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ENERGY IDENTITY FOR THE MAPS FROM A SURFACE
WITH TENSION FIELD BOUNDED IN Lp

LI JIAYU AND ZHU XIANGRONG

Let M be a closed Riemannian surface and un a sequence of maps from M

to Riemannian manifold N satisfying

sup
n

�
krunkL2.M /Ck�.un/kLp .M /

�
�ƒ

for some p > 1, where �.un/ is the tension field of the mapping un.
For a general target manifold N , if p � 6

5
, we prove the energy identity

and the neckless property during blowing up.

1. Introduction

Let .M;g/ be a closed Riemannian manifold and .N; h/ be a Riemannian manifold
without boundary. For a mapping u from M to N in W 1;2.M;N /, the energy
density of u is defined by

e.u/D 1
2
jduj2 D Tracegu�h;

where u�h is the pull-back of the metric tensor h.
The energy of the mapping u is defined as

E.u/D

Z
M

e.u/ dV;

where dV is the volume element of .M;g/.
A map u2C 1.M;N / is called harmonic if it is a critical point of the energy E.
By the Nash embedding theorem we know that .N; h/ can be isometrically into a

Euclidean space RK with some positive integer K. Then .N; h/may be considered
as a submanifold of RK with the metric induced from the Euclidean metric. Thus
a map u 2 C 1.M;N / can be considered as a map of C 1.M;RK / whose image
lies in N . In this sense we can get the Euler–Lagrange equation

4uDA.u/.du; du/:
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The tension field �.u/ is defined by

�.u/D4M u�A.u/.du; du/;

where A.u/.du; du/ is the second fundamental form of N in RK . So u being
harmonic means that �.u/D 0.

The harmonic mappings are of special interest when M is a Riemann surface.
Consider a sequence of mappings un from Riemann surface M to N with bounded
energies. It is clear that un converges weakly to u in W 1;2.M;N / for some u in
W 1;2.M;N /. But in general, it may not converge strongly in W 1;2.M;N /. When
�.un/ D 0, that is, when un are all harmonic, Parker [1996] proved that the lost
energy is exactly the sum of some harmonic spheres, which are defined as harmonic
mappings from S2 to N . This result is called the energy identity. Also he proved
that the images of these harmonic spheres and u.M / are connected, that is, there
is no neck during blowing up.

When �.un/ is bounded in L2, the energy identity was proved in [Qing 1995]
for the sphere, and in [Ding and Tian 1995] and [Wang 1996] for a general target
manifold. Qing and Tian [1997] proved there is no neck during blowing up. For the
heat flow of harmonic mappings, the results can also be found in [Topping 2004a;
2004b]. When the target manifold is a sphere, we proved the energy identity in [Li
and Zhu 2011] for a sequence of mappings with tension fields bounded in L lnCL,
using good observations from [Lin and Wang 2002]. On the other hand, in the
same paper we constructed a sequence of mappings with tension fields bounded in
L lnCL such that there is a positive neck during blowing up. In [Zhu 2012] the
neckless property during blowing up was proved for a sequence of maps un with

lim
ı!0

sup
n

sup
B.x;ı/�D1

k�.un/kL lnCL.B.x;ı// D 0:

In this paper we prove the energy identity and neckless property during blowing
up of a sequence of maps un with �.un/ bounded in Lp for some p � 6

5
, for a

general target manifold.
When �.un/ is bounded in Lp for some p>1, the small energy regularity proved

in [Ding and Tian 1995] implies that un converges strongly in W 1;2.M;N / outside
a finite set of points. For simplicity of exposition, it is no matter to assume that M

is the unit disk D1 DD.0; 1/ and there is only one singular point at 0.
In this paper we prove the following theorem.

Theorem 1. Let fung be a sequence of mappings from D1 to N in W 1;2.D1;N /

with tension field �.un/. If

(a) kunkW 1;2.D1/
Ck�.un/kLp.D1/ �ƒ for some p � 6

5
,

(b) un! u strongly in W 1;2.D1 n f0g;R
K / as n!1,
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then there exists a subsequence of fung (we still denote it by fung) and some non-
negative integer k so that for any i D 1; : : : ; k, there exist points xi

n, positive
numbers r i

n and a nonconstant harmonic sphere wi (which we view as a map from
R2[f1g!N ) such that:

(1) xi
n! 0; r i

n! 0 as n!1.

(2) lim
n!1

�
r i
n

r
j
n

C
r

j
n

r i
n

C
jxi

n�x
j
n j

r i
nC r

j
n

�
D1 for any i ¤ j .

(3) wi is the weak limit or strong limit of un.x
i
nC r i

nx/ in W
1;2

Loc
.R2;N /.

(4) Energy identity: We have

(1-1) lim
n!1

E.un;D1/DE.u;D1/C

kX
iD1

E.wi/:

(5) Neckless property: The image u.D1/[
Sk

iD1w
i.R2/ is a connected set.

This paper is organized as follows. In Section 2 we state some basic lemmas
and some standard arguments in the blow-up analysis.

In Section 3 and Section 4 we prove Theorem 1. In the proof, we use delicate
analysis on the difference between normal energy and tangential energy. The en-
ergy identity is proved in Section 3 and the neckless property is proved in Section 4.

Throughout this paper, the letter C denotes a positive constant that depends only
on p, ƒ and the target manifold N and may vary in different places. We also don’t
distinguish between a sequence and one of its subsequences.

2. Some basic lemmas and standard arguments

We recall the regular theory for a mapping with small energy on the unit disk and
tension field in Lp .p > 1/.

Lemma 2. Let Nu be the mean value of u on the disk D1=2. There exists a positive
constant �N that depends only on the target manifold such that if E.u;D1/ � �

2
N

then

(2-1) ku� NukW 2;p.D1=2/
� C

�
krukL2.D1/

Ck�.u/kp
�
;

where p > 1.
As a consequence of (2-1) and the Sobolev embedding W 2;p.R2/�C 0.R2/, we

have

(2-2) kukOsc.D1=2/ D sup
x;y2D1=2

ju.x/�u.y/j � C
�
krukL2.D1/

Ck�.u/kp
�
:
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Remarks. � In [Ding and Tian 1995] this lemma is proved for the mean value
of u on the unit disk. Note thatˇ̌̌̌

ˇ
R

D1
u.x/ dx

jD1j
�

R
D1=2

u.x/ dx

jD1=2j

ˇ̌̌̌
ˇ� CkrukL2.D1/

:

So we can use the mean value of u on D1=2 in this lemma.

� Suppose we have a sequence of mappings un from the unit disk D1 to N with
kunkW 1;2.D1/

Ck�.un/kLp.D1/ �ƒ for some p > 1.
A point x 2D1 is called an energy concentration point (blow-up point) if

for any r such that D.x; r/�D1, we have

sup
n

E.un;D.x; r// > �
2
N ;

where �N is given in this lemma. If x 2 D1 isn’t an energy concentration
point, we can find a positive number ı such that

E.un;D.x; ı//� �
2
N for all n:

Then it follows from Lemma 2 that we have a uniformly W 2;p.D.x; ı=2//-
bound for un. Because W 2;p is compactly embedded in W 1;2, there is a
subsequence of un (still denoted by un) and u 2W 2;p.D.x; ı=2// such that

lim
n!1

un D u in W 1;2.D.x; ı=2//:

So un converges to u strongly in W 1;2.D1/ outside a finite set of points.

Under the assumptions of our theorem, by the standard blow-up argument, that
is by repeatedly rescaling un in a suitable way, we can obtain some nonnegative
integer k so that for any i D 1; : : : ; k, there exist a point xi

n, a positive number r i
n

and a nonconstant harmonic sphere wi satisfying (1), (2) and (3) of Theorem 1. By
the standard induction argument in [Ding and Tian 1995] we only need to prove
the theorem in the case where there is only one bubble.

In that case we can assume thatw is the strong limit of the sequence un.xnCrnx/

in W
1;2

Loc
.R2/. We may assume that xn D 0. Set wn.x/D un.rnx/.

As
lim
ı!0

lim
n!1

E.un;D1 nDı/DE.u;D1/;

the energy identity is equivalent to

(2-3) lim
ı!0

lim
n!1

lim
R!1

E.un;Dı nDrnR/D 0:

To prove the sets u.D1/ and w.R2 [1/ are connected, it is enough to show
that

(2-4) lim
ı!0

lim
n!1

lim
R!1

sup
x;y2DınDrnR

jun.x/�un.y/j D 0:
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3. Energy identity

In this section, we prove the energy identity for a general target manifold when
p � 6

5
.

Assume that there is only one bubble w which is the strong limit of un.rn�/

in W
1;2

Loc
.R2/. Let �N be the constant in Lemma 2. By the standard argument of

blow-up analysis we can assume that, for any n,

(3-1) E.un;Drn
/D sup

r�rn

D.x;r/�D1

E.un;D.x; r//D
1
4
�2

N :

Lemma 3 [Ding and Tian 1995]. If �.un/ is bounded in Lp for some p > 1, then
the tangential energy on the neck domain is zero, that is,

(3-2) lim
ı!0

lim
R!1

lim
n!1

Z
DınDrnR

jxj�2
j@�uj2 dx D 0:

Proof. The proof is the same as in [Ding and Tian 1995], so we only sketch it.
For any � > 0, take ı;R such that, for any n,

E.u;D4ı/CE.w;R2
nDR/C ı

4.p�1/=p < �2:

We may suppose that rnRD 2�jn ; ı D 2�j0 . When n is big enough we have, for
any j0 � j � jn,

E.un;D21�j nD2�j / < �
2:

For any j , set

hn.2
�j /D

1

2�

Z
S1

un.2
�j ; �/ d�

and

hn.t/D hn.2
�j /C

�
hn.2

1�j /� hn.2
�j /

� ln.2j t/

ln 2
; t 2 Œ2�j ; 21�j �:

It is easy to check that

d2hn.t/

dt2
C

1

t

dhn.t/

dt
D 0; t 2 Œ2�j ; 21�j �:

Consider hn.x/Dhn.jxj/ as a map from R2 to RK , then4hnD0 in R2. Setting
Pj DD21�j nD2�j we have

(3-3) 4.un� hn/D4un�4hn D4un DA.un/C �.un/; x 2 Pj :

Taking the inner product of this equation with un�hn and integrating over Pj ,
we get thatZ

Pj

jr.un�hn/j
2dxD�

Z
Pj

.un�hn/.A.un/C�.un//dxC

Z
@Pj

.un�hn/.un�hn/r ds:
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Note that by definition, hn.2
�j / is the mean value of f2�j g � S1 and .hn/r is

independent of � . So the integral of .un� hn/.hn/r on @Pj vanishes.
When j0 < j < jn, by Lemma 2 we have

kun� hnkC 0.Pj /
� kun� hn.2

�j /kC 0.Pj /
Ckun� hn.2

1�j /kC 0.Pj /

� 2kunkOsc.Pj /

� C
�
krunkL2.Pj�1[Pj[PjC1/

C 22.1�p/j=p
k�.un/kp

�
� C

�
�C 2�2.p�1/j=p

�
� C

�
�C ı2.p�1/=p

�
� C�:

Summing over j for j0 < j < jn gives

(3-4)
Z

DınD2rnR

jr.un� hn/j
2dx

D

X
j0<j<jn

Z
Pj

jr.un� hn/j
2 dx

�

X
j0<j<jn

Z
Pj

jun� hnj
�
jA.un/jC j�.un/j

�
dx

C

X
j0<j<jn

Z
@Pj

.un� hn/.un� hn/r ds

�C�

�Z
D2ınD2rnR

�
jrunj

2
Cj�.un/j

�
dxC

Z
@D2ı[@D2rnR

jrunj ds

�
� C�

�Z
D2ınD2rnR

jrunj
2 dxC ı2.p�1/=p

C �

�
� C�:

Here we use the inequalityZ
@D2ı[@D2rnR

jrunj ds � C�;

which can be derived from the Sobolev trace embedding theorem.
As hn.x/ is independent of � , it can be shown thatZ

D2ınD2rnR

jxj�2
j@�unj

2 dx �

Z
D2ınD2rnR

jr.un� hn/j
2 dx � C�;

so this lemma is proved. �
It is left to show that the normal energy on the neck domain also equals to zero.

We need the following equality.

Lemma 4 (Pohozaev equality [Lin and Wang 1998, Lemma 2.4, page 374]). Let
u be a solution to

4uCA.u/.du; du/D �.u/:
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Then

(3-5)
Z
@Dt

�
j@r uj2� r�2

j@�uj2
�

ds D
2

t

Z
Dt

� � .xru/ dx:

As a direct corollary, by integrating over Œ0; ı�, we have

(3-6)
Z

Dı

�
j@r uj2� r�2

j@�uj2
�

dx D

Z ı

0

2

t

Z
Dt

� � .xru/ dxdt:

Proof. Multiplying both sides of the equation by xru and integrating over Dt , we
getZ

Dt

jruj2 dx� t

Z
@Dt

j@r uj2 dsC
1

2

Z
Dt

xrjruj2 dx D�

Z
Dt

� � .xru/ dx:

Note that

1

2

Z
Dt

xrjruj2 dx D�

Z
Dt

jruj2 dxC
t

2

Z
@Dt

jruj2 ds:

Hence, Z
@Dt

�
j@r uj2� 1

2
jruj2

�
ds D

1

t

Z
Dt

� � .xru/ dx:

As jruj2 D j@r uj2C r�2j@�uj2, we have proved this lemma. �

Now we use this equality to estimate the normal energy on the neck domain.
We prove the following lemma.

Lemma 5. If �.un/ is bounded in Lp for some p � 6
5

, then for ı small enough we
have ˇ̌̌̌Z

Dı

�
j@r unj

2
� jxj�2

j@�uj2
�

dx

ˇ̌̌̌
� Cı.p�1/=p;

where C depends on p, ƒ, the target manifold N and the bubble w.

Proof. Take  2 C1
0
.D2/ satisfying  D 1 in D1, then

4. un/D  A.un/.dun; dun/C �nC 2r runCun4 :

Set gn D  A.un/.dun; dun/C �nC 2r runCun4 . When jxj< 1,

@iun.x/DRi �gn.x/D

Z
xi�yi

jx�yj2
gn.y/ dy:

Letˆn be the Newtonian potential of �n, then4ˆnD �n. The corresponding
Pohozaev equality is

(3-7)
Z

Dı

�
j@rˆnj

2
� r�2

j@�ˆnj
2
�

dx D

Z ı

0

2

t

Z
Dt

 �n � .xrˆn/ dxdt:



188 LI JIAYU AND ZHU XIANGRONG

Here

@iˆn.x/DRi � . �n/.x/D

Z
xi �yi

jx�yj2
. �n/.y/ dy:

As �n is bounded in Lp .p > 1/, we haveZ
Dı

jrˆnj
2 dx�Cı4.p�1/=p

krˆnk
2
2p=.2�p/�Cı4.p�1/=p

k�nk
2
p �Cı4.p�1/=p:

By (3-7), it can be shown that for any ı > 0,

(3-8)
ˇ̌̌̌Z ı

0

1

t

Z
Dt

 �n � .xrˆn/ dxdt

ˇ̌̌̌
�

Z
Dı

jrˆnj
2 dx � Cı4.p�1/=p:

For ı small enough, we have

(3-9)
ˇ̌̌̌Z

Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
D

ˇ̌̌̌Z ı

0

2

t

Z
Dt

�n � .xrun/ dxdt

ˇ̌̌̌
�2

ˇ̌̌̌Z ı

0

1

t

Z
Dt

�n�.xrˆn/ dxdt

ˇ̌̌̌
C2

Z ı

0

1

t

Z
Dt

jx�nj jr.un�ˆn/.x/j dxdt

� Cı4.p�1/=p
C 2

Z
Dı

ˇ̌
x�n

ˇ̌ˇ̌
r.un�ˆn/.x/

ˇ̌�Z ı

jxj

1

t
dt

�
dx

� Cı4.p�1/=p
C 2

Z
Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx:

For any j > 0, set 'j .x/D 
�

x
22�j ı

�
� 

�
x

2�2�j ı

�
. When 2�jı � jxj< 21�jı,

we obtain

(3-10) j@i.un�ˆn/.x/j D

ˇ̌̌̌Z
xi�yi

jx�yj2
.gn.y/� �n.y// dy

ˇ̌̌̌
�

Z
j A.un/.dun; dun/C 2r runCun4 j.y/

jx�yj
dy

�

Z
j A.un/.y/j

jx�yj
dyCC

Z
1<jyj<2

.jrunjCjunj/.y/ dy

�

Z
j'j A.un/.y/j

jx�yj
dyC

Z
j. �'j /A.un/.y/j

jx�yj
dyCC

�

Z
j'j A.un/.y/j

jx�yj
dyC

R
jA.un/.y/j dy

jxj
CC

�

Z
j'j A.un/.y/j

jx�yj
dyC

C

jxj
:
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When ı > 0 is small enough and n is big enough, for any j > 0, we claim that

(3-11) k'j A.un/kp=.2�p/ � C.2�jı/�4.p�1/=p;

where the constant C depends only on p, ƒ, the bubble w and the target manifold
N .

Take ı > 0 and R.w/ that depends on w such that

E.u;D8ı/�
1
8
�2

N and E.w;R2
nDR.w//�

1
8
�2

N :

The standard blow-up analysis (see [Ding and Tian 1995]) shows that for any j

with 8rnR.w/� 2�jı and n big enough, we have

E.un;D24�j ı nD2�3�j ı/�
1
3
�2

N :

By (3-1), when 2�jı < rn=16, we get

E.un;D24�j ı nD2�3�j ı/�
1
4
�2

N :

So when 2�jı < rn=16 or 2�jı � 8rnR.w/, by Lemma 2, we see that

k'j A.un/kp=.2�p/ � Ckrunk
2
L2p=.2�p/.D

23�j ı
nD

2�2�j ı
/

� Ckun�un;jk
2
W 2;p.D

23�j ı
nD

2�2�j ı
/

� C
�
.2�jı/�4 p�1

p krunk
2
L2.D

24�j ı
nD

2�4�j ı
/
Ck�.un/k

2
p

�
� C.2�jı/�4 p�1

p ;

where un;j is the mean of un on D23�j ı nD2�2�j ı.
On the other hand, when rn=16 � 2�jı � 8rnR.w/, we can find no more than

CR.w/2 balls with radius rn=2 to cover D23�j ı nD2�2�j ı, that is,

D23�j ı nD2�2�j ı �

m[
iD1

D.yi ;
1
2
rn/:

Set Bi DD.yi ;
1
2
rn/ and 2Bi DD.yi ; rn/. By (3-1), for any i with i �m we have

E.un; 2Bi/�
1
4
�2

N :

Using Lemma 2 we obtain

k'j A.un/kp=.2�p/ � Ckrunk
2
L2p=.2�p/.D

23�j ı
nD

2�2�j ı
/

� C

� mX
iD1

krunk
2p=.2�p/

L2p=.2�p/.Bi /

�.2�p/=p

� C

mX
iD1

krunk
2
L2p=.2�p/.Bi /
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� C

mX
iD1

kun�un;ik
2
W 2;p.Bi /

� C

mX
iD1

�
.rn/
�4.p�1/=p

krunk
2
L2.2Bi /

Ck�.un/k
2
p

�
� C m

�
.2�jı/�4.p�1/=p

C 1
�

� C.2�jı/�4.p�1/=p;

where un;i is the mean of un over Bi and the constant C depends only on p, ƒ,
the bubble w and the target manifold N . So we have proved (3-11).

By (3-10) and (3-11), when p > 1 we get

(3-12)
Z

Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

�

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

� C

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj

�
1

jxj
C

Z
j'j A.un/.y/j

jx�yj
dy

�
jxj ln 1

jxj
dx

� C

�Z
Dı

j�nj ln
1

jxj
dx

C

1X
jD1

Z
2�j ı<jxj<21�j ı

j�nj

�Z
j'j A.un/.y/j

jx�yj
dy

�
jxj ln 1

jxj
dx

�

�C

�ln 1

j � j


Lp=.p�1/.Dı/

C

1X
jD1

2�jı ln 2j

ı

Z j'j A.un/.y/j

j � �yj
dy


p

p�1

�
�k�nkp

� C

�
ı2
�

ln 1

ı

�1=.p�1/
C

1X
jD1

2�jı ln 2j

ı
k'j A.un/k2p=.3p�2/

�
:

Here we use the fact that the fraction integral operator I.f /D 1
j � j
� f is bounded

from Lq.R2/ to L2q=.2�q/.R2/ for 1< q < 2.
When p � 6

5
, that is, when 2p=.3p� 2/� p=.2�p/, by (3-11) we have

(3-13) k'j A.un/k 2p
3p�2

� C.2�jı/
5p�6

p k'j A.un/k p
2�p

� C.2�jı/
5p�6

p
�

4.p�1/
p � C.2�jı/�

2�p
p :
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From (3-12) and (3-13) we get

(3-14)
Z

Dı

j�nj jr.un�ˆn/.x/j jxj ln
1

jxj
dx

� C

�
ı2
�

ln 1

ı

� 1
p�1
C

1X
jD1

2�jı ln 2j

ı
k'j A.un/k 2p

3p�2

�
� C

�
ıC

1X
jD1

2�jı ln 2j

ı
.2�jı/�

2�p
p

�
� C

�
ıC ı

2.p�1/
p ln 1

ı

�
� Cı

p�1
p :

It is clear that (3-9) and (3-14) imply that

(3-15)
ˇ̌̌̌Z

Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� Cı.p�1/=p:

This concludes the proof. �

Now we use these lemmas to prove the energy identity. Note thatw is harmonic.
From Lemma 4 we see that

R
DR
.j@rwj

2� r�2j@�wj
2/dx D 0 for any R> 0. It is

easy to see that

lim
R!1

lim
n!1

ˇ̌̌̌Z
DrnR

�
j@r unj

2
�r�2

j@�unj
2
�
dx

ˇ̌̌̌
D lim

R!1

ˇ̌̌̌Z
DR

�
j@rwj

2
�r�2

j@�wj
2
�
dx

ˇ̌̌̌
D 0:

Letting ı! 0 in (3-15), we obtain

(3-16) lim
ı!0

lim
R!1

lim
n!1

ˇ̌̌̌Z
DınDrnR

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� lim
ı!0

lim
n!1

ˇ̌̌̌Z
Dı

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
C lim

R!1
lim

n!1

ˇ̌̌̌Z
DrnR

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
D 0:

Using Lemma 3 we obtain that the normal energy also vanishes on the neck domain,
so the energy identity is proved.

4. Neckless property

In this section we use the method in [Qing and Tian 1997] to prove the neckless
property during blowing up.
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For any � > 0, take ı;R such that

E.u;D4ı/CE.w;R2
nDR/C ı

4.p�1/=p < �2:

Suppose rnR D 2�jn ; ı D 2�j0 . When n is big enough, the standard blow-up
analysis shows that for any j0 � j � jn,

E.un;D21�j nD2�j / < �
2:

For any j0 < j < jn, set Lj Dminfj � j0; jn� j g. Now we estimate the norm
krunkL2.Pj /

. Set Pj ;t DD2t�j nD2�t�j and take hn;j ;t similar to hn in the last
section, but

hn;j ;t .2
˙t�j /D

1

2�

Z
S1

un.2
˙t�j ; �/ d�:

By an argument similar to the one used in deriving (3-4), we have, for 0< t �Lj ,

(4-1)
Z

Pj ;t

r�2
j@�unj

2 dx

� C�

�Z
Pj ;t

jrunj
2 dxC .2t�j /

2.p�1/
p

�
C

Z
@Pj ;t

jun� hn;j ;t j jrunj ds:

Set fj .t/D
R

Pj ;t
jrunj

2dx, a simple computation shows that

f 0j .t/D ln 2

�
2t�j

Z
f2t�j g�S1

jrunj
2 dsC 2�t�j

Z
f2�t�j g�S1

jrunj
2 ds

�
:

Combining that hn;j ;t is independent of � and hn;j ;t is the mean value of un at
the two components of @Pj ;t with the Poincaré inequality yields thatZ
@Pj ;t

jun� hn;j ;t j jrunj ds

D

Z
f2t�j g�S1

jun�hn;j ;t j jrunj dsC

Z
f2�t�j g�S1

jun�hn;j ;t j jrunj ds

�

�Z
f2t�j g�S1

jun� hn;j ;t j
2 ds

� 1
2
�Z
f2t�j g�S1

jrunj
2 ds

� 1
2

C

�Z
f2�t�j g�S1

jun� hn;j ;t j
2 ds

� 1
2
�Z
f2�t�j g�S1

jrunj
2 ds

� 1
2

� C

�
2t�j

Z
f2t�j g�S1

jrunj
2 dsC 2�t�j

Z
f2�t�j g�S1

jrunj
2 ds

�
� Cf 0j .t/:

On the other hand, by a similar argument as we made to obtain (3-15), we get



ENERGY IDENTITY FOR SURFACE MAPS WITH BOUNDED TENSION FIELD 193

(4-2)
ˇ̌̌̌Z

Pj ;t

�
j@r unj

2
� r�2

j@�unj
2
�

dx

ˇ̌̌̌
� C

�
.2t�j /

p�1
p C .2�t�j /

p�1
p

�
� C.2t�j /

p�1
p :

Since jruj2 D j@r uj2C r�2j@�uj2 D 2r�2j@�uj2C .j@r uj2 � r�2j@�uj2/, by
(4-1) and (4-2) we have

fj .t/� 2

Z
Pj ;t

r�2
j@�unj dxC

ˇ̌̌̌Z
Pj ;t

.j@r unj
2
� r�2

j@�unj
2/ dx

ˇ̌̌̌
� C�

�
fj .t/C .2

t�j /
2.p�1/

p

�
CCf 0j .t/CC.2t�j /

p�1
p

� C
�
�fj .t/C 2�

.p�1/j
p 2

.p�1/t
p Cf 0j .t/

�
:

Take � small enough and set �p D
p�1

p
ln 2, then for some positive constant C big

enough we get

f 0j .t/�
1

C
fj .t/CCe��pj e�pt

� 0:

We may assume that �p > 1=C , then we have

.e�t=Cfj .t//
0
CCe��pj e.�p�1=C /t

� 0:

Integrating this inequality over Œ2;Lj � gives

fj .2/� C

�
e�Lj =Cfj .Lj /C e��pj

Z Lj

1

e.�p�1=C /t dt

�
� C

�
e�Lj =Cfj .Lj /C e��pj e.�p�1=C /Lj

�
:

Note that j �Lj , so

fj .2/� C.e�Lj =Cfj .Lj /C e�j=C /:

Since the energy identity was proved in the last section, we can take ı small such
that the energy on the neck domain is less than �2, which implies that fj .Lj /< �

2.
So we get

fj .2/� C
�
e�Lj =C �2

C e�j=C
�
:

Using Lemma 2 on the domain Pj DD21�j nD2�j when j < jn, we obtain

kunkOsc.Pj / � C
�
krunkL2.Pj�1[Pj[PjC1/

C 2
2.1�p/j

p k�.un/kp
�

� C
�
fj .2/C e�2�pj

�
:
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Summing over j from j0 to jn yields

kunkOsc.DınD2rnR/ �

jnX
jDj0

kunkOsc.Pj /

� C

jnX
jDj0

�
fj .2/C e�2�pj

�
� C

jnX
jDj0

�
e�Lj =C �2

C e�j=C
C e�2�pj

�
� C

� 1X
iD0

e�i=C �2
C

1X
jDj0

e�j=C

�
� C

�
�2
C e�j0=C

�
� C

�
�2
C ı1=C

�
:

Here we used the assumption that �p > 1=C . So we have proved that there is no
neck during the blowing up.
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