1υ

+

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu),

where the tensor fields indexed in X ′ are acceptable in the form (2-62), each with
rank a≥2. Note that this will imply the remaining cases of Lemma 2.9, completing
the proof of Lemma 2.3.

We recall that we are proving this claim when the assumption (2-61) formally
falls under our inductive assumption of Proposition 1.1 (if we formally treat ∇ω1,
∇ω2 as factors ∇φz+1, ∇φz+2).

We will prove (2-63) by inductively proving a more general statement.

Assumptions. We consider vector fields (that is, partial contractions with one free
index)

Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

61Meaning that each ai ≥ 2.
62Recall the definition of a “removable” index from page 8.
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in the following forms, respectively,

pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νv)Rxv j ′k′l ′(2-64)

⊗∇
(a1)�1⊗ . . .∇

(ab)�b⊗∇Y

⊗∇ψ1⊗ · · ·⊗∇ψτ ⊗∇
x1 φ̃1⊗ · · ·⊗∇

xv φ̃v
)
,

pcontr
(
S∗∇(ν1)Rx1 jkl ⊗ · · ·⊗ S∗∇(νv)Rxv j ′k′l ′(2-65)

⊗∇
(a1)�1⊗ . . .∇

(ab)�b⊗[∇χ1⊗∇χ2]

⊗∇ψ1⊗ · · ·⊗∇ψτ ⊗∇
x1 φ̃1⊗ · · ·⊗∇

xv φ̃v
)
,

for which the weight is −W + 1,W ≤ K . We also assume v + b ≥ 2. Note: the
bracket [. . . ] stands for the antisymmetrization of the indices a, b in the expression
∇aω1∇bω2.

We assume (respectively) that

(2-66)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Za

aζ X∗ divi1 . . . X∗ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )= 0,

and

(2-67)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Za

aζ X∗ divi1 . . . X∗ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0,

hold modulo complete contractions of length ≥ v+ b+ τ + 3.
The tensor fields indexed in Za are assumed to have the free index in one of the

factors ∇Y,∇ψ1, . . . ,∇ψτ , or one of the factors ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ , re-
spectively. The tensor fields indexed in Za have rank γ ≥2 and all their free indices
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belong to the factors∇Y,∇ψ1, . . . ,∇ψτ , or the factors∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,
respectively. The tensor fields indexed in Zb have the property that i1 does not
belong to any of the factors

∇Y,∇ψ1, . . . ,∇ψτ or ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,

respectively. We also assume that for the tensor fields indexed in Za ∪ Zb ∪ Za ,
none of the factors ∇ψ1, . . . ,∇ψτ are contracting against a special index in any
factor S∗∇(ν)Rijkl and none of them are contracting against the rightmost index in
any ∇(ah)�h (we will refer to this property as the p-property). We assume that
v+ b ≥ 2, and furthermore if v+ b= 2 then for each ζ ∈ Za ∪ Zb, the factors ∇Y
(or ∇χ1,∇χ2) are also not contracting against a special index in any S∗∇(ν)Rijkl

and are not contracting against the rightmost index in any ∇(ah)�h . Finally (and
importantly) we assume that for the tensor fields indexed in Za , there is at least
one removable index in each Cζ,i1 . (In this setting, for a tensor field indexed in
Za , a “removable” index is either a nonspecial index in a factor S∗∇(ν)Rijkl, with
ν > 0 or an index in a factor ∇(B)�h , B ≥ 3.)

Convention. In this subsection only, for tensor fields in the forms (2-66), (2-67)
we say then an index is special if it is one of the indices k, l in a factor S∗∇(ν)Rijkl

(this is the usual convention), or if it is an index in a factor ∇(B)r1...rB
�h for which all

the other indices are contracting against factors ∇ψ1, . . . ,∇ψτ .

All tensor fields in (2-66), (2-67) have a given v-simple character κsimp. We as-
sume the complete contractions indexed in J have a weak v-character Weak(κsimp)

and are simply subsequent to κsimp. Here X∗ divi stands for the sublinear combi-
nation in X divi where ∇i is not allowed to hit any of the factors

∇Y,∇ψ1, . . . ,∇ψτ or ∇χ1,∇χ2,∇ψ1, . . . ,∇ψτ ,

respectively.

The claims of the general statement. We claim that under the assumption (2-67),
there exists a linear combination of acceptable 2-tensor fields in the form (2-64),
(2-65) respectively (indexed in W below), for which the p-property is satisfied, so
that (respectively)

(2-68)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ

−

∑
w∈W

awX∗ divi2 Cw,i1i2
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ = 0,
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and

(2-69)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
w∈W

awX∗ divi2

×Cw,i1i2
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ = 0.

We observe that when τ = 0 and v + b ≥ 3, (2-69) coincides with (2-63).63

Therefore, if we can prove this general statement, we will have shown Lemma 2.9
in full generality, thus also completing the proof of Lemma 2.3.

We also have a further claim, when we assume (2-66), (2-67) with v + b = 2.
In that case, we also claim that we can write

(2-70)
∑

ζ∈Za∪Zb∪Za

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-71)
∑

ζ∈Za∪Za∪Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in Q are in the same form as (2-64) or (2-65)
respectively, but have a factor (expression) ∇(2)Y or ∇(2)a[iω1∇ j]ω2, respectively,
and satisfy all the other properties of the tensor fields in Za .

Consequence of (2-68), (2-69) when v+b ≥ 3. We here codify an implication one
can derive from (2-68), (2-69). This implication will be useful further down in this
subsection. We see that by making the factors ∇υ into X∗ div in (2-66),64 (2-67)

63Also, the assumption of existence of a non removable index coincides with the corresponding
assumption of Lemma 2.3.

64See the Appendix in [A 2012].
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and replacing into (2-68), (2-69), we obtain

(2-72)
∑
ζ∈Z ′a

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )= 0,

and

(2-73)
∑
ζ∈Z ′a

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0,

where here the tensor fields indexed in Z ′a are like the tensor fields indexed in Za

in (2-66), (2-67) but have the additional feature that no free index belongs to the
factor ∇ψ1 (and all the other assumptions of equations (2-66), (2-67) continue to
hold).

We then claim that we can derive new equations

(2-74)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

and

(2-75)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),
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where here X+ divi stands for the sublinear combination in X divi where ∇i is al-
lowed to hit the factor∇Y or∇χ1 (respectively), but not the factors∇ψ1, . . . ,∇φτ ,
(∇χ2). Furthermore, the linear combinations indexed in Q stand for generic linear
combinations of vector fields in the form (2-64) or (2-65), only with the expressions
∇Y or ∇[aω1∇b]ω2 replaced by expressions ∇(2)Y , ∇(2)c[aω1∇b]ω2.

Proof that (2-74), (2-75) follow from (2-68), (2-69). We prove the above by an
induction. We will first subdivide Z ′a, Zb into subsets as follows: ζ ∈ Z ′a,p or
ζ ∈ Zb,p if the factor ∇Y (or one of the factors ∇χ1,∇χ2) contracts against a
special index in the same factor against which ∇ψ1 contracts.

Now, if Z ′a,p ∪ Zb,p 6=∅ our inductive statement will be that we can write

(2-76)
∑
ζ∈Z ′a,p

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and ∑
ζ∈Z ′a,p

aζ X+ divi1 Cζ,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )(2-77)

=

∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )



54 SPYROS ALEXAKIS

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ )

+

∑
j∈J

a j C j
g (�1, . . . ,�b, φ1, . . . , φv, [χ1, χ2],ψ1, . . . ,ψτ ),

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′a,p (in particular the index in ∇ψ1 is not free) and in addition have
rank k. The tensor fields indexed in Z ′a,Nop in the right-hand side have all the
regular features of the terms indexed in Z ′a (in particular rank γ ≥ 1 and the factor
∇ψ1 does not contain a free index) and in addition none of the factors ∇Y (or
∇χ1,∇χ2) contract against a special index.

Our inductive claim is that we can write

(2-78)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and ∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )(2-79)

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Z ′a,Nop

aζ X+ divi1 . . . X+ diviγ

×Cζ,i1...iγ
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )
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+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )= 0.

We will derive (2-78), (2-79) momentarily. For now, we observe that by iterative
repetition of the above inductive step we are reduced to showing (2-74), (2-75)
under the additional assumption that Z ′a,p =∅.

Under that assumption, we denote by Zb,p⊂ Zb the index set of vector fields for
which the factor ∇Y (or one of the factors ∇χ1,∇χ2) contracts against a special
index. We will then prove another inductive statement: We assume that we can
write

(2-80)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
t∈V k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-81)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
t∈V k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in V k have all the features of the tensor fields
indexed in Zb,p but in addition have all the k free indices not belonging to factors



56 SPYROS ALEXAKIS

∇ψ1, . . . ,∇ψτ . The tensor fields indexed in Zb,Nop have all the regular features of
the tensor fields in Zb and in addition have the factor ∇Y (or the factors ∇χ1,∇χ2)
not contracting against special indices. The terms indexed in Q are as required in
the right-hand side of (2-74), (2-75) (which are the equations that we are proving).

We will then show that we can write

(2-82)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
t∈V k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-83)
∑
ζ∈Zb,p

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
t∈V k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb,Nop

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

(Here the tensor fields indexed in V k+1 have all the features described above and
moreover have rank k+ 1.)

Thus, by iterative repetition of this step we are reduced to showing our claim
under the additional assumption that Z ′a,p = Zb,p =∅.

We prove (2-82), (2-83) below. Now, we present the rest of our claims under
the assumption that Z ′a,p = Zb,p = ∅. For the rest of this proof we may assume
that all tensor fields have the factor ∇Y (or the factors ∇χ1,∇χ2) not contracting
against special indices.
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We then perform a new induction: We assume that we can write

(2-84)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-85)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k

at X+ divi1 . . . X+ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ),

where the tensor fields indexed in T k have all the properties of the tensor fields
indexed in Z ′a (in particular the index in ∇ψ1 is not free) and in addition have rank
k. We then show that we can write∑

ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )(2-86)

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )
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+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

and

(2-87)
∑
ζ∈Z ′a

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
ζ∈Zb

aζ X+ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
t∈T k+1

at X+ divi1 . . . X+ divik+1

×C t,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ ).

We will derive (2-86), (2-87) momentarily. For now, we observe that by iterative
repetition of the above we are reduced to showing (2-74), (2-75) under the further
assumption that Z ′a = ∅. In that setting, we can just repeatedly apply the eraser
(see the Appendix in [A 2012] for a definition of this notion) to as many factors
∇ψτ as needed in order to reduce ourselves to a new true equation where each of
the real factors contracts against at most one of the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or
∇χ1,∇χ2).65 Then, by invoking Corollary 1 from [A 2010]66 and then reintroduc-
ing the factors we erased, we derive our claim.

Proof of (2-86) and (2-87). Picking out the sublinear combination in (2-84), (2-85)
with one derivative on ∇Y or ∇χ1 and substituting into (2-72), (2-73) we derive

(2-88)
∑
t∈T k

at X∗ divi1 . . . X∗ divik C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ ),

65All remaining factors ∇ψ1, . . . ,∇ψτ and also the factor(s) ∇Y (or ∇χ1,∇χ2) are treated as
factors ∇φh .

66Notice that there will necessarily be at least one nonsimple factor S∗∇(ν)Rijkl or ∇(B)�h , by
virtue of the factors ∇Y (or ∇ω1,∇ω2), therefore that corollary can be applied.
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and

(2-89)
∑
t∈T k

at X∗ divi1 . . . X∗ divik

×C t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
ζ∈Zb

aζ X∗ divi1 Cζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ );

the sublinear combination
∑

ζ∈Zb
. . . above is generic.

Split the index set T k according to which of the factors ∇ψ2, . . . , ∇ψτ , ∇Y (or
∇ψ1, . . . ,∇ψτ ,∇χ1) contain the k free indices. Thus we write T k

=
⋃
α∈A T k,α

(each α ∈ A corresponds to a k-subset of the set of factors ∇ψ1,. . . ,∇ψτ ,∇Y or
∇ψ1,. . . ,∇ψτ ,∇χ1). We will then show that for each α ∈ A there exists a linear
combination

∑
b∈Bα abCb,i1...ik+1

g of partial contractions in the form (2-64) or (2-65)
with the first k free indices belonging to the factors in the set α, and the free index
ik+1 not belonging to ∇ψ1, so that

(2-90)
∑

t∈T k,α

atC t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )∇i1υ . . .∇ikυ

− X∗ divik+1

∑
b∈Bα

abCb,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

=

∑
j∈J

a j C j,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ,

and

(2-91)
∑

t∈T k,α

atC t,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

−X∗ divik+1

∑
b∈Bα

abCb,i1...ik+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ

=

∑
j∈J

a j C j,i1...ik
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

×∇i1υ . . .∇ikυ.

If we can show the above for every α ∈ A, then replacing the factor ∇υ by X+ div
we can derive our claim (2-86), (2-87). �

Proof of (2-90) and (2-91). Refer to (2-88) and (2-89). Denote Y or χ1 by ψτ+1

for uniformity. We pick out any α ∈ A; assume that α = {∇ψx1, . . . ,∇ψxk }.
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Pick out the sublinear combination where the factors ∇ψx1, . . . ,∇ψxk which
belong to α contract against the same factor as ∇ψ1. This sublinear combina-
tion Zg vanishes separately (that is, Zg = 0). We then apply the eraser to the
factors ∇ψ2, . . . ,∇Y ∈ A (notice this is well-defined, since all the above factors
and the factor ∇ψ1 contract against nonspecial indices). We obtain a new true
equation, which we denote by Erase[Zg] = 0. It then follows that Erase[Zg] ·

(∇i1ψx1∇
i1υ . . .∇ikψxk∇

ikυ)= 0 is our desired conclusion (2-90), (2-91). �

Sketch of proof of (2-78), (2-79), (2-82), (2-83). These equations can be proven
by only a slight modification of the idea above. We again subdivide the index sets
T k, V k according to the set of factors ∇ψ2, . . . ,∇ψτ or ∇ψ2, . . . ,∇ψτ ,∇ω1 that
contain the k free indices (so we write T k

=
⋃
α∈A T k,α and V k

=
⋃
α∈A V k,α) and

we prove the claims above separately for those sublinear combinations.
To prove this, we pick out the sublinear combination in our hypotheses with the

factors ∇ψh , h ∈ α contracting against the same factor against which ∇ψ1 and ∇Y
(or ∇ψ1 and ∇ω1) are contracting. Say α={h1, . . . , hk}; we then formally replace
the expressions

S∗∇
(ν)
r1...rµl1...lk

Rijkl∇l1ψh1 . . .∇
lkψhk∇

i φ̃1∇
jψ1∇

kY or

∇
(A)
r1...rµl1...lkst�1∇

l1ψh1 . . .∇
lkψhk∇

sψ1∇
t Y

and so on by expressions

S∗∇(ν−k)
r1...rµ Rijkl∇

i φ̃1∇
jψ1∇

kY or ∇(A−k)
r1...rµst�1∇

sψ1∇
t Y

and derive our claims (2-78), (2-79), (2-82), (2-83) as above. �

Proof of the claims of our general statement: Equations (2-68) and (2-69). We
will prove these claims by an induction. Our inductive assumptions are that (2-68),
(2-69) follow from (2-66), (2-67) for any weight −W ′, W ′< K and when W ′= K
they hold for any length v + b ≥ γ ≥ 2. We will then show the claim when the
weight is −K , and v+b= γ +1. In the end, we will check our claims for the base
case v+ b = 2.

Proof of the inductive step. Refer back to (2-66), (2-67). We will prove this claim
in four steps.

Step 1: First, we will denote by Z spec
a , Z spec

a , Z spec
b the index sets of the tensor fields

for which ∇Y or one of the factors ∇χ1, ∇χ2 (respectively) contracts against a
special index. Then using the inductive assumptions of our general claim, we will
show that there exists a linear combination of 2-tensor fields (indexed in W below)
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which satisfies all the requirements of (2-66), (2-68) so that

(2-92)
∑
ζ∈Z spec

a

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
w∈W

awCw,i1i2
g ∇i1υ

=

∑
ζ∈ZOK

a

aζCζ,i1
g ∇i1υ +

∑
j∈J

a j C j,i1
g ∇i1υ,

where the tensor fields n ZOK
a are generic linear combinations of tensor fields of

the same general type as the ones indexed in Za in (2-66), (2-68) and where in
addition none of the factors ∇Y or ∇χ1,∇χ2 contract against a special index.

Thus, if we can show the above, by replacing ∇υ by an X∗ divi , and substitut-
ing back into (2-66), (2-68), we are reduced to showing (2-67), (2-69) under the
additional assumption that Z spec

a =∅.

Step 2: Then, under the assumption that Z spec
a =∅, we will show that we can write

(2-93)
∑
ζ∈Z spec

b

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z spec

a

aζ X∗ divi1 . . . X∗ divic Cζ,i1...ic
g

= X∗ divi1 . . . X∗ divib

∑
c∈C

acCc,i1...ib
g +

∑
j∈J

a j C j,i1
g ,

where the tensor fields on the right-hand side are of the general form as the ones
indexed in Zb, Za in our hypothesis, and moreover the factors ∇Y (or the factors
∇χ1,∇χ2) are not contracting against special indices.

Notice that if we can show (2-92), (2-93) then we are reduced to showing our
claim under the additional assumption that for each ζ ∈ Za∪Za∪Zb the factors∇Y
(or ∇χ1,∇χ2) are not contracting against special indices. We will show (2-92),
(2-93) below.

Proof of (2-67), (2-69) under the assumption that for each ζ ∈ Za ∪ Za ∪ Zb the
factors ∇Y or (∇χ1,∇χ2) do not contract against special indices.

Step 3: Proof of (2-94) below. We note that for all the tensor fields in the rest of
this proof will not have the factor ∇Y (or any of the factors ∇χ1,∇χ2) contracting
against a special index in any factor S∗∇(ν)Rijkl or ∇(B)�h . Now, we arbitrarily
pick out one factor T = S∗∇(ν)Rijkl or T =∇(B)�x in κsimp and call it the “chosen
factor” for the rest of this subsection.

We will say that the factor ∇Y (or ∇ω2) contracts against a good index in T ,
if it contracts against a nonspecial index in T when T is of the form S∗∇(ν)Rijkl

with ν > 0; when T is of the form ∇(B)�x , then it contracts against a good index
provided B ≥ 3.

We will say that the factor ∇Y (or ∇ω2) contracts against a bad index if it con-
tracts against the index j in a factor T = S∗Rijkl or an index in a factor T =∇(2)�x .
We denote by ZBAD

a ⊂ Za the index set of tensor fields for which ∇Y (or ∇ω2)
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contracts against a bad index. We also denote by ZBAD
b ⊂ Zb the index set of the

vector fields for which ∇Y contracts against a bad index in T and T also contains
a free index. We will show that we can write

(2-94)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
h∈H

ahC i1i2
g ∇i1υ

=

∑
ζ∈Z ′GOOD

a ∪Z ′GOOD
b

aζCζ,i1
g ∇i1υ +

∑
j∈J

a j C j
g ,

where all the tensor fields indexed in Z ′GOOD
a ∪ Z ′GOOD

b are generic vector fields of
the forms indexed in Za, Zb, only with the factors ∇Y or ∇ω2 contracting against
a good index in the factor T . The tensor fields indexed in H are as required in the
claim of our general statement (they correspond to the index set W in our general
statement).

Step 4: Proof that (2-94) implies our claims (2-68), (2-69). We start by proving
(2-94) (that is, we prove Step 3). Then, we will show how we can derive our claim
from (2-94) (that is, we then prove Step 4).

Proof of Step 3: Proof of (2-94). We can prove this equation by virtue of our
inductive assumption on our general claim. First, we define ZBAD

a ⊂ Za to stand for
the index set of tensor fields where the factor ∇Y (or ∇ω2) is contracting against
a bad index in the chosen factor. We pick out the sublinear combination in our
lemma assumption where ∇Y (or ∇ω2) are contracting against the chosen factor
T = S∗Rijkl or T = ∇(2)�x ). This sublinear combination must vanish separately,
and we thus derive that

(2-95)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ X∗∗ divi1 Cζ,i1
g +

∑
ζ∈ZBAD

a

aζ X∗∗ divi1 . . . X∗∗ divic Cζ,i1...ic
g

+

∑
ζ∈ZnvBAD

b

a f C f,i1
g =

∑
j∈J

a j C j
g ,

where X∗∗ divi1 stands for the sublinear combination for which ∇i1 is not allowed
to hit the chosen factor T . ZnvBAD

b ⊂ Zb stands for the index set of tensor fields
indexed in Zb with the free index i1 not belonging to the chosen factor and also
with the factor ∇Y (or ∇ω2) contracting against a bad index.

Now, define an operation Op[. . . ] that acts on the complete contractions above
by formally replacing any expression ∇(2)i j �x∇

i Y (or ∇(2)i j �x∇
iχ2) by ∇ j D (D

is a scalar function), or any expression S∗Rijkl∇
i φ̃1∇

j Y (or S∗Rijkl∇
i φ̃1∇

jχ2) by
∇[kθ1∇l]θ2. (Denote by κ̃simp the simple character of these resulting vector fields.)
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Acting on (2-95) by Op[. . . ] produces a true equation, which we may write out as

(2-96)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ X∗∗ divi1 Op[C]ζ,i1
g + X∗∗ divi1

∑
f ∈F

a f C f,i1
g

+

∑
ζ∈ZBAD

a

aζ X∗∗ divi1 . . . X∗∗ divic Cζ,i1...ic
g =

∑
j∈J

a j C j
g .

Here X∗∗ divi stands for the sublinear combination in divi where ∇i is not al-
lowed to hit the factor to which ∇i belongs, nor any of the factors ∇φ1, . . . ,∇φu ,
∇ψ1, . . . ,∇ψτ , nor any of the factors ∇D,∇θ1,∇θ2. The vector fields indexed
in F are generic vector fields with a simple character κ̃simp, for which the free
index i1 does not belong to any of the factors ∇ψ1, . . . ,∇ψτ or any of the factors
∇D, (∇χ1),∇θ1,∇θ2.

Now, observe that the above equation falls under our inductive assumption of
the general statement we are proving: We now either have factors

∇ψ1, . . . ,∇ψτ ,∇D, or

∇ψ1, . . . ,∇ψτ ,∇χ1,∇D, or

∇ψ1, . . . ,∇ψτ , [∇θ1,∇θ2], or

∇ψ1, . . . ,∇ψτ ,∇χ1, [∇θ1,∇θ2].

Notice that the tensor fields indexed in H BAD
a , H BAD

b are precisely the ones that
contain a free index in one of these factors. Therefore, by our inductive assumption
of the “general claim” we derive that there exists a linear combination of 2-tensor
fields,

∑
v∈V . . . , (with factors ∇ψ1,. . . ,∇ψτ ,∇D and so on, and which satisfy the

p-property for the factors ∇ψ1,. . . ,∇ψτ ) so that

(2-97)
∑

ζ∈ZBAD
a ∪ZBAD

b

aζ Op[C]ζ,i1
g ∇i1υ − X∗∗ divi2

∑
v∈V

avCv,i1i2
g ∇i1υ =

∑
j∈J

a j C j,i1
g ∇i1υ.

Now, we define an operation Op−1
[. . . ] that acts on the complete contractions in

the above equation by replacing the factor ∇ j D by an expression ∇i j�x∇
j Y (or

∇i j�x∇
jω2), or by replacing the expression ∇[aθ1∇b]θ2 by S∗Ri jab∇

i φ̃1∇
j Y (or

S∗Ri jab∇
i φ̃1∇

jω2). The operation Op−1 clearly produces a true equation, which
is our desired conclusion, (2-94). �

Proof of Step 4. We derive our conclusions (2-68), (2-69) in pieces. First, we
show these equations with the sublinear combinations Za replaced by the index set
Za,spec, which index the terms with the free index i1 belonging to the factor ∇Y
or ∇ω1 (this will be Substep A). After proving this claim, we will show (2-68),
(2-69) under the additional assumption that Za,spec =∅ (this will be Substep B).
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Proof of Substep A. We make the ∇υs into X∗ divs in (2-94) and insert the resulting
equations into our lemma hypothesis. We thus derive a new equation

(2-98)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where we now have that the tensor fields indexed in Za have a free index among
the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2), and furthermore
the factors ∇Y (or the factors ∇ω1,∇ω2) are not contracting against a bad index in
the chosen factor T . The tensor fields indexed in Z1

b have a free index that does not
belong to one of the factors ∇ψ1, . . . ,∇ψτ ,∇Y (or ∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2),
and furthermore if the factor ∇Y (or one of the factors ∇ω1,∇ω2) is contracting
against a bad index in the chosen factor T , then T does not contain the free index
i1 . Finally the tensor fields indexed in Z2

b each have rank a ≥ 2 and all free in-
dices belong to the factors ∇ψ1, . . . ,∇ψτ ,∇Y , (∇ω1,∇ω2). We may then rewrite
(2-98) in the form

(2-99)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b
′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where now for the tensor fields indexed in Z2
b
′, each a ≥ 1 and the factor ∇ψ1

does not contain a free index for any of the tensor fields for which ∇Y (or one of
∇ω1,∇ω2) contracts against a bad index in the chosen factor.

We will denote by Z1
b,]⊂ Z1

b and Z2
b,]
′
⊂ Z2

b
′ the index sets of tensor fields where

∇Y (or one of ∇ω1,∇ω2) contracts against a bad index in the chosen factor T .
From (2-99) we derive

(2-100)
∑
ζ∈Z1

b,]

aζ X∗∗ divi1 Cζ,i1
g +

∑
ζ∈Z2

b,]
′

aζ X∗∗ divi1 . . . X∗∗ divia Cζ,i1...ia
g

+

∑
j∈J

a j C j
g = 0,

where X∗∗ divi stands for the sublinear combination in X∗ divi for which ∇i is in
addition no allowed to hit the chosen factor T .

Then, applying operation Op as in Step 3 and the inductive assumption of the
general claim we are proving,67 and then using the operation Op−1

[. . . ] as in the

67The resulting equation falls under the inductive assumption, as in Step 3.
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proof of Step 3, we derive

(2-101)
∑
ζ∈Z1

b,]

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z2

b,]
′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g

=

∑
ζ∈ZOK

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where the tensor fields indexed in ZOK have rank a ≥ 1 (no free indices belonging
to factors ∇ψ1, . . . ,∇Y or ∇ψ1, . . . ,∇χ2) and furthermore have the property that
the one index in ∇Y or ∇ω1 does not contract against a bad index in the chosen
factor (and it is also not free). Thus, replacing the above back into (2-99), we
derive

(2-102)
∑
ζ∈Za

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z1

b
′

aζ X∗ divi1 Cζ,i1
g

+

∑
ζ∈Z2

b
′′

aζ X∗ divi1 . . . X∗ divia Cζ,i1...ia
g +

∑
j∈J

a j C j
g = 0,

where the tensor fields indexed in Z1
b
′, Z2

b
′′ have the additional restriction that if

the factor ∇Y (or ∇ω1,∇ω2) is contracting against the chosen factor T then it is
not contracting against a bad index in T .

We are now in a position to derive Substep A from the above: To see this claim,
we just apply Erase∇Y or Erase∇ω1 to (2-102) and multiply the resulting equation
by ∇i1Y∇ i1υ.

Substep B: Now, we are reduced to showing our claim when Za,spec = ∅. In that
setting, we denote by Za,s ⊂ Za the index set of vector fields in Za for which the
free index i1 belongs to the factor ∇ψs ; we prove our claim separately for each of
the sublinear combinations

∑
ζ∈Za,s

. . . . This claim is proven by picking out the
sublinear combinations in (2-66), (2-67) where the factors ∇ψs and ∇Y (or ∇χ1)
contract against the same factor;68 we then apply the eraser to ∇ψs (this is well-
defined and produces a true equation), and multiply by ∇i1ψs∇

i1υ. The resulting
equation is precisely our claim for the sublinear combination

∑
ζ∈Za,s

. . . .

Sketch of the proof of Steps 1 and 2: Equations (2-92) and (2-93). We will sketch
the proof of these claims for the sublinear combinations in Z spec

a ∪ Z spec
b ∪ Za

spec
where one of the special indices in Cζ,i1 is an index k or l that belongs to a fac-
tor S∗∇(ν)Rijkl. The remaining case (where the special indices belong to factors
∇
(a)�h) can be seen by a similar (simpler) argument.69

68These sublinear combinations vanish separately.
69The only extra feature in this setting is that one must prove the claim by a separate induction

on the number of factors ∇ψz that are contracting against ∇(a)�h .
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For each ζ ∈ Z spec
a ∪ Z spec

b ∪ Za
spec, we denote by Cζ,i1

g , Cζ,i1...iγ
g the tensor fields

that arise from Cζ,i1 , Cζ,i1...iγ
g in (2-66), (2-68) by replacing the expressions

S∗∇(ν)r1...rν Rijkl∇
i φ̃1∇

kY and S∗∇(ν)r1...rν Rijkl∇
i φ̃1∇

kχ2

with a factor ∇(ν+2)
r1...rν jl�b+1. We denote by κ̃simp the resulting simple character. We

derive

(2-103)
∑

ζ∈Z spec
a ∪Z spec

b

aζ X∗ divi1 Cζ,i1
g +

∑
ζ∈Z spec

a

aζ X∗ divi1 . . . X∗ diviγ Cζ,i1
g +

∑
j∈J

a j C j
g = 0.

Now, again applying the inductive assumption of our general statement to the
above, we derive that there is a linear combination of tensor fields (indexed in
W below) with a free index i1 belonging to one of the factors ∇ψ1, . . . ,∇ψτ or
∇ψ1, . . . ,∇ψτ ,∇χ1 so that

(2-104)
∑
ζ∈Z spec

a

aζCζ,i1
g ∇i1υ − X∗ divi2

∑
w∈W

awCw,i1i2
g ∇i1υ =

∑
j∈J

a j C j
g.

Now, by applying an operation Op∗ to the above which formally replaces the
factor ∇(A)r1...rA�x with a factor

S∗∇(A−2)
r1...rA−2

RirA−1krA∇
i φ̃1∇

kY or S∗∇(A−2)
r1...rA−2

RirA−1krA∇
i φ̃1∇

kχ2,

we derive (2-92) (since we can repeat the permutations by which (2-104) is made to
hold formally, modulo introducing correction terms that allowed in the right-hand
side of (2-92)).

We will now prove (2-93) (that is, Step 2) by repeating the induction performed
in the “Consequence” we derived above (where we showed that inductively assum-
ing (2-76), (2-77) we can derive (2-78), (2-79)):

We will show the claim of Step 2 in pieces: First consider the tensor fields
indexed in Za,p of minimum rank 2 (denote the corresponding index set by Z2

a,p);
we then show that we can write

(2-105)
∑
ζ∈Z2

a,p

aζ X divi1 X divi2 Cζ,i1i2
g =

∑
ζ∈Z3

a,p

aζ X divi1 . . . X divi3 Cζ,i1...i3
g

+

∑
ζ∈Zb,p

aζ X divi1 Cζ,i1
g +

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j .

The tensor fields indexed in Z3
a,p, Zb,p on the right-hand side are generic linear

combinations in those forms (the first with rank 3). The tensor fields indexed in
ZOK are generic linear combinations as allowed in the right-hand side of (2-93).
Assuming we can prove (2-105), we are then reduced to showing our claim when
the minimum rank among the tensor fields indexed in Za,p is 3. We may then
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“forget” about any X divih where ih belongs to the factor ∇ψ1. Therefore, we are
reduced to showing our claim when the minimum rank is 2 and the factor ∇ψ1

does not contain a free index. We then claim our claim by an induction (for the
rest of this derivation, all tensor fields will not have a free index in the factor ∇ψ1):
Assume that the minimum rank of the tensor fields indexed in Za,p is k, and they
are indexed in Z k

a,p. We then show that we can write

(2-106)
∑
ζ∈Z k

a,p

aζ X divi1 . . . X divik Cζ,i1...ik
g =

∑
ζ∈Z k+1

a,p

aζ X divi1 . . . X divik+1 Cζ,i1...ik+1
g

+

∑
ζ∈Zb,p

aζ X divi1 Cζ,i1
g +

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j .

The tensor fields indexed in Z3
a,p, Zb,p on the right-hand side are generic linear

combinations in those forms (the first with rank k + 1). The tensor fields indexed
in ZOK are generic linear combinations as allowed in the right-hand side of our
Step 2.

Iteratively repeating this step we are reduced to proving Step 2 when Za,p =∅.
In that case we then assume that the tensor fields indexed in Zb,p have minimum
rank k (and the corresponding index set is Z k

b,p) and we show that we can write

(2-107)
∑
ζ∈Z k

b,p

aζ X divi1 . . . X divik Cζ,i1...ik
g =

∑
ζ∈Z k+1

b,p

aζ X divi1 . . . X divik+1 Cζ,i1...ik+1
g

+

∑
ζ∈ZOK

aζ X divi1 . . . X divia Cζ,i1...ia
g +

∑
j∈

a j C j ,

(with the same conventions as in the above equation).
If we can prove (2-105) and (2-107) we will have shown our Step 2.

Proof of (2-105), (2-106), (2-107). We start with a small remark: If the chosen
factor is of the form S∗∇(ν)Rijkl, our assumption implies a more convenient equa-
tion: Consider the tensor fields Cζ,i1...ia

g , ζ ∈ Za,p∪ Zb,p; we denote by C̃ζ,i1...ia
g the

tensor fields that arise from Cζ,i1...ia
g by replacing the expression

∇
(ν)
r1...rν Rijkl∇

i φ̃1∇
kY (or ∇(ν)r1...rν Rijkl∇

i φ̃1∇
kχ2)

by a factor ∇(ν+2)
r1...rν jl�p+1. We then derive

(2-108)
∑

ζ∈Za∪Zb

aζ X∗ divi1 . . . X∗ divia

× C̃ζ,i1...ia
g (�1, . . . , �p+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ )

=

∑
j∈J

a j C j
g (�1, . . . , �p+1, φ2, . . . , φu, (χ1), ψ1, . . . , ψτ ).

Now we can derive our claims.
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Proof of (2-106). We split the index set Z Z2
a,p

according to the two factors that
contain the two free indices and we show our claim for each of those tensor fields
separately. The proof goes as follows: We pick out the sublinear combination in
our hypothesis (or in (2-108)) where the factors ∇ψh,∇ψh′ (or ∇ψh,∇χ2) con-
tract against the same factor. Clearly, this sublinear combination, Xg, vanishes
separately. We then formally erase the factor ∇ψh . Then, we apply the inductive
assumption of our general claim to the resulting equation (the minimum rank of
the tensor fields will be 1), and (in case our assumption is (2-108) we also apply
an operation Op−1 which replaces the factor ∇(y)r1...ry

�p+1 by

S∗∇(y−2)
r1...ry−2

Riry−1kry∇
i φ̃1∇

kY (∇kχ1).

This is our desired conclusion. �

Proof of (2-105), (2-107). Now we show (2-105) for the subset Z k,α
a,p (which indexes

the k-tensor fields for which the free indices i1, . . . , ik belong to a chosen subset of
the factors ∇ψ1, . . . ,∇ψτ , (∇χ1) (hence the label α designates the chosen subset).
To prove this equation, we pick out the sublinear combination in (2-108) where
the factors ∇ψ2, . . . ,∇ψτ , (∇χ1) (indexed in α) contract against the same factor
as ∇ψ1. Then we apply the eraser to these factors and the indices they contract
against. This is our desired conclusion. To show (2-107), we only have to treat the
factors ∇ψh as factors ∇φh . The claim then follows by applying Corollary 1 in [A
2010] and making the factors ∇υ into X divs.70 �

Proof of the base case (v+ b = 2) of the general claim. We first prove our claim
when our hypothesis is (2-67) (as opposed to (2-66)).

Proof of the base case under the hypothesis (2-67). We observe that the weight
−K in our assumption must satisfy K ≥ 2τ + 8 if v > 0 and K ≥ 2τ + 6 if v = 0.

First consider the case where we have the strict inequalities K > 2τ +8 if v > 0
and K > 2τ + 6 if v = 0. In that case our first claim of the base case can be
proven straightforwardly, by picking out a removable index in each Cζ,ia

g , ζ ∈ Za

and treating it as an X∗ div (which can be done when we only have two real factors).
Thus, in this setting we only have to show our second claims (2-70), (2-71).

In this setting, by using the “manual” constructions as in [A 2011], we can
construct explicit tensor fields which satisfy all the assumptions of our claim in the

70Observe that by virtue of the factor ∇ψ1, we must have at least one nonsimple factor
S∗∇(ν)Rijkl or ∇(B)�h in (2-108)–hence (2-108) does not fall under any of the “forbidden cases” of
Corollary 1 in [A 2010], by inspection.
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base case (each with rank ≥ 2), so that

(2-109) X+ divi1

∑
ζ∈Z ′a∪Zb

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,iq
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g .

Here the tensor field C p,i1...ic+1
g will be in one of three forms:

• If v = 2 then each C p,i1...ic+1
g will be in the form

(2-110) pcontr
(
S∗∇(ν1)

fb1 ... fbh
i1...ic−1

Rx1 j icl ⊗ S∗∇(ν2) fd1 ... fdy Rxv
j ′
ic+1

l

⊗[∇
jχ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇

x1 φ̃1⊗∇
x2 φ̃2

)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ }.

• If v=1 then
∑

p∈P · · ·=0 (this can be arranged because of the two antisymmetric
indices k, l in the one factor S∗∇(ν)Rijkl).

• If v = 0 then each C p,i1...ic+1
g will be in the form

(2-111) pcontr
(
∇
(A1)

fb1 ... fbh
i1...ic−1 j ic

�1⊗∇
(A2) fd1 ... fdy j ′ic+1

�2

⊗[∇
jχ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇

x1 φ̃1⊗∇
x2 φ̃2

)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ }.

Then, picking out the sublinear combination in (2-110), (2-111) with factors
∇ψ1, . . . ,∇ψτ ,∇χ1,∇χ2, we derive that

∑
p∈P · · · = 0. This is precisely our

desired conclusion in this case.
Now, the case where we have the equalities in our lemma hypothesis, K =2τ+8

if v > 0 and K = 2τ+6 if v= 0. In this case we note that in our hypothesis Zb=∅
if v 6= 1, while Za = Za =∅ if v = 1.

Then, if v 6= 1, by the “manual” constructions as in [A 2011], it follows that
we can construct tensor fields (as required in the claim of our “general claim”), so
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that:

(2-112)
∑
ζ∈Za

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

× X∗ divi2 aζCζ,i1i2
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

= a∗C∗,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ

+

∑
j∈J

a j C j,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )∇i1υ,

where the tensor field C∗,i1
g is in the form

(2-113) pcontr
(
S∗∇(ν1) f1... fτ−1 Rx1

fτ
kl ⊗ Rx2

j ′kl

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

if v = 2, and in the form

(2-114) pcontr
(
∇
(τ+1) f1... fτ

s�1⊗∇
j ′s�2

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

if v = 0.
Thus, we are reduced to the case where Za only consists of the vector field

(2-113) or (2-114), and all other tensor fields in our lemma hypothesis have rank
≥ 2 (we have denoted their index set by Z ′a). We then show that we can write

(2-115) X+ divi1

∑
ζ∈Z ′a

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g ,

where the tensor fields indexed in P here each have rank ≥ 2 and are all in one of
the forms

(2-116) pcontr
(
S∗∇(ν1) f1... fτ−1 Rx1

fτ
ik l ⊗ S∗Rxv

j ′kl

⊗[∇i1χ1⊗∇ j ′χ2]⊗∇y1ψ1 · · · ⊗∇yτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

or

(2-117) pcontr
(
∇
(ν1) f1... fτ

s�1⊗∇
j ′s�2⊗[∇i1χ1⊗∇ j ′χ2]⊗∇y1ψ1 · · ·⊗∇yτψτ

)
,
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where each of the indices fh contracts against one of the indices yq . The indices yq

that do not contract against an index fh are free indices.
Then, replacing the above into our lemma hypothesis (and making all the ∇υs

into X+ divs), we derive that ap = 0 for every p ∈ P and a∗ = 0. This concludes
the proof of the base case when v+ b = 2, v 6= 1. In the case v = 1 we show our
claim by just observing that we can write

(2-118) X+ divi1

∑
ζ∈Zb

aζCζ,i1
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,i1
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . , �b, φ1, [χ1, χ2], ψ1, . . . , ψτ );

this concludes the proof of the base case, when the tensor fields in our lemma
hypothesis are in the form (2-67). �

Now, we consider the setting where our hypothesis is (2-66). We again observe
that if v = 0 then the weight −K in our hypothesis must satisfy K ≥ 2τ + 4. If
v > 0 it must satisfy K ≥ 2τ + 6. We then again first consider the case where we
have the strict inequalities in the hypothesis of our general claim.

In this case (where we have the strict inequalities K > 2τ + 4 if v = 0 and
K > 2τ + 6 if v 6= 0) our first claim follows straightforwardly (as above, we just
pick out one removable index in each Cζ,i1

g , ζ ∈ Za and treat it as an X∗ div). To
show the second claim we proceed much as before:

We can “manually” construct tensor fields in order to write

(2-119) X+ divi1

∑
ζ∈Z ′a∪Zb

aζCζ,i1
g (�1, . . . , �b, φ1, . . . , φv, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 Cq,iq
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divic+1

×C p,i1...ic+1
g (�1, . . . , �b, φ1, . . . , φv, [χ1, χ2], ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g .

Here the tensor field C p,i1...ic+1
g will be in one of three forms:
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• If v = 2 then each C p,i1...ic+1
g will be

(2-120) pcontr
(
S∗∇(ν1)

fb1 ... fbh
i1...ic−1

Rx1
fbh+1

icl ⊗ S∗∇(ν2) fd1 ... fdy Rxv
fdy+1

ic+1

l

⊗∇ fτ+1Y ⊗∇ f1ψ1 · · · ⊗∇ fτψτ ⊗∇
x1 φ̃1⊗∇

x2 φ̃2
)
,

where {b1, . . . , bh+1, d1, . . . , dy+1} = {1, . . . , τ + 1}.

• If v = 1 then
∑

p∈P · · · = 0 (this is because of the two antisymmetric indices k, l

in the one factor S∗∇(ν)Rijkl).

• If v = 0 then each C p,i1...ic+1
g will be in the form

(2-121) pcontr
(
∇
(A1)

fb1 ... fbh
i1...ic−1ic

�1⊗∇
(A2) fd1 ... fdy ic+1

�2

⊗∇ fτ+1Y ⊗∇ f1ψ1 · · · ⊗∇ fτψτ
)
,

where {b1, . . . , bh, d1, . . . , dy} = {1, . . . , τ + 1}.

Then, picking out the sublinear combination in (2-120), (2-121) with factors
∇ψ1, . . . ,∇ψτ ,∇Y we derive that

∑
p∈P · · · = 0. This is precisely our desired

conclusion in this case.
Finally, we prove our claim when we have the equalities K = 2τ + 4 if v < 2

and K = 2τ + 6 if v = 2) in the hypothesis of our general claim.
In this case by “manually” constructing X+ divs so that we can write

(2-122)
∑

ζ∈Z ′a∪Zb∪Za

aζ X+ divi1 . . . X+ divia Cζ,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

=

∑
q∈Q

aq X+ divi1 . . . X+ divia Cq,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

+

∑
p∈P

ap X+ divi1 . . . X+ divia C p,i1...ia
g (�1, . . . �b, Y, ψ1, . . . , ψτ )

+

∑
j∈J

a j C j
g (�1, . . . �b, Y, ψ1, . . . , ψτ ).

Here the tensor fields indexed in P are in specific forms:

• If v = 0 then they will either be in the form

(2-123) pcontr
(
∇i∗Y⊗∇

(A) fx1 ... fxa s
�1⊗∇

(B) fxa+1 ... fxτ
s �2⊗∇ f1ψ1⊗· · ·⊗∇ fτφτ

)
,

where {x1, . . . , xτ } = {1, . . . , τ }, or in the form

(2-124) pcontr
(
∇qY⊗∇(A)

fx1 ... fxa
i∗ �1⊗∇

(B) fxa+1 ... fxτ q
�2⊗∇ f1ψ1⊗· · ·⊗∇ fτφτ

)
,

where {x1, . . . , xτ } = {1, . . . , τ }.
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• If v = 2 they will be in the form

(2-125) pcontr
(
∇i∗Y ⊗∇

(A) fx1 ... fxa−1 S∗Ri fxa kl
⊗∇

(B) fxa+1 ... fxτ−1 Ri ′ fxτ kl

⊗∇ f1ψ1⊗ · · ·⊗∇ fτφτ∇i φ̃1⊗∇i ′ φ̃2
)
,

where {x1, . . . , xτ } = {1, . . . , τ }, or in the form

(2-126) pcontr
(
∇qY ⊗∇(A)

fx1 ... fxa−1 S∗Ri fxa ql
⊗∇

(B) fxa+1 ... fxτ−1 Ri ′ fxτ i∗l

⊗∇y1ψ1⊗ · · ·⊗∇yτφτ∇i φ̃1⊗∇i ′ φ̃2
)
.

• If v = 1, Equation (2-122) will hold with P =∅.

Then, picking out the sublinear combination in (2-122) which consists of terms
with a factor ∇Y and replacing into our hypothesis, we derive that the coefficient
of each of the tensor fields indexed in P must be zero. This completes the proof
of our claim. �

2E. Proof of Lemmas 2.2 and 2.4.
Proof of Lemma 2.2. The first claim follows immediately, since each tensor field
has a removable index (thus each tensor field separately can be written as an
X∗ div).

The proof of the second claim essentially follows the “manual” construction of
divergences, as in [A 2011]. By “manually” constructing explicit divergences out
of each Ch,i1...iα

g (�1, . . . , �p, φ1, . . . , φu), h ∈ H2, we derive that we can write

(2-127)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

= (Const)1 X divi1 . . . X diviξ C1,i1...iξ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+ (Const)2 X divi1 . . . X diviζ C2,i1...iζ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
q∈Q

aq X divi1 . . . X diviα Cq,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where the tensor fields indexed in Q are as required by our lemma hypothesis,
while the tensor fields C1,C2 are explicit tensor fields which we will write out
below (their precise form depends on the values p, σ1, σ2).71

We will then show that in (2-127) we will have (Const)1 = (Const)2 = 0. That
will complete the proof of Lemma 2.2. We distinguish cases based on the value of
p: Either p = 2 or p = 1 or p = 0.

71In some cases there will be no tensor fields C1,C2 (in which case we will just say that in
(2-127) we have (Const)1 = 0, (Const)2 = 0).
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The case p = 2. With no loss of generality we assume that ∇(A)�1 contracts
against ∇φ1, . . . ,∇φx and that ∇(B)�2 contracts against ∇φx+1, . . . ,∇φx+t ; we
may also assume without loss of generality that x ≤ t . By manually constructing
divergences, it follows that we can derive (2-127), where each of the tensor fields
C1,C2 will be in the forms, respectively,

(2-128) pcontr
(
∇i∗Y⊗∇

(A)
v1...vx i1...iγ�1⊗∇

(B)
y1...yt iγ+1...iγ+δ�2⊗∇

v1φ1⊗· · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise t + δ = 2; or

(2-129) pcontr
(
∇qY ⊗∇q

∇
(A)
v1...vx i1...iγ�1⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

where if t ≥ 2 then δ = 0, otherwise t + δ = 2.

The case p = 1. We “manually” construct divergences to derive (2-127), where
if σ1 = 1 then there are no tensor fields C1,C2 (and hence (2-127) is our desired
conclusion); if σ1 = 0, σ2 = 1 then there is only the tensor field C1 in (2-127) and
it is in the form

(2-130) pcontr
(
∇

qY ⊗ S∗∇
(ν)
v2...vx i1...iγ Ri iγ+1iγ+2q ⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise δ = 2− t .

The case p = 0. We have three subcases: First σ2 = 2, second σ2 = 1 and σ1 = 1,
and third σ1 = 2.

In the case σ2 = 2, the tensor fields C1,C2 must be in the forms, respectively,

(2-131) pcontr
(
∇i∗Y ⊗ S∗∇

(ν)
v2...vx i1...iγ Ri iγ+1iγ+2l ⊗ S∗∇(t−1)

y1...yt
Ri ′iγ+3iγ+4

l

⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu
)
,

or

(2-132) pcontr
(
∇

qY ⊗ S∗∇
(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2l ⊗ S∗∇(t−1)

y1...yt
Ri ′iγ+3iγ+4

l

⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu
)
,

(if x = t = 0 then the tensor field C1 above will not be present).
In the case σ1 = 2, the tensor fields C1,C2 must be in one of the two forms

(2-133) pcontr
(
∇i∗Y ⊗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,
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or

(2-134) pcontr
(
∇qY ⊗∇q

∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
.

In the case σ1= 1 and σ2= 1, there will be only one tensor field C1, in the form

(2-135) pcontr
(
∇

qY ⊗ S∗∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rqiγ+3iγ+4
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
.

We then derive that (Const)1 = (Const)2 = 0 as in [A 2011] (by picking out
the sublinear combination in (2-127) that consists of complete contractions with a
factor ∇Y — differentiated only once). �

Proof of Lemma 2.4. We again “manually” construct explicit X div to write

(2-136)
∑
h∈H2

ah X divi1 . . . X diviα Ch,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

= (Const)1 X divi1 . . . X diviξ C1,i1...iξ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+ (Const)2 X divi1 . . . X diviζ C2,i1...iζ
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
q∈Q

aq X divi1 . . . X diviα Cq,i1...iα
g (�1, . . . , �p, Y, φ1, . . . , φu)

+

∑
j∈J

a j C j
g (�1, . . . , �p, Y, φ1, . . . , φu),

where the tensor fields indexed in Q are as required by our lemma hypothesis,
while the tensor fields C1,C2 are explicit tensor fields which we will write out
below (they depend on the values p, σ1, σ2). In some cases there will be no tensor
fields C1,C2 (in which case we will just say that in (2-127) we have (Const)1= 0,
(Const)2 = 0).

The case p = 2. With no loss of generality we assume that ∇(A)�1 contracts
against ∇φ1, . . . ,∇φx and that ∇(B)�2 contracts against ∇φx+1, . . . ,∇φx+t ; we
may also assume without loss of generality that x ≤ t . By manual construction of
divergences, it follows that we can derive (2-127), where there is only the tensor
field C1 and it is in the form

(2-137) pcontr
(
∇[i∗χ1⊗∇

q]χ2⊗∇
(A)
v1...vx i1...iγ�1⊗∇

(B)
qy1...yt iγ+1...iγ+δ�2

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

where if t ≥ 1 then δ = 0, otherwise δ = 1.

The case p = 1. We “manually” construct divergences to derive (2-136), where
if σ1 = 1 then there are no tensor fields C1,C2 in the right-hand side of (2-136)



76 SPYROS ALEXAKIS

(and this is our desired conclusion); and if σ1 = 0 and σ2 = 1 then there is only the
tensor field C1 in the right-hand side of (2-136) and it is of the form

(2-138) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
v2...vx i1...iγ Ri iγ+1iγ+2q ⊗∇

(B)
y1...yt iγ+1...iγ+δ�2

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

where if t ≥ 2 then δ = 0, otherwise δ = 2− t .

The case p = 0. We have three subcases: First σ2 = 2, second σ2 = 1 and σ1 = 1,
and third σ1 = 2.

In the case σ2= 2, the tensor fields C1,C2 in the right-hand side of (2-127) will
be in the two forms, respectively,

(2-139) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2l

⊗S∗∇(t−1)
y1...yt

Ri ′iγ+3iγ+4
l
⊗∇

i φ̃1⊗∇
i ′ φ̃2⊗∇

v1φ3⊗ · · ·⊗∇
ytφu

)
,

or

(2-140) pcontr(∇[pω1⊗∇
q]ω2⊗ S∗∇

(ν)
qv2...vx i1...iγ Ri iγ+1iγ+2 p

⊗S∗∇(t−1)
y1...yt

Ri ′iγ+3iγ+4q ⊗∇
i φ̃1⊗∇

i ′ φ̃2⊗∇
v1φ3⊗ · · ·⊗∇

ytφu).

In the case σ1 = 2, the tensor fields C1,C2 will be the forms, respectively,

(2-141) pcontr
(
∇[i∗ω1⊗∇

q]
⊗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
qy1...yt

Ri
iγ+3iγ+4

l

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

or

(2-142) pcontr
(
∇[pω1⊗∇

q]ω2⊗∇
(m1)
v1...vx i1...iγ Ri iγ+1iγ+2 p⊗∇

(t−1)
y1...yt

Ri
iγ+3iγ+4q

⊗∇
v1φ1⊗ · · ·⊗∇

ytφu
)
,

if at least one of the two factors ∇(m)Rijkl contracts against a factor ∇φh , otherwise
we can prove (2-136) with no tensor fields C1,C2 on the right-hand side.

In the case σ1= 1, σ2= 1, the tensor fields C1,C2 must be in the forms, respec-
tively,

(2-143) pcontr
(
∇[i∗ω1⊗∇

q]ω2⊗ S∗∇
(ν)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rqiγ+3iγ+4
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu

)
,

or

(2-144) pcontr(∇[pω1⊗∇
q]ω2⊗ S∗∇

(m1)
v1...vx i1...iγ Ri iγ+1iγ+2l ⊗∇

(t−1)
y1...yt

Rpqiγ+3
l

⊗∇
i φ̃1⊗∇

v1φ2⊗ · · ·⊗∇
ytφu).
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We then derive that (Const)1 = (Const)2 = 0 by picking out the sublinear
combination in (2-136) that consists of complete contractions with two factors
∇Y,∇ω2 — each factor differentiated only once. �

3. The proof of Proposition 1.1 in the special cases

3A. The direct proof of Proposition 1.1 (in Case II) in the special cases. We now
prove Proposition 1.1 directly in the special subcases of Case II. We recall that the
settings of the special subcases of Proposition 1.1 in Case II are as follows: In
Subcase IIA for each µ-tensor field (in (1-7)) of maximal refined double character,
C l,i1...iµ

g there is a unique factor in the form T = ∇(m)Rijkl for which two internal
indices are free, and each derivative index is either free or contracting against a
factor ∇φh . For Subcase IIB there is a unique factor in the form T = ∇(m)Rijkl

for which one internal index is free, and each derivative index is either free or
contracting against a factor ∇φh . In both Subcases IIA, IIB there is at least one
free derivative index in the factor T .

Moreover, in both Subcases IIA and IIB, all other factors in one of the forms
∇
(m)Rijkl, S∗∇(ν)Rijkl, ∇(p)�h in C l,i1...iµ

g are either in the form S∗Rijkl or ∇(2)�h ,
or they are in the form ∇(m)Rijkl, where all the m derivative indices contract against
factors ∇φh .72

In order to prove Proposition 1.1 directly in the special subcases of Subcases IIA,
IIB we will rely on a new lemma. It deals with two different settings, which we
will label Setting A and Setting B below.

In Setting A, we let∑
l∈L

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl contain-
ing α≥ 2 free indices, distributed according to the pattern ∇(m)(free)...(free)R(free) j (free)l ,
and all other factors being in one of the forms Rijkl, S∗Rijkl, ∇(2)�h . (In particular
they have no removable indices.)

In Setting B we let∑
l∈L

alC l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

stand for a linear combination of µ-tensor fields with one factor ∇(m)Rijkl contain-
ing α≥ 2 free indices, distributed according to the pattern ∇(m)(free)...(free)R(free) j (free)l ,
and all but one of the other factors being in one of the forms Rijkl, S∗Rijkl, ∇(2)�h ;

72For the rest of this subsection, we will slightly abuse notation and not write out the derivative
indices that contract against factors ∇φh — we will thus refer to factors Rijkl, setting m = 0.
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one of the other factors (which we label T ′) will be in the form ∇Rijkl, S∗∇Rijkl,
∇
(3)�h . We will call this other factor “the factor with the extra derivative”. More-

over, in Setting B we impose the additional restriction that if both the indices j , l

in the factor ∇(m)(free)...(free)R(free) j (free)l contract against the same other factor T ′, then
either T ′ is not the factor with the extra derivative, or if it is, then T ′ is in the form
∇s Rabcd , and furthermore the indices j , l contract against the indices b, c and we
assume that the indices s, a, c are symmetrized over.73

Lemma 3.1. Let
∑

l∈L alC l,i1...iµ
g be a linear combination of µ-tensor fields as

described above. We assume the following special case of (1-7),

(3-1)
∑

l∈L∪L ′

al X divi1 . . . X diviµ C l,i1...iµ
g (�1, . . . , �p, φ1, . . . , φu)

+

∑
h∈H

ah X divi1 . . . X diviβ Ch,i1...iβ
g (�1, . . . , �p, φ1, . . . , φu)

=

∑
j∈J

a j C j
g (�1, . . . , �p, φ1, . . . , φu),

holds; here, in both Cases A and B the terms indexed in L will be as described
above; the µ-tensor fields indexed in L ′ will have fewer than α free indices in any
given factor of the form ∇(m)Rijkl. The tensor fields indexed in H each have rank
> µ and also each of them has fewer than α free indices in any given factor of the
form ∇(m)Rijkl. Finally, the terms indexed in J are simply subsequent to Eκsimp.

We claim that

(3-2)
∑
l∈L

alC l,i1...iµ
g ∇i1υ . . .∇iµυ = 0.

We will prove this lemma shortly. Let us now prove that the above lemma
directly implies Proposition 1.1 in the special Subcases IIA (directly) and IIB (after
some manipulation).

Lemma 3.1 implies Proposition 1.1 in the special subcases of Case II. We first
start with Subcase IIA: Consider the sublinear combination of µ-tensor fields of
maximal refined double character in (1-7). Denote their index set by LMax ⊂ L .
Recall that since we are considering the subcase where (1-7) falls under the special
case of Proposition 1.1 in Case IIA, it follows that for each C l,i1...iµ

g there is a
unique factor in the form ∇(m)Rijkl for which two internal indices are free, and
each derivative index is either free or contracting against a factor ∇φh ; denote by
M + 2 the number of free indices in that factor.74

73To put it in other words, in that case the two factors T , T ′ contract according to the pattern
∇
(m)
(free)...(free)R(free) j (free)l∇(s Ra

jk
d), where the indices s , a, d are symmetrized over.

74So we set α = M + 2.
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By weight considerations (since we are in a special subcase of Proposition 1.1
in Case IIA), any tensor field of rank > µ in (1-7) must have strictly fewer than
M + 2 free indices in any given factor ∇(m)Rijkl. Therefore in Subcase IA, (1-7)
is of the form (3-1), with LMax ⊂ L . Therefore, we apply Lemma 3.1 to (1-7)
and pick out the sublinear combination of terms with a refined double charac-
ter Doub( EL z), z ∈ Z ′Max,75 we thus obtain a new true equation, since (3-2) holds
formally, and the double character is invariant under the formal permutations of
indices that make (3-2) formally zero. This proves our claim in Subcase IIA.

Now we deal with Subcase IIB: We consider the µ-tensor fields of maximal
refined double character in (1-7). By definition (since we now fall under a special
case), they will each have a factor in the form ∇(m)(free)...(free)R(free) jkl , with a total of
M + 1 > 1 free indices.76 Each of the other factors will be in the form Rijkl or be
simple factors in the form S∗Rijkl, or in the form ∇(2)�h .

We denote by L ⊂ L the index set of µ-tensor fields with M+1 free indices in a
factor ∇(m)Rijkl. It follows by weight considerations that the factor in question will
be unique for each C l,i1...iµ

g , l∈ L . We then start out with some explicit manipulation
of the terms indexed in L:

We will prove that there exists a linear combination of (µ+1)-tensor fields,∑
h∈H ahCh,i1...iµ+1

g , as allowed in the statement of Proposition 1.1, so that

(3-3)
∑
l∈L

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
h∈H

ah X diviµ+1 Ch,i1...iµ+1
g ∇i1υ . . .∇iµυ

+

∑
l∈Lnew

alC l,i1...iµ
g ∇i1υ . . .∇iµυ

∑
j∈J

a j C
l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the µ-tensor fields indexed in Lnew have a factor T =∇(M−1)
(free)...(free)R(free) j (free)l ,

and one other factor T ′ has an extra derivative (meaning that T ′ is either in the
form ∇Rijkl or S∗∇Rijkl, or ∇(3)�h). Moreover if both indices j , l in T contract
against indices j , l in the same factor T ′′ and at least one of j , l is removable, then
T ′ 6= T ′′. Clearly, (3-3) in conjunction with Lemma 3.1 implies Proposition 1.1 in
the “special cases” of Case II. So, matters are reduced to showing (3-3) (and then
deriving Lemma 3.1).

Proof of (3-3). Apply the second Bianchi identity to the factor T to move one of
the derivative free indices into the position k, l in the factor∇(M−1)

(free)...(free)R(free) j (free)l .
Thus, we derive that modulo terms of length ≥ σ + u+ 1,

C l,i1...iµ
g =−C l,1,i1...,iµ

g +C l,2,i1...,iµ
g ,

75Recall that ELz , z ∈ Z ′Max, is the collection of maximal refined double characters that
Proposition 1.1 deals with.

76So, we set α = M + 1.
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where the partial contractions C l,1,i1...iµ
g and C l,2,i1...iµ

g have the factor T replaced
by a factor in the form

∇
(m)
k(free)...(free)R(free) j (free)l and ∇

(m)
l(free)...(free)R(free) jk(free),

respectively. We then erase the indices k, l in these two factors (thus creating new
tensor fields C l,1,i1...,iµiµ+1

g and C l,2,i1...,iµiµ+1
g ) by creating a free index iµ+1 , and

subtract the X diviµ+1[. . . ] of the corresponding (µ+1)-tensor field. We then derive

(3-4) C l,1,i1...,iµ
g = X diviµ+1 C l,1,i1...iµ+1

g +

∑
l∈Lnew

C l,i1...iµ
g ,

where all the fields indexed in Lnew satisfy the required property of Lemma 3.1,
except for that one could have both indices j , l in the factor ∇(M−1)

(free)...(free)R(free) j (free)l

contracting against indices j , l in a factor T ′ which has an additional derivative
index. If C l,i1...iµ

g , l ∈ Lnew, is not in the form allowed in the claim of Lemma 3.1,
then (after possibly applying the second Bianchi identity and possibly introducing
simply subsequent complete contractions) we may arrange that one of the indices
j , l is a derivative index.

In that case we construct another (µ+1)-tensor field by erasing the derivative
index j or l and making the index j or l in a free index iµ+1 . Then, subtracting the
corresponding X diviµ+1 of this new (µ+1)-tensor field, we derive our claim. �

Therefore, matters are reduced to proving Lemma 3.1.

Proof of Lemma 3.1. Let us start with some notational conventions.
Recall the first variation law of the curvature tensor under variations by a sym-

metric 2-tensor by vi j : For any complete or partial contraction T (gi j ) (which is a
function of the metric gi j ), we define

Image1
vi j
=

d
dt

∣∣∣
t=0

[
T (gi j + tvi j )

]
.

(We write Image1
vi j
[. . . ] or Image1

vab
[. . . ] below to stress that we are varying by a

2-tensor, rather than just by a scalar.)
We consider the equation Image1

vi j
[Lg]=0 (which corresponds to the first metric

variation of our lemma hypothesis (that is, of (1-7)). This equation holds modulo
complete contractions with at least σ + u+ 1 factors.

Thus, we derive a new local equation,

(3-5)
∑
l∈Lµ

al X divi1 . . . X diviµ Image1
vab
[C l,i1...iµ

g ]

+

∑
l∈L\Lµ

al X divi1 . . . X divia Image1
vab
[C l,i1...ia

g ] =

∑
j∈J

a j Image1
vab
[C j

g ],

which holds modulo terms of length ≥ σ + u+ 1.
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Now, we wish to pass from the local equation above to an integral equation, and
then to apply the silly divergence formula from [A 2009] to that integral equation
(thus deriving a new local equation).

In order to do this, we start by introducing some more notation: Let us write out

Image1
vab
[C l,i1...iµ

g ] =

∑
t∈T l

atC t,i1...ia
g ,

where each C t,i1...ia
g is in the form

(3-6) pcontr
(
∇
(A+2)
r1...rA+2

vab⊗∇
(m1)Rijkl⊗ · · ·⊗∇

(mσ−1)R

⊗∇
(b1)�1⊗ · · ·⊗∇

(bp)�p⊗∇φ1⊗ · · ·⊗∇φu
)
.

For our next technical tool we introduce some notation: For each tensor field
C l,i1...ia

g in the form above, we denote by C l
g the complete contraction that arises by

hitting each factor Ti (i = 1, 2, 3) by m derivative indices ∇u1...um , where u1, . . . , um

are the free indices that belong to Ti in C l,i1...ia
g (thus we obtain a factor with m

internal contraction, each involving a derivative index). Notice there is a one-to-
one correspondence between the tensor fields and the complete contractions we are
constructing. We can then easily observe that there are two linear combinations∑

r∈R1

ar Cr
g(�1, . . . �p, φ1, . . . , φu),∑

r∈R2

ar Cr
g(�1, . . . �p, φ1, . . . , φu),

where each Cr
g, r ∈ R1 has at least σ + u + 1 factors, while each Cr

g, r ∈ R2 has
σ + u factors but at least one factor ∇(p)φh 6= 1φh with p ≥ 2, so that for any
compact orientable (M, g),

(3-7)
∫

M

∑
l∈L

al

∑
t∈T l

atC t,∗
g (vab)+

∑
r∈R1

ar Cr
g(vab)+

∑
r∈R2

ar Cr
g(vab) dVg = 0

(denote the integrand of the above by Zg(vab)). Here again each C j
g has σ + u

factors and all factors ∇φh have only one derivative but its simple character is
subsequent to Eκ . We call this technique (of going from the local equation (3-5) to
the integral equation (3-7)) the “‘inverse integration by parts”.

Now, we derive a “silly divergence formula” from the above by performing
integrations by parts with respect to the factor ∇(B)vab (until we are left with a
factor vab — without derivatives). This produces a new local equation which we
denote by silly[Zg(vab)] = 0. We will be using this equation in our derivation of
Lemma 3.1.
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Now, for each C l,i1...iµ
g , l ∈ L , we consider the factor

T =∇(M)(free)...(free)R(free) j (free)l

with the M+2 free indices. We define T j to be the factor in C l,i1...iµ
g that contracts

against the index j in T and by T l to be the factor in C l,i1...iµ
g that contracts against

the index l in T . We define Lsame ⊂ L to be the index set of tensor fields for which
T j
= T l ; we define Lnot.same ⊂ L to be the index set of tensor fields for which

T j
6= T l . We will then prove (3-2) separately for the two sublinear combinations

indexed in Lsame, Lnot.same.

Proof of (3-2) for the index set Lsame. We first prove our claim for σ > 3 and then
note how to prove it when σ = 3.

Consider silly[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0. Pick out the sublinear
combination silly+[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0 with µ−M−2 internal
contractions, and with the indices in the factor vab contracting against a factor T ′

which either has no extra derivative indices, or if it does, then the contraction is
according to the pattern vab

⊗∇s Rajbl ; we also require that the two factors T ′′,
T ′′′ with an extra M + 2 extra derivatives each. This sublinear combination must
vanish separately, hence we derive

(3-8) silly+[Zg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0.

We also observe that this sublinear combination can only arise (in the process of
passing from the equation Lg = 0 to deriving silly+[Zg(vab)] = 0) by replacing
the factor ∇(M)(free)...(free)R(free) j (free)l by ∇(M)(free)...(free)v jl and then (in the inverse inte-
gration by parts) replacing all µ free indices by internal contractions,77 and finally
integrating by parts the M + 2 pairs of derivative indices (∇a,∇a) and forcing all
upper indices hit a factor T ′′ 6= T ′ and the lower indices to hit a factor T ′′′ 6= T ′,
T ′′′ 6= T ′′.78

Thus, we can prove our claim by starting from (3-8) and applying Subυ µ−M−2
times,79 just applying the eraser to the extra M+2 pairs of contracting derivatives,80

and then replacing the factor vab by ∇(M)r1...rM Ria jb∇
r1υ . . .∇rMυ∇aυ∇bυ. Finally

we just divide by the combinatorial constant
(
σ−3

2

)
.

Let us now consider the case σ = 3: In this case the terms of maximal refined
double character can only arise in Subcase IIA,81 and can only be in one of the

77Thus the factor ∇(M)(free)...(free)v jl gets replaced by 1M+2vi j .
78The fact that σ > 3 ensures the existence of two such factors.
79See the Appendix in [A 2012] for this operation, and just set ω = υ.
80This can be done by repeating the proof of the “Eraser” lemma in the Appendix in [A 2012].
81This follows by the symmetry of the indices s , a, d in any factor ∇s Rabcd as discussed above.
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forms
∇
(M)
(free)...(free)R(free) j (free)l ⊗ Rijkl

⊗∇
(2)
ik �1,

∇
(M)
(free)...(free)R(free) j (free)l ⊗ Rijkl

⊗ R(free)i(free)k .

Thus, in that case we define silly+[Zg(vab)] to stand for the terms

v jl ⊗∇
(M+2)
t1...tM+2

Rijkl
⊗∇

(M+4)
t1...tM+4ik�1,

v jl ⊗∇
(M+2)
t1...tM+2

Rijkl(∇(M+2))t1...tM+2 ⊗ R(free)i(free)k,

respectively, and then repeat the argument above. �

Proof of (3-2) for the index set Lnot.same. We prove our claim in steps: We first
denote by L∗∗not.same ⊂ Lnot.same the index set of tensor fields in Lnot.same for which
both indices j , l in the factor T = ∇(M)(free)...(free)R(free) j (free)l contract against special
indices in factors T j , T l of the form S∗Rijkl. We will first prove that

(3-9)
∑

l∈L∗∗not.same

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
l∈L ′

alC l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the terms in the right-hand side have all the features of the terms in Lnot.same,
but in addition at most one of the indices in the factor T =∇(M)(free)...(free)R(free) j (free)l

contract against a special index in a factor of the form S∗Rijkl. Thus, if we can
prove (3-9), we are reduced to proving our claim under the additional assumption
that L∗∗not.same =∅.

For our next claim, we denote by L∗not.same ⊂ Lnot.same the index set of tensor
fields in Lnot.same for which one of the indices j , l in the factor

T =∇(M)(free)...(free)R(free) j (free)l

contracts against a special index in factors T j , T l of the form S∗Rijkl.
We will then prove that

(3-10)
∑

l∈L∗not.same

alC l,i1...iµ
g ∇i1υ . . .∇iµυ =

∑
l∈L ′′

alC l,i1...iµ
g ∇i1υ . . .∇iµυ.

Here the terms in the right-hand side have all the features of the terms in Lnot.same,
but in addition none of the indices in the factor T =∇(M)(free)...(free)R(free) j (free)l contract
against a special index in a factors of the form S∗Rijkl. Thus, if we can prove
(3-9), we are reduced to proving our claim under the further assumption that for
each C l,i1...iµ

g , l ∈ L , the two indices j , l in the factor T = ∇(M)(free)...(free)R(free) j (free)l

contract against two different factors and none of the indices j , l are special indices
in a factor of the form S∗Rijkl.
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In our third step, we prove (3-2) under this additional assumption. We will
indicate in the end how this proof can be easily modified to derive the first two
steps.

For each l ∈ Lnot.same, let us denote by link(l) the number of particular con-
tractions between the factors T j , T l in the tensor fields C l,i1...iµ

g . (Note that by
weight considerations, 0 ≤ link(l) ≤ 3.) Let B be the maximum value of link(l),
l ∈ Lnot.same, and denote by L B

not.same ⊂ Lnot.same the corresponding index set. We
will then prove our claim for the tensor fields indexed in L B

not.same. By repeating
this step at most four times, we will derive our third claim.

Consider silly[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0. Pick out the sublinear
combination silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0 with µ−M−2 internal
contractions, and with extra M+2 derivatives on the factors T j , T l against which
the two indices of the factor vab contract, and with M+2+B particular contractions
between the factors T j , T l . This sublinear combination must vanish separately,

silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] = 0.

Moreover, we observe by following the “inverse integration by parts” and the silly
divergence formula obtained from

∫
Mn Zg(vab) dVg = 0, that the left-hand side of

the above can be described as follows:
For each C l,i1...iµ

g , l ∈ L B
not.same, we denote by C̃ l

g(vab) the complete contraction
that arises by replacing the factor T = ∇(M)(free)...(free)R(free) j (free)l by ∇(M+2)

(free)...(free)v jl ,
and then replacing each free index that does not belong to the factor T by an internal
contraction. We then denote by Ĉ l

g(vab) the complete contraction that arises from
C̃ l

g(vab) by hitting the factor T j (against which the index j in v jl contracts) by
(M + 2) derivative indices ∇t1, . . . ,∇tM+2 and hitting the factor T l (against which
the index l in v jl contracts) by derivatives ∇ t1, . . . ,∇ tM+2 .82 It follows that

(0=) silly∗[Lg(�1, . . . , �p, φ1, . . . , φu, vab)] =
∑

L B
not.same

al2M+1
[Ĉ l

g(vab)].

Now, to derive our claim, we introduce a formal operation Op[. . . ] which acts on
the terms above by applying Subυ to each of the µ−M−2 internal contractions,83

erasing M+2 particular contractions between the factors T j , T l and then replacing
the factor v jl by∇(m)r1...rM Rijkl∇

r1υ . . .∇rMυ∇ iυ∇kυ. This operation produces a new
true equation; after we divide this new true equation by 2M+1, we derive our claim.

�

Note on the derivation of (3-9), (3-10). The equations can be derived by a straight-
forward modification of the ideas above: The only extra feature we add is that in

82These derivatives contract against the indices ∇t1 , . . . ,∇tM+2 that have hit T j .
83See the Appendix of [A 2012] for the definition of this operation.
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the silly divergence formula we must pick out the terms for which (both/one of the)
indices j , l in v jl contract against a special index in a factor S∗∇(M+2)Rabcd∇

aφ̃h .
This linear combination will vanish, modulo terms where one/none of the indices
j , l in v jl contract against a special index in the factor S∗Rijkl: This follows by
the same argument that is used in [A 2010] to derive that Lemma 3.1 in [A 2010]
implies Proposition 1.1 in Case I: We first replace the factor v jl by an expression
y( j yl). We then just replace both/one of the expressions ∇i φ̃h, y j by gi j and apply
Ricto� twice/once.84 The only terms that survive this true equation are the ones in-
dexed in Lnot.same, for which the expression(s) S∗∇(ν)r1...rν Rijkl∇

i φ̃h∇
k y are replaced

by ∇(ν+2)
r1...rν jlY f . We then proceed as above, deriving that the sublinear combination

of terms indexed in Lnot.same must vanish, after we replace two/one expressions
S∗∇(ν)r1...rν Rijkl∇

i φ̃h∇
k y by ∇(ν+2)

r1...rν jlY f . Then, repeating the permutations applied to
any factors ∇(ν+2)

r1...rν jlY f , to S∗∇(ν)r1...rν Rijkl∇
i φ̃h∇

k y we derive our claim.

3B. The remaining cases of Proposition 1.1 in Case III. We recall that there are
remaining cases only when σ = 3. In that case we have the remaining cases when
p = 3 and n− 2u− 2µ≤ 2, or when p = 2, σ2 = 1 and n = 2u+ 2µ.

The case p = 3. Let us start with the subcase n − 2u − 2µ = 0. In this case, all
tensor fields in (1-7) will be in the form

(3-11) pcontr
(
∇
(A)
i1...ia j1... jb�1⊗∇

(B)
ia+1...ia+a′ jb+1... jb+b′

�2

⊗∇
(C)
ia+a′+1...ia+a′+a′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

where we make the following conventions: Each of the indices i f is free; also, each
of the indices j f contracts against some factor ∇φh , and also A, B,C ≥ 2.

Thus, we observe that in this subcase µ is also the maximum rank among the
tensor fields appearing in (1-7). Now, assume that the µ-tensor fields in (1-7) of
maximal refined double character have a = α, a′ = α′, a′′ = α′′. With no loss
of generality (only up to renaming the factors �1, �2, �3, φ1, . . . , φu) we may
assume that α≥α′≥α′′ and that only the functions∇φ1, . . . ,∇φu1 contract against
∇
(A)�1 in Eκsimp. We will then show that the coefficient aα,α′,α′′ of this tensor field

must be zero. This will prove Proposition 1.1 in this subcase.
We prove that aα,α′,α′′ = 0 by considering the global equation

∫
Zg dVg = 0 and

considering the silly divergence formula silly[Zg]=0. We then consider the sublin-
ear combination silly+[Zg] consisting of terms with α′, α′′ internal contractions in
the factors ∇(D)�2,∇

(E)�3, with α particular contractions between those factors
and with all factors ∇φh that contracted against ∇(A)�1 in Eκsimp being replaced
by 1φh , while all factors ∇φh that contracted against ∇(B)�2,∇

(C)�3 still do so.

84Recall that this operation has been defined in the Appendix in [A 2012] and produces a true
equation.
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We easily observe that silly+[Zg] = 0, and furthermore silly+[Zg] consists of the
complete contraction

(3-12) contr
(
�1⊗∇

f1... fα
jb+1... jb+b′

1α
′

�2⊗∇ f1... fα jb+b′+1... jb+b′+b′′
1α

′′

�3

⊗1φ1 . . .∇
jxb+b′+b′′ φu

)
times the constant (−1)u12αaα,α′,α′′ . Thus, we derive that aα,α′,α′′ = 0.

The second subcase. We now consider the setting where σ = p= 3, n−2u−2µ=
2. In this setting, the maximum rank of the tensor fields appearing in (1-7) is
µ+1. In this case, all (µ+1)-tensor fields in (1-7) will be in the form (3-11) (with
α + α′ + α′′ = µ+ 1, while all the µ-tensor fields will be in the form (3-11) but
with α+α′+α′′ = µ, and with one particular contraction c,

c between two of the
factors ∇(A)�1,∇

(B)�2,∇
(C)�3.

Now, if both the indices c,
c described above are removable, we can explicitly

express C l,i1...iµ
g as an X div of an acceptable (µ+1)-tensor field. Therefore, we

are reduced to showing our claim in this setting where for each µ-tensor field in
(1-7) at least one of the indices c,

c is not removable. Now, let z ∈ ZMax stand
for one of the index sets for which the sublinear combination

∑
l∈L z alC l,i1...iµ

g in
(1-7) indexes tensor fields of maximal refined double character. We assume with
no loss of generality that for each l ∈ L z the factors ∇(A)�1, ∇(B)�2, ∇(C)�3 have
α ≥ α′ ≥ α′′ free indices respectively.85 Therefore, the tensor fields indexed in L z

can be in one of the two forms

(3-13) pcontr
(
∇

c
∇
(A)
i1...iα j1... jb�1⊗∇

(B)
iα+1...iα+α′ jb+1... jb+b′

�2

⊗∇
(2)
ciα+α′+1...iα+α′+α′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

or

(3-14) pcontr
(
∇
(A)
i1...iα j1... jb�1⊗∇

c
∇
(B)
iα+1...iα+α′ jb+1... jb+b′

�2

⊗∇
(2)
ciα+α′+1...iα+α′+α′′ jb+b′+1... jb+b′+b′′

�3⊗∇
jx1φ1 · · · ⊗∇

x j+ j ′+ j ′′φu
)
,

where A, B ≥ 3.
Now, by “manually subtracting” X divs from these µ-tensor fields, we can as-

sume without loss of generality that the tensor fields indexed in our chosen L z are
in the form (3-14).

With that extra assumption, we can show that the coefficient of the tensor field
(3-14) is zero. We see this by considering the (global) equation

∫
M Zg dVg = 0

and using the silly divergence formula silly[Zg] = 0 (which arises by integrations
by parts with respect to the factor ∇(A)�1). Picking out the sublinear combination

85Recall that by our hypothesis α′ ≥ 2.
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silly+[Zg] which consists of the complete contraction

(3-15) contr
(
�1⊗∇

c f1... fα
jb+1... jb+b′

1α
′

�2⊗∇c f1... fα jb+b′+1... jb+b′+b′′
1α

′′

�3

⊗1φ1 . . .∇
jxb+b′+b′′ φu

)
(notice that silly+[Zg] = 0), we derive that the coefficient of (3-14) must vanish.
Thus, we have shown our claim in this second subcase also. �

The case p= 2, σ2= 1. Recall that in this case we fall under the special case when
n = 2u + 2µ. In this setting, we will have that in each index set L z, z ∈ Z ′Max,
(see the statement of Lemma 3.5 in [A 2010]) there is a unique µ-tensor field of
maximal refined double character in (1-7), where the two indices k, l in the factor
S∗∇(ν)Rijkl will be contracting against one of the factors ∇(A)�1,∇

(B)�2 (without
loss of generality we may assume that they are contracting against different factors).
But now, recall that since we are considering Case A of Lemma 3.5 in [A 2010],
one of the factors ∇(A)�1,∇

(B)�2 will have at least two free indices. Hence, in at
least one of the factors ∇(A)�1,∇

(B)�2, the index k, l is removable (meaning that
it can be erased, and we will be left with an acceptable tensor field). We denote by
C l,i1...iµiµ+1

g the tensor field that arises from C l,i1...iµ
g by erasing the aforementioned

k, l and making k or l into a free index, we then observe that

(3-16) C l,i1...iµ
g − X diviµ+1 C l,i1...iµiµ+1

g = 0

(modulo complete contractions of length ≥ σ + u + 1). This completes the proof
of our claim. �
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