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ON DEFORMATION QUANTIZATIONS OF
HYPERTORIC VARIETIES

GWYN BELLAMY AND TOSHIRO KUWABARA

Based on a construction by Kashiwara and Rouquier, we present an ana-
logue of the Beilinson–Bernstein localization theorem for hypertoric vari-
eties. In this case, sheaves of differential operators are replaced by sheaves
of W-algebras. As a special case, our result gives a localization theorem for
rational Cherednik algebras associated to cyclic groups.

1. Introduction

Kontsevich [2001] and Polesello and Schapira [2004] have shown that one can
construct a stack of “W-algebroids” (or deformation-quantization algebroids) on
any symplectic manifold. These stacks of W-algebroids provide a quantization of
the sheaf of holomorphic functions on the manifold. In certain cases, these stacks of
W-algebroids are the algebroids associated to a sheaf of noncommutative algebras
called W-algebras. Locally this is always the case. When the symplectic manifold
in question is the Hamiltonian reduction of a space equipped with a genuine sheaf
of W-algebras, Kashiwara and Rouquier [2008] have shown that one can define a
family of sheaves of W-algebras on the Hamiltonian reduction coming from the
sheaf upstairs. This provides a large class of examples of sheaves of W-algebras on
nontrivial symplectic manifolds. In this paper we study W-algebras on the simplest
class of Hamiltonian reductions, those coming from the action of a torus T on a
symplectic vector space V . These spaces Y (A, δ), where A is a matrix encoding
the action of T on V and δ ∈ X(T ) is a character of T , are called hypertoric
varieties. They were originally studied as hyperkähler manifolds by Bielawski and
Dancer [2000]. Examples of hypertoric varieties include the cotangent space of
projective n-space and resolutions of cyclic Kleinian singularities. More generally,
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the cotangent space of any smooth toric variety can be realized as a dense, open
subvariety of the corresponding hypertoric variety.

One can also associate to the data of a reductive group G acting on a symplectic
vector space a certain family of noncommutative algebras Uχ , where χ ∈ X(g) is
a character of g = Lie(G), called quantum Hamiltonian reductions. In the case
G = T is a torus, these algebras have been extensively studied by Musson and Van
den Bergh [1998]. The main goal of this paper is to prove a localization theorem,
analogous to the celebrated Beilinson–Bernstein localization theorem [1981], giving
an equivalence between the category of finitely generated modules for the quantum
Hamiltonian reduction and a certain category of modules for a W-algebra. When
the character δ is chosen to lie in the interior C of a G.I.T. chamber in X(T ), the
hypertoric variety Y (A, δ) is a symplectic manifold. Then each character χ ∈ X(t)

gives a sheaf of W-algebras Aχ on Y (A, δ). Associated to Aχ is a category of “good”
Aχ -modules, Modgood

F (Aχ ) and a subcategory Modgood
F (Aχ ) consisting (roughly)

of those modules generated by their global section (the reader is referred to section
2 for the precise definition of these categories). Then we have natural localization
and global section functors

Loc : Uχ -mod−→Modgood
F (Aχ ), Loc(M)=Aχ ⊗Uχ M,

Sec :Modgood
F (Aχ )−→ Uχ -mod, Sec(M)= HomModgood

F (Aχ )
(Aχ ,M).

Our main result can be stated as follows.

Theorem 1.1. Let χ ∈ CQ.

(i) The functor Loc defines an equivalence of categories Uχ -mod−→∼ Modgood
F (Aχ )

with quasiinverse Sec.

(ii) There exists some θ ∈C∩X(T ) such that the functor Loc defines an equivalence
of categories Uχ+θ -mod−→∼ Modgood

F (Aχ+θ ) with quasiinverse Sec.

The theorem shows that localization always gives an equivalence of categories,
provided one is sufficiently far away from the G.I.T. walls.

Corollary 1.2. Let χ ∈ CQ. If the global dimension of Uχ is finite then the functor
Loc defines an equivalence of categories Uχ -mod−→∼ Modgood

F (Aχ ) with quasiin-
verse Sec.

A particular class of examples of hypertoric varieties are the minimal resolutions
(C2/Zm)

∼ of the Kleinian singularities of type A. Under mild restrictions on the pa-
rameters, the corresponding quantum Hamiltonian reductions are Morita equivalent
to the rational Cherednik algebras Hh associated to cyclic groups. Then a corollary
of our main result is a localization theorem for these rational Cherednik algebras.



ON DEFORMATION QUANTIZATIONS OF HYPERTORIC VARIETIES 91

Corollary 1.3. For h not lying on a G.I.T. wall, the functor Loc(e · ( · )) defines an
equivalence of categories

Hh-mod−→∼ Modgood
F (Ah)

with quasiinverse Hhe⊗eHhe Sec( · ).

We summarize the content of each section. In Section 2 we introduce, following
Kashiwara and Rouquier, W-algebras on symplectic manifolds in the equivariant
setting. In Section 3 we give a criterion for the W-affinity of a class of W-algebras on
those symplectic manifolds that are obtained by Hamiltonian reduction of a vector
space acted upon by a reductive group. The W-algebras on hypertoric varieties that
we will consider later are a special case of this more general setup. The main result
of this section is Theorem 3.3.

Hypertoric varieties are introduced in Section 4 and we show that they possess the
correct geometric properties that are required to apply the results of Section 3. Using
the results of Musson and Van den Bergh, we prove our main results, Theorem 5.2
and Corollary 5.3. In the final section we consider the special case where the
hypertoric variety is the resolution of a Kleinian singularity of type A and the global
sections of the sheaf of W-algebras on this resolution can be identified with the
spherical subalgebra of the rational Cherednik algebra associated to a cyclic group.

Convention. Throughout, a variety will always mean an integral, separated scheme
of finite type over C. A nonreduced space will be referred to as a scheme, again
assumed to be over C.

2. W-algebras

2A. In this section we recall the definition of W-algebras as given in [Kashiwara and
Rouquier 2008]. We state results about the existence and “affinity” of W-algebras.
Let X be a complex analytic manifold and let OX denote the sheaf of regular,
holomorphic functions on X . Denote by DX the sheaf of differential operators on
X with holomorphic coefficients. Denote by k = C((h̄)) the field of formal Laurent
series in h̄ and by k(0) the subring C[[h̄]] of formal functions on C. Consider-
ing k and k(0) as abelian groups, the corresponding sheaves of locally constant
functions on X will be denoted kX and k(0)X respectively. Given m ∈ Z, we
define WT ∗Cn (m) to be the sheaf of formal power series

∑
i≥−m h̄i ai , ai ∈ OT ∗Cn ,

on the cotangent bundle T ∗Cn of Cn . Let us fix coordinates x1, . . . , xn on Cn

and dual coordinates ξ1, . . . , ξn on (Cn)∗, identifying T ∗Cn with Cn
× (Cn)∗. Set

WT ∗Cn =
⋃

m∈Z WT ∗Cn (m). Then WT ∗Cn is a sheaf of (noncommutative) k-algebras
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on T ∗Cn . Multiplication is defined by

(1) a ◦ b =
∑
α∈Zn

≥0

h̄|α|

α!
∂αξ a · ∂αx b,

where |α|=
∑n

i=1 αi , α!=α1! · · ·αn! and ∂αξ =∂
|α|/(∂α1ξ1 · · · ∂

αnξn). There is a ring
homomorphism DCn (Cn)→WT ∗Cn (T ∗Cn) given by xi 7→ xi and ∂/∂xi 7→ h̄−1ξi .
Note that WT ∗Cn (0) is a k(0)-subalgebra. We denote the symbol map for WT ∗Cn by

σm :WT ∗Cn (m)−→WT ∗Cn (m)/WT ∗Cn (m− 1)' h̄−mOT ∗Cn .

The sheaf OT ∗Cn is a sheaf of Poisson algebras with Poisson bracket given by

{xi , x j } = {ξi , ξ j } = 0, {ξi , x j } = δi j for all i, j ∈ [1, n].

One sees from (1) that σ0(h̄−1
[a, b])= {σ0(a), σ0(b)} for all a, b ∈WT ∗Cn (0).

2B. Let us now assume that X is a complex symplectic manifold with holomorphic
2-form ωX . A map f between open subsets U ⊂ X and V ⊂ Y of the symplectic
manifolds (X, ω1) and (Y, ω2) is said to be a symplectic map if f ∗ω2 =ω1. A sym-
plectic map is always locally biholomorphic [Björk 1979, Lemma 5.5.2], therefore
by symplectic map we will actually mean a biholomorphic symplectic map. Based
on [Kontsevich 2001; Polesello and Schapira 2004], we have:

Definition 2.1. A W-algebra on X is a sheaf of k-algebras WX together with a k(0)-
subalgebra WX (0) such that for each point x ∈ X there exists an open neighborhood
U of x in X , a symplectic map f :U −→ V ⊂ T ∗Cn and a k-algebra isomorphism
r : f −1(WT ∗Cn |V )−→

∼ WX |U such that:

(i) The isomorphism r restricts to a k(0)-isomorphism

f −1(WT ∗Cn (0)|V )−→∼ WX (0)|U .

(ii) Setting WX (m)= h̄−mW(0) for all m ∈ Z, we have

σ0 :WX (0)−→WX (0)/WX (−1)' OX ,

and the following diagram commutes:

f −1(WT ∗Cn (0)|V )
r //

σ0

��

WX (0)|U

ν0

��
f −1(OT ∗Cn )

f ]
// OX
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2C. The first statement of property (ii) of Definition 2.1 is actually a consequence
of property (i). Next, Definition 2.1(ii) implies that σ0(h̄−1

[a, b])= {σ0(a), σ0(b)}
for all a, b ∈WX (0), where the Poisson bracket on OX is the one induced from the
symplectic form ω on X .

2D. Categories of W-modules. Unless explicitly stated, all modules will be left
modules. Since WX (0) is Noetherian (see [Kashiwara and Rouquier 2008, (2.2.2)]),
a WX (0)-module M is said to be coherent if it is locally finitely generated. For a
WX -module M, a WX (0)-lattice of M is a WX (0)-submodule N of M such that the
natural map W⊗W(0)N→M is an isomorphism. A W-module M is said to be good
if for every relatively compact open set U there exists a coherent WX (0)|U -lattice
for M|U . We will denote the category of left WX -modules as Mod(WX ) and the full
subcategory of good WX -modules as Modgood(WX ). It is an abelian subcategory. If
M(0) is a WX (0)-lattice of M, set M(m) := h̄−mM(0).

Lemma 2.2. Let M be a coherent WX -module, equipped with a global WX (0)-
lattice M(0). Then the filtration M(n), n ∈Z, is exhaustive, Hausdorff and complete;
that is,

(i)
⋃

n∈Z M(n)=M,

(ii)
⋂

n∈Z M(n)= 0,

(iii) lim
−∞←n

M/M(n)=M.

(Our terminology is chosen to agree with that of [Weibel 1994, §5].)

Proof. The statement (i) is true if M=WX . But, by the definition of a lattice, we
have ⋃

n∈Z

M(n)=
⋃
n∈N

WX (n)⊗WX (0) M(0)=WX ⊗WX (0) M(0)=M.

Part (ii) follows from [Kashiwara and Rouquier 2008, Lemma 2.11]. Fix some open
subset U of X and take a section ( fn)n∈Z ∈lim−∞←n(M/M(n))(U ). Then, by part
(i), there exists some integer k> n such that the image fn of f in (M/M(n))(U ) lies
in (M(k)/M(n))(U ). Now by definition fn is the image of fn−1 in the surjection

(M/M(n− 1))(U )−→ (M/M(n))(U ),

hence fn−1 ∈ (M(k)/M(n− 1))(U ) too. Thus (h̄−k fn)n∈Z is in

lim
−∞←n

(M(0)/M(n))(U ).

This implies that we have a surjective morphism

kX ⊗k(0)X lim
−∞←n

M(0)/M(n)−→ lim
−∞←n

M/M(n).
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But it follows once again from [Kashiwara and Rouquier 2008, Lemma 2.11] that

M' kX ⊗k(0)X M(0)' kX ⊗k(0)X lim
−∞←n

M(0)/M(n).

Thus M surjects onto lim
−∞←n

M/M(n). Part (ii) implies this map is also injective. �

2E. G-equivariance. Let G be a complex Lie group acting symplectically on X ,
via Tg : X −→∼ X for all g ∈ G. We assume that this action is Hamiltonian with
moment map µX : X→ g∗, where g is the Lie algebra of G.

Definition 2.3. A G-action on the W-algebra WX is a kX -algebra isomorphism
ρg :WX −→

∼ T−1
g WX for every g ∈ G such that ρg(a) depends holomorphically on

g ∈ G for each section a ∈WX and ρg1 ◦ ρg2 = ρg1g2 for all g1, g2 ∈ G.

Definition 2.4. Suppose we have fixed a G-action on WX . A quasi-G-equivariant
WX -module is a left WX -module M, together with a kX -module isomorphism

ρM
g :M−→

∼ T−1
g M

for every g ∈ G such that ρM
g (m) depends holomorphically on g ∈ G for each

section m ∈M, ρM
g ◦ρ

M
h = ρ

M
gh for all g, h ∈ G and ρM

g (a ·m)= ρg(a) ·ρM
g (m) for

all g ∈ G, a ∈WX and m ∈M.

The category of quasi-G-equivariant WX -modules will be denoted ModG(WX ).
If M and N are elements in Obj(ModG(WX )), a morphism φ ∈HomModG(WX )(M,N)

is a collection of morphisms φU :M(U )→N(U ) of WX (U )-modules, one for each
open set U ⊂ X , that satisfies the usual conditions of being a WX -homomorphism
and is such that, for each g ∈ G, the diagram

M(U )
φU //

ρM
g (U )

��

N(U )

ρN
g (U )

��
M(Tg(U ))

φTg (U )

// N(Tg(U ))

is commutative.

Definition 2.5. Let G act on the algebra WX . A map µW : g→WX (1) is said to be
a quantized moment map for the G-action if µW satisfies the following properties:

(i) [µW(A), a] = d
dt
ρexp(t A)(a)|t=0,

(ii) σ0(h̄µW(A))= A ◦µX ,

(iii) µW(Ad(g)A)= ρg(µW(A)),

for every A ∈ g, a ∈WX and g ∈ G.
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Let X(G) :=Homgp(G,C∗) be the lattice of G-characters. Note that if a ∈WX is
a θ -semiinvariant of G (that is, ρg(a)= θ(g)a for all g ∈G), where θ ∈X(G), then

(2) [µW(A), a] = dθ(A)a,

where d :X(G)→ (g∗)G is the differential sending a G-character to the correspond-
ing g-character. From now on we omit the symbol d and think of θ ∈ X(G) as a
character for both G and g. For χ ∈ (g∗)G , we set

(3) LX,χ =WX
/∑

A∈g

WX (µW(A)−χ(A)).

Note that LX,χ is a good quasi-G-equivariant WX -module, and has lattice

LX,χ (0) :=WX (0)
/∑

A∈g

WX (−1)(µW(A)−χ(A)).

We will require the following result, whose proof is based on Holland’s result [1999,
Proposition 2.4].

Proposition 2.6. Assume that the moment map µX is flat. Then, on X we have an
isomorphism of graded sheaves

gr(LX,χ )'
⊕
n∈Z

Oµ−1
X (0)h̄

−n.

Proof. The moment map µW makes WX into a right U (g)-module. Let Cχ be the
one-dimensional U (g)-module defined by the character χ so that

LX,χ =WX ⊗U (g) Cχ .

As in [Holland 1999, Proposition 2.4], we denote by B• the Chevalley–Eilenberg
resolution of Cχ . Thus, Bk =U (g)⊗

∧k
g, and the differential is given by

dk( f ⊗x1∧· · ·∧xk)=

k∑
i=1

(−1)i+1 f (xi−χ(xi ))⊗x1∧· · ·∧ x̂i∧· · ·∧xk

+

∑
1≤i< j≤k

(−1)i+ j f ⊗[xi , x j ]∧x1∧· · ·∧ x̂i∧· · ·∧ x̂ j∧· · ·∧xk .

Then B• is a complex of free U (g)-modules such that H 0(B•)=Cχ and H k(B•)=0
for k nonzero. Let C• =WX ⊗U (g) B• =WX ⊗

∧
•
g. The filtration on WX induces a

filtration FnCk=WX (n−k)⊗
∧k

g on the complex C• such that dk(FnCk)⊆ FnCk−1

(recall that µW(g)⊂WX (1)). Note that the filtration is not bounded above or below.
However, by Lemma 2.2 the filtration on C• is exhaustive, Hausdorff and complete.
We denote by Er

p,q the spectral sequence corresponding to the filtration Fn on C•.
Since the filtration is exhaustive, Hausdorff and complete, the proof of [Weibel
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1994, Theorem 5.5.10] shows that the spectral sequence E converges to H•(C)
(that the sequence is regular follows from the fact, to be shown below, that it
collapses at E1). By construction, we have an isomorphism of filtered sheaves
H 0(C)' LX,χ and hence gr(H0(C))' gr(LX,χ ). Denote by A the graded sheaf
of algebras

⊕
n∈Z OX h̄−n , where OX is in degree zero and h̄ has degree −1. The

0-th page of the spectral sequence is given by

E0
p,q =WX (p− q)⊗

∧p+q
g/WX (p− 1− q)⊗

∧p+q
g' Ap−q ⊗

∧p+q
g.

Since C[g∗] is a domain and µX is assumed to be flat, µ∗X : µ
−1
X Og∗ → OX is

an embedding and we may think of µ−1
X Og∗ as a subsheaf of OX . Let x1, . . . , xr

be a basis of g. Then [Bruns and Herzog 1993, Proposition 1.1.2] implies that
h̄−1x1, . . . , h̄−1xr form a regular sequence in A at those points where they vanish.
By Definition 2.5(ii), the symbol σ1(µW(xi )) equals h̄−1xi ∈ A. Thus the differential
on E0 is given by

dp+q( f ⊗ x1 ∧ · · · ∧ x p+q)=

p+q∑
i=1

f h̄−1xi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x p+q .

As is explained in [Holland 1999, Proposition 2.4], the only nonzero homology of
E0 is in the (p,−p) position, where we have

E1
(p,−p) =

Ap

Ap−1 ·h̄µ∗X (g)
' Oµ−1

X (0)h̄
−p.

Therefore the sequence collapses at E1 and we have

gr(LX,χ )p ' gr(H0(C))p ' Oµ−1
X (0)h̄

−p,

as required. �

2F. F-actions. Here we repeat the definition of an F-action on WX -modules as
defined in [Kashiwara and Rouquier 2008]. Let C× 3 t 7→ Tt ∈ Aut(X) denote an
action of the torus C× on X such that the symplectic 2-form is a semiinvariant of
positive weight: T ∗t ωX = tmωX for some m > 0.

Definition 2.7. An F-action with exponent m on WX is an action of the group C×

on WX as in Definition 2.3 except that C× also acts on h̄: if Ft :WX −→
∼ T−1

t WX

denotes the action of t ∈ C× then we require that Ft(h̄)= tm h̄ for all t ∈ C×.

It will be convenient to extend the F-action of C× to an action on

W[h̄1/m
] := k(h̄1/m)⊗k W

by setting Ft(h̄1/m) = t h̄1/m . The category of F-equivariant WX -modules will
be denoted ModF (WX ). As noted in [Kashiwara and Rouquier 2008, §2.3.1],
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ModF (WX ) is an abelian category. Moreover [ibid., §2.3], if there exists a relatively
compact open subset U of X such that C× ·U = X then every good, F-equivariant
WX -module admits globally a coherent WX (0)-lattice. Such an open set U will
exist in the cases we consider. The following lemma will be used later.

Lemma 2.8. Let M,N ∈ Modgood
F,G (WX ). Assume that M 'WX/I is a cyclic WX -

module, generated by some G, F-invariant element, where I is a left ideal generated
by finitely many global sections. Then

HomModgood
F,G (WX )

(M,N)= HomWX (X)(M(X),N(X))G,F .

2G. Example. Let V be an n-dimensional vector space. We fix X = T ∗V with
coordinates x1, . . . , xn, ξ1, . . . , ξn and define an action Tt of C× on X such that
the corresponding action on coordinate functions is given by Tt(xi ) = t xi and
Tt(ξi )= tξi . Then T ∗t ωX = t2ωX . We extend this to an F-action on WT ∗V by setting
Ft(h̄)= t2h̄. Let D(V ) denote the ring of algebraic differential operators on V .

Lemma 2.9. Taking F-invariants in WT ∗V (T ∗V ) gives

EndModF (WT∗V [h̄1/2
])(WT ∗V [h̄1/2

])opp
= C

[
h̄−1/2xi , h̄−1/2ξi : i ∈ [1, n]

]
= C

[
h̄−1/2xi , h̄1/2 ∂

∂xi
: i ∈ [1, n]

]
,

where the second equality comes from

D(V ) ↪→WT ∗V (T ∗V ), xi 7→ xi and ∂

∂xi
7→ h̄−1ξi .

Proof. We can identify EndModF (WT∗V [h̄1/2
])(WT ∗V [h̄1/2

])opp with the algebra of
F-invariant global sections, WT ∗V [h̄1/2

](T ∗V )F . Since T ∗V is connected, taking
a power series expansion in a sufficiently small neighborhood of 0 ∈ T ∗V defines
an embedding OT ∗V (T ∗V ) ↪→ C[[x1, . . . , xn, ξ1, . . . , ξn]]. As C×-modules, we can
identify WT ∗V [h̄1/2

]with OT ∗V ⊗̂C((h̄1/2)) and we get a C×-equivariant embedding

WT ∗V [h̄1/2
](T ∗V ) ↪→ C[[x1, . . . , xn, ξ1, . . . , ξn]] ⊗̂C((h̄1/2)),

where we denote by ⊗̂ the completed tensor product with respect to the linear
topology. Taking invariants gives the desired result. �

A trivial application of Theorem 3.3 below, with f = idCn and G = {1}, shows

ModF (WT ∗V [h̄1/2
])' C

[
h̄−1/2xi , h̄1/2 ∂

∂xi
: i ∈ [1, n]

]
-mod.

3. W-affinity

In this section we give a criterion for the W-affinity of a class of W-algebras on
those symplectic manifolds that are obtained by Hamiltonian reduction.
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3A. The geometric setup. Let V be an n-dimensional vector space over C. Its
cotangent bundle T ∗V has the structure of a complex symplectic manifold. Let G
be a connected, reductive algebraic group acting algebraically on V . This action
induces a Hamiltonian action on T ∗V and we have a moment map

µT ∗V : T ∗V −→ g∗ := (Lie G)∗

such that µT ∗V (0)= 0. We fix a character ϑ ∈ X(G). Let X be the open subset of
all ϑ-semistable points in T ∗V and denote the restriction of µT ∗V to X by µX. We
assume that

(i) the set µ−1
X (0) is nonempty,

(ii) G acts freely on µ−1
X (0),

(iii) the moment map µT ∗V is flat.

Set
Yϑ := µ−1

X (0)//G = Proj
⊕
n≥0

C[µ−1
T ∗V (0)]

nϑ

and write f : Yϑ → µ−1
T ∗V (0)//G =: Y0 for the corresponding projective morphism.

Condition (i) implies that the categorical quotient Yϑ is nonempty. Condition (ii)
implies that the morphism µX is regular at all points in µ−1

X (0) and hence Yϑ is a
nonsingular symplectic manifold. Condition (iii) will be used in Proposition 3.5.
We add to our previous assumptions:

(iv) The morphism f is birational and Y0 is a normal variety.

In the case of hypertoric varieties, it is shown in Section 4 that assumptions (i)–(iv)
hold when the matrix A is unimodular.

Lemma 3.1. Let O
alg
Yϑ and O

alg
Y0

denote the sheaves of regular functions on Yϑ and

Y0, respectively. If Yϑ , Y0, f satisfy assumption (iv) then 0(Yϑ ,O
alg
Yϑ )= 0(Y0,O

alg
Y0
).

Proof. It is well-known that the condition implies the statement of the lemma, but
we were unable to find any suitable reference, therefore we include a proof for the
reader’s convenience. For s ≥ 0, fix Rs = C[µ−1

T ∗V (0)]
sϑ and R =

⊕
s≥0 Rs so that

Yϑ = Proj R and recall that f is the canonical projective morphism from Yϑ to Y0.
By Hilbert’s Theorem (see [Kraft 1984, Zusatz 3.2]), R is finitely generated as an
R0-algebra. Let x1, . . . , xn ∈ R be homogeneous generators (of degree at least one)
of R as an R0-algebra. Then the affine open sets D+(xi )= Spec R(xi ) form an open
cover of Yϑ and

0(Yϑ ,O
alg
Yϑ )=

n⋂
i=1

R(xi ) ⊆

n⋂
i=1

Rxi ,

Let r ∈ 0(Yϑ ,O
alg
Yϑ ). Then, for each i , there exists an m such that xm

i · r ∈ R. We
choose one m sufficiently large so that xm

i · r ∈ R for all i . Since the xi generate
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R, we actually have y · r ∈ R for all y ∈ Rs and s ≥ m0 := nmd, where d is the
maximum of the degrees of x1, . . . , xn . Therefore y · r ∈ R for all y ∈

⊕
s≥m0

Rs .
Since r has degree zero,

y · r ∈
⊕
s≥m0

Rs for all y ∈
⊕
s≥m0

Rs .

Inductively, y · rq
∈
⊕

s≥m0
Rs for all q ≥ 1. Take y = xm0

1 , then rq
∈ (1/xm0

1 )R
for all q ≥ 1 and hence R[r ] ⊂ (1/xm0

1 )R. But, by Hilbert’s basis theorem, R is
Noetherian and the R-module (1/xm0

1 )R is finitely generated, hence the algebra R[r ]
is finite over R. This means r satisfies some monic polynomial ut

+r1ut−1
+· · ·+rt

with coefficients in R. However R has degree zero so without loss of generality
ri ∈ R0. Thus r is in the integral closure of R0 in the degree zero part of the field
of fractions of R. Now [Hartshorne 1977, Theorem 7.17] says that, since the map
f is projective and birational, there exists an ideal I in R0 such that Rk ' I k as
R0-modules and we have an isomorphism of graded rings R '

⊕
k≥0 I k . That is,

Yϑ is isomorphic to the blowup of Y0 along V (I ). Therefore we can identify the
degree zero part of the field of fractions of R with the field of fractions of R0. Since
R0 is assumed to be normal, r ∈ R0 as required. �

3B. The quotient morphism will be written p : µ−1
X (0)→ Yϑ . For each character

θ ∈X(G) and vector space M on which G acts, we denote by Mθ the set of elements
m ∈ M such that g ·m = θ(g)m for all g ∈G. We can define a coherent sheaf Lθ on
the quotient Yϑ by Lθ (U ) :=

[
Oµ−1

X (0)(p
−1(U ))

]θ . Since G acts freely on µ−1
X (0),

Lθ is a line bundle on Yϑ .

3C. Quantum Hamiltonian reduction. Differentiating the action of G on V pro-
duces a morphism of Lie algebras µD : g→ Vect(V ), from g into the Lie algebra
of algebraic vector fields on V :

µD(A)(r) :=
d
dt

a∗exp(t A)(r)|t=0,

where a : G × V → V is the action map and a∗ : G ×O(V )→ O(V ) the induced
action on functions. We write D(V ) for the ring of algebraic differential operators
on V . Since Vect(V ) ⊂ D(V ) we get a map µD : g→ D(V ) which extends to
an algebra morphism U (g)→ D(V ). For χ ∈ (g∗)G , θ ∈ X, we define the left
D(V )-module

LD,χ :=D(V )
/∑

A∈g

D(V )(µD(A)−χ(A)),

and the algebra and (Uχ ,Uχ+θ )-bimodule, respectively:

Uχ =
(
EndD(V )(LD,χ )

G)opp
, Uθχ = HomD(V )(LD,χ ,LD,χ+θ ⊗Cθ )

G .
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Fix χ ∈ (g∗)G and θ ∈ X. We consider the following natural homomorphisms:

U−θχ+θ ⊗C Uθχ −→ Uχ+θ , φ⊗ψ 7→ (idUχ+θ ⊗ ev) ◦ (ψ ⊗ id−θ ) ◦φ,(4)

Uθχ ⊗C U−θχ+θ −→ Uχ , φ⊗ψ 7→ (idUχ ⊗ ev) ◦ (ψ ⊗ idθ ) ◦φ,(5)

where ◦ is composition of morphisms and ev : C−θ ⊗Cθ → C is the natural map.
We write χ → χ + θ if the map (4) is surjective and similarly χ + θ → χ if the
map (5) is surjective. Note that if χ + θ � χ then, as shown in [McConnell and
Robson 2001, Corollary 3.5.4], the algebras Uχ and Uχ+θ are Morita equivalent.

3D. The sheaf of W-algebras. Denote by WX the restriction of the canonical W-
algebra WT ∗V to X. We define an action of the torus C× on T ∗V by Tt(v)= t−1v

for all v ∈ T ∗V ; X is a C×-stable open set. The algebra WX is then equipped
with an F-action of weight 2 as defined in the setup of Lemma 2.9. Define
W̃T ∗V :=WT ∗V [h̄1/2

] and write W̃X for its restriction to X. As noted in Section 2A,
we have an embedding j :D(V ) ↪→WT ∗V , xi 7→ xi and ∂/∂xi 7→ h̄−1ξi . Composing
this morphism with the mapµD :g→D(V ) gives us a mapµW= j◦µD :g→WT ∗V .
It is a quantized moment map in the sense of Definition 2.5. Then, as in (3), for
each χ ∈ (g∗)G , we have defined the W̃T ∗V -module LT ∗V,χ . Its restriction to X

is denoted Lχ . Recall that Lχ is a good quasi-G-equivariant W̃X-module. If we
let C× act trivially on g then the morphism µW is F-equivariant and hence Lχ is
equipped with an F-action. The image of 1 in Lχ will be denoted by uχ .

3E. Kashiwara and Rouquier [2008] show that one can quantize the process of
Hamiltonian reduction to get a family of sheaves of W-algebras on Yϑ beginning
from a W-algebra on T ∗V . Set

Aχ =
((

p∗EndW̃X
(Lχ )

)G)opp and Aχ,θ =
(

p∗HomW̃X
(Lχ ,Lχ+θ ⊗Cθ )

)G
,

where θ ∈ X(G) and Cθ denotes the corresponding one dimensional G-module. By
[Kashiwara and Rouquier 2008, Proposition 2.8], Aχ is a W-algebra on Yϑ and
Aχ,θ is a (Aχ ,Aχ+θ )-bimodule. Let

Aχ (0)=
((

p∗EndW̃X(0)(Lχ (0))
)G)opp

,

Aχ,θ (0)= (p∗HomW̃X(0)(Lχ (0),Lχ+θ (0)⊗Cθ ))
G,

so that Aχ,θ (0) is a Aχ (0)-lattice of Aχ,θ . We have Aχ (0)/Aχ (−1/2)'OYϑ and, as
noted in [ibid., Proposition 2.8(iii)], Aχ,θ (0)/Aχ,θ (−1/2)' L−θ , where Lθ is the
line bundle as defined above. We say that a good Aχ -module M is generated, locally
on Y0, by its global sections if for each y ∈ Y0 there exists some open neighborhood
(in the complex analytic topology) U ⊂ Y0 of y such that the natural map of left
(Aχ )| f −1(U )-modules (Aχ )| f −1(U )⊗M( f −1(U ))→M| f −1(U ) is surjective.
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Definition 3.2. We denote by Modgood
F (Aχ ) the full subcategory of Modgood

F (Aχ )

consisting of all good, F-equivariant Aχ -modules M such that:

(i) M is generated, locally on Y0, by its global sections.

(ii) For any nonzero submodule N of M in Modgood
F (Aχ ) we have

HomModgood
F (Aχ )

(Aχ ,N) 6= 0.

3F. W-affinity. We can now state the main result relating the sheaf of W-algebras
Aχ on Yϑ and the algebra of quantum Hamiltonian reduction Uχ .

Theorem 3.3. Let Aχ and Uχ be as above and choose some θ ∈ X(G) such that
Lθ is ample.

(i) There is an isomorphism of algebras 0(Yϑ ,Aχ )
F
' Uχ .

(ii) Assume that we have χ← χ + nθ for all n ∈ Z≥0. Then the functor

M 7→ HomModgood
F (Aχ )

(Aχ ,M)

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiin-
verse M 7→Aχ ⊗Uχ M.

(iii) Assume that we have χ � χ + nθ for all n ∈ Z≥0. Then the functor

M 7→ HomModgood
F (Aχ )

(Aχ ,M)

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiin-
verse M 7→Aχ ⊗Uχ M.

The proof of Theorem 3.3 will occupy the remainder of Section 3.

3G. Proof of the theorem. We fix Aχ , Uχ and Lθ as in Theorem 3.3. First we re-
quire some preparatory lemmata. Denote by ι the embedding D(V ) ↪→W̃T ∗V (T ∗V )
given by xi 7→ h̄−1/2xi and ∂i 7→ h̄−1/2ξi . Equip D(V )with a 1

2 Z-filtration F• D(V )
by placing xi and ∂i in degree 1

2 (this is the Bernstein filtration). Then ι is a strictly
filtered embedding in the sense that

ι(FkD(V ))= ι(D(V ))∩ W̃T ∗V (T ∗V )(k), for all k ∈ 1
2 Z.

By Lemma 2.9, the image of D(V ) in W̃T ∗V (T ∗V ) is W̃T ∗V (T ∗V )F . This implies,
since C× is reductive and µW is equivariant, that

(6)
∑
A∈g

W̃T ∗V (T ∗V )(µW(A)−χ(A))∩ ι(D(V ))

=

∑
A∈g

W̃T ∗V (T ∗V )F (µW(A)−χ(A)),
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which in turn equals

(7)
∑
A∈g

D(V )(µD(A)−χ(A)).

Lemma 3.4 [Ginzburg et al. 2009, Lemma 2.2].

(i) Multiplication in D(V ) defines an algebra structure on (LD,χ )
G such that

there is isomorphism of algebras Uχ −→∼ (LD,χ )
G given by φ 7→ φ(uχ ) with

inverse f 7→ r f , where r f = · f is right multiplication by f .

(ii) We have an isomorphism of (Uχ , Uχ+θ )-bimodules Uθχ −→
∼ (LD,χ+θ )

−θ given
by φ 7→ f , where φ(uχ )= f uχ+θ ⊗ θ , with inverse f uχ+θ 7→ r f ⊗ θ .

Let us introduce

Eχ =
(
EndModG,F W̃X

(Lχ )
)opp and Eθχ = HomModF,G W̃X

(Lχ ,Lχ+θ ⊗Cθ ),

so that Eθχ is a (Eχ ,Eχ+θ )-bimodule and Lχ is a (W̃X,Eχ )-bimodule. By Lemma 2.8,
we can identify

Eχ =
(
EndW̃X(X)

(Lχ )
G,F)opp and Eθχ = HomW̃X(X)

(
Lχ ,Lχ+θ ⊗Cθ

)G,F
.

Note that (6) implies that the map ι induces an embedding ι :LD,χ ↪→LT ∗V,χ (T ∗V ),
and after taking G, F-invariants,

(8) ι : Uχ −→∼
(
EndW̃T∗V (T ∗V )(LT ∗V,χ )

G,F)opp
,

and Uθχ ' HomW̃T∗V (T ∗V )(LT ∗V,χ ,LT ∗V,χ+θ ⊗Cθ )
G,F .

Proposition 3.5. We have a filtered isomorphism 9χ : Uχ −→∼ Eχ in the sense that
9χ (FkUχ )= FkEχ for all k ∈ 1

2 Z.

Proof. The isomorphism (8) induced by the embedding ι is filtered in the same
sense as 9χ above. Therefore it suffices to show that the natural map

(LT ∗V,χ (T ∗V ))G,F =
(
EndW̃T∗V (T ∗V )(LT ∗V,χ )

G,F)opp

−→
(
EndW̃X(X)

(LX,χ )
G,F)opp

= (LX,χ (X))
G,F

is a filtered isomorphism. The localization morphism LT ∗V,χ (T ∗V )→LT ∗V,χ (X)

is clearly filtered in the weaker sense that it restricts to a map

LT ∗V,χ (T ∗V )(k)→ LT ∗V,χ (X)(k)

for each k ∈ 1
2 Z. Since the moment map µT ∗V is assumed to be flat, Proposition 2.6

says that the morphism of associated graded spaces is the natural localization map⊕
k∈ 1

2 Z

Oµ−1
T∗V (0)

(T ∗V )h̄−k
−→

⊕
k∈ 1

2 Z

Oµ−1
T∗V (0)

(X)h̄−k .
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Note that the filtration on LT ∗V,χ is stable with respect to both G and F . Lemma 2.2
says that the globally defined good filtration on LT ∗V,χ is exhaustive and Hausdorff.
Therefore, taking invariants with respect to G and F , it suffices to show that⊕

k∈ 1
2 Z

(
Oµ−1

T∗V (0)
(T ∗V )h̄−k)G,F

−→

⊕
k∈ 1

2 Z

(
Oµ−1

T∗V (0)
(X)h̄−k)G,F

is an isomorphism. But, since the F-action is contracting,(
Oµ−1

T∗V (0)
(T ∗V )h̄−k)G,F

= C
[
µ−1

T ∗V (0)
]G
−2k ,

which is the space of G-invariant homogeneous polynomials on µ−1
T ∗V (0) of degree

−2k. Similarly, (
Oµ−1

T∗V (0)
(X)h̄−k)G,F

= C
[
µ−1

X (0)
]G
−2k .

Therefore the result follows from Lemma 3.1, which says that

C[µ−1
X (0)]G = 0(Yϑ ,O

alg
Yϑ )= 0(Y0,O

alg
Y0
)= C[µ−1

T ∗V (0)]
G . �

Remark 3.6. In general, it is not true that Uθχ ' Eθχ when θ 6= 0.

3H. Shifting. The localization theorem relies on the following result by Kashiwara
and Rouquier:

Theorem 3.7 [Kashiwara and Rouquier 2008, Theorem 2.9]. Let Aχ,θ and Lθ be
as above such that Lθ is ample.

(i) Assume that for all n� 0, there exists a finite dimensional vector space Wn

and a split epimorphism of left Aχ -modules Aχ,nθ ⊗Wn � Aχ . Then, for
every good Aχ -module M, we have Ri f∗(M)= 0 for i 6= 0.

(ii) Assume that for all n� 0 there exists a finite dimensional vector space Un and
a split epimorphism of left Aχ -modules Aχ ⊗Un � Aχ,nθ . Then every good
Aχ -module is generated, locally on Y0, by its global sections.

Lemma 3.8. Let Aχ and Uχ be as above and choose θ ∈ X(G).

(i) If χ← χ + θ then there exists a finite dimensional vector space W and a split
epimorphism Aχ,θ ⊗W � Aχ .

(ii) If χ→ χ + θ then there exists a finite dimensional vector space U and a split
epimorphism Aχ ⊗U � Aχ,θ .
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Proof. We begin with (i). Equation (8) implies that we have a morphism Uθχ → Eθχ ,
which a direct calculation shows is a morphism of (Uχ ,Uχ+θ ) = (Eχ ,Eχ+θ )-
bimodules (here we identify Uχ with Eχ via the isomorphism of Proposition 3.5).
Thus χ← χ + θ implies that Eθχ ⊗E−θχ+θ � Eχ . Therefore there exists some k and
φi ∈ Eθχ , ψi ∈ E−θχ+θ for i ∈ [1, k] such that

(idLχ
⊗ ev) ◦

( k∑
i=1

(ψi ⊗ idCθ ) ◦φi

)
= idLχ

.

Let W = SpanC{ψi : i ∈ [1, k]} and define 9 : Lχ+θ ⊗Cθ ⊗W → Lχ by

9(u⊗ θ ⊗ψ)= (idLχ
⊗ ev)(ψ(u)⊗ θ).

The map 9̃ :Lχ→Lχ+θ⊗Cθ⊗W defined by v 7→
∑k

i=1 φi (v)⊗ψi is a right inverse
to 9. Hence 9 is a split epimorphism. Since 9 and 9̃ are (G,C×)-equivariant
we can apply the functor p∗HomW̃X

(Lχ ,−)
G , which by [Kashiwara and Rouquier

2008, Proposition 2.8(ii)] is an equivalence, to the morphism Lχ+θ⊗Cθ⊗W→Lχ

to get the required (necessarily split, epic) morphism.
Part (ii) is similar. Again using Proposition 3.5, χ→ χ + θ implies that

E−θχ+θ ⊗Eθχ � Eχ+θ .

Therefore there exists some k and φi ∈ E−θχ+θ , ψi ∈ Eθχ for i ∈ [1, k] such that

(idLχ+θ
⊗ ev) ◦

( k∑
i=1

(ψi ⊗ idC−θ ) ◦φi

)
= idLχ+θ

.

Let U = SpanC{ψi : i ∈ [1, k]} and define 8 : Lχ ⊗U → Lχ+θ ⊗Cθ by 8(u ⊗
ψ)= ψ(u). The map 8̃ : Lχ+θ ⊗Cθ → Lχ ⊗U defined by

v 7→ (idLχ
⊗ idU ⊗ ev)

( k∑
i=1

φi (v)⊗ψi

)
is a right inverse to 8. Hence 8 is a split epimorphism. Since 8 and 8̃ are
(G,C×)-equivariant we can apply p∗HomW̃X

(Lχ ,−)
G to the morphism

Lχ ⊗U → Lχ+θ ⊗Cθ

to get the required (necessarily split, epic) morphism. �

Proof of Theorem 3.3. It follows from the equivalence in [Kashiwara and Rouquier
2008, Proposition 2.8(iv)] that 0(Yϑ ,Aχ )

F
= Eχ . Therefore part (i) follows from

Proposition 3.5. Lemma 3.8 and Theorem 3.7 show that χ ← χ + nθ for all
n ∈Z≥0 implies that Ri f∗(M)= 0 for all i > 0 and all M∈Modgood

F (Aχ ). Similarly,
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χ→χ+nθ for all n ∈Z≥0 implies that every good Aχ -module is generated, locally
on Y0, by its global sections. Let o denote the image of the origin of T ∗V in Y0.
The C×-action we have defined on Y0 (via the C×-action on T ∗V ) shrinks every
point to o, in the sense that limt→∞ Tt(y) = o for all y ∈ Y0. In such a situation,
[ibid., Lemma 2.13] says that Ri f∗(M)= 0 for all i > 0 and all M ∈Modgood

F (Aχ )

implies that HomModgood
F (Aχ )

(Aχ ,−) is an exact functor. Similarly, [ibid., Lemma
2.14] says that if every good Aχ -module M is generated, locally on Y0, by its global
sections then every M is generated by its F-invariant global sections. That is,

Aχ ⊗Uχ HomModgood
F (Aχ )

(Aχ ,M)� M.

With these facts, one can follow the proof of [Hotta et al. 2008, Corollary 11.2.6],
more or less word for word. �

4. Hypertoric varieties

4A. As we have seen in the previous section, when one has a reductive group G
acting on a vector space V , there exists a family of W-algebras on the Hamiltonian
reduction of the cotangent bundle of V . The simplest such situation is where G =T,
a d-dimensional torus. In this case the corresponding Hamiltonian reduction is
called a hypertoric variety. In this section we recall the definition of, and basic facts
about, hypertoric varieties. The reader is advised to consult [Proudfoot 2008] for
an excellent introduction to hypertoric varieties. Here we will follow the algebraic
presentation given in [Hausel and Sturmfels 2002]. Thus, in this section only, spaces
will be algebraic varieties over C in the Zariski topology.

4B. Torus actions. Fix 1≤ d < n ∈ N and let T := (C×)d . We consider T acting
algebraically on the n-dimensional vector space V . If we fix coordinates on V such
that the corresponding coordinate functions x1, . . . , xn are eigenvectors for T then
the action of T is encoded by a d × n integer valued matrix

A = [a1, . . . , an] = (ai j )i∈[1,d], j∈[1,n],

and is given by (ξ1, . . . , ξd) · xi = ξ
a1i
1 · · · ξ

adi
d xi for all (ξ1, . . . , ξd) ∈ T. We fix the

coordinate ring of V to be R := C[x1, . . . , xn]. The algebra R is graded by the
action of T, deg(xi )= ai . We make the assumption that the d × d minors of A are
relatively prime. This ensures that the map Zn A

−→ Zd is surjective and hence the
stabilizer of a generic point is trivial.

4C. Since Zd is a free Z-module, the above assumption implies that we can choose
an n × (n − d) integer valued matrix B = [b1, . . . , bn]

T so that the following
sequence is exact:

(9) 0−→ Zn−d B
−→ Zn A

−→ Zd
= X −→ 0,
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where, as before, X :=Homgp(T,C×) is the character lattice of T and Zn is identified
with the character lattice of (C×)n ⊂ GL(Cn). The dual HomZ(X,Z) of X, which
parametrizes one-parameter subgroups of T, will be denoted Y. Applying the functor
Hom( · ,C×) to the sequence (9) gives a short exact sequence of abelian groups

(10) 1−→ T
AT

−→ (C×)n
BT

−→ (C×)n−d
−→ 1.

Let t denote the Lie algebra of T and g the Lie algebra of (C×)n . Differentiating
the sequence (10) produces the short exact sequence

(11) 0−→ t
AT

−→ g
BT

−→ Lie(C×)n−d
−→ 0

of abelian Lie algebras.

4D. Geometric invariant theory. The standard approach to defining “sensible” al-
gebraic quotients of V by T is to use geometric invariant theory. We recall here the
basic construction that will be used. Let XQ := X⊗Z Q be the space of fractional
characters. We fix a stability parameter δ ∈ XQ. For k = (k1, . . . , kn) ∈ Nn , the
monomial xk1

1 · · · x
kn
n will be written xk . Then λ · xk

= λA·k xk and we define

Rδ := SpanC(x
k
| A · k = δ)

to be the space of T-semiinvariants of weight δ. Note that Rδ = 0 if δ /∈ X. A
point p ∈ V is said to be δ-semistable if there exists an n > 0 such that nδ ∈ X and
f ∈ Rnδ with f (p) 6= 0. A point p is called δ-stable if it is δ-semistable and in
addition its stabilizer under T is finite. The set of δ-semistable points in V will be
denoted V ss

δ . The parameter δ is said to be effective if Rnδ
6= 0 for some n > 0 (by

the Nullstellensatz this is equivalent to V ss
δ 6=∅).

Definition 4.1. Let δ ∈ XQ be an effective stability condition. The G.I.T quotient
of V by T with respect to δ is the variety

X (A, δ) := Proj
⊕
k≥0

Rkδ
;

it is projective over the affine quotient X (A, 0) := Spec(RT).

If a point p ∈ V is not δ-semistable it is called δ-unstable. Using the one-
parameter subgroups of T one can describe the set V us

δ of δ-unstable points. We
denote by 〈 · , · 〉 the natural pairing between Y and X (and by extension between
t and t∗). Let V ( f1, . . . , fk) denote the set of common zeros of the polynomials
f1, . . . , fk ∈ R.
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Lemma 4.2. Let δ ∈ XQ be an effective stability parameter. The δ-unstable locus is

(12) V us
δ =

⋃
λ∈Y
〈λ,δ〉<0

V (xi | 〈λ, ai 〉< 0).

Moreover, there exists a finite set F(δ)= {λ1, . . . , λk} ⊂ Y, 〈λi , δ〉< 0 such that⋃
λ∈Y
〈λ,δ〉<0

V (xi | 〈λ, ai 〉< 0)=
⋃

λ∈F(δ)

V (xi | 〈λ, ai 〉< 0).

Proof. Let S := R[t] and extend the action of T from R to S by setting g ·t = δ(g)−1t
for all g ∈ T. Then (S)T =

⊕
n≥0 Rnδ

· tn . Now

u ∈ V us
δ ⇐⇒ f (u)= 0 for all f ∈ Rnδ, n > 0,

⇐⇒ F(u, 1)= 0 for all F ∈ (ST)+ = (S+)T,

⇐⇒ T · (u, 1)∩ V ×{0} 6=∅,

where (ST)+ = (S+)T follows from the fact that T is reductive. Then [Kempf
1978, Theorem 1.4] says that there exists a one-parameter subgroup λ ∈ Y such
that limt→0 λ(t) · (u, 1) ∈ V ×{0}. Writing u = u1+ · · ·+ un such that xi (u)= ui ,
we have

λ(t) · (u, 1)=
( n∑

i=1

t−〈λ,ai 〉ui , t 〈λ,δ〉
)
,

which implies that ui = 0 for all i ∈ [1, n] such that 〈λ, ai 〉> 0 and 〈λ, δ〉> 0. This
shows that the left hand side of (12) is contained in the right hand side. Conversely,
if u is δ-semistable then it is also φ-semistable with respect to the action of the
one dimensional torus λ : T ↪→ T on V , where φ is the character of T defined
by t 7→ t 〈λ,δ〉. �

4E. The variety X (A, δ) is a toric variety and, as shown in [Hausel and Sturmfels
2002, Corollary 2.7], any semiprojective toric variety equipped with a fixed point is
isomorphic to X (A, δ) for suitable A and δ. Fix S ⊂ V and let δ1, δ2 ∈ XQ be two
stability parameters such that Sss

δ1
, Sss

δ2
6= 0. Then δ1 and δ2 are said to be equivalent

if Sss
δ1
= Sss

δ2
. The set of all ρ equivalent to a fixed δ will be denoted C(δ). These

equivalence classes form the relative interiors of the cones of a rational polyhedral
fan 1(T, S), called the G.I.T. fan, in XQ. The support of 1(T, S) is the set of all
effective δ ∈ XQ such that Sss

δ 6= 0 and is denoted |1(T, S)|. We will mainly be
concerned with S = V . The cones in 1(T, V ) having the property that the stable
locus is properly contained in the semistable locus are called the walls of 1(T, V ).
The G.I.T. fan is quite difficult to describe explicitly; see [Oda and Park 1991].
However one has the following explicit description of the walls of 1(T, V ).
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Lemma 4.3. Let T act on V via A as in Section 4B. Then |1(T, V )|=
∑n

i=1 Q≥0·ai

and the walls of the fan are
∑

i∈J Q≥0 · ai , where J ⊂ [1, n] is any subset such that
dimQ(SpanQ(ai | i ∈ J ))= d − 1.

Proof. Let 0 6= δ∈
∑n

i=1 Z≥0 ·ai and write δ=
∑

i∈I ni ai where I ⊂[1, n] and ni >0
for all i ∈ I . Then 0 6= f =

∏
i∈I xni

i ∈ Rδ implies that δ is effective. Now let δ ∈X

be any effective stability parameter and choose 0 6= p∈ V ss
δ . Write p= p1+· · ·+ pn

so that xi (p)= pi and let I = {i ∈ [1, n] | pi 6= 0}. Then Lemma 4.2 shows that

p ∈ V ss
δ ⇐⇒ (〈λ, δ〉< 0 ⇒ there exists i ∈ I such that 〈λ, ai 〉< 0)

⇐⇒ {λ ∈ Y | 〈λ, δ〉< 0} ∩
(∑

i∈I

Z≥0 · ai

)∨
=∅

⇐⇒

(∑
i∈I

Z≥0 · ai

)∨
⊂ {λ ∈ Y | 〈λ, δ〉 ≥ 0}

⇐⇒ δ ∈
∑
i∈I

Z≥0 · ai .

Now choose δ ∈X to lie on a wall. By definition, there exists a δ-semistable point p
such that dim Stab T(p)≥ 1. Let I be as above. Then dim Stab T(p)≥ 1 implies that
the subspace

∑
i∈I Q · ai must be a proper subspace of XQ. The above reasoning

shows that δ ∈
∑

i∈I Z≥0 · ai as required. �

Lemma 4.3 shows that, under our assumption on A, the maximal cones of
1(T, V ) are all d-dimensional. We will refer to these maximal cones as the d-
cones of 1(T, V ). The integer valued matrix A is said to be unimodular1 if every
d × d minor of A takes values in {−1, 0, 1}. Combining [Hausel and Sturmfels
2002, Corollary 2.7 and Corollary 2.9] gives the following theorem:

Theorem 4.4. The variety X (A, δ) is an orbifold if and only if δ belongs to the
interior of a d-cone of 1(T, V ). It is a smooth variety if and only if δ belongs to
the interior of a d-cone of 1(T, V ) and A is unimodular.

4F. Hypertoric varieties. Define A± := [A,−A], a d × 2n matrix. It defines a
grading on the ring R :=C[T ∗V ] =C[x1, . . . , xn, y1, . . . , yn]. For δ in the interior
of a d-cone of 1(T, T ∗V ), the corresponding toric variety X (A±, δ) is called a
Lawrence toric variety associated to A. It is a G.I.T. quotient of the symplectic
vector space T ∗V with canonical symplectic form

ω = dx1 ∧ dy1+ · · ·+ dxn ∧ dyn.

1In [Hausel and Sturmfels 2002], the authors define A to be unimodular if every nonzero d × d
minor of A has the same absolute value. However they also, as do we, make the assumption that the
d × d minors of A are relatively prime. Thus, their definition agrees with ours.
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The action of T is Hamiltonian and the moment map is given by

µ : T ∗V −→ t∗, µ(x, y)=
( n∑

j=1

ai j x j y j

)
i∈[1,d]

.

Consider the ideal

I := I (µ−1(0))=
〈 n∑

j=1

ai j x j y j

∣∣∣∣ i ∈ [1, d]
〉
⊂ R;

it is homogeneous and generated by T-invariant polynomials.

Definition 4.5. The hypertoric variety associated to A and δ is defined to be

Y (A, δ) := µ−1(0)//δ T = Proj
⊕
k≥0

(R/I )kδ;

it is projective over the affine quotient Y (A, 0) := Spec((R/I )T).

The basic properties of hypertoric varieties can be summarized as follows:

Proposition 4.6 [Hausel and Sturmfels 2002, Proposition 6.2]. If δ is in the interior
of a d-cone of 1(T, µ−1(0)) then the hypertoric variety Y (A, δ) is an orbifold. It
is smooth if and only if δ is in the interior of a d-cone of 1(T, µ−1(0)) and A is
unimodular.

4G. In this subsection we show that the assumptions of Section 3A are valid for
hypertoric varieties. Let f : Y (A, δ)→ Y (A, 0) be the projective morphism from
Y (A, δ) to Y (A, 0). Lemma 4.9 below together with Proposition 4.6 implies that
f is birational and hence a resolution of singularities when Y (A, δ) is smooth.

The symplectic form ω on T ∗V induces a symplectic 2-form on the smooth locus
of Y (A, δ). In particular, when Y (A, δ) is smooth it is a symplectic manifold.
Proposition 4.11 below shows that Y (A, 0) is a symplectic variety and the resolution
f is a symplectic resolution.2 This implies that Y (A, 0) is also normal.

Lemma 4.7. The moment map is flat and µ−1(0) is a reduced complete intersection
in T ∗V . If no row of the matrix B is zero then µ−1(0) is irreducible.

Proof. The graded lexicographic ordering on a monomial xα , α ∈ Z2n , is defined by
saying that xα > xβ if and only if |α|> |β|, or |α| = |β| and the leftmost nonzero
entry of α − β is positive; see [Cox et al. 2007, page 58]. After permuting the
variables x1, . . . , xn , we may assume that the first d columns of A are linearly
independent. Applying an automorphism of T and then letting T act is the same as
multiplying A on the right by some unimodular d × d-matrix. Using this fact we

2We refer the reader to [Fu 2006] for the definition of symplectic variety and symplectic resolution.
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may assume that the leftmost d × d-block of A is the identity matrix. This allows
us to rewrite the generators of I as{

xi yi −

n∑
j=d+1

ci, j x j y j

∣∣∣∣ i = 1, . . . , d
}
, where ci, j ∈ Z.

By [Cox et al. 2007, Theorem 8, page 461], dimµ−1(0)=dim V (in(I )), where in(I )
denotes the initial ideal of I with respect to the ordering x1> x2> · · ·> y1> y2 · · · .
Now by [Cox et al. 2007, Theorem 3 (Division algorithm), page 64], we have
in(I )= 〈x1 y1, . . . , xd yd〉. This is the zero set of a union of 2d linear subspaces of
T ∗V of dimension 2n − d. Therefore dimµ−1(0) = 2n − d and it follows from
[Holland 1999, Lemma 2.3] that the moment map is flat. To prove that it is a
complete intersection we must show that the generators of I given above form a
regular sequence in the polynomial ring R. Once again, it suffices to note that
x1 y1, . . . , xd yd is a regular sequence. Also, since the ideal in(I ) is radical, the ideal
I is itself radical.

Now note that, since the sequence (9) is exact, the matrix B contains a row of
zeros if and only if there exists an i ∈ [1, .., d] such that ci, j = 0 for all j > d . So,
when B contains no rows equal to zero we can write

yi = x−1
i

n∑
j=d+1

ci, j x j y j mod I

on the open set µ−1(0)\V (x1 · · · xd). This shows that µ−1(0) contains an open
set isomorphic to A2n−d . We just need to show that this open set is dense. Since
µ−1(0) is a complete intersection, it is pure dimensional. Therefore it suffices to
show that the dimension of µ−1(0)∩ V (x1 · · · xd) is at most 2n− d − 1. Consider
Y = µ−1(0)∩ V (x1) and let J = I (Y ). We may assume without loss of generality
that c1,d+1 6= 0. Then J is generated by x1, xi yi−

∑n
j=d+2 ci, j x j y j for j = 2, . . . , d

and xd+1 yd+1+
∑n

j=d+2 c1, j x j y j . Hence in(J )=〈x1, x2 y2, . . . , xd+1 yd+1〉, which
defines a variety of dimension 2n− d − 1 as required. �

From now on we assume that no row of the matrix B is zero.

Lemma 4.8. For any A, we have dim X (A±, 0)= 2n− d.

Proof. Let U = V \V (x1 · · · xn) and let S1 = C[x±1
1 , . . . , x±1

n ]
T denote the co-

ordinate ring of the quotient U/T. Let F1 be the field of fractions of S1. Let
S2 = C[X (A±, 0)] and F2 its field of fractions. We claim that F1 ⊂ F2. An
element in F1 is a fraction f (x1, . . . , xn)/g(x1, . . . , xn), where f and g are homo-
geneous of the same weight with respect to T. Then f (x) f ( y), g(x) f ( y) ∈ S2 and
f (x) f ( y)/g(x) f ( y)= f (x)/g(x) as required. Since dim Tn/T= n− d , to prove
the lemma it suffices to show that the field extension F1 ⊂ F2 has transcendental
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degree n. Consider the field K = F1〈x1 y1, . . . , xn yn〉. Then F1 ⊂ K ⊂ F2 and K
is a purely transcendental extension of F1 of degree n. We claim that K = F2. To
show this it is sufficient to show that if f ∈ S2 is a polynomial in the xi and y j

then f ∈ K . We show more generally that if f = f1/g, where f1, g ∈ S2 and g a
monomial, then f ∈ K . We prove the claim by induction on the number of terms
in f (note that even though there is some choice in the exact form of each of the
terms in f , the number of terms is unique). Let u = αx i y j , i, j ∈ Zn , be some
nonzero term of f . Then (xy)− j u ∈ F1 and (xy)− j f − (xy)− j u ∈ K by induction.
Since (xy)− j

∈ K , this implies that f ∈ K . �

Note that, unlike X (A±, 0), the dimension of X (A, 0) can vary greatly depending
on the specific entries of A.

Lemma 4.9. For any A, we have dim Y (A, 0)= 2(n− d) and Y (A, 0) is Cohen–
Macaulay.

Proof. By Hochster’s Theorem [Bruns and Herzog 1993, Theorem 6.4.2], the
ring C[X (A±, 0)] is Cohen–Macaulay. As noted in Lemma 4.7, the generators
u1, . . . , ud of I form a regular sequence in R. Since T is reductive,

R = C[X (A±, 0)]⊕ E

as a C[X (A±, 0)]-module. Therefore projection from R to C[X (A±, 0)] is a
Reynolds operator in the sense of [ibid., page 270]. Since u1, . . . , ud are T-
invariant, [ibid., Proposition 6.4.4] now says that they form a regular sequence in
X (A±, 0). Therefore [ibid., Theorem 2.1.3] says that Y (A, 0) is Cohen–Macaulay
with dim Y (A, 0)= dim X (A±, 0)− d. The lemma follows from Lemma 4.8. �

Lemma 4.10. Let δ ∈ XQ. The graded ring
⊕

k≥0 (R/I )kδ is Cohen–Macaulay,
that is, Y (A, δ) is arithmetically Cohen–Macaulay.

Proof. Consider S = R[t] with T acting on t via g · t = δ(g)−1t . Replacing R with
S in the proof of Lemma 4.9 gives a proof of the statement. �

Proposition 4.11. Let A be unimodular and choose δ in the interior of a d-
cone of 1(T, µ−1(0)). Then Y (A, 0) is a symplectic variety and the morphism
f : Y (A, δ)→ Y (A, 0) is a symplectic resolution.

Proof. The construction of Y (A, δ) and Y (A, 0) as Hamiltonian reductions means
that they are Poisson varieties and f preserves the Poisson structure. Therefore the
smooth locus of Y (A, 0) is a symplectic manifold since Y (A, δ) is a symplectic man-
ifold. In [Proudfoot and Webster 2007, §2], a stratification of Y (A, 0) into smooth
locally closed subvarieties of even dimensions is constructed. This stratification
shows that Y (A, 0) is smooth in codimension one. Therefore the fact (Lemma 4.9)
that Y (A, 0) is Cohen–Macaulay together with Serre’s normality criterion [Bruns
and Herzog 1993, Theorem 2.2.22] implies that Y (A, 0) is normal. Also, the fact
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that Y (A, δ) is a symplectic manifold implies that its canonical bundle is trivial.
Therefore the Grauert–Riemenschneider vanishing theorem implies that Y (A, 0)
has rational Gorenstein singularities. Then [Namikawa 2001, Theorem 6] says that
Y (A, 0) is a symplectic variety. �

4H. G.I.T. chambers for hypertoric varieties. Define the subvariety E of T ∗V
by E = {(x, y) ∈ T ∗V | xi · yi = 0 for all i ∈ [1, n]}. We decompose E into its
n-dimensional irreducible components

E=
⋃

I⊂[1,n]

EI , EI :={(x, y)∈T ∗V | xi=0 for all i ∈ I, yi=0 for all i ∈[1, n]\I }.

The subvariety E is preserved under the T-action. Therefore we may consider the
corresponding G.I.T. quotients. The G.I.T. quotient E//δ T is a closed subvariety of
Y (A, δ), called the extended core of Y (A, δ); see [Proudfoot 2008] for details.

Lemma 4.12. In XQ we have equalities of G.I.T. fans

1(T, T ∗V )=1(T,E)=1(T, µ−1(0)).

Proof. For a fixed I ⊂ [1, n], denote by πI : T ∗V � EI the projection that sends xi

to zero if i ∈ I and y j to zero if j ∈ [1, n]\I . The restriction of πI to µ−1(0) will
be denoted π̃I . The statement of lemma follows from the claim

(13) (T ∗V )ss
δ =

⋃
I⊂[1,n]

π−1
I ((EI )

ss
δ ) and (µ−1(0))ss

δ =

⋃
I⊂[1,n]

(π̃I )
−1((EI )

ss
δ )

for each δ ∈ X. Let p ∈ (EI )
ss
δ . Then, without loss of generality, we may assume

that there exists a monomial f ∈ RNδ , N ≥ 1, such that f (p) 6= 0. Then f (q) 6= 0
for all q ∈π−1

I (p). Hence (T ∗V )ss
δ ⊃π

−1
I ((EI )

ss
δ ) and (µ−1(0))ss

δ ⊃ (π̃I )
−1((EI )

ss
δ )

for all I ⊂ [1, n]. Now choose p ∈ (T ∗V )ss
δ . Then there exist m ∈ N and g ∈ Rmδ

such that g(p) 6= 0. We may assume without loss of generality that

g =
∏

i

xui
i

∏
i

yvi
i for some ui , vi ≥ 0.

By definition,
∑

i (ui − vi )ai = mδ. For each i , define si and ti by

(1) ui − vi > 0 =⇒ si = ui − vi , ti = 0;

(2) ui − vi < 0 =⇒ ti = vi − ui , si = 0;

(3) ui − vi = 0 =⇒ si = ti = 0.

Set I = {i ∈ [1, n] | ti 6= 0}. Then g(p) 6= 0 implies that πI (p) 6= 0. Define
g̃ =

∏
i x si

i
∏

i yti
i ∈ Rmδ. Then g̃(πI (p)) 6= 0 implies that p ∈ π−1

I ((EI )
ss
δ ) and

hence (T ∗V )ss
δ =

⋃
I⊂[1,n] π

−1
I ((EI )

ss
δ ) as required. The second equality in (13)

follows from the first one. �
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Corollary 4.13. Let T act on V via A as in Section 4B. Then |1(T, µ−1(0))| =XQ

and the walls of the fan 1(T, µ−1(0)) are
∑

i∈J Q · ai , where J ⊂ [1, n] is any
subset such that dimQ(SpanQ(ai | i ∈ J ))= d − 1.

Assume now that A is unimodular and choose δ ∈X to lie in the interior, denoted
C(δ), of a d-cone of 1(T, µ−1(0)). If ζ ∈ C(δ) ∩ X then Y (A, δ) = Y (A, ζ ).
Recall from Section 3A that ζ also defines a line bundle Lζ on Y (A, δ). From
the definition of Y (A, δ) as proj of a graded ring, we see that Lζ is an ample line
bundle on Y (A, δ). Summarizing:

Lemma 4.14. Let A be unimodular and let C(δ) denote the interior of a d-cone of
1(T, µ−1(0)). Then the line bundle Lζ on Y (A, δ) is ample for all ζ ∈ C(δ)∩X.

5. Quantum Hamiltonian reduction

5A. Recall that D(V ) denotes the ring of algebraic differential operators on the
n-dimensional space V . Let T act on V with weights described by the matrix A (as
in Sections 4B and 4C) and choose an element χ of the dual t∗ of the Lie algebra
t of T. As explained in Section 3D, by differentiating the action of T we get a
quantum moment map µD : t→ D(V ), ti 7→

∑n
j=1 ai j x j∂ j . As in Section 3C,

the quantum Hamiltonian reduction of V with respect to χ is defined to be the
noncommutative algebra

Uχ :=
(
D(V )

/
D(V )(µD −χ)(t)

)T
.

We also have bimodules

Uθχ :=
(
D(V )

/
D(V )(µD − (χ + θ))(t)

)−θ
.

We say that χ and χ+θ are comparable if the multiplication map Uθχ⊗U−θχ+θ→Uχ
is nonzero. By [Musson and Van den Bergh 1998, Theorem 7.3.1], the ring Uχ is a
domain. Then [ibid., Proposition 4.4.2] says that this implies that comparability is
an equivalence relation. As in Section 3C, write χ→ χ + θ if U−θχ+θ ⊗Uθχ � Uχ+θ .
As noted in [ibid., Remark 4.4.3], the relation→ is transitive. Therefore it defines
a preorder on the set of elements in t∗ comparable to χ . We say that χ is maximal
if χ is maximal in this preordering, that is, χ ′→ χ implies χ→ χ ′.

5B. The main results. Write pr : C→Q for the Q-linear projection onto Q and
denote by the same symbol the corresponding extension to t∗:

pr : t∗ = X⊗Z C−→ XQ.

We also write pr for the map Cn
= C⊗Z Zn

→Qn . Then pr(A · v)= A · pr(v) for
all v ∈ Cn . The following proposition is the key to proving our main result. Its
proof is given in Section 5D.



114 GWYN BELLAMY AND TOSHIRO KUWABARA

Proposition 5.1. Let C ⊂ XQ be the interior of a d-cone in the fan 1(T, µ−1(0)).
Choose χ ∈ t∗ such that pr(χ) ∈ C. Then there exists a nonempty d-dimensional
integral cone C(χ) ⊂ C ∩ X ∪ {0} such that for all θ ∈ C(χ), χ ← χ + pθ for
all p ∈ Z≥0.

Recall from Sections 4F and 3D that for each χ ∈ t∗ and δ ∈ C , where C is the
interior of a d-cone of 1(T, µ−1(0)), we have defined the sheaf of algebras Aχ on
the smooth symplectic manifold Y (A, δ).

Theorem 5.2. Let C ⊂ XQ be the interior of a d-cone of 1(T, µ−1(0)). Choose
χ ∈ t∗ such that pr(χ) ∈ C and choose δ ∈ C. Let Aχ be the corresponding
W-algebra on Y (A, δ).

(i) The functor HomModgood
F (Aχ )

(Aχ , · ) defines an equivalence of categories

Modgood
F (Aχ )−→

∼ Uχ -mod

with quasiinverse Aχ ⊗Uχ ( · ).

(ii) For any 0 6= θ ∈ C(χ), there exists some N > 0 such that the functor
HomModgood

F (Aχ )
(Aχ , · ) defines an equivalence of categories

Modgood
F (Aχ+Nθ )−→

∼ Uχ+Nθ -mod

with quasiinverse Aχ ⊗Uχ ( · ).

Proof. By Proposition 5.1 we can choose 0 6= θ ∈ C(χ) such that χ← χ + pθ for
all p ∈ Z≥0. Since C(χ)\{0} ⊂ C , Lemma 4.14 says that θ defines an ample line
bundle Lθ on Y (A, δ) and we have Aχ,θ (0)/Aχ,θ (−1/2)' L−θ . Then part (i) of
the theorem is a particular case of Theorem 3.3 (ii). The proof of Proposition 5.1
shows that we actually have

χ← χ + θ← χ + 2θ← · · · .

Since the set of all covectors of the oriented matroid defined by A is finite and each
Qχ (which will be defined in Definition 5.9) is a subset of this set, we see that there
are only finitely many different Qχ . Therefore we eventually get

χ + Nθ � χ + (N + 1)θ � · · ·

for some sufficiently large N . Then part (ii) of the theorem is a particular case of
Theorem 3.3(iii). �

Corollary 5.3. Let Y (A, δ),Aχ ,Uχ , . . . be as in Theorem 5.2 (with pr(χ) ∈ C).
If the global dimension of Uχ is finite then the functor HomModgood

F (Aχ )
(Aχ , · )

defines an equivalence of categories Modgood
F (Aχ )−→

∼ Uχ -mod with quasiinverse
Aχ ⊗Uχ ( · ).
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Proof. By Proposition 5.1 we can choose 0 6= θ ∈ C(χ) such that χ← χ + pθ for
all p ∈ Z≥0. However, [Musson and Van den Bergh 1998, Theorem 9.1.1] says
that χ is maximal if and only if the global dimension of Uχ is finite. Therefore
χ � χ + θ for all θ ∈ C(χ). Then, as in the proof of Theorem 5.2, Theorem 3.3
implies the statement of the corollary. �

It seems natural to conjecture that, for any χ ∈ t∗, Uχ has finite global dimension
if and only if Modgood

F (Aχ )−→
∼ Uχ -mod, where Aχ is the corresponding W-algebra,

defined on some Y (A, δ).

5C. The case d = 1. In specific cases it is possible to strengthen Proposition 5.1.
One such case is when the torus T is one-dimensional. Here the sets Qχ (which will
be defined in Definition 5.9) can be explicitly described, as was done in [Van den
Bergh 1991]. Since A is assumed to be unimodular and ai 6= 0 for all i we see
that ai = ±1 for all i . After reordering we may assume that a1, . . . , ak = 1 and
ak+1, . . . , an =−1. For simplicity let us assume that n > 1. Then

Qχ = {0} ⇐⇒ χ ∈ (C\Z)∪ {k− n+ 1, k− n+ 2, . . . , n− k− 2, n− k− 1},

Qχ = {0,+}⇐⇒ χ ∈ Z≥n−k,

Qχ = {0,−}⇐⇒ χ ∈ Z≤k−n.

In this situation XQ =Q and there are two 1-cones with respect to the action of T

on µ−1(0); they are Q≥0 and Q≤0. Applying Theorem 3.3 gives:

Proposition 5.4. Let dim T = 1 and n > 1 and choose χ ∈ t∗. For δ 6= 0, let Aχ

denote the corresponding W-algebra on Y (A, δ).

(i) When δ = 1 we have an equivalence

Modgood
F (Aχ )−→

∼ Uχ -mod

if and only if χ ∈ (C\Z)∪Z≥0 and Modgood
F (Aχ )=Modgood

F (Aχ ) if and only
if χ ∈ (C\Z)∪Z≥n−k .

(ii) When δ = −1 we have an equivalence Modgood
F (Aχ ) −→

∼ Uχ -mod if and
only if χ ∈ (C\Z) ∪ Z<0 and Modgood

F (Aχ ) = Modgood
F (Aχ ) if and only if

χ ∈ (C\Z)∪Z≤k−n .

This result can be viewed as a variant of [Van den Bergh 1991, Theorem 6.1.3],
where sufficient conditions for the D-affinity of weighted projective spaces are
stated.

5D. The remainder of this section is devoted to the proof of Proposition 5.1. Since
T can be considered as a subgroup of Tn , t is a Lie subalgebra of g= Lie(Tn) and
we may regard elements of t as linear functionals on g∗. Let ρ : g∗ � t∗ be the
natural map.
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Definition 5.5. Let λ ∈ Y and θ ∈
(∑
〈λ,ai 〉=0 C · ai

) / (∑
〈λ,ai 〉=0 Z · ai

)
. We say

that the pair (λ, θ) is attached to χ if there exists α ∈ ρ−1(χ) such that∑
〈λ,ai 〉=0

αi ai ≡ θ mod
∑
〈λ,ai 〉=0

Z · ai ,

and
〈λ, ai 〉> 0 =⇒ αi ∈ Z, αi ≥ 0,
〈λ, ai 〉< 0 =⇒ αi ∈ Z, αi < 0,
〈λ, ai 〉 = 0 =⇒ αi ∈ C\Z.

Remark 5.6. The above definition is based on [Musson and Van den Bergh 1998,
Definition 7.2.1]. There it is stipulated that λ ∈ t ∩Qn , but we only care about
whether 〈λ, ai 〉 is greater than, less than or equal to 0; therefore we can assume
λ ∈ Y. Also our sign convention in Definition 5.5 is opposite to that given in [ibid.,
Definition 7.2.1] so that it agrees with the conventions of Section 4.

5E. Let us define an equivalence relation on the set of pairs (λ, θ) by saying
that (λ1, θ1) is equivalent to (λ2, θ2) if {i | 〈λ1, ai 〉 > 0} = {i | 〈λ2, ai 〉 > 0},
{i | 〈λ1, ai 〉 < 0} = {i | 〈λ2, ai 〉 < 0} and θ2 ≡ θ1 mod

∑
〈λ1,ai 〉=0 Z · ai . Denote

by Pχ the set of equivalence classes of pairs (λ, θ) that are attached to χ . The
set of all possible λ up to equivalence consist of the (finitely many) covectors of
the oriented matroid defined by A. It will be convenient to parametrize each λ
(again up to equivalence) as an element in {+, 0,−}n , λ↔ (ei )i∈[1,n] with ei =+

if 〈λ, ai 〉> 0 and so forth. Note, however, that not every element of {+, 0,−}n can
be realized as some λ.

Proposition 5.7 [Musson and Van den Bergh 1998, Proposition 7.7.1]. Choose
χ, χ ′ ∈ t∗. Then, the set Pχ parametrizes the primitive ideals in Uχ and χ→ χ ′ if
and only if Pχ ′ ⊆ Pχ .

Since we are interested in sheaves of W-algebras on smooth hypertoric vari-
eties we may assume that A is unimodular. This allows us to remove θ from the
description of Pχ .

Lemma 5.8. Assume that A is unimodular and let (λ, θ) and (λ, ϑ), be attached to
χ via α ∈ ρ−1(χ) and β ∈ ρ−1(χ), respectively. Then (λ, θ) is equivalent to (λ, ϑ).

Proof. By definition, θ is the equivalence class of
∑
〈λ,ai 〉=0 αi ai in the quotient(∑

〈λ,ai 〉=0 C ·ai
) / (∑

〈λ,ai 〉=0 Z ·ai
)
, and similarly for ϑ . Therefore we must show

that
∑n

i=1 αi ai =
∑n

i=1 βi ai implies

(14)
n∑

〈λ,ai 〉=0

αi ai ≡

n∑
〈λ,ai 〉=0

βi ai mod
∑
〈λ,ai 〉=0

Z · ai .
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Choose {ai1, . . . , aik } ⊂ {ai | 〈λ, ai 〉 = 0} to be a basis of the space spanned by the
set {ai | 〈λ, ai 〉 = 0}. We can extend this to a basis ai1, . . . , aik , aik+1, . . . , ad of t∗.
Since A is unimodular the determinant of this basis is ±1. Hence {ai1, . . . , aik }

span a direct summand of the lattice X. This implies

(15)
( ∑
〈λ,ai 〉=0

C · ai

)
∩X =

∑
〈λ,ai 〉=0

Z · ai ,

which in turn implies (14). �

It is shown in [ibid., Example 7.2.7] that θ is not defined up to equivalence by χ
and λ if A is not unimodular.

5F. Based on Lemma 5.8, we make the following definition.

Definition 5.9. Let λ ∈ Y and χ ∈ t∗. We say that λ is attached to χ if there exists
α ∈ ρ−1(χ) such that

(16)

〈λ, ai 〉> 0 =⇒ αi ∈ Z, αi ≥ 0,

〈λ, ai 〉< 0 =⇒ αi ∈ Z, αi < 0,

〈λ, ai 〉 = 0 =⇒ αi ∈ C\Z.

If λ1, λ2 ∈ Y are attached to χ then we say that λ1 is equivalent to λ2 if

{i | 〈λ1, ai 〉> 0} = {i | 〈λ2, ai 〉> 0} and {i | 〈λ1, ai 〉< 0} = {i | 〈λ2, ai 〉< 0}.

Let Qχ denote the set of equivalence classes of elements in Y that are attached to χ .

Lemma 5.10. Assume that A is unimodular. Then χ→ χ ′ if and only if Qχ ′ ⊆ Qχ
and χ −χ ′ ∈ X.

Proof. If χ→χ ′ then clearly χ−χ ′ ∈X and Proposition 5.7 implies that Pχ ′ ⊆Pχ .
This implies that Qχ ′ ⊆ Qχ .

Now assume that Qχ ′ ⊆Qχ and χ−χ ′ ∈X. Let λ∈Qχ ′ and choose α ∈ ρ−1(χ ′),
respectively β ∈ρ−1(χ), satisfying the conditions of Definition 5.9 for λwith respect
to χ ′, respectively χ . Write α = α(1)+α(2), where (α(1))i = αi if 〈λ, ai 〉 6= 0 and
(α(1))i = 0 if 〈λ, ai 〉 = 0. Decompose β = β(1)+β(2) in a similar fashion. Then

(χ −χ ′)− ρ(β(1)−α(1)) ∈
( ∑
〈λ,ai 〉=0

C · ai

)
∩X,

which, by (15), equals
∑
〈λ,ai 〉=0 Z · ai . Therefore we can choose u ∈ Zn such that

ui = 0 for all i such that 〈λ, ai 〉 = 0 and ρ(u)= (χ −χ ′)− ρ(β(1)−α(1)). Define
δ(2) = α(2)+ u and δ = β(1)+ δ(2) so that ρ(δ)= χ . We have

δ̄(2) = ᾱ(2) ∈
( ∑
〈λ,ai 〉=0

C · ai

) / ( ∑
〈λ,ai 〉=0

Z · ai

)
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and (λ, ᾱ(2)) and (λ, δ̄(2)) are attached to χ ′ and χ , respectively, in the sense of
Definition 5.5. Therefore (λ, δ̄(2))= (λ, ᾱ(2)) ∈ Pχ implies that Pχ ′ ⊆ Pχ . Hence
Proposition 5.7 implies that χ→ χ ′. �

Proof of Proposition 5.1. As was stated in Section 4D, the cone C is a rational cone.
Therefore we can choose µ1, . . . , µk in Y such that

C = {χ ∈ XR | 〈µi , χ〉 ≥ 0 for all i ∈ [1, k]}

⊃ {χ ∈ XR | 〈µi , χ〉> 0 for all i ∈ [1, k]} = C.

We will construct C(χ) in three stages.

Claim 1. There exists an integer N0 � 0 such that pN0 · pr(χ) ∈ X ∩ C and
χ + pN0 · pr(χ)→ χ for all p ∈ N.

For each λ ∈ Qχ fix an element βλ ∈ ρ−1(χ) such that βλ satisfies the proper-
ties listed in Definition 5.9 with respect to λ. Then pr(χ) =

∑n
i=1 pr(βλi )ai and

we choose N0 such that N0 · pr(β
λ
i ) ∈ Z for all λ ∈ Qχ and all i . The element

(βλi + pN0β
λ
i )i∈[1,n] in g∗ satisfies the properties of Definition 5.9 with respect

to λ hence Qχ ⊆ Qχ+pN0·pr(χ). Since pN0 · pr(χ) ∈ X, Lemma 5.10 says that
χ + pN0 · pr(χ)→ χ for all p ∈ N. Note also that

〈µi , pr(χ + pN0 · pr(χ))〉 = (1+ pN0)〈µi , pr(χ)〉> 0

for all i shows that pr(χ + pN0 · pr(χ)) ∈ C .

Claim 2. Fix δ =
∑n

i=1 ai ∈ X. There exists an integer N1� 0 such that

N1 · pr(χ)+ δ ∈ X∩C and χ + p(N1 · pr(χ)+ δ)→ χ

for all p ∈N. Moreover, for all λ∈Pχ , there exists βλ as before except that βλi 6= 0
for all i .

Choose N1 = pN0 such that

(17) (N1/d) · 〈µi , pr(χ)〉> |〈µi , a j 〉|

for all i ∈ [1, k] and j ∈ [1, n]. Let βλ ∈ ρ−1(χ + N1 · pr(χ)) satisfy Definition 5.9
with respect to λ for λ ∈ Qχ . By choosing a larger p if necessary we may assume
that βλi ∈ Z\{0} implies that |βλi |> 1. Then βλi +1< 0 if βλi ∈ Z<0 and βλi +1> 0
if βλi ∈ Z≥0. Moreover (βλi + 1)i∈[1,n] satisfies (16) with respect to λ,

n∑
i=1

(βλi + 1)ai = χ + (N1 · pr(χ)+ δ),

and hence χ + (N1 · pr(χ)+ δ)→ χ . The same holds for all χ + p(N1 · pr(χ)+ δ).
Finally (17) implies that pr(χ + q(N1 · pr(χ)+ δ)) ∈ C for all q ∈ Z≥0.
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Proof of the proposition. Note that (17) implies p(N1 · pr(χ)+ δ) ∈ C for all p as
well. Let

Iχ = {ε ∈ (−1, 1)n ⊂Qn
| −〈µi , (N1 · pr(χ)+ δ)〉< 〈µi , ε〉 for all i}.

Since C is d-dimensional, there exists some 0< c< 1 such that [−c, c]n ⊂ Iχ . Let
{v j | j ∈ [1, 2n

]} ⊂ [−c, c]n be the vertices of the box. Choose p ∈ N such that
p · v j ∈ Zn for all j . The same argument as in Claims 1 and 2 shows

χ← χ + q(p(N1 · pr(χ)+ δ+ A · v j )) for all q ∈ Z≥0.

We set u j = p(N1 ·pr(χ)+δ+A ·v j ). One can check as above χ←χ+
∑2n

i=1 ki ·ui

for all ki ∈ Z≥0. �

Remark 5.11. We conclude with a couple of remarks regarding Proposition 5.1.

(i) Note that in the proof of Proposition 5.1 we only used the fact that C is the
interior of some d-dimensional rational cone.

(ii) In general, the proposition is false when pr(χ) ∈ C is replaced by pr(χ) ∈ C .

(iii) It would be very interesting to directly relate the sets Qχ to the G.I.T. fan.

6. The rational Cherednik algebra associated to cyclic groups

6A. As explained in the introduction, the original motivation for this article was to
reproduce the results of [Kashiwara and Rouquier 2008] for the rational Cherednik
algebra Hh(Zm) associated to the cyclic group Zm . These rational Cherednik
algebras are parametrized3 by an m-tuple h= (hi )i∈[0,m−1] ∈Cm , where the indices
are taken modulo m. We fix a one-dimensional space h= C · y and h∗ = C · x such
that 〈x, y〉 = 1. The cyclic group Zm = 〈ε〉 acts on h and h∗ via ε · y = ζ−1 y and
ε · x = ζ x , where ζ is a fixed primitive m-th root of unity. The idempotents in C Zm

corresponding to the simple Zm-modules are

ei =
1
m

m−1∑
j=0

ζ−i jε j , i ∈ [0,m− 1],

so that ε ·ei = ζ
i ei . Then ei+1 · x = x ·ei and ei−1 · y = y ·ei . If we fix αεi =

√
2 · x

and α∨
εi = (−1/

√
2) · y then the commutation relations defining Hh(Zm), as stated

in [Rouquier 2008], become

ε · x = ζ x · ε, ε · y = ζ−1 y · ε, [y, x] = 1+m
m−1∑
i=0
(hi+1− hi )ei ,

where indices are taken modulo m.

3In this paper the parameters (hi ) and (χi ) are used. However the paper [Kuwabara 2010] uses the
parameters (κi ) and (ci ). The different parametrizations are related by hi ↔ κi and ci ↔ χi −χi+1.
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6B. The category O ⊂ Hh-mod is defined to be the subcategory of all finitely
generated Hh-modules such that the action of y ∈ C[h∗] is locally nilpotent. It is
a highest weight category. To each simple Zm-module C · ei , one can associate a
standard module in the category O defined by

1(ei ) := Hh⊗C[h∗]oZm C · ei ,

where y ∈ C[h∗] acts as zero on ei . Each 1(ei ) has a simple head L(ei ) and
L(ei ) 6' L(e j ) for i 6= j . The set of simple modules {L(ei )}i∈[0,m−1] is, up to
isomorphism, all simple modules in O. Fix i ∈ [0,m− 1] and let ci be the smallest
element in Z≥1 ∪ {∞} such that ci +mhi+ci −mhi = 0. The identity

[y, x j
] = x j−1

(
j +m

m−1∑
i=0

(hi+ j − hi )ei

)
, for all j ≥ 0,

shows that L(ei )= (C[x]/(xci ))⊗ei . Fix e := e0, the trivial idempotent. The algebra
eHhe is called the spherical subalgebra of Hh. Multiplication by e defines a functor
e : Hh-mod→ eHhe-mod with left adjoint Hhe⊗eHhe ( · ). Let C⊂Cm be the union
of the finitely many hyperplanes defined by the equations j +mhi+ j −mhi = 0,
where i ∈ [1,m− 1] and j ∈ [0,m− i].

Lemma 6.1. The functor e : Hh-mod→ eHhe-mod is an equivalence if and only if
h /∈ C. This implies that eHhe has finite global dimension when h /∈ C.

Proof. The functor e will be an equivalence if and only if HheHh = Hh. By
Ginzburg’s generalized Duflo theorem [Ginzburg 2003, Theorem 2.3], HheHh 6= Hh
implies that there is some simple module in the category O that is annihilated by e.
This happens if and only if h ∈ C. The second statement follows from the fact that
Hh has finite global dimension. �

6C. The minimal resolution of C2/Zm. In order to relate the spherical subalgebra
of Hh to a W-algebra on the resolution of the corresponding Kleinian singularity
C2/Zm , we must describe eHhe as a quantum Hamiltonian reduction. Such an
isomorphism is well known and is a particular case of a more general construction by
Holland [1999]. First we describe the minimal resolution of C2/Zm as a hypertoric
variety. Let Q be the cyclic quiver with vertices V = {v0, . . . , vm−1} and arrows
ui : vi−1→ vi for i ∈ [1,m] (where vm is identified with v0). Let ν be the dimension
vector with 1 at each vertex. Then the space of representations for Q with dimension
vector ν is the affine space

Rep(Q, ν)= {(ui )i∈[1,m] | ui ∈ C} ' Cm

and we write C[Rep(Q, ν)] = C[x1, . . . , xm]. There is an action of

Tm
= {(λi )i∈[1,m] | λi ∈ C×}
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on Rep(Q, ν) given by λ · ui = λiλ
−1
i−1ui , and hence λ · xi = λ

−1
i λi−1xi . The

one-dimensional torus T embedded diagonally in Tm acts trivially on Rep(Q, ν).
Therefore Tm−1

:= Tm/T acts on Rep(Q, ν). The lattice of characters X(Tm−1) is
the sublattice of X(Tm)=

⊕m
i=1 Z ·vi consisting of points φ =

∑m
i=1 φivi such that∑m

i=1 φi = 0. We fix the basis {wi = vi − vi+1 | i ∈ [0,m− 2]} of X(Tm−1) so that
φ = (φi )i∈[1,n] =

∑m−1
i=1 χiwi , where χi =

∑i
j=1 φi . Then the (m− 1)×m matrix

encoding the action of Tm−1 is given by

A = (a1, . . . , am)=


1 0 . . . 0 −1

0 1
... −1

...
. . . 0

...

0 . . . 0 1 −1

 .
The G.I.T walls in t∗, where t = Lie(Tm−1), are given by the hyperplanes

Hi = (χi = 0), i ∈ [1,m−1], and Hi j = (χi = χ j ), i 6= j ∈ [1,m−1]. Hence the m-
cones are the connected components of the complement to this union of hyperplanes.
As was shown originally in terms of hyperkähler manifolds by Kronheimer [1989]
and then by Cassens and Slodowy [1998] in the algebraic setting, we have:

Proposition 6.2. Let δ belong to the interior of an m-cone. Then the hypertoric
variety Y (A, δ) is isomorphic to the minimal resolution (C2/Zm)

∼ of the Kleinian
singularity C2/Zm .

As is well-known, the hypertoric variety Y (A, δ) is a toric variety. It is shown in
[Hausel and Sturmfels 2002, Theorem 10.1] that a hypertoric variety is toric if and
only if it is a product of varieties of the form (C2/Zm)

∼ for various m. Let us now
consider the corresponding quantum Hamiltonian reduction

Uχ = (D(Rep(Q, ν))
/

D(Rep(Q, ν))(µD −χ)(t))
Tm−1

.

The quantum moment map in this case is given by

µD : t−→D(Rep(Q, ν)), ti 7→ xi∂i − xm∂m for all i ∈ [1,m− 1].

Since
D(Rep(Q, ν))T

m−1
= 〈∂1 · · · ∂m, x1 · · · xm, x1∂1, . . . , xm∂m〉,

〈(µD −χ)(t)〉 = 〈xi∂i − xm∂m −χi | i ∈ [1,m− 1]〉,

where we set ∂i := ∂/∂xi , Uχ is generated by ∂1 · · · ∂m, x1 · · · xm and xm∂m .

6D. The Dunkl embedding. Let hreg := h\{0} and denote by D(hreg) the ring of
algebraic differential operators on hreg. In order to show that the spherical subalgebra
of Hh is isomorphic to a suitable quantum Hamiltonian reduction, we realize eHhe
as a subalgebra of D(hreg) using the Dunkl embedding. Similarly, using the “radial
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parts map”, we will also realize Uχ as the same subalgebra of D(hreg). The Dunkl
embedding is the map 2h : Hh→D(hreg)o Zm defined by

2h(y)=
d

dx
+

m
x

m−1∑
i=0

hi ei , 2h(x)= x and 2h(ε)= ε.

The algebra D(hreg) o Zm is filtered by order of differential operators, that is,
deg(d/dx)= 1 and deg(x)= deg(ε)= 0. If we define a filtration on Hh by setting
deg(y)=1 and deg(x)=deg(ε)=0, then the map2h is filter preserving. Localizing
Hh at the regular element x provides an isomorphism

2h : Hh[x−1
] −→∼ D(hreg)o Zm .

Therefore 2h is injective. Applying the trivial idempotent produces

2h : eHhe −→ eD(hreg)e 'D(hreg)
Zm .

Let us note that gr(Hh)'C[x, y]oZm and gr(eHhe)'C[x, y]Zm . Therefore eHhe
is generated by xme, xye and yme. Since 2h(yei )= (d/dx + (m/x)hi )ei we get

2h(yme)=
m∏

i=1

( d
dx
+

m
x

hi

)
and 2h(xye)= x d

dx
+mhm .

We note that

(18) 2h(yme)(xr )=

m∏
i=1

(r −m+ i +mhi )xr−m .

6E. The radial parts map. In this subsection we show that Uχ '2h(eHhe). The
isomorphism we describe is not new, it was first constructed by Holland [1999]
(see also [Kuwabara 2008]), but we give it in order to fix parameters. There
is a natural embedding h ↪→ Rep(Q, ν) given by x 7→ (x, . . . , x). This defines a
surjective morphism C[Rep(Q, ν)]→C[h], xi 7→ x , which descends to a “Chevalley
isomorphism”

ρ : C[Rep(Q, ν)]T
m−1
−→∼ C[h]Zm , x1 · · · xm 7→ xm .

Define a section

ρ−1
: C[h] −→ C[Rep(Q, ν)][x1/m

i | i ∈ [1,m]] by xr
7→ xr/m

1 · · · xr/m
m .

This can be extended to a twisted Harish-Chandra morphism

R̂h : D(Rep(Q, ν))T −→D(hreg)
Zm
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given by

R̂h(D)( f )= ρ(δ−1
h D(ρ−1( f )δh)) for all f ∈C[h], where δh=

m∏
i=1

x
hi+

i−m
m

i .

Calculating the action of R̂h(∂1 · · · ∂m) on xr and comparing with (18) shows that

R̂h(mm
· ∂1 · · · ∂m)=2h(yme).

Similarly,

R̂h(x1 · · · xm)=2h(xme) and R̂h(xi∂i )=
1
m

(
x d

dx
+mhi + i −m

)
.

This implies that R̂h defines a surjection D(Rep(Q, ν))T
m−1

�2h(eHhe). We fix

(19) χi = hi − hm +
i−m

m
, i ∈ [1,m− 1].

Then R̂h(xi∂i − xm∂m −χi )= 0 and R̂h descends to a surjective morphism

Rh : Uχ −→2h(eHhe).

As above, D(Rep(Q, ν)) is a filtered algebra by setting deg(∂i )= 1 and deg(xi )= 0
for i ∈ [1,m]. This induces a filtration on Uχ and we see from the definitions that
Rh is filter preserving. Therefore we get a morphism of associated graded algebras

gr Rh : gr(Uχ )−→ gr(eHhe).

Now [Holland 1999, Proposition 2.4] says that

gr(Uχ )= C[µ−1(0)]T
m−1
' C[x, y]Zm = gr(eHhe).

This isomorphism is realized by x1 · · · xm 7→ xm , mm
· y1 · · · ym 7→ ym and x1 y1 7→

(1/m) · xy. But we see from above that this is precisely what gr Rh does to
the principal symbols of the generators mm

· ∂1 · · · ∂m , x1 · · · xm and x1∂1 of Uχ .
Therefore gr Rh is an isomorphism and hence2−1

h ◦Rh :Uχ −→∼ eHhe is a filtration-
preserving isomorphism.

6F. Localization of Hh(Zm). As noted in Proposition 6.2, the hypertoric varieties
Y (A, δ) are all isomorphic provided δ does not belong to a wall in XQ. Therefore,
for any χ ∈ t∗, we may refer to the sheaf Aχ on the minimal resolution (C2/Zm)

∼,
but the reader should be aware that in doing so we have implicitly fixed an identifi-
cation (C2/Zm)

∼
= Y (A, δ). Recall the union of hyperplanes C⊂ Cm defined in

Lemma 6.1.
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Theorem 6.3. Choose h ∈Cm
\C and let χ be defined by (19). Write Ah :=Aχ for

the sheaf of W-algebras on (C2/Zm)
∼. Then the functor

HomModgood
F (Ah)

(Ah, · )

defines an equivalence of categories Modgood
F (Ah)−→∼ eHhe-mod with quasiinverse

Ah⊗eHhe ( · ). Moreover, the functor

Hhe⊗eHhe HomModgood
F (Ah)

(Ah, · )

defines an equivalence of categories Modgood
F (Ah)−→∼ Hh-mod with quasiinverse

Ah⊗eHhe eHh⊗Hh ( · ).

Proof. The condition χi 6= χ j for i 6= j ∈ [1,m − 1] translates, via (19), into
hi−h j+(i− j)/m 6= 0 for all i 6= j ∈ [1,m−1]. Similarly, the condition χi 6= 0 for
all i ∈ [1,m−1] translates into hi −hm+

i−m
m 6= 0 for all i ∈ [1,m−1]. Therefore

the linear map Cm
→ Cm−1 defined by (19) maps the union of hyperplanes C onto

{χ ∈ Cm−1
| χi = χ j for i 6= j ∈ [1,m− 1] or χi = 0 for i ∈ [1,m− 1])},

which is precisely the union of the G.I.T. walls in Cm−1. Therefore Lemma 6.1
implies that Uχ has finite global dimension when χ lies in the interior of some
G.I.T. cone C . Now the theorem follows from Corollary 5.3. �

Remark 6.4. In the above situation it is possible to explicitly calculate the sets
Qχ and hence describe the partial ordering on comparability classes as defined in
Section 5A. However the answer is not very illuminating.

Finally, we would just like to note the various forms in which the rational
Cherednik algebra Hh(Zm) appears in the literature. It is isomorphic to the deformed
preprojective algebra of type A as studied in [Crawley-Boevey and Holland 1998]. It
is well-known that its spherical subalgebra eHh(Zm)e coincides with a “generalized
U (sl2)-algebra”, as studied by Hodges [1993] and Smith [1990]. Combining this fact
with Premet’s results [2002] shows that eHh(Zm)e is also isomorphic to the finite
W-algebra associated to glm(C) at a subregular nilpotent element. Recently, Losev
[2012] has constructed explicit isomorphisms between the spherical subalgebra of
certain rational Cherednik algebras and their related finite W-algebras, which as a
special case gives the above mentioned isomorphism.

Musson [2005] and Boyarchenko [2007] have studied a certain localization of
eHh(Zm)e by using the formalism of directed algebras (or Z-algebras). Analogous
localizations for finite W-algebras were established by Ginzburg [2009]. Recently,
Dodd and Kremnizer [2009] described a localization theorem for finite W-algebras
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in the spirit of Kashiwara–Rouquier, and in particular for the finite W-algebra iso-
morphic to eHh(Zm)e. However, their result is via a different quantum Hamiltonian
reduction than the one used in Theorem 6.3.

In [Kuwabara 2010], the second author gives an explicit description of the
standard modules 1(ei ) and simple modules L(ei ) as sheaves of Ah-modules on
the minimal resolution.
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