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EXCEPTIONAL LIE ALGEBRAS,
SU(3), AND JORDAN PAIRS

PIERO TRUINI

A simple unifying view of the exceptional Lie algebras is presented. The
underlying Jordan pair content and role are exhibited. Each algebra con-
tains three Jordan pairs sharing the same Lie algebra of automorphisms
and the same external su(3) symmetry. Eventual physical applications and
implications of the theory are outlined.

1. Introduction

The main purpose of this paper is to exhibit a unifying view of all exceptional Lie
algebras, which is also very intuitive from the point of view of elementary particle
physics. The result is represented by the root diagram in Figure 1.

Figure 1. A unifying view of the exceptional Lie algebra roots.

It is a very simple, highly intuitive unifying view of all exceptional Lie algebras
and we will use it repeatedly to unfold the largest algebra e8. The picture shows the
projection of the roots of the exceptional Lie algebras on a su(3) plane, recognizable
by the dots forming the external hexagon, and it exhibits the Jordan pair content of

MSC2010: primary 17B25; secondary 17C40.
Keywords: exceptional Lie algebras, e8, Jordan pairs, magic square.

227



228 PIERO TRUINI

each exceptional Lie algebra. There are three Jordan pairs (Jn
3, Jn

3), each of which
lies on an axis symmetrically with respect to the center of the diagram. Each pair
doubles a Jordan algebra Jn

3 with involution (the conjugate representation Jn
3), which

is the algebra of 3× 3 Hermitian matrices over H, where H = R,C,Q,C (real,
complex, quaternion, and octonion numbers) for n= 1, 2, 4, 8. We get f4, e6, e7,
and e8 for n= 1, 2, 4, 8, respectively (g2 can be also represented in the same way,
with the Jordan algebra reduced to a single element). The three Jordan algebras (and
their conjugates) globally behave like a 3 (and a 3)-dimensional representation of
the outer su(3). The algebra denoted by gn

0 in the center (plus the Cartan generator
associated with the axis along which the pair lies) is the algebra of the automorphism
group of the Jordan pair (the structure group of the corresponding Jordan algebra).
In the case of e8, the algebra g8

0 is e6, described by a similar diagram, and we can
iterate the process. What we eventually end up with is a decomposition of e8 entirely
given in terms of su(3)’s and Jordan pairs (that we associate to particle–antiparticle
pairs): three pairs (J8

3, J8
3) for three colors of quark–antiquarks, plus three pairs

(J2
3, J2

3), in the colorless g8
0 = e6, for three families of leptons–antileptons.

The interest of physicists in the exceptional Lie algebras, and e8 in particular, is
a long-standing tradition, starting from the pioneering work of Gürsey [Frampton
et al. 1980] on grand unification, and continuing with [Green and Schwarz 1984;
Cremmer 1982; Truini and Biedenharn 1982; Candelas et al. 1985; Gross 1986;
Ferrara and Kallosh 1996a; 1996b; Ferrara and Günaydin 1998]. In the effort of
unifying all interactions in a consistent quantum theory that includes gravity, the
most successful model of string theory is based on e8; an alternative theory known
as loop quantum gravity (see [Rovelli 2004] for an excellent and comprehensive
review) has also led towards the exceptional algebras, and e8 in particular [Lisi et al.
2010].

There is a wide consensus in both mathematics and physics on the appeal of
the largest exceptional Lie algebra e8, considered beautiful by many in spite of
its complexity. The best synthesis of this was stated by B. Kostant:1 “It is easy
to arrive at the feeling that a final understanding of the universe must somehow
involve E(8), or otherwise put, nature would be foolish not to utilize E(8).”

Kostant defines e8 as “a symphony of 2, 3, 5.” In the more modest view of the
exceptional algebras I present here the numbers 1, 2, and 3 play the central role:
they govern the structure. Number 1 is the whole, the universe of the theory: a Lie
algebra. Number 2 stands for pair, and we view it as a particle–antiparticle duality
represented by Jordan pairs. Number 3 is the number of colors and the number of
families: each Jordan pair occurs three times, in a su(3) symmetry. That is all you
need in order to build e8, as we are going to show.

1Quoted by Benjamin Wallace-Wells in “Surfing the Universe”, The New Yorker, 21 July 2008.
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2. Jordan pairs

In this section we review the concept of a Jordan pair [Loos 1975] (see also
[McCrimmon 2004] for an enlightening overview). Jordan algebras have traveled a
long journey since their appearance in the 30s [Jordan et al. 1934]. The modern
formulation [Jacobson 1966] involves a quadratic map Ux y (like xyx for associative
algebras) instead of the original symmetric product x ◦ y = xy+ yx . The quadratic
map and its linearization Vx,yz = (Ux+z − Ux − Uz)y (like xyz + zyx in the
associative case) reveal the mathematical structure of Jordan algebras much more
clearly, through the notion of inverse, inner ideal, generic norm, etc. The axioms
are:

(2-1) U1 = Id., Ux Vy,x = Vx,yUx , UUx y =UxUyUx .

The quadratic formulation led to the concept of Jordan triple systems [Meyberg
1970], an example of which is a pair of modules represented by rectangular matrices.
There is no way of multiplying two matrices x and y, say n × m and m × n,
respectively, by means of a bilinear product. But one can do it using a product
like xyx , quadratic in x and linear in y. Notice that, like in the case of rectangular
matrices, there needs not be a unity in these structures. The axioms are in this case:

(2-2) Ux Vy,x = Vx,yUx , VUx y,y = Vx,Uy x , UUx y =UxUyUx .

Finally, a Jordan pair is just a pair of modules (V+, V−) acting on each other
(but not on themselves) like a Jordan triple:

(2-3)

Uxσ Vy−σ ,xσ = Vxσ ,y−σUxσ ,

VUxσ y−σ ,y−σ = Vxσ ,Uy−σ xσ ,

UUxσ y−σ =UxσUy−σUxσ ,

where σ =± and xσ ∈ V+σ , y−σ ∈ V−σ .
Jordan pairs are strongly related to the Tits–Kantor–Koecher construction of Lie

algebras [Tits 1962; Kantor 1964; Koecher 1967] (see also the interesting relation
to Hopf algebras [Faulkner 2000]):

(2-4) L= J ⊕ str(J )⊕ J ,

where J is a Jordan algebra and str(J ) = L(J )⊕Der(J ) is the structure algebra
of J [McCrimmon 2004]; L(x) is the left multiplication in J : L(x)y = x ◦ y;
and Der(J ) = [L(J ), L(J )] is the algebra of derivations of J (the algebra of the
automorphism group of J ) [Schafer 1949; 1966].

In the case of (complex) exceptional Lie algebras this construction applies to
e7, with J = J8

3, the 27-dimensional exceptional Jordan algebra of 3× 3 Hermitian
matrices over the octonions, and str(J )= e6⊗C (where C is the complex field). The
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algebra e6 is called the reduced structure algebra of J , str0(J ), which is namely the
structure algebra with the generator corresponding to multiplication by a complex
number taken away: e6 = L(J0)⊕Der(J ), with J0 denoting the traceless elements
of J .

The Tits–Kantor–Koecher construction can be generalized as follows: if L is a
three-graded Lie algebra,

(2-5) L= L−1⊕ L0⊕L1, [Li ,L j ] ⊂ Li+ j ,

so that [Li ,L j ] = 0 whenever |i + j | > 1, then (L1,L−1) forms a Jordan pair,
with the Jacobi identity forcing the elements of the pair to act on each other like
in a Jordan triple system. The link with the Tits–Kantor–Koecher construction
is obtained by letting J = L1 and J = L−1. The structure group of J is the
automorphism group of the Jordan pair (J, J ) and the trilinear product Vxσ ,y−σ zσ is

Vxσ ,y−σ zσ = [[xσ , y−σ ], zσ ].

3. The Freudenthal–Tits magic square

The theory of exceptional Lie algebras has had a major advance with the development
of two related objects: the Tits construction and the Freudenthal–Tits magic square
[Tits 1955; Freudenthal 1959].

The Freudenthal–Tits magic square is a table of Lie algebras related to both
Jordan algebras and Hurwitz algebras H, namely the algebras of real (R), complex
(C), quaternion (Q), and octonion or Cayley (C) numbers. In particular the Jordan
algebras involved in the magic square are the algebras of 3× 3 Hermitian matrices
over H:

(3-1)

α a b̄
ā β c
b c̄ γ

 , α, β, γ ∈ C; a, b, c ∈H.

We denote them by Jn
3 where n = 1, 2, 4, 8 for H = R,C,Q,C, respectively. In

this paper only complex Lie algebras are considered. Therefore each algebra H is
over the complex field and the a→ ā conjugation in (3-1) changes the signs of the
imaginary units of H but does not conjugate the imaginary unit of the underlying
complex field. The Freudenthal–Tits magic square is shown in Table 1.

The way the magic square is constructed is due to Tits:

(3-2) L= Der(H)⊕ (H0⊗ J0)⊕Der(J).

Here the subscript 0 stands for traceless. Der(H) is the algebra of derivations of H,
which is nothing for H= R,C, whereas Der(Q)= a1 and Der(C)= g2.
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H \ J J1
3 J2

3 J4
3 J8

3

R a1 a2 c3 f4
C a2 a2⊕ a2 a5 e6
Q c3 a5 d6 e7
C f4 e6 e7 e8

Table 1. The Freudenthal–Tits magic square.

We also have the following tight link between the entries of the magic square
and Jordan structures.

The Lie algebras gI in the first row of the magic square are the algebras of
derivations of the Jordan algebra in the same column (the corresponding group is
the automorphism group of the Jordan algebra):

gI = Der(J), namely:

a1 = Der(J1
3), a2 = Der(J2

3), c3 = Der(J4
3), f4 = Der(J8

3).

The Lie algebras gII in the second row are the reduced structure algebras of the
Jordan algebra in the same column

gII = str0(J), namely:

a2 = str0(J1
3), a2⊕ a2 = str0(J2

3), a5 = str0(J4
3), e6 = str0(J8

3).

The Lie algebras gIII in the third row are three graded and can be written via the
Tits–Kantor–Koecher construction (2-4) or in terms of generalized 2× 2 matrices
[Truini et al. 1986]:

gIII = J⊕ (gII⊗C)⊕ J, namely:

c3 = J1
3⊕ (a2⊕C)⊕ J1

3, a5 = J2
3⊕ (a2⊕ a2⊕C)⊕ J2

3,

d6 = J4
3⊕ (a5⊕C)⊕ J4

3, e7 = J8
3⊕ (e6⊕C)⊕ J8

3.

In our opinion the most natural way of extending a similar analysis to the fourth
row is the one described in this paper and represented in Figure 1 or in the expression
(4-1) in the next section.

4. The Jordan pairs inside the exceptional Lie algebras

In this section we work with the roots of the exceptional Lie algebras and postpone
the discussion on explicit representations of the generators to the next section. The
notation for the explicit set of roots we use, [Bourbaki 1968] is shown in Table 2 in
the Appendix.
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Figure 2. Roots of g2.

The roots can be placed, case by case, as in Figure 1, where they are shown by
their projections on the plane of an a2 subalgebra (we use the standard notation a2
for the complexification of su(3)). Notice that g2 itself, as shown in Figure 2, has a
root diagram represented by the same dots appearing in Figure 1.

The root diagrams of f4, e6, e7, and e8 are as in Figure 3. The notation for the
Jordan algebras in the figure is the same used in Table 1 for the Freudenthal–Tits
magic square: Jn

3 , n= 1, 2, 4, 8 is the Jordan algebra of 3× 3 Hermitian matrices
over R, C, Q, and C respectively. The algebra gn

0 , n = 1, 2, 4, 8, is a2, a2⊕ a2,
a5, and e6, respectively; gn

0 ⊕C is the algebra of the automorphism group of each
Jordan pair Vn

= (Jn
3, Jn

3). We associate roots to Jordan pairs and we check that

Figure 3. Roots of f4, e6, e7, and e8, for n=1, 2, 4, 8, respectively,
projected on the plane 5.
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Figure 4. Roots of the exceptional Lie algebras with gII and gIII highlighted.

the projection of these roots lie along an axis, symmetrically with respect to the
center. The C in gn

0 ⊕C stands for the complex field and represents the action on
Vn (multiplication by a complex number) of the Cartan generator associated with
that axis.

If we write Ln for f4, e6, e7, and e8, n= 1, 2, 4, 8, we get the unifying expression

(4-1) Ln
= a2⊕ gn

0 ⊕ 3× (Jn
3, Jn

3), where gn
0 = str0(Jn

3).

This is not only a unifying view of the exceptional Lie algebras, but also, in our
opinion, a natural way of looking at the fourth row of the magic square. Notice that
gn

0 is the Lie algebra in the second row (gII), at the same column of Ln and that
gn

0 ⊕C⊕Vn is the Lie algebra in the third row (gIII), same column, for any of the
three Jordan pairs Vn in Ln (Figure 4).

We explicitly show in the Appendix the roots associated with a Jordan algebra
in Figure 3. In particular we will pick the one whose projection on the plane
5 is 1

3(k2 + k3 − 2k1) (see Figure 2 for this vector), that is, the highest weight
in the 3-dimensional representation of su(3) ∼ a2. We will refer to this Jordan
algebra as the highest-weight (HW) Jn

3 . The other Jordan algebras are obtained by
a permutation of indexes and their conjugate ones by a change of sign.

Let us explain why we say that certain roots correspond to a Jordan pair. The
reason lies in the Tits–Kantor–Koecher construction (2-4), which is related to the
third row of the Freudenthal–Tits magic square. There is only one way of realizing
the embedding gII ⊂ gIII ⊂ Ln so that the (Jn

3, Jn
3) modules for gII lie on parallel

spaces at the same distance along a fixed axis. This is precisely the way we will
describe the Jordan pair content of the algebras and this shows the uniqueness of
the construction. We know from the three grading structure of gIII that the pair
(Jn

3, Jn
3) is indeed a Jordan pair and that str(Jn

3)= gII⊕C is the Lie algebra of the
automorphism group of the Jordan pair. This proves that the Jordan structures we
have referred to so far are indeed so.
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In the Appendix, the four exceptional algebras f4, e6, e7, and e8 are examined
case by case. For each we show:

(1) the roots associated with the HW Jordan algebra Jn
3 ,

(2) the roots associated with gn
0 = gII, and

(3) the nested Jordan pairs.

4.1. The geometry of the Jordan pair V and of gIII = gII ⊕ C ⊕ V. The root
vectors of the HW Jn

3 all lie on a (r−2)-dimensional space 6+, where r is the rank
of the exceptional Lie algebra. The space 6+ is parallel to the (r − 2)-dimensional
space 60 on which the gn

0 roots lie, and to the (r − 2)-dimensional space 6− on
which the roots of the Jn

3 opposite to the HW Jn
3 lie. Both spaces 6± have the same

distance
√

6
3 from 60, but lie on opposite sides with respect to it.

This is shown in Figure 5, in the case of f4. The two J1
3 form a Jordan pair of

conjugate a2-representations (6, 6). The roots on the three planes form the root
diagram of c3.

This Jordan pair is clearly visible in the figure. The Lie algebra of the auto-
morphism group of this pair is a2⊕C where C is the complex linear span of the
Cartan generator associated with the axis along the vector 1

3 (k2+ k3− 2k1) which
is precisely the direction of the Jordan pair in Figure 3. All the points of the HW J1

3
(respectively, J1

3, opposite to it with respect to the center of Figure 3) project on the
point 1

3 (k2+ k3− 2k1) (respectively, −1
3 (k2+ k3− 2k1)) in the plane of Figure 3.

There is only one way of embedding a c3 subalgebra within f4 so that the (6, 6)
modules for a2 lie on parallel planes at the same distance along a fixed axis. This
is precisely the way we have described above and this shows its uniqueness. We
know from the three grading structure of c3 that the pair (J1

3, J1
3) is indeed a Jordan

Figure 5. Root digram of c3 showing a2 and the Jordan pair (6, 6).
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pair and that str(J) (= a2⊕C in this case) is the Lie algebra of the automorphism
group of the Jordan pair.

By a cyclic permutation of the indexes of k1, k2, and k3 we obtain an analogous
result for the other two Jordan pairs, all sharing the same a2 roots for the algebra
g1

0, but with different orientations of the axis defining C along the vectors 1
3 (k1+

k3− 2k2) and 1
3 (k1+ k2− 2k3). We get in four dimensions three copies of c3 all

sharing the same a2. All the spaces spanned by the three Jordan pairs are parallel to
the space 60, and all at the same distance ±

√
6

3 from it. Notice that in r dimensions
there are an infinite number of (r − 2)-dimensional spaces parallel to a given one,
all at the same distance from it.

We get exactly the same feature for the other exceptional Lie algebras, with the
Lie algebras of the second and third rows of the magic square playing the same role
as for f4.

5. Representations

I briefly sketch in this section a possible representation of the e8 algebra which
exhibits its Jordan pair content.

The way I would represent e8 is a development of the representation of e7 through
generalized 2× 2 matrices, shown in [Truini et al. 1986]. The starting point of that
paper is the representation of the quaternion algebra through Pauli matrices, which
leads directly to the three grading of e7. In the case of e8 a suitable representation
of the octonions is via the Zorn matrices [Zorn 1933; Loos et al. 2008], which
exhibit the (3, 3) structure that we can extend to the Jordan pair content of e8 and
to the action on the (3, 3) modules of the external a2 in Figure 3.

The guidelines go as follows:

• Represent the octonions as Zorn matrices.

• Extend the Zorn matrices to represent Der(C)= g2.

• Combine the extended Zorn matrices with the Tits construction (3-2).

• Decompose the representation of e6 to finally get e8 in terms of Jordan pairs
and a2’s only.

If a ∈ C we write a = a0 +
∑7

k=1 akuk where a` ∈ C for ` = 0, . . . , 7 and
u1, . . . , u7 are the octonionic imaginary units.

Let us denote by i the imaginary unit in C. We introduce two idempotent elements

ρ± =
1
2 (1± iu7)

and six nilpotent elements

ε±k = ρ
±uk, k = 1, 2, 3.
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The Zorn representation of a ∈ C is:

(5-1) a = α+ρ++α−ρ−+
∑

k

(α+k ε
+

k +α
−

k ε
−

k )↔

[
α+ A+

A− α−

]
,

where A± ∈ C3 have vector components α±k , k = 1, 2, 3, and the octonionic multi-
plication is a generalization of matrix multiplication:

(5-2) ab↔
[
α+ A+

A− α−

] [
β+ B+

B− β−

]
=

[
α+β++ A+ · B− α+B++β−A++ A−× B−

α−B−+β+A−+ A+× B+ α−β−+ A− · B+

]
,

with A± · B∓ =−α±k β
∓

k and where A, B→ A× B is the standard vector product
in C3.

The next step is to write the Lie algebra g2 using an extension of the Zorn matrices
and their multiplication rule with an a2 matrix replacing α+. This representation
shows g2 as a2 plus its modules (3, 3).

Finally, let me outline how the Tits construction fits into this picture. The idea is
to write

(5-3) e8 = Der(C)⊕C0⊗ J8
0⊕Der(J8)= L0⊕

∑
±k

L±k, k = 1, 2, 3,

where

L0= D7⊕iu7⊗J8
0⊕Der(J8) and L±k = d±k D±k ⊕α

±

k ε
±

k ⊗J8
0, d±k , α

±

k ∈C.

Here J8
≡ J8

3 and J8
0 is a traceless J8

3 matrix; D7 = a2 is the subalgebra of
derivations leaving the imaginary unit u7 fixed; and D±k =±

3
2 Diu7,ε

±

k
is a derivation:

Da,b c = 1
3 [[a, b], c] − (a, b, c), (a, b, c)= (ab)c− a(bc).

We identify a⊗ x with az ⊗ x , where az is the Zorn matrix representation of a
and Der±k with the corresponding Zorn matrix representation of ε±k . We use the
complex parameters d±k in order to provide the trace to J0.

The chain of implications, starting from the Tits construction, would be like this:

(5-4) e8 = Der(C)⊕C0⊗ J8
0⊕Der(J8)

= ac
2⊕α

±

k ε
±

k ⊗ J8
0⊕ d±k Der±k ⊕(iu7)⊗ J8

0⊕Der(J8)

= ac
2⊕α

±

k ε
±

k ⊗ J8
⊕Der(C)⊕C0⊗ J2

0⊕Der(J2)

= ac
2⊕α

±

k ε
±

k ⊗ J8
⊕ af

2⊕α
±

k ε
±

k ⊗ J2
⊕ (iu7)⊗ J2

0⊕Der(J2)

= ac
2⊕ af

2⊕ ag1
2 ⊕ ag2

2 ⊕ 3× (J8, J8
)⊕ 3× (J2, J2

).

Work is still in progress along these lines and will appear in a forthcoming paper.
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6. Elementary particle physics

If we look at the decomposition (5-4) (see also (A.7) in the Appendix) we are led
to interpret the labels c as color and f as flavor. In this interpretation the three pairs
(J8

3, J8
3) accommodate the quarks in three colors of particles–antiparticles, whereas

the three pairs (J2
3, J2

3) sitting in the colorless g8
0 accommodate the three families of

leptons–antileptons. Including spin, each particle must appear with four different
degrees of freedom: left (up and down) and right (up and down), except, possibly,
for the neutrino, which could be a Majorana neutrino and be only left-handed. We
can therefore put six (quarks, antiquarks) in a (say) blue (J8

3, J8
3). We can make

them coincide with three octonions: one for blue up–down quarks, one for blue
charm–strange quarks, one for blue top–bottom quarks. We are left with three extra
degrees of freedom. In the same fashion, we can put a family of leptons–antileptons
pairs in (J2

3, J2
3) by letting the six off-diagonal degrees of freedom of be the electron

and a Majorana neutrino, and analogously for the families of the muon and τ leptons.
Again we are left with three extra degrees of freedom, which reduce to only one in
the case where right-handed neutrinos are included.

Let us review the explicit form of the roots (see the Appendix) according to this
interpretation.

Quarks of color c= 1, 2, 3 (corresponding antiquarks have reversed signs):

−kc± k j , j = 4, . . . , 8, −kc+ k1+ k2+ k3,

−kc+
1
2 (k1+ k2+ k3± k4± k5± k6± k7± k8) (even # of + signs).

Leptons in the family f= 4, 5, 6 (corresponding antileptons have reversed signs):

−k f ± k j , j = 7, 8, −k f + k4+ k5+ k6,

−k f +
1
2 [±(k1+ k2+ k3)+ k4+ k5+ k6± k7± k8] (even # of + signs).

ac
2: ±(ki − k j ), i < j = 1, 2, 3.

af
2: ±(ki − k j ), i < j = 4, 5, 6.

ag1
2 : ±(k7+ k8), ±1

2 (k1+ k2+ k3+ k4+ k5+ k6− k7− k8)±
1
2 (k1+ k2+ k3+ k4+

k5+ k6+ k7+ k8).

ag2
2 : ±(k7− k8), ±1

2 (−k1− k2− k3+ k4+ k5+ k6− k7+ k8)±
1
2 (−k1− k2− k3+

k4+ k5+ k6+ k7− k8).

What physics should a theory with an e8 symmetry describe? Certainly a very
high-energy physics, far beyond our present experience and our experimental reach.
It could relate to a string theory, like the heterotic one, since we are dealing
with a complex Lie algebra hence an e8 × e8 algebra over R. It could extend to
supersymmetry, although the e8 symmetry is so beautiful as it stands that one
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Figure 6. An elementary interaction, viewed as a Feynman diagram.

should force such an extension into the theory: e8, in the view I am presenting here,
shows particle–antiparticle pairs, the Jordan pairs, in the right number of colors and
families, plus their symmetries, which in turn are generated by the pairs themselves,
through the trilinear map zσ → Vxσ ,y−σ zσ . Besides, another peculiarity contributes
to the beauty of e8: its lowest-dimensional irreducible representation is the adjoint
representation.

My personal point of view is that, at such a high energy, at or beyond the Planck
scale, the picture of spacetime has to be radically changed. I can hardly make any
sense of the fact that such an energetic particle is sitting on a background spacetime,
if I think that general relativity taught us that spacetime is in fact dynamical. I
would rather view that particle as feeling only (quantum) interactions, including
one that leads to gravity, to be accommodated within ag1

2 ⊕ ag2
2 . I would still view

an elementary interaction being described by an elementary Feynman diagram
involving the trilinear map, as depicted in Figure 6, but with no question of point or
extended particle, simply because the underlying spacetime geometry is not there:
there is only a, let us say, background independent spectral theory.

In this view the classical spacetime is a byproduct of the interactions, obtained
by taking very rough approximations. It is as far from the interactions exchanged
by elementary particles at the Planck scale, as the Planck scale is far from our
experience.

The aim of developing along these lines a physical theory that could not possibly
rely on any direct confirmation, is to find a consistent quantum theory of gravity
together with the other known basic interactions. As Carlo Rovelli says [2004]:
“the difficulty is not to discriminate among many complete and consistent quantum
theories of gravity. We would be content with one.”

This is, of course, far beyond the scope of the present paper, since no physics
has been spoken here besides these mere speculations.

Appendix

The explicit set of roots we use is shown in Table 2 [Bourbaki 1968]; {ki , i =
1, . . . , 8} denotes an orthonormal basis in R8.
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L Roots {ki , i = 1, . . . 8} an orthonormal basis in R8 # of roots

g2 12
(ki − k j ), i 6= j = 1, 2, 3, 6
±

1
3 (−2ki + k j + kl), i 6= j 6= l = 1, 2, 3, 6

f4 48
±ki , i = 1, . . . , 4, 8
±ki ± k j , i 6= j = 1, . . . , 4, 4×

(4
2

)
= 24

1
2 (±k1± k2± k3± k4) 24

= 16

e6 72
±ki ± k j , i 6= j = 1, . . . , 5, 4×

(5
2

)
= 40

1
2 (±k1± k2± k3± k4± k5±

√
3k6)

∗ 25
= 32

∗ odd number of + signs

e7 126
±
√

2k7, 2
±ki ± k j , i 6= j = 1, . . . , 6, 4×

(6
2

)
= 60

1
2 (±k1± k2± k3± k4± k5± k6±

√
2k7)

∗ 26
= 64

∗ even number of +1
2

e8 240
±ki ± k j , i 6= j = 1, . . . , 8, 4×

(8
2

)
= 112

1
2 (±k1± k2± k3± k4± k5± k6± k7± k8)

∗ 27
= 128

∗ even number of + signs

Table 2. The roots of the exceptional Lie algebras.

A.1 f4.

A.1.1 The roots associated with the HW J1
3.

(A.1) −k1, −k1± k4,
1
2 (−k1+ k2+ k3± k4), k2+ k3.

A.1.2 The roots associated with gII = g1
0.

(A.2) ±k4, ±
1
2 (k1+ k2+ k3± k4).

A.1.3 Nested Jordan pairs. If we dig inside g1
0 we find another Jordan pair plus

the Lie algebra of its automorphism group: these are a (2, 2) of a1 plus a1 ⊕C
making up, all together, a2.

A.2 e6.
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A.2.1 The roots associated with the HW J2
3.

(A.3)

−k1± k4, −k1± k5, k2+ k3,

1
2 (−k1+ k2+ k3+ k4− k5−

√
3k6),

1
2 (−k1+ k2+ k3+ k4+ k5+

√
3k6),

1
2 (−k1+ k2+ k3− k4+ k5−

√
3k6),

1
2 (−k1+ k2+ k3− k4− k5+

√
3k6).

A.2.2 The roots associated with gII = g2
0.

a(1)2 :

± (k4+ k5),

±
1
2 (k1+ k2+ k3− k4− k5−

√
3k6),

±
1
2 (k1+ k2+ k3+ k4+ k5−

√
3k6).

a(2)2 :

± (k4− k5),

±
1
2 (k1+ k2+ k3− k4+ k5+

√
3k6),

±
1
2 (k1+ k2+ k3+ k4− k5+

√
3k6).

A.2.3 Nested Jordan pairs. If we dig inside g2
0 we find another Jordan pair plus

the Lie algebra of its automorphism group: these are two replicas of a (2, 2) of a1
plus a1⊕C making up, all together, a2⊕ a2.

A.3 e7.
A.3.1 The roots associated with the HW J4

3.

(A.4)

−k1± k4, −k1± k5, −k1± k6, k2+ k3,

1
2 (−k1+ k2+ k3− k4− k5− k6±

√
2k7),

1
2 (−k1+ k2+ k3− k4+ k5+ k6±

√
2k7),

1
2 (−k1+ k2+ k3+ k4− k5+ k6±

√
2k7),

1
2 (−k1+ k2+ k3+ k4+ k5− k6±

√
2k7).

A.3.2 The roots associated with gII = g4
0.

±k4± k5, ±k4± k6, ±k5± k6, ±
√

2k7,

±
1
2 (k1+ k2+ k3± k4± k5± k6±

√
2k7) (even number of + 1

2 ).
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A.3.3 Nested Jordan pairs. If we dig inside g4
0= a5 we find the Jordan pair (J2

3, J2
3)

= (3×3, 3×3) plus the Lie algebra of its automorphism group a2⊕ a2⊕C described
in the previous case of e6.

A.4 e8.

A.4.1 The roots associated with the HW J8
3.

(A.5)
−k1± k j , j = 4, . . . , 8, k2+ k3,

1
2 (−k1+ k2+ k3± k4± k5± k6± k7± k8) (even number of + signs).

A.4.2 The roots associated with gII = g8
0. The 72 roots of g8

0 = e6 are

(A.6)
±ki ± k j , i, j = 4, . . . , 8,

±
1
2
(k1+ k2+ k3± k4± k5± k6± k7± k8) (even number of + signs).

A.4.3 Nested Jordan pairs. If we dig inside g8
0 = e6 we find three Jordan pairs,

each of the type (J2
3, J2

3)= (3×3, 3×3), plus the Lie algebra of the automorphism
group of each of them a2⊕ a2⊕C described in the previous case of e6.

We thus identify four different a2’s within e8 plus six Jordan pairs. Giving
different superscripts to the four a2’s we have:

(A.7)

e8 = ac
2⊕ 3× (J8

3, J8
3)⊕ g8

0

= ac
2⊕ 3× (J8

3, J8
3)⊕ af

2⊕ 3× (J2
3, J2

3)⊕ g2
0

= ac
2⊕ 3× (J8

3, J8
3)⊕ af

2⊕ 3× (J2
3, J2

3)⊕ ag1
2 ⊕ ag2

2 .
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