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To the memory of Jonathan David Rogawski

Rogawski (1985) used the affine Hecke algebra to model the intertwining
operators of unramified principal series representations of p-adic groups.
On the other hand, a representation of this Hecke algebra in which the
standard generators act by Demazure–Lusztig operators was introduced
by Lusztig (1989) and applied by Kazhdan and Lusztig (1987) to prove the
Deligne–Langlands conjecture. These operators appear in various other
contexts. Ion (2006) used them to express matrix coefficients of principal
series representations in terms of nonsymmetric Macdonald polynomials,
while Brubaker, Bump and Licata (2011) found essentially the same oper-
ators underlying recursive relationships for Whittaker functions. Here we
explain the role of unique functionals and Hecke algebras in these contexts
and revisit the results of Ion from the point of view of Brubaker et al.

1. Introduction

One of the innovations in [Rogawski 1985] was the use of the Hecke algebra to
model the intertwining operators of unramified principal series representations of
p-adic groups. His goal was the classification of the irreducible representations
of the Hecke algebra, or equivalently, the irreducible representations of a p-adic
group having an Iwahori-fixed vector. These had already been classified in the case
of GLn by Zelevinsky [1980]. It was known from [Zelevinsky 1981] that there
were analogies between this problem and the decomposition of Verma modules of a
semisimple Lie algebra into irreducibles, where deep connections with the theory of
Hecke algebras had been found by Kazhdan and Lusztig [1979]. Rogawski sought to
clarify the relationship between p-adic representation theory and Kazhdan–Lusztig
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theory. As part of this effort, he expressed intertwining integrals between principal
series representations in terms of Kazhdan–Lusztig elements of the Hecke algebra.

Among the tools that had been brought to bear on the study of Verma modules,
Jantzen [1979] had introduced a filtration of the Verma module based on the
Shapovalov bilinear form. With the analogy between p-adic groups and Verma
modules in mind, Rogawski gave an analog of the Jantzen filtration, and also
reproved the results of Zelevinsky [1980] for GLn using Hecke algebra methods.

After [Rogawski 1985] was written, Zelevinsky’s results were generalized to
arbitrary p-adic groups by Kazhdan and Lusztig [1985; 1987], who proved the
Langlands–Deligne conjecture classifying the irreducible representations of a p-adic
group G that have Iwahori-fixed vectors. They made use of a representation of the
affine Hecke algebra HJ on the ring of rational functions on the maximal torus T̂
of the L-group Ĝ. In this action, the generators of the Hecke algebra act by certain
operators known as Demazure–Lusztig operators, which resemble the well-known
Demazure operators that occur in the cohomology of line bundles over Schubert
varieties. Given data consisting of a pair (s, u) of elements of Ĝ such that s is
semisimple, u is unipotent, and sus−1

= uq , where q is the cardinality of the residue
field, a subquotient of this representation can be found that gives an irreducible
HJ -module. This module may be identified with the space of Iwahori-fixed vectors
in an irreducible representation of G(F). To prove that this gives every irreducible
representation of G(F) uniquely, thus proving the Deligne–Lusztig conjecture,
Kazhdan and Lusztig made use of the “coincidence” that the same representation
of the Hecke algebra by Demazure–Lusztig operators also occurs in the K-theory
of flag varieties, allowing statements about representations to be translated into
algebraic geometry, where suitable methods are available.

The representation of the Hecke algebra by Demazure–Lusztig operators comes
up in yet another context, namely the study of special functions on a p-adic group
realized as matrix coefficients involving Iwahori-fixed vectors. Our first task, after
some preliminaries, will be to briefly retrace Rogawski’s steps and to discuss
the relationship between the Hecke algebra and the intertwining operators. The
intertwining operators involve different principal series representations, which must
be taken together to obtain a representation of the Hecke algebra. We express this
by saying that the principal series representation is variable in this representation
of the Hecke algebra.

As we will explain in Section 3, this representation may be converted into
something concrete by introducing a family of functionals on the principal series
representations. We will consider two particular such families: the Whittaker
functionals and the spherical functionals. The role of the unique functional is that
it converts the Iwahori-fixed vectors in a variable principal series representation
into a family of regular functions on T̂ . The problem of variability of the principal
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series representation disappears, and the action of the Hecke algebra generators is
by some variant (depending on the functional) of the Demazure–Lusztig operator.
The regularity of the functions obtained this way is related to Bernstein’s method
of showing that a unique functional defined (typically by a suitable integral) on an
open subspace extends to a meromorphic function for all Langlands parameters.
(See, for example, [Banks 1998] or [Sakellaridis 2006, Section 7] for Bernstein’s
method.)

Both the spherical and the Whittaker functionals are defined and nonzero on
a Zariski dense set of T̂ . By contrast, one may consider functionals defined and
nonzero on only a subset of T̂ that is not Zariski dense. An example is the Shalika
functional on representations of GLn , proved unique by Jacquet and Rallis [1996],
with a Casselman–Shalika type formula established by Sakellaridis [2006]. The
Shalika functional, like the Bessel models for classical groups, exhibits characteris-
tics of both the spherical and Whittaker functionals and can be studied using our
methods. We hope to return to this in a later paper.

Shortly before [Rogawski 1985] appeared, intertwining operators had been
used for another purpose: the computation of the spherical vector in each of
our two archetypal models. For the spherical model, Casselman [1980] used
intertwining operators to give a new proof of the Macdonald formula which expresses
the values of the spherical function as specializations of Macdonald symmetric
functions. This specialization is the Hall–Littlewood polynomial in the case of GLn .
Later, nonsymmetric Macdonald polynomials were defined in [Macdonald 2003;
Opdam 1995; Cherednik 1995]. Generalizing the Macdonald formula, Ion [2006]
showed that the Iwahori-fixed vectors in the model are expressible in terms of
nonsymmetric Macdonald polynomials, making use of recursions that they satisfy
involving Demazure–Lusztig operators. See also [Cherednik and Ostrik 2003] for
earlier hints of this connection.

For the Whittaker functional, Casselman and Shalika [1980] used the intertwin-
ing operators to show that the values of the spherical Whittaker function are the
irreducible characters of Ĝ, multiplied by a factor which is a deformation of the
denominator in the Weyl character formula. Regarding the more general Iwahori-
fixed vectors in the model, Reeder [1992; 1993] used the Hecke algebra action to
give recursions between these, usable for explicit computation. These relations
can be understood in terms of Demazure–Lusztig operators as proved by Brubaker,
Bump and Licata [Brubaker, Bump and Licata 2011].

In Section 2, we review the relation between the Iwahori Hecke algebra and
the intertwining operators for principal series. Then, in Section 3, we show that,
given a unique functional on a Zariski dense subset of T̂ , to each generator Ti of
the Iwahori Hecke algebra we may attach a difference operator on a suitable ring
of regular functions that is similar to a Demazure operator. This extends to an
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action of the Hecke algebra. In the case of the spherical functional, this gives a new
perspective on the work of Ion [2006].

2. Hecke algebras and intertwiners of principal series

Let G be a reductive algebraic group defined and split over a nonarchimedean
local field F with ring o of integers and prime p. We may regard G as defined
over o in such a way that K = G(o) is a special maximal compact subgroup. Let
q = |o/p|. Let T be a split maximal torus contained in Borel subgroup B, and let
W0 = N (T )/T be the Weyl group. We will always choose representatives for W0

from N (T )∩ K .
The connected L-group Ĝ is an algebraic group defined over C with a maximal

torus T̂ that is in duality with T in the sense that elements of T̂ (C) are in bijection
with the unramified characters of T (F), that is, those that are trivial on T (F)∩K =
T (o). Let J be the Iwahori subgroup, which is the preimage in K of B(Fq) under
the canonical homomorphism G(o)→ G(Fq).

Let s1, . . . , sr be the simple reflections in the Weyl group W0. The affine Weyl
group Waff is obtained by adjoining one more “affine” simple reflection s0 [Bourbaki
1968, Section VI.2]. It is the semidirect product of W0 by the root lattice Q∨ of T̂ ,
which is the coroot lattice of T . The groups W0 and Waff are Coxeter groups. The
extended affine Weyl group Wext is a slightly larger group that is the semidirect
product of W0 by the weight lattice P∨ of T̂ , which is the coweight lattice of T ,
isomorphic to T (F)/T (o). In this presentation, P∨ is a normal subgroup. We will
denote by λ 7→ aλ a map sending λ ∈ P∨ to a representative of the corresponding
coset in T (F)/T (o).

The group Wext is not a Coxeter group, but like Coxeter groups, it has a length
function. The finite subgroup � of elements of length 0 is isomorphic to P∨/Q∨.
For example, if G is semisimple, then � is isomorphic to the fundamental group
of G. The group Wext is the semidirect product of Waff by �, with Waff being a
normal subgroup. Conjugation by an element of � permutes the si .

The (affine) Iwahori Hecke algebra HJ is the convolution algebra of compactly
supported J -biinvariant functions on G(F). Let H0 be the subring of functions
with support in K . Then H0 and HJ have the following explicit description due
to Iwahori and Matsumoto [1965]. If r is the rank of G, the ring H0 is generated
by T1, . . . , Tr , where each Ti is the characteristic function of Jsi J . These Ti then
satisfy quadratic relations

(1) T 2
i = (q − 1)Ti + q

and the braid relations

Ti T j Ti . . .= T j Ti T j . . . ,
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where the number of terms on each side is the order of si s j . The affine Hecke
algebra Haff is obtained by adjoining an element T0 satisfying the same quadratic
and braid relations but allowing i =0 corresponding to the affine simple reflection s0.
The algebra HJ is slightly larger than Haff, and is isomorphic as a vector space
to Haff ⊗ C[�]. The elements of � act on Haff by conjugation, and this action
corresponds to permuting the Ti , just as in Wext conjugation by elements of �
permutes the si .

The algebra HJ also has a presentation analogous to the presentation of Wext

as the semidirect product of P∨ by W0. This presentation, sometimes known as
the Bernstein presentation, was developed but not published by Bernstein and
Zelevinsky. Possibly its first use in a published paper was in [Rogawski 1985], and
a full treatment was given by Lusztig [1989]. In the Bernstein presentation, H0

is supplemented by a ring homomorphism θ : C[P∨] → HJ . As a vector space,
HJ =H0⊗C[P∨]. To describe the ring structure, it is sufficient to give one relation.
Let 16 i 6 r and let λ ∈ P∨. Then

θ(λ)Ti − Tiθ(siλ)= (q − 1)
θ(λ)− θ(siλ)

1− θ(−α∨i )
,

where α∨i is the coroot corresponding to i .
Let z ∈ T̂ (C), and let τ = τz : T (F)→ C× be the corresponding unramified

character. We extend it to B(F) by letting the unipotent radical N (F) be in the
kernel. The principal series representation M(τ ) consists of all locally constant
maps f : G(F)→ C such that f (bg)= (δ1/2τ)(b) f (g) for b ∈ B(F), g ∈ G(F).
The action of G(F) is by right translation. The module M(τ ) is irreducible if τ is
in general position.

If (π, V ) is an irreducible representation having a J -fixed vector, then V J is a
finite-dimensional irreducible HJ module and its isomorphism class determines π .
Any such (π, V ) with a J -fixed vector is a subquotient of M(τ ) for some τ , and
the category of smooth representations of finite length all of whose composition
factors have J -fixed vectors is equivalent to the category of finite-dimensional
HJ -modules.

The Weyl group W0 acts on T and hence on unramified characters. We will
make this a right action, so τw(a) = τ(waw−1) for a ∈ T (F). If w ∈ W0, the
modules M(τ ) and M(τw) are isomorphic if irreducible, and in any case have
isomorphic semisimplifications. To see this, one may construct homomorphisms
Aw : M(τ )→ M(τw) by means of intertwining integrals. By definition,

(2) Aw f (g)=
∫

N∩w−1 N−w
f (wng) dn,
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where N− is the unipotent radical of the negative Borel. The integral is convergent
if |τ(aλ)|< 1 for dominant weights λ. By the singular set, we mean the union of
hyperplanes in T̂ (C) that are the kernels of the coroots α∨ (regarded as charac-
ters of T̂ ). For arbitrary τ , the intertwining operator may be defined by analytic
continuation, except that the Aw can have poles in the singular set.

Now we return to the point in question: why may Hecke algebras be used to
model intertwining operators? The basic insight is that, to any ring R regarded as
a left R-module, a left R-module homomorphism λ : R→ R is necessarily of the
form λ(x)= x · a for some a ∈ R. This is trivial to prove with a = λ(1).

The first way of applying this is to note that the space M(τ )J of J -invariants is
|W0|-dimensional. It has several natural bases indexed by Weyl group elements. A
particular one is the basis 8τw =8w (w ∈W0) defined by

8τw(bk)=
{
δ1/2τ(b) if k ∈ BwJ ,
0 otherwise,

for b ∈ B(F) and k ∈ K .
We see that H0 and M(τ )J are both |W0|-dimensional H0-modules, and in fact

they are isomorphic as left H0-modules. A particular isomorphism

%τ : M(τ )J
→H0

is given by %τ ( f )= F , where

F(g)=
{

f (g−1) if g ∈ K ,
0 otherwise .

It is not hard to check that this is an isomorphism of left H0-modules.
Composing with this isomorphism, the intertwining integral Aw thus gives rise

to a homomorphism H0→H0. This can have poles (in the singular set) or zeros
(if τ(aα∨) = q±1 for some coroot α∨), but if τ is in general position, it is an
isomorphism and so it agrees with right multiplication by a particular element Fw
of H0, which was identified by Rogawski [1985]. It is sufficient to describe it when
w = si is a simple reflection, and in this case

Fsi =
1
q
(Ti + 1)−Cαi (τ ),

where Cαi (τ ) with τ = τz is the ubiquitous rational function

(3) Cαi (τ )=
1− q−1zα∨i

1− zα∨i
.
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In other words, the following diagram is commutative:

(4)

M(τ )J %τ- H0

M(τ si )
J

Asi ?

%τ si

- H0

·Fsi
?

See [Brubaker, Bump and Licata 2011, Lemma 24] for a proof.
Instead of H0, one may also use HJ to model the intertwining integrals. The

factor Cαi (τ ), which depends on the spectral parameter, may then be replaced by
an element of θ(P∨). This point of view is taken in Haines, Kottwitz and Prasad
[Haines et al. 2010]. In order to see how this should work, consider that since the
intertwining operator permutes the spaces M(τ )J , one might consider each Aw to
be an endomorphism of

(5)
⊕
w∈W0

M(τw)J .

The characters τ of B(F) that are induced all have a common trivial restriction to the
subgroup B0= T (o)N (F), so by Frobenius reciprocity, the module M = indG(F)

B0
(1)

is the direct integral of the spaces (5), with τ running over T̂ modulo the action of W0.
This is the universal principal series. It is almost true that the intertwining integrals
are endomorphisms of indG(F)

B0
(1); the difficulty is that the operators are polar in

the singular set, so one must restrict to the orthogonal complement in M of the
spaces (5) with singular τ . Alternatively, one may consider the compact induction
Mc = c-indG(F)

B0
(1). Although this is no longer closed under the intertwining

operators, at least for f in Mc the intertwining integral (2) is always convergent,
and Aw is realized as a map Mc→ M .

We now come to the point, which is that as an HJ -module, Mc is a free module
of rank one. This is to be expected from the Bruhat decomposition, because every
coset in B0\G(F)/J has a unique representative in the extended affine Weyl group,
and this is also in bijection with J\G(F)/J . Thus the extended affine Weyl group
parametrizes both a basis of Mc and a basis of HJ . For a proof that the module Mc

is one-dimensional, see [Chriss and Khuri-Makdisi 1998] or [Haines et al. 2010,
Lemma 1.6.1].

If Aw were a map Mc→ Mc, we could then transfer Aw to a map HJ → HJ

and conclude that it agreed with right multiplication by some element. Due to
the poles of the intertwining operators, this does not quite work. What may be
done is to consider a somewhat larger Hecke algebra. In the Bernstein presentation
HJ ∼=H0⊗C[P∨], we can enlarge C[P∨] to any ring R such that C[P∨] ⊆R⊆M,
where M is the field of fractions of C[P∨]. We take R to be the localization at the
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set of singular hyperplanes, that is, the ring obtained by adjoining 1− α∨ for all
coroots α∨. Let H′J =H0⊗R. Since the poles of the intertwining operators are
contained in the singular locus, if M ′ denotes the submodule of M generated by
the image of the Aw, then we have a commutative diagram

(6)

Mc ∼=HJ - H′J

M ′
Aw

?
- H′J

?

The top arrow is the natural inclusion and the bottom arrow extends the injection
of Mc into HJ . The vertical arrows are H′J -module homomorphisms. As before,
if R is a ring, then a left R-module homomorphism R→ R is multiplication by
some element, and therefore Aw may be realized as multiplication by some element
of H′J .

3. Hecke algebra modules from unique functionals

There are two different kinds of actions of the affine Hecke algebra that we need to
consider. First, in any smooth representation, the Hecke algebra acts by convolution.
The Hecke algebra action on the Iwahori-fixed vectors in an induced representation
is an action of this type.

Second, with the notation as in the prior section, the affine Hecke algebra acts
on the ring O(T̂ ) of rational functions on the maximal torus T̂ in the L-group. This
ring is isomorphic to the group algebra C[P∨] of the coweight lattice P∨ of T ,
which may be identified with the weight lattice of T̂ . The generators Ti of the finite
Hecke algebra H0 will act by so-called Demazure–Lusztig operators. This action
was introduced by Lusztig [1985] and has far-reaching consequences.

We have seen in the previous section how the Hecke algebra can be used to
model intertwining integrals. In this section, we will show how we may translate
this action of the Hecke algebra into an action on rational functions. We described
two interpretations of intertwining operators via Hecke algebras in the diagrams (4)
and (6); the simpler point of view in (4) will be sufficient for our purposes, as it
was for Rogawski.

Let us consider, for every z in some Zariski-dense subset of T̂ , a linear functional
L z on M(τ ). We shall suppose that L z arises from a multiplicity-free representation
in the following way. Let H be a subgroup of G(F) and η a character of H such
that the induced representation indG(F)

H (η) is multiplicity-free. Then by Frobenius
reciprocity, a functional L z (if it exists) is characterized up to scalar multiple by
the property that L z(π(g)φ) = η(g)L z(φ) for g ∈ H . As noted above, using the
uniqueness of the functional, it is often possible to show by a method of Bernstein
that L z(φ) is a rational function of z on this set. Alternatively, this rationality may
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be proved for one specific vector, together with recursions that imply the rationality
for all φ.

As particular examples, L z could be the spherical functional

Sz( f )=
∫

K
f (k) dk

or the Whittaker functional

Wz( f )=
∫

N (F)
f (w0ng)ψ(n) dn,

where ψ is a nondegenerate character of N (F), the unipotent radical of the Borel,
and w0 is the long element of the Weyl group W . The spherical and Whittaker
functionals are both characterized up to scalar multiple by the uniqueness property
described above. Indeed, since the spherical Hecke algebra of compactly supported
K -biinvariant functions is commutative, K is a Gelfand subgroup of G(F), so the
functional L z is determined (up to scalar) by the fact that Sz(π(k)φ)= Sz(φ) for
all k ∈ K . For the Whittaker functional, the corresponding uniqueness result was
obtained by Gelfand and Graev, by Piatetski-Shapiro and by Shalika [1974]. The
Whittaker integral, like the intertwining integral, is convergent for z in an open set,
and has analytic continuation to all z.

It follows from these uniqueness results that for every pair z andw, the functional
L zw ◦ Aw is a constant multiple of L z. For the two examples above, these constants
were computed by Casselman [1980] and Casselman and Shalika [1980], who found
that for the spherical functional

(7) Szw ◦ Aw =
∏
α∈1+

w−1α∈1−

(
1− q−1zα∨

1− zα∨

)
Sz =

∏
α∈1+

w−1α∈1−

Cα(τ )Sz,

with Cα(τ ) as in (3), and for the Whittaker functional

(8) Wzw ◦ Aw =
∏
α∈1+

w−1α∈1−

(
1− q−1z−α∨

1− zα∨

)
Wz.

Here 1+ and 1− are the positive and negative roots, and if α is a root, then α∨ is
the associated coroot.

Our goal is to describe a Hecke algebra action on M(τ )J arising from each of
these functionals and explain how this action gives a recursion for L z(π(g)8w) for
any standard basis element 8w ∈ M(τ )J . To describe the function L z(π(g)8w), it
suffices to choose g from a set of representatives for H\G(F)/J , where H = K
when L = S and H = N when L =W. This means that we may choose g = aλ,
where λ ∈ P∨, and in the Whittaker case we may assume λ is dominant, since
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otherwise W(π(aλ)φ)= 0 for any φ ∈M(τ ); see [Brubaker, Bump and Licata 2011,
Lemma 5].

For both the spherical and Whittaker functionals, there is a standard basis vector
8w for which L z(π(aλ)8w) has a particularly simple form. In the Whittaker case,
for any dominant weight λ we have

Wz(π(aλ)8τw0
)= δ1/2(aλ)zw0λ;

see [Brubaker, Bump and Licata 2011, Proposition 6]. In the spherical case, we have:

Proposition 1. Let λ∈ P∨. Then Sz(πz(aλ)8τ1)= c(λ)zλ, where the constant c(λ)
is independent of z.

Proof. We have

Sz(πz(aλ)8τ1)=
∫

K
81(kaλ) dk = (δ1/2τ)(aλ)

∫
K
81(a−1

λ kaλ) dk.

The support of 81 is B(F)J . It is easy to see that if k ∈ K and a−1
λ kaλ ∈ B(F)J ,

then a−1
λ kaλ ∈ B0 J , where B0 is the kernel of τz : B(F)→ C. Hence the integral

is a constant independent of z. �

For either functional, this choice of standard basis vector will be the starting
point for our recursion. It remains to define the Hecke action. From Rogawski’s
perspective, M(τ )J is understood abstractly as a Hecke algebra module via the
regular representation, which is determined by

Tw81 =8w and Tw8y = TwTy81 for all y, w ∈W.

Remembering the quadratic relation given in (1), we see that for a simple reflection s,

Ts8w =

{
8sw if sw >w,
q8sw + (q − 1)8w if sw <w.

But (4) gives a relation between the intertwining operator As and Ts . So combining
these two ingredients and manipulating the terms, we obtain the following result.

Proposition 2. Let τ = τz and let w ∈W0. Let s = si be a simple reflection. Then

(9) As8
τ s
w +Cα(τ )8τw =

{
8τw +8

τ
sw if sw <w,

q−1(8τw +8
τ
sw) if sw >w.

Proof. This is an easy consequence of [Casselman 1980, Theorem 3.4]; see Propo-
sition 8 of [Brubaker, Bump and Licata 2011]. �

Thus it is reasonable to expect that we may obtain an action of the Hecke algebra
on the ring O(T̂ ) of regular functions on T̂ via the regular representation by applying
the functional to both sides of (9).
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The case where L =W is treated in detail in [Brubaker, Bump and Licata 2011],
so we will focus on the case L = S, and return at the end to make some remarks
about the difference between the two cases. For L = S, we intend to start our
recursion at 81 and move up in the Bruhat order. So let us rewrite (9) in the case
sw >w:

(10) q As8
τ s
w + (qCα(τ )− 1)8τw =8

τ
sw.

We will find that applying Sz to both sides gives a recursive identity for the matrix
coefficient

Fλ,w(z) := Sz(π(aλ)8τw)

of the principal series representation. To state this more precisely, let us introduce
the Demazure–Lusztig operator Ti defined on an arbitrary function F on the dual
torus T̂ by

(11) Ti F(z) := qC−αi (τ )F(zsi )+ (qCαi (τ )− 1)F(z).

Here 1≤ i ≤ r corresponds to a simple reflection si of the finite Weyl group. After
some algebra, this is equivalent to

Ti F(z)= (zαi − 1)−1(F(z)− F(zsi )− q F(z)+ q zαi F(zsi )
)
,

which is precisely the operator defined in [Lusztig 1985, (8.1)]. (This can also be
defined if i = 0, but for this discussion we are excluding this case.)

The following result is equivalent to a result of Ion [2006, Proposition 5.8].

Theorem 1. The Demazure–Lusztig operators satisfy the quadratic and braid
relations, and hence generate a ring isomorphic to the Hecke algebra H0. If w ∈W0

and siw >w, then

(12) Fλ,siw = Ti Fλ,w.

The fact that the Demazure–Lusztig operators satisfy the quadratic and braid
relations is due to Lusztig [1985, Section 8]. However, checking the braid relations
directly depends on a tedious computation for rank-2 root systems, so it may be of
interest that we can avoid such computations using our methods.

Proof. Assume that sw >w. Apply π(aλ) to both sides of (10) and then apply Sz.
We obtain

(13) Fλ,sw(z)= qSτz As(π(aλ)8τ s
w )+ (qCα(τ )− 1)Fλ,w(z).

Now we use (7), replacing z by zs and remembering that Cα (τzs) = C−α (τ ).
Comparing with (11), the right-hand side of (13) is just Ti Fτλ,w, as desired.

We turn to the fact that the Ti satisfy the generating relations of H0. Let m be
the order of si s j with 16 i, j 6 r , i 6= j . To show that Ti T j Ti . . .= T j Ti T j . . .
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(m factors on both sides), it is sufficient to show that they have the same effect on
zλ, where λ ∈ P∨. By Proposition 1, it is thus sufficient to show that

Ti T j Ti . . . Faλ,1(z)= T j Ti T j . . . Faλ,1(z).

But applying (12), both sides equal Faλ,w(z), where w = si s j si . . .= s j si s j . . . is
the longest element of the dihedral group generated by si and s j .

We next prove the quadratic relation. Assume now that siw <w. Then applying
(12) to Fλ,siw, we have Fλ,siw = T−1

i Fλ,w. Now we can compute this by the first
case of (9), and we find

T−1
i F(z)= C−αF(zsi )+ (Cα(τ )− 1)F(z).

This means that T−1
i = q−1Ti + q−1

− 1, which is equivalent to the quadratic
relation T2

i = (q − 1)Ti + q. �

This theorem guarantees that, given any reduced decomposition for the Weyl
group element w = si1 . . . sik , the operator

Tw := Ti1 . . .Tik

is well defined. As noted in [Ion 2008, Theorem 3.1], the Demazure–Lusztig
operators applied to zλ for λ dominant give a recursive definition for a certain
limit of nonsymmetric Macdonald polynomials with weight w · λ ∈ P∨. Thus our
Iwahori-spherical functions are also limits of these polynomials for λ dominant.

We caution the reader that our conventions for Demazure–Lusztig operators and
nonsymmetric Macdonald polynomials differ slightly from those of Ion. Instead,
they more closely parallel those of Cherednik [1995]. In particular, our Ti essen-
tially match those in [Cherednik 1995, (3.5)], which are then used to construct
nonsymmetric Macdonald polynomials.

Returning to the Whittaker case, similar arguments to those presented above
were given in [Brubaker, Bump and Licata 2011]. The resulting operators are
not Demazure–Lusztig operators, but are related in a way that is made precise in
Section 5 of that reference. The difference results from the fact that the starting
point for the Whittaker recursion is the Iwahori-fixed vector 8w0 , rather than 81.
Furthermore, the constant of proportionality in (8) differs slightly from the spherical
case given in (7). The resulting recursive operators for Whittaker functions are
Demazure–Lusztig operators conjugated by θ(ρ∨) and with q replaced by q−1.
Here θ : C[P∨] →HJ is as in the previous section and ρ∨ is half the sum of the
positive coroots. In either the spherical or Whittaker cases, the resulting action of
the finite Hecke algebra can be generalized to an action of the (extended) affine
Hecke algebra where the elements in θ(P∨) act by translation. (See Theorem 28 of
[Brubaker, Bump and Licata 2011] for the Whittaker case.)
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