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A CORRECTION TO CONDUCTEUR DES REPRESENTATIONS
DU GROUPE LINEAIRE

HERVE JACQUET

We give a correct proof for the existence of the essential vector of an irre-
ducible admissible generic representation of the general linear group over a
p-adic field.

Nadir Matringe has indicated to me that the paper “Conducteur des représenta-
tions du groupe linéaire” [Jacquet et al. 1981a; 1981b] contains an error. Since the
result therein has applications (see [Jacquet and Shalika 1985] for instance), it may
be useful to correct the error. In any case, the correct proof is actually simpler than
the erroneous proof. Separately, Matringe [2011] has given a different proof, which
is of independent interest.

First, I recall the result in question. Let F be a non-Archimedean local field. We
denote by « or | - | the absolute value of F, by ¢ the cardinality of the residual field
and finally by v the valuation function on F. Thus, a/(x) = |x| = ¢~ ?™). Let ¥ be
an additive character of ' whose conductor is the ring of integers Of. Let G, be
the group G L(r) regarded as an algebraic group. We denote by w, the permutation
matrix whose antidiagonal entries are 1. For instance,

001
w3=|010
100

We denote by dg the Haar measure of G, (F') for which the compact group G, (OF)
has volume 1. Let N, be the subgroup of upper triangular matrices with unit
diagonal and A4, the group of diagonal matrices. We define a character

Ory 2 N (F) - C*

by the formula

9r,1/f(u)=‘ﬂ( Z ui,i+1)-

1<i<r—1

MSC2010: 11F70, 22E50.
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We denote by du the Haar measure on N, (F) for which N, (Of) has measure 1.
We have then an invariant quotient measure on N, (F)\G(F).
Let S, be the algebra of symmetric polynomials in

-1 —1 —1
XL XL X, X7 X, XY,

Let H, be the Hecke algebra of G, (F'), that is, the convolution algebra of compactly
supported, complex-valued functions that are bi-invariant under the maximal com-
pact group G,(Of). Let ¥, : H. — S, be the Satake isomorphism. Thus, for any
r-tuple of nonzero complex numbers (x1, X3, ..., X;) we have a homomorphism
of algebras ¥, (x1, X3, ...,x,) : H — C, defined by

Fr(xX1, X2, ..., Xr) 10> Fr(P) (X1, X2, ..., Xr) .

Concretely, it is defined in the following way. Let ¢ = (1,12, ...,?,) be a tuple of
complex numbers such that x; = ¢’ for each i. We denote by (t1,13,...,1,) the
corresponding principal series representation of G,_1(F). It is the representation
induced by the character

a=(ay.az.....ar) > |ar|"|aa|? -+ Jar|™

of A, (F). Itsspace I(t1,1,, ..., ) is the space of smooth functions ¢ : G, (F) — C
such that

al * ...... * | . |
r—1 r—1_1 _r=1
1|0 az - - w | g | =lal" T2 |anPT T ar T g(g).
0 0 «-o --- a,
The space I(¢1,1,, ..., ) contains a unique vector ¢y equal to 1 on G,(Of) and

thus invariant under G, (O g). Under convolution, it is an eigenfunction of H, with
eigenvalue ¥, (x1, X3, ..., X,), that is,

/ Go(gh) (h) dh = Fr (@) (x1. %2 ... xr) do(8)
G, (F)

for every ¢ in H,.
There is a unique function W : G, (F) — C satisfying the following properties:

» W(gk)=W(g) fork € G,(Op),
o W(ug) = by (u) W(g) for u € N, (F).
e forall (x{,x,,...,x,) and all ¢ € H,,

[ W(gh) d(h) dh = 51 (@) (x1. Xa. ... x7) W(g),
G, (F)

e W(e) =1.
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Thus, W is an eigenfunction of H, with eigenvalue S;(x1, x2,...,x,). We will
denote this function by W(xy, x5, ..., X,; ¥) and its value at g by

W(g;x1,X2,...Xr;¥).

Let (7, V) be an irreducible admissible representation of G, (F). We assume
that m is generic, that is, there is a nonzero linear form A : V' — C such that

M (u)v) = 0y (1) A(v)
for all u € N,(F) and all v € V. Recall that such a form is unique within a scalar
factor. We denote by W (sr; ¥) the space of functions of the form
g = A (g)v)

with v € V. It is the Whittaker model of . On the other hand, we have the L-
factor L(s, ) [Godement and Jacquet 1972]. We denote by P, (X) the polynomial
defined by L(s, ) = Pr(¢*)~!. The main result of [Jacquet et al. 1981a] is the
following theorem:

Theorem 1. There is an element W € W (5r; W) such that, for any (r — 1)-tuple of

nonzero complex numbers (x1,X2,...,Xr—1),
0 — _
/ W(‘g 1) W(g: X1, X2, ..., X,—1:¥)|detg|* "1/ 2 dg
Nr—l(F)\Gr—l(F)
=TI Petax07".
1<i<r—1

In [Jacquet et al. 1981a] it is shown that if we impose the extra condition

u (goh (1)) - (ﬁ (1))

forall h € G,_1(OF) and g € G,—_{(F), then W is unique. The vector W is then
called the essential vector of m, and further properties of this vector are obtained in
[Jacquet et al. 1981a].

The proof of this theorem is incorrect in that paper. We give a correct proof here.

1. Review of the properties of the L-factor

Let r > 2 be an integer. Let t = (¢1,¢,,...,t,—1) be an (r — 1)-tuple of complex
numbers. We assume that

Re(71) = Re(72) = --- = Re(t,—1).

Again, we consider the representation 7 (¢q,?,,...,#—1) that acts on the space
I(ty,t5,...,t,—1). As before, let ¢g be the unique vector of that space that is
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equal to 1 on G,_;(OF). Recall it is invariant under G,_1(0Of). We recall a
standard result.

Lemma 1. For each tuple t satisfying the above inequalities the vector ¢ is a
cyclic vector for the representation w(ty,tp, ..., t,—1).

Proof. Indeed, if Re(#;) = Re(t;) =--- = Re(#,_1), the representation is irreducible
and our assertion is trivial. If not, we use Langlands’ construction [Silberger 1978].
For each root o of 4,1 we denote by N, the corresponding subgroup of N, _;
or N,_1 and by & the corresponding co-root. Thus, if « is a positive root, we have
a(al 9a21 ey ar—l) = ai/aj
with i < j and
(t,a) = Li—tj.

Let P(¢) be the set of positive roots & such that Re(¢, &) > 0. Let U be the unipotent
group generated by the subgroups N_y with & € P(¢). The intertwining operator

Ne(g) = [U L

is defined by a convergent integral, and its kernel is a maximal invariant subspace.
The formula of [Gindikin and Karpelevi¢ 1966; Gindikin 1961] gives

1— q—(t,&)—l
Neoe)= ] FEp=r
aeP(1)
Thus, N¢g # 0, and our assertion follows. O
The representation I(¢y,¢,, ..., —1) admits a nonzero linear form A such that,

for u € N,_1(F) and ¢ in the space of the representation,
Mra(u)g) =0,_; 5(u)A(9).
We denote by W(t;, 12, . .., t—1; V) the space spanned by the functions of the form

g We(g), We(g) =Ar(n,12,....1,-1)(g)P)
with ¢ € I(t1,15,...,t,—1). We recall the following result:
Lemma 2 [Jacquet and Shalika 1983]. The map ¢ — Wy is injective.

It follows that the image W, of ¢y is a cyclic vector in W(tq, 2, . . ., tr—1; ). Up
to a multiplicative constant, the function Wj is equal to the function

W() = W(X],Xz, . ,Xr_l;a).
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Now let 77 be an irreducible generic representation of G, (F). For W e W(m, )
and W/ € W(ty,ta,...,t,—1;¥) we consider the integral

Vs, W,W') = /

0 _
w (g 1) W'(g)|detg|* /2 dg.
Nr—l\Gr—l

The integral converges absolutely if Re(s) > 0 and extends to a meromorphic
function of s. In any case, it has a meaning as a formal Laurent series in the
variable ¢ —* (see below). We recall a result from [Jacquet et al. 1983].

Lemma 3. There are functions W; € W(rw;{) and Wj/ e W(ty,ta, ..., tp—1; 1;),
1 < j <k, such that

S we W W)= [] Le+u.n).

1<j<k 1<i<r—1

Since W, is a cyclic vector, after a change of notations, we see that there are
functions W; € W(xr; ) and integers n;, 1 < j < k, such that

D g W Wy X, oxemi ) =[] Ls+4.m).

J 1<i<r—1
In our discussion |x1| < |x;| <--- <|x,—1|. However, the functions
W(X1,X2, ... . Xp—13¥)
are symmetric in the variables x;. Thus, we have the following result:

Lemma 4. Given an (r — 1)-tuple of nonzero complex numbers (x1,X2,...,Xp—1)
there are functions Wi € W (z; ) and integers nj, 1 < j <k, such that

D qTWE Wi Wy X, X)) = [ PalgT x0T

J 1<i<r-—1

2. The ideal I,

We review the construction of [Jacquet et al. 1981a], adding a little more detail to
some formal computations. First, we introduce a function

W(leX2"Xr—laE)Gr—l(F)_)Sr—l

whose value at a point g € G,_1(F) is denoted W(g; X1, X, ..., Xp—1; 1;). Itis
defined by the following property: for every (r —1)-tuple (x1, x2,...,x,—1) and
every g, the scalar W(g; x1,x2,...,X,—1; %) is the value of the polynomial

W(g: X1. Xz, ... X,_13%)
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at the point (xq,Xx2,...,X,—1). For g in a set compact modulo N,_;(F), the
polynomials W(g; X1, Xa,..., X;—1;¥) remain in a finite dimensional vector
subspace of S, _1. We have the relation

|det g W(gsx1, X2, 13 9) = W g7 X1, %2, g X1 Y)
It follows that if |det g| = ¢™", then the polynomial
W(g: X1, Xa, oo, X139
is homogeneous of degree 7, that is,
W(g: XX, XX, XX,o39) = X"W(g X1 Xa o Xooi3 W),
For each integer n, we now define the integral

V(Wi X1, Xo, oo, X3 Y)
= g0 )
: [ W(O 1) W(g. X1. X2, ..., Xp—1:9)|det g|"V/? dg.
|detg[=¢~" dg

The support of the integrand is contained in a set compact modulo N, _; (F'), which
depends on W. In addition, there is an integer N (W) (depending on W) such that
the support of the integrand is empty if n < N(W). The polynomial

is homogeneous of degree n. We consider the following formal Laurent series with
coefficients in S, _1:

V(X W X1, X, ... X213 Y) =ZXH‘I’n(W;Xl,Xz,---,Xr—l;lﬁ)-
n

Hence, in fact
VXWX, Xo o XepY) = Y X'U,(Wi X Xo L X 1Y),
n>=NW)
If we multiply this Laurent series by [ [, <;<,_; Pr(XX;), we obtain a new Laurent
series with coefficients in S,_;, namely,
VXWX X X)) [ Pr(XXD)
1<i<r—1

= Z Xnan(X],X2,’Xr—l’w)’
n=N{ (W)

where N{(W) is another integer (depending on W) and a, € S,_;. Each a, is
homogeneous of degree n. We can replace 7 by the contragredient representation 7,
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¥ by ¥ and the function W by the function W defined by
W(g) =W, g™
The function W belongs to W(#, ). We define similarly
YW X1, Xas oo, Xp—1390).

We have then the following functional equation [Jacquet et al. 1983]:

r—1
v ' x T wixr X sy [ PreT YT

i=1
r—1

r—1
= [ | ex XX ) WX W. X0 X X)) [ Pr(XXD).

i=1 i=1
The € factors are monomials and ¢, = % 1. Thus, there is another integer N, (W)
such that in fact

VXWX X X)) [ Pr(XXD)
1<i=r-1
= > X"an(X1, X2, ... Xr—1).
No(W)=n>N{(W)

From now on we drop the dependence on i from the notation.
From the above considerations it follows that the product

VXWX Xo . X)) [ Pr(XXD)
1<i<r-—1

is in fact a polynomial in X with coefficients in S,_;. Moreover, because the a,
are homogeneous of degree n, there is a polynomial 2(W; X1, X5,..., X;,—1) in
S, —1 such that

VWXL X X)) [ Pe(XX) = E(W: XX1, XX, ..., XX,1).
1<i<r-—1

In a precise way, let us write
R

[T P =) Pu(X1, X, Xomy),

1<i<r—1 m=0
where each P, is homogeneous of degree m. Then

VXWX X X)) [ Pe(XXD)

1<i<r—1

R
=D X" Y W (Wi Xy Xoooo Xot) P (X1, Xao o Xo),

n m=0
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The polynomial E(W; X;, X3, ..., X;,—1) is then determined by the condition that

its homogeneous component of degree n noted E,(W; X1, X5, ..., X;—1) be given
by
En(W;Xl,Xz,---,Xr—l)
R
=D UnmWi X1 Xoooo o Xy ) Pr(X1, Xa o Xy,
m=0

The theorem amounts to saying there is a W such that 2(W; X1, X3,..., X;—1)
equals 1.
Let I; be the subvector space of S,_; spanned by the polynomials

E(W;Xl,Xz,...,Xr_l).
Lemma 5. In fact I is an ideal of the algebra S,_;.

Proof. Let Q be an element of S,_;. Let ¢ be the corresponding element of H,_;.
Then

/W(gh;XI,XZ,...,Xr_I)qs(h)dh
= W(g;Xl»XZ, .. ,Xr_l)Q(Xl,Xz,.. . »Xr—l)-

Let W be an element of W' (s, ¥). Define another element W; of W(x, ¥) by

-1
Wl(g)sz W[g(ho ?)]¢(h)|deth|1/2dh.

We claim that
E(Wl;XlsXZa'-'aXr—l) = E(W;XI’XZ’--"XV—I)Q(XI,XZ’--~’XV—1)'

This will imply the Lemma.
By linearity, it suffices to prove our claim when Q is homogeneous of degree ¢.
Then ¢ is supported on the set of /2 such that |det 7| = ¢~*. We have then, for every n,

V(Wi Xvs oo Xp—1)

0 _
:/ Wl(‘g 1)W(g;Xl,...,Xr—l)ldetgl 12 dg
|det g|=g—"

h=10
=[d | /W(g() I)W(g;Xl"'"Xr—1)¢(h)|deth|1/2dh
etg|=qg—"
B x |detg|™'/? dg

:/ W(g 0)/W(gh;Xl,...,X,_1)¢(h)dh |det g| 72 dg
|det g|=g—n+! 01
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0 _
-/ (& Wig: X Xy ldetg 2 dg QK. Xo)
|det g|=g "+
= Y (Wi X Xre) QK1 Xy,
Hence,

En(Wii X1, ..o Xrm1)

n—-m(W1; X1, ..., Xp—t) P(X1, ..., Xp—1)

R
>
m=0
R
Z Vyem—t (W X1, ..o, Xpmt) Pm(X1, .., X)) QX1 -0, Xom1)
m=0
=En—t(W: X1,.... X)) O(X1, .., X)),

Since Q is homogeneous of degree ¢ our assertion follows. O

3. Proof of the theorem

Proof. Given an (r — 1)-tuple of nonzero complex numbers (xi,X2,...,Xr—1),
Lemma 4 shows that we can find W; and integers n; such that, for all s,

D @I EW g X1 X0 g X)) = L
1<j=<k

In particular,

Z E(I/I/j’xly-XZ,...,xr_l):l‘
1<j<k

Thus, the element

Y. EWi X Xa X))
1<j=<k

of I; does not vanish at (x1, X2, ..., X,—1). By the theorem of zeros of Hilbert we
have then I, = S,_. In particular, there is W such that

E(W;Xl,Xz,..‘,Xr_l) =1.
This implies the theorem. O

Remark 1. The proof in [Jacquet et al. 1981a] is correct if L(s, ) is identically 1.
In general, the proof there only shows that the polynomials in I, cannot all vanish
on a coordinate hyperplane X; = x.
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Remark 2. Consider an induced representation 7 of the form
7=1I1(0;®a’, 0, a2, ..., 0 Ra’F),

where the representations 01,03, ..., 0y are tempered and 51, 57, ..., S; are real
numbers such that

Sp > 8y > 0> Sk

The representation 7 may fail to be irreducible. But, in any case, it has a Whittaker
model [Jacquet and Shalika 1983], and Theorem 1 is valid for the Whittaker model
of .

Remark 3. The proof of Matringe uses the theory of derivatives of a representation.
The present proof appears simple only because we use Lemma 3, the proof of which
is quite elaborate (and can be obtained from the theory of derivatives as in [Cogdell
and Piatetski-Shapiro 2011]).
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