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SINGULARITIES OF FREE GROUP CHARACTER VARIETIES

CARLOS FLORENTINO AND SEAN LAWTON

Let Xr be the moduli space of SLn, SUn, GLn, or Un-valued representations
of a rank r free group. We classify the algebraic singular stratification of
Xr . This comes down to showing that the singular locus corresponds exactly
to reducible representations if there exist singularities at all. Then by relat-
ing algebraic singularities to topological singularities, we show the moduli
spaces Xr generally are not topological manifolds, except for a few examples
we explicitly describe.

1. Introduction

During the last few decades, character varieties have played important roles in
knot theory, hyperbolic geometry, Higgs and vector bundle theory, and quantum
field theory. However, many of their fundamental properties and structure are not
completely understood.

In this article, we first classify the (algebraic) singular locus of SLn and GLn-
character varieties of free groups by relating the existence of a singularity with
the reducibility of the corresponding representation. We then classify all such
character varieties that arise as manifolds by explicitly describing the topological
neighborhoods of generic singularities. The results we obtain do not necessarily
extend to general G-character varieties of finitely generated groups 0, if G is not
one of SLn , SUn , GLn , or Un and 0 is not free; explicit counterexamples can be
obtained via methods different from those considered in this paper (see Section 3I).
Our first main theorem generalizes results in [Heusener and Porti 2004], and our
second main theorem generalizes results in [Bratholdt and Cooper 2001]. They
may be described more precisely as follows.

Let Fr be a rank r free group and let G be a reductive complex algebraic group
with K a maximal compact subgroup (see Section 2). Let Rr (G)= Hom(Fr ,G)
and Rr (K )= Hom(Fr , K ) be varieties of representations, and let G, respectively
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K , act by conjugation on these representation spaces.
Consider the space Xr (K ) :=Rr (K )/K which is the conjugation orbit space of

Rr (K ) where ρ ∼ψ if and only if there exists k ∈ K so ρ = kψk−1. Let C[Rr (G)]
be the affine coordinate ring of Rr (G) and let C[Rr (G)]G be the subring of G-
conjugation invariants. Then define

Xr (G) := Specmax
(
C[Rr (G)]G

)
,

which parametrizes unions of conjugation orbits where two orbits are in the same
union if and only if their closures have a nonempty intersection.

The space Xr (G), called the G-character variety of Fr , is a complex affine variety
and so has a well-defined (algebraic) singular locus (a proper subvariety) which
we denote by Xr (G)sing. Similarly, Xr (K ) is a semialgebraic set and so has a real
algebraic coordinate ring which likewise determines an algebraic singular locus
Xr (K )sing. For simplicity, despite the fact it is generally not an algebraic set, we
will also refer to Xr (K ) as a character variety.

We will be mainly concerned with the cases when G is the general linear group
GLn or the special linear group SLn (over C), for which K is the unitary group Un

or the special unitary group SUn , respectively. In these cases a representation ρ
is called irreducible if with respect to the standard action of G, respectively K ,
on Cn the induced action of ρ(Fr ) does not have any nontrivial proper invariant
subspaces. Otherwise ρ is called reducible. This allows one to define the sets
Xr (G)red and Xr (K )red which correspond to the spaces of equivalence classes in
Xr (G), respectively Xr (K ), that have a representative which is reducible.

In Section 2, we show that the (algebraic) singular locus of Xr (SLn) and Xr (GLn)

respectively determines the (algebraic) singular locus of Xr (SUn) and Xr (Un). We
then show Xr (SLn) ⊂ Xr (GLn) has its singular locus determined by the singular
locus of Xr (GLn). This reduces the classification of the singular loci of these four
families of moduli spaces to Xr (GLn) alone. We end Section 2 with examples
of Xr (G) that are homeomorphic to manifolds with boundary; we conjectured in
[Florentino and Lawton 2009] that these were the only examples.

It is straightforward to establish that X1(SLn) ∼= Cn−1 and X2(SL2) ∼= C3 are
affine spaces and so smooth, and X1(SLn)

red
= X1(SLn). In [Heusener and Porti

2004], it is shown that Xr (SL2)
sing
= Xr (SL2)

red for r ≥ 3. More generally, one
can establish that all irreducible representations in SLn-character varieties of free
groups are in fact smooth; that is Xr (SLn)

sing
⊂ Xr (SLn)

red. In [Lawton 2007]
it is shown that the singular locus of X2(SL3) corresponds exactly to the set of
equivalence classes of reducible representations; that is, X2(SL3)

red
= X2(SL3)

sing.
These examples generalize to our first main result:

Theorem 1.1. Let r, n ≥ 2. Let G be SLn or GLn and K be SUn or Un . Then
Xr (G)red

= Xr (G)sing and Xr (K )red
= Xr (K )sing if and only if (r, n) 6= (2, 2).



SINGULARITIES OF FREE GROUP CHARACTER VARIETIES 151

In fact we are able to use an induction argument to completely classify the
singular stratification of these semialgebraic spaces. The proof and development of
this result constitutes Section 3, including a brief review of a weak version of the
celebrated Luna slice theorem.

Theorem 1.1 is sharper than it might appear at first. Replacing Fr by a general
finitely presented group 0 one can find examples where irreducibles are singular
and examples where reducibles are smooth. On the other hand, changing G to
a general reductive complex algebraic group, we find there are examples where
irreducibles are singular. In Section 3I, we discuss this in further detail.

A locally Euclidean Hausdorff space M with a countable basis is called a topolog-
ical manifold. More generally, if the neighborhoods are permitted to be Euclidean
half-spaces then M is said to be a topological manifold with boundary. In [Florentino
and Lawton 2009] we determined the homeomorphism type of Xr (SUn) in the cases
(r, n)= (r, 1), (1, n), (2, 2), (2, 3), and (3, 2)where we showed all were topological
manifolds with boundary; this is reviewed in Section 2B. In [Bratholdt and Cooper
2001] it is established that the Xr (SU2) are not topological manifolds when r ≥ 4.

Motivated by this we conjectured in [Florentino and Lawton 2009] that the
examples computed there are the only cases where a topological manifold with
boundary arise. Our second main theorem in this paper establishes that conjecture:

Theorem 1.2. Let r, n ≥ 2. Let G be SLn or GLn and K be SUn or Un . Xr (G)
is a topological manifold with boundary if and only if (r, n) = (2, 2). Xr (K ) is a
topological manifold with boundary if and only if (r, n)= (2, 2), (2, 3), or (3, 2).

Theorem 1.1 and the observation that the reducible locus is nonempty for n ≥ 2,
does not immediately imply Theorem 1.2 since algebraic singularities may or may
not be an obstruction to the existence of a Euclidean neighborhood (topological
singularities). For example, both the varieties given by xy = 0 and y2

= x3 in
C2 (or R2) are (algebraically) singular at the point (0, 0) but only the latter has a
Euclidean neighborhood at the origin. So, only the former is topologically singular.
The variety xy = 0 is reducible; an example of an irreducible variety that has an
algebraic singularity that is also a topological singularity is the affine cone over
CP1
×CP1 discussed in Section 3E.

The proof of Theorem 1.2 constitutes Section 4. To prove our main theorems we
use slice theorems and explicitly describe the homeomorphism type of neighbor-
hoods (showing them to be non-Euclidean) for a family of examples. It is interesting
to note that since Xr (SLn) deformation retracts to Xr (SUn), by [Florentino and
Lawton 2009], it must be the case that for (r, n)= (2, 3) and (3, 2) the non-Euclidean
neighborhoods deformation retract to Euclidean neighborhoods. Curiously, these
are the only cases (n ≥ 2) where Xr (SUn) is a topological manifold, and both are
homeomorphic to spheres (see [Florentino and Lawton 2009] or Section 2B).
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2. Character varieties

Let G be a complex affine reductive algebraic group and let K be a maximal
compact subgroup. Then, G = KC is the complexification of K (the set complex
zeros of K as a real algebraic set). For instance, KC = SLn is the complexification
of K = SUn , and KC = GLn is the complexification of K = Un .

Let 0 be a finitely generated group and let R0(G)=Hom(0,G) be the G-valued
representations of 0. We call R0(G) the G-representation variety of 0, although it
is generally only an affine algebraic set.

In the category of affine varieties, R0(G) has a quotient by the conjugation action
of G, a regular action, given by ρ 7→ gρg−1. This quotient is realized as X0(G)=
Specmax(C[R0(G)]G), where C[R0(G)]G is the subring of invariant polynomials
in the affine coordinate ring C[R0(G)]. We call X0(G) the G-character variety of
0. Concretely, it parametrizes unions of conjugation orbits where two orbits are
in the same union if and only if their closures intersect nontrivially. Within each
union of orbits, denoted [ρ] and called an extended orbit equivalence class, there is
a unique closed orbit (having minimal dimension). Any representative from this
closed orbit is called a polystable point. For SLn and GLn the polystable points will
have the property that with respect to the action of ρ(0) on Cn , they are completely
reducible; that is, each decomposes into a finite direct sum of irreducible subactions
(on nonzero subspaces).

Let Fr = 〈x1, . . . , xr 〉 be a rank r free group. The G-representation variety
of Fr , and the G-character variety of Fr will simply be denoted by Rr (G) and
Xr (G), respectively. The evaluation mapping Rr (G)→ Gr defined by sending
ρ 7→ (ρ(x1), . . . , ρ(xr )) is a bijection and since G is a smooth affine variety, Rr (G)
naturally inherits the structure of a smooth affine variety as well. Note that we are
not assuming that an algebraic variety is irreducible. Whenever G is an irreducible
algebraic set however, Rr (G) is irreducible, and consequently Xr (G) is irreducible
as well.

Since an algebraic reductive group over C is always linear, we can assume that G
is a subgroup of GLN , for some N , and hence Rr (G)⊂ Cr N 2

. So, Rr (G) inherits
the ball topology. Given a set of generators f1, . . . , fk of the ring of invariants
C[Rr (G)]G , Xr (G) also inherits the ball topology from the embedding of Xr (G)
into Ck given by [ρ] 7→ ( f1(ρ), . . . , fk(ρ)). In this topology Xr (G) is Hausdorff
and has a countable basis. Although the ball topology is dependent on an embedding
a priori, an affine embedding corresponds exactly to a set of generators for the
associated ring, but all choices result in the same homeomorphism type, so the ball
topology is intrinsic. Also, in the ball topology, at each point in Xr (G) there is a
neighborhood homeomorphic to a real cone over a space with Euler characteristic 0
[Sullivan 1971].
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Given a compact Lie group K , for brevity we also call the orbit space Xr (K )=
Rr (K )/K a K -character variety of Fr . Note however that Xr (K ) is generally
only a semialgebraic set, and does not equal, in general, the set of real points of a
complex variety. In this case, the topology, also Hausdorff with a countable basis,
is the quotient topology. Xr (K ) is compact since K is compact. Likewise, it is
path-connected whenever K is path-connected.

Definition 2.1. Let ρ :0→G be a representation into a reductive complex algebraic
group. If the image of ρ does not lie in a parabolic subgroup of G, then ρ is called
irreducible. If, for every parabolic P containing ρ(0) there is a Levi factor L ⊂ P
such that ρ(0)⊂ L , then ρ is called completely reducible.

For SLn and GLn the irreducible representations are exactly those that, with respect
to their actions on Cn , do not admit any proper (nontrivial) invariant subspaces.
Any representation that is not irreducible is called reducible. Denote the set of
reducible representations by R0(G)red. A point is called stable if the stabilizer is
finite and if the orbit is closed.

The following theorem can be found in [Sikora 2012], building on earlier work
in [Johnson and Millson 1987, pp. 54–57]. Let PG = G/Z(G) where Z(G) is the
center. Note that the action of PG and G define the same GIT quotients and the
same orbit spaces and thus, since the PG action is effective, we will sometimes
consider this action.

Theorem 2.2 [Johnson and Millson 1987; Sikora 2012]. Let G be reductive. The
irreducibles are exactly the stable points under the action of PG on R0(G). The
completely reducibles are the polystable points.

Definition 2.3. The reducibles X0(G)red are the image of the projection

R0(G)red
⊂R0(G)−→ X0(G).

Since Rr (G)∼= Gr all points are smooth, and since Xr (G) is an affine quotient
of a reductive group, there exists ρss

∈ [ρ] which has a closed orbit and corresponds
to a completely reducible representation. Thus, for G either SLn or GLn we can
assume it is in block diagonal form. In other words, ρss

↔ (X1, . . . , Xr ) where
X i all have the same block diagonal form (if they are irreducible then there would
be only one block). These representations induce a semisimple module structure
on Cn . We denote the set of semisimple representations by Rr (G)ss. We note that
Rr (G)ss/G∼=Xr (G) since all extended orbits have a semisimple representative, and
that the semisimple representations are also the completely reducible representations
which are also the polystable representations. Likewise, we denote the irreducible
representations (those giving simple actions on Cn) by Rr (G)s and their quotient
by Xr (G)s.
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2A. The determinant fibration. In order to compare SLn-character varieties to GLn-
character varieties, the following setup will be useful. The usual exact sequence of
groups given by the determinant of an invertible matrix

(1) SLn→ GLn
det
→ C∗

induces (by fixing generators of Fr , as before) what we will call the determinant
map:

det : Xr (GLn)→ Hom(Fr ,C∗)∼=
(
C∗
)r
, [ρ] 7→ det(ρ),

where det(ρ)= (det(X1), . . . , det(Xr )), for ρ= (X1, . . . , Xr )∈Rr (GLn). Note that
the map is clearly well-defined on conjugation classes. Considering the algebraic
torus (C∗)r = Hom(Fr ,C∗) = Xr (C

∗) as an algebraic group (with identity 1 =
(1, . . . , 1) and componentwise multiplication) it is immediate that the SLn-character
variety is the “kernel” of the determinant map, Xr (SLn)= det−1(1). Therefore, the
sequence (1) induces another exact sequence

(2) Xr (SLn)→ Xr (GLn)
det
→
(
C∗
)r
.

In this way, SLn-character varieties appear naturally as subvarieties of GLn-character
varieties.

Note also that Xr (GLn) can be viewed as a Xr (C
∗)-space, as it admits a well-

defined action of this torus. That is, we can naturally define ρ · λ ∈ Xr (GLn), given
ρ ∈Xr (GLn) and λ ∈Xr (C

∗). Given that PSLn = GLn//C
∗, it is easy to see that the

corresponding quotient is the PSLn-character variety:

Xr (PSLn)= Xr (GLn)//Xr (C
∗).

Also, GLr
n is a quasiaffine subvariety of gl(n,C)r . In fact, it is the principal

open set defined by the product of the determinants of generic matrices. Since the
determinant is an invariant function and taking invariants commutes with localizing
at those invariants, we have

C[GLr
n]

GLn ≈ C[gl(n,C)r//GLn]

[
1

det(X1) · · · det(Xr )

]
,

where the expression on the right is the localization at the product of determinants.
We now prove how the fixed determinant character varieties, complex and com-

pact, relate to the nonfixed determinant character varieties. Identify the cyclic group
of order n, Zn := Z/nZ, with Z(SLn)∼= Z(SUn).

Theorem 2.4. The following are isomorphisms of semialgebraic sets:

(i) Xr (GLn)∼= Xr (SLn)×Xr (Zn) Xr (GL1).

(ii) Xr (Un)∼= Xr (SUn)×Xr (Zn) Xr (U1).
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Proof. We first note that Xr (U1)∼= (S1)r and Xr (GL1)∼= (C
∗)r , and thus Xr (Zn)∼=

Zr
n , as the groups involved are abelian.
The determinant map (1) defines a principal SLn-bundle SLn ↪→ GLn → C∗,

which also expresses GLn ∼= SLn o C∗ as a semidirect product since there exists a
homomorphic section (SLn is a normal subgroup).

Let Zn correspond to n-th roots of unityωk=e
2π ik

n . As algebraic sets one can show
directly, by the mapping (A, λ) 7→ λA, that GLn ∼= (SLn ×C∗)//Zn := SLn ×Zn C∗

where Zn acts by ωk · (g, λ) = (gωk, ω
−1
k λ) and C∗ is the center of GLn . This

implies that, as algebraic sets,

(3) Xr (GLn)∼= ((SLn ×C∗)//Zn)
r//SLn

∼=
(
(SLr

n × (C
∗)r )//Zr

n
)
//SLn

∼=
(
(SLr

n × (C
∗)r )//SLn

)
//Zr

n
∼= Xr (SLn)×Zr

n
(C∗)r ,

since the action of Zr
n commutes with the action of SLn which is trivial on (C∗)r .

In the same way we obtain the other “twisted product” isomorphism Xr (Un)∼=

Xr (SUn)×Zr
n
(S1)r . �

This result provides an explicit way to write Xr (GLn) as a Xr (SLn)-bundle over
the algebraic r-torus (C∗)r and Xr (Un) as a Xr (SUn)-bundle over the geometric
r -torus (S1)r .

There are a number of consequences to Theorem 2.4.

Corollary 2.5. Xr (Un), respectively Xr (GLn), is a manifold whenever Xr (SUn),
respectively Xr (SLn), is a manifold.

Proof. The action of Zr
n is free and proper. �

Corollary 2.6. Xr (GLn) and Xr (SLn)× (C
∗)r are étale equivalent.

Proof. First note that SLr
n × (C

∗)r is smooth and hence a normal variety. This
implies (see [Drézet 2004]) that (SLr

n × (C
∗)r )//SLn = Xr (SLn)× (C

∗)r is also
normal. However, the GIT projection

Xr (SLn)× (C
∗)r → Xr (SLn)×Zr

n
(C∗)r

is then étale because Zr
n is finite and acts freely [ibid.]. Then by Theorem 2.4

Xr (GLn)∼= Xr (SLn)×Zr
n
(C∗)r which establishes the result. �

Corollary 2.7. Let [ρ] ∈ Xr (SLn) and let [ψ] ∈ Xr (SUn). Then:

(i) [ρ] ∈ Xr (SLn)
sing if and only if [ρ] ∈ Xr (GLn)

sing.

(ii) [ρ] ∈ Xr (SLn)
sm if and only if [ρ] ∈ Xr (GLn)

sm.

(iii) [ψ] ∈ Xr (SUn)
sing if and only if [ψ] ∈ Xr (Un)

sing.

(iv) [ψ] ∈ Xr (SUn)
sm if and only if [ψ] ∈ Xr (Un)

sm.
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Proof. First let [ρ] ∈Xr (SLn). Corollary 2.6 tells that Xr (SLn)× (C
∗)r→Xr (GLn)

is an étale equivalence and such mappings preserve tangent spaces, we conclude

T[ρ](Xr (GLn))∼= T[ρ](Xr (SLn)× (C
∗)r )∼= T[ρ](Xr (SLn))⊕Cr .

By counting dimensions and noticing that

dimC(Xr (GLn))= dimC(Xr (SLn))+ r,

results (i) and (ii) follow.
Results (iii) and (iv) follow from (i) and (ii) and the additional observations that

dimC(Xr (KC))= dimR(Xr (K )) and dimC

(
T[ψ](Xr (KC))

)
= dimR

(
T[ψ](Xr (K ))

)
.

�

Corollary 2.8. We have the following isomorphisms of character varieties:

(i) Xr (PSLn)∼= Xr (SLn)//Z
r
n in the category of algebraic varieties.

(ii) Xr (PUn)∼= Xr (SUn)/Z
r
n in the category of semialgebraic sets.

Proof. From the previous theorem we have

Xr (GLn)∼= Xr (SLn)×Zr
n
(C∗)r .

Taking the quotient of both sides by (C∗)r we can conclude Xr (PSLn)∼=Xr (SLn)//Z
r
n .

More precisely letting µ= (µ1, . . . , µr ) ∈ (C
∗)r act only on the second factor of

Xr (SLn)× (C
∗)r ,

µ ·
(
[(A1, . . . , Ar )], (λ1, . . . , λr )

)
=
(
[(A1, . . . , Ar )], (µ1λ1, . . . , µrλr )

)
,

and going through the isomorphisms in (3), one gets that the action on Xr (GLn)

corresponds to scalar multiplication of each entry, so we obtain

Xr (PSLn) ∼= Xr (GLn)//(C
∗)r ∼=

(
Xr (SLn)×Zr

n
(C∗)r

)
//(C∗)r

∼=
(
(Xr (SLn)×(C

∗)r )//Zr
n
)
//(C∗)r

∼=
(
(Xr (SLn)×(C

∗)r )//(C∗)r
)
//Zr

n
∼= Xr (SLn)//Z

r
n,

as wanted. The other statement is analogous. �

2B. Examples. We use the results in Section 2A and the theorems from [Florentino
and Lawton 2009] to describe the homeomorphism types of the examples of G-
character varieties of Fr known to be manifolds with boundary. Let Bn denote a
closed real ball of indicated dimension, and let {∗} denote the space consisting of
one point.

One can show that whenever φ : Xr (SLn)→ M is an isomorphism (as affine
varieties), then Xr (SUn)∼= φ(Xr (SUn))⊂ M (as semialgebraic sets) by restricting
φ to Xr (SUn)⊂ Xr (SLn) [Procesi and Schwarz 1985].

We first consider the trivial case (r, n)= (r, 1). In this case the conjugation action
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is trivial, and thus we deduce the following table of moduli of (r, 1)-representations:

fixed determinant nonfixed determinant

complex Xr (SL1) ∼= {∗} Xr (GL1)∼= (C
∗)r

compact Xr (SU1)∼= {∗} Xr (U1) ∼= (S1)r

We next consider the case r = 1. The coefficients of the characteristic polynomial
of a matrix X , {c1(X), . . . , cn−1(X), det(X)}, define conjugate invariant regular
mappings X1(SLn)→ Cn−1 and X1(GLn)→ Cn−1

×C∗ which are isomorphisms.
Thus we get this table of moduli of (1, n)-representations:

fixed determinant nonfixed determinant

complex X1(SLn) ∼= Cn−1 X1(GLn)∼= Cn−1
×C∗

compact X1(SUn)∼= Bn−1 X1(Un) ∼= Bn−1× S1

Remark 2.9. With respect to the second table, each of the four families of moduli
spaces contains no irreducible representations, yet each space is smooth. For this
reason these moduli spaces should perhaps be regarded as everywhere singular,
since we will see that irreducibles will generally be smooth points for r ≥ 2.

In the r = 2 case we have a well-known isomorphism X2(SL2)→ C3 given
by [(A, B)] 7→ (tr(A), tr(B), tr(AB)); see [Goldman 2009; Vogt 1889; Fricke and
Klein 1912]. More generally there is an isomorphism gl(2,C)2//PGL2→ C5 given
by

[(A, B)] 7→ (tr(A), tr(B), tr(AB), det(A), det(B)).

Therefore we get the following moduli of (2, 2)-representations:

fixed determinant nonfixed determinant

complex X2(SL2) ∼= C3 X2(GL2)∼= C3
× (C∗×C∗)

compact X2(SU2)∼= B3 X2(U2) ∼= B3× (S1
× S1)

In [Florentino and Lawton 2009] the following fixed determinant cases are
established:

fixed determinant nonfixed determinant

compact (3, 2) X3(SU2)∼= S6 X3(U2)∼= S6
×Z3

2
(S1
×S1
×S1)

compact (2, 3) X2(SU3)∼= S8 X2(U3)∼= S8
×Z2

3
(S1
×S1)

Remark 2.10. The complex (3, 2) and (2, 3) cases are left out in this last table
since we will show they are not manifolds. In each of these cases, the complex
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moduli space of fixed determinant is a branched double cover of complex affine
space which deformation retract to a sphere. The explicit scheme structures are
known as well. See [Florentino and Lawton 2009; Lawton 2007].

We conjectured in [Florentino and Lawton 2009] that this covers all the cases
where a topological manifold with boundary can arise. We will prove this conjecture
in Section 4.

3. Singularities

3A. Algebro-geometric singularities. There are a number of equivalent ways to
describe smoothness for affine varieties.

Let X = V ( f1, . . . , fk)⊂ Cn be an affine variety. Then its tangent space at the
point p= (p1, . . . , pn) ∈ X is the vector space

Tp(X)=
{
(v1, . . . , vn) ∈ Cn

∣∣∣∣ n∑
j=1

∂ fi

∂x j

∣∣∣
p
(v j − p j )= 0 for all i

}
.

This coincides with the more general definition Tp(X)= (m p/m
2
p)
∗, which is

the dual to the cotangent space m p/m
2
p, where m p is a maximal ideal in C[X ]

corresponding to p by Hilbert’s Nullstellensatz.

Definition 3.1. The singular locus of X is defined to be

X sing
= { p ∈ X | dimCTp(X) > dimKrull X}.

The complement of this set, X−X sing, is a complex manifold. If X is irreducible,
then X is path-connected and furthermore X − X sing is likewise path-connected.
See [Shafarevich 1994].

Let c=n−dimKrull X . And let J be the k×n Jacobian matrix of partial derivatives
of the k relations defining X ⊂ Cn . We can assume n is minimal. Then X sing is
concretely realized as the affine variety determined by the determinant of the c× c
minors of J . This ideal is referred to as the Jacobian ideal. In this way, X sing is
seen to be a proper subvariety of X .

For example, in [Heusener and Porti 2004] it is shown (for r ≥ 3) that

Xr (SL2)
sing
= Xr (SL2)

red.

In [Lawton 2007], explicitly computing the Jacobian ideal, a similar result is also
shown: X2(SL3)

red
= X2(SL3)

sing.

3B. Tangent spaces. Let g be the Lie algebra of G. Having addressed the r = 1
and n = 1 cases, we now assume that r, n ≥ 2.

The following two lemmas are classical, and in fact are true for any algebraic
Lie group over R or C. See [Weil 1964]. For a representation ρ : Fr → G, let us
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denote by gAdρ the Fr -module g with the adjoint action via ρ. That is, any word
w ∈ Fr acts as w ·X =Adρ(w) X =ρ(w)Xρ(w)−1, for X ∈ g. Consider the cocycles,
coboundaries and cohomology of Fr with coefficients in this module. Explicitly:

Z1(Fr ; gAdρ ) := {u : Fr → g | u(xy)= u(x)+Adρ(x) u(y)},

B1(Fr ; gAdρ ) := {u : Fr → g | u(x)= Adρ(x) X − X for some X ∈ g},

H 1(Fr ; gAdρ ) := Z1(Fr ; gAdρ )/B1(Fr ; gAdρ ).

Lemma 3.2. Let G be any algebraic Lie group over R or C.

Tρ (Rr (G))∼= gr ∼= Z1(Fr ; gAdρ ).

Let Orbρ={gρg−1
| g∈G} be the G-orbit of ρ, and let Stabρ={g∈G | gρg−1

=

ρ} be the G-stabilizer (or isotropy subgroup).

Lemma 3.3. Let G be any algebraic Lie group over R or C.

Tρ(Orbρ)∼= g/{X ∈ g | Adρ(x) X = X} ∼= B1(Fr ; gAdρ ).

It is not always the case that the tangent space to the quotient is the quotient of
tangent spaces. Consider representations from the free group of rank 1 into SL3.
The ring of invariants is two dimensional and the ring is generated by tr(X) and
tr(X−1). So the ideal is zero and the ring is free. Consequently it is smooth and
the representation sending everything to the identity (having maximal stabilizer)
is a nonsingular point. This illustrates that there can be smooth points in the
quotient that have positive-dimensional stabilizer. At these points, Tρ(Rr (G)//G) 6∼=
Tρ(Rr (G))/Tρ(Orbρ), seen by simply comparing dimensions.

We also note that if we replace free groups by finitely generated groups 0 then the
above isomorphisms require a more careful treatment due to the possible existence
of nilpotents in the coordinate ring of the scheme associated to R0(G) [Sikora
2012].

Recall that Rr (G)s is the set of irreducible representations, and Xr (G)s =
Rr (G)s/G. An action is called locally free if the stabilizer is finite, and is called
proper if the action G× X→ X × X is a proper mapping. In general, the quotient
by a proper locally free action of a reductive group on a smooth manifold is an
orbifold (a space locally modeled on finite quotients of Rn).

The following lemma can be found in [Johnson and Millson 1987, pp. 54–57].
See also [Goldman 1990; 1984].

Lemma 3.4. Let G be reductive and r, n ≥ 2. The PG action on Rr (G)s is locally
free and proper.

Therefore, Rr (G)s/G =Rr (G)s/PG are orbifolds.
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Lemma 3.5. For G equal to SLn,GLn, SUn , or Un and r, n ≥ 2, the associated
PG action on Rr (G)s is free. Therefore, in these cases Rr (G)s/G is a smooth
manifold.

Proof. Let ρ = (X1, . . . , Xr ) ∈Rr (G)s . Then by Burnside’s theorem [Lang 2002]
the collection {X1, . . . , Xr } generates all of n × n matrices Mn×n as an algebra,
since r > 1 and they form an irreducible set of matrices. Suppose there exists g ∈G
so that for all 1≤ k ≤ r we have gXk g−1

= Xk . Then g stabilizes all of Mn×n .
Consider M = Cn as a module over R = Mn×n . Clearly, M is a simple module

since no nontrivial proper subspaces are left invariant by all matrices. Let fg be the
automorphism of Cn defined by mapping v 7→ gv. Then fg defines an R-module
automorphism of M since g stabilizes all of R. Thus by Schur’s lemma the action
of g is equal to the action of a scalar; that is, g is central. �

Lemma 3.5 and Lemma 3.16 (see Section 3D) together immediately imply the
following corollary.

Corollary 3.6. Let G = SLn,GLn, SUn , or Un . If [ρ] ∈ Xr (G)s and r, n ≥ 2, then

T[ρ](Xr (G))∼= H 1(Fr ; gAdρ ).

For G = SLn we can calculate that dimC Xr (G)s = (n2
− 1)(r − 1) and for

K = SUn , we have dimR Xr (K )s = (n2
− 1)(r − 1). Likewise, for G = GLn we

calculate dimC Xr (G)s=n2(r−1)+1 and for K =Un , dimR Xr (K )s=n2(r−1)+1.
Let Xr (G)sm

= Xr (G)−Xr (G)sing be the smooth stratum, which is a complex
manifold, open and dense as a subspace of Xr (G). The calculation of dimensions
above and Corollary 3.6 imply the following lemma which expresses the fact that
the irreducibles not only form a smooth manifold but are naturally contained in the
smooth stratum of the variety.

Lemma 3.7. Let r, n≥2 and G be one of SLn or GLn . Then the following equivalent
statements hold:

(i) Xr (G)s ⊂ Xr (G)sm.

(ii) Xr (G)sing
⊂ Xr (G)red.

The next lemmas address important technical points that we will need in our
proofs.

Lemma 3.8. Xr (G)red is an algebraic set; that is, a subvariety of Xr (G).

Proof. The irreducibles are exactly the GIT stable points (zero dimensional stabi-
lizer and closed orbits) and in general these are Zariski open, which implies the
complement is an algebraic set [Dolgachev 2003]. �

Lemma 3.9. Suppose there exists a set O⊂Xr (G)sing
∩Xr (G)red that is dense with

respect to the ball topology in Xr (G)red. Then Xr (G)sing
= Xr (G)red.
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Proof. Since both Xr (G)sing
⊂ Xr (G)red are subvarieties (by Lemmas 3.7 and 3.8),

O is dense in both with respect to the ball topology. This follows since O is dense
in Xr (G)red with respect to the ball topology and O⊂ Xr (G)sing

∩Xr (G)red. Thus
Xr (G)sing

= O = Xr (G)red, where O is the closure of O in Xr (G) with respect to
the (metric) ball topology. �

A set as in Lemma 3.9 was called an adherence set in [Heusener and Porti 2004].

3C. Denseness of reducibles with minimal stabilizer. Now consider the following
subvarieties of reducibles. Recall that the 0 vector space is not considered to be an
irreducible subrepresentation.

Definition 3.10. Define Ur,n ⊂ Xr (GLn)
red and Wr,n ⊂ Xr (SLn)

red by:

Ur,n =
{
[ρ1⊕ ρ2] ∈ Xr (GLn) : ρi : Fr → GLni are irreducible

}
Wr,n =

{
[ρ1⊕ ρ2] ∈ Xr (SLn) : ρi : Fr → GLni are irreducible

}
,

where we consider all possible decompositions n = n1+ n2, with ni > 0.

Note that a given ρ ∈ Ur,n uniquely determines the integers n1 and n2, up to
permutation. We will refer to this situation by saying that ρ is of reduced type
[n1, n2]. Similar remarks and terminology apply to Wr,n .

It is clear that

(4) Xr (SLn)
red
= Xr (GLn)

red
∩Xr (SLn)

and that
Wr,n =Ur,n ∩Xr (SLn).

The following lemma is likewise clear by the proof of Lemma 3.5.

Lemma 3.11. A representation ρ is in Ur,n if and only if Stabρ ∼= (C
∗)2. Also,

ρ ∈Wr,n if and only if Stabρ ∼= C∗.

The strategy is now to show that Ur,n and Wr,n contain only singularities. How-
ever, we must first establish the following lemma.

Lemma 3.12. Let r, n ≥ 2. Ur,n is dense in Xr (GLn)
red with respect to the ball

topology.

Proof. When n= 2, Ur,n coincides with Xr (GLn)
red, since any completely reducible

representation is of reduced type [1, 1]. So we assume n ≥ 3. Let ρ ∈ [ρ] ∈
Xr (GLn)

red have at least three irreducible blocks; that is, ρ = ρ1⊕ρ2⊕ρ3 where ρ1

and ρ2 are irreducible and ρ3 is semisimple. In other words, [ρ] ∈Xr (GLn)
red
−Ur,n .

Then ρ2 ⊕ ρ3 is a semisimple representation into GLk for some k. Since the
irreducible representations Fr → GLk are dense (here we use r > 1), there exists an
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irreducible sequence σ j ∈ Hom(Fr ,GLk) satisfying

lim
j→∞

σ j = ρ2⊕ ρ3,

which in turn implies

lim
j→∞

ρ1⊕ σ j = ρ1⊕ ρ2⊕ ρ3 = ρ,

where ρ1⊕ σ j is in Ur,n . Thus we have a sequence [ρ1⊕ σ j ] ∈Ur,n ⊂ Xr (GLn)
red

whose limit is [ρ1 ⊕ ρ2 ⊕ ρ3]. This shows that Ur,n is dense in Xr (GLn)
red and

proves the lemma. �

Corollary 3.13. Let r, n ≥ 2. Then Wr,n is dense in Xr (SLn)
red with respect to the

ball topology.

Proof. First we show that Xr (SLn)
red
⊂ Wr,n . Using the previous lemma and

Equation (4), let

[ρ] ∈ Xr (SLn)
red
= Xr (SLn)∩Xr (GLn)

red

= Xr (SLn)∩Ur,n.

Then, we can write ρ = lim σ j , where σ j = ρ
( j)
1 ⊕ ρ

( j)
2 ∈ Ur,n is of reduced type

[n1, n2]. Let us write λ j := det ρ( j)
1 det ρ( j)

2 . Since the limit is a well-defined point
[ρ] ∈Xr (SLn)

red, we can arrange for the sequence to be in Wr,n as follows. Letting
α j = (1/λ j )

1/n1 (for any choice of branch cut), we can also write ρ = lim η j where
η j = (ρ

( j)
1 α j )⊕ ρ

( j)
2 ∈Wr,n , (since now η j has unit determinant), from which one

sees that ρ ∈Wr,n , as wanted. Finally, we get:

Xr (SLn)
red
⊂Wr,n = Xr (SLn)∩Ur,n

⊂ Xr (SLn)∩Ur,n

= Xr (SLn)
red,

which implies all these sets coincide, finishing the proof. Here, we used the standard
fact that the closure of an intersection is contained in the intersection of the closures,
and that Xr (SLn) is closed in Xr (GLn). �

3D. The Luna slice theorem and the Zariski tangent space. We now prove a
strong lemma, first proved in [Heusener and Porti 2004] and later in more generality
in [Sikora 2012], which tells exactly how to understand the Zariski tangent space
at a general free group representation. For a similar result see also [Drézet 2004,
p. 45]. To that end, we review the Luna slice theorem [1973]. We recommend
[Drézet 2004] for a good exposition.

Following [Schwarz 2004], we define an étale map between complex affine
varieties as a local analytic isomorphism in the ball topology.
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Theorem 3.14 (weak Luna slice theorem at smooth points). Let G be a reductive
algebraic group acting on an affine variety X. Let x ∈ X be a smooth point with
Orbx closed. Then there exists a subvariety x ∈ V ⊂ X , and Stabx -invariant étale
morphism φ : V → Tx V satisfying:

(i) V is locally closed, affine, smooth, and Stabx -stable.

(ii) V ↪→ X→ X//G induces T[x](V//Stabx)∼= T[x](X//G).

(iii) φ(x)= 0 and dφx = Id.

(iv) Tx X = Tx(Orbx)⊕ Tx V with respect to the Stabx -action.

(v) φ induces T[x](V//Stabx)∼= T0(Tx V//Stabx).

Remark 3.15. The reader familiar with Luna’s slice theorem may be wondering
how Theorem 3.14 is implied. Firstly, note that ψ is an étale mapping if and only
if the completion of the local rings satisfy Ôx ∼= Ôψ(x) which implies the subset
of derivations are isomorphic, the latter being isomorphic to the Zariski tangent
spaces. The usual Luna slice theorem implies φ : V//Stabx→ φ(V )//Stabx is étale,
(G × V )//Stabx ∼= U ⊂ X is saturated and open, and V//Stabx → U//G is étale.
We thus respectively conclude lines (v), (iv), and (ii) in the above theorem.

Lemma 3.16. Let G be a complex algebraic reductive Lie group. For any [ρ] ∈
Xr (G),

T[ρ]Xr (G)∼= T0
(
H 1(Fr ; gAdρss )//Stabρss

)
,

where ρss is a polystable representative from the extended orbit [ρ].

Proof. Any ρss
∈ [ρ] has a closed orbit and is a smooth point of Rr (G), and every

point [ρ] ∈ Xr (G) contains such a ρss.
By the Luna slice theorem, there exists an algebraic set ρss

∈ Vρss ⊂Rr (G) such
that:

(i) Stabρss(Vρss)⊂ Vρss

(ii) With respect to the reductive action of Stabρss ,

Z1(Fr ; gAdρss )∼= Tρss(Rr (G))∼= Tρss(Orbρss)⊕ Tρss(Vρss)

∼= B1(Fr ; gAdρss )⊕ Tρss(Vρss),

since ρss is smooth.

(iii) Thus, H 1(Fr ; gAdρss )∼= Tρss(Vρss), as Stabρss-spaces.

(iv) Vρss ↪→Rr (G)→ Xr (G) induces T[ρss](Vρss//Stabρss)∼= T[ρ]Xr (G).

(v) T[ρss](Vρss//Stabρss)∼= T0
(
Tρss(Vρss)//Stabρss

)
, since ρss is smooth.

Putting these steps together we conclude

T[ρ]Xr (G)∼= T0
(
Tρss(Vρss)//Stabρss

)
∼= T0

(
H 1(Fr ; gAdρss )//Stabρss

)
. �
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Remark 3.17. Upon closer examination we find H 1(Fr ; gAdρss )//Stabρss to be an
étale neighborhood; that is, an algebraic set that maps, via an étale mapping, to an
open set (in the ball topology) of Xr (G) [Schwarz 2004, p. 223].

3E. The C∗-action on cohomology. As we saw in Corollary 3.13, the generic
singularity will occur when Stabρ is the smallest possible torus group, namely C∗

or C∗×C∗, for the cases G = SLn or G = GLn , respectively.
To study the C∗-action on cohomology, the following setup will be relevant.
Fix two integers n, k≥ 1. Consider the vector space C2n

=Cn
×Cn with variables

(z,w)= (z1, . . . , zn, w1, . . . , wn) and the action of C∗ given by

(5) λ · (z,w)= (λk z, λ−kw).

Let us denote by C2n//kC∗ the corresponding affine GIT quotient. It is the spectrum
of the ring C [z,w]C∗of polynomial invariants under this action. To describe this
ring, let

p(z,w)= za1
1 · · · z

an
n w

b1
1 · · ·w

bn
n

be a monomial, with ai , bi ∈ N, and define

∂p :=
n∑

j=1

a j − b j .

Any polynomial invariant under the action is a sum of monomials p such that
∂p = 0. Considering the monomials with smallest degree, we are led to conclude
that

C [z,w]C∗
= C [z1w1, . . . , z1wn, . . . , znw1, . . . , znwn] .

Note that this shows that the quotient is independent of k. By viewing these n2

generators as elements of an n×n matrix X = (xi j ), xi j = ziw j , which necessarily
has rank at most one, we conclude that this is the ring of polynomial functions on
the variety V ⊂ Mn×n (C) of matrices of rank ≤ 1:

C [z,w]C∗
= C [V ] .

The variety V is called a determinantal variety [Harris 1992] and one can show
that C [V ] = C

[
xi j
]
/I where I is the ideal of 2 × 2 minors of X . By simple

computations, V has a unique singularity, the zero matrix, which corresponds to
the orbit of zero in C2n .

Now, observe that all orbits of the action (5) are closed except those contained in

Z := {0}×Cn
∪Cn
×{0} ,
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and moreover there is only one closed orbit in Z , which is easily seen to be the
only singular point of C2n//kC∗. Therefore, by GIT, the quotient

(C2n
\ Z)/C∗

is a geometric quotient. We summarize these results as follows.

Lemma 3.18. Let n ≥ 2.

(i) C2n//kC∗ is isomorphic to the determinantal variety of n× n square matrices
of rank ≤ 1. Its unique singularity is the orbit of the origin.

(ii) (C2n
\ Z)/C∗ is isomorphic to C∗×CPn−1

×CPn−1.

Because of the fact that the GIT quotient is obtained from (C2n
\Z)/C∗ by adding

just one point, the singular point, and because of (ii) above, we will refer to C2n//kC∗

as an affine cone over CPn−1
×CPn−1, and denote it by CC(CPn−1

×CPn−1). It is
called the affine cone over the Segre variety in [Mukai 2003].

Now consider the following antiholomorphic involution of C2n
= Cn

×Cn:

j : (z,w) 7→ −(w̄, z̄),

and consider the same action as above, but restrict it to S1
⊂ C∗. This will be

relevant in the study of the compact quotients. The fixed point set of the involution
j is the set

F := {(z,− z̄) : z ∈ C} ⊂ Cn
×Cn,

which is canonically identified with the first copy of Cn (as real vector spaces).

Lemma 3.19. (i) The S1-action on C2n commutes with j .

(ii) The quotient F/S1 of its restriction to F is homeomorphic to a real open cone
over CPn−1 denoted by C(CPn−1).

Proof. Proving (i) is straightforward, and we leave it to the reader.
To prove (ii) first observe that on the fixed point set, the S1-action just gives

λ · (z,− z̄)= (λz,−λ̄ z̄), λ ∈ S1

so we can describe it as an action of S1 on the first copy of Cn . Since the action
is free except for the origin, all orbits are circles and the quotient Cn/S1 is the
union of Cn

\ {0} /S1 with a single point. Since Cn
\ {0} /S1 is homeomorphic to(

S2n−1/S1
)
× R, we obtain that F/S1 is the real cone over S2n−1/S1, the latter

being well known to be CPn−1. �

These singularity types will be encountered in SLn and SUn- character varieties.
In fact, the same singularities will also appear in GLn and Un-character varieties,
because the actions in these cases are very similar.

Indeed one can easily show the following:
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Proposition 3.20. Let n ≥ 2. Let T = C∗×C∗ act on a vector space V = C2n
=

Cn
×Cn as follows:

(λ, µ) · (z,w)= (λµ−1z, µλ−1w).

Then, C2n//T is isomorphic to C2n//2C∗. In particular, as before, this quotient is
the determinantal variety of n×n square matrices of rank≤ 1, which has dimension
2n− 1. Its unique singularity is the orbit of the origin.

Proof. We just need to argue, as before, that the invariant polynomials are generated
by the same monomials, those of the form z jwk , for any indices j, k ∈ {1, . . . , n},
so they form an n× n matrix with rank one. �

Finally, note that for n = 1 we get a smooth variety: C2//2C∗ ∼= C.

3F. Proof of Theorem 1.1, Case 1: GLn or SLn.

Theorem 3.21. Let r, n ≥ 2 and G = GLn or SLn . Then Xr (G)sing
= Xr (G)red if

and only if (r, n) 6= (2, 2).

Remark 3.22. If n = 1 the statement is vacuously true since in these cases there
are no reducibles, nor are there singularities. We have already seen that there are
smooth reducibles in the cases r = 1, n ≥ 2, and (r, n)= (2, 2) since there always
exist reducibles in these cases and the entire moduli spaces are smooth.

Proof. Let G = GLn . By Lemma 3.7 it is enough to show Xr (G)red
⊂ Xr (G)sing.

Let ρ ∈ Ur,n ⊂ Rr (G)red be of reduced type [n1, n2] with n1, n2 > 0 and n =
n1+ n2 (see Definition 3.10) and write it in the form

ρ = ρ1⊕ ρ2 =

(
EX E0n1×n2

E0n2×n1
EY

)
,

where EX = (X1, . . . , Xr ) ∈ Mr
n1×n1

and EY = (Y1, . . . , Yr ) ∈ Mr
n2×n2

and E0k×l =

(0k×l, . . . , 0k×l) where 0k×l is the k by l matrix of zeros and the vector has r entries.
Recall that these representations form a dense set in Xr (G)red, by Lemma 3.12.

Let diag(a1, . . . , an) be an n× n matrix whose (i, j)-entry is 0 if i 6= j and is
equal to ai otherwise. Then Stabρ = C∗×C∗ is given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ).

We note that the action of the center is trivial so we often consider the stabilizer
with respect to the action of G modulo its center.
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Then the cocycles satisfy

Z1(Fr ;Adρ)∼= gr

=

{(
EA EB
EC ED

) ∣∣∣∣ EA∈Mr
n1×n1

, EB ∈Mr
n1×n2

, EC ∈Mr
n2×n1

, ED ∈Mr
n2×n2

}
,

which has dimension n2r since it is the tangent space to a representation and the
representation variety is smooth. The coboundaries are given by

B1(Fr ;Adρ)∼=
{(

A B
C D

)
−

(
EX E0n1×n2

E0n2×n1
EY

)(
A B
C D

)(
EX−1 E0n1×n2

E0n2×n1
EY−1

)}
∼=

{(
A B
C D

)
−

(
EX A EX−1 EX B EY−1

EY C EX−1 EY D EY−1

)}
,

for a fixed element
( A

C
B
D

)
∈ g. This has dimension n2

− 2 since it is the tangent
space to the G-orbit of ρ which has dimension equal to that of the group minus its
stabilizer.

Thus with respect to the torus action,

(6) H 1(Fr ;Adρ)∼= H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2)⊕W,

where W exists since the torus action is reductive. By considering the Euler
characteristic, one has that

dimC H 0(Fr ;Adρ)− dimC H 1(Fr ;Adρ)= (1− r) dimC gl(n,C).

Then since H 0(Fr ;Adρ) = Z0(Fr ;Adρ) is the centralizer in g of the image of ρ,
we calculate

dimC H 1(Fr ;Adρ)= n2(r − 1)+ 2,

dimC H 1(Fr ;Adρi )= n2
i (r − 1)+ 1, i = 1, 2.

This then implies dimC H 1(Fr ;Adρ)//(C∗ ×C∗) = n2(r − 1)+ 1 = dimC Xr (G),
since the diagonal of the C∗ × C∗-action is the center which acts trivially. We
conclude that

dimC W = (n2
− n2

1− n2
2)(r − 1)= 2n1n2(r − 1).

Explicitly, the Stabρ action on H 1(Fr ;Adρ) is given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ) ·

[(
EA EB
EC ED

)]
7→

[(
EA λ EBµ−1

µ ECλ−1 ED

)]
which respects representatives up to coboundary.
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So, the action on H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2) is trivial (but not so on W ) and
we conclude

H 1(Fr ;Adρ)//(C∗×C∗)∼= H 1(Fr ;Adρ1)⊕ H 1(Fr ;Adρ2)⊕
(
W//(C∗×C∗)

)
.

Therefore, by Proposition 3.20, we have established that 0 is a singularity (solu-
tion to the generators of the singular locus) of W//(C∗×C∗) which then implies it
is a singularity to H 1(Fr ;Adρ)//(C∗×C∗) (whenever dimC W > 2) which then in
turn implies any ρ ∈Ur,n is a singularity in Xr (G) by Lemma 3.16 (note ρ = ρss

here). Ur,n is dense in Xr (GLn)
red by Lemma 3.12. Then Lemma 3.9 applies to

show that Xr (GLn)
sing
= Xr (GLn)

red whenever dimC W = 2n1n2(r − 1) > 2; that
is, whenever (r, n) 6= (2, 2).

Now let [ρ] ∈Xr (SLn). Then it is easy to see that [ρ] ∈Xr (SLn)
red if and only if

[ρ] ∈ Xr (GLn)
red. Then Corollary 2.7 and the previously established case together

imply Xr (SLn)
red
= Xr (SLn)

sing.
This finishes the proof of Theorem 1.1 for the groups SLn and GLn . �

Remark 3.23. We note that the cohomology decomposition used in the proof
depends on the decomposition of ρ. For instance, in the 2× 2 determinant 1 case,
the reducible representation takes values in SL1×GL1 = C0

×C∗, where C0 is a
point. Then by Lemma 3.18:

H 1(Fr ,Adρ)//C∗ ∼= H 1(Fr ,Adρ1)⊕ H 1(Fr ,Adρ2)⊕ (W//C
∗)

∼= C0
×Cr
×
(
(C2r/C2)//C∗

)
∼= Cr

×C2r−2//2C∗

∼= Cr
×CC(CPr−2

×CPr−2).

Remark 3.24. The proof above works directly, with suitable modifications for the
case G = SLn . For instance the action of the stabilizer in this case is Stabρ = C∗

given by

diag(λ, . . . , λ,︸ ︷︷ ︸
n1

n2︷ ︸︸ ︷
µ, . . . , µ),

where λn1µn2 = 1 which is equivalent to µ= λ
−n1
n2 . The cocycles satisfy

Z1(Fr ;Adρ)

∼= gr
=

{(
EA EB
EC ED

) ∣∣∣∣ EA ∈ Mr
n1×n1

, EB ∈ Mr
n1×n2

, EC ∈ Mr
n2×n1

, ED ∈ Mr
n2×n2

,

tr(Ai )=−tr(Di ), 1≤ i ≤ r
}
,

which has dimension (n2
− 1)r . The rest carries over without significant change.
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Remark 3.25. Similar results for the moduli of tuples of generic matrices have
been obtained in [Le Bruyn and Procesi 1987], and with respect to the moduli of
vector bundles similar results have been obtained in [Laszlo 1996].

3G. Proof of Theorem 1.1, Case 2: SUn or Un. Let K = SUn or Un and let k be
its Lie algebra in either case.

The tangent space at a point [ρ] ∈ Xr (K ) is defined from the semialgebraic
structure; that is, any real semialgebraic set has a well-defined coordinate ring
which allows one to define the Zariski tangent space as we did at the start of this
section [Bochnak et al. 1998]. At smooth points this corresponds to the usual
tangent space defined by differentials. It is not hard to see that the semialgebraic
set Xr (K ) is a subset of the real points of Xr (KC). Then, the Zariski tangent space
of Xr (K ) at [ρ], T[ρ](Xr (K )), consists of the real points of the complex Zariski
tangent space T[ρ](Xr (KC)).

As is true for KC-representations, we define a K -representation to be irreducible
if it does not admit any proper (nontrivial) invariant subspaces with respect to the
standard action on Cn . As with KC-valued representations, we call a K -valued
representation reducible if it is not irreducible.

Lemma 3.26. Xr (KC)
red
∩Xr (K )= Xr (K )red.

Proof. First note that Xr (K )⊂ Xr (KC) (see [Florentino and Lawton 2009]). So it
suffices to prove that every K -valued representation is K -conjugate to a reducible
representation if and only if it is KC-conjugate to a reducible representation.

Let ρ be a K -representation and suppose that it is K -conjugate to a representation
that admits a nontrivial proper invariant subspace of Cn , then since K ⊂ KC it
is true that ρ is KC-conjugate to a reducible representation. Conversely, suppose
that a K -representation ρ is KC-conjugate to a reducible representation. However,
conjugating by KC is simply a change-of-basis, and such a change-of-basis is always
possible by conjugating by K by using the Gram–Schmidt algorithm. �

Lemma 3.27. Xr (KC)
sing
∩Xr (K )= Xr (K )sing

Proof. Let
[ρ] ∈ Xr (K )⊂ Xr (KC).

Then [ρ] ∈ Xr (K )sing if and only if dimR T[ρ]Xr (K ) = dimC T[ρ]Xr (KC) exceeds
dimR Xr (K )= dimC Xr (KC), the latter occurring if and only if [ρ] ∈ Xr (KC)

sing.
�

The last case to consider to finish the proof of Theorem 1.1 is Xr (K ) in terms of
SUn and Un .

Theorem 3.28. Let K be either Un or SUn . Then Xr (K )red
= Xr (K )sing if

Xr (KC)
red
= Xr (KC)

sing.
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Proof. This follows directly by Lemmas 3.26 and 3.27. �

Since we have already established in Theorem 3.21 that, for r, n ≥ 2 and
K ∈ {Un, SUn}, we have Xr (KC)

red
= Xr (KC)

sing if and only if (r, n) 6= (2, 2),
Theorem 3.28 is enough to finish the proof of Theorem 1.1.

3H. Iterative reducibles and the singular stratification. As above let K be either
Un or SUn and G = KC, and let the N -th singular stratum be defined by

SingN (Xr (G))= (· · · ((Xr (G))sing)sing···)sing,

which is well-defined since each singular locus is a variety and as such has a singular
locus itself.

The N -th level reducibles

RedN (Xr (G))= (· · · ((Xr (G))red)red···)red

is defined inductively in the following way.
Let Red1(Xr (G)) = Xr (G)red. For k ≥ 1 define Redk(Xr (G))(k+1) to be the

set of ρ ∈ Redk(Xr (G)) which is minimally reducible, that is has a decompo-
sition into irreducible subrepresentations that has minimal summands. We de-
fine Redk+1(Xr (G))= Redk(Xr (G))−Redk(Xr (G))(k+1) to be the complement of
Redk(Xr (G))(k+1) in Redk(Xr (G)). Thus, Red1(Xr (G))(2) is always the reducibles
that have exactly 2 irreducible subrepresentations — these are exactly the ones we
considered in the proof of Theorem 3.21. More generally, Redk(Xr (G))(k+1) are the
representations which decompose into exactly k+ 1 irreducible subrepresentations.
For example, Red2(Xr (SL3)) are the representations conjugate to a representation
that has its semisimplification diagonal, and Red3(Xr (SL3))=∅.

Likewise we have RedN (Xr (K )) and SingN (Xr (K )).

Theorem 3.29. Let r, n ≥ 2 and (r, n) 6= (2, 2). If N ≥ 1, then

SingN (Xr (G))∼= RedN (Xr (G)) and SingN (Xr (K ))∼= RedN (Xr (K )).

The result follows by induction on the irreducible block forms and observing
that each block form now corresponds to GLk , or Uk in the compact cases.

3I. Remarks about other groups.

3I.1. General reductive groups. Let G be a reductive complex algebraic group.
It can be shown [Sikora 2012] that the definition given before of an irreducible
representation ρ : 0→ G corresponds exactly to the quotient group Stabρ/Z(G)
being finite.

Proposition 3.30. If the adjoint action of ρ is irreducible on g, then [ρ] is smooth
in Xr (G).
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Proof. If Adρ is irreducible, then Stabρss is central and so Stabρss acts trivially on
H 1(Fr ; gAdρss ). Hence 0 is not in the Jacobian ideal of H 1(Fr ; gAdρss )//Stabρss . So,
by Lemma 3.16, [ρ] is smooth in Xr (G). �

From the proof of Proposition 3.30, we obtain:

Corollary 3.31. Let G be a complex reductive algebraic group and ρ ∈Rr (G) is
irreducible with central stabilizer. Then [ρ] is smooth in Xr (G).

A representation satisfying the conditions of this corollary is called good. In
other words, ρ ∈ Rr (G)s is good if and only if Stabρ/Z(G) is trivial. Letting
Rr (G)good be the open subset of good representations, it easily follows that

Xr (G)good
:=Rr (G)good/G ⊂ Xr (G)s ⊂ Xr (G)

is always a smooth manifold.
[Heusener and Porti 2004] shows that our main theorem, i.e.,

Xr (G)red
= Xr (G)sing,

is not true for all reductive Lie groups G and free groups Fr since for PSL2 there
are irreducible representations which are singular. The issue is that the stabilizer of
an irreducible representation, modulo the center of G, may not be trivial in general.
This is not an issue for GLn or SLn since Lemma 3.5 shows the action is free on the
set of irreducibles; that is, in these cases a representation is good if and only if it is
irreducible.

Let On be the group of n× n complex orthogonal matrices, and let Sp2n be the
group of 2n× 2n complex symplectic matrices.

Proposition 3.32. There exists irreducible representations ρ : Fr → G for G any
of On , PSLn , and Sp2n such that ρ is not good.

Proof. It is sufficient in each case to find, for some n, a nonparabolic subgroup of
G whose centralizer contains a noncentral element.

First consider a SL2-representation ρ contained in the subgroup of diagonal
and antidiagonal matrices (containing at least one nondiagonal element and one
noncentral element). Then Stabρ/Z(SL2) is trivial, and so such a representation is
irreducible. However ρ also determines an irreducible PSL2-valued representation
consisting of diagonal and antidiagonal matrices. However, its stabilizer now
contains

( i
0

0
−i

)
, since this element acts as scalar multiplication by −1 on the

antidiagonal components and trivially on the diagonal components, so the action is
trivial for PSL2-representations but nontrivial for SL2-representations. This element
is not central in SL2. Thus ρ defines an irreducible representation into PSL2 that
has finite noncentral stabilizer, and thus is not good.

For On representations consider any representation whose image consists of all
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matrices of the form 

±1 0 0 0
0 ±1 0 0

0 0
. . . 0

0 0 0 ±1


 .

One easily computes that the stabilizer is finite and not trivial and thus they are
irreducible with Stabρ/Z(On) not trivial and thus are not good.

For Sp2n representations we can likewise find examples like the following for
n = 2. Let the representation have its image generated by±


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , ±


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , ±


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 .

We get a subgroup of order 16 with finite stabilizer; as such, this group is an
irreducible with finite noncentral stabilizer. Again we see that Stabρ/Z(Sp2n) is
not trivial and thus this representation is not good. �

Remark 3.33. In the case of PSL2 representations (and consequently for SL2-
valued representations) there are irreducible representations that act reducibly on g.
However, for PSL2 these are singular points, but for SL2 they are smooth. This shows
that Ad-reducibility does not imply nonsmoothness in general. In fact, in X2(PSL2)

there are simultaneously reducibles that are smooth points and irreducibles that are
singular. See [Heusener and Porti 2004].

Conjecture 3.34. Let G be a complex reductive algebraic group, and suppose r ≥ 3.
Then Xr (G)red

⊂ Xr (G)sing, and if G is semisimple equality holds if and only if G
is a Cartesian product of SLn’s.

We leave the exploration of this interesting conjecture and the description of
singular irreducibles to future work.

3I.2. What if 0 is not free? One may wonder what the relationships exist, if any,
between reducible representations and singular points in X0(G) for a general finitely
generated group 0.

With a given presentation of 0 as 0 = 〈x1, . . . , xr | r1, . . . , rk〉 we can naturally
associate the canonical epimorphism Fr → 0 = Fr/〈r1, . . . , rk〉 which induces
the inclusion X0(G) ⊂ XFr (G) providing X0(G) with the structure of an affine
subvariety. As such, ρ is irreducible (resp. completely reducible) in X0(G) if and
only if ρ is irreducible (resp. completely reducible) in XFr (G).

However, the notion of singularity is very far from being well behaved:
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(i) If 0 is free abelian then all representations are reducible and thus the singular-
ities cannot equal the reducibles since the singularities are a proper subset. So
reducibles can be smooth; in fact this example shows all smooth points can be
reducible.

(ii) The irreducibles are not generally all smooth in the representation variety
let alone in the quotient variety; see [Sikora 2012, Example 38]. Such
representations can project to singular points in the quotient (as one might
hope is the general situation). Therefore, there can be representations in
X0(G)sing

⊂ X0(G)⊂ XFr (G) which are smooth in XFr (G).

(iii) Singularities in the quotient do not necessarily arise from singularities in the
representation space. For example, if 0 is the fundamental group of a genus 2
surface there exist representations in R0(SU2) that are singular but the quotient
X0(SU2)≈ CP3 is smooth. See [Narasimhan and Seshadri 1965; Narasimhan
and Ramanan 1969].

(iv) Lemma 3.16 and its generalizations [Sikora 2012] do not necessarily apply in
general.

Therefore, when 0 is not free there is little one can say in general.

4. Local structure and classification of manifold cases

Having completed the proof of Theorem 1.1, we now move on to prove Theorem 1.2.
As stated earlier, in [Bratholdt and Cooper 2001] it is established that Xr (SU2) are
not topological manifolds when r ≥ 4. They compute explicit examples where the
representations (abelian, nontrivial) are contained in a neighborhood homeomorphic
to C(CPr−2)× Rr , where C(X) = (X × [0, 1))/(X × {0}) is the real open cone
over a topological space X . From this characterization, simple arguments imply
that Xr (SU2) is not a manifold for r ≥ 4. It is also a consequence of the following
criterion, which will be useful later.

Lemma 4.1. Let X be a manifold of dimension n and let d ≥ 0. If C(X)×Rd is
Euclidean (i.e, homeomorphic to Rd+n+1) then X is homotopically equivalent to Sn

(a sphere of dimension n). Also, if C(X)×Rd is half-Euclidean (i.e, homeomorphic
to a closed half-space in Rd+n+1) then X is homotopically equivalent to either a
point or Sn .

Proof. Let p be the cone point of C(X). Using the natural deformation retraction
from C(X)−{p} to X , we see that

C(X)×Rd
− ({p}×Rd)= X × (0, 1)×Rd

' X,

where Y ' X symbolizes Y being homotopic to X . On the other hand, if C(X)×Rd
=

Rn+d+1 then C(X)×Rd
− ({p}×Rd)= Rn+d+1

−Rd
' Sn .
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The other statement follows in a similar fashion if the cone point is not on the
boundary of the half-space. Otherwise, {p}×Rd is contained in the boundary so
extracting it results in a contractible space. �

4A. Xr(SUn) and Xr(Un). In this subsection we establish the compact cases of
Theorem 1.2.

Let K = SUn and let k be its Lie algebra. Let dr,n = (n2
− 1)(r − 1) =

dimC Xr (G)= dimR Xr (K ). Whenever Xr (K ) is not a topological manifold, there
exists a point [ρ] ∈ Xr (K ) and a neighborhood N containing [ρ] that is not locally
homeomorphic to Rdr,n , or R

dr,n
+ in the case of a boundary point.

We need a smooth version of Mostow’s slice theorem [Mostow 1957; Bredon
1972]. Let Nx denote a neighborhood at x .

Lemma 4.2. For any [ρ] ∈ Xr (K ), there is a neighborhood N[ρ] homeomorphic to
H 1(Fr ; kAdρ )/Stabρ . Moreover,

T[ρ]Xr (K )∼= T0
(
H 1(Fr ; kAdρ )/Stabρ

)
.

Proof. Let Rr (K )=Hom(Fr , K ). Since ρ ∈Rr (K ) is a smooth point, TρRr (K )∼=
Z1(Fr ; kAdρ ). Moreover, TρOrbρ ∼= B1(Fr ; kAdρ ) ⊂ Z1(Fr ; kAdρ ). Since Stabρ is
compact and acts on B1(Fr ; kAdρ ), there exists a Stabρ-invariant complement W .
Thus Z1(Fr ; kAdρ )

∼= TρRr (K ) ∼= B1(Fr ; kAdρ ) ⊕ W , which respects the action
of the stabilizer. Since Rr (K ) is a smooth compact Riemannian manifold we
can invariantly exponentiate W to obtain a slice exp(W )= S ⊂Rr (K ) such that
TρS =W . Therefore, TρS ∼= H 1(Fr ; kAdρ ) as Stabρ-spaces.

Saturating S by K we obtain an open K -invariant space, which contains the orbit
of ρ since ρ ∈ S; namely U = K (S). Since U is open TρU = TρRr (K ), and since
it is saturated U/K ∼= S/Stabρ is an open subset of Xr (K ).

Putting these observations together we conclude S is locally diffeomorphic to TρS
which implies the neighborhood U/K ∼= H 1(Fr ; kAdρ )/Stabρ , which establishes
our first claim.

Then S/Stabρ is locally homeomorphic to TρS/Stabρ , which then implies

(7) T[ρ](S/Stabρ)∼= T0(TρS/Stabρ).

But

(8) T[ρ]Xr (K )= T[ρ](U/K )∼= T[ρ](S/Stabρ)

and

(9) T0(TρS/Stabρ)∼= T0(H 1(Fr ; kAdρ )/Stabρ).

Equations (7), (8), and (9) together complete the proof. �
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Remark 4.3. The above lemma holds for all compact Lie groups K .

Theorem 4.4. Let r, n ≥ 2 and let ρ ∈Rr (SUn) be of reduced type [n1, n2]. Then,
there exists a neighborhood [ρ] ∈ N⊂ Xr (SUn) that is homeomorphic to RdSUn ×

C
(
CP(r−1)n1n2−1

)
, where dSUn = (r − 1)(n2

1 + n2
2 − 1)+ 1. Also, if ρ ∈ Rr (Un)

is of reduced type [n1, n2], there exists a neighborhood [ρ] ∈ N ⊂ Xr (Un) that is
homeomorphic to RdUn ×C

(
CP(r−1)n1n2−1

)
, where dUn = (r − 1)(n2

1+ n2
2)+ 2.

Corollary 4.5. If K = Un or K = SUn , both r, n ≥ 2, and (r, n) 6= (2, 2), (2, 3), or
(3, 2), then Xr (K ) is not a manifold with boundary.

Proof. Theorem 4.4 implies that Xr (Un) and Xr (SUn) are manifolds only if RdUn ×

C(CP(r−1)n1n2−1) and RdSUn ×C(CP(r−1)n1n2−1), respectively, are locally Euclidean.
By Lemma 4.1, this can only be the case if n1n2(r−1)−1∈ {0, 1}, with n= n1+n2

and n1, n2>0. In the first case, n1n2(r−1)=1, which implies n1=n2=1 and r=2,
so (r, n)= (2, 2). From Section 2B we know X2(U2) and X2(SU2) are manifolds
with boundary, and we conclude the neighborhood in this case is half-Euclidean
since N= Rd

×[0, 1), for appropriate d .
The other possibility is n1n2(r−1)= 2 so that n1 = 2 and n2 = 1, or n1 = 1 and

n2= 2, and r = 2. This is the case (r, n)= (2, 3). Otherwise, r = 3 and n1= n2= 1,
which is the case (r, n)= (3, 2). Moreover, from Section 2B these two are the only
cases which are manifolds.

Having exhausted all possibilities, the proof is complete. �

We now prove Theorem 4.4.

Proof of Theorem 4.4. Similar to Theorem 3.21, there is a direct computational
proof of Theorem 4.4. However, using Theorem 3.21, Lemma 3.19 and the relation
between K and its complexification, we can provide a shorter argument.

Let τ be the Cartan involution on g = gl(n,C), the Lie algebra of GLn , which
is just the linear map A 7→ −AT , acting on a matrix A ∈ gl(n,C). By defini-
tion, the fixed point subspace of τ is k, the Lie algebra un of Un . One easily
checks that τ induces an involution on Z1(Fr ; gAdρ )

∼= gr , whose fixed subspace
is Z1(Fr ; kAdρ )

∼= kr , and similarly B1(Fr ; gAdρ )
τ
= B1(Fr ; kAdρ ). This implies

that τ induces an involution, also denoted τ , on the first cohomology, and that
H 1(Fr ; kAdρ ) is naturally isomorphic to H 1(Fr ; gAdρ )

τ .
Now, assume that ρ = ρ1 ⊕ ρ2 ∈ Ur,n ∩Rr (Un), is of reduced type [n1, n2]

(n1, n2 > 0, n1+ n2 = n). Note that ρ1 and ρ2 are irreducible representations in
Rr (Un1) and Rr (Un2), respectively, and with respect to the PUn conjugation action
Stabρ ∼= S1. Then a cocycle φ ∈ Z1(Fr ; kAdρ )

∼= kr has the form

φ =

(
φ1 A
−AT φ2

)
,
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where φi ∈ Z1(Fr ; kAdρi
), and as in Theorem 3.21, A is now an arbitrary r -tuple of

n1×n2 matrices. This shows that τ respects the decomposition in Equation (6) , so
we get

H 1(Fr ; kAdρ )= H 1(Fr ; gAdρ )
τ
= H 1(Fr ; gAdρ1

)τ ⊕ H 1(Fr ; gAdρ2
)τ ⊕W τ

= H 1(Fr ; kAdρ1
)⊕ H 1(Fr ; kAdρ2

)⊕ F

where, by the form of the cocycles above, we can write

F :=W τ
= {(z,− z̄) : z ∈ Cn1n2(r−1)

};

using also dimC W = 2n1n2(r − 1).
It follows from Lemma 4.2 that a neighborhood of ρ is locally homeomorphic

to H 1(Fr ; kAdρ )/Stabρ . As in the proof of Theorem 3.21, the action of Stabρ = S1

does not affect H 1(Fr ; kAdρi
), i = 1, 2, and we conclude that

H 1(Fr ; kAdρ )/Stabρ = H 1(Fr ; kAdρ1
)⊕ H 1(Fr ; kAdρ2

)⊕ F/S1

∼= RdUn ⊕C(CPn1n2(r−1)−1),

by using Lemma 3.19. The dimension dUn is computed by:

dUn =

2∑
i=1

dimR H 1(Fr ; kAdρi
)= (n2

1+ n2
2)(r − 1)+ 2.

The case of K = SUn is similar. �

Remark 4.6. In [Le Bruyn and Teranishi 1990] it is shown that the cases (2, 2),
(2, 3), and (3, 2) are also the only examples which are complete intersections.

Remark 4.7. Note that using the identity representation (maximal stabilizer) results
in H 1(Fr ; kAdid)/Stabid = kr/SUn since the coboundaries are trivial. Removing a
point results in a homological sphere quotient S(n

2
−1)(r−1)−1/SUn . If there was

a Euclidean neighborhood about the identity, then this sphere quotient would be
a homology sphere S(n

2
−1)(r−2)−1. We find this quite likely to give a different

obstruction. At the other extreme (central stabilizer) the points are smooth and thus
admit Euclidean neighborhoods.

Conjecture 4.8. If K is equal to SUn or Un , [ρ] ∈Xr (K )red, r, n ≥ 2, and (r, n) 6=
(2, 2), (2, 3) or (3, 2), then there does not exists a neighborhood of [ρ] that is
Euclidean.

We proved this conjecture for representations of reduced type [n1, n2] above. In
fact, it seems likely that the neighborhoods around most singularities do not even
admit an orbifold structure (not homeomorphic to a finite quotient of a Euclidean
ball).
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4B. Xr(SLn) and Xr(GLn). In this last subsection, we complete the proof of
Theorem 1.2 by proving the following result.

Theorem 4.9. Let r, n ≥ 2 and let G be SLn or GLn . Xr (G) is a topological
manifold with boundary if and only if (r, n)= (2, 2).

Proof. By Remark 3.17, H 1(Fr ; gAdρss )//Stabρss is an étale neighborhood; that is, an
algebraic set that maps, via an étale mapping, to an open set (in the ball topology)
of Xr (G). Thus we see that at a reducible representation with minimal stabilizer
(C∗ for SLn and C∗ × C∗ for GLn), that this neighborhood is étale equivalent to
C(n

2
1+n2

2)(r−1)+2
× C(CP(r−1)n1n2−1

× CP(r−1)n1n2−1) in Xr (GLn), where the cone
here is the affine cone defined over C∗. In Xr (SLn) we have a similar neighborhood.
Either way, these spaces are not locally Euclidean neighborhoods for r, n≥ 2 unless
n = 2= r which implies that n1 = 1= n2. This is seen by similar arguments given
above in the compact cases. �
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