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REMARKS ON SOME ISOPERIMETRIC PROPERTIES
OF THE k− 1 FLOW

YU-CHU LIN AND DONG-HO TSAI

We consider the evolution of a convex closed plane curve γ0 along its inward
normal direction with speed k− 1, where k is the curvature. This flow has
the feature that it is the gradient flow of the (length− area) functional and
has been previously studied by Chou and Zhu, and Yagisita. We revisit the
flow and point out some interesting isoperimetric properties not discussed
before.

We first prove that if the curve γt converges to the unit circle S1 (without
rescaling), its length L(t) and area A(t) must satisfy certain monotonicity
properties and inequalities.

On the other hand, if the curve γt (assume γ0 is not a circle) expands
to infinity as t → ∞ and we interpret Yagisita’s result in the right way,
the isoperimetric difference L2(t)− 4π A(t) of γt will decrease to a positive
constant as t →∞. Hence, without rescaling, the expanding curve γt will
not become circular. It is asymptotically close to some expanding curve Ct ,
where C0 is not a circle and each Ct is parallel to C0. The asymptotic speed
of Ct is given by the constant 1.

1. Introduction

Let γ0 be a smooth embedded convex closed curve in R2 (with positive curvature
everywhere) parametrized by X0 := X0(ϕ) : S1

→ R2, where S1 is the unit circle.
We study the geometric behavior of γ0 driven by the equation

(1) ∂X
∂t
(ϕ, t)= (k(ϕ, t)− 1)Nin(ϕ, t), X (ϕ, 0)= X0(ϕ), ϕ ∈ S1

where k(ϕ, t) is the curvature of the curve γt (parametrized by X (ϕ, t)), Nin(ϕ, t)
is the unit inward normal vector of γt .

Without the constant term, (1) is the well-known curve shortening flow. See
[Gage and Hamilton 1986] for the case when γ0 is convex and [Grayson 1987]
for the case when γ0 is a simple closed curve. Also see [Andrews 1998] for more
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general types of curvature flows. Unlike the situation in [Grayson 1987], a simple
closed curve γ0 may develop self-intersections under the flow (1) due to the constant
term −1. This will make the problem hard to manage. Thus we focus only on the
case when γ0 is convex.

According to [Gage and Hamilton 1986], (1) is a parabolic flow and there exists
a unique smooth solution X (ϕ, t) : S1

× [0, T )→ R2 to the flow for a short time
T > 0, T <∞. We want to study its long-time convergence behavior. The flow (1)
has the interesting property that it is the gradient flow of the functional

(2) E(γ )= length− area=
∫
γ

ds− 1
2

∫
γ

(x dy− y dx)

with respect to the L2 inner product 〈u, v〉 =
∫
γ

uv ds on the space of all normal
variations of γ . One can also view it as a competition between the curve shortening
flow ∂X/∂t = k Nin (contraction) and the unit-speed outward normal flow ∂X/∂t =
−Nin = Nout (expansion). See [Gage and Hamilton 1986; Green and Osher 1999].

It is expected intuitively that, depending on the convex initial curve, the flow (1)
will either converge to a point, converge to a round circle S1, or expand to infinity,
with each γt remaining smooth and convex. This is indeed true due to Theorem 3.12
(see also Remark 3.14) of [Chou and Zhu 2001]. Moreover, for given initial data
X0(ϕ) : S1

→ R2, if we consider its homothetic class

(3) H(X0)= {λX0(ϕ) : λ > 0, ϕ ∈ S1
},

there exists a unique number 3> 0 (for convenience we call it the critical number
of X0) such that under the flow (1) with initial data λX0(ϕ), λ=3, γt will converge
to the unit circle S1 (without rescaling) smoothly as t→∞. For 0< λ < 3, the
flow exists on a maximal finite time interval [0, Tmax), Tmax <∞, and γt converges
to a point p ∈ R2 as t → Tmax; and for λ > 3, the flow expands to infinity as
t→∞. Thus the generic behavior of the k− 1 flow is either converging to a point
or expanding to infinity.

The asymptotic behavior of γt as t→ Tmax (or t→∞) in the above three cases
are known due to [Chou and Zhu 2001, Theorem 3.12; Gage 1984; Gage and
Hamilton 1986; Chow and Tsai 1996]. Also see [Yagisita 2005] for a more refined
estimate in the expanding case.

Our purpose is to give an estimate of the number 3 and to point out some
monotonicity properties of length L(t) and area A(t) not observed before. See
Theorem 2.1. We also reinterpret Yagisita’s estimate in terms of the asymptotic
behavior of the isoperimetric difference D(t) := L2(t)− 4π A(t). See Lemmas 3.7
and 3.9.

Remark 1.1. This is to explain how to convert Chou and Zhu’s results for k− λ
flow into results for k− 1 flow. Chou and Zhu [2001, Theorem 3.12] considered a
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general flow which includes the following as a special case:

(4) ∂X
∂t
(ϕ, t)= (k(ϕ, t)− λ)Nin(ϕ, t), X (ϕ, 0)= X0(ϕ), ϕ ∈ S1.

Here λ∈R is a number serving as a parameter. For a given initial curve γ0 := X0(ϕ),
there exists a unique number 3 such that the flow (4) with λ=3 will evolve γ0

smoothly into a circle with radius 1/3 as t→∞, t ∈ [0,∞). We assert that if we
replace γ0 by γ̃0 :=3γ0 and rescale time (denote the new time as τ ), then, under
the k−1 flow (1), γ̃0 will converge to the unit circle S1 as τ→∞. More precisely,
let X (ϕ, t) be the solution to the k−3 flow with initial condition X0(ϕ) and set

X̃(ϕ, τ )=3X (ϕ, t), τ =32t ∈ [0,∞).

Then by k̃(ϕ, τ )= (1/3)k(ϕ, t), Ñin(ϕ, τ )= Nin(ϕ, t), we have

X̃(ϕ, 0)=3X0(ϕ)= γ̃0,

∂ X̃
∂τ
(ϕ, τ )=3

dt
dτ
∂X
∂t
(ϕ, t)= 1

3
(k(ϕ, t)−3)Nin(ϕ, t)= (k̃(ϕ, τ )− 1)Ñin(ϕ, τ )

for all (ϕ, τ ) ∈ S1
× [0,∞). That is, X̃(ϕ, τ ) satisfies the k− 1 flow (with initial

condition γ̃0 =3γ0) and converges to the unit circle S1 as τ →∞.

2. Estimate of the critical number 3

According to [Chou and Zhu 2001], the critical number 3 is obtained via a contra-
diction argument and for a given curve X0(ϕ) we do not know what it is. However,
we can use the following theorem to give an estimate of 3 (see Corollary 2.7).

Theorem 2.1. Let γ0 be a convex closed curve (which is not a unit circle) and
consider (1) with initial data γ0. If the flow is defined on time interval [0,∞) and
γt converges (without rescaling) to the unit circle S1 as t→∞, its length L(t) and
enclosed area A(t) must satisfy the estimate

(5) L(t) > 2π, A(t) < π, L(t)− 2π > π − A(t)

for all t ∈ [0,∞). Moreover, L(t) is strictly decreasing, A(t) is strictly increasing,
and (L(t)− 2π)− (π − A(t)) is strictly decreasing on [0,∞).

The proof consists of several simple lemmas. Recall that for a family of time-
dependent simple closed curves γt = γ (·, t) in the plane its length L(t) and enclosed
area A(t) satisfy the equations

(6) dL
dt
(t)=−

∫
γ (·,t)

〈
∂γ

∂t
, k Nin

〉
ds, dA

dt
(t)=−

∫
γ (·,t)

〈
∂γ

∂t
, Nin

〉
ds,
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where Nin is the unit inward normal of γt and k is its signed curvature with respect
to Nin. Therefore

(7) d
dt
(L(t)− A(t))=−

∫
γ (·,t)

〈
∂γ

∂t
, (k− 1)Nin

〉
ds,

which explains why (1) is the gradient flow of the functional E(γ ) in (2). In
particular, under the flow (1), we have

(8) dL
dt
(t)=−

∫
γ (·,t)

k2ds+ 2π, dA
dt
(t)= L(t)− 2π.

As γ0 is strictly convex, γt will remain so for a short time (we may assume γt

is convex on [0, T ) for some T > 0). Thus one can use the outward normal angle
θ ∈ S1 of γt as a parametrization variable. In terms of (θ, t) ∈ S1

×[0, T ) we have

(9) ∂k
∂t
(θ, t)= k2(θ, t)[kθθ (θ, t)+ k(θ, t)] − k2(θ, t)

and

(10) ∂u
∂t
(θ, t)= 1− k(θ, t)= 1− 1

uθθ (θ, t)+u(θ, t)
,

where u(θ, t) is the support function of γt . We also have

(11) L(t)=
∫ 2π

0
u(θ, t) dθ, A(t)= 1

2

∫ 2π

0
[u2(θ, t)− u2

θ (θ, t)] dθ.

Let w(θ, t)= k(θ, t)et/4 and compute

∂w

∂t
(θ, t)= k2(θ, t)wθθ (θ, t)+

(
k(θ, t)− 1

2

)2
w(θ, t).

By the maximum principle we can obtain a lower bound of the curvature:

(12) k(θ, t)≥ kmin(0)e−t/4 > 0

for all (θ, t) ∈ S1
×[0, T ), where kmin(0)=minθ∈[0,2π ] k(θ, 0). By Theorem 3.12

of [Chou and Zhu 2001], the flow γt (each γt remains smooth and convex) is either
defined on a finite maximal time interval [0, Tmax) with limt→Tmax kmax(t)=∞ or
on an infinite time interval [0,∞) with limt→∞ k(θ, t)= 1 or limt→∞ k(θ, t)= 0
uniformly on S1.

Note that for any simple closed curve γ in the plane, we have
∫
γ

k ds = 2π and

(13)
∫
γ

k2 ds ≥ 4π2

L
(Hölder inequality),
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and, by Gage’s isoperimetric inequality [1983], we have

(14)
∫
γ

k2 ds ≥ πL
A

for any convex closed curve γ in R2. We also need the fact that the equality holds
in (13) or (14) if and only if γ is a circle.

As a consequence of (14), the isoperimetric difference and ratio of γt , under
the k− 1 flow, are both decreasing (strictly decreasing if γ0 is not a circle) in time
due to

(15) d
dt
(L2
− 4π A)≤−2π

A
(L2
− 4π A)≤ 0

and

(16) d
dt

( L2

4π A
− 1

)
≤
−L
A

( L2

4π A
− 1

)
≤ 0.

Thus, in any case of convergence, γt is getting more and more circular.
Let L(0) and A(0) be the length and area of γ0 (γ0 is not a unit circle).

Lemma 2.2. If L(0) ≤ 2π , the flow (1) strictly decreases L(t) and A(t), and γt

converges to a point p ∈ R2 in finite time Tmax.

Remark 2.3. If L(0) ≤ 2π , γ0 may not be enclosed by a circle with radius less
than 1. Otherwise the result is trivial due to the maximum principle.

Proof. Since γ0 is not a unit circle, if L(0)≤ 2π , we must have A(0) < π due to
L2(0) > 4π A(0). We also have strict inequality in (13). By (8), we have

dL
dt
=−

∫
γ (·,t)

k2 ds+ 2π ≤ 2π
L(t)

(L(t)− 2π),

and at t = 0 we have (dL/dt)(0) < 0. Thus the flow (1) strictly decreases L(t).
By dA/dt = L(t) − 2π , it also strictly decreases A(t). As a consequence of
Theorem 3.12 of [Chou and Zhu 2001], γt will converge to a point p ∈ R2 in finite
time Tmax. �

Lemma 2.4. If A(0) ≥ π , the flow (1) strictly increases A(t), and γt expands to
infinity as t→∞.

Remark 2.5. If A(0) ≥ π , γ0 may not enclose a circle with radius larger than 1.
Otherwise the result is trivial due to the maximum principle.

Proof. We now have L(0) > 2π and (dA/dt)(0)= L(0)− 2π > 0. By continuity
L(t) remains L(t) > 2π for a short time [0, T ) and A(t) is strictly increasing with
A(t) > π on (0, T ). As time proceeds, the inequality L2

≥ 4π A forces L(t) to
remain L(t) > 2π and A(t) keeps strictly increasing. Again by Theorem 3.12 of
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[Chou and Zhu 2001], the flow is defined on [0,∞) and γt expands to infinity
as t→∞. �

Lemma 2.6. If L(0) > 2π , A(0) < π , and L(0)− 2π ≤ π − A(0), γt converges to
a point p ∈ R2 in finite time Tmax.

Proof. By continuity L(t) > 2π and A(t) < π for a short time [0, T ), and during
this time interval we have

(17) d
dt
(L(t)− 2π)=−

∫
γ (·,t)

k2 ds+ 2π

<−
πL(t)
A(t)

+ 2π <−(L(t)− 2π)= d
dt
(π − A(t)) < 0.

Thus L(t) is strictly decreasing and A(t) is strictly increasing.
Equation (17) says that L(t)−2π decreases more rapidly than π− A(t) (as long

as L(t) > 2π and A(t) < π). Since L(0)− 2π is closer to 0 than π − A(0), L(t)
must touch 2π earlier than A(t) touches π . More precisely, let t∗ > 0 be the first
time at which L(t) > 2π and A(t) < π on [0, t∗) and L(t∗)= 2π . Such a t∗ must
exist and is finite. Otherwise we would have L(t) > 2π and A(t) < π on [0,∞),
and, by [Chou and Zhu 2001, Theorem 3.12], the flow would have to converge to
the unit circle S1 (without rescaling), which is impossible due to the inequality

(L(t)− 2π)− (π − A(t)) < (L(t1)− 2π)− (π − A(t1))

< [(L(0)− 2π)− (π − A(0))] ≤ 0

for all t > t1 > 0 in [0,∞). (Note that now we have L(t)→ 2π and A(t)→ π

as t →∞.) Therefore t∗ > 0 is finite and L(t∗) = 2π . By Lemma 2.2, γt must
converge to a point p ∈ R2 in finite time Tmax. �

Proof of Theorem 2.1. Combining these three lemmas, the proof of Theorem 2.1 is
now clear. Since we assume that γt converges to the unit circle S1 (without rescaling)
as t→∞, if at some time t0 ∈ [0,∞) we have L(t0)≤ 2π or A(t0)≥ π , the curve
will either converge to a point or expand to infinity. Hence we must have L(t) > 2π
and A(t) < π for all time. By Lemma 2.6 we also have L(t)− 2π > π − A(t) for
all time. The monotonicity of L(t), A(t), and (L(t)− 2π)− (π − A(t)) can all be
seen from (17). �

As a consequence of Theorem 2.1, we can give an estimate of the number 3 in
Theorem 3.12 of [Chou and Zhu 2001].

Corollary 2.7. Let γ0 be a convex closed curve (which is not a unit circle) with
length L(0) and area A(0). Then its critical number 3 satisfies

(18) 3L(0) > 2π, 32 A(0) < π, 3L(0)− 2π > π −32 A(0),
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which implies

(19) max
{

2π
L(0)

,
−L(0)+

√
L2(0)+ 12π A(0)
2A(0)

}
<3<

√
π

A(0)
.

Remark 2.8. Let k0(θ) be the curvature of γ0. As 3γ0 converges to the unit circle
S1 as t→∞, its curvature (1/3)k0(θ) must satisfy (1/3)maxθ∈S1 k0(θ) > 1 and
(1/3)minθ∈S1 k0(θ)< 1. This gives a rough estimate of3 in terms of the curvature
of γ0, that is,

(20) min
θ∈S1

k0(θ) < 3 <max
θ∈S1

k0(θ).

We explain that (19) is better than (20). To see this, by the identity

L(0)=
∫ 2π

0

1
k0(θ)

dθ

and Gage’s inequality (14), we have

min
θ∈S1

k0(θ) <
2π

L(0)
and L(0)

2A(0)
<max

θ∈S1
k0(θ).

Combined with the classical isoperimetric inequality

2π
L(0)

<

√
π

A(0)
<

L(0)
2A(0)

,

we conclude

(21) min
θ∈S1

k0(θ) <
2π

L(0)
<

√
π

A(0)
<

L(0)
2A(0)

<max
θ∈S1

k0(θ).

Hence (19) is better than the curvature estimate (20).

Remark 2.9. Under the assumption of Theorem 2.1, the curvature k(θ, t)→ 1
uniformly as t→∞. One can follow a similar proof to that of [Gage and Hamilton
1986, Theorem 5.7.1] to conclude the following curvature estimate: for any m ∈N

and any α ∈ (0, 1), there exists a constant C depending only on m and γ0 such that

(22)
∥∥∥∂mk
∂θm (θ, t)

∥∥∥
L∞(S1)

≤ C(m)e−2αt

for time t large enough.

Given initial curve γ0, if we replace the k− 1 flow by ck− d flow, the critical
number 3̃ for the ck − d flow and the critical number 3 for the k − 1 flow are
related by the following.
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Corollary 2.10. Let c, d be two positive constants and let γ0 be a convex closed
curve parametrized by X0(ϕ), ϕ ∈ S1. Then the critical number 3 in the k− 1 flow
and the critical number 3̃ in the ck− d flow are related by

(23) 3̃=
c
d
3.

Proof. This is a consequence of scaling. By definition, the solution X̃(ϕ, t) to the
initial value problem

∂ X̃
∂t
(ϕ, t)= (ck̃(ϕ, t)− d)Ñin(ϕ, t), X̃(ϕ, 0)= 3̃X0(ϕ)

will converge to the circle with radius R = c/d as t→∞. Let

Y (ϕ, t)= d
c

X̃
(
ϕ,

c
d2 t

)
.

Then it satisfies

∂Y
∂t
(ϕ, t)= (k(Y )(ϕ, t)− 1)N (Y )

in (ϕ, t), Y (ϕ, 0)= d
c
3̃X0(ϕ),

where k(Y )(ϕ, t) and N (Y )
in (ϕ, t) are the curvature and normal at Y (ϕ, t), respectively.

Since Y (ϕ, t) will converge to the unit circle, we have (d/c)3̃=3. �

3. The asymptotic behavior of L2− 4π A in the expanding case

There is another interesting property of the flow (1) not discussed before when,
given an initial curve γ0, it expands to infinity. It is about the value of D(t) :=
L2(t)−4π A(t) as t→∞. From (8) it is easy to see that L(t) has scale t and A(t)
has scale t2 as t →∞ (since k(θ, t)→ 0 uniformly on S1). If we integrate (16)
with respect to time, we get

0≤ L2(t)
4π A(t)

− 1≤
( L2(0)

4π A(0)
− 1

)
e−

∫ t
0 (L(z)/A(z)) dz, lim

t→∞

∫ t

0

L(z)
A(z)

dz =∞.

This implies L2(t)/(4π A(t))→ 1 exponentially as t →∞. But if we integrate
(15), we only get

0≤ D(t)≤ D(0)e−
∫ t

0 (2π/A(z)) dz, lim
t→∞

∫ t

0

2π
A(z)

dz <∞,

which implies that L2(t)− 4π A(t) decreases to some number bounded above by

D(0)e−
∫
∞

0 (2π/A(z)) dz.

We shall see that, unless γ0 is a circle, D(t) will not decrease to zero as t→∞.
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Remark 3.1. Note that if we have a family of curves γt , t ∈ [0, T ), T ≤ ∞, so
that A(t) has uniform positive upper and lower bounds, then limt→T D(t)= 0 is
equivalent to limt→T L2(t)/(4π A(t))= 1. But if limt→T A(t)= 0 or∞, then they
may not be equivalent.

Recall that if we evolve a convex closed curve γ0 by the unit-speed (that is, the
constant 1) outward normal flow, we get a family of parallel curves γt expanding to
infinity. We get a similar result if we replace the speed constant 1 by a positive time
function a(t), where limt→∞ a(t)=∞. Moreover, any two parallel convex closed
curves (or simple closed curves) γt1 and γt2 have the same isoperimetric difference.

The intuitive observation is that when γ0 expands to infinity under the k−1 flow,
its asymptotic behavior is given by the unit-speed outward normal flow. As the
unit-speed outward normal flow preserves the isoperimetric difference, we expect
that D(t) will not decrease to zero as t →∞. This is indeed the case based on
results in [Yagisita 2005], which are explained below.

From now on we use θ ∈ S1 to denote the outward normal angle of γt (γt is
convex) and use σ ∈ S1 to denote the polar angle of γt (we may assume that γt

encloses the origin of R2). In Theorem 2 of [Yagisita 2005], he looked at the radial
function r(σ, t) of γt and proved that there exists a smooth function `(σ ) defined
on S1 such that

(24) lim
t→∞
‖r(σ, t)− (R(t)+ `(σ ))‖Ck(S1) = 0

for any k ∈ N, where R(t) is the solution to the ODE

(25)
dR
dt
(t)= 1− 1

R(t)
, R(0)= 2.

Note that R(t) is strictly increasing on [0,∞) with limt→∞ R′(t)= 1.
To see that D(t) decreases to a positive constant asymptotically, we need to see

what (24) implies in terms of the support function u(θ, t) of γt . By (11), it suffices
to look at the asymptotic behavior of u(θ, t) and uθ (θ, t).

Remark 3.2. Yagisita [2005] used the radial function r(σ, t) to study the flow
(1) instead of the support function u(θ, t). The advantage is that one can get a
quasilinear uniformly parabolic equation for the difference A(σ, τ ) :=r(σ, t)−R(t)
(see pages 227–230 of [Yagisita 2005]) if we also rescale time. More precisely, let

τ(t)= log
(

1− 1
R(t)

)
: [0,∞)→ [− log 2, 0), dτ

dt
=

1
R2(t)

.

Then we have

(26) ∂A
∂τ
(σ, τ )

=
R2(t (τ ))

[A(σ, τ )+ R(t (τ ))]2+ A2
σ (σ, τ )

Aσσ (σ, τ )+ lower order terms
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for all (σ, τ ) ∈ S1
×[− log 2, 0), where R(t (τ ))= 1/(1− eτ ). On the other hand,

the evolution equation for B(θ, τ ) := u(θ, t)− R(t) is also uniformly parabolic but
fully nonlinear, that is,

(27) ∂B
∂τ
(θ, τ )=

R(t (τ ))
Bθθ (θ, τ )+B(θ, τ )+R(t (τ ))

(Bθθ (θ, τ )+ B(θ, τ ))

for all (θ, τ ) ∈ S1
× [− log 2, 0). Equation (26) is easier to handle than (27).

However, the disadvantage is that it is very awkward to use r(σ, t) to study the
isoperimetric difference D(t).

Lemma 3.3. Let γ0 be a convex closed curve and consider the flow (1) with initial
data γ0. Then (24) implies

(28) lim
t→∞
‖u(θ, t)− (R(t)+ `(θ))‖C1(S1) = 0.

In particular, we have

(29) lim
t→∞

D(t)=
(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0.

Remark 3.4. We may get higher order convergence of u(θ, t). But (28) is sufficient.

Proof. For a point p ∈ γt with position vector P , its support function u(θ, t) and
radial function r(σ, t) are related by

(30) P = u(θ, t)(cos θ, sin θ)+ uθ (θ, t)(− sin θ, cos θ)= r(σ, t)(cos σ, sin σ).

From this we get

(31) u(θ, t)= r(σ, t) cos(σ − θ), uθ (θ, t)= r(σ, t) sin(σ − θ),

and

(32) σ = σ(θ, t)= tan−1
(

u(θ, t) sin θ + uθ (θ, t) cos θ
u(θ, t) cos θ − uθ (θ, t) sin θ

)
, θ ∈ S1.

In particular, at any point p where θ = σ , we have u(θ, t)= r(σ, t) and uθ (θ, t)= 0.
Since we know that |uθ (θ, t)| and |uθθ (θ, t)| are both uniformly bounded on

S1
× [0,∞) (see [Chow and Tsai 1996]) and u(θ, t)→∞ uniformly, we have

limt→∞ σ(θ, t)= θ uniformly on S1 and

(33) lim
t→∞

∂σ

∂θ
(θ, t)= lim

t→∞

u(θ, t)(uθθ (θ, t)+ u(θ, t))
u2(θ, t)+ u2

θ (θ, t)
= 1

uniformly on S1. Since uθ (θ, t)= r(σ, t) sin(σ − θ), we have
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(34) R(t) sin(σ − θ)
= uθ (θ, t)− (r(σ, t)− R(t)− `(σ )) sin(σ − θ)− `(σ ) sin(σ − θ).

This implies that |R(t) sin(σ− θ)| is also uniformly bounded on S1
×[0,∞). Now,

by (24), we conclude

(35) lim
t→∞

(u(θ, t)− R(t))

= lim
t→∞

(
(r(σ, t)−R(t)−`(σ )) cos(σ−θ)+(R(t)+`(σ )) cos(σ−θ)−R(t)

)
= lim

t→∞

(
(R(t) sin(σ−θ)) σ−θ

sin(σ−θ)
cos(σ−θ)−1

σ−θ

)
+`(θ)

= `(θ),

uniformly on S1. We next claim that uθ (θ, t)→ `′(θ) uniformly on S1 as t→∞.
Apply ∂/∂θ to u(θ, t) and use the chain rule to get

uθ (θ, t)=rσ (σ, t)∂σ
∂θ

cos(σ−θ)−r(σ, t)
(
∂σ

∂θ
(θ, t)−1

)
sin(σ−θ), σ =σ(θ, t),

and hence

(36) lim
t→∞

uθ (θ, t)= `′(θ)

uniformly on S1 due to (33) and (24). Since

‖u(θ, t)− r(σ, t)‖C1(S1) ≤ ‖u(θ, t)− (R(t)+ `(θ))‖C1(S1)+‖`(θ)− `(σ )‖C1(S1)

+‖(`(σ )+ R(t))− r(σ, t)‖C1(S1)

we have

(37) lim
t→∞
‖u(θ, t)− r(σ, t)‖C1(S1) = 0, σ = σ(θ, t),

where the C1 norm is taken with respect to θ ∈ S1. By (36) and (34), we also have

(38) lim
t→∞

R(t)(σ − θ)= lim
t→∞

R(t) sin(σ − θ)

= `′(θ)

uniformly on S1.
As a consequence of (11) we have

(39) lim
t→∞

D(t)

= lim
t→∞

[(∫ 2π

0
u(θ, t) dθ

)2

− 2π
∫ 2π

0
u2(θ, t) dθ

]
+ 2π

∫ 2π

0
(`′(θ))2 dθ.
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Since we have the identity

(40)
(∫ 2π

0
u(θ, t) dθ

)2

− 2π
∫ 2π

0
u2(θ, t) dθ

=

(∫ 2π

0
(u(θ, t)− R(t)) dθ

)2

− 2π
∫ 2π

0
(u(θ, t)− R(t))2 dθ,

which is due to the fact that any two parallel convex closed curves have the same
isoperimetric difference, we conclude

(41) lim
t→∞

D(t)=
(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0. �

Remark 3.5. By (30) and (28) the position vector P(θ, t) of γt satisfies

lim
t→∞
|P(θ, t)− Q(θ, t)| = 0

uniformly on S1, where

(42) Q(θ, t)= R(t)(cos θ, sin θ)+ `(θ)(cos θ, sin θ)+ `θ (θ)(− sin θ, cos θ)

and it represents a family of expanding circles centered at (a, b) ∈ R2 if and only if
`(θ) is given by

(43) `(θ)= c+ a cos θ + b sin θ, θ ∈ S1

for some constants a, b, c. Also note that by the classical Minkowski inequality the
right side of (41) is zero if and only if `(θ) has the form (43). So limt→∞ D(t)= 0 if
and only if P(θ, t) is asymptotically close to a family of expanding circles centered
at some (a, b) ∈ R2, which can be evaluated by the integral

(44) (a, b)= lim
t→∞

1
2π

∫ 2π

0
P(θ, t) dθ = 1

π

∫ 2π

0
`(θ)(cos θ, sin θ) dθ.

On the other hand, limt→∞ D(t)= d > 0 if and only if P(θ, t) is asymptotically
close to a family of noncircular parallel curves (described by Q(θ, t)) expanding
to infinity. This family of parallel curves have the same fixed center (now “center”
means “average position vector”) given by (44). The speed of this family of parallel
curves is

dR
dt
(t)= 1− 1

R(t)
→ 1

as t→∞. Therefore, asymptotically, it is the unit-speed outward normal flow.

To go further, we need the following ODE result.
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Lemma 3.6. For any constant c ∈R there exists a positive solution s(t) to the ODE

ds
dt
= 1− 1

s

defined on some interval [T,∞), T ≥ 0, s(T )≥ 2, such that

lim
t→∞

(s(t)− R(t))= c.

Proof. Assume first that c> 0. Let s(t)= R(t+c), t ∈ [0,∞). It satisfies the same
ODE with s(0)= R(c) > R(0)= 2. Now

lim
t→∞

(s(t)− R(t))= lim
t→∞

∫ t+c

t
R′(z) dz = lim

t→∞

∫ t+c

t

(
1− 1

R(z)

)
dz = c.

For c < 0, let s(t)= R(t + c), t ∈ [−c,∞). Then s(t) is a positive solution to the
ODE on [−c,∞) with s(−c)= R(0)= 2 and

lim
t→∞

(R(t)− s(t))= lim
t→∞

∫ t

t+c
R′(z) dz = lim

t→∞

∫ t

t+c

(
1− 1

R(z)

)
dz =−c. �

Our next result is a property about uniqueness.

Lemma 3.7. If γt expands to infinity under the flow (1), limt→∞ D(t) = 0 if and
only if γ0 is a circle. Therefore if γ0 is not a circle, D(t) will decrease to a positive
constant as t→∞.

Proof. Assume that limt→∞ D(t) = 0. Then `(θ) = c+ a cos θ + b sin θ in (28),
and by Lemma 3.6 there exists a positive solution s(t) to the ODE on some interval
[T,∞), T ≥ 0, s(T )≥ 2, such that

lim
t→∞
‖u(θ, t)− (s(t)+ a cos θ + b sin θ)‖C1(S1) = 0.

Now if at time T we consider a circle CT centered at (a, b) with radius s(T ) and
evolve it under the flow (1), its support function U (θ, t) will satisfy

U (θ, t)= s(t)+ a cos θ + b sin θ,

(θ, t) ∈ S1
× [T,∞) (note that this U (θ, t) satisfies Equation (10)). By previous

discussions, the radial function r1(σ, t) of the evolving curve γt (with support
function u(θ, t)) and the radial function r2(σ, t) of the evolving circle Ct (with
support function U (θ, t)) on the domain S1

×[T,∞) will satisfy the estimate

(45) lim
t→∞
‖r1(σ, t)− r2(σ, t)‖C1(S1) = 0,

and we can apply Theorem 3 of [Yagisita 2005] to conclude that γt ≡ Ct for all
t ∈ [T,∞). In particular γT is also a circle. But this is impossible unless γ0 is a
circle. �
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Remark 3.8. One can also apply Andrews’ backward uniqueness result [2002],
which follows, to prove the above lemma: Assume v(θ, t) is a smooth solution to
the uniformly parabolic equation

(46) ∂v

∂t
= a(θ, t)vθθ + b(θ, t)vθ + c(θ, t)v, (θ, t) ∈ S1

×[0, T ],

where a, b, c are smooth functions on S1
×[0, T ] with

1
C
≤ a(θ, t)≤ C, (θ, t) ∈ S1

×[0, T ],

for some positive constant C > 0. If v(θ, T )= 0 for all θ ∈ S1, we have v(θ, 0)= 0
for all θ ∈ S1 (in particular, v(θ, t) ≡ 0 for all (θ, t)). Now by (24), in terms
of the variable (σ, τ ) ∈ S1

× [− log 2, 0) in Remark 3.2, the bounded function
A(σ, τ ) = r1(σ, t) − R(t) can be smoothly extended to S1

× [− log 2, 0] even
though the function R(t (τ ))= 1/(1− eτ ) is undefined at τ = 0. The full equation
for (26) is (see the top equation on page 229 of [Yagisita 2005])

(47) ∂A
∂τ
(σ, τ )=

1
C(σ, τ )

Aσσ (σ, τ )+
1

D2(σ, τ )+D(σ, τ )
√

C(σ, τ )
A2
σ (σ, τ )

+
1

C(σ, τ )

[
D(σ, τ )A(σ, τ )− (1− eτ )

( 2
D(σ, τ )

− 1
)

A2
σ (σ, τ )

]
,

where
C(σ, τ )= [A(σ, τ )(1− eτ )+ 1]2+ A2

σ (σ, τ )(1− eτ )2,

D(σ, τ )= A(σ, τ )(1− eτ )+ 1.

At τ = 0, we have C(σ, τ )= D(σ, τ )= 1, which implies that (47) is a uniformly
parabolic equation with smooth coefficients on S1

×[−δ, 0] for some small δ > 0.
Moreover, the smooth function

w(σ, τ) := (r1(σ, t)− R(t))− (r2(σ, t)− R(t)), (σ, τ ) ∈ S1
×[−δ, 0],

satisfies a uniformly parabolic equation of the form

∂w

∂τ
= a(σ, τ )wσσ + b(σ, τ )wσ + c(σ, τ )w

with coefficients smooth on S1
×[−δ, 0], and, by (45), w(σ, 0)= 0 for all σ ∈ S1.

Andrews’ result implies w(σ, τ)≡ 0 and the initial curve γ0 must be a circle.

Lemma 3.9. For any number d ≥ 0 and any small ε > 0, one can construct an
expanding k−1 flow so that its isoperimetric difference D(t) satisfies |D(t)−d|<ε
as long as t is large enough.
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Proof. For any d ≥ 0 one can find a convex closed curve γ with support function
`(θ) such that

d = L2
− 4π A =

(∫ 2π

0
`(θ) dθ

)2

− 2π
∫ 2π

0

(
`2(θ)− (`′(θ))2

)
dθ ≥ 0.

Following the proof of Theorem 4 of [Yagisita 2005], we can obtain the following:
For any smooth function `(θ) defined on S1 and any small δ > 0, there exists a
large time M > 0 such that if T > M and γT is a convex closed curve with support
function R(T )+ `(θ), the support function u(θ, t) of γt (γt is the evolution of γT

under (1) on time interval [T,∞)) will satisfy

(48) sup
t∈[T,∞)

‖u(θ, t)− (R(t)+ `(θ))‖C0(S1) < δ.

This says that γt is close to a parallel curve of γT , which is intuitively correct.
For the isoperimetric difference of γt we need to be careful, because now the

norm in (48) is only in C0 norm [Yagisita 2005, Proof of Theorem 4], and by (11)
we need to know the behavior of uθ (θ, t) in order to control the area. However,
there is a result on page 53 of [Schneider 1993], which says that if two compact
convex sets K1, K2 in R2 have their support functions u1(θ), u2(θ) close to each
other, their Hausdorff distance is also close to each other. In particular, their lengths
and areas are also close to each other. But be careful again that the two families of
curves γt and pt (pt is the parallel curve of γT with support function R(t)+`(θ) for
t ∈ [T,∞)) are expanding to infinity as t→∞, so even if their Hausdorff distance
is less than δ, |D(t)− d| may not be small as t →∞ (however, |D(t)− d| ≤ d
since D(t)≥ 0 is decreasing on [T,∞) with D(T )= d). To overcome this we can
write (48) as

C + `(θ)− δ ≤ u(θ, t)− R(t)+C ≤ C + `(θ)+ δ, (θ, t) ∈ S1
×[T,∞),

where C > 0 is a constant with (recall that |uθθ (θ, t)| is uniformly bounded on
S1
×[T,∞) by [Chow and Tsai 1996])

(49)
(C + `(θ))θθ + (C + `(θ)) > 0,

(u(θ, t)− R(t)+C)θθ + (u(θ, t)− R(t)+C) > 0.

for all (θ, t) ∈ S1
×[T,∞). Equation (49) implies the existence of a convex closed

curve C1 with support function C + `(θ) and a convex closed curve C2(t) with
support function u(θ, t)− R(t)+C , where the support function of C2(t) is close
to the support function of C1 for all t ∈ [T,∞). Moreover, the curves C1 and
C2(t) are both enclosed by two parallel convex curves C± with support functions
C+`(θ)+δ and C+`(θ)−δ, respectively. However, we worry about the situation
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where, when δ is getting smaller and smaller, the constant C may be getting larger
and larger.

We claim that the constant C in (49) can be chosen to be independent of δ. If
we let δ tends to zero, the time T in (48) will tend to infinity and the initial value
u(θ, T ) = R(T )+ `(θ) will also tend to infinity. However, uθ (θ, T ) = `′(θ) and
uθθ (θ, T ) = `′′(θ) are unaffected by T . From the proofs of Proposition 1 and
Lemma 4 in [Chow and Tsai 1996], one can see that |uθ (θ, t)| and |uθθ (θ, t)| are
both uniformly bounded on S1

×[T,∞) and the bounds are independent of T . This,
together with (48), implies that C >−uθθ (θ, t)+ R(t)− u(θ, t) is independent of
T (and δ).

As δ→ 0, the curve C1 is unchanged and the Hausdorff distance between C2(t)
and C1 is getting smaller. We note that the isoperimetric difference of C1 is given
by d and the isoperimetric difference of C2(t) is the same as D(t) of γt . Therefore,
for any small ε > 0, by making δ > 0 as small as possible, one can construct an
expanding k− 1 flow satisfying |D(t)− d|< ε as long as t is large enough. �

Remark 3.10. In the above proof we use the fact that any smooth function h(θ)
defined on S1, satisfying h′′(θ)+ h(θ) > 0 for all θ ∈ S1, is the support function of
some convex closed curve.
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