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1. Introduction

The first of my students who struggled seriously with the problems raised by the
letter to André Weil of 1967 was Diana Shelstad in 1970–74, at Yale University
and at the Institute for Advanced Study, who studied what we later called, at her
suggestion and with the advice of Avner Ash, endoscopy, but for real groups.
Although endoscopy for reductive groups over nonarchimedean fields was an issue
from 1970 onwards, especially for SL(2), it took a decade to arrive at a clear and
confident statement of one central issue, the fundamental lemma. This was given in
my lectures at the École normale supérieure des jeunes filles in Paris in the summer
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of 1980, although not in the form finally proved by Ngô, which is a statement
that results from a sequence of reductions of the original statement. The theory
of endoscopy is a theory for certain pairs (H,G) of reductive groups. A central
property of these pairs is a homomorphism φH

G : f G
7→ f H of the Hecke algebra

for G(F) to the Hecke algebra for H(F), F a nonarchimedean local field, and the
fundamental lemma was an equality between certain orbital integrals for f G and
stable orbital integrals for f H .

Clozel observed at an early stage that, with the help of the trace formula, it
was sufficient to treat the case that f H and f G were both the unit element in the
respective Hecke algebras. Other more difficult reductions came later, but in the
seventies it was the fundamental lemma in a raw form, but for specific groups, that
I proposed as a problem to a number of students who worked with me at the Institute
for Advanced Study, although their formal advisors were elsewhere because the
IAS had no graduate program: first Robert Kottwitz in 1976–77, Tate’s student
at Harvard; then Jonathan Rogawski, who received his degree in 1980; and later
Thomas Hales, in the mid-eighties. Nicholas Katz was the formal advisor of both
Rogawski and Hales. The experience was perhaps not entirely a happy one for at
least two of the three students, but all survived to thrive as mathematicians. Jon left
us too soon.

He had come to me on arriving at Princeton from Yale thanks to the advice
of Serge Lang. It was Jon’s ambition to become a number theorist, an ambition
he ultimately realized, but the fundamental lemma for SU(2, 1) looked to him,
with reason, to be far from real number theory. I think he would rather have
proved the lemma wrong for SU(2, 1), abandoned the whole project, and gone on
to something where elliptic curves figured more prominently. Fortunately, in my
view, he never found a semisimple element for which the desired equality was false,
proved the lemma for this group, and went on to write an extremely useful treatise
on SU(2, 1), Automorphic representations of unitary groups in three variables,
with very instructive examples of endoscopy, and then spent a good part of the
remainder of his life with automorphic forms as an expression of the theory of
numbers. Unfortunately, I never had an opportunity to discuss with him the very
sophisticated, and very difficult, subsequent development of the fundamental lemma
as a central element in the analytic theory of automorphic forms at the hands of
Kottwitz, Waldspurger, Ngô and many others.

Indeed, we lived on opposite coasts of North America, and met only rarely, so
that we never had an occasion to share our views on the changing face of the theory
of automorphic forms in the years after late sixties when functoriality first appeared,
together with some indications of reciprocity, or after the seventies, when the trace
formula began to be used more systematically in the study of automorphic forms
and of Shimura varieties. We were together for a conference on Picard modular
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surfaces in Montreal in the late eighties, at which his book was a central reference,
but we were both too busy to have much time for conversation. Moreover, the
subject was changing around both of us: the geometrical theory was growing at an
astronomical rate; the genuinely arithmetical applications, such as Fermat’s theorem
were utterly unexpected; and the trace formula was being developed by Arthur not
merely as an occasional tool but as an elaborate theory crying out for applications.
In spite of many remaining points that are both obscure and difficult, many more,
and more important, applications are in the offing.

That there are common threads running through this material and many later
contributions, often referred to in the bulk as the Langlands program, was generally
accepted, but, as I found when attempting — to some extent to indulge my vanity,
because of the label, and to some extent for sentimental reasons, for it is also related
to a number of topics that appealed to me in my early years as a mathematician but
that I had never actively investigated — to acquire some understanding of the scope
of the program at present, there is a great deal of confusion: the central issues are not
always distinguished from the peripheral; partial results obtained by methods that
are almost certainly dead-ends are offered with a frequently misplaced satisfaction;
many suggestions are facile and, in my eyes, more than doubtful. Some of these
shortcomings reflect the failings of our current mathematical culture; others may
be inevitable in any cooperative intellectual effort. They are nonetheless troubling
and, for the incautious, misleading. Some coherent reflection on the topic, its goals,
its limitations at present, and achievements so far, is necessary. It is also difficult.

To write at this point a synopsis of the subject would be premature. Too much
is left to do and my command of the material is inadequate. Nevertheless, I am
trying to describe the goals of the theory and the methods with which they might
be achieved — for my own satisfaction first of all, but secondly because the subject
of automorphic representations and their applications appears to me central. As
I attempted to explain in the essay “Is there beauty in mathematical theories?” [ND],
it is the natural issue of several major currents in pure mathematics of the past two
centuries: algebraic number theory; algebraic geometry; group representations — as
created by Frobenius, Weyl and Harish-Chandra; and even a dollop of topological
ideas, such as perverse sheaves. There is a speculative element in this attempt, and
I try to be clear about it when the occasion arises. Nevertheless, the intention is to
offer, when I can, possibilities that are not, in my view, impasses and that will lead
to a theory at the level of its historical origins. If some results, even, or especially,
much-acclaimed or important results, are not mentioned, it may because I see them
as leading ultimately nowhere, not as an absolute conviction — absolute convictions
are seldom useful — but as a suspicion; but it may also be because they refer to
issues like endoscopy or the fundamental lemma, which are basic and important,
but for reasons that are tactical more than strategic. Unfortunately, inadequate as it
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will be, there was no question of completing this description in time for it to appear
in the present collection; there are far too many questions and difficulties on which
I have hardly begun to reflect. At my age the future offers an uncertain quantity of
time, so that whatever success I have will certainly be limited. Nevertheless, this
memorial volume is an opportunity to describe and explain in a provisional and,
at this time, necessarily incomplete form not only what I mean, in the context of
the Langlands program — even in that part of it that owes little or nothing to me —
by the two words functoriality and reciprocity — concepts that are maturing only
slowly and in whose development Jon participated — but also how I expect them to
be given a clear mathematical content. I apologize, once and for all, for the large
tentative element that still remains not only in this prologue but also in the longer,
more substantial text “Functoriality and Reciprocity” that it anticipates.

It is best to begin with a rough description of some basic concepts, concepts
which it would be idle at this point to formulate too precisely, but which help
in appreciating the structure of the theory we are attempting to construct. To
introduce the notions of functoriality and reciprocity we need a crude notion of
a mock Tannakian category: a generalization of the notion of the category of
representations of a group.

Take, as an introductory example, G to be a group, for example, to be as
simple as possible, a finite group. Suppose we have a family Grange of groups and
homomorphisms between then, for example the family {GL(n, K ) | n = 1, 2, . . . },
where K is a field, say the field of complex numbers. Consider the collection
of homomorphisms ϕ : G → GL(n, K ) from G to an element of Grange. This is
a Tannakian category in the sense of, for example, [M], a very simple one. The
morphisms are given by ϕ→ φ ◦ϕ, where φ is an algebraic homomorphism from
GL(n, K ) to GL(n′, K ).

A more sophisticated choice for Grange would be the collection LG(K/F) of all
L-groups L G defined for a given extension K/F (see [BC]). The possible choices
for these Galois extensions will be described later. The objects of the category will
be pairs, the first element of which is an L-group L G in LG(K/F) and the second
an object whose nature depends on F . What is important is that these objects behave
functorially: given a pair with first element L G and a homomorphism φ : G→ G ′

in LG(K/F), thus a homomorphism for which the diagram

(1.1)
L G L G ′

Gal(K/F)

φ

is commutative, there is an image — of the given pair with first element L G —
whose first element is L G ′. We have, for the moment, to be coy about the second
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element of the pairs because its nature depends on the nature of the field F , whether
it is local or global, a field of algebraic numbers or the function field of an algebraic
curve.

If K/F is given, the principal property of a mock Tannakian category — and the
word “mock” is there to allow a certain latitude and a certain imprecision — is that
there is a group G, usually not a group in LG although it will have to be provided
with a homomorphism G→ Gal(K/F), such that for any L G ∈ LG(K/F) the set
of pairs with first element L G may be identified with — or, better, parametrized
by — the homomorphisms ϕ :G→ L G for which the diagram

(1.2)
G L G ′

Gal(K/F)

ϕ

is commutative. The existence of this group is closely related to functoriality,
usually by no means evident, and in many cases of great interest it is not yet
established, although it is expected that it can, in the simpler local contexts, be
identified with groups familiar from mid-twentieth century algebraic number theory
or from geometry. For global fields, the group cannot be known except through the
category it describes. We are striving for a notion that is, in one way, more general
than that of a Tannakian category formulated in [M] and, in another, less broad. It
is certainly at the moment much less precise.

Functoriality in the L-group appeared first, although not with that name and
not so clearly circumscribed as at present, in my letter to Weil of 1967 [LW].
There is a reciprocity — of which, even today, only a small part has been realized —
already implicit in functoriality, but a general form of reciprocity only appeared in
connection with Shimura varieties, first with the theorem of Eichler–Shimura, but
later in a bolder form, once the relation between the cohomology of general Shimura
varieties and the discrete series of Harish-Chandra was clarified. The appropriate
expression of its general form is one of the central issues of the program, an
issue that, as will be intimated later in this prologue, not yet fully resolved, even
conjecturally. Indeed in spite of the spectacular success of Wiles with the conjecture
for elliptic curves to which the names of Taniyama and Shimura are attached, it is
hardly broached. That the initial expression of reciprocity was the Artin reciprocity
law for abelian characters of the Galois group of number fields, which itself had its
historic source in the quadratic reciprocity law is, however, clear. In the letter to
Weil, it was global functoriality that manifested itself as a possible strategy for the
analytic continuation of automorphic L-functions. It can still be regarded as the
only genuinely promising method for attacking this problem. Local functoriality
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only manifested itself later, as the consequences and the possibility of more precise
formulations of global functoriality began to appear.

In a general context, in which all avatars of the original “program” are to be
embraced not by an absolutely uniform collection of definitions and theorems, but
by structures which do bear a family resemblance to each other, the origins are a
less useful source of understanding than a few general concepts. There are three
different theories that find a place in the program, each with a global and a local
aspect. By and large, the local theory is a prerequisite for the global. Each of the
three is attached to a different type of field. Globally these are (i) algebraic number
fields of finite degree over Q; (ii) function fields of algebraic curves over a finite
field; (iii) function field of a complete nonsingular curve over C. The corresponding
local fields are (i) real, complex and p-adic local fields; (ii) fields of Laurent series
over a finite field; (iii) fields of Laurent series over C. The second type of field,
a kind of poor relative, usually ignored, shares properties with both the first and
the third, themselves quite different from each other in the details although with a
common structure.

Let, for example, F = Fv be a local field, for the moment the completion of
a number field, and G a reductive group over Fv. Consider the collection of
irreducible representations of G(Fv). These are usually infinite-dimensional. The
theory of irreducible representations of G(Fv) is a theory that began with Dedekind,
Frobenius, and Schur, and whose current structure, the structure with which we
shall be dealing, owes an enormous debt to Élie Cartan, Weyl, and Harish-Chandra,
but it is nonetheless a theory that is far from complete. We know more for F =R,C

than for a nonarchimedean F , but the theory appears to be similar for all.
An important observation is that the theory of which we speak is, for a given Fv ,

not unique. There are several possibilities. First of all, the representations being
infinite-dimensional, there are technical constraints, discussed in all the standard
texts: they are to be admissible. The notion of equivalent representation has also
to be formulated carefully. That demands a good deal of understanding of the
structure of the group, its subgroups, and its Lie algebra, all of which I take for
granted. Secondly the theories for different groups should be fused. There are
distinguished reductive groups: the quasisplit groups, even perhaps, in a pinch, the
quasisplit simply connected groups. The reduction of the representation theory for
general reductive groups to the theory for quasisplit groups is a part of endoscopy,
for which the famous fundamental lemma is necessary and which is absolutely
essential for the representation theory of reductive groups over local fields, those
of the first two types and probably those of the third type as well. This reduction
I do not emphasize; I take it for granted, simply confining myself to quasisplit
groups. Moreover, even for quasisplit groups there is another consequence of the yet
only very incompletely developed endoscopy that we accept: classes of irreducible
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representations and their characters are not the objects to which functoriality and
reciprocity apply. It is stable classes of representations and, at least for fields of
the first or second kinds, their characters that are pertinent. The local theory for
function fields over C is only available in a nascent form, and it is by no means
certain that characters have a role to play. It is hard — at the moment — to imagine
that their equivalent will not appear. For local fields of the first two types, a stable
class π st consists of finitely many equivalence classes of representations and the
character of a stable class is a sum

χπ st =

∑
π∈π st

απχπ ,

where the coefficients are often, perhaps always, integers and these stable characters
are not merely class functions, which is what we normally expect from characters,
but functions on stable conjugacy classes, stable conjugacy meaning — essentially —
conjugacy in G(F sep), F sep being the separable algebraic closure of F , of two
elements in G(F). In their full generality both functoriality and reciprocity are
predicated on complete theories of endoscopy. Although we are far from possessing
such theories, there are many questions related to the two notions on which we can
reflect at present.

In order to describe the mock Tannakian categories that are of concern to us,
we need to fix a field, either global or local. The first element of a pair is then the
L-group L G associated to a reductive group G over F or to the quasisplit group
associated to it. They are the same. The second, about which we have been until
now reticent, is a stable conjugacy class π st of irreducible representations of G(F),
if F is local, or of automorphic representations G(AF ), if F is global. As already
observed, it is best to take G itself quasisplit, referring the rest to endoscopy.

The second element introduces new subtleties. Suppose, for example, that F
is a local field and that we are dealing the first of the three types, so that F is the
completion of a number field, even R or C. Then there are several categories of
irreducible admissible representation that can — and must — be distinguished: all;
unitary; tempered; the Arthur class. For each of these classes, in so far as it is in the
present context of any interest at all, there will be a mock Tannakian category, each
a slight modification of the others. If we are dealing with all representations then
in the semidirect product defining the group L G = Ĝ o Gal(K/F), the connected
component Ĝ is the group of complex points of a reductive group. It is not clear
that it is appropriate to consider the category of unitary representations in the
context of functoriality. They are, as a class, recalcitrant, and it is very likely
that only the Arthur class, of which tempered representations, which are unitary,
form an important subclass, is needed. So it may be best to exclude the class of
unitary representations as such. For tempered representations, Ĝ is taken to be
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the unitary form of Ĝ — with no change in notation. For the parametrization of
the Arthur class, L G is presumably replaced by SL(2,C)× L G, but here again
it is best to impose some growth conditions on the characters and some unitary
condition on the parameters, thus, as it turns out, some growth conditions, not yet
understood or formulated, on the matrix coefficients of the representation. The
class of all representations has obscure aspects that remain unsettled. We can
classify its elements, so that we have a notion of L-packet for them, but so far
as I know, there is no stable theory available, even over R; there are L-packets
but, at this moment, no stable characters. They may not exist outside the Arthur
class. Over nonarchimedean local fields, our ignorance is even more thorough.
When the groups L G are replaced by their unitary form, the conditions on the
homomorphisms between them are modified as well. For example, for tempered
L-packets, homomorphisms from Ĥ o Gal(K/F) to Ĝ o Gal(K/F) restricted to
Ĥ are homomorphisms from a compact group to a compact group.

In the simple example we gave of a Tannakian category, each morphism ϕ :

G → GL(n, K ) represented something, namely itself, a linear representation of
G. Composed with φ : GL(n, K ) → GL(m, K ) it represents a second linear
representation, this time m-dimensional. In the more general mock Tannakian
categories, like those associated to LG(K/F), and we may as well restrict our
attention to it, each object is a pair, the first element of which is the L-group L G,
which determines and is uniquely determined by the corresponding quasisplit group
G over F . There is also a second element, a stable conjugacy class π st of irreducible
representations G(F), whose type must, as observed, be specified, whether all,
tempered, or in the Arthur class. The geometric theory, as described in [CFT], is
still immature, so that the possibilities for this second element are even less clear.
We shall come to the geometric theory, with its many unresolved questions, later.
For now it is best to concentrate on the arithmetic theory.

In order to be able to discuss reciprocity we need, whether at a local or global
level, a group A such that for a given group G or L G the stable conjugacy classes
of irreducible or, globally, irreducible automorphic representations are represented
by homomorphism of A to L G. This possibility was already mentioned, and it was
intimated that to prove the existence of A, it was necessary to prove first that to
any homomorphism φ : L G1→

L G2, there was associated a map 5φ : π
st
→ π st

φ

of L-packets for G1 to L-packets for G2. This possibility I refer to as functoriality
or, at more length, functoriality in the L-group.

Once functoriality in the L-group is proved, we shall be on the road to the proof
of the existence of A, locally or globally, and for each kind of field. We have, as
will be explained, to envisage different kinds of proof for the various types of fields.
Before attempting to describe the possible nature of these proofs, I comment on the
second principal topic of this prologue and of the essay to follow it: reciprocity.
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We have suggested that the existence of groups A=AF =AK/F , one associated
to each field F of the six various types of field, and, to be pedantic, to each
sufficiently large Galois extension K of F , was the appropriate classification of
representations either locally or globally. Indeed there are other constraints that
have to be taken into account: first of all, whether the representations considered
are tempered, of Arthur type, or, globally, of Ramanujan type, which entails, even
for the same field, the introduction of more than one AF ; secondly, and this is
important only in order not to be forced to pass to senselessly large inverse limits,
we should consider the stable classes of representations generated by a finite set.
This provides us with one ingredient of reciprocity. The other has been provided,
at least partially, by two mathematicians: Galois in the early nineteenth century
and Grothendieck in the late twentieth century. Galois groups and their importance
are well understood; Grothendieck’s notion of motivic Galois group is not well
understood and not yet even in a satisfactory form. One task for mathematicians
in the coming decades is to discover a better form. Whatever else, these are groups
M=MF =MK/F attached to the various fields. It can be said once again that they
are only known through the objects they describe. Over local fields these groups
are familiar, especially those for the fields of the first two types, and are known
as Weil(–Shafarevich) groups. Globally, however, they are not and the function
of reciprocity is to provide some understanding of them. It will be expressed as
a homomorphism from AK/F to MK/F , so that it attaches a representation of the
former group to one of the latter. Reciprocity is of course the most abstruse, the
most profound, and the most difficult of the topics discussed in this prologue and
in the essay to follow. I do not expect to have much useful to write. So far as
I can tell, we do not understand motives, not even hypothetically, and any real
understanding of them requires the solution of major problems in algebraic and
diophantine geometry. It would be presumptuous for me even to attempt to describe
them at this moment.

I am not certain how it is best to refer to the various groups A and M, in either
their local or global forms. For lack of anything better, I shall refer to automorphic
and motivic galoisian groups, the adjective galoisian indicating that the group
describes some other kind of algebraic structure or is defined by it. It may be useful
to observe immediately that, in the arithmetic theory, the relation between A and
M is inevitably reflected in an important analytic object associated to irreducible
representations and automorphic representations on one hand and motives on the
other: L-functions. A homomorphism from A to M entails a mapping from complex
representations of M to complex representations of A. The definitions on the motivic
side are delicate because of the intervention of `-adic-representations. An `-adic
representation is not, at least not without further ado, a complex representation.
Useful and important as `-adic representations are — they are indeed indispensable —
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some reflection is necessary before incorporating them into statements of reciprocity.
I find that this preliminary reflection is often missing.

Further discussion of these questions will appear in the essay itself. What is
important at present, especially for a reader who may not appreciate the need for the
development of sound general concepts, is some understanding of how the general
concepts are incorporated into the search for proofs. I begin with a brief list of the
necessary steps, employing sometimes notions that have yet to be introduced.

(i) The local theory over the real field. What is needed is, first of all, to complete
the theory for real groups developed by Harish-Chandra. This means, first of all, a
theory of the Arthur class, and secondly a theory of stable transfer.

(ii) The local theory over nonarchimedean fields. It is again a matter of completing
the theory created by Harish-Chandra, but, as he knew, he left the theory for p-adic
fields in a form in which much that he had established over R was not yet available.
Not only is there no theory for the Arthur class and no theory of stable transfer over
p-adic fields, there is also no adequate tempered theory.

(iii) The global theory for algebraic number fields. In my view, which may not be
unanimously shared, the only possibility is to pursue the suggestions of [FLN; BE;
ST]. This is no easy in matter. It requires the local theories of (i) and (ii). Globally,
it demands a completion of the analytic beginnings of [ST], thus some way of
transforming the limits that appear in [ST] into a useful form. Efforts with some
promise are being made, although not by me. I am keeping my fingers crossed that
they succeed. These will be, at first, results only for G = P GL(2), but it is possible
that they will substantially strengthen our confidence in the trace formula as the
route to global functoriality. Moreover the creation of the theories of (i) and (ii) will
make it possible to pursue the general global theory effectively. For P GL(2), there
are two bench marks: (a) the second symmetric power and dihedral representations;
(b) the fourth symmetric power and quaternionic representations. The second of
these bench marks, if reached, would, I believe, encourage the search for concrete
methods of counting fields with specific properties in a way that can be compared
with the results reached analytically with the trace formula. This may more closely
resemble the class field theory of the first half of the twentieth century than of the
second.

(iv) The local geometric theory. This is the local theory for the field of Laurent
series over C. The fascination of contemporary mathematicians with sheaves has, on
the one hand, encouraged the development of the local and global theories, but only
in the context of spherical functions, which were also of considerable importance in
the early years of representation theory for semisimple groups. It has, at the same
time, inhibited the development of a theory with ramification, although not entirely
[FG]. If this were remedied, the theory would be richer. The structure of a complete
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local theory is by no means evident, although there are some intimations of the
form to be taken by reciprocity, or, better, of the form of the galoisian group Ageom.

(v) The global geometric theory. This is a theory strongly related to the theory of
abelian integrals on one hand and the theory of ordinary differential equations with
singularities on the other. As with the local theory, the contributions of algebraic
geometers, among them Drinfeld, and of mathematical physicists, among them
Witten, to the theory have greatly enriched it, but we do prefer a mathematical
theory that includes ramification. The best I will be able to do in this prologue are
some, with any luck instructive, observations not about reciprocity in a geometric
context, where it may not exist, but about the new features that its relation to field
theories reveal. I hope that, before coming to this part of the essay itself, I shall
have acquired more familiarity and more understanding of the contributions of the
mathematical physicists and the geometers.

(vi) The p-adic theory and diophantine geometry. These, or rather reciprocity,
which can be considered the link between them and the theory of automorphic
forms, have to be postponed to the second half of the prologue. It is not clear that,
even with the longer period of time available to me for its preparation, I shall be
able to write anything useful about these topics. I do hope, at least, to make the
stakes clear.

I have no doubt that a lot of reflection will be necessary before the problems
presented by (vi) can be broached in any serious way. Deep, quiet reflection over
many years may be an indispensable preliminary. My thesis in this prologue and
in the essay is that we have, nevertheless, enough tactical understanding to attack
the other five problems successfully on a broad front now. Immediate victory is
unlikely, but steady advances are not.

2. The local theory over the real field

For reasons connected with the Ramanujan conjecture and its generalizations and
with the theory of Eisenstein series, the tempered irreducible representations of
G(Fv), Fv a local field, in particular, Fv = R, are not adequate for the modern
theory of automorphic forms. There is a larger class of irreducible representations
needed that we have already introduced as the Arthur class. The simplest such
representation is the trivial one-dimensional representation, which is present for
every G and an important factor in the global analytic theory. We have also observed
that the local group AR for tempered representations is known to be the Weil group
WC/R, of which we then admit only representations with relatively compact image.
The local group for Arthur classes over R, at least for the analogues of tempered
representations in the context of Arthur classes, is the group SL(2,C)×WC/R, or,
perhaps better SU(2)×WC/R, but they give equivalent results, and it is better to
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use the first, for which the Jacobson–Morozov theorem is more easily stated. It is
also more concise, if less precise, to use the notation WR rather than WC/R for the
Weil group of R.

When attempting to formulate the missing spectral theory for the Arthur packets,
we will need to be aware of the need when applying the trace formula for a stable
transfer of L-packets. Some very simple cases of this transfer were examined in
[ST], but no general theory is available even over R. It is closely related to the stable
character for Arthur packets for a (quasisplit) group G that Arthur introduced with
the packets in [A1] and their transfers from one group to another are presumably
functorial with respect to homomorphisms from L H to L G. There is, by the way,
no need to introduce any kind of unitary constraint on these homomorphisms: if
the image of ϕ is relatively compact, then so is the image of ψ ◦ϕ.

Our focus at the moment is the theory for the real field, which implicitly in-
cludes the theory for the complex field. Harish-Chandra’s theory for tempered
representations, which is the special case of

(2.1) ϕ = σ ×ψ : SL(2,C)×WR→
L G, WR =WC/R,

for which σ is trivial, will be in so far as possible the model. It will certainly be
used. It is a spectral theory, thus an analytic theory, but it differs from the usual
spectral theory. The space of functions to be decomposed is L2(G(R)), but, as
on the line, it is really a more subtle space that is to be decomposed, a Schwartz
space. The eigenfunctions or eigendistributions to be employed are invariant under
conjugation, thus characters, which are tempered distributions on the Schwartz
space. So there is a passage in the theory, not present in, for example, Fourier
analysis on the line. From functions on the group, through orbital integrals, to
functions on the semisimple conjugacy classes, which for a reductive group is
itself a space easily enough described in terms of Cartan subgroups. There is
also a passage backwards from distributions on the center to conjugation-invariant
distributions on the group and then, by integration on parameters and convolution
with functions on the maximal compact subgroup, to functions in the Schwartz
space. This means, incidentally, that at this stage it is best not to work with stable
packets but with the appropriate classes of irreducible representations, referred to
by Harish-Chandra as tempered, those whose matrix-coefficients lie in the Schwartz
space. All characters satisfy differential equations, differential equations whose
solutions can be concretely described in terms of exponential functions, growth
conditions, and jump conditions. Harish-Chandra recognized this. He recognized
also, after many years of reflection, that this was all he needed to construct a
complete spectral theory for tempered characters. For a more detailed description
of Harish-Chandra’s representation theory for real groups, I refer to Varadarajan’s
introduction to his collected works [HC].
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In the homomorphism (2.1) σ has a different character thanψ . Only its conjugacy
class under interior automorphisms of Ĝ is pertinent and these are finite in number
and correspond to conjugacy classes of unipotent elements in Ĝ or nilpotent elements
in its Lie algebra ĝ. It is usual to study the homomorphisms with a fixed σ and the
associated class of representations 5σ (G) as a unit, it being understand that the
image of ψ is relatively compact. For example, if σ is trivial, we are dealing with
the class of tempered representations. To a pair consisting of a homomorphism

φ = σ ×ψ : SL(2,C)× L H → L G

and a homomorphism

ϕH = σH ×ψH : SL(2,C)×WC/R→
L H,

in which ψ has relatively compact image, we can associate

ϕG = σG ×ψG : SL(2,C)→ L G,

in which σG is the composite of σG × σH ◦ φH with the diagonal imbedding
SL(2,C)→ SL(2,C)×SL(2,C) and ψG = ψ ◦ψH .

If we had the theory of stable characters for each Arthur class envisaged in [A1],
then we would have the mapping that assigns to the stable character of π st

ϕH
on H(R)

the stable character of π st
ϕG

on G(R). A grave question, or rather a question central
for the trace formula, arises! Is there, for a given φ a dual mapping — or, better,
correspondence because it will not be single-valued — from smooth functions f G

with compact support on G(R) to smooth functions f H with compact support on
H , thus f G

→ f H , such that∫
H(R)

f H (h)π st
ϕH
(h) dh =

∫
G(R)

f G(g)π st
ϕG
(g) dg,

for all ψ? This question was broached for a very special case in [ST]. It would be
premature to attempt to discuss it further here. It is necessary to understand the
transfer of stable characters. For this, the first step is to ask what must be done to
establish the existence of π st

ϕH
.

The stable character will be an eigendistribution, and thus, by an important
theorem, an eigenfunction of the center of the universal enveloping algebra with
eigenvalues that are given because the definition of Arthur prescribes one represen-
tation in it — or rather one stable packet in the sense of the Langlands classification
of all irreducible representations, namely, the packet π st associated, as in [A1], to
the homomorphism

(2.2) φw = σG

((
|w|1/2 0

0 |w|−1/2

))
·ψG(w)
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of WR into L G. The infinitesimal character of a representation with Langlands
parameter given can be readily calculated from the parameter. So we know the
infinitesimal character corresponding to π st and thus that corresponding to the
associated — conjecturally — Arthur packet. We can safely assume that all repre-
sentations in it have the same infinitesimal character, for otherwise we will have
no theory. We can study the papers of Harish-Chandra to learn how to calculate
all possible eigenfunctions χ associated to this infinitesimal character. On each
connected component of the regular elements in each Cartan subgroup T they have
the form

(2.3) χ(t)=

∑
w∈�

aw exp(wλX)

|1(t)|
,

where � is the Weyl group, X lies in the Lie algebra of t of T , t = exp X , λ is a
complex linear form on t and the aw are complex constants. The function |1(t)| is
defined as usual by a product of differences of roots. There are constraints attached
to χ by the parameter ϕG , constraints studied carefully by Harish-Chandra when σG

is trivial, thus when the packet is tempered. The constraints, basically on the growth
of the function (2.3) and on the propagation of the constants across the subvarieties
of singular elements, can be studied as for the tempered characters, although there
will be complications that I am in no position to anticipate. They will have to be
determined by experience and by the study of some low-dimensional cases.

The existence of the transfer f G
→ f H and its properties is not the only local

problem raised in [ST] in connection with the combined use of the trace formula
for G and Poisson summation formula on the Steinberg–Hitchin base. It was also
necessary to understand the singularities of θG . Both questions are related to the
asymptotic behavior of orbital integrals and stable orbital integrals Orb(γst, f G).
I have not tried to reflect on them in any serious way.

3. The local theory over nonarchimedean fields

The problems are the same as for the real field; the difficulties are different. I —
and, I suspect, many other people — find ourselves here face-to-face with our own
ignorance, not just in one domain, but in several. Over both fields we are dealing
with problems for characters. Over the real numbers, characters are solutions of a
system of holonomic differential equations. Such systems are intimately related
to perverse sheaves. In particular, for the complex numbers, the relation between
functions and perverse sheaves is mediated by differential equations and belongs
to a system of reference familiar to all mathematicians. For representation theory,
the real field is more important, but we can overlook that for the sake of the
analogy. Over nonarchimedean fields, characters are functions, but there is, as
yet, no convenient characterization of them. We have to appeal to the original
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definition of Dedekind–Frobenius. There are perverse sheaves over these fields
and, apparently, perverse sheaves on varieties over finite fields yield functions
through the trace of Frobenius — or of the inverse Frobenius. So, if we are willing
to overlook the difference between p-adic fields and finite fields, we have parallel
constructions for the real field and for nonarchimedean fields

perverse sheaves

perverse sheaves

−→

−→

differential equations and functions

trace of Frobenius and functions

−→

−→

characters

characters

The trick will be to discover how the perverse sheaves on the second line are to be
defined and how they are to be calculated

In the theory of Harish-Chandra ([HC]), whether over an archimedean or over a
nonarchimedean field, at least one of characteristic zero, the characters are distribu-
tions on G(F) given by functions, or, more precisely, by the product of invariant,
but singular, functions with the Haar measure. Over the real or complex field, these
singular functions, as distributions, satisfy differential equations, which are — in
some sense — holonomic. Since the distributions are invariant, the functions can
be considered as functions on the (regular, semisimple) conjugacy classes, and the
problem faced and solved by Harish-Chandra was to translate the differential equa-
tions satisfied by the characters into jump-conditions for these singular functions.
For nonarchimedean fields, there will presumably be similar problems, but I am
still uncertain of their nature and certainly in no position to attempt to solve them.

I content myself with a few remarks, influenced, but in no very precise way, by
[Wa]. I have no grounds for taking them very seriously, nor do I have any genuine
understanding of the necessary algebraic geometry. My goal is to complete the
Harish-Chandra theory by finding a handle on the explicit forms of the characters
over nonarchimedean fields for tempered representations and, more generally, for
characters of representations in the Arthur class; my immediate question is whether,
with this precise goal in mind, it is worthwhile to learn the theory of perverse `-adic
sheaves. We shall need sheaves on the Cartan subgroups of G and the functions
are to be obtained by the traces of the Frobenius on the `-adic cohomology of the
fibers.

We also need to convert varieties over a nonarchimedean local field Fv of char-
acteristic 0, or rather schemes over Ov with residue field κv. Let q be the number
of elements in κv. A preliminary study of [Ha] suggests that Witt vectors are the
appropriate instrument for this. The elements of Ov or, more generally, of the
analogous ring Ōv in the maximal unramified extension F̄v of Fv, can be written
as series (x0, x1, . . . ) with coefficients in κv or κ̄v. This applies to the equations
defining any scheme being considered. If the scheme A lies in an n-dimensional
space (X1, . . . , Xm), and if we truncate the coefficients of the equations and of
the variables after the mth variable, we obtain equations in (m+ 1)n variables and
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schemes Am , m= 0, 1, 2, . . . . There is a morphism Am+1→ Am , m= 0, 1, . . . . We
might guess that for large m this will usually be smooth with fiber the n-dimensional
affine space.

If there is a perverse `-adic sheaf on the scheme being considered, we can think
of restricting it to Am+1 and to the fibers of the morphism. If this restriction is a
constant sheaf, just the pull-back of the restriction to the base point of the fiber,
then the restriction has cohomology with compact support only in dimension 0. So
the summation over the points in the fiber of the trace of the Frobenius is qn . There
is, however, something to remember. Although the character is a function, it always
appears multiplied by a measure, either the Haar measure on the group or, if we
pass to an integral not against a function f on G(F), but against the orbital integral
of F a measure on the Steinberg–Hitchin base or on a Cartan subgroup. The two are
locally equivalent. A is either this base or the Cartan subgroup — give or take some
singular subvarieties. The measure of a point on Am+1 is, up to a constant, 1/qn

times the measure of its image, so that the factors qn and 1/qn cancel each other.
When passing to the Steinberg–Hitchin base, we multiply the character by |1(t)|
and the measure is the measure on the Cartan subgroup, for which conventions
have been established in [FLN]. The remaining factor in the measure is implicit in
the orbital integrals.

I am tempted to think that the road to follow is already blazed in the literature. The
theory over R, with the Borel–Weil–Bott theorem, the homological realization of
the discrete series verified by W. Schmid, Harish-Chandra’s analytic construction of
tempered representations from the discrete series, and the proof by Deligne–Lusztig
of a conjecture of Macdonald, all point in the same direction: first introduce the
characters of tori in a form adapted to the use of perverse sheaves, then combine it
with some twisted form of parabolic induction — which can be formulated I suppose,
in the context of perverse sheaves. This is not a matter of an effort lasting a few
days or a few weeks, but unless the basic idea of using truncated Witt vectors is
misguided, a careful study of the works mentioned should allow some progress.

I confess that I have never attempted, even in a modest experimental way, to
examine the possibilities or to understand the initial difficulties when attempting to
transpose the constructions in [DL] to a nonarchimedean context using truncated
Witt vectors. To begin would be easy enough, as the only difficulty is to find the
time, but the possible virtues of these secondary constructions was not apparent to
me until I began to write this prologue and the essay on functoriality and reciprocity
to follow, both a continuation of the reflections begun in [FLN; BE; ST]. In the
following section, I simply take the existence of the necessary local theory as
established. A good deal of it, not necessarily in the most suggestive form, is
certainly available for G = SL(2) for which the global analytic and arithmetic
problems are already daunting and well worth investigating.
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4. The global theory for algebraic number fields

There are two aspects to the continuing reflections on the methods suggested in [BE]:
the formal or structural aspects and the analytic aspects. The latter are extremely
difficult. Ali Altuğ has been reflecting on them and I leave it to him to present, when
it is appropriate, his conclusions. I concentrate on the former. The principal goal,
indeed the overriding goal, is to establish functoriality and its consequences with
the help of the trace formula and Poisson summation. The objects studied are the
automorphic L-functions L(s, π, ρ) associated to an automorphic representation
π or, better, a stable class of automorphic representations π st that contains π . It
is their analytic properties that need to be studied, especially near s = 1 or in the
half-plane Re s > 1.

There are two possibilities: examine L(s, π, ρ) itself or examine its logarith-
mic derivative. Although the logarithmic derivative contains in clearer form the
pertinent information, the function L(s, π, ρ) is the more accessible. So there
is a difficult passage, as with the prime number theorem, from its study to that
of −L ′(s, π, ρ)/L(s, π, ρ). This I leave, at least for the moment, to others and
concentrate on the properties of −L ′(s, π, ρ)/L(s, π, ρ) that one hopes can be
established and that lead to functoriality.

We anticipate a complete form of endoscopy, which is certainly available in
some simple and instructive cases. With an appropriate choice of test functions, the
stable trace formula leads to sums

(4.1)
∑
π st

mπ st

{∏
v∈S

trπ st
v ( fv)

{∑
v /∈S

ln Lv(s, πv, ρ)
}}
.

Here S is an arbitrary finite collection of places, containing the infinite places, Each
fv is a smooth function with compact support, taken otherwise arbitrary, and ρ is
an algebraic representation of L G. There are loose ends, some terms missing, and
some imprecision in the formula (4.1), but none of this is a serious issue for us here.
The sum itself is over stable classes of representations unramified outside of S. So
it is likely that only H that are unramified outside of S are pertinent.

The first serious issue is related to the generalized form of Ramanujan’s con-
jecture and Arthur L-packets. The global L-packets are expected to be related to
homomorphisms

(4.2) φ = σ ×ψ : SL(2,C)× λH → L G,

where, for the present purposes, we can quite comfortably write SL(2,C)× L H , the
necessity of modifying the L-groups L H slightly to λH for technical homological
reasons being one of the minor nuisances that plague the subject. Our principal
purpose is to establish that the stable classes of automorphic representations can
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be written as a sum over the functorial transfers associated to (4.2) of the stable
tempered automorphic representations of H(AF ). There will be ambiguities to be
clarified.

One stable class πG for G may be the image of several πH . This is why we
appeal in the essay to the notion of a hadronic or thick class introduced in [LSP].
We use only the transfers associated to classes that are hadronic. It is then to be
expected that each class π st

G is associated to a unique pair SL(2,C)× L H , although
we will have to allow different ψ , for the reasons that can be inferred from [LP],
and perhaps even different σ , although this is unlikely.

In the discussion of local packets and local transfers, we made it clear that the
transfers associated to (4.2) are of tempered representations of H to representations
of G that are tempered if and only if σ is trivial. The σ -factor is otherwise a measure
of the extent to which the local images πG,v are not tempered. This is measured by
the eigenvalues of

ρ

(
σ

((
q1/2 0

0 q−1/2

)))

in the various representations ρ of L G. We want to sort the representations appearing
in (4.1) according to type. This means we take the sum over pairs SL(2,C)× L H
and over conjugacy classes of φ but only include for a given such pair — if we
include φ, such triple — hadronic πH . Such a sum introduces multiplicities. It is
natural to assume, and the evidence, such as it is, supports the assumption, that
they are accommodated by the multiplicity with which various representations of
G(AF ) occur in the space of automorphic forms.

So (4.1) should be equal to a sum, implicitly over triples (φ,SL(2,C)× L H),

(4.3)
∑{∑temp

H

{∏
v∈S

trπ st
v

(
f H
v

){∑
v /∈S

ln Lv(s, πv, ρ)
}}}

It is understood that at each place f H
v is the transfer in the sense of the previous

sections of f G . I have left out any reference to multiplicities on the assumption,
made largely for the purposes of simplicity, that the multiplicities are largely caused
by multiple homomorphisms φ. Any necessary corrections can be made when
proofs have been found. What is important at the moment is to be clear about the
structure proposed for the proof. For (4.1) there is a formula, the trace formula.
In (4.3), the outer sum is over triples, the first inner sum,

∑temp
H is over the stable

tempered automorphic representations of H(AF ). We can assume by induction that
for each triple, except the triple with H = G, thus with φ trivial on SL(2) and the
identity on G itself, we have a formula for the inner sum

∑temp
H . This would yield
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a formula for the remaining term of the inner sum,

(4.4)
∑temp

G

{∏
v∈S

trπ st
v

(
f G
v

){∑
v /∈S

ln Lv(s, πv, ρ)
}}
,

except that we would not know that the only automorphic representations that are
not the image of a hadronic tempered automorphic representation with respect to
some ψ with H 6= G are themselves hadronic and tempered. However, in the terms
of the sum (4.4) the first factor

∏
v∈S trπ st

v ( f G
v ) is essentially arbitrary and serves

to distinguish one π from another. So an understanding of (4.3) is essentially an
understanding of the logarithmic derivative

(4.5) d
ds

ln Lv(s, πv, ρ)=
L ′v(s, πv, ρ)
Lv(s, πv, ρ)

.

The analytic problem is to show, with the aid of the formula for (4.4) just described,
that it is holomorphic to the right of Re s = 1 for every ρ. This implies not only that
the representation is tempered but that it is hadronic. This problem is central, very
serious, and, in my view, it will be a matter of decades before it is solved in any
generality. The method suggested in [FLN; ST] was to use the Poisson summation
formula on the Steinberg–Hitchin base, but the hard questions were not broached.

Although it is premature to make too much of a fuss of the notion of hadronic
representation, one observation is in order. If π st

G is the image of π st
H under the

functorial transfer associated to φ in (4.2). Then

(4.6) L(s, φst
G, ρ)= L(s, φst

H , ρ ◦ψ).

The representation ρ◦φ of SL(2,C)×L H decomposes into a direct sum
⊕

n τn⊗ρn ,
where τn is the irreducible representation of SL(2,C) of degree n, which can be
any positive integer. The L-function (4.6) is then given by

∞∏
n=1

n∏
j=0

L(s− 2 j + n, π st
H , ρn).

Each representation ρn is a direct sum of irreducible representations
⊕mn

i=1 ρn,i .
To show that (4.4) is holomorphic for Re s > 1 for every choice of S and every
choice of the functions fv, v ∈ S is to show that dim ρn = 0 for n > 0 and that for
all ρ none of the representations ρ0,i is trivial. It may be appropriate to remind
ourselves at this point that the L-groups that appear are defined with respect to any
extension K/F , which can be arbitrarily large. Since H itself may be the group
{1}, we will be dealing, in particular, with those representations that are attached to
homomorphisms of the Galois group into L G.

The solution of these analytic problems, even for very specific low-dimensional
questions, for example, the existence of automorphic representations associated to
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quaternionic representations, can entail at least partial answers to the arithmetic
questions raised in §2 and §3 and to their global forms. I, myself, find that these
questions and their answers add considerably to the appeal of the algebraic theory
of numbers [D; JY]. The Dedekind paper [D], which we shall review in the next
section, is particularly charming. The arithmetic problems to be confronted and
solved in the course of establishing global functoriality are nevertheless every bit
as formidable, if not more so, than the analytic problems.

5. Classical algebraic number theory

There are two very different aspects of the construction of global functoriality
proposed in the previous section: analytic and arithmetic. The analysis does not
end with the introduction of the Steinberg–Hitchin base and the use of the Poisson
summation formula; as in [FLN; ST], considerably more is needed. I hope that
this will be explained in Altuğ’s forthcoming thesis. As just intimated, there will
also be arithmetic problems. In §4 it was explained that we expect, for a given G
and each representation ρ of its L-group, thanks in part to the trace formula and
Poisson summation, to be able to express the sum of the logarithmic derivatives
of the L-functions L(s, π, ρ) as a sum over imbeddings φ : SL(2,C)× L H→ L G,
and in particular, with this in hand, to examine the asymptotic behavior of this
sum as s → 1. This will be complicated, because, for example, the L-groups
L H = Ĥ o Gal(K/F) and φ can reduce to an imbedding of a Galois group in
L G. As a result the proposed analysis entails an understanding of such imbeddings.
For abelian class field theory, this becomes an understanding of, say, the cyclic
extensions of a given degree of the base field F . For the group GL(2) or P GL(2),
it becomes an understanding of the imbeddings of Galois groups in GL(2) or SL(2).
If ρ is the fourth symmetric power of the defining representation of SL(2), the most
interesting possibility is that Gal(K/F) is imbedded as the quaternion group. Such
extensions were studied, as observed in the previous section, not so long ago by
Jensen and Yui, to whose paper my attention was drawn by Anthony Pulido. They
were influenced by an earlier paper of Reichardt ([Re], see also [Ri]). There is
a much earlier, more concrete paper by Dedekind ([D]), that it is worthwhile to
review briefly, because, or so it seems to me, algebraic number theory in the, often
concrete, style of Dedekind was abandoned after the Second World War, with the
mounting enthusiasm in the USA and elsewhere for the more formal, more abstract
styles of Artin and Chevalley. It may be that a successful attack in the spirit of §4
will demand a return to Dedekind.

The focus in Dedekind’s paper is on quaternion extensions of F =Q. Following
his notation, let the quaternion group be formed by 1, a central element ε, ε2

= 1,
and elements α, β, γ , εα, εβ, εγ , α2

= β2
= γ 2

= ε, αβ = γ = εβα. Any such
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extension contains a biquadratic extension, the fixed field H of ε. This is a field
of the form Q(

√
a,
√

b,
√

c), c = ab. Dedekind takes a = 2, b = 3, which pretty
much leads to the minimal ramification of the field, which, as it turns out, has to be
real. This is very convenient in connection with the trace formula. The field H is
the only biquadratic field unramified outside of {2, 3} and, using spherical functions
outside of {2, 3}, in particular at the infinite place, we exclude all representations π
with ramification outside this set. So our comparison will be very focussed. The
field � whose Galois group is the quaternion group will be of the form �= H(ω),
ω2
= µ ∈ H and the problem is to determine those ω that lead to an � also

unramified outside of {2, 3}. A helpful feature that simplifies the constructions, but
that is not present in general, is that the class number of H is one. We shall verify
this later.

We begin with some other considerations, more generally valid. After some
hesitation, I chose to follow Dedekind’s convention of writing the action of the
Galois group on the right. This is, otherwise, inconsistent with the notation of
the paper, but without it the comparison with Dedekind’s paper is awkward. The
elementsωα,ωβ, ωγ all lie in� and their squares all lie in H . Since they themselves
do not lie in H , they all lie in Hω. As a result, we obtain,

(5.1) ωα = uω, ωβ = vω, ωγ = wω, u, v, w ∈ H.

Moreover, ωε = −ω. Applying α to the first of the equations (5.1), we obtain
−ω = ωε = uαuω or, as Dedekind writes, uα = −u−1. There is a collection of
similar equations, verified in the same way, that Dedekind writes as

(5.2)

uα =−u−1,

vα =−wu−1,

wα = vu−1,

µα = µu2,

uβ = wv−1,

vβ =−v−1,

wβ =−uv−1,

µβ = µv2,

uγ =−vw−1,

vγ = uw−1,

wγ =−w−1,

µγ = µw2.

If µ is replaced by µν2, the extension does not change and u, v, w can be replaced
by uνα/ν, vνβ/ν, wνγ/ν. This allows simplifications. For example, Dedekind
observes that if the class number of H is one, then we can assume that µ is integral
and not divisible by the square of any prime ideal. This is then also true of its
conjugates µα, µβ, and µγ , so that, thanks to the last line in (5.2), u, v, w must
all be units. As a consequence, if µ is divisible by any prime ideal π , it is divisible
by all the conjugates of that ideal. If, therefore, p is the prime number in Q that
π divides and if p does not divide the discriminant, then p divides µ. Dedekind
concludes that µ must be the product of a natural number m, a unit, and perhaps
powers of the generators of the prime divisors of the discriminant. The pertinent
information for our particular H is (i) its discriminant is 482

= 2832; (ii) the ideal
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(3) = (
√

3)2 and
√

3 is a prime in H ; (iii) the ideal (2) is the fourth power of
the ideal (1+ η), η = (1+

√
3)/
√

2, with η2
= 2+

√
3, η−2

= 2−
√

3; (iv) the
fundamental units in H are a = 1+

√
2, η, τ =

√
2+
√

3, with inverses,
√

2− 1,
(
√

3− 1)/
√

2,
√

3−
√

2. The possibilities for µ are therefore

(5.3) µ=±mae1ηe2τ e3(1+ η)e4(
√

3)e5,

in which each ei , i = 1, . . . , 5, is 0 or 1 and m is a natural number prime to 6
and a product of primes. Not all possible values of the exponents are admissible.
Examining (5.3) on the basis of (i)–(iv), Dedekind arrives at the conclusion that
e1 = e2 = 1, e3 = e4 = 0, e5 = 1. As a consequence

(5.4) µ=±maη
√

3.

I repeat his calculations. It is necessary to calculate µα/µ, µβ/µ, µγ/µ and
to demand that they all be squares. For this, following Dedekind, we compute the
Galois action on each factor of (5.3). We repeat that

(
√

2,
√

3,
√

6, ω)α = (
√

2,−
√

3,−
√

6, uω),

(
√

2,
√

3,
√

6, ω)β = (−
√

2,
√

3,−
√

6, vω), ωε =−ω, µε = µ,

(
√

2,
√

3,
√

6, ω)γ = (−
√

2,−
√

3,
√

6, wω).

The Galois action on the units is given by

(5.5)
aα = a,
ηα =−η−1,

τα =−τ−1,

aβ =−a−1,

ηβ =−η,

τβ = τ−1,

aγ =−a−1,

ηγ = η−1,

τγ =−τ.

The first line follows from (1+
√

2)(1−
√

2)=−1. The action of the Galois group
takes η to ±(1±

√
3)/
√

2 and

1+
√

3
√

2
·

1−
√

3
√

2
=−1,

thus η to ±η±1. This is the second line. Since (
√

3+
√

2)(
√

3−
√

2) = 1, the
Galois group also takes τ to ±τ±1. This is the third line.

The action of the Galois group on
√

3 is given by (
√

3)α =−
√

3; (
√

3)β =
√

3;
(
√

3)γ = −
√

3. The second line yields immediately a first form for the Galois
action on the supplementary prime 1+ η that divides 2,

(5.6) (1+ η)α =−η−1(1− η), (1+ η)β = (1− η), (1+ η)γ = η−1(1+ η).
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Each of these numbers are units. It only remains to express them as products of
powers of the fundamental units times 1+ η.

1− η
1+ η

=

√
2− 1−

√
3

√
2+ 1+

√
3
=
(
√

2− 1−
√

3)2

2− (1+
√

3)2
=−

2− 2
√

2(1+
√

3)+ (1+
√

3)2

2+ 2
√

3
.

Multiplying numerator and denominator by 1−
√

3, we obtain

−
2(1−

√
3)− 2

√
2(1− 3)− 2(1+

√
3)

2(1− 3)
=−(
√

2−
√

3)=−τ−1.

Thus the three numbers (5.6) are 1+ η times, respectively,

η−1τ−1, −τ−1, η−1.

From these relations, we conclude with Dedekind that

µα =±mae1(−η)−e2−e4(−τ)−e3−e4(1+ η)e4(−
√

3)e5,

the sign being the same as in (5.3), and that

(5.7) u2
=
µα

µ
= (−1)e2+e3+2e4+e5η−2e2−e4τ−2e3−e4 .

For this to be a square it is necessary and sufficient that e4 be 0 and e2+ e3+ e5 ≡

0 (mod 2). Further conditions are given by µβ/µ. Since

µβ =±m(−a)−e1(−η)e2(τ )−e3−e4(1+ η)e4

and e4 = 0, the quotient v2
= µβ/µ is

(5.8) (−1)e1+e2a−2e1τ−2e3 .

For this to be a square e1+ e2 ≡ 0 (mod 2). Thus e1 = e2.
The first two of the equations in the last line of (5.2) imply the third. They imply

as well that � is a quadratic extension of H , Galois over Q. They do not imply that
� is a quaternion extension of Q. For that we need the earlier lines, which assure
us that this is so. Dedekind uses the first two of the three diagonal equations, which
must imply all nine equations because the first completely defines the action of α
on � and the second that of β. Consider the first diagonal equation. The number u
is the square root of (5.7). The information at our disposition yields

u = (±)′η−e1τ−e3,

where, following Dedekind, we have explicitly indicated with a prime that the sign
appearing here is not the sign in (5.3). The first diagonal equation yields

uα = (±)′(−η−1)−e1(−τ−1)−e3 = (±)′(−1)e1+ e3η
e1τ e3

=−u−1
=−(±)′ηe1τ e3,
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from which we conclude that e1+ e3 ≡ 1 (mod 2). This implies that e5 = 1 and
that (e1, e3) is either (1, 0) or (0, 1). Dedekind settles the matter with the second
diagonal equation.

The element v is the square root of (5.8), v = (±)′′a−e1τ−e3 and, thanks to (5.5),

vβ = (±)′′(−a)e1τ e3 = (±)′′(−1)e1ae1τ e3

=−v−1
=−(±)′′ae1τ e3 .

We infer that e1 = 1, and therefore that e3 = 0, arriving finally at Dedekind’s
conclusion (5.4).

Dedekind does not offer any hints for the verification that the class number is one.
So we apply the standard theorems. Since there are a number of other points about
the field H to be verified, we postpone this until the end of the section and explain
first the pertinence of the quaternionic fields to the study of the trace formula and
its applications.

There are two tests that may be undertaken to persuade oneself of the validity of
the strategy proposed in §4 and of Altuğ’s analytic development of the necessary
analysis. He, himself, has begun to reflect on them. The two tests are: the application
to dihedral automorphic representations and the possible application to quaternionic
representations. The interest is less in the results and more in the conviction to be
obtained that the methods proposed, although difficult, are sound. As explained
in §4, the method, as so often with L-functions, is focussed on the behavior of
−d L(s, π, ρ)/ds as s↘ 1, or, rather, assuming for simplicity that F =Q, on that
of

(5.9)
∑
π

{
trπ( f ρ

∞
)+

∑
p

∞∑
n=1

n ln p
pns trπv( f n

v )

}
,

where outside of a finite set S of places v, the functions f n
v are chosen to be spherical

functions such that
trπn

v = ρ(A
n(πv)),

where A(πv) is the Frobenius–Hecke class attached to πv . The representation ρ is a
representation of L G. The development of the stable trace formula described in §4
allows for the removal of all nontempered π from (5.9), thus of all stable π whose
parameter contains a nontrivial SL(2) component. It is understood that these have
been removed, so that the remaining sum has no singularities to the right of Re s= 1.
It will be part of the analysis to show this! It is moreover expected, and will have
to be shown, that only those π associated to a homomorphism φ : λH → L G
whose image is a proper subgroup of L G will contribute to the pole at s = 1. The
representations of G(AF ), thus of H(AF ), are to be understood inductively. For
the two tests, we take G = P GL(2) or, but that would be slightly more elaborate,
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GL(2). The L-groups are SL(2) or GL(2) or, better because we must consider all
possible H , SL(2)×Gal(K/Q) or GL(2)×Gal(K/Q). We consider only the first.

If π = πG is the image of πH , then the contribution of π to the sum (5.9) is
1/(s−1) times the multiplicity of the trivial representation of λH in ρ ◦φ. To avoid
redundancy, we always suppose πH is hadronic. In particular, if ρ is irreducible and
nontrivial, as we may as well suppose, there is no contribution from any hadronic πG .
For P GL(2) or GL(2), say GL(2) because this allows a simpler notation, this means
any one of the following three possibilities. First λH = L H , H = GL(1)×GL(1).
For the second there is a quadratic extension E of Q, H is the two-dimensional
torus obtained from GL(1) by restriction of scalars from E to Q, λH = L H , and

(5.10)
φ : (a, b)o 1 7→

(
a 0
0 b

)
, a, b ∈ C, 1 ∈ Gal(E/Q),

φ : (1, 1)o σ 7→
(

0 1
1 0

)
,

where Gal(E/Q)= {1, σ }. The representation πH is attached to a homomorphism
ϕ of the global Weil group

{1} → E×\IE →WE/F → Gal(E/F)→ {1}

into L H and this homomorphism is defined by a character χ of E×\IE . If w is a
fixed element in WE/F , w /∈ IE , then

(5.11) ϕ :

{
α ∈ IE 7→ (χ(α), χ(σα))o 1,

w 7→ (χ(w2), 1)o σ.

The third possibility is that H={1}. There is overlapping of all three cases.
The first case leads to noncuspidal representations and is thus understood. The

third case is most interesting when we take λH to be a Galois group, especially
when this group is tetrahedral, octahedral or icosahedral. We have not reached the
stage where they can be treated by the methods under discussion. The overlapping
occurs when the Galois group is a finite dihedral group and, in particular, when it
is a quaternion group.

Consider first the case (ii) and let ρ be the 2n-th symmetric power of the defining
representation of GL(2). Then the L-function L(s, πG, ρ)= L(s, πH , ρ ◦φ) will
be the product of the L-function of Q associated to the character χ |IQ and the
L-functions of the field E associated to the characters χ2, . . . , χn . The first of
these functions has a pole of order 1 at s = 1 if and only if χ |IQ is trivial. So for
any natural number n, these functions will contribute a pole at s = 1 to the sum
(4.3), in particular for n= 1. For the results achieved by the method of §4 for n= 1,
it will be best to refer to Altuğ’s thesis. Since they concern functoriality only for
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the group GL(2) and a torus H , a case that can be treated in the context of the
Hecke theory, they may not convince the sceptical, however interesting they may
be for those whose concern is with functoriality and its consequences in general. It
is only for exceptional n and very exceptional H and φ that further poles appear.

One possibility is that H is associated to a quadratic extension, χ is exactly of
order 4, χ(α) is not identically equal to χ(σα), and χ(w2)=−1. Of course, πH is
then not hadronic, but πG is also associated to another group H , the group H = {1},
and extensions K/Q with Gal(K/Q) isomorphic to the image of the original L H
under φ ◦ϕ. This image is a group of order 8, isomorphic to the group{(

a 0
0 ā

)}
∪

{(
0 a
−ā 0

)}
, a4

= 1.

This is the quaternion group imbedded in SL(2). In addition to the irreducible
representation this yields, the group has four one-dimensional representations, the
trivial representation and the three nontrivial characters of the group divided by its
center, which is, of course, ±I . The even symmetric powers of the two-dimensional
representation are clearly the direct sums of characters. Since the quaternion
group has a group of outer automorphisms of order three, α → β → γ → α,
all three nontrivial characters appear with the same multiplicity µ and the trivial
representation then appears with multiplicity ν = 2n+ 1− 3µ. For n = 1, µ= 1,
ν = 0; for n = 2, µ= 1, ν = 2. This means that if ρ is the fourth symmetric power
and πG is the image of the trivial representation of πH , then L(s, πG, ρ) has a pole
of order two at s = 1. This will not be so for hadronic πG , nor for other dihedral
πG , nor for tetrahedral, octahedral, or icosahedral πG . For these, as observed in
[BE], the exceptional poles at s = 1 begin only with higher values of n.

Thus the method of §4, if it is to work at all, must detect the quaternionic
representations — and only the quaternionic representations — by the extra pole for
n = 4. Although this leads to no new number-theoretical conclusions, it would be
a very important indication of the promise of the method. It would also be a sign
that the investigations of Dedekind or Jensen–Yui and the other authors have to be
pursued, perhaps along the lines suggested in [ST], perhaps in other ways.

When applying the method, we usually fix a bound for the ramification of the
representations π that we wish to consider. This is done by choosing f =

∏
v fv to

be a spherical function outside of a finite set S of places and then choosing the fv ,
v ∈ S, with appropriate restrictions. Their precise description is limited by one’s
understanding of the local harmonic analysis and arithmetic. In the present case, we
might want to take m = 1 in (5.4), which restricts the ramification to 2 and 3, where
it can be the minimum that permits the quaternion group to appear. Ramification for
nonabelian representations of the Galois group and for representations of a general
reductive group over a local field demands, of course, a more sophisticated, more
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technical examination, than necessary for abelian Galois representations or for the
group GL(1).

To complete our report on Dedekind’s paper, we have still to deal with some
details of the structure of H , which can be obtained in two steps: (i) by the adjunction
of
√

3 to obtain H1=Q(
√

3); (ii) by the subsequent adjunction of
√

2, H =H1(
√

2).
Unfortunately, I am not so familiar with such calculations as Dedekind.

The discriminant of H1/Q is 223 and the ideal
√

3 is clearly unramified in H2

where it does not split. So, by the usual formulas for the differents and discriminants
of fields obtained by repeated extensions, the contribution of 3 to the discriminant
of H/Q is 32. The two numbers a and τ are clearly integral. Moreover η2

= 2+
√

3,
so that η is also integral. It follows from (5.5) that all three of these numbers are
units and from (5.6) that

NH/Q(1+ η)=−η−2(1− η2)2 =−
(1+
√

3)2

2+
√

3
=−2

is a unit times the fourth power of 1+ η.
The only other prime dividing the discriminant is 2. Let Z2 be the 2-adic integers.

Since the powers (1+ η) j , j = 0, 1, 2, 3 form an integral basis over Z2 of H ⊗Z2,
we can calculate the power of 2 in the discriminant as

∏
i 6= j (ηi − η j ), where ηi ,

i = 1, 2, 3, 4 are the conjugates of η, namely η,−η, η−1,−η−1. The result is
±(η2

− η−2)4 and

16(η2
− η−2)4 = ((2+

√
3)− (2−

√
3)4 = 162

· 32
= 28
· 32.

This gives the correct result not only for 2 but also for 3. As a consequence,
{1, 1+ η, (1+ η)2, (1+ η)3} or {1, η, η2, η3

} is an integral basis for the ring of
integers in H .

Dedekind observes — discretely and without comment — that η2
= 2+

√
3 and

τ 2
= 5+ 2

√
6. This is very useful information. The three quadratic subfields of

H are E1 = Q(
√

2), E2 = Q(
√

3), E3 = Q(
√

6). For the units in E1, the two
basic hyperbolas are x2

− 2y2
= ±1. The units of positive norm are contained

in x2
− 2y2

= 1 and generated, up to sign, by 3± 2
√

2, themselves the square of
1±
√

2. So a is a fundamental unit of E1. For E2, the corresponding hyperbolas
are x2

− 3y2
= ±1. The units of positive norm are generated, again up to sign,

by 2±
√

3 = η2. There are none with negative norm. For E3 the hyperbolas are
x2
− 6y2

= ±1 with points 5± 2
√

6, thus τ 2, (τα)2. They generate the units of
positive norm. There are again no units of negative norm.

Consider a unit x = x1 and its conjugates, x2 = xα, x3 = xβ, x4 = xγ . Thus
|x1| · |x2| · |x3| · |x4| = 1, x1x2x3x4 =±1. Since x1x3 is a unit in E2, it is up to sign
an even power of η. Thus, dividing x by an appropriate power of η we can conclude
that x1x3 =±1. Then, of course, x2x4 =±1 as well. Now we divide by a power of
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τ to obtain x1x4 =±1, but without affecting the value of x1x3. As a result

±1= x1x2x3x4 =±
x2

x1
and

x1

x2
=±1,

so that x1α = ±x1. If x1α = x1, then x1 is in E1 and up to sign a power of a.
Otherwise, x1 = y

√
3, y ∈ E2. Since 3 remains prime in E2 and x1 is a unit, this is

impossible. We conclude that, as affirmed by Dedekind, a, η, and τ generate, up to
sign, the group of units of H . Dedekind’s example is marvelously simple!

Unfortunately, I am not familiar enough with Dedekind’s style to know how he
would have established that the class number of H is one. It follows readily enough
from standard theorems. Dedekind’s argument would have been more elegant.
According to a familiar theorem [He, Satz 96], if there is a prime ideal in H that is
not principal, there is one with norm less than or equal to the square root of the
discriminant of H , thus 24

· 3= 48.
The field H is a composite of two quadratic fields the class field associated to

the group of ideles multiplicatively congruent to 1 or 7 modulo 8, 1 modulo 3, and
positive. So there are four classes of primes different from 2 and 3. According to
the law of quadratic reciprocity, they are distinguished by their residues modulo 3
and 8. First of all, in the field Q(

√
2) the decomposition is:

(i) If p ≡ 1, 7 (mod 8) then p splits.

(ii) If p ≡ 3, 5 (mod 8) then p does not split.

In the field Q(
√

3):

(i) If p ≡ 1 (mod 3) and p ≡ 1 (mod 4) or p ≡ 2 (mod 3) and p ≡ 3 (mod 4)
then p splits.

(ii) If p ≡ 2 (mod 3) and p ≡ 1 (mod 4) or p ≡ 1 (mod 3) and p ≡ 3 (mod 4)
then p does not split.

In the field Q(
√

6), if p ≡ 1 (mod 8) and p ≡ 1 (mod 3), if p ≡ 7 (mod 8) and
p ≡ 2 (mod 3), if p ≡ 3 (mod 8) and p ≡ 1 (mod 3), or if p ≡ 5 (mod 8) and
p ≡ 2 (mod 3) then p splits, otherwise it does not. From this, we determine
immediately the nature of the decomposition in H , whether a prime different from
2, 3 splits into 1, 2 or 4 primes. It splits into four if and only if it splits into two in
the three intermediate fields.

According to the theorem cited, all we need do is show, first of all, that every
prime ideal p of norm p in one of the three fields E dividing a prime p > 3 in
Q and with N p less than or equal to the square root of the discriminant of E is
principal and, secondly, that every prime ideal of norm p in H dividing a prime
p > 3 and with N p less than or equal to the discriminant of H is also principal.
For the first type this is hardly necessary, but the results are as follows.
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(1) For Q(
√

2), the discriminant is 8 and there are no such primes.

(2) For Q(
√

3), the discriminant is 12 and the only pertinent prime seems to be 11.
Since N(1+ 2

√
3)=−11, p= (1+ 2

√
3) is a prime of norm 11.

(3) For Q(
√

6), the discriminant is 24. Of the primes 5, 7, 11, 13, 17, 19, 23, only
5, 19, 23 seem to satisfy the necessary conditions. We have N (1+

√
6) = −5,

N (5+
√

6)= 19, N(1+ 2
√

6)=−23.

(4) There are many primes less than or equal to 48, namely

5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47,

but very few with the correct congruence properties, namely that split completely
in H . For this we need either p ≡ 1 (mod 8), p ≡ 1 (mod 3), or p ≡ 7 (mod 8),
p ≡ 2 (mod 3). Thus p = 23, 47 seem to be the only possibilities. We have to
show that each of them factors in H into the product of four distinct principal prime
ideals. It is enough to show that each of them is the norm of an element in H .

We can factor each of them in the three quadratic fields.

N(5−
√

2)= 23; N(2− 3
√

3)=−23; N(1− 2
√

6)=−23,

N(7−
√

2)= 47; N(1− 4
√

3)=−47; N(7− 4
√

6)=−47.

Because we have so much information about η, it is convenient — and sufficient —
to establish that the central element in each of these rows is, up to a unit, the norm
in E = Q(

√
3) of an element u in H , which is E(η), because η2

= 2+
√

3. The
field E is the fixed field of β. Thus, if we can find one u = a+ bη such that

(5.12) NH/E(u)= u · uβ = a2
− b2(2+

√
3), a, b ∈ E .

differs from 2− 3
√

3 by a unit in E and another such that it differs from 1− 4
√

3
by another unit, then our task will be complete. So ran my first reflections.

I thought it would be necessary to attack the problem systematically, by a careful
analysis that would determine where the numbers whose norm was ±23 or ±47
were to be found. The field H seemed to be singularly adapted to the necessary
calculation. Consider the absolute values of the numbers a, η, τ and of their
conjugates in the order: the number itself, then its conjugate under α, β, γ in that
vertical order. The first column is supplementary, x > 0, x 6= 1.

(5.13)

1 a η τ

x |a| |η| |τ |

x |a| |η|−1
|τ |−1

x |a|−1
|η| |τ |−1

x |a|−1
|η|−1

|τ |.
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Taking the logarithms, we obtain a matrix

(5.14)


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




ln x 0 0 0
0 ln |a| 0 0
0 0 ln |η| 0
0 0 0 ln |τ |


The first matrix is up to a factor an orthogonal matrix with inverse,

1
4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
I wrote this down, looked at it, thought of the effort that a further systematic

analysis would require, and decided I would just resort to Mathematica and calculate
the norms of a few numbers in H in order to have a better feel for the sizes entailed.
To my surprise and delight, because I was growing very fatigued, among the first
ten norms generated appeared both −23 and −47.

N(1− η2
− η3)=−23; N(1− η− η3)=−47.

6. Reciprocity

The meaning of reciprocity, as it appears in this prologue, is somewhat uncertain and
variable. This appears to be inevitable. Although I have attempted to confine it to a
relation between a group of A and a group M, it sometimes appears to be simply a
description of a group, either a motivic group or, more often, an automorphic group.
This is, to a large extent, because the traditional Weil group already incorporates
both aspects: (i) the multiplicative group of the field or of the idele classes as a
carrier of characters; (ii) the Galois group as a description of finite extensions of the
base field F , thus as a description of motives of dimension 0. Moreover, although
reciprocity has a certain universality, it appears under more than form and this form
adapts itself to the circumstances, local or global, geometric or arithmetic, and is,
as a consequence, somewhat protean.

The Ramanujan conjecture in its general form — if properly interpreted, even in
its classical form — is a statement about the local factors of automorphic representa-
tions π =⊗πv and their Arthur parameters. We have not had occasion to comment
on the local form of the group A in an Arthurian context over nonarchimedean
fields Fv. It appears to be SL(2,C)×SL(2,C)×WFv . As for archimedean fields,
the first factor determines whether the representation is tempered or not and, if
it is not, the nature of its failure to be tempered: determined by the asymptotic
behavior of characters or matrix-coefficients. The second SL(2,C) does not appear
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for archimedean fields and is present to accommodate the needs of local reciprocity,
which some authors satisfy by introducing the Weil–Deligne group W D.

We can introduce into the global arithmetic theory a formal but suggestive
diagram:

(6.1) `-adic representations
⊗Q̄`
←− motives/F

⊗C
−→ automorphic representations,

The Weil–Deligne group is introduced in the context of `-adic representations,
thus on the left; the motivic groups, at least those introduced by Grothendieck can
be considered, for the present purposes, as being defined over Q; the group A is
defined over C. So an arrow from the extreme left to the extreme right is, without
further explanations, not immediately at hand. The further explanations necessary
are not, given the theorems and conjectures currently at hand, particularly difficult.
The Weil–Deligne group has two disadvantages: (i) it introduces isomorphisms
between fields that have no natural relation to each other, namely `-adic fields and
the complex field; (ii) it introduces classes of representations that are not semisimple.
Neither of these is overwhelming, but both are unnecessary and clumsy. It is best
to introduce a second SL(2) factor, either in the local A or in the local M. This
second factor is not present over R or C.

Our immediate task, however, is to introduce the appropriate local structures
on the left-hand side, for which all we have at hand are the `-adic representations.
We begin with them in their local form, taking the necessary material from [T].
Suppose that the local field F = Fv is nonarchimedean with residue characteristic
p and ` 6= p. The theory of p-adic representations is more difficult and certainly
pertinent, but not for this article.

In [T] a Frobenius element 8 is an element of the Galois group such that
8−1x = xq on the residue field. I follow this convention. The elements of the
Galois group that concern us are those that can be written as a product 8nι, where
ι lies in the inertia group. They form a dense subgroup, to be identified with the
Weil group, of the Galois group. There is a homomorphism of the inertia group
onto

∏
p 6=` Z`. Let it send ι to

∏
6̀=p t`(ι). In [T] the notion of an `-adic W D-

representation or a representation of the Weil–Deligne group on a finite-dimensional
`-adic vector space is introduced. A “representation” of this group is not a true
representation, it is a pair (r, N ), where N is a nilpotent transformation of a finite-
dimensional vector space V over Q̄` and r a representation of the Weil group on
the same space. The representation r is to be continuous, so that its kernel is open
in W . Moreover

(6.2) r(8)Nr(8−1)= q−1 N ,

a condition imposed for every choice of8. Thus N commutes with the inertia group.
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There are supplementary conditions that can be imposed. One, that the Zariski
closure Gr of the image of r is reductive, seems especially important. We impose it.
As a consequence the image r(8nι) of any element of the Weil group is semisimple.
Other conditions of a topological or analytical nature are of lesser importance
and we leave them aside for the moment. There is then a second representation
associated to the pair (r, N ),

ρ :8nι 7→ r(8nι) exp(tl(ι)N ).

Clearly ρ determines r and N , but it is the pair to which we attach here the most
importance, not the `-adic representation ρ.

The restriction of r to the inertia group is defined by a representation of a
finite quotient of this group. There is, consequently, an integer m 6= 0 such that
r(8mι)= r(ι8m) for all ι in the inertia group. If r(8) is equal to8ss8un=8un8ss,
with 8ss semisimple and 8un unipotent, then

8m
ssr(ι)= r(ι)8m

ss, 8m
unr(ι)= r(ι)8m

un,

for all ι in the inertia group. The second equation implies that r(ι)8un=8unr(ι) for
all ι. Consequently we can introduce a new representation rss such that rss(ι)= r(ι)
for all ι, while rss(8)=8ss. The representation rss is a canonical semisimplification
of r . This is a representation of the Weil group.

It may seem idle, but we want to be able to replace the homomorphism r by
a homomorphism of the W D-group to any L-group L G, taken not over C but
over Q̄`. This is easily done. The definitions are identical to those just given
for L G = GL(n, Q̄`). We shall continue in this vein for it allows us to consider
homomorphisms of the categories we construct into the category of (algebraic)
representations of L G(Q̄`). We retain the assumption that the Zariski closure
of the image of the Weil group in L G is reductive, not forgetting the necessary
compatibility with projections to finite Galois groups.

The construction of the W D-group is, unfortunately, clumsy and misleading,
because it permits a passage to quotients by kernels of the transformation N . In order
to avoid this possibility, we appeal to the Jacobson–Morozov lemma as formulated
in [K], but we use it not over C, rather over Q̄`. Let N be a nilpotent element
in the Lie algebra Lg of a reductive group L G. The superscript on Lg serves a
largely mnemonic function. There exists an X ∈ ad N (Lg) such that [X, N ] = 2N .
In addition, for each such X there exists a unique N ′ such that [X, N ′] = 2N ′,
[N , N ′] = X . The algebra s = {N ′, X, N } is therefore isomorphic to the algebra
sl(2). Let σ be the isomorphism

σ :

(
0 1
0 0

)
7→ N ,

(
1 0
0 −1

)
7→ X,

(
0 0
1 0

)
7→ N ′
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of the algebra sl(2) with s.
For us, N is the element in the equation (6.2). Corresponding to this equation,

there is a character of the Galois group GalF , such that

r(ι)Nr(ι)−1
= χ(ι)N , ∀g ∈ GalF .

On the inertial group χ(ι)= 1.
Let h be the centralizer of the image of the inertial group in the algebra Lg. The

algebra h is reductive because, by hypothesis, the image of r is reductive. We apply
the Jacobson–Morozov theorem to the algebra h and the element N ∈ h. Let H
be the connected component of the identity in the centralizer of the inertia group
in L G and S the connected subgroup of H corresponding to s. The group S has
a unique Cartan subgroup, isomorphic to the multiplicative group of the field Q̄`,
whose Lie algebra contains X and this subgroup contains an element P such that
Ad(P)(N )= q−1 N , P = q−X/2. Define ψ by the relation

(6.3) ψ(8nι)= P−nr(8nι).

The set of products8nι, n ∈Z, is of course the Weil group and ψ is a representation
of it. Since ψ(ι)= r(ι),

(6.4a) Ad(ψ(ι))N = N , Ad(ψ(ι))X = X, Ad(ψ(ι))N ′ = N ′.

Moreover,

(6.4b) Ad(ψ(8))N = N , Ad(ψ(8))X = X.

Consequently, Ad(ψ(8))N ′ satisfies the conditions of the theorem of Jacobson–
Morozov, so that Ad(ψ(8))N ′= N ′. As a consequence, rather than a representation
of the W D-group in the sense given to it in [T] and other sources, we may use the
representation (σ, ψ) of the thickened Weil group W. I prefer this. Of course, σ
has to be interpreted as a representation of the group, rather than of the algebra,
and we have to replace C by Q̄`. There is nothing to be done about this. It can be
effected by an imbedding Q̄` ↪→ C, disturbing but in the nature of things. We can,
if we prefer, rather take the thickened Weil group not over C but over Q̄`.

This possibility raises many questions. Since we do not yet have a complete
theory of the representations of reductive groups over nonarchimedean local fields,
we do not have a parametrization of the various classes, tempered, arbitrary, or
the class introduced by Arthur. Moreover, even over archimedean fields there is,
so far as I know, no clear indication, even at the speculative level, that there will
be a stable theory for arbitrary irreducible representations. On the other hand, the
classification of tempered representations, over R or, presumably, any other local
field, will certainly demand a constraint of relative compactness on the image of
ψ in, for example, (2.1), and this condition is not one that is invariant under an
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imbedding of Q̄` in C. So there is room for reflexion on the local form of (6.1).
We take the imbeddings Q̄ ↪→C and Q̄ ↪→ Q̄` as given; so the algebraic closures

of Q in the two fields are identified. The considerations that follow would lead to
definitions that are independent of this identification.

There is a distinguished subgroup of Q, the group S1 of algebraic numbers β all
of whose conjugates have absolute value 1 in C. We introduce, at a local level, the
set of parameters ψ , or (σ, ψ), or (σ1, σ2, ψ) such that there is a homomorphism

(6.5) ξ : GL(1)→ L G

for which:

(i) The image of ξ commutes with the image of ψ and, if appropriate, the image
of σ or σ1× σ2.

(ii) For every Frobenius element 8, every element ι of the group of inertia, every
integer m, and for every (algebraic) representation ρ of L G all the eigenvalues
of ρ(ξ(|w|−m/2)ψ(8mι)) lie in S1.

If ξ exists it is determined by r so that when there is no danger of misunderstanding
it need not be explicitly given. The distinction between ψ and r is somewhat
pedantic. In (6.4a) and (6.4b), r is given and ψ depends on the choice of a square
root of q; the representation r does not. In (ii) we are, in effect, making a further
modification of ψ , leading to a further dependence on the choice of the square root
q1/2. The second condition does not, however, depend on the choice of the square
root q1/2. We must, nevertheless, take care that no implicit dependence on this
choice occurs in other definitions, for example, in the L-functions associated to
`-adic representations. This would be a different dependence than that entailed by
the simultaneous imbeddings of Q̄ in C̄ and Q̄`. In a global context, ξ would first
be given and then the various conditions would be satisfied by the local restrictions
and this fixed ξ .

For the field Q̄` — and for L G =GL(n)— these are the parameters that, because
of the last Weil conjecture, yield the `-adic representations with which we are
principally concerned. According to the yet to be established local parametrization —
for tempered and nontempered representations — they would correspond not only to
tempered representations — for ξ trivial — but often to nontempered representations.
Thus, it is entirely appropriate to introduce weighted parameters locally as well as the
attendant global modifications. At a nonarchimedean place the local parametrization
consist of pairs {σ × ψ, ξ} that satisfy the conditions described, or, for Arthur
parameters, pairs {σ1× σ2×ψ, ξ}. At an archimedean place, they would just be
pairs {ψ, ξ} or {σ ×ψ, ξ}, the first condition remaining unchanged, but the second
being replaced by the condition that the eigenvalues of ρ

(
ξ(|w|−1)ψ(w)

)
have

absolute value 1. The local form of the relation (6.1) would no longer be mediated
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by motives. It would be

(6.6) weighted `-adic representations−→ (automorphic) representations.

The arrow is now independent of the imbedding Q̄` ↪→ C, at least in so far as it is
compatible with the identification of Q̄⊂ C and Q̄⊂ Q̄`. All this, in view of the
scarcity of general results, has a very pedantic air, but, for my own sake, I find it
useful to have a clear notion of the goals. They are not always clearly understood
or formulated. Locally, what is often wanted — apart from careful, appropriate
definitions — is simply an independent description of A or M, in terms of familiar
objects: the Weil group, the Galois group, or differentials. Globally, at least for
arithmetical fields, it is a matter of proving the existence of both A and M, deciding
what their relation is and proving it. All three are major problems. For the global
geometric theory, it is not clear to me at the moment, whether it is a description of
A in classical terms that is wanted, or whether there is a motivic group M to be
introduced and a relation of A and M to be discovered. The following two sections
suggest that there is no M in the geometric theory, but they are hardly conclusive.

I add that the supplementary Arthur parameters may not play a role in the
correspondence (6.6). It appears to me that the image is likely to consist of objects
whose supplementary Arthur parameter is trivial, so that the homomorphism of
groups, which is from the right-hand side to the left, will be trivial on the SL(2)
component of the global automorphic A.

There are many relatively simple examples of the various parameters that it might
be appropriate to introduce here: (i) for the Arthur parameters, the conjecture of
Jacquet for SL(n) proved by Mœglin and Waldspurger; (ii) for the second SL(2)
parameter, the reciprocity for elliptic curves with nonintegral j-invariant, a very
important and very early example in the development of a general reciprocity.
Although they are well-known, they belong in any introduction to the theory. This
is none the less only the prologue to an introduction. So I omit them.

7. The geometric theory for the group GL(1)

For the local arithmetic theory, we can identify the group AF as the Weil group
or — for Arthur packets or if the local field is nonarchimedean — as a modified
form of the Weil group, but we are not yet able to supply the necessary proofs.
For the local geometric theory the abelian quotient, thus the group appropriate for
G = GL(1), of the local group AF is readily identified, although the definitions
are somewhat forced. The description of this quotient for the global geometric
theory can be deduced, as we shall describe, from the classical theory of abelian
integrals on a Riemann surface. The description of the abelian quotient of AF

suggests, both locally and globally, a definition of AF itself, but as I discovered, one
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is faced almost immediately with the need for theories that have yet to be developed.
I stress that, although the concepts emphasized here differ in some ways from those
preferred by Edward Frenkel and have been influenced as well by the proof of a
theorem of Weil, the initial impulse has been taken from his writings.

I should perhaps confess as well that, although the references [CFT; CLG; GT],
from which I profited considerably, were, together with a letter from their author,
my introduction to the geometric theory, my impulses, aesthetic and mathematical,
are more analytic, less formal, perhaps less geometric, than those of their author.
Even though I have not yet succeeded in exploiting the analytic possibilities of the
theory, I do want to draw them to the reader’s attention.

For the geometric theory, the local field at a point x is the field Fx of formal
Laurent series

f (z)=
∞∑

n=k

anzn, k ∈ Z.

In the present context reciprocity — not the correct word in this context, in which
our goal is simply the description of the local automorphic galoisian group AFv —
is, at least at first, simply a matter of expressing the characters of F×x , or rather
the group formed by these characters, in some appealing arithmetic or geometric
manner. We must of course fix the choice of characters — unitary, nonunitary,
holomorphic, whatever.

The local group F×x is abelian with two particularly important subgroups,

(7.1)
O×x = {a+ bz+ cz2

+ · · · | a 6= 0},

O+x = {1+ bz+ cz2
+ · · · },

and O×x = C×O+x , O+x \O
×
x ' C×, O×x \F

×
x ' Z. The elements of the group O+x are

best written in exponential form

(7.2) exp(α1z+α2z2
+ · · · ).

The characters of O×x are, for our purposes, most conveniently given by the
residues of the differential forms defined by the product of the logarithm of

f = α0 exp(α1z+α2z2
+ · · · ), α0 6= 0,

and a given local differential form

(7.3) ω=
β−k+1

zk +
β−k+2

zk−1 +· · ·+
β−1

z2 +
β0

z
+

∞∑
j=1

β j z j−1, β j ∈C ∀ j, β0 ∈Z,
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although the coefficients β j , j > 0, which are redundant and present only in
anticipation of the global theory, do not affect the pairing.

(7.4) (ω, f )= (ω, f )x = exp(i Re(resω ln f )),

resω ln f = β0 lnα0+

k−1∑
i=1

αiβ−i .

There is a second pairing implicit in (7.4), obtained on replacing Re(resω ln f )
by the real linear form Im(resω ln f ). It is understood that both are to be used,
alone and in products. If β0 = 0 one of them is redundant, since Im(resω ln f )=
Re(res(−iω ln f )). If β0 6= 0, iω is not admissible, because iβ0 6∈ Z. These
characters are unitary. There is another possibility,

f 7→ exp(Re(ω ln f )).

These characters are not unitary, but are pertinent in a more geometric theory, like
that of [CFT], if ramification is admitted. We keep them in mind, because the two
theories, analytic and geometric, are conceived as parallel to each other.

The group O+x is an infinite-dimensional complex vector space, the inverse limit
of finite-dimensional vector spaces. Its dual space is taken to be a direct limit not
of the complex dual spaces of the distinguished finite-dimensional spaces defined
by the inverse limit, but of the distinguished real linear forms defined by the real
and imaginary parts of the complex forms. Since Im(ω, f ) = Re(−iω, f ), this
leads to a real vector space of dimension twice — and not four times — the complex
spaces from which they arise. The dual space of C× = O+\O× is taken to be R×Z,
α→ αm ᾱn , m + n ∈ R, m − n ∈ Z. Here, however, we need to use both the real
and the imaginary parts of (ω, f ), thus β0 Re lnα0 and β0 Im ln ᾱ0, because β0 is
constrained to be integral, in particular, real. The pairing (ω, f ) is linear in ω and
multiplicative in f .

There seems to be no natural or unique way to extend this identification of the
space �x of local differential forms ωx at x , implicitly taken modulo their regular
parts and modulo the identification described, with the character group of O×x to
a concrete identification of F×x , thus no way to incorporate naturally the dual of
O×x \F

×
x 'Z. This dual can be taken to be C×. There will be a commutative diagram

(7.5)

{1} C× �̃x �x {1}

{1} C× Char(F×x ) Char Ox {1},

η̃ η

in which the kernel of η̃ is equal to the kernel of η, but a natural precise description
is not available. To split the extension, a local parameter must be chosen.
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This said and the necessary precisions kept in mind, we have defined the local
group A for the abelian geometric theory in terms of local differentials with singu-
larities. For the global theory on a Riemann surface X , there are not only global
differential forms, there are a number of supplementary objects, whose purpose
took me some time to recognize. I brought with me from the arithmetic theory a
notion of an automorphic form as a function on G(F)\G(AF ). I shall return to the
notion for a general group in §8. For now, I recall it for GL(1). It is the quotient IF

of the restricted districted product IF =
∏∐

x∈X
F×x by the diagonally imbedded F×.

There is a filtration
{1} ⊂ I tr

F ⊂ I unr
F ⊂ I 0

F ⊂ IF

of the group of ideles IF = F×\IF of the group of idele classes, with

I tr
F =

∏
x∈X

O+x , I unr
F = C×\

∏
x

O×,

I 0
F = F×\I0

F =

{
x =

∏
fx ∈ IF

∣∣∣ ∑
x

ordx( fx)= 0
}
.

The quotients are
I tr

F\I
unr
F = C×\

∏
x

C×,

where C× is diagonally imbedded,

I unr
F \I

0
F =

{
(nx) ∈

⊕
x

Z

∣∣∣ ∑
x

nx x = div( f ), f ∈ F×
} ∖ {

(nx) ∈
⊕

x
Z

∣∣∣ ∑
x

nx = 0
}
,

thus the group of divisors of degree 0 modulo principal divisors, and I 0
F\IF = Z.

The idele-class characters in the geometric theory are continuous functions on IF

equal to 1 on a subgroup
∏

x /∈S O×x , S a finite set of points in X , and on
∏

x∈S F×x
to a product of the local characters already introduced.

These characters, or these automorphic forms, certainly need to be considered,
but the geometric theory takes a broader view that it took me a good deal of time
to appreciate and to reconcile with my simple ideas. The pertinent clue lies in the
statement of Theorem 3 of §3.8 of [CFT].

Assertion. For each irreducible rank n local system E on X there exists a perverse
sheaf AutE on Bunn which is a Hecke eigensheaf with respect to E. Moreover,
AutE is irreducible on each connected component Bund

n .

For the moment, I take G = GL(1), thus G to be not a general reductive group,
and not GL(n), with n arbitrary as in the assertion, but with n = 1, and try to
understand the meaning of this assertion. Among other things, it will be important
to be clear, as soon as the initial explanations are concluded, about the nature of the
difference between automorphic forms in the naive, but legitimate sense taken from
the arithmetic theory, even those that are eigenfunctions of the Hecke operators,
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and a Hecke eigensheaf, at first when there is no ramification. It is an immediate
result of Diagram I that for the group GL(1) a local system is just a coset in
H 1(X,Z)\H 1(X,C). This is not emphasized in [CFT] or even mentioned, perhaps
because the emphasis is on nonabelian groups. Handicapped by my inexperience,
I am often, in the theory of algebraic curves, at a loss to distinguish theorems
from definitions. Our first task will be to acquire some concrete understanding
of the Assertion for n = 1 and to introduce its geometric counterpart. I do find it
convenient, when reflecting on the Assertion and its analytic counterpart, to fix in
mind the dimensions that appear. We shall see, for example, that the line bundles on
X are parametrized by a 2g-dimensional torus and the local systems attached to a
given line bundle by a 2g-dimensional real vector space, so that in the Assertion the
possibilities are parametrized by the quotient of a 4g-dimensional vector lattice by
a 2g-dimensional lattice. Such information assures a failing memory that nothing
has been forgotten and nothing counted twice.

The quotient of IF by
∏

x O×x is the group of divisors on the nonsingular algebraic
curve X for which the global theory is to be developed, taken modulo linear
equivalence; it can be given the structure of an algebraic variety. The connected
component of this variety, formed by the divisors of degree 0, is then the jacobian
of X , which could be identified with the moduli space P0 of line bundles of degree
0 on X , but we do not do so. The full group is the Picard variety P itself, which
can be identified with the quotient F×

∏
x O×x \IF , but once again it is convenient

to distinguish them.
We can be more precise. Let g be the genus of X . We introduce a complex

vector space 4 of dimension g, the dual space of the space of differential forms of
the first kind on X and a lattice 1 in 4, given by the complex linear forms

(7.6a) ω 7→

∫
δ

ω,

δ ∈ H1(X,Z), thus, more informally, but more instructively, δ being a closed curve
on X . We introduce as well the real dual space 4̂ of 4 (sometimes identified with
the space of conjugate linear complex-valued forms, but often with the space of
complex linear forms) on4 by sending the conjugate linear formµ, µ(αx)= ᾱµ(x),
to Re(µ) and the lattice 1̂ defined by δ̂ ∈ 1̂ if and only if Re(δ̂(δ)) ∈ 2πZ for all
δ ∈1. It is difficult to distinguish 4 and 4̂ or 1 and 1̂, but 1= H1(X,Z) and 4̂
may, of course, be identified with the space of differential forms of the first kind
on X . Then, thanks to the Abel–Jacobi theory, the map that assigns to the divisor
p1+ · · ·+ pn − q1− · · ·− qn the linear form

ω 7→

n∑
i=1

∫ pi

qi

ω



622 ROBERT LANGLANDS

defines an isomorphism — for both the group structure and the holomorphic struc-
ture — of 1\4 with the jacobian of X . The group and 1̂\4̂ the group (or moduli
space) P0 of line bundles of degree 0, thus the connected component of the Picard
group. Each of these line bundles admits a connection and the family of connections
is given by a coset of 1̂ in 4̂. More precisely, as is explained on page 313 of [GH]
in the context of complex tori, but the explanation is also valid here, the exact
sequence of sheaves

(7.7) H 1(X,Z)→ H 1(X,O)→ H 1(X,O×)→ H 2(X,Z),

in which there is a factor 2π in the first arrow that must not be forgotten, leads to
an identification

(7.8) P0
= H 1(X,Z)\H 1(X,O), 4̂= H 1(X,O)= H 0,1(X), 1̂= H 1(X,Z),

the notation H 0,1(X) being taken from Hodge theory, where the space H 1,0(X) is the
space of differentials of the first kind. Unfortunately, I have difficulty remembering
which is which because of the reversal of the order of the 0 and the 1 in the relations
H 1(X,O)= H 1(X, �0)' H 0,1(X), H 0(X, �1)' H 1,0(X).

It is undoubtedly best that I be as precise as I can because my experience
with differentials and Hodge theory, even on curves, is limited. For example,
H 1(X,O)= H 0,1(X) is the complex conjugate of H 1,0(X), the space of differential
forms of the first kind, this identification being given by the Hodge ?-operator ([GH,
page 82]). There are two isomorphisms of H 1,0(X) as a vector space over R to 4̂;
they are given by the real and imaginary parts of the periods (7.6a). To continue,
I return to an enlarged form of the diagram (7.7), suppressing the explicit reference
to X from the notation.

{0} H 1(Z) H 1(C) H 1(C×) H 2(Z) H 2(C)= C

{0} H 1(Z) H 1(O) H 1(O×) H 2(Z) H 2(O)= {0}

Diagram I

The central square of the diagram is summarized in [GT, §2], although with
reference to a general group G, not just GL(1): “A flat connection has two com-
ponents. The (0, 1) component, with respect to the complex structure on X , defines
holomorphic structure, and the (1, 0) component defines a holomorphic connection.”
According to the Hodge theory an element of H 1(C)= H 1,0(X)⊕ H 0,1(X) is real-
ized uniquely as a sum of a holomorphic form and an antiholomorphic form. In the
diagram, the third vertical arrow, H 1(C)→ H 1(O), is the projection on the second
factor. Since the last arrow in the first line is an injection, the kernel of H 1(C×)→

H 1(O×) is a complex vector space of dimension g, isomorphic to H 1,0(X).
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A flat connection is a connection in which there is a local notion of constant
section; these are obviously given by H 1(C×), while H 1(O×) parametrizes line
bundles. Since the Chern class, given by the degree of a line bundle, is the image
of its parameter in H 2(Z), we see that the collection of connections on a given
line bundle is parametrized by H 1,0(X). Thus the collection of flat connections on
a given line bundle, which are parametrized by the inverse image of an element
of H 1(O×) form an affine space over H 1,0(X). A line bundle of degree 0, thus
of Chern class 0, is an element of H 1(O×), thus an element of H 1(Z)\H 1(O)

or a coset of H 1(Z) in H 1(O) = H 0,1(X) or, as seems to be demanded by the
formalism, by its complex (thus ?-)conjugate in H 1,0(X). The comment of [GT]
cited is the observation that an element of H 1(C×) is the image of an element
of H 1(C)= H 0,1

⊕ H 1,0. Mapping this element to H 1(O) amounts to projection
on its first component. The horizontal arrow then yields a line bundle. So the
bundle determines the first component. (As a test for my orientation: this is H 1(�0)

appearing in the Hodge theory as H 0(�), thus as an antiholomorphic differential,
whose orthogonal complement lies in the holomorphic direction ∂/∂z.) To determine
the image of the upper horizontal arrow, we need to know both the first and the
second component. So the supplementary information needed to determine the
second component of an element of H 1(C) is contained in its image in H 1(C×),
thus in the connection.

It will be worthwhile to return to the geometric theory at the end of this section,
just to understand better what the Assertion means for n = 1 and how it can be
proved, but our principal goal is to introduce an analytic form of it that will allow
us to introduce a candidate for the abelian quotient Aab of A. The analytic form
has quite a different flavor.

We have already defined 4̂ as H 1,0(X) and defined the periods of an element
of H 1,0(X), thus of a differential form of the first kind, by (7.6a). Then the
conjugate space 4̂conj is H 0,1(X) and their sum can be identified with H 1(X,C), a
2g-dimensional space, represented by holomorphic differential forms with arbitrary
periods. We conclude that the span of the periods, either the real periods or the
complex periods, for both are not simultaneously necessary,

δ 7→ Re
∫
δ

ω, δ 7→ Im
∫
δ

ω, ω ∈ H 1,0(X),

is just 4, treated as a real vector space, thus the real dual of 4̂. If we express the
surface X in the usual way as a disc with boundary

δ1δg+1δ
−1
1 δ−1

g+1 · · · δgδ2gδ
−1
g δ−1

2g ,

the various segments on the boundary being identified as indicated by the subscripts,
then any additive mapping of this sort is determined by its values on δ1, . . . , δ2g.
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Observe that, because there is a multiplication by 2π i , z→ 2π i z, the image of
H 1(X,Z) is characterized by the conditions that the real parts of the periods are 0
and the imaginary parts lie in 2πZ.

If ω ∈ 1̂ and p0 is an arbitrary but fixed point on X , then

(7.6b) p 7→ exp
(

i Im
∫ p

p0

ω

)
is a continuous character of the jacobian (or of the Picard variety P0) and, as ω
varies over 1̂, we obtain in this way a family of Z2g characters of I 0

F , which can,
of course, be extended to IF , but this is a secondary matter, the choice of a nonzero
constant. The character is defined by its differential equation,

(7.9a) χ−1
R dχR = i Reω = iωR or χ−1

I dχI = i Imω = iωI ,

either of which defines in some sense a holonomic system or a perverse sheaf, but
in a real context. The usual holonomic system would be given by the complex
equation

(7.9b) χ−1dχ = ω,

which may also be treated as two real equations. So it has more boundary conditions,
thus conditions of periodicity. If the local coordinate is z= x+iy, ω= (µ+iν)(dx+
idy), and if χ = exp(α(x, y)+ iβ(x, y), then (7.9b) amounts to(

∂α

∂x
,
∂β

∂x

)
= (µ, ν),

(
∂α

∂y
,
∂β

∂y

)
= (−ν, µ).

For the second equation, that in (7.9b), periodic conditions are not appropriate; for
one or the other of the first, they are. For the second, boundary conditions would
be to combine both conditions of (7.9a). So they are again usually impossible to
satisfy. In the analytic or arithmetic theory, it is the second of equations (7.9a) that
is pertinent. In the context of perverse sheaves, thus in the context of the Assertion,
the issue of a global solution of the differential equation is inappropriate. I was
troubled and confused by this difference for some time. Its source has become
clearer. One thinks of the exponential function exp λz on the interval [0, 1], with
0 and 1 identified. If one wants functions, one needs λ ∈ 2π iZ; if one accepts
sheaves, thus the differential equation

dh
dz
= constant

is acceptable. One reflects an analytic impulse, my dominant impulse; the other a
geometric impulse, by which [CFT] is guided. The notion of a Hecke eigensheaf
that appears there is, as we shall see, a clever way of admitting this greater generality.
As already observed, it can also be incorporated into the analytic theory mediated
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by characters of the fundamental group The two possibilities could be examined
separately, but as my purpose here was to adumbrate an analytic theory that would
not lag behind the geometric theory, I have preferred to incorporate some to-and-fro
in the exposition, as well as some redundancy.

To add to it, we reflect just a minute on the equation

1
h

dh
dz
= λ

on the circle, realized as the real line modulo 2π z. On the line it defines a flat
connection on the trivial bundle because the quotient of any two solutions c1 exp(λz),
c2 exp(λz) differ by a multiplicative constant. It also defines a flat connection on
the circle because c1 exp(λz), c1 exp(λ(z + 2π)) also differs by a multiplicative
constant. It does not, however, define a section of the trivial bundle as a bundle on
Z\R. Trivial as the difference is, I find it, as the reader will discover, hard to fix in
my mind. The integral of a constant function becomes linear and after passing to
the exponential even more difficult to recognize. This becomes even worse with
a curve and its jacobian. The jacobian is a quotient of a linear space on which a
differential of the first kind is just a constant element of the dual; on the curve itself,
it is hardly linear. The danger of confusing the intuition is even more severe for
differentials with values in a vector bundle or in a Lie algebra. Another feature that
leads to confusion is that the equations (7.9a) and (7.9b) describe the development
of a complex line, thus of a real plane, or better a local section of a U(1)⊂ GL(1)
bundle over X , even of a local system of X , because for it there is a local notion
of constant section. I have only increased the possibility of confusion by referring
to boundary conditions; at best, we are dealing with boundary conditions on a
rectangle.

In the analytic theory, we are dealing with characters, thus with functions with
values in the group U(1) of complex numbers of absolute value 1. So we are dealing
with one or the other of the equations (7.9a), say the first, or, in other words, with
U(1)-bundles. The sequence

{1} → Z→ R→ U(1)→ {1}

yields an analogue of Diagram I, in which the vertical arrow H 1(R)→ H 1(O) is
an isomorphism.

{0} H 1(Z) H 1(R) H 1(U(1)) H 2(Z) H 2(R)= R

{0} H 1(Z) H 1(O) H 1(O×) H 2(Z) H 2(O)= {0}.

Diagram II
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The significance of the diagram is that every holomorphic line bundle is realized
as a U(1)-bundle, that each of them carries a unique local system in the real sense,
thus with constant transition functions in U(1). All this is simple, but it has taken
me some time to appreciate the consequence: the analytic theory is closely related
to the holomorphic theory but different from it. In the analytic theory, the local
systems have automorphisms: sections of the associated U(1)-bundle. These are
automorphic forms, but this may not be pertinent.

It is worthwhile to explain this further. In the theory of algebraic curves, there
is a great deal of structure crammed into a very small space and it is difficult to
describe it in an orderly fashion. Starting with an element η in H 1(O)= H 0,1, we
add its image ?η, which lies in H 0(�1) = H 1,0, to it and divide by 2 to obtain a
form Reω. Then the element of H 1(U(1)), thus a flat sections of the bundle is
given by

exp
(

2π i
∫ p

p0

Reω
)
.

Notice that, because of the presence of H 1(Z) at the beginning of each line and
because of the factor 2π i that appears in the passage from R to U(1), Reω is
determined only up to a form with integral periods.

When the geometric theory is treated as an offshoot of the arithmetic theory, the
restriction to unramified representations or forms is unnatural. It is also unnecessary.
For the global theory on a nonsingular algebraic curve X , the space of differentials of
the first kind is replaced by the space�=�X of global meromorphic differentials ω
with local expressions ωx . There is one condition on the forms ω considered that one
might be tempted to impose: the residue at each point must be integral. I omit it for
a brief moment, because it took me sometime to understand the significance of such
a condition, but I shall very quickly impose it. Even if it is unnecessary, there are
already enough other complications to master. One consequence is that the solutions
of the differential equation d f/ f = ω are single-valued in a neighborhood of each
point, so that no singularities are introduced locally into the sheaf of solutions. So
the distinction is — perhaps — between a sheaf, thus by the differential equation,
that is by ω, which is well defined in all cases, and, up to a constant, a single-valued
function, its solution, which is not! The analytic impulse, as well as the arithmetic,
is to emphasize the function; the geometric impulse is to emphasize the sheaf.
The consequences of the two points of view have already revealed themselves. If
the condition of integrality is imposed, the periods of ω, thus its integrals over
one-cycles, are well-defined modulo 2π iZ. In particular the real and imaginary
parts are defined modulo 2πZ. The periods as such are not defined because an
integral of ω even over a cycle homologous to zero is given by the sum of the
residues in the 1-chain that it bounds.
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There are two difficulties in the Assertion, apart from understanding how it is
verified. First of all, it is an assertion only in an unramified context. Coming
from the arithmetic theory of automorphic forms or representations, I find this an
unacceptable restriction. We shall remove it. Secondly, there is no immediate link
to a theorem of Weil that we shall recall later and that offers a partial solution to
the problem of identifying the geometric galoisian group A, a kind of self-duality
similar to that of class field theory.

I recall the structure of the vector space of meromorphic differentials on X .
First of all the space of differentials without singularities, thus differentials of
the first kind, has dimension equal to g, the genus of the curve. Secondly, the
singularities may be assigned almost arbitrarily. There is only one constraint: the
sum of the residues must be 0. This is a consequence of, for example, the theorem
of Riemann–Roch, which can be cited in the form given in [Sp]. Take a finite set
of points x1, . . . , xn on the curve X and integers d1, . . . , dn . Then the space of
possible singularities concentrated on this finite set and of degree at most di at xi

is of dimension
∑

i di . If a given singularity can be realized by a meromorphic
differential ω then any other realization is of the form ω+ω′, where ω′ lies in the
g-dimensional space of holomorphic differentials. So to prove that differentials can
be assigned arbitrarily, we need only verify that for all choices of x1, . . . , xn and of
d1, . . . , dn with

(7.10) d1+ · · ·+ dn > 0,

the space of differentials with the singularities allowed by these choices is of
dimension g− 1+

∑
i di . The condition (7.10) takes account of the constraint that

the sum of the residues is 0. Take the divisor a on page 264 of Springer’s book [Sp]
to be −

∑
i di xi . Then, according to the form of the Riemann–Roch theorem given

there, the dimension of the space of possible differentials is

i(a)= g− 1+
∑

di ,

because, in the notation of [Sp], d(a)=−
∑

di and r(−a)= 0.
It is convenient to introduce an increasing sequence of differential forms: the

forms with no singularities, thus the forms of the first kind; the forms whose only
singularities are simple poles; finally, the forms with arbitrary singularities. We
can then add the supplementary condition, already introduced, that the residues be
integral. If δ1, δ2, . . . , δ2g is the base of the integral cycles, then ω→ Re

∫
δi
ω (or

Im
∫
δi
ω) defines 2g linear forms linearly independent over R on the g-dimensional

complex space of forms of the first kind. Moreover, as ω varies, the 2g-dimensional
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vectors in R2n or, perhaps better, in 4̂,

(7.11)
$R = {$R,i } =

{
Re
∫
δi
ω
∣∣ i = 1, . . . , 2g

}
,

$I = {$I,i } =
{
Im
∫
δi
ω
∣∣ i = 1, . . . , 2g

}
,

are arbitrary, but not independently arbitrary. Without the condition on the residues,
they are both path-dependent. Even if the condition on the residues is imposed,
the second is only defined modulo 2πZ, but, as already observed, that is all we
need because we use exp(i Im

∫
ω). The condition on the residue prevents us from

multiplying all ω by i or −i , so that the set of $I and $R may be different.
For the moment, we are dealing with line bundles, so that n = 1. My impulse

was to look for a theorem in which irreducible, thus one-dimensional, automorphic
representations of the geometric form of the group of idele classes appear. If there is
no ramification — and if we admit as automorphic representations only continuous
functions in the parameter x ∈ X , thus only continuous characters of the group of
divisors modulo those linearly equivalent to 0, a group whose connected component
is the jacobian, thus a complex variety of a dimension g that, as a group, may be
identified with U2g, U= {z ∈ C× | |z| = 1}— its group of unitary characters, thus
the set of irreducible unramified automorphic representations, is isomorphic to Z2g,
or to the group of differentials ω of the first kind for which $I lies in (2πZ)2g. It
is easy enough to make the isomorphism explicit in terms of F×\I0

F — rather than
in terms of the jacobian — by applying the method of [GH] for proving a theorem
of Weil, and we shall do so.

What then is the purpose of the remaining ω, either the remaining ω of the first
kind or, more generally, the differentials with singularities? For the comparison
with the Assertion, which is implicitly stated in an unramified context, it is the
differentials of the first kind that are relevant, but for the description of the global
group A in the geometric context, it will be necessary to admit differentials with
singularities, thus with negative powers in their local Laurent expansions. For this
prologue, however, it is best to consider only those with integral residue, since a
nonintegral residue introduces ramification in the line bundles themselves — local
sections at some points behave like zα, α ∈ C. That would, at this stage, be one
complication too many.

For the moment, we remain with differentials with no singularities. We count —
once again — the parameters available. I refer to Diagram I. It is clear from the
lower line of the diagram that line bundles are parametrized by Z2g

\R2g. The
upper line then shows that the possible local systems on a given line bundle are
parametrized by H 1,0(X)= H 0(X, �1), thus by R2g. So all in all, we need Z2g

\R4g

to specify a local system. On the other hand, in the analytic/arithmetic context the
set of unramified automorphic forms is given by the Z2g characters of the jacobian,
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or rather by their extensions to characters of F×\IF , parametrized by U or by
characters of I0

F\IF . These extensions are incidental to the central issue. So the
puzzling matter is the presence in the geometric theory of supplementary parameters
in Z4g

\R4g. We shall introduce them artificially. I was, initially, made more than a
little uneasy by the artifice.

We shall return to this point, but only after broaching the question of attaching,
in the geometric theory, an idele-class character to a differential ω, perhaps singular
but with integral residues. It turns out that this entails an enlargement of the notion
of idele class. We take the product of IF with 4g copies of Z, thus with two copies
ZR and ZI of Z2g, so that the dual of the modified group is the group of characters
of IF multiplied by two copies of the 2g-fold product of Z\R = U(1) with itself.
We introduce an imbedding of F× in IF = ZR ×ZI × IF by

(7.12) f 7→
2g∏

i=1

∫
δi

d ln f

2π i
×

2g∏
i=1

∫
δi

d ln f

2π i
× f.

There will be a finite number of points q1, q2, . . . at which ω has a singularity
and, for any given idele f , a finite number of points p1, p2, . . . at which f =

∏
x fx

has a zero or pole. If the sets Dω={q1, q2, . . . } and D f ={p1, p2, . . . } are disjoint
and if f ∈ F× is a principal idele we may introduce λR as the difference of

(7.13a) Re
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω− γ

∑
i

ordpi ( f )
}

and

(7.13b)
1

2π i

g∑
k=1

{
$R,g+k ·

∫
δk

d ln f −$R,k ·

∫
δg+k

d ln f
}
,

where γ is a supplementary complex parameter, p is a supplementary point, and a
choice of path from p to pi that avoids the singularities of ω is implicit for each i . It
modifies the value of λR only by an additive constant in 2πZ. We want to introduce
a pairing (ω, f )R = exp(iλR) defined for all ideles f . The expression (7.13a)
is certainly defined; the expression (7.13b) is not, but it is defined if we replace
f by an element f̃ of ZR × ZI × IF and

∫
δk

d ln f by 2π times the appropriate
coordinate of the ZR component of f̃ . This defines (ω, f̃ )R in general. We define
(ω, f̃ )I in the same manner. It is simpler to abbreviate f̃ to f , and I do so in the
following discussion, inserting the tilde if its omission would lead to confusion or
as a reminder.

The parameter γ only affects the pairing at those f whose total degree
∑

i ordpi f
does not vanish and two pairs (ω, γ ), (ω′, γ ′) yield the same pairing if γ ′−γ =

∫ p′

p ω.
As we did for the local parameters, we shall have to use both pairings (ω, f )R
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and (ω, f )I unless all the residues β0 of ω are zero. So the parametrization of
characters might best be expressed in terms of pairs ($R,$I ) with an appropriate
equivalence relation, but this would be too fastidious for a prologue and, in any
case, obvious.

The key to the global definition of (ω, f )R or (ω, f )I , whose properties have
yet to be discussed, is a generalization of a theorem attributed in [GH] to Weil. I
formulate the generalization as a lemma that implies that, for each ω, f 7→ (ω, f )R ,
f 7→ (ω, f )I define idele-class characters.

Lemma 7.1. If f is a principal idele and Dω and D f are disjoint, then (ω, f )R =

(ω, f )I = 1.

The theorem of Weil affirms that if f and g are meromorphic functions on the
compact Riemann surface X such that the set of zeros and poles of f is disjoint
from the set of zeros and poles of G then

(7.14)
∏

p

f (p)ordp(g) =
∏

p

g(p)ordp( f ).

For the simplest example, the projective line P1, the theorem is elementary and easy
to prove. Suppose, for example that f = (x − a1)/(x − b1), g = (x − a2)/(x − b2).
Then

( f, g)=
g(a1)

g(b1)

f (b2)

f (a2)
=

a1−a2

a1−b2

b1−b2

b1−a2

b2−a1

b2−b1

a2−b1

a2−a1
= 1

In general, the theorem is a consequence of a relation like that of the lemma, but
for ω = dg/g. The idele f is still to be principal. The relation becomes

(7.15)
∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω = λ ∈ 2π iZ.

The new relation is stronger, or, rather, more compact, because the periods of ω
themselves now lie in 2π iZ. This is not just a condition on the real or imaginary
parts. We recall the proof given on page 229 and on pages 242–243 of [GH],
following, so far as possible, the notation of that book. We have already followed it
with the usual description of the basic cycles δ1, . . . , δg, δg+1, . . . , δ2g that display
the surface as a planar polygon 1 with sides identified. We have a function f with
poles and zeros at pi and a form ω = dg/g with first-order poles at q j . The sets
{pi } and {q j } are taken to be disjoint. The pi and the q j are to lie in the interior of
the planar region and we join each pi to a common point p on the boundary by a
curve αi that avoids the q j , thus introducing incisions that reduce 1 to a region 1′

and add several curves to its boundary, the curve αi and the curve in the inverse
direction.



A PROLOGUE TO “FUNCTORIALITY AND RECIPROCITY”, PART I 631

Since
∑

i ordpi ( f )= 0 and φ(pi )= ln
∫ pi

p ω is well-determined up to a constant
independent of pi , the possible ambiguities, for example in the choice of the base
point p, have no affect on the relation (7.15).

As in [GH], we integrate the form ϕ = ω ln f over the boundary of 1′. By the
residue theorem, this integral is given by

(7.16)
∫
∂1′
ϕ = 2π i

∑
q j

resq j ϕ = 2π i
∑
q j

resq j (ω ln f ).

We collect terms as in [GH]. First of all, for identified pairs p, p′ on the arc δi and
on the inverse arc δ−1

i ,

(7.17) ln f (p′)= ln f (p)+
∫
δg+i

d ln f,

so that

(7.18)
∫
δi+δ

−1
i

ϕ =

(∫
δi

ω

)(
−

∫
δg+i

d ln f
)
.

In the same way,

(7.19)
∫
δg+i+δ

−1
g+i

ϕ =

(∫
δg+i

ω

)(
−

∫
δi

d ln f
)
.

Moreover for identified points p ∈ αi and p′ ∈ α−1
i ,

(7.20) ln f (p′)− ln f (p)=−2π i ordpi ( f ).

so that1 ∫
αi+α

−1
i

ϕ = 2π i ordpi ( f )
∫ pi

p
ω.

As in [GH], the conclusion is that

2π i
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω

}
is equal to

(7.21′)
g∑

k=1

{

∫
δk

d ln f ·
∫
δg+k

ω−

∫
δk

ω ·

∫
δg+k

d ln f }

1In the diagram of [GH], δ0 is meant to be s0, an arbitrarily chosen point on the boundary of the
planar region. I have denoted it above by p.
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or

(7.21′′)
g∑

k=1

{∫
δk

d ln f ·
∫
δg+k

d ln g−
∫
δk

d ln g ·
∫
δg+k

d ln f
}
.

In (7.21′′), all four integrals are of functions all of whose residues are integral and
all integrals are over closed curves. The conclusion is, as in [GH], that the sum is
an integral multiple of (2π i)2. The relation (7.14) follows.

To prove the lemma itself, we deal with (ω, · )R and, implicitly, (ω, · )I with
essentially the same sequence of formulas. Since f is now a principal idele, the
term in (7.13a) that contains γ is 0, and (7.13a) itself is reduced to the real part of

(7.22) λ=
∑

j

resq j {ω ln f (q j )}−
∑

i

ordpi ( f )
∫ pi

p
ω

and the assertion is that the difference between the real part of (7.22) and (7.13b)
lies in 2πZ. The proof is the same as before; we deal with (7.22) as we dealt with
(7.15), collecting terms in the same way:∫
δi+δ

−1
i

ϕ =

(∫
δi

ω

)(
−

∫
δg+i

d ln f
)
;

∫
δg+i+δ

−1
g+i

ϕ =

(∫
δg+i

ω

)(
−

∫
δi

d ln f
)
.

The conclusion is that

2π i
∑

j

(
resq j (ω) ln f (q j )−

∑
i

ordpi ( f )
∫ pi

p
ω

)
is equal to

(7.23)
g∑

k=1

(∫
δk

d ln f ·
∫
δg+k

ω−

∫
δk

ω ·

∫
δg+k

d ln f
)
.

To calculate λ, we take the imaginary part of this, divide by 2π , and subtract (7.13b).
This yields

(7.24)
g∑

k=1

(∫
δk

d ln f ·
(

Re
∫
δg+k

ω−$R,g+k

)
−

(
Re
∫
δk

ω−$R,k

)
·

∫
δg+k

d ln f
)
.

The periods of d ln f are all multiples of 2π i and the numbers Re
∫
δk
ω− ωR,k ,

k = 1, . . . , 2g, are also all integral multiples of 2π . Indeed they are 0, but that is
not the point here. This proves the lemma!

There is a difficulty with the pairings (ω, f )R and (ω, f )I that is resolved by
the lemma. For a given ω, it is not defined for all ideles f , or, to be precise, f̃ ,
only for those for which D f and Dω are disjoint. We can extend it to all ideles by
setting any given idele f equal to f1 f2, where f2 is principal and f1 is an idele
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whose set of zeros and poles is disjoint from the set of singularities of ω. Then we
set ($R, f )= ($R, f1), ($I , f )= ($I , f1). Thanks to the lemma, the result will
be independent of the choice of the factorization of f .

There is a second difficulty, not resolved by the lemma, at least not without
closer examination. What do we do if the function f or the differential ω has a
singularity at a point x on the boundary of 4, say in δl and thus in δ−1

l . So it can
be approached in two ways from within 4, one through a half-neighborhood of
a subinterval of δl , the other through a half-neighborhood of δ−1

l . If the limiting
results for the differences of (7.13a) and (7.13b) are the same modulo 2π , there is
no problem. We just deform δl a little around the offending point and the choice of
the deformation, whether we deform a little to the left in the sense of δl or in the
sense of δ−1

l to make the calculation does not matter. Since the singularities of ω
are assumed not to fall on the singularities of f , we can treat the two independently.

The contribution of a singularity of ω to the first term of (7.13a) does not depend
on the relation of its position to the curve δl . On the other hand, the second term is
affected as are the factors $R,k . The first is affected because the integral, inside 4,
from p to pi as a point on δ−1

l is replaced by an integral over a path inside 4 from
p to pi as a point on δl . The difference is a multiple of 2π i and is multiplied by
ordpi ( f ). So it causes no problem. The factor $R,l is deformed but the result is an
additive modification by 2π i times the residue of ω, which is assumed to be integral.

The singularities of f appear in both (7.13a) and (7.13b). Since it is easier,
we consider first the effect on (7.13b). The path δl first passes to the right of the
point and then to the left. So the modification in

∫
δl

d ln f is 2π i ordpi ( f ), and in
(7.13b) ±$R,g+l ′ ordpi f , where l ′ is l or l − g according as l ≤ g or g < l ≤ 2g.
It is evident that something similar will happen with (7.13a). The factor ordpi f
is already in evidence. The modification is therefore given by the negative of the
integral over the path from the point p0 to pi on δl followed by the inverse path
from pi on δ−1

l to p0. The two together, with sign, yield a closed path within 4
from pi on δ−1

l to pi on δl . Since we can deform the path inside the contour at the
cost of adding an integral multiple of 2π , we might as well move directly along the
boundary. The integrals along δl and δ−1

l cancel and we are left with the integral
along δl+g if l ≤ g and along the inverse of δl−g if l > g. So up to an additive factor
that is an integral multiple of 2π , the difference does not change. I apologize to the
more skillful reader for the clumsy argument. I hope it is correct!

The conclusion is that we have attached to ω two characters f̃ 7→ (ω, f̃ )R and
f̃ 7→ (ω, f̃ )I of F×\IF . In order to persuade ourselves that we indeed have, in a
useful way, identified all idele class characters, but also to understand what we have
in hand, we remind ourselves of the structure of the group of ideles, or rather of
ZF , and of its character group, and then of the structure of the group of characters
constructed from the admissible differentials.
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I observe first of all, to make the task easier, that ZR × ZI is a subgroup of
F×\IF and that the characters (ω, · )R and (ω, · )I , certainly yield, upon restriction,
all characters of this subgroup. The restrictions are trivial if

(7.25) $R,i ≡ 0 (mod 2π), $I,i ≡ 0 (mod 2π), 1≤ i ≤ 2g.

So the issue is whether we obtain all characters of F×\IF from forms ω satisfying
one or the other of the two conditions.

We are dealing with a great deal of structure in a very small space. We begin with
the curve X , an intuitively difficult object. Then we pass to its jacobian jacX , the
quotient of a vector space 4, which is a vector space over C and thus over R as well
by a distinguished lattice1. The jacobian carries not only the structure of a complex
manifold, but also the structure of an algebraic variety, and of a group. There are also
algebraic mappings of X×X , (x, y) 7→ x− y of X×X to jacX . Analytically — and
if we exclude all ramification — the functions of immediate interest are functions on
a subgroup of the group of idele-classes, namely on the group I unr

F \I
0
F = F×Iunr

\I0
F ,

indeed they are characters of this group. Such characters are determined by their
values on the elements represented by fu,v =

∏
x fx , where fx = 1, except for

x = u, v and fu = z−1
u , fv = zv , zu and zv being local parameters at u and v. Such

functions are obtained by taking characters χ of 1\4 and pulling them back to
functions χ ′ on I unr

F \I
0
F by setting χ ′( f u, v)= χ(u− v), u− v being the image of

(u, v) in the jacobian. This does not function in the geometric context because the
functions χ are not holomorphic. It does function in the geometric context if we
take χ as a holomorphic character of 4, thus a function exp(λ( · )) where λ lies in
the dual of 4 as a complex space. This appears to be the expedient found by the
geometers. It suggests that analysts, too, not demand that χ be a character of 1\4,
only that it be given by a real linear form λ on 4, χ( · )= exp(i Re λ( · )). This is
effectively what we have done.

Each element of the parameters that we propose for the characters of IF is
determined by two elements Reω, Imω′— the first element satisfying the first set
of conditions (7.25), the second the second set — because we allow products of
(ω, · )R and (ω′, · )I , where ω′ may or may not be equal to ω, and by a constant γ
that may be taken as real and is only pertinent modulo 2πZ. It is clear that with
the duality proposed, the function of γ is to generate the characters of I 0

F\IF . It
is the characters determined by Reω and Imω′ that matter. We pass to them, thus
implicitly passing to the quotient by the subgroup of characters generated by the
γ . It has already been observed that there is a classical filtration: forms of the first
kind (with no singularities) are a subset of forms of the third kind (with at most
simple poles, where for our purposes the residues must be integral), and these are
in turn a subset of the forms with singularities of arbitrarily high order (but always
with integral residues.)
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If ω is a form of the first kind, the form iω satisfies the condition on the residue
of integrality because the residues are all 0. It is therefore unnecessary to include
the second ω(= ω′) or, rather, the contribution (ω′, · )I . More precisely, we have
to divide by pairs (ω, ω′) of differentials of the first kind for which ω = iω′, but
this is a fastidious point of the parametrization. Since we know that γ accounts for
all characters of I 0

\I , to establish the desired duality we need only examine the
restriction of the remaining characters to I 0. The p that appears in (7.22) is a matter
of indifference. The differential forms of the first kind can be regarded as complex
linear forms on the complex vector space defining the jacobian. For the exponential
exp(i Re

∫ p
0 ω) to define a character of the jacobian, the real parts of the 2g periods

of ω must lie in 2πZ. This is the real part of the condition (7.25). The imaginary
part is not relevant here. It clearly defines a lattice in the g-dimensional complex
dual of the space defining the jacobian. Thus the characters defined by the ω chosen
give exactly the continuous characters of I unr

\I 0, which by the classical theory may
be identified with the jacobian. This is a repetition — and not the first — of previous
reflections. I should probably observe as well that with the conditions (7.25), the
formula for λR given by the difference between (7.13a) and (7.13b) reduces when
γ = 0 to

(7.13c) Re
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω

}
Since the differential forms of the first kind give, what may be regarded as

a complete set of characters on the quotient I unr
\I , all we have to do is assure

ourselves that differentials with arbitrary singularities, but otherwise satisfying
our conditions, give a complete set of characters on I unr, where, of course, the
characters defined by the differential forms of the first kind give 1. We must now
employ both ω and ω′. On the other hand, we need no longer concern ourselves
with the behavior outside of I tr. If we can match, at least on I tr, a given continuous
character χ with one χ1 given by a differential, then we can complete the matching
by identifying χχ−1

1 with a character associated to a differential form of the first
kind, perhaps multiplied, in addition, by the character associated to one of the
supplementary parameters γ ∈R. We first consider forms of the third kind, or rather
their real and imaginary parts, treating the two separately. They define characters
of I tr
\I unr.

It is clear from (8.6) that for a form ω of the third kind and an idele in I unr the
value of (ω, f )R is ∏

x

( fx f̄x)
inx/2 =

∏
x

exp(inxax)

where nx is the residue of ω at x , the only constraint being
∑

x nx = 0, and where

fx = exp(ax + ibx).
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For the imaginary part we obtain

∏
x

(
fx

f̄x

)nx/2

=

∏
x

exp(inx bx).

These together yield a complete set of characters of I tr
\I unr. The differentials of

the first kind yield of course the trivial character.
All that is left to show is that the real and the imaginary parts of all differentials

yield all characters of I tr, the differentials of the third kind yielding the trivial
character. This is clear from formula (7.4)

One point of view, the analytic, has been explained. Although it is not the
immediate issue in this prologue, it is important to explain how the geometric
theory and the notion of Hecke eigensheaf accommodate the same — or similar —
structures. It seems to me that with some of these matters, whether geometric or
analytic, one is walking a fine line between the manipulation of definitions and
genuine theorems. So there is reason to be uneasy. One goal, here and in the
following section, is to offer, at least conjecturally, a precise description of the
group A in the global geometrical theory. For its abelian quotient this will be, almost
inevitably, a reformulation of classical results for abelian integrals, well understood
by specialists and, to some extent, familiar to all. We have just rehearsed those
necessary for the analytic theory. I found that there was a kaleidoscopic variability
in the way these results presented themselves. I hope I have finally arrived at a stable
configuration of the constitutive elements. I now describe briefly the geometric
theory, but without attempting to include ramification. In the analytic theory, the
parametrization by PX = Bun1(X) is optional; it seems, on the other hand, to be
intrinsic to the Assertion.

The Hecke eigensheaves are supported, according to the definitions of [CFT]
on Bun G, thus in the context of G = GL(1) on Bun= Bun1. This is also a double
coset space of G(AF ), namely

B= G(F)\G(AF )/K ,

where F is the field of algebraic functions on F , K =
∏

x∈X Kx , where Kx =G(Ox)

for almost all x but for a finite number of places, thus for x ∈ S, Kx lies between
G(Ox) and a congruence subgroup {g ∈G(Fx) | g≡ I (mod zn

x)}, n ∈N. Of course,
G(AF )=

∏∐
G(Fx). In [CFT] — for Bun G itself — the set S is taken to be empty,

but this can scarcely be necessary, and it must be possible, with just a little care, to
incorporate the congruence conditions into the discussion. They may even simplify
matters, because the introduction of a level structure can remove, I suppose, the
vexing complications introduced by stacks.
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Hecke eigensheaves accommodate many possibilities because they are sheaves,
namely perverse sheaves, but for our purposes here, which is just to make the
connection between the geometric theory and the analytic theory, we can take these
perverse sheaves to be a local systems of dimension 1, thus line bundles with a
connection or locally distinguished constant sections. According to my innocent
reading of the notion of perverse sheaf, these are the simplest possibilities. A
possibility at a higher level would be the flat structure given not by differentials
of the first kind, but by differentials with singularities. Whether they have to be
singularities with integral residue, so that the sheaves are single valued locally, I am
not yet certain. Perverse sheaves with support are outside my range of experience,
as is the extension of a local system over the complement of a proper subvariety to
a perverse sheaf over the whole variety. For a first explanation of the notion of a
Hecke eigensheaf and its relation with geometric automorphic forms — in the more
general form envisaged as functions on F×\IF — differentials of the first kind
are adequate. The rest the reader can discover on his own. We shall incorporate
ramification into the discussion only in so far as necessary to make the ideas clear,
perhaps not at all. It is important to understand that the complexities introduced by
ramification are an essential feature of the theoretical structure even in the geometric
theory, but that the notion of a Hecke eigensheaf as such is of interest in itself and
that its extension to the ramified context offers only a very modest addition to one’s
intuitive understanding.

In the context of line bundles, we consider the Picard group P, which is the
moduli space for line bundles. Given a line bundle L on X , thus a point in P, and a
point x ∈ X , we can create a bundle Lx on X by modifying the notion of a section
of L in a neighborhood of x . If the local coordinate near x on X is taken to be z,
z(x)= 0, then the sections of the modified bundle Lx are the sections of L divided
by z. As a part of the construction of P as an algebraic variety, which is, of course, a
core element of the theory of algebraic curves, the map h from X×P to itself given
by x×L→ x×Lx is algebraic or, if one prefers, holomorphic, with a holomorphic
inverse. A perverse sheaf K on P can be pulled back to X ×P and then transferred
by h to one on the same space. For our purposes at present, this perverse sheaf
need be nothing more than a line bundle provided with a local notion of a constant
section, thus a local system, but it is best to be aware of the possibilities. I denote
the new sheaf by h∗K. The sheaf K is called a Hecke eigensheaf with respect to a
local system E on X if

(7.26) h∗K= E ⊗K.

For those who, like me, are not fully at ease with contemporary mathematics, I recall
that a local system is also a perverse sheaf. For n = 1, the Assertion is that, given
E , we can find a K that satisfies this equation.
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The intuition is clear. Translating within P by the action of x ∈ X , we modify K ,
but not in a way that can be detected locally, not even locally over X , although it can
be detected globally over X . It is difficult, however, not to become entangled in the
various strands of the geometry. The connected component P0 of the Picard variety
parametrizes bundles of degree 0 and differs only slightly from the full variety, but
it differs in an important way. The homology and cohomology groups of P0 over Z

and C are the same as those of X in degrees 0 and 1. So, in the following form the
first part of Diagram I applies to both X and P0,

(7.27)
{0} H 1(Z) H 1(C) H 1(C×)

{0} H 1(Z) H 1(O) H 1(O×)c1=0,

where in the lower right-hand corner only those elements with Chern class equal to
0 are allowed, thus line bundles of degree 0.

Consequently, in the case of P0, we may continue to consider local systems on
P0 as line bundles together with a differential form of the first kind. Local systems
on P — the only kind of perverse sheaf that I want to consider here — are just pieced
together from local systems on its various components. Different components are
linked by (7.26), which appears in [CFT] as Equation (3.9). Let Pn be the elements
of P of degree n, n ∈ Z. The comparison (7.26) effectively compares a sheaf on
the connected component Pn on the right with the same sheaf but over Pn+1 on the
left, but on both sides there is an extra parameter, one of which, that on the left, is
modifying the sheaf, while the other does not. So if we apply the equality twice,
once in one sense, once in the other, and take the varying parameters into account,
we see that we are imposing a condition on K, a condition that is described by E .
All we need to do is ensure that the condition is satisfied as we pass from 0 to 1 and
then, back again, from 1 to 0. That takes care of the necessary equality at the level
0, and then (7.26) routinely takes us through the other integers n =±1,±2, . . . .

From the identity of (7.27) for X and P0, we may identify a line bundle with
Chern class 0 on X and with one on P0 and a flat connection on the first with one
on the second. How does this function? We denote the construction in which rather
than admitting a pole of order 1 at x , we add a zero, passing from L to L−x and
introduce the corresponding map from X ×P to P by h′ : x×L→ x×L−x . Then
y× x ×L→ y× x ×Lx−y takes X × X ×P0 to P0 and (7.26) is replaced by an
equation for the restriction K0 of K to P0,

(7.28) h′
∗
h∗K0

= E−1
⊗ E ⊗K0

on X × X ×P0. The notation Lx−y is simply a more elegant, and perhaps more
suggestive, way of writing (Lx)−y .
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To prove (7.28) we need to know:

(?) The jacobian, thus the group of divisors of degree 0, is identical with the
elements of degree 0 in P, this identification being given by mapping the
divisor δ =

∑
i ±xi , xi ∈ X to the line bundle Lδ whose sections are functions

f with div f + δ ≥ 0.

(??) The isomorphism between the various cohomology groups appearing in Dia-
gram I on the one hand and (7.27) on the other can be obtained by pull-back
from x→ Lx−y with a fixed y and a fixed L.

So (7.28) is simply the assertion that E is the pull-back of K. It seems to be much
ado about nothing, but that would be, I suspect, a view that failed to appreciate the
marvels of the theory created by Abel, Jacobi and others.

This discussion suggests that, at least for GL(1), one neither wins nor loses by
working with the arithmetic/analytic structures rather than the geometric, but it does
not suggest to me a direct equivalence. The space Bun1(X)=P is implicated in an
essential way in the statement of the (geometric) Assertion. In the analytic theory
Bun1(X), or rather its connected component, appears as an optional enlargement of
the group of characters. There is one respect in which the analytic theory appears
to offer an advantage: the description of the group A. This description, which shall
be formulated and verified for GL(1) in this section, and for general quasisplit G
in the following section, but only as a conjecture that will not be entirely precise,
has to serve as my apology for an irritatingly lengthy rehearsal of familiar classical
material and the modern geometrical viewpoint.

For the local theory, an analytic theory, the group to be parametrized is formed
by the characters of F×x . Apart from the ambiguities in the extension of diagram
(7.5), the parametrization is given by differentials. So, to be as precise as possible,
because we are (almost!) dealing with definitions rather than theorems, just as the
characters of GL(1, Fx) are identified with homomorphisms of the Weil group into
GL(1) in the local arithmetic, so characters of GL(1, Fx) (or, at first, GL(1,Ox))
are associated with differentials ω with values in the Lie algebra of GL(1) over Fx ,
or rather with their principal parts. These form a group and should be regarded
as the abelian form Ax of the local Weil group in the geometric context, with
multiplication given by addition of differentials, except that the extension of �x to
�̃x of diagram (7.5) is needed to complete the construction.

Globally, we have introduced a similar relation between differentials and char-
acters, except that there is no longer a question of discarding the regular parts of
the differentials. Moreover, the characters are not characters of idele classes IF

but of an enlarged group F×\IF . Multiplication of characters becomes addition of
differentials. It is this group, or rather an extension of it by the group of characters
of the group P0

\P ' Z, that functions as the abelianized form Aab of the group
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AF . So it is an analogue of the abelianized Weil group with multiplication given by
addition of differentials,

(7.29)
d f
f
= ω1+ω2.

I add that class field theory has accustomed us to identify, in the arithmetic theory,
the abelianized form of the Weil group with IF and the Weil group itself with a
subgroup of the Galois group. There is a merging of definition and theorems that,
if we are not careful, obscures for us the accomplishments of the past.

Before turning to the theory for a general group, I remark that I may have found
partial answers to two questions while struggling not with proofs, but just with the
formulation of conjectures and assertions in the geometric theory: (i) what are the
respective merits of the geometric and analytic standpoint? (ii) what is the interest
of the geometric theory in itself, thus what are the principal theorems or conjectures,
independently of any relation to quantum field theory? The response to the second
question is best left to §9. The response to the first question is tentative, especially
as there are a number of clumsy aspects to the analytic theory for a general group
and even for GL(1). The difficulty with the geometric theory is that there are so
many possibilities that they are never exhausted. In the theory of Fourier transforms
there are many possibilities: the spectral theory for square-integrable functions;
Paley–Wiener theorems; theorems related to Schwartz distributions of various sorts;
the Laplace transform. I am inclined to take the spectral theory as central. For
the geometric theory, there is a similar difficulty. What is the core problem? My
hope for a spectral theory is that one could formulate a clearly defined spectral
problem, thus an L2-problem — differential operators with boundary conditions —
whose solutions on BunG could be regarded in at least some respects as a definitive
formulation of the existence problem for Hecke eigensheaves: an eigensheaf (or
eigenfunction) K= AutE on BunG with eigenvalue a L G local system E on X is a
pair characterized by a certain set of conditions on E and by the relation between
E and K.

The eigenvalue — in a sense like that of the geometric theory — is exp(i Reω). It
is Reω (or Imω) that is characterized by a differential equation, as the real part of an
analytic function it is harmonic outside of the singularities and with circumscribed
behavior at the singularities, for the residue is integral. Notice, in passing, that
we can recover Imω or ω— up to an unimportant constant from Reω— and the
Cauchy–Riemann equations. The function Reω is moreover implicitly subject to
a boundary condition. We have made the boundary condition more flexible, even
removed it, by introducing ZR (or ZI ), but that was necessary only to keep up with
the geometers. The boundary condition is a condition not on Reω as a function on
X but on the function (sheaf for the geometers) associated to it on K. Boundary
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conditions on ω itself would double their number and yield an overdetermined
eigenvalue problem.

When we allow singularities, K is replaced by a quotient IF/
∏

x Kx , where
Kx =O×x for almost all x , but for a finite number of x it is the set of fx ∈O× that are
congruent to 1 modulo some positive power znx

x of zx . It may not be immediately
apparent, but the definitions (7.13a), (7.13b), and the formulas for (ω, · )R , (ω, · )I

are an expression of the condition (7.26), although that condition refers more to
the characters defined by ω = Reω+ i Imω. In the geometric theory it is only
the local conditions on ω that matter, not the boundary conditions or conditions of
periodicity. As a consequence, or so it seems to me, there is for a general group
some difficulty in formulating the problem of existence.

It is difficult to recognize the equation (7.26) in the conditions (7.13a) and
(7.13b) for at least three reasons: (i) the condition (7.13b) is a matter of conditions
of periodicity; (ii) the final term of (7.13a) is constant on connected components of
Bun1, so that in the geometric or sheaf-theoretic context it has no meaning; (iii) the
first term is not present when ω has no singularities. Although the geometers are
well aware of the possibility of singularities [FG], they are not studied in [CLG].
Even when singularities are present, (7.26) is likely to remain, in that form, the
telling geometric condition.

One of the purposes of the next section is to begin the search, for a general
G, for a construction of automorphic representations analogous to that given for
GL(1) by (ω, · )R or (ω, · )I . Since these are unitary characters, we have to expect
unitary characters (representations) for a general group as well. The middle term
of expression 7.12.a controls the unramified contribution. The first term controls
the character on each O×x . The condition that the residue nx of ω at each point x
be integral implies that (ω, · )R and (ω, · )I yield respectively r in or eimn , where
n = resq j ω, f (q j )= reim .

8.a. The geometric theory for a general group (provisional)

Such a theory is not yet available even in embryonic form, although some reflections
are suggested by the previous constructions. As I observed in the previous section,
these constructions are perhaps not merely my interpretation of those explained
in [CFT], but are implicit in the proof of Weil’s theorem. The relation between
Lemma 7.1 and the calculation that yields it differ on the face of things from formula
(7.28) and its proof. Their interpretations are also informed by a different impulse:
sheaves are replaced by differential equations. For regular holonomic systems, there
is presumably an equivalence available [HTT]. After the admission of differentials
with more general singularities, this may no longer be so, although that is unlikely.
My impulse arises, however, from other sources: from a greater familiarity and
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perhaps even greater ease with differential equations than with sheaves, or perhaps
from a suspicion that, important, powerful, and fascinating as they are, in recent
decades an excessive, sometimes inappropriate, appeal to sheaves has, inadvertently,
had an unhealthy influence on some parts of mathematics or, rather, on some of its
practitioners; and from an attachment, already expressed, to representation theory,
as introduced, in a remarkable, but little read, sequence of papers by Frobenius,
in response to a suggestion of Dedekind and then developed by several major
mathematicians of the twentieth century.

For a general group G, even if it is split, as I suppose in this text, there is not only
no global geometric theory yet available, there is also no local theory. Moreover,
there is an extra question. What is the relation between, on the one hand, the
functoriality of the geometric theory, the identification of the group A = Ageom,
and a description of its properties and, on the other, the Langlands duality featured
in gauge theory? Are they one and the same, or are they different? That they are
different, occurred to me on reading a brief, but instructive and suggestive letter, that
I received from David Nadler in March of 2011. Nadler writes: “The 6-dimensional
theory Z depends not on a group G but only on the combinatorics of G in a way
that is unbiased towards G and its dual group G∨.” This is not so for the theory to
whose preliminary exploration this section is devoted: G and L G (or G∨) do not
play symmetric roles! Moreover, there is no 6-dimensional field theory in sight. So
there is a great deal left for me, and perhaps not for me alone, to understand. It will
be best not to broach this question until Section 9, yet to be written. It requires a
good deal of supplementary reflection, informed by some knowledge of field theory.

Indeed, even my attempt to broach the purely mathematical questions turned
out to be premature. One of the principal mathematical problems of the geometric
theory, perhaps the principal one, is the identification of the geometric galoisian
group Ageom in terms of differentials, thus the general form of the identification of
its abelian quotient in the previous section. This is by no means a simple matter, for
it demands a serious understanding, not merely a formal understanding, of moduli
spaces for vector bundles and G-bundles, of the differential geometry of these
bundles as in [Si], and of the relation between D-modules and perverse sheaves.
These are all very rich subjects, of which I could not hope to acquire an adequate
understanding before the deadline imposed by the editor of this volume, if ever. So
I was forced to content myself with some provisional suggestions just to intimate
to the reader what I have in mind. As will be almost immediately evident, there are
major unresolved difficulties left open.

The identification of Ageom entails functoriality for the geometric theory. If there
is some form of reciprocity — different as our title implies from functoriality — in
the geometric theory, I do not know how to formulate it. The geometric Langlands
program as envisioned in [KW] contains, I suspect, much, much more than the
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identification of the geometric galoisian group Ageom in terms of differentials
envisaged in this section. It may, indeed, have little relation to it. It does contain a
kind of duality, but it may be best to distinguish this duality from the reciprocity
in the arithmetic theory and from any concrete identification of Ageom, although it
is clearly related to this. It had been my intention to begin, in a ninth section, the
attempt to understand [KW] and, more generally, the many and various contributions
to the geometric theory and its relation to quantum field theory, but that, as I have
already confessed, is matter for an even more distant and more uncertain future.

In Section 7, the emphasis was on functions on BunG =PX , G=GL(1); sheaves
were not emphasized. There is, indeed, a major difference. The forms ω were
parametrized by a local system and then by a second parameter in H 1(Z). Two
elements of H 1(R) in the first line of Diagram I that differ by an element of H 1(Z),
define isomorphic local systems or, viewed from another angle, an automorphism of
a given line bundle replacing one local system by another, thus, in terms of one of
the local systems multiplication of the flat connection by the character exp(i Reω),
where the exponent is constrained to be the imaginary part of a holomorphic function.
So there is a mixing of a real (unitary) theory and a complex (holomorphic) theory.
This brings with it advantages but also difficulties. One of the difficulties for
me is that — as is clear from [Si] and the works there cited — the mixing for a
general group demands very serious differential-geometric preparation, not merely
the Cauchy–Riemann equations. One advantage, already explained, is that, in the
analytic theory, we can hope to formulate the problems in the context of a spectral
theory in an L2-space.

I expected, on first reflecting on the matter, that, as for GL(1), the group Ageom

will be given by a kind of inverse limit of differentials with values in Lg, the inverse
limit being taken over ω→ ω′, where ω′ is the image of ω under a homomorphism
L G→ L G ′ in the sense of L-groups. So the inverse limit is over the group, the direct
limit over the differentials. In order to deal with all automorphic representations,
we would have to admit, as for GL(1), differentials with singularities. Whether
there should be restrictions on the residues similar to those we described for GL(1)
can be left moot. Even for those without singularities, there is a great deal of theory
to understand.

As an aside, I mention that, following [CFT], I shall take the group action on
G-bundles and on L G-bundles to be on the right. So, once we have fixed a local
trivialization, the differentials generate along curves a function with values in L G
according to the differential equation dg · g−1

= ω.
My first expectations were perhaps, in the light of our understanding of the

geometric theory, too naive, too influenced by the construction of the geometric
Aab. If there is homomorphism L H → L G, then the differential with values in
ĥ transfers to ĝ, so that if a parametrization of automorphic representations or
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forms in the geometric theory is established, functoriality will be an immediate
consequence. In the arithmetic theory the definition of the galoisian group Aarith is
based on functoriality and on the notion of a hadronic representation, itself based
on the properties of L(s, π, ρ), ρ : L G→ GL(n). This assumes, in particular, that
in establishing functoriality we have also completely understood the nature of the
Ramanujan conjecture and the Arthur parameters. Although I have alluded to these
in the arithmetic context, I have not attempted any, even conjectural, definition in
a geometric context. This would be reckless without more experience with the
classification of bundles for specific groups on specific curves, with the parameters,
and with the corresponding automorphic representations. We need more concrete
assurance that the parametrization proposed here is correct and some insight into
its specific consequences. There may be surprises. This is one of the many reasons
that this section is provisional. In one way or another, the parameter obtained from
ω on transfer to GL(n) under an irreducible ρ will be a direct sum of irreducible
parameters, ωi , for GL(ni ),

∑
i ni = n,

(8.1) ω→
⊕

i

ωi .

The initial parameter ω would be hadronic if there were no i for which ni = 1 and
ωi is trivial.

There are also many other many other matters to consider. We have somehow
to reconcile the unitary and holomorphic (or meromorphic) forms of this equation.
I am not yet in a position to do so and am uneasy about suggesting definitions
that I do not understand. For the moment, the definition of Ageom remains, at best,
imprecise. To make it clear that anyone who, like me, has little or no differential
geometrical experience has much to learn, I quote one of the first paragraphs in [Si],
which treats GL(n), which can for us be regarded as typical. Although our concern
is with complete nonsingular curves, the statement in [Si] refers more generally
to smooth, projective X . “A harmonic bundle on X is a C∞ vector bundle E with
differential operators δ and δ̄ and algebraic operators θ and θ̄ (operators from E
to one-forms with coefficients in E), such that the following hold. There exists
a metric K so that ∂ + ∂̄ is a unitary connection and θ + θ̄ is self-adjoint. And
if we set D = ∂ + ∂̄ + θ + θ̄ and D′′ = δ̄+ θ , then D2

= 0 and (D′′)2 = 0. With
these conditions, (E, D) is a vector bundle with flat connection, and (E, ∂̄) is a
Higgs bundle: a holomorphic vector bundle with holomorphic section θ such that
θ ∧ θ = 0.” Of course, for a surface some of the assertions are superfluous. This
statement is followed by a theorem whose first sentence I repeat. “There is a natural
equivalence between the categories of harmonic bundles on X and semisimple flat
bundles (or representations of π1(X)).” I observe that this statement does not take
into account a possibility that we encountered for GL(1): automorphisms of the
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unitary bundles and associated automorphic forms.
There are so many questions in the geometric theory, both local and global, that

have never been touched, that I am more than a little uncertain of the similarities and
differences between it and the arithmetic theory. Perhaps we should begin by stating
clearly the difference between the objects in the analytic theory and the objects in
the geometric theory. They are all constructed from the curve X , a set of points, but
also a Riemann surface and the “set” BunG(X) of G-bundles on X , with or without
the extra structure that allows the introduction of ramified automorphic forms. The
set BunG may be identified with G(F)\G(AF )/

∏
x∈X G(Ox) (see [CLG]) or, if

there is extra structure, with G(F)\G(AF )/
∏

x∈X Kx , where Kx is equal to G(Ox)

for almost all x , say x /∈ S, S finite, and, for example, equal to Gnx
x for x ∈ S, where

nx is a nonnegative integer and Gnx
x the set of elements in G(Ox) congruent to 1

modulo m
nx
x , where mx is the maximal ideal in Ox , but it may also be constructed

geometrically.
Although these two descriptions yield the same two sets, they yield functionally

dissimilar objects. As identified with G(F)\G(AF )/
∏

x∈X G(Ox), BunG(X) is a
set in the familiar sense; constructed as a stack it has, essentially, the structure of an
algebraic variety, which can be recovered from that on the quotients G(Fx)/G(Ox),
a matter to which we shall return but not to examine it in depth. In the one context,
the appropriate objects are functions; in the others, sheaves. As we have seen, we
can expect — or hope — that for functions more precision is possible because more
structure is possible.

It is not clear where it is best to begin, perhaps by reviewing the very little we
know about the local theory, or, if one prefers, what we clearly do not know. Like
the theory over a number field or one of its completions, the analytic theory over the
function field and over its completions Fx is a theory about representations, usually
infinite-dimensional. The group G(Fx) has a sequence of decreasing subgroups:
G(Fx)⊃ Gunr

x ⊃ G tr
x , where Gunr

x = G(Ox), G tr
x = G1

x is the set of g in Gunr
x whose

power series expansion begins with the identity. These subgroups are of course
not normal, but we can consider, as a first, coarse classification locally, irreducible
representations whose restriction to one or the other of the subgroups contains this
or that irreducible representation. The most important are those whose restriction
to Gunr

x contains the trivial representations. Their theory is the theory of spherical
functions and characters of the Hecke algebra. We can admit all characters; we can
admit “tempered” characters; we can admit those characters that correspond over
a local arithmetic field to Arthur parameters, although Arthur parameters in the
geometric context are certainly not a topic to broach in this prologue. The theory
of spherical functions, a generalized form of the theory of elementary divisors, will
be, in many respects, the same for the geometric theory as for the arithmetic theory.
So unramified characters will be parametrized by a conjugacy class t in L G(C), or,
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even, if we assume, as we have done, that G is split, by a semisimple class in Ĝ(C).
We can take this class to be arbitrary and this corresponds to a geometric theory or
we can take it to lie in a compact form Û (R) of Ĝ(C) and this corresponds to the
tempered analytic theory, the adjectives “geometric” and “analytic” having for the
moment only the imprecise meaning suggested by various remarks in the previous
section.

In contrast to the arithmetic theory, the representations of the group Gunr
x /G tr

x
may be infinite-dimensional. There are two possibilities. We can consider either
representations of G(C) or the representations of its compact form U (R). As for
GL(1), when dealing with a higher-dimensional G we have to choose between
a holomorphic theory and an analytic theory. I choose, because of preferences
already acknowledged and for reasons already explained, the analytic theory. It
is not entirely clear what this implies even locally. The abelian theory suggests
that it is the representations of G(C) that we need. Although this is a noncompact
reductive group and the distinctions of §2 — the class of tempered representations,
the Arthur class, general representations whether unitary or not — may be pertinent,
it may be the finite-dimensional representations, these suggested because the trivial
representation certainly appears in the unramified theory, to which we should pay the
most attention. They can be holomorphic or antiholomorphic or some mixture of the
two. The usual (Langlands) classification parametrizes the tempered representations
by conjugacy classes of homomorphisms of WC =C× into L G, thus by z = reiθ

→

rλeiµ(θ) where λ is a real linear combination of weights of G and µ a weight
of G, the pair (λ, µ) being given up to conjugation up to the action of the Weyl
group. The holomorphic finite-dimensional representations correspond to unitary
representations of the unitary form of G and these correspond to homomorphisms
of U (1) into L G, thus to λ = 0. The similarity of the parametrizations of the
characters of the Hecke algebra (related to unramified representations) and of
certain representations of Gunr

x /G tr
x (related to tamely ramified representations) is

curious and gives pause for reflection.
It is suggested by the theory for GL(1)— and confirmed by various reflections,

although by no means certain — that a central role will be played by differentials
with values in the Lie algebra ĝ= Lg and their real parts, taken in an appropriate
sense, which I hesitate to attempt to make precise without a better understanding of
the differential geometric theory [Si]. They will define the local system E of the
Assertion of §7 or of the related Conjecture that follows in this section. What are
the restrictions on these differentials and what do we mean by their real parts? The
first question to be answered is what the nature of their residues must be, for — as
I suppose — the residue at a point controls, when their is no higher order singularity,
the representation of Gunr

x /G tr
x . So far as I know, the representations of Gunr

x /Gn
x ,

n > 1, have been little studied, nor, of course, have those of G(Fx)/Gn
x , n ≥ 1. The
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discussion in this section is predicated on the hypothesis that they are controlled by
the singular part of a Laurent expansion of a differential ω with values in ĝ. The
residue, thus the coefficient of 1/z, will be an element of ĝ. The demand that it be
integral is compatible with our discussion of the tamely ramified parameter µ in
the preceding paragraph.

The group G tr
x is an infinite-dimensional Lie group. We shall only be con-

cerned with representations of the finite-dimensional quotients G tr
x /Gn

x . It is a
finite-dimensional simply connected nilpotent Lie group and its irreducible unitary
representations are classified by the method of coadjoint orbits [VE], thus by
conjugacy classes in the dual of the Lie algebra over C of G1

x/Gn
x . Thanks to the

sequence G1
x ⊃ G2

x ⊃ · · · these coadjoint orbits form an increasing sequence of
sets. This can be interpreted to state that they are parametrized by the singular parts
of local differentials ω at x with residue 0 and values in ĝ.

These facts together suggest, but hardly prove, that the local parametrization for
a general group is very much like that of the diagram (7.5) for GL(1), although
I do not yet know how to define in general the patching of conjugacy classes of
GL(C) that appears in its upper line. This suggestion will be taken as an hypothesis
for the remainder of this section. I have made no attempt to prove it. The local
theory is only a part of the unresolved difficulties, and this prologue, even the essay
Functoriality and Reciprocity that I hope will follow it, is intended to be no more
than a first exploration of possibilities.

As with the arithmetic theory, the major issues in the geometric theory will be
global. They may not be so difficult as for the arithmetic theory, but the theory of
vector bundles or of G-bundles on curves over C is very rich and for me largely
unfamiliar, so that I could very easily overstep the limits of my knowledge, which
are severe. It would certainly be presumptuous for me to say too much at this stage,
but I do want to sketch the possibilities. Although the problem of describing the
global geometrical galoisian Ageom may be more accessible than that of describing
Aarith, we can expect it to be difficult and to require a good deal of experience and
technical skill. It is my hope that the arguments for GL(1), especially the proof of
Lemma 7.1 in which the calculus of residues is applied, will serve as a model.

The principal issue is to understand the unramified theory or, better, the theory
at the unramified places. For the unramified theory, the basic object is

(8.2a)
G(F)

∖ ∏∐
x∈X

G(Fx)
/∏

x
G(Ox)= lim

−→T
GT (F)

∖ ∏
x∈T

G(Fx)
∏

x /∈T
G(Ox)

/∏
x

G(Ox),

GT (F)= G(F)∩
{ ∏

x∈T
G(Fx)

∏
x /∈T

G(Ox)
}
,

where T can be taken as large as appropriate. If there is ramification, the first line
will be replaced by
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(8.2b) G(F)
∖ ∏∐

x∈X
G(Fx)

/∏
x

Kx = lim
−→T

GT (F)
∖ ∏

x∈T
G(Fx)

∏
x /∈T

G(Ox)
/∏

x
Kx ,

where Kx is open in G(Ox) for all x and Kx = G(Ox) for x /∈ S ⊂ T .
The set (8.2a) is BunG and the set (8.2b) is BunG with frills. There are expla-

nations to be given because BunG is, whether as a variety, as an injective limit of
varieties, or as a stack, an algebro-geometric object. For us, however, who want
to make the connection with the geometric theory of automorphic forms, it is also
simply a set. Whether as a variety or as a set it is a quotient. We begin in the
unramified context with the trivial G-bundle, which we modify by an element of∏

x∈T gx , gx ∈G(F). If we take gx = 1, x ∈ T ′−T , T ′⊃ T , this can be regarded as
an element of

∏
x∈T ′ G(Fx)/

∏
x∈T ′ G(Ox), so that we have an injective family of

sets. Since each gx is defined in a neigborhood of x and regular in this neighborhood
except at x and since we can enlarge T to T ′, we can suppose these neighborhoods
cover X , so that the collection {gx} defines a G-bundle. We can even suppose that
gx ∈ G(F) because the set gx G(Ox)∩G(F) will not be empty, and we can replace
gx by an element of this set. The choice does not affect the bundle. The conclusion
is that any choice of g ∈

∏∐
G(Fx) defines a G-bundle on X and that all G-bundles

are obtained in this way.
Thus BunG is constructed as a limit of the quotient of∏

x∈T

G(Fx)/G(Ox)

by GT (F). Each point of G(Fx)/G(Ox) represents a modification of BunG at the
point x ; it is an extremely complicated variety, the direct limit of finite-dimensional
subvarieties. Thus, starting from single point of Bun G, the trivial bundle, and
repeatedly modifying the bundle, each modification at perhaps a different point, we
can reach any bundle. So there are two sources of complexity in the construction
of BunG . They are the modifications and the divisions by GT (F). It is well to
give some examples for vector bundles, thus for the groups SL(n) and GL(n), to
see how the parameters in G(Fx)/G(Ox) and the parameter x together lead to very
complex modifications that may, because of the division by GT (F), yield a bundle
isomorphic to that with which we began. The topological or geometrical structure
is a combination of the double parametrization: by the parameter of x ∈ X and by
the coordinates on G(Fx)/G(Ox). For GL(1) this double parametrization is simple
because G(Fx)/G(Ox)' Z. Thus, as in the second term on the left of (7.15), the
only relevant parameters are pi , basically a point in a neigborhood of p, and the
integer ordpi ( f ). For groups of higher dimension, the parameters are far more
complex.

Consider G = GL(n) and, first of all, the structure of Bunx = G(Fx)/G(Ox)

as a space or variety, whose dimension is infinite, on which G(Ox) acts to the
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left. If z is the local coordinate at x , the representatives of the double cosets in
G(Ox)\G(Fx)/G(Ox) are the matrices

t (m1, . . . ,mn)=


zm1 0 0 . . . 0
0 zm2 0 . . . 0
0 0 zm3 . . . 0
...

...
...

...

0 0 0 . . . zmn

 ,

where the mi are integers, implicitly subject to the condition m1 ≥ m2 ≥ · · · ≥ mn .
The variety Bunx is a union of the connected components Bunx,m defined by the
condition

∑
i mi = m. Multiplying by a scalar matrix, we replace Bunx,m by

Bunx,m+kn , k ∈ Z. We shall consider some examples, taking small values of m and
n.

For m = 0 and all n, there is a distinguished point,

q0 = G(Ox)t (0, 0, . . . , 0)G(Ox)/G(Ox).

If n = 1, it is the only point in Bunx,0. In general,
(8.3)
Bunx,m1,...,mn =G(Ox)t (m1, . . . ,mn)G(Ox)/G(Ox)'G(Ox)/P(m1,m2, . . . ,mn),

where
P(m1,m2, . . . ,mn)= G(Ox)∩ (tG(Ox)t−1

∩G(Ox))

= {(ai, j ) � ai, j ≡ 0 (mod zmi−m j )},

with t = t (m1, . . . ,mn).
As in [CFT], we can try to grasp the full space G(Fx)/G(Ox) by writing the

elements of G(Fx) as products nak, where n is unipotent and upper-triangular, thus
n ∈ N (Fx), a is a diagonal matrix T = t (m1, . . . ,mn) = diag(tm1, . . . , tmn ), and
k ∈ G(Ox). The connected components are then given as algebraic varieties by

(8.4) N (Fx)/(N (Fx)∩ T G(Ox)T−1)×G(Ox),

which is closed in the full variety. The structure of the first factor has to be explained,
but it is intuitively clear. For example, if n = 2 and m =m1−m2, then a full set of
representatives for the quotient in (8.4) is given by

(8.5) n(p)=
(

1 p(t)
0 1

)
,

where p is a finite Laurent series with an indefinite number of nonzero terms of
negative degree, p(t)=

∑
k<m ak tk . If p(t) is identically 0, then n(p)T lies in the
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double coset with parameter (m′1,m′2), where {m′1,m′2} = {m1,m2} and m′1 ≥ m′2.
Otherwise, let l be the least k for which ak 6= 0. Then

(8.6) n(p)T =
(

tm1 tm2+lα(t)
0 tm2

)
,

where α(t) is a polynomial with nonzero constant term. If m2+ l ≥min{m1,m2},
this lies in the same double coset as when p(t)= 0, otherwise it lies in the double
coset with parameter {m′1,m′2} = {m1− l,m2+ l} and m1− l ≥ m2+ l. Since we
can choose l to lie as far to the left as we like and then let all the coefficients of
α(t) approach 0, we conclude that one coset can lie in the closure of many others.

On the other hand, some of the double cosets (8.3) are closed. If m1 ≥ m2, the
relation between the parameters at the end of the preceding paragraph is m1− l ≥
m1≥m2≥m2+l. If (m1−l)−(m2+l)= 1, this is out of the question. If m2≥m1,
the relation is m1− l ≥ m2 ≥ m1 ≥ m2+ l and there is the same difficulty. So the
set Bunx,1,0 is closed.

There are clear relations of containment between the various groups P(m1,m2,

. . . ,mn), that yield mappings between the various sets Bunx,m1,...,mn or, more
generally, between the analogous varieties for a general G. They are usually
referred to as a blowing-up or a blowing-down, or as Hecke correspondences, or as
modifications. It is certainly appealing and useful to keep the geometric language
and the geometric context in mind, but we shall not always do so. A partial order
on the weights of the usual kind and, for example, arguments along the lines of the
discussion of the previous paragraph provide a partial order by inclusion on the set
of closures Bunx,τ of the varieties Bunx,τ = G(Ox)τ/Gal Ox) and these closures
are complete. The element τ is a matrix t (m1, . . . ,mn) for GL(n) and an element
in, say, a split torus for a general (split) G. The varieties themselves are open in their
closure. It is possible — it is so already for GL(1)— that we cannot find a cofinal
set of Bunx,τ , but we can find a cofinal family of finite unions

⋃
i Bunx,τi . So we

can introduce the union of these varieties to obtain a variety Bunx =G(Fx)/G(Ox),
infinite-dimensional but the union of closed, finite-dimensional subvarieties.

This is very likely all familiar. We use it to construct the global BunX . Let T be
a finite set in X and {τx , x ∈ T } a collection of τ . Consider

(8.7)
∏
x∈T

Bunx,τx ⊂

∏∐
Bunx,τx ,

where for the imbedding of the left side in the right, it is understood that τx = 1,
x /∈ T . In principle, we can fix T and take a union to arrive at

(8.8a)
∏
x∈T

G(Fx)/G(Ox),
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which we can divide by

(8.8b) GT (F)= G(F)∩
{∏

x∈T

G(Fx)
∏
x /∈T

G(Ox)

}
,

but this will lead to a discrete object. There is a second, more important limit
implicit in (8.8a). We can first fix the number of elements in T = {x1, . . . , xn} ∈

X× . . . X = X (n), so that we introduce n supplementary parameters, as in the theory
of the Picard variety, although repetitions are not necessary. They are already at
hand in (8.8a). It is presumably better to take the limits in the order opposite to
that suggested in (8.2a) with a finite number of double cosets at first but with all
possible T . Then, as for GL(1) and the Picard variety, we may reach the limit before
exhausting the possibilities offered by (8.8a). This construction poses problems of
various kinds, with stability, stacks and with other matters. I am in no position to
deal with them at the moment and prefer to pass on to another issue, the central
question of this section. So I simply take them as solved or, at least, solvable. In
essence, however, we arrive at the algebro-geometric form of the set appearing as a
limit in the modified form of (8.2a),

(8.8c) lim
n

⋃
|T |=n

GT (F)\
∏
x∈T

G(Fx)/G(Ox).

It appears that, in spite of its formidable appearance, the algebro-geometric result
is finite-dimensional. Indeed, for some curves X , it is, I find, strangely simple [At;
Le].

The central question for us here is whether the method used in the previous section
to construct a character from the differential form ω can function for nonabelian
groups. There are three issues raised by formula (7.13a) and (7.13b): the periods
that appear in (7.13b) and whose existence was accommodated by the introduction
of ZR and ZI ; the contributions of the singularities of ω; the contributions of the
singularities of f . It is clear thatω in both its holomorphic (in general, meromorphic)
and unitary form will yield a homomorphism of the fundamental group into G(C)
or into its unitary form, thus a nonabelian form of the periods. Any study of this
will have to wait until I better understand the issues arising from a study of [Si].

We do not yet understand the local ramified theory. So we have to exclude, at
least provisionally, all ramification. One possibility is to assume that ω itself has
no singularities. Another possibility to keep in mind is that we can fix a finite set
S ⊂ X , which T is always supposed to contain, and, for x ∈ S, fix gx ∈ G(Fx) and
a nonnegative integer nx and work not on (8.8a) but on

(8.9)
∏
x∈S

gx Gnx (Ox)
∏

x∈T/S

G(Fx)/G(Ox)
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and to divide not by (8.8b) but by the subset of this set consisting of g for which
ggx Gnx ⊆ gx Gnx , for all x ∈ S. If we work on the set (8.9), we are excluding the
effect of the singularities of ω, thus effectively imposing the condition of Lemma 7.1
that the singularities of f and ω be disjoint. So we are left with the middle term
of (7.13a).

What is the issue? For GL(1), the form ω leads not immediately but in connection
with the Abel–Jacobi theory to a Hecke parameter at every place and the identity of
Lemma 7.1 obtained from the residue theorem shows that the character constructed
as a product of the local parameters is an idele-class character. Apart from the
ambiguity already noted, which has to be resolved, the form ω should also give a
local parameter everywhere and thus local spherical functions φx (normalized, say,
to be 1 at the identity). The problem is to show that the local parameters together
yield an admissible global parameter. In other words, there is a compatible family
of functions fT (associated in some way to a perverse sheaf) on the varieties of
(8.2a), each fT being, first of all, a linear combination (perhaps in some general
sense — a direct image of some perverse sheaf) of left-translations of

∏
x φx and,

secondly, invariant under the group GT (F). The function fT once chosen — in
whatever way imagination suggests — integration around the outside of 4′ and the
residue, can with any luck, be used to show that it is invariant under GT (F). There
is, as will be apparent, a gulf here, maybe two, that I make, for the moment, no
proposal for bridging.

I had initially hoped that even if I was unable in this, the first part of the prologue,
to reach the relation of the geometric theory to quantum field theory, I would be able
to make a convincing suggestion about the construction of the mathematical theory,
thus about the construction of the group Ageom. The possibility of constructing it in
terms of differentials with values in Lg is suggested by the abelian theory and I had
hoped — and still hope — that one could prove the appropriate theorem with the help
of the residue theorem as for Lemma 7.1. There are encouraging signs, but there are,
as I have just explained, also obstacles: for example the full determination from the
differentials of the parameters of the spherical functions at each unramified place.
On the other hand, the example of elliptic curves [At] suggests that the moduli
spaces for G-bundles may be simpler, at least in some respects, than one fears.
Although I still had a few weeks grace until the deadline for submitting the paper,
I concluded in the face of this and other formidable obstacles that it would be best to
stop at the point I had reached, where an uncertain optimism was still possible, and
to give myself the leisure — more than a few weeks — to understand better not only
the spaces BunG and their differential-geometric and algebro-geometric properties
but also the quotients G(Fv)/G(Ov) and the geometrical spherical “functions”.

Certainly my limited understanding of the construction of BunG is a handicap.
There are two puzzles that I have already mentioned. The first is the construction
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of the local parameters µx ∈
L G for the spherical functions, defined only at the

unramified points. I have suggested that for the abelian theory they are to be
defined by the integral of the differential form as exp

∫ p
p0
ω = µpµ

−1
p0

, but without
being myself sufficiently clear of how µp0 was defined. In fact, for G = GL(1),
BunX = PicX =

⋃
n∈Z Pn and p0 ∈ X is to be interpreted as a point in P1, the

bundle attached to it being the trivial bundle modified by permitting a pole at p0.
The value µp0 is given by γ in formula (7.13a), thus by a supplementary parameter,
so that the parameter of the automorphic representations contains, in addition, to
the differential ω a complex number eiγ of absolute value 1. Until I understand
better the nature of differentials on X with values in L G and the structure of BunG ,
it is idle to make suggestions about the form of Ageom that are more precise than
that already made at the beginning of this section.

Although I prefer to fix my attention on the geometrical theory as a theory of
automorphic forms, thus on functions on BunG , it is still necessary to reckon with
algebro-geometric aspects of the problem. Geometrically, the Hecke algebra has, it
appears, to be defined geometrically. The double-coset space

G(Ov)\G(Fv)/G(Ov)

may be discrete, but G(Ox) and the spaces G(Fv)/G(Ov) are algebraic varieties, so
that convolution of two elements in the Hecke algebra, formally

∫
f1(gh−1) f2(h)dh,

has to be defined — so far as I can seen — not as an integral but in terms of direct
images of (perverse) sheaves under the mapping of (g1, g2) 7→ g = g1g2. I would
suppose that, if convolution is to be defined, the spherical functions will also have
to be interpreted as sheaves, again perverse, and as sheaves will not have support
in a compact subvariety of G(Fv) or G(Fv)/G(Ov). I am not absolutely certain
that we will need a formula for these sheaves, but suspect we will; I am also not
certain what form it will take. I take the existence of the formula, in some form, for
granted below. The necessary formula could very well be discovered and proved
by taking the theory over p-adic fields as a model. So far as I know this has not yet
been done. What we have to do, at least for the unramified theory, is first establish,
or at least surmise, what the local parameters are. Each of them is supposed to
be a conjugacy class in L G(C) or even, if a form of the Ramanujan conjecture
is valid, in the unitary form LU of this group, although my interpretation of the
results of [At] suggests that the possibility of Arthur parameters intervening has to
be kept in mind. It may be that some authors have reflected on the presence of the
distinctions familiar from the arithmetic context — tempered or of Arthur type — in
the geometric context.

The potential local parameters for a given differential form on hand, one has
to show that among the “linear combinations” of left translates of the associated
spherical function on (8.8a), a product — over T , a set that has to be allowed to
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grow larger and larger — of the spherical functions on the individual factors, there
is one invariant under the group (8.8b). I should think that to establish this it would
be a help to have an explicit formula for the spherical functions.

With the reader’s permission, I introduce an intuitive fashion of thinking, based
on our experience with spherical functions over archimedean and nonarchimedean
local fields. In the representation of G(Fv) (resp.

∏
T G(Fx)) on G(Fx)/G(Ox)

(resp.
∏

T G(Fv)/G(Ov)) each representation that occurs, occurs with multiplicity
one. We consider the representation with parameter µx or rather, at this stage,
with parameter

∏
T µx . We need to establish that it contains a vector fixed by all

elements of GT (F). For GL(1), this vector was essentially unique and could be
determined by integrating the differential. For a general group, we can expect,
because of endoscopy and multiplicity, both familiar from the arithmetic theory,
the unicity to fail.

We have, at the same time, to contend with something more serious. Functions
are not sheaves; sheaves are not functions. Rather they are not, even with the
Riemann–Hilbert correspondence, uniquely functions. As I have already made
clear, it seems to me that completeness theorems, to assure that we have in hand all
pertinent objects of some given sort, require something less ethereal than sheaves,
even than perverse sheaves. Nevertheless, for the sake of the argument I confound
briefly, in the following observations, functions and sheaves.

The object BunG(X) as defined in terms of (8.8a) and (8.8b) appears far too
large, far too coarse, to admit any analysis, but the goal of the theory of moduli
spaces as expounded in [Le] is to show that they are, in essence, algebraic varieties,
on which differential equations of various sorts can be introduced and studied, so
that the exclusive use of sheaves, as in [CFT] is not obligatory, not, in my view,
even to be recommended! The general theory does, however, differ from the abelian
theory in that a given parameter does not correspond to a single function — up to a
scalar factor — but to an infinite-dimensional space of functions, but many of us
are already familiar with this from the arithmetic theory.

So what are we to do, keeping in mind that we are working — initially — with
the group GT ? The function/sheaf for which we are searching will be a product
of spherical functions

∏
x /∈T φx times some linear combination of left-translates of∏

x∈T φx , presumably by elements in G F (T ). We cannot at first take an average
because G F (T ) is infinite, but also because, so far as I know, we cannot take
the average of sheaves. On the other hand, we might be able to calculate the
change in the function imposed by the translations by g ∈ GT (F) by adding up
the local modifications as an integral around the boundary of 4′ finding either
that the total change is 0 or that it permits an averaging. This is, at the moment,
where the problem stands. Nothing is certain, but there is a great deal on which
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to reflect!
At this point, I cannot be very much clearer about this proposal for constructing

Ageom. A few observations are, however, in order. It is useful, first of all, to compare
it with a conjecture in §6.1 of [CFT], although this conjecture is formulated only in
an unramified context.

Conjecture. Let E be an irreducible L G-local system on X. Then there exists a
nonzero Hecke eigensheaf AutE on BunG with the eigenvalue E whose restriction
to each connected component of BunG is an irreducible perverse sheaf.

The earlier Assertion is this conjecture for GL(n). Let me try to explain the
general form and its relation with our tentative proposal.

As will be obvious, I have been strongly influenced when composing this section
by the geometric and sheaf-theoretic formalism for the Hecke theory with which this
conjecture is expressed. This formalism is very elegant, but I did not understand the
intuition that informs it. Perhaps I still do not. Nonetheless, if I had not struggled
to interpret it in a perhaps more mundane but also more concrete analytic context,
it may never have meant anything to me at all. Implicit in the conjecture there are
conventions and conceptions — familiar in some circles, less so in those to which
I belong — of which we remind ourselves before explaining the relation between it
and our goal. Locally the trivial bundle is G(Ox), a set on which G(Ox) acts from the
right. If γ ∈ G(Fx) then the action of G(Ox) to the right on G(Ox)γG(Ox) defines
a G-bundle on G(Ox)γG(Ox)/G(Ox), an operation of blowing-up or modification
that we can, if desired, repeat, passing to G(Ox)γ

′G(Ox)γG(Ox)/G(Ox), and so
on, or just blowing up a given point of G(Ox)γG(Ox)/G(Ox). At all events, this
operation allows us to introduce a G-bundle structure on⋃

T

∏
x∈T

G(Fx)/G(Ox)

and then, passing to the limit over T = {x1, . . . , xn} as before, first over all possi-
bilities for the set T with a given n and then over n, we arrive, at BunG and the
G-bundle over it.

It is bundles and modifications that are the preferred form of expression in [CFT].
A central diagram is found in §6.1 of those lectures.

(8.10)
Hecke

BunG X ×BunG

h← h→

I do not find the definition of Hecke in [CFT, §6.1] perfectly transparent, but I think
it safe to take it to be the union over increasing T of the union (or sum) over x ∈ T
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of the quotient of 2

(8.11)
{

x ×G(Fx)×G(Fx)/G(Ox)
}
×

∏
y∈T
y 6=x

G(Fy)/G(Oy)

by GT (F), whose action on G(Fx)×G(Fx)/G(Ox) is through the first factor alone,
a definition compatible — I hope and, indeed, believe — with that of [CFT]. The
arrow on the left of (8.10) takes x×hx×gx×

∏
y∈T,y 6=x gy to x×hx×

∏
y∈T,y 6=x gy ;

the arrow on the right takes it to x×hx gx ×
∏

y∈T,y 6=x gy . This seems equivalent to
the assertion in [CFT], which I have difficulty understanding, and I, myself, see no
reasonable alternative to (8.11). Informally, the object Hecke consists of quadruples
(M,M′, x, β), where M is a G-bundle on X , M′ is a modification at a single point
x , and β is an expression of the identity of M and M′ outside of x . Of course T
grows to include more and more points. Observe that it defines a correspondence
that commutes with the action of GT (F).

In the Conjecture, the initial object is the local system. Our initial object is
more, it is the differential. The difference is somewhat difficult to describe, but its
source is clear. It is the difference between a local system and a local system with
isomorphism. For example, in the analytic context, there is, on the curve X or on its
jacobian, the trivial bundle itself, but there is also the trivial bundle plus a section,
exp(i Reω), where ω is a holomorphic differential with real periods in 2πZ, a set
parametrized by Z2g. Here we distinguish between them. In the Conjecture and in
the earlier Assertion, both taken from [CFT], they are confounded. The advantage
of the local systems with isomorphism is that it refers to the set of solutions of a
precise analytic problem, an eigenvalue problem for the Laplacian, so that we can
treat the set without having to exhibit its individual elements. This is what, I hope,
the differentials — with whatever supplementary data are necessary — will offer in
general.

Having affirmed, for the second time, that there is a difference between the local
system and the differential, I now retract and explain that, when trying to understand
the meaning of the conjecture, I discovered that this supposed difference was the
result either of my careless reading of [CFT] or of the author’s careless writing. The
author speaks of local systems, local systems for vector bundles and “local systems”
for L G-bundles — the latter seem to be no more than L G-bundles — for they are
what allow the definition of the vector bundles V E

λ , which are local systems, defined

2The pertinent phrase from [CFT] is, “Note that the fiber of Hecke is the moduli space of pairs
(M, β), where M is a G-bundle on X and β :M′|X\x . It is known that this moduli space is isomorphic
to a twist of Grx = G(Fx )/G(Ox ) by the G(Ox )-torsor M′(Ox ) of sections of M′ over SpecOx :

(h→)−1(x,M′)=M′(Ox )×G(Ox ) Grx .”

I hope it means what I suggest.



A PROLOGUE TO “FUNCTORIALITY AND RECIPROCITY”, PART I 657

by the constant sections of an L G-bundle. For groups with no center, the distinction
between the two notions of local system is barely perceptible, and this may be the
source of the confusion. The emphasis in [CFT] is often on semisimple groups.
The group GL(1) that we were examining in §7 is, however, all center!

This confusion, all being well, clarified, let us try to understand the conjecture.
Certainly, whatever we manage to establish, we want it to imply the conjecture!
What does it mean for the sheaf F on BunG to be an eigensheaf with eigenvalue E?
The condition is formulated sheaf-theoretically as equations (6.1) and (6.2) of [CFT].

Hλ(F)= h→
∗
(h∗←F⊗ ICλ);(CFT-6.1)

ιλ : Hλ(F)' V E
λ � F, λ ∈ P+.(CFT-6.2)

The first line is a definition. In the second line λ is a dominant weight of L G
or a double coset G(Ox)τλG(Ox), ιλ is an isomorphism and V E

λ is the vector
bundle E×L G Vλ. The sheaf ICλ is a perverse sheaf associated to the subvariety
G(Ox)τλ/G(OF ) of Bunx,τλ , the Goresky–MacPherson or intersection cohomology
sheaf described in [CFT] and many other places. It appears to be the cohomolog-
ical representative of this subvariety in the context of perverse sheaves, thus the
cohomological representative of a spherical function, the characteristic function of
a double coset. In any case, the second line is the condition that F has eigenvalue
E . The almost imperceptible mixing of G-bundles and L G-bundles is striking!

We replace the L G local system by the differential ω or rather by the set of param-
eters {µx | x ∈ X} associated to it, without troubling ourselves by the imprecisions
that this entails at this stage. Let us try to understand the situation in the context of
group representations, but only in a grossly informal manner. At all but a finite set
S of points in X , we have a representation πx = π(µx) of G(Fx), a representation
that contains a nonzero vector fixed by G(OF ). It occurs in the space of functions
on G(Fx)/G(Ox) and, as we infer — for the sake of the argument — from the usual
theories of spherical functions, with multiplicity one. So we have a clearly defined
space of functions on

∏
x∈T G(Fx)/G(Ox). On each G(Fx), we take a left translate

of the spherical function with parameter µx . Then we take a tensor product of
such functions over x ∈ T and then linear combinations, perhaps in a topological
sense — for example, by convolution with a function, a measure, or a distribution.
The group

∏
x∈T G(Fx) acts on this space and we assume that there is a nonzero

vector 8 in it invariant under GT (F). That would be our solution of the problem.
Does it offer a sheaf F = AutE satisfying the conditions of the conjecture? The
question, at the moment, is not in what sense it might be a sheaf, or in what sense a
function, but whether and why we can expect the equation (CFT-6.2) to be valid.

The appropriate construction works entirely from the right, so that the invariance
under GT (F) on the left plays no role in the arguments. It only assures, because the
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constructions are undertaken from the right, that the result continues to be invariant
under GT (F), so that it can be transferred to BunG . In other words, we replace the
diagram (8.10) with

(8.12)

H

∏
x∈T G(Fx)/G(Ox) T ×

∏
y∈T G(Fy)/G(Oy)

h← h→

The diagram defines H ; it is given by (8.11), but there is now no division by GT (F),
neither of H nor of

∏
G(Fy)/G(Oy)

If h← and h→ can be interpreted as actions on the right, then (8.12) may be
interpreted as a covering of (8.10). A typical element of H is (x, hx , gx ,

∏
y 6=x gy).

The maps h← and h→ are defined independently on the various summands and on
the various factors, in particular:

(8.13) h←x : (hx , gx) 7→ hx G(Ox); h→x : x × (hx , gx) 7→ x × hx gx G(Ox).

All these morphisms commute with the action of GT (F). The fiber of h→ over
(x, gx G(Ox)) is, if I am not mistaken, the set {(x, hx , h−1

x gx)}, thus G(Fx). It is
perhaps important to stress as well that the local factors of ICλ are sheaves on
G(Fx)/G(Ox), so that the global product is a sheaf

The intersection cohomology sheaves I Cλ are defined in [CFT] locally, one
at each point of X . We have agreed that a provisional section of a prologue is
not the place to describe them precisely. They are, as suggested, the intersection-
cohomological representatives of the subvarieties

G(Ox)τλG(Ox)/G(Ox)

of G(Fx)/G(Ox). It is plausible that, whatever the precise definition is, we can, as
in [CFT] extend it from a local construct to a global construct. Indeed, from the
point of view adopted in this prologue, we just define it on (8.11) by pulling back
the local ICλ through the projection on gx ∈ G(Fx)/G(Ox), the third coordinate
in (8.11). The result is not invariant under GT (F). Moreover, there are implicit
parameters with an algebraic or function-theoretical significance that are being kept
in reserve, the points x in T . One might want to verify that the constructions were
compatible with this aspect of the construction — but not now.

I am a tyro here and have by no means understood in any genuine sense intersec-
tion cohomology. So I am reduced to guessing what the relations (CFT-6.1) and
(CFT-6.2) mean not only in that context, but in the context of functions, if they
have an interpretation there. In (CFT-6.1) the sheaf F or our function 8 depends
on the first coordinates hx alone; the sheaf 9 = ICλ depends on the coordinate gx



A PROLOGUE TO “FUNCTORIALITY AND RECIPROCITY”, PART I 659

alone. The direct image H→
∗

is an integral, in this case,

(8.14)
∫
8(hg)9(g−1)dg =

∏
x

∫
8x(hx gx)9x(g−1

x ) dgx

thus convolution on the right by 9, which does not destroy the invariance under
GT (F).

The function 8 has moreover been obtained as a limit of linear combination
of left translates of a product of spherical functions ⊗xφx , whose eigenvalues we
know. If we have a formula for these functions, we can calculate∏

x

∫
8x(hx gx)9x(g−1

x ) dgx ,

explicitly. This achieved, it should not be too difficult to deduce the relation
CFT-6.2)!

On closer examination, there are several troubling aspects to these reflections.
It appears to me, as already explained, that the theory of spherical functions in
the geometric context necessarily entails the use of sheaves because there is no
G-invariant measure with respect to which convolutions of spherical functions on
G(Fx) can be defined. The integral in (8.14) is fictional. A graver flaw is that we
have not succeeded in introducing into our discussion the essential ingredient of the
proof of Weil’s identity and Lemma 7.1, namely the residue theorem. To a large
extent, although not entirely, this is because I am working around my ignorance of
the theory of BunG . The conviction that we can deal, even in a geometric context,
with automorphic forms on BunG as functions is because the spaces defined by
(8.2a), or at least large pieces of them, are finite-dimensional algebraic varieties.
Their construction as such is difficult and technical and it is fatuous to attempt, as
I have been doing, to discuss the geometric theory without having understood it
and its results.

The form ω defines a L G-bundle with singularities, the bundle E of (CFT - 6.2)
Then each irreducible representation ρ = ρλ of L G, λ being the highest weight of ρ,
defines a local system, the local system V E

λ of that formula. If, as before, µx are the
parameters defined by integrating ω, α ∈ Vλ, α? ∈ V ∗λ , its dual space, then α∗(µxα)

is a function on BunG . The question is how to combine it with a rational function
f on X with values in G so that the result can be integrated over the boundary of
4
′ as in the proof of Lemma 7.1. Although there is a duality between G and L G or

between g and Lg, it is coarse and I cannot see, at the moment, how it can be used.
I am handicapped not only by an aging brain but also by a lack of facility with
all the pertinent notions. In addition, the meddle of promising clues and doubtful
juxtapositions is daunting to all but the very determined. Nevertheless, although
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I have less confidence in the suggestions of this section than in those of the first six,
I think there is something to be done.

For example, it is troubling that, as I have observed, the pairing between G and
L G or, perhaps better, g and Lg is very coarse, apparently at most a pairing at the
level of conjugacy classes, but that may be just as well, because what we sum are
residues or products of residues with factors defined by ω with values in Lg. The
residues themselves are logarithmic derivatives d f · f −1. The following relations
are clear.

(i) If f1 = u f ,
d f1 · f −1

1 = du · u−1
+ ud f · f −1u−1,

and the first term has no residue at x if u ∈ G(Ox). The conjugacy class of the
second term is that of d f · f −1

(ii) There is a similar relation for f1 = f u,

d f1 · f −1
1 = d f · f −1

+ f du · u−1 f −1.

If u ∈ G(Ox), the conjugacy class of the second term is regular at x .

(iii) If f1 = u f u−1,

d f1 · f −1
1 = du · u−1

+ ud f · f −1u−1
− u f −1(u−1du) f u−1.

Thus any linear function of the residue at x of d f · f −1 that is invariant under
conjugation does not change on passing from f to f1. This linear function should
be the substitute for the right-hand side of (7.20). It will have to be matched with a
substitute for

∫
ω as in the proof of the lemma.

Consider for example the group GL(n), then if z is a local parameter at x , the
matrix-valued function f may be written locally as u1T u2, where u1, u2 lie in
G(Ox) and

T = t (−m1,−m2, . . . ,−mn), m1 ≥ m2 · · · ≥ mn, mi ∈ Z,

so that the residue of f −1d f is the matrix

−


m1 0 . . . 0
0 m2 . . . 0
...

...
...

0 0 . . . mn

 ,
which can be considered a parameter for the double cosets G(Ox)\G(Fx)/G(Ox),
or as a highest weight for Ĝ or L G. We of course have a pairing of it with the Lie
algebra of L G or with the group L G itself, through the trace of the corresponding
representation, thus with ω or

∫
ω.
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So there are a good number of clues that could lead to a nonabelian theory similar
to the abelian theory of §7. I do not have a clear notion of how to follow them.
I hesitate moreover to search for the theory so long as I have not mastered the
techniques for constructing moduli spaces described in [Le]. The moduli space as
described in (8.8a) and (8.8b) is convenient in some respects, but it is analytically
awkward and, as we found when discussing the conjecture, it encourages us to
work not with functions, thus not with solutions of partial differential equations,
but with sheaves, for which convolution is possible, at least in a topological sense.
I tried in the essay to pass from one to the other by sleight-of-hand, but was not, as
even a casual examination reveals, successful. The usual convolution is not defined
because G(Fx)/G(Ox) does not carry an invariant measure. On the other hand,
the moduli spaces — or at least large parts of them — are finite-dimensional, even
compact, as with the jacobians, algebraic varieties and we might expect to define
the eigensheaves as functions satisfying differential equations. I do not yet know
what these might be. Moreover, whatever form the final theory takes, I certainly
hope it embraces all possibilities: sheaf-theoretic, analytic, and geometric.

It seems best to leave all these questions aside until I acquire a more intimate
understanding not only of the nature, both algebro-geometric and differential-
geometric, of the moduli spaces, but also of the contributions of the mathematical
physicists to what they refer to as the geometric Langlands program.

Contrary to my hopes, which were, in part, unreasonable, the last two sections
of this first half of the prologue have turned out to differ sharply from the first six.
Although the first six are speculative, they are informed by years of reflection, which
has sufficiently matured that I have considerable confidence not only in the correct-
ness of the theory suggested but also in the soundness of the methods proposed for
arriving at it. This is not so for the last section, for which the penultimate section
was preparation. The last section is only provisional. I hope that on returning to the
material in §8.b I can do better!
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