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HIERARCHIES AND COMPATIBILITY
ON COURANT ALGEBROIDS

PAULO ANTUNES, CAMILLE LAURENT-GENGOUX

AND JOANA M. NUNES DA COSTA

We introduce Poisson–Nijenhuis, deforming-Nijenhuis and Nijenhuis pairs
that extend to Courant algebroids the notion of a Poisson–Nijenhuis mani-
fold, both the Poisson and the Nijenhuis structures being (1, 1)-tensors on
a Courant algebroid. In each case, we construct the natural hierarchies by
successive deformation by one of the (1, 1)-tensors.

1. Introduction

The purpose of this article is to explain how (1, 1)-tensors with vanishing Nijenhuis
torsion on a Courant algebroid naturally give rise to several types of hierarchies,
using as much as possible the supergeometric approach. We first briefly review
Courant algebroids, supergeometric approach, Leibniz algebroids, Nijenhuis torsion
and hierarchies. We then end this introduction by a more detailed summary of the
content of this work.

1A. On Courant structures, supergeometry, Leibniz algebroids, Nijenhuis tor-
sion and hierarchies.

Courant structures. It has been noticed by Roytenberg [1999] that the original
R-bilinear skew-symmetric bracket introduced by Courant [1990] on the space
of sections of TM ⊕ T ∗M , for M a manifold, can be equivalently defined as the
skew-symmetrization of the bracket:

(1) [(X, α), (Y, β)] := ([X, Y ], L Xβ − iY dα),

with X, Y ∈ 0(TM) and α, β ∈ 0(T ∗M). This bracket still satisfies the Jacobi
identity and, as mentioned in [Ševera and Weinstein 2001], this fact was already
noticed by several authors: Kosmann-Schwarzbach, Ševera and Xu (all unpublished).
The bracket (1) is a Loday bracket and was used in [Dorfman 1993], hence its
name Dorfman bracket. The original bracket on TM⊕T ∗M yields to the definition
of Courant algebroid given by Liu, Weinstein and Xu [Liu et al. 1997], while the
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version with non-skew-symmetric bracket (1) yields to the equivalent definition of
Courant algebroid by Roytenberg [1999] (see also [Kosmann-Schwarzbach 2005]
for a simpler version). Relaxing the Jacobi identity of the Loday bracket, one gets
the weaker notion of pre-Courant algebroid (see Definition 2.1 below).

Supergeometric approach. Dealing with Courant bracket can be a difficult task
when it comes to computation (see for example [Kosmann-Schwarzbach 1992;
Voronov 2002]), due to the many structures that involve it, and to the unnatural
aspects of some of the operations that define them. However, in supergeometric
formalism, all these structures and conditions are encoded in two objects and
one condition, as follows. To every vector bundle equipped with a fiberwise
nondegenerate bilinear form is associated a graded commutative algebra, equipped
with a Poisson bracket denoted by { · , · } (which coincides with the big bracket
[Kosmann-Schwarzbach 1992] in particular cases) [Roytenberg 2002]. Pre-Courant
structures are in one-to-one correspondence with elements of degree 3 in this graded
algebra and Courant structures are those elements that satisfy

{2,2} = 0

(see [Roytenberg 2002; Antunes 2010]).

Leibniz algebroids. Courant structures on vector bundles can be viewed as special
cases of Leibniz algebroids [Ibáñez et al. 1999]. These are vector bundles E→ M
equipped with a R-bilinear bracket on the space of sections and a vector bundle
morphism ρ : E→ TM satisfying the Leibniz rule:

[X, f Y ] = f [X, Y ] + (ρ(X). f )Y

and the Jacobi identity:

[X, [Y, Z ]] = [[X, Y ], Z ] + [Y, [X, Z ]],

for all X, Y, Z ∈ 0(E) and f ∈ C∞(M). Relaxing the Jacobi identity, one gets
the weaker notion of pre-Leibniz algebroid. When the base manifold reduces to
a point, a Leibniz algebroid is just a Leibniz algebra (also called Loday algebra),
while a pre-Leibniz algebroid is simply an algebra, i.e., a space equipped with a
bilinear product. Pre-Courant algebroids are pre-Leibniz algebroids; see [Kosmann-
Schwarzbach 2005]. But it is important to stress that the supergeometric approach,
referred above for pre-Courant and Courant structures, does not extend to the more
general pre-Leibniz and Leibniz algebroid framework.

Nijenhuis torsion. The Nijenhuis torsion of a (1, 1)-tensor on M , that is, a fiber-
wise linear endomorphism of TM , is the (1, 2)-tensor given by

X, Y 7→[N X, NY ]−N [X, Y ]N , where [X, Y ]N :=[N X, Y ]+[X, NY ]−N [X, Y ].
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We call Nijenhuis tensors (1, 1)-tensors whose Nijenhuis torsion vanishes. The
previous definition can be extended from TM to arbitrary Lie algebroids [Kosmann-
Schwarzbach and Magri 1990; Grabowski and Urbański 1997], then from Lie
algebroids to Courant algebroids [Cariñena et al. 2004; Kosmann-Schwarzbach
2011] and Leibniz algebroids [Cariñena et al. 2004].

By means of Nijenhuis (1, 1)-tensors, a Lie algebroid bracket [ · , · ] can be
deformed into the bracket [ · , · ]N above, which can be shown to be a Lie algebroid
bracket again. Also, Poisson structures can be deformed into Poisson structures.

Hierarchies. There is no mathematical definition of what a hierarchy is, but, within
the context of integrable systems, the name has been commonly given either to
families (indexed by N or Z) of Hamiltonian functions that commute for a fixed
Poisson structure, or of Poisson structures/Lie algebroid structures which commute
pairwise — and sometimes families of both Poisson structures and Hamiltonian
functions such that two functions in that family commute with respect to any Poisson
structure. We use that name in the same spirit: that is, for us a hierarchy is either
a family of commuting Courant structures or a family of Nijenhuis tensors that
commute pairwise with respect to some Courant structure.

To obtain a hierarchy, the idea is to start from a structure and a Nijenhuis tensor
by means of which we deform the initial structure into a sequence of structures
of the same nature [Kosmann-Schwarzbach and Magri 1990; Magri and Morosi
1984].

1B. Purpose and content of the present article. Our goal is, as we already stated,
to construct hierarchies. More precisely, we wish to construct

(i) hierarchies of Courant structures, given a Nijenhuis tensor on a Courant alge-
broid,

(ii) hierarchies of Poisson structures, given a Nijenhuis tensor compatible with a
given Poisson structure on a Courant algebroid, and

(iii) hierarchies of Courant structures and pairs of tensors that we call deforming-
Nijenhuis pairs or Nijenhuis pairs.

Indeed, for the two last points, pre-Courant structures are enough. The idea behind
item (i) is simply that what is true for manifolds and Lie algebroids should be true
for Courant structures as well, and that, in particular, deforming a Courant structure
by a Nijenhuis tensor should give a hierarchy of compatible Courant structures.
The idea behind items (ii) and (iii) is more involved. We invite the reader to have
in mind the case of Poisson–Nijenhuis structures to obtain some intuitive picture
[Magri and Morosi 1984; Kosmann-Schwarzbach and Magri 1990; Grabowski and
Urbański 1997]. In terms of Courant algebroids, a Poisson–Nijenhuis structure
can be seen as a pair (Jπ , IN ) of skew-symmetric (1, 1)-tensors on TM ⊕ T ∗M
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(see Examples 2.6 and 2.9). The pair (π, N ) is Poisson–Nijenhuis when π and N
are compatible, which means that Jπ and IN anticommute and their concomitant
with respect to the Courant structure vanishes; see Example 4.14. These conditions
yield our Definition 4.12 of Poisson–Nijenhuis pair on a (pre-)Courant algebroid,
Poisson–Nijenhuis pairs for which we generalize the hierarchies of [Magri and
Morosi 1984]. Poisson–Nijenhuis pairs being slightly too restrictive, we indeed
do it in the more general context of deforming-Nijenhuis pairs and Nijenhuis
pairs.

The statements of most results in this article are written in the pre-Courant
algebroid framework and are proved using the supergeometric approach. However,
for some of them, the proofs only use the pre-Leibniz structure induced by the
pre-Courant structure, so that these results hold not only for pre-Courant algebroids,
but also for the more general setting of pre-Leibniz algebroids. This happens, for
example, with most results in Sections 3A and 3B and the whole Section 5. The
lack of convincing examples prevented us from going to such an unnecessary level
of generality.

Let us give a more precise content of the article. In Section 2, we make a brief
introduction of the supergeometric setting for (pre-)Courant structures and we recall
the notions of deforming and Nijenhuis tensors.

In Section 3, we show that a Courant structure 2 can be deformed k times by a
Nijenhuis tensor I , and that the henceforth obtained objects (2k)k∈N are compatible
(Theorem 3.6). Then, we show that the property of being compatible is, for a given
compatible pair (I, J ), also preserved when deforming n times J by I , provided
that I is Nijenhuis (or at least satisfies a weaker condition involving the vanishing
of torsion of I on the image of J ), and that this result still holds true with respect
to pre-Courant structures 2k obtained when deforming 2 by I (Theorem 3.16).
An even more general case is obtained when considering the tensor I 2s+1, s ∈ N,
which is the deformation of I by itself an odd number of times, and, if J is also
Nijenhuis, J is replaced by I n

◦ J 2m+1, n,m ∈ N (Theorem 3.20).
In Section 4, we turn our attention to deforming-Nijenhuis pairs, that is, compat-

ible pairs (J, I ) where J is a deforming tensor and I is Nijenhuis for 2. We show
that if (J, I ) is a deforming-Nijenhuis pair for 2, then (J, I 2n+1) is a deforming-
Nijenhuis pair for 2k for all k, n ∈ N (Theorem 4.7). Then, we consider Poisson–
Nijenhuis pairs (J, I ), that is, deforming-Nijenhuis pairs where the deforming
tensor J is supposed to be Poisson for 2, and we state one of the main results of the
article, which is the construction of a hierarchy of Poisson–Nijenhuis pairs for 2k ,
for all k ∈ N, that includes pairs of compatible Poisson tensors (Theorem 4.19).

Last, in Section 5, we conclude with the case of Nijenhuis pairs, that is, pairs
(I, J ) of Nijenhuis tensors compatible with respect to 2. More precisely, we show
that if (I, J ) is a Nijenhuis pair for 2, then for all m, n, t ∈N, (I 2m+1

◦ J n, J 2t+1)
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is a Nijenhuis pair for2, and, more generally, for all the Courant structures obtained
by deforming 2 several times, either by I or by J (Theorem 5.11).

2. Skew-symmetric tensors on Courant algebroids

2A. Courant algebroids in supergeometric terms. We introduce the supergeomet-
ric setting following the approach in [Roytenberg 1999; 2002; Vaintrob 1997].
Given a vector bundle A→ M , we denote by A[n] the graded manifold obtained by
shifting the degree of coordinates on the fiber by n. The graded manifold T ∗[2]A[1]1

is equipped with a canonical symplectic structure which induces a Poisson bracket
on its algebra of functions F := C∞(T ∗[2]A[1]). This Poisson bracket is called
the big bracket; see [Kosmann-Schwarzbach 1992; 2005].

In local coordinates x i , pi , ξ
a, θa , i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1],

where x i , ξa are local coordinates on A[1] and pi , θa are the conjugate coordinates,
the Poisson bracket is given by

{pi , x i
} = {θa, ξ

a
} = 1, i = 1, . . . , n, a = 1, . . . , d,

while the remaining brackets vanish.
The Poisson algebra of functions F is endowed with an (N×N)-valued bidegree.

We define this bidegree locally as follows: the coordinates on the base manifold
M , x i , i ∈ {1, . . . , n}, have bidegree (0, 0), while the coordinates on the fibers, ξa ,
a ∈ {1, . . . , d}, have bidegree (0, 1) and their associated moment coordinates, pi

and θa , have bidegrees (1, 1) and (1, 0), respectively.2 We denote by F k,l the space
of functions of bidegree (k, l). The total degree of a function f ∈ F k,l is equal to
k+ l and the subset of functions of total degree t is denoted by F t . We can verify
that the big bracket has bidegree (−1,−1), that is,

{F k1,l1,F k2,l2} ⊂ F k1+k2−1,l1+l2−1.

This construction is a particular case of a more general one [Roytenberg 2002]
in which we consider a vector bundle E equipped with a fiberwise nondegenerate
symmetric bilinear form 〈 · , · 〉. In this more general setting, we consider the graded
symplectic manifold E := p∗(T ∗[2]E[1]), which is the pull-back of T ∗[2]E[1]
by the map p : E[1] → E[1] ⊕ E∗[1] defined by X 7→ (X, 1

2〈X, · 〉). We denote

1This graded manifold is in fact an N -manifold because the parity of a homogeneous function on
T ∗[2]A[1] is compatible with its degree. For more details on these notions see [Voronov 2002] and
for this particular N-manifold (of degree 2) see [Roytenberg 2002]. We should observe that a similar
work to the present one could be done, with more complicated computations, on graded manifolds.
However, since we want to restrict to the Courant algebroid setting, the N-manifold T ∗[2]A[1] is the
appropriate one.

2Notice that this bidegree can be defined globally using the double vector bundle structure of
T ∗[2]A[1]; see [Roytenberg 1999; Voronov 2002].
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by FE the graded algebra of functions on E , that is, FE := C∞(E). The algebra
FE is equipped with the canonical Poisson bracket, denoted by { · , · }, which has
degree −2. Notice that F0

E =C∞(M) and F1
E = 0(E). Under these identifications,

the Poisson bracket of functions of degrees 0 and 1 is given by

{ f, g} = 0, { f, X} = 0 and {X, Y } = 〈X, Y 〉,

for all X, Y ∈ 0(E) and f, g ∈ C∞(M).
When E := A⊕ A∗ (with A a vector bundle over M) and when 〈 · , · 〉 is the

usual symmetric bilinear form

(2) 〈X +α, Y +β〉 = α(Y )+β(X), for all X, Y ∈ 0(A), α, β ∈ 0(A∗),

the algebras F = C∞(T ∗[2]A[1]) and FA⊕A∗ are isomorphic Poisson algebras
[Roytenberg 2002].

Definition 2.1. A pre-Courant structure on (E, 〈 · , · 〉) is a pair (ρ, [ · , · ]), where
ρ is a bundle map from E to TM , called the anchor, and [ · , · ] is a R-bilinear
(not necessarily skew-symmetric) assignment on 0(E)×0(E)→ 0(E), called the
Dorfman bracket, satisfying the relations

ρ(X) · 〈Y, Z〉 = 〈[X, Y ], Z〉+ 〈Y, [X, Z ]〉,(3)

ρ(X) · 〈Y, Z〉 = 〈X, [Y, Z ] + [Z , Y ]〉,(4)

for all X, Y, Z ∈ 0(E).3

If the Jacobi identity, [X, [Y, Z ]] = [[X, Y ], Z ] + [Y, [X, Z ]], is satisfied for all
X, Y, Z ∈0(E), then the pair (ρ, [ · , · ]) is called a Courant structure on (E, 〈 · , · 〉).

The Dorfman bracket is a Leibniz bracket when the pair (ρ, [ · , · ]) is a Courant
structure. There is a one-to-one correspondence between pre-Courant structures on
(E, 〈 · , · 〉) and elements in F3

E . The anchor and Dorfman bracket associated to a
given 2 ∈ F3

E are defined for all X, Y ∈ 0(E) and f ∈ C∞(M), by

ρ(X) · f = {{X,2}, f } and [X, Y ] = {{X,2}, Y }.

The following theorem addresses how the Jacobi identity is expressed in this
supergeometric setting.

Theorem 2.2 [Roytenberg 2002]. There is a one-to-one correspondence between
Courant structures on (E, 〈 · , · 〉) and functions 2 ∈ F3

E such that {2,2} = 0.

3From (3) and (4), we obtain [X, f Y ] = f [X, Y ] + (ρ(X). f )Y for all X, Y ∈ 0(E) and
f ∈ C∞(M) [Kosmann-Schwarzbach 2005]. Thus, as we already mentioned in the Introduction, a
pre-Courant algebroid is always a pre-Leibniz algebroid.
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If 2 is a (pre-)Courant structure on (E, 〈 · , · 〉), then the triple (E, 〈 · , · 〉,2) is
called a (pre-)Courant algebroid. For the sake of simplicity, we will often denote a
(pre-)Courant algebroid by the pair (E,2) instead of the triple (E, 〈 · , · 〉,2).

When E = A⊕ A∗ and 〈 · , · 〉 is the usual symmetric bilinear form (2), a pre-
Courant structure 2 ∈ F3

E can be decomposed as a sum of homogeneous terms
with respect to its bidegrees:

2= µ+ γ +φ+ψ,

with µ ∈ F1,2
A⊕A∗, γ ∈ F

2,1
A⊕A∗, φ ∈ F

0,3
A⊕A∗ = 0(

∧3 A∗) and ψ ∈ F3,0
A⊕A∗ = 0(

∧3 A).
We recall from [Roytenberg 1999] that, when γ = φ = ψ = 0, 2 is a Courant

structure on (A ⊕ A∗, 〈 · , · 〉) if and only if (A, µ) is a Lie algebroid. Also,
when φ = ψ = 0, 2 is a Courant structure on (A ⊕ A∗, 〈 · , · 〉) if and only if
((A, µ), (A∗, γ )) is a Lie bialgebroid [Liu et al. 1997].

2B. Deformation of Courant structures by skew-symmetric tensors. Suppose that
(E, 〈 · , · 〉,2) is a pre-Courant algebroid and J : E→ E is a vector bundle endo-
morphism of E . The deformation of the Dorfman bracket [ · , · ] by J is the bracket
[ · , · ]J defined for all sections X, Y of E , by

[X, Y ]J = [J X, Y ] + [X, JY ] − J [X, Y ].

The (1, 1)-tensors on E will be seen as vector bundle endomorphisms of E . A
(1, 1)-tensor J : E→ E is said to be skew-symmetric if

〈Ju, v〉+ 〈u, Jv〉 = 0,

for all u, v ∈ E . If we consider the endomorphism J ∗ defined by 〈u, J ∗v〉= 〈Ju, v〉,
then J is skew-symmetric if and only if J + J ∗ = 0. If J is skew-symmetric,
then [ · , · ]J satisfies (3) and (4), so that (ρ ◦ J, [ · , · ]J ) is a pre-Courant structure
on (E, 〈 · , · 〉).4

When the (1, 1)-tensor J : E→ E is skew-symmetric, the deformed pre-Courant
structure (ρ ◦ J, [ · , · ]J ) is associated to the element 2J := {J,2} ∈ F3

E . The
deformation of 2J by the skew-symmetric (1, 1)-tensor I is denoted by 2J,I , that
is, 2J,I = {I, {J,2}}, while the deformed Dorfman bracket ([ · , · ]J )I is denoted
by [ · , · ]J,I . Although the equality 2J = {J,2} only makes sense when J is skew-
symmetric, aiming to simplify the notation, we shall denote by 2J the pre-Courant
structure (ρ ◦ J, [ · , · ]J ), even in the case where J is not skew-symmetric.

By definition, a vector bundle endomorphism I : E→ E is a Nijenhuis tensor
on the Courant algebroid (E,2) if its torsion vanishes, where the torsion T2 I is

4In fact, it suffices that J satisfies the condition J + J∗ = λ idE , for some λ ∈ R, to guarantee that
(ρ ◦ J, [ · , · ]J ) is a pre-Courant structure on (E, 〈 · , · 〉); see [Cariñena et al. 2004].
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given, for all X, Y ∈ 0(E), by

T2 I (X, Y )= [I X, I Y ] − I [X, Y ]I .

A short computation shows that

(5) T2 I (X, Y )= 1
2([X, Y ]I,I − [X, Y ]I 2),

where I 2
= I ◦ I . When I is skew-symmetric and I 2

= α idE for some α ∈ R, then
T2 I is an element of degree 3 in the supergeometric setting [Kosmann-Schwarzbach
2011], and (5) is given by [Grabowski 2006]:

(6) T2 I = 1
2(2I,I −α2).

In the case of pre-Courant algebroids, the definition of Nijenhuis tensors is the
same as in the case of a Courant algebroids.

Example 2.3. Let G be a Lie algebra. A linear operator I : G→ G that takes values
in the center and such that, in addition, the kernel of I 2 contains the derived algebra
[G,G] is a Nijenhuis operator.

The notion of deforming tensor for a Courant structure 2 on E was introduced
in [Kosmann-Schwarzbach 2011]. The definition holds in the case of a pre-Courant
algebroid and it will play an important role in this article.

Definition 2.4. Let (E,2) be a pre-Courant algebroid. A skew-symmetric (1, 1)-
tensor J on (E,2) is said to be deforming for 2 if 2J,J = η2 for some η ∈ R.

Remark 2.5. If I is Nijenhuis for 2 and satisfies I 2
= α idE for some α ∈ R,

then, it follows from (6) that I is also deforming for 2. This was noticed in
[Kosmann-Schwarzbach 2011].

When E = A ⊕ A∗ and 〈 · , · 〉 is the usual symmetric bilinear form, a skew-
symmetric (1, 1)-tensor J : A⊕ A∗→ A⊕ A∗ is of the type

(7) J =
(

N π ]

ω[ −N ∗

)
,

with N : A→ A, π ∈0(
∧2 A) and ω ∈0(

∧2 A∗). In the supergeometric framework,
J corresponds to the function N +π +ω, which we also denote by J . Therefore,
we have 2J = {N +π +ω,2}.

We shall now present examples of skew-symmetric deforming or/and Nijenhuis
tensors in the case where (E = A⊕ A∗,2) is the Courant algebroid associated to a
Lie algebroid, that is 2= µ, with µ a Lie algebroid structure on A.

Example 2.6. Let π be a bivector on A and Jπ =
(

0 π#

0 0

)
. Then, Jπ is deforming

for 2= µ if and only if π is a Poisson bivector on the Lie algebroid (A, µ).
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If π is a Poisson bivector on (A, µ) then, denoting by [ · , · ]µ the Gerstenhaber
bracket on 0(

∧
•A), we have 0 = [π, π]µ = {π, {π,µ}} = µJπ ,Jπ , so that Jπ is

deforming for µ. If Jπ is deforming for µ, then µJπ ,Jπ = η µ, with η ∈ R. Since µ
and µJπ ,Jπ do not have the same bidegree, we obtain

µJπ ,Jπ = η µ⇔ (η = 0 and {π, {π,µ}} = 0).

Thus, π is a Poisson bivector on the Lie algebroid (A, µ).

Example 2.7. Let Jπ be as in Example 2.6. The (1, 1)-tensor Jπ is a Nijenhuis
tensor for 2= µ if and only if π is a Poisson bivector on the Lie algebroid (A, µ).

We remark that Jπ ◦ Jπ = 0 so that, using (6) with α = 0, we deduce that the
torsion of Jπ is given by Tµ Jπ = 1

2{π, {π,µ}}. Therefore, the torsion of Jπ with
respect to 2= µ vanishes if and only if [π, π]µ = 0.

Example 2.8. Let ω be a 2-form on A. Then, Jω =
( 0 0
ω[ 0

)
is a deforming and a

Nijenhuis tensor for the Courant algebroid (A⊕ A∗, µ).
This is an immediate consequence of Jω ◦ Jω = 0 and µJω,Jω = {ω, {ω,µ}} = 0.

Example 2.9. Let N : A→ A be a (1, 1)-tensor on A, such that N 2
= α idA for

some α ∈ R. Then, IN =
( N 0

0 −N∗
)

is a Nijenhuis tensor for the Courant algebroid
(A ⊕ A∗, µ) if and only if N is Nijenhuis tensor for the Lie algebroid (A, µ)
[Kosmann-Schwarzbach 2011].

Example 2.10. Let π be a bivector on A and N : A→ A a (1, 1)-tensor on A.
Then, J =

(
N π#

0 −N∗
)

is deforming for 2= µ if and only if N is a deforming tensor
on (A, µ),5 π is a Poisson bivector on (A, µ) and µN ,π +µπ,N = 0.

We have

µJ,J = {N +π, {N +π,µ}}

= {N , {N , µ}}+ {π, {N , µ}}+ {N , {π,µ}}+ {π, {π,µ}}

= µN ,N +µN ,π +µπ,N +µπ,π

and, by counting the bidegrees, we deduce that µJ,J = η µ if and only if

µN ,N = η µ, µN ,π +µπ,N = 0, [π, π]µ = 0.

Let us consider the Courant algebroid (A ⊕ A∗, µ + γ ), which is the dou-
ble of a Lie bialgebroid ((A, µ), (A∗, γ )) and the skew-symmetric (1, 1)-tensor
J : A⊕ A∗→ A⊕ A∗:

(8) J =
(1

2 idA π#

0 −
1
2 idA∗

)
,

where π is a bivector on A.
5An (1, 1)-tensor N on a Lie algebroid (A, µ) is a deforming tensor if µN ,N =ηµ, for some η∈N.
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Proposition 2.11. Let ((A, µ), (A∗, γ )) be a Lie bialgebroid. Then, the (1, 1)-
tensor J given by (8) is a deforming tensor for the Courant structure µ+ γ if and
only if π is a solution of the Maurer–Cartan equation

dγπ = 1
2 [π, π]µ.

Proof. The (1, 1)-tensor J = 1
2 idA+π is a deforming tensor for µ+ γ if there

exists η ∈ R such that{ 1
2 idA+π,

{1
2 idA+π,µ+ γ

}}
= η(µ+ γ ).

We have, using the fact that {idA, u} = (q − p)u for all u of bidegree (p, q),{1
2 idA+π,

{1
2 idA+π,µ+ γ

}}
=

1
4

{
idA, {idA, µ}+ {idA, γ }

}
+

1
2

{
idA, {π,µ}+ {π, γ }

}
+

1
2

{
π, {idA, µ}+ {idA, γ }

}
+
{
π, {π,µ}+ {π, γ }

}
=

1
4(µ+ γ )− 2{π, γ }−

{
{π,µ}, π

}
,

since {π, {π, γ }} = 0 for reasons of bidegree. Therefore, J is a deforming (1, 1)-
tensor if and only if

η = 1
4 and dγπ = 1

2 [π, π]µ. �

3. Hierarchies of compatible tensors and structures

We construct a hierarchy of compatible Courant structures on (E, 〈 · , · 〉) that are
obtained deforming an initial Courant structure by a Nijenhuis tensor. Then, we
consider hierarchies of pairs of tensors which are compatible, in a certain sense,
with respect to some deformed pre-Courant structures.

We introduce the following notation, where I, J, . . . , T are skew-symmetric
(1, 1)-tensors on a pre-Courant algebroid (E,2):

• 2I,J,...,T = (((2I )J )...)T ,

• 2k = (((2I )I )
k. . .)I =2I, k...,I , k ∈ N, 20 =2.

3A. Hierarchies of compatible Courant structures. In this section we construct
a hierarchy of compatible Courant structures on (E, 〈 · , · 〉).

The next proposition generalizes a result in [Kosmann-Schwarzbach and Magri
1990].

Proposition 3.1. Let I be a (1, 1)-tensor on a pre-Courant algebroid (E,2). For
all sections X , Y of E and k ≥ 1,

(9) T2k I (X, Y )= T2k−1 I (I X, Y )+ T2k−1 I (X, I Y )− I (T2k−1 I (X, Y )).
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Proof. Let us denote by [ · , · ]k the Dorfman bracket associated to 2k . It is obvi-
ous that

[X, Y ]k = [I X, Y ]k−1+ [X, I Y ]k−1− I [X, Y ]k−1,

and therefore we have

T2k I (X, Y )= [I X, I Y ]k − I [I X, Y ]k − I [X, I Y ]k + I 2
[X, Y ]k

= [I 2 X, I Y ]k−1− I [I 2 X, Y ]k−1− I [I X, I Y ]k−1+ I 2
[I X, Y ]k−1

+ [I X, I 2Y ]k−1− I [I X, I Y ]k−1− I [X, I 2Y ]k−1+ I 2
[X, I Y ]k−1

− I ([I X, I Y ]k−1− I [I X, Y ]k−1− I [X, I Y ]k−1+ I 2
[X, Y ]k−1)

= T2k−1 I (I X, Y )+ T2k−1 I (X, I Y )− I (T2k−1 I (X, Y )). �

Corollary 3.2. If I is Nijenhuis for 2, then I is Nijenhuis for 2k , ∀k ∈ N.

It is well known [Grabowski 2006] that for every skew-symmetric (1, 1)-tensor I
on a Courant algebroid (E,2), the deformation of2 by I ,2I , is a Courant structure
on (E, 〈 · , · 〉) provided that I is Nijenhuis. Applying (9) we get, by recursion:

Proposition 3.3. Let (E,2) be a Courant algebroid and I a skew-symmetric Ni-
jenhuis tensor for 2. Then, (E,2k) is a Courant algebroid for all k ∈ N.

We introduce the notation I n
= I ◦ n. . . ◦ I , for n ≥ 1 and I 0

= idE .
Let us compute the torsion T2 I n , for all n ∈ N.

Proposition 3.4. Let I be a (1, 1)-tensor on a pre-Courant algebroid (E,2). Then,
for all sections X and Y of E ,

(10) T2 I n(X, Y )= T2 I (I n−1 X, I n−1Y )+ I (T2 I n−1(I X, Y )

+T2 I n−1(X, I Y ))− I 2(T2 I n−2(I X, I Y ))+ I 2n−2(T2 I (X, Y )),

for n ≥ 2.

Proof. It suffices to use the definition of Nijenhuis torsion to compute each term on
the right hand side of (10). �

As an immediate consequence of the previous proposition and Corollary 3.2, we
have:

Proposition 3.5. Let (E,2) be a pre-Courant algebroid and I a (1, 1)-tensor on E.
If I is a Nijenhuis tensor for 2, then I n is Nijenhuis for 2k , for all n, k ∈ N.

Recall that a pair of Courant structures 21 and 22 on a vector bundle (E, 〈 · , · 〉)
are said to be compatible if their sum 21+22 is a Courant structure on (E, 〈 · , · 〉).
As an immediate consequence, we have that21 and22 are compatible if and only if

{21,22} = 0.
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Theorem 3.6. Let I be a skew-symmetric (1, 1)-tensor on a Courant algebroid
(E,2). If I is Nijenhuis for 2, then the Courant structures 2k and 2m on
(E, 〈 · , · 〉) are compatible for all k,m ∈ N.

Proof. We first remark that if m= k, then we have {2m,2m}= 0 by Proposition 3.3.
Also, for any Courant structure 2 and any skew-symmetric (1, 1)-tensor I , the
relation {2,2I } = 0 follows from the Jacobi identity and the graded symmetry of
the Poisson bracket. We use induction on m + k to complete the proof. Assume
first that m + k = 2; then either m = k = 1 and it is clear that {2I ,2I } = 0, or
m = 2 and k = 0 and it is clear that {2I,I ,2} = {I, {2,2I }}− {2I ,2I } = 0.

Now, suppose that {2m,2k} = 0 holds for m+ k = s− 1 and take m and k such
that m+ k = s.

i) If m = k, we already noticed that {2m,2m} = 0.

ii) If m 6= k, suppose that m > k. Then,

{2m,2k} = {{I,2m−1},2k} = {I, {2k,2m−1}}− {2k+1,2m−1}

= −{2m−1,2k+1}

= −{I, {2m−2,2k+1}}+ {2m−2,2k+2} = {2m−2,2k+2}.

Applying the Jacobi identity several times, we get

{2m,2k} =

{
(−1)m−l

{2l,2l} if m+ k = 2l,
(−1)m−(l+1)

{2l+1,2l} if m+ k = 2l + 1.

=

{
0 if m+ k = 2l,
(−1)m−(l+1) 1

2{I, {2l,2l}} = 0 if m+ k = 2l + 1. �

Remark 3.7. The statement of Theorem 3.6 still holds if we replace the assumption
of I being Nijenhuis for 2 by I deforming for 2. In fact, if 2I,I = η2 for some
η ∈ R, then a straightforward computation yields

22k = η
k2, 22k+1 = η

k2I for all k ∈ N.

We have investigated so far the pre-Courant structure 2n , obtained by deforming
n times the original pre-Courant structure 2 by a Nijenhuis tensor I . It is logical
to ask what happens when one deforms 2 by I n . We shall show that we obtain
precisely the same pre-Courant structure 2n .

Proposition 3.8. Let (ρ, [ · , · ]) be a pre-Courant structure on (E, 〈 · , · 〉) and I a
(1, 1)-tensor on E. Let X and Y be sections of E and let n ∈ N∗. Then:

a) [X, Y ]I 2n+1 = [X, Y ]I 2n,I −
∑

0≤i, j≤2n−1
i+ j=2n−1

I j (T2 I (I i X, Y )+ T2 I (X, I i Y )).

b) If I is Nijenhuis for (ρ, [ · , · ]), then [X, Y ]I n = [X, Y ]I, n...,I for all n ∈ N.
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c) if I is Nijenhuis for (ρ, [ · , · ]), then [X, Y ]I m ,I n = [X, Y ]I m+n for all m, n ∈N.

Proof. Statement a) is an easy but cumbersome computation.
For b), first, observe that if a pair of skew-symmetric (1, 1)-tensors I and J

commute, then [X, Y ]I,J = [X, Y ]J,I for all sections X and Y of E . In particular,
we have, for all m, n ∈ N,

(11) [X, Y ]I m ,I n = [X, Y ]I n,I m .

We now prove the result by recursion on n ≥ 1. If n = 2k+ 1, we use a):

[X, Y ]I n = [X, Y ]I 2k+1 = [X, Y ]I 2k ,I

and we use the recursion hypothesis. If n = 2k, since I k is Nijenhuis, using (5) we
may write

[X, Y ]I n = [X, Y ]I k ◦ I k = [X, Y ]I k ,I k ,

and we use, again, the recursion hypothesis.
For c), we use b) and (11):

[X, Y ]I n,I m = [X, Y ]I, n..., I, I m = [X, Y ]I m , I, n..., I = [X, Y ]I, m+n... , I = [X, Y ]I m+n . �

If I is a Nijenhuis tensor on a pre-Courant algebroid (E,2), then, from parts b)
and c) of Proposition 3.8, we have

(12) 2I k1 ,...,I kn =2 I, . . . , I︸ ︷︷ ︸
k1+···+kn

=2I k1+···+kn ,

for all k1, . . . , kn ∈ N, n ∈ N.

3B. Hierarchy of compatible tensors with respect to 2. In this section, we intro-
duce the notion of compatible pair of (1, 1)-tensors with respect to a pre-Courant
algebroid (E,2) and construct a hierarchy of compatible pairs of tensors.

The Magri–Morosi concomitant of a bivector and a (1, 1)-tensor on a manifold
was introduced in [Magri and Morosi 1984] and then extended to Lie algebroids in
[Kosmann-Schwarzbach and Magri 1990]. For a pre-Courant algebroid (E,2), we
introduce a concomitant of two skew-symmetric (1, 1)-tensors I and J by setting

(13) C2(I, J )= {J, {I,2}}+ {I, {J,2}} =2I,J +2J,I .

If (ρ, [ · , · ]) is the pre-Courant structure on E corresponding to 2, (13) reads
as follows:

(14) {{X,C2(I, J )}, Y } = [X, Y ]I,J + [X, Y ]J,I ,

{{X,C2(I, J )}, f } = (ρ ◦ (I ◦ J + J ◦ I ))(X). f,

for all X, Y ∈ 0(E) and f ∈ C∞(M).
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In the sequel, we denote the left-hand side of (14) by C2(I, J )(X, Y ). When
I and J anticommute, we have {{X,C2(I, J )}, f } = 0 for all X ∈ 0(E) and
f ∈ C∞(M). Therefore, in this case,

(15) C2(I, J )= 0 ⇐⇒ C2(I, J )(X, Y )= 0 for all X, Y ∈ 0(E).

Remark 3.9. Let (A, µ) be a Lie algebroid. Recall that the Magri–Morosi concomi-
tant of a bivector π and a (1, 1)-tensor N on A is given by [Kosmann-Schwarzbach
and Magri 1990]:

(16) Cµ(π, N )= {N , {π,µ}}+ {π, {N , µ}}.

If we consider the Courant algebroid (A⊕ A∗, µ) and the (1, 1)-tensors Jπ and IN

as in Examples 2.6 and 2.9, respectively, we have that the concomitant of Jπ and
IN given by (13) and the concomitant of π and N given by (16) coincide.

For the various classes of pairs of skew-symmetric (1, 1)-tensors that will be
introduced in the sequel, we shall require that the skew-symmetric (1, 1)-tensors
are compatible in the following sense:

Definition 3.10. A pair (I, J ) of skew-symmetric (1, 1)-tensors on a pre-Courant
algebroid (E,2) is said to be a compatible pair with respect to 2 if I and J
anticommute and C2(I, J )= 0.

Let I and J be two (1, 1)-tensors on a pre-Courant algebroid (E,2). Recall
that the Nijenhuis concomitant of I and J is the map 0(E)×0(E)→ 0(E) (in
general not a tensor) defined for all sections X and Y of E as follows [Kobayashi
and Nomizu 1963]:

(17) N2(I, J )(X, Y )= [I X, JY ] − I [X, JY ] − J [I X, Y ] + I J [X, Y ]

+[J X, I Y ] − J [X, I Y ] − I [J X, Y ] + J I [X, Y ].

Notice that N2(I, I )= 2T2 I , while if I and J anticommute, then

N2(I, J )= 1
2C2(I, J ).

Lemma 3.11. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2). Then, T2(I + J )= T2 I + T2 J +N2(I, J ).

Proof. Using the definition of the Nijenhuis torsion we get, for all X, Y ∈ 0(E),

T2(I+J )(X,Y )= T2 I (X,Y )+ T2 J (X,Y )+ [I X, JY ] + [J X, I Y ] − I [X, JY ]

−J [X, I Y ] − I [J X,Y ] − J [I X,Y ] + I J [X,Y ] + J I [X,Y ]

= T2 I (X,Y )+ T2 J (X,Y )+N2(I, J )(X,Y ). �

The next proposition gives a characterization of compatible pairs.



HIERARCHIES AND COMPATIBILITY ON COURANT ALGEBROIDS 15

Proposition 3.12. Let (I, J ) be a pair of anticommuting skew-symmetric (1, 1)-
tensors on a pre-Courant algebroid (E,2). Then, (I, J ) is a compatible pair with
respect to 2 if and only if T2(I + J )= T2 I + T2 J .

Proposition 3.13. Let (I, J ) be a pair of anticommuting skew-symmetric (1, 1)-
tensors on a pre-Courant algebroid (E,2). Then for all sections X, Y of E
and n ≥ 1,

(18) C2(I, I n
◦ J )(X, Y )= I (C2(I, I n−1

◦ J )(X, Y ))

+2 T2 I ((I n−1
◦ J )X, Y )+ 2 T2 I (X, (I n−1

◦ J )Y ).

Proof. A simple computation gives

C2(I, I n
◦ J )(X, Y )= [X, Y ]I,I n ◦ J + [X, Y ]I n ◦ J,I

= 2([I n(J X), I X ] − I [I n(J X), Y ] + [I X, I n(JY )]

−I [X, I n(JY )] − I n
◦ J [I X, Y ] − I n

◦ J [X, I Y ]),

for all sections X, Y of E and n ≥ 1. Thus, we have

I (C2(I, I n−1
◦ J )(X, Y ))

= 2(I [I n−1(J X), I Y ] − I 2
[I n−1(J X), Y ] + I [I X, I n−1(JY )]

−I 2
[X, I n−1(JY )] − I n

◦ J [I X, Y ] − I n
◦ J [X, I Y ]).

Since

T2 I (I n−1(J X), Y )

= [I n(J X), I Y ] − I ([I n(J X), Y ] + [I n−1(J X), I Y ] − I [I n−1(J X), Y ])

and

T2 I (X, I n−1(JY ))

= [I X, I n(JY )] − I ([I X, I n−1(JY )] + [X, I n(JY )] − I [X, I n−1(JY )]),

the result follows. �

Theorem 3.14. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that T2 I (J X, Y )=T2 I (X, JY )=0 for all sections
X and Y of E. If (I, J ) is a compatible pair with respect to 2, then

(19) C2(I, I n
◦ J )= 0,

and (I, I n
◦ J ) is a compatible pair with respect to 2 for all n ∈ N.

Proof. For n = 0, (19) reduces to C2(I, J )= 0 and (I, J ) is a compatible pair with
respect to 2, which is one of the assumptions. From (18), we get

C2(I, I n
◦ J )(X, Y )= I (C2(I, I n−1

◦ J )(X, Y )), n ≥ 1,
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for all sections X, Y of E , where we used I n−1
◦ J = (−1)n−1 J ◦ I n−1 to obtain

T2 I ((I n−1(J X), Y )= (−1)n−1T2 I (J (I n−1 X), Y )= 0

and analogously
T2 I (X, I n−1(JY ))= 0.

Therefore, using (15), it is obvious that if C2(I, I n−1
◦ J )=0, then C2(I, I n

◦ J )=0
and (19) follows by recursion. Since I anticommutes with I n

◦ J , the proof is
complete. �

3C. Compatible tensors with respect to 2k, k ∈ N. In this section, we address the
general case of hierarchies of tensors that are compatible with respect to each term
of a family (2k)k∈N of pre-Courant structures on E .

Proposition 3.15. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2). Then,

C2I (I, J )= C2(I, {J, I })+{I,C2(I, J )}.

In particular, if I and J anticommute, then,

(20) C2I (I, J )= 2C2(I, I ◦ J )+{I,C2(I, J )}.

Proof. Applying the Jacobi identity of the bracket { · , · } twice, we get

2I,I,J =2I,{J,I }+2I,J,I =2I,{J,I }+2{J,I },I +2J,I,I ,

which can be written as

C2(I, {J, I })=2I,I,J −2J,I,I .

From the definition of C2(I, J ), we have 2J,I,I = {I,C2(I, J )}−2I,J,I . Sub-
stituting this result in the last equality, we get

C2(I, {J, I })=2I,I,J −{I,C2(I, J )}+2I,J,I = C2I (I, J )−{I,C2(I, J )},

proving the first statement. If I and J anticommute, then {J, I } = 2I ◦ J and the
second statement follows. �

The next theorem extends the result of Theorem 3.14.

Theorem 3.16. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that T2 I (J X, Y )=T2 I (X, JY )=0 for all sections
X and Y of E. If (I, J ) is a compatible pair with respect to2, then C2k (I, I n

◦ J )=
0 and (I, I n

◦ J ) is a compatible pair with respect to 2k for all k, n ∈ N.
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Proof. Suppose that T2 I (J X, Y )= T2 I (X, JY )= 0 for all sections X and Y of E .
We will prove, by induction on k, that

C2k (I, I n
◦ J )= 0, for all k, n ∈ N.

For k = 0, this is the content of Theorem 3.14.
Suppose now that, for some k ∈N, C2k (I, I n

◦ J )= 0 for all n ∈N. Then, from
(20) we have, for all n ∈ N,

C2k+1(I, I n
◦ J )= 2C2k (I, I n+1

◦ J )+{I,C2k (I, I n
◦ J )} = 0,

where we used the induction hypothesis in the last equality. Since the skew-
symmetric tensor I n

◦ J anticommutes with I for all n∈N, (I, I n
◦ J ) is a compatible

pair with respect to 2k , for all k, n ∈ N. �

In order to establish the main results of this section, we need the following lem-
mas.

Lemma 3.17. Let (I, J ) be a pair of anticommuting skew-symmetric (1, 1)-tensors
on a pre-Courant algebroid (E,2). Then,

C2(I, J )= 2(2I,J −2I ◦ J ).

Proof. Since I and J anticommute, {I, J } = −2 I ◦ J . Using the Jacobi identity of
the bracket { · , · }, we have 2J,I =−22I ◦ J +2I,J . Therefore,

C2(I, J )=2I,J +2J,I = 2(2I,J −2I ◦ J ). �

Lemma 3.18. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that I is Nijenhuis for 2. If (I, J ) is a compatible
pair with respect to 2, then, for all sections X and Y of E ,

[X, Y ]I, n... ,I,J = [X, Y ]I n ◦ J .

Proof. Theorem 3.16 ensures that, for all n ∈ N, C2n (I, J ) = 0 and, applying
Lemma 3.17 for the pre-Courant structure 2n−1, we get

[X, Y ]I, n... ,I,J = [X, Y ]I, n−1... ,I,I,J = {{X, (2n−1)I,J }, Y }

= {{X, (2n−1)I ◦ J }, Y } = [X, Y ]I, n−1... ,I,I ◦ J .

Since, for every k ∈N, I anticommutes with I k
◦ J , we may repeat n− 1 times this

procedure to yield
[X, Y ]I, n... ,I,J = [X, Y ]I n ◦ J . �

Remark 3.19. In Lemma 3.18, we may replace the assumption that I is Nijenhuis
for 2 by the weaker assumption T2 I (J X, Y )= T2 I (X, JY )= 0 for all sections
X and Y of E .
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Theorem 3.20. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2), such that I is Nijenhuis and (I, J ) is a compatible pair
with respect to 2. Then,

(21) C2k (I
2s+1, I n

◦ J )= 0

and (I 2s+1, I n
◦ J ) is a compatible pair with respect to 2k for all k, n, s ∈ N.

Moreover, if J is Nijenhuis tensor, then

(22) C2k (I
2s+1, I n

◦ J 2m+1)= 0

and (I 2s+1, I n
◦ J 2m+1) is a compatible pair with respect to2k for all k,m, n, s ∈N.

Proof. Let I and J be two skew-symmetric (1, 1)-tensors which are compatible
with respect to 2 and such that T2 I = 0. Firstly, we prove that

C2(I 2s+1, I n
◦ J )= 0, for all s, n ∈ N.

Since I 2s+1 anticommutes with I n
◦ J , we may apply Lemma 3.17 to obtain

C2(I 2s+1, I n
◦ J )(X, Y )= 2([X, Y ]I 2s+1,I n ◦ J − [X, Y ]I 2s+1 ◦ (I n ◦ J )).

From Theorem 3.14, (I, I n
◦ J ) is a compatible pair with respect to 2 and, applying

Lemma 3.18, we get

C2(I 2s+1, I n
◦ J )(X, Y )= 2([X, Y ]I 2s+1,I n ◦ J − [X, Y ]I, 2s+1... ,I,I n ◦ J )

= 2([X, Y ]I 2s+1 − [X, Y ]I 2s+1)I n ◦ J = 0,

where we have used Proposition 3.8b) in the second equality. From (15), we
obtain C2(I 2s+1, I n

◦ J )= 0.
In order to prove the result for a general 2k , notice that, due to Corollary 3.2

and Theorem 3.16, the assumptions originally satisfied for 2 are also satisfied for
any of the pre-Courant structures 2k, k ∈ N. Therefore, in the above arguments,
we can replace 2 by any 2k , k ∈ N.

Now, suppose that I and J are both Nijenhuis for 2. Since they play symmetric
roles, we may exchange them in (21) and, taking k = 0, n = 0 and s = m, we
obtain C2(I, J 2m+1) = 0. Because I and J 2m+1 anticommute, we conclude that
(I, J 2m+1) is a compatible pair with respect to 2. Thus, we may apply (21) again,
replacing J by J 2m+1, to obtain C2k (I

2s+1, I n
◦ J 2m+1) = 0 and, because I 2s+1

anticommutes with I n
◦ J 2m+1, the pair (I 2s+1, I n

◦ J 2m+1) is a compatible pair
with respect to 2k , for all k,m, n, s ∈ N. �
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4. Hierarchies of deforming-Nijenhuis pairs

We introduce the notion of deforming-Nijenhuis pair as well as the definitions
of Poisson tensor and Poisson–Nijenhuis pair on a pre-Courant algebroid. We
construct several hierarchies of deforming-Nijenhuis and Poisson–Nijenhuis pairs.

4A. Hierarchy of deforming-Nijenhuis pairs for 2k, k ∈ N. Starting with a
deforming-Nijenhuis pair (J, I ) for 2, we prove, in a first step, that it is also
a deforming-Nijenhuis pair for 2k for all k ∈ N. Then, we construct a hierarchy
(J, I 2n+1)n∈N of deforming-Nijenhuis pairs for 2k for all k ∈ N.

Definition 4.1. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-Courant
algebroid (E,2). The pair (J, I ) is said to be a deforming-Nijenhuis pair for 2 if

• (J, I ) is a compatible pair with respect to 2,

• J is deforming for 2,

• I is Nijenhuis for 2.

We need the following lemmas.

Lemma 4.2. Let (I, J ) be a pair of anticommuting skew-symmetric (1, 1)-tensors
on a pre-Courant algebroid (E,2). Then, for all k ∈ N,

(23)
(
(2r ){J,{I,J }}

)
I, s... ,I = (2{J,{I,J }})I, k... ,I

for all r, s ∈ N such that r + s = k.
In particular,

i) if 2{J,{I,J }} = λ02J,J,I , for some λ0 ∈ R, then

(2k){J,{I,J }} = λ0(2J,J )I, k+1... ,I for all k ∈ N,

ii) if {J, {I, J }} is a 2-cocycle, then it is a 2k-cocycle for all k ∈ N.

Proof. Since I and J anticommute, we have

(24) I ◦ (I ◦ J 2)= (I ◦ J 2) ◦ I ⇔ {I, I ◦ J 2
} = 0 ⇔ {I, {J, {J, I }}} = 0.

Using the Jacobi identity of the bracket { · , · }, it follows from (24) that

(25) 2I,{J,{J,I }} =2{J,{J,I }},I .

Since (25) holds for any pre-Courant structure on E , we may write

(2I, r+s... ,I ){J,{I,J }} = (2I, r+s−1... ,I ){J,{I,J }},I .

Repeating the procedure (s− 1) times, we obtain (23). The particular cases follow
immediately. �
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Lemma 4.3. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-Courant
algebroid (E,2). Then,

2J,I,J =
1
3

(
2J,J,I +2{J,{I,J }}+{J,C2(I, J )}

)
,(26)

2I,J,J =−
1
3

(
2J,J,I +2{J,{I,J }}− 2{J,C2(I, J )}

)
.(27)

Proof. The formulae are obtained by application of the Jacobi identity. �

As a particular case of the previous lemma, we have the following:

Corollary 4.4. If C2(I, J )= 0 and 2{J,{I,J }} = λ02J,J,I , λ0 ∈ R, then

(28) 2I,J,J = α2J,J,I with α =−λ0+1
3

.

Moreover, if J is deforming for 2, that is, 2J,J = η2 with η ∈ R, then J is
deforming for 2I . More precisely, 2I,J,J = η α 2I .

Lemma 4.5. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-Courant
algebroid (E,2) such that (I, J ) is a compatible pair with respect to 2 and
T2 I (J X, Y ) = T2 I (X, JY ) = 0 for all sections X and Y of E. Suppose that
2{J,{I,J }} = λ02J,J,I for some λ0 ∈ R\{4/((−3)m − 1),m ∈ N}. Then, for all
k ∈ N:

(a) (2k){J,{I,J }} = λk(2k)J,J,I , where λk is defined by recursion6 as follows:
λk =−3λk−1/(1+ λk−1), k ≥ 1.

(b) λk(2k)J,J,I = λ02J,J,I, k+1... ,I .

(c) If , in particular, λ0 = 0, then (2k)J,J =
(
−

1
3

)k
2J,J,I, k... ,I for all k ∈ N.

Proof.

(a) We will prove this statement by induction. Suppose that, for some k ≥ 1,
(2k−1){J,{I,J }} = λk−1(2k−1)J,J,I . Using Lemma 4.2 and the induction hy-
pothesis, we have

(2k){J,{I,J }} = (2k−1){J,{I,J }},I = λk−1(2k−1)J,J,I,I .

Applying formula (28) for 2k−1, we obtain

(2k){J,{I,J }} =
−3λk−1

1+ λk−1
(2k−1)I,J,J,I = λk(2k)J,J,I , with λk =

−3λk−1

1+ λk−1
.

(b) Starting from the previous statement, then using the Lemma 4.2 and the
hypothesis, we have

λk(2k)J,J,I = (2k){J,{I,J }} =2{J,{I,J }},I, k..., ,I = λ02J,J,I, k+1... ,I .

6Explicitly, λk =
(−3)kλ0

1+ 1−(−3)k
4 λ0

for all k ∈ N.
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(c) From Lemma 4.2i), we get

(2k){J,{I,J }} = 0 for all k ∈ N,

while Theorem 3.16 gives

C2k (I, J )= 0 for all k ∈ N.

Thus, applying the formula (27) several times yields

(2k)J,J =−
1
3(2k−1)J,J,I = · · · =

(
−

1
3

)k
2J,J,I, k... ,I . �

Proposition 4.6. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that (I, J ) is a compatible pair with respect to
2 and 2{J,{I,J }} = λ02J,J,I for some λ0 ∈ R\{4/((−3)m − 1),m ∈ N}. Assume
moreover that T2 I (J X, Y )= T2 I (X, JY )= 0 for all sections X and Y of E. If J
is a deforming tensor for 2, then J is also a deforming tensor for 2k for all k ∈ N.

Proof. We consider two cases, depending on the value of λ0.

i) Case λ0 6= 0. From Theorem 3.16, we have that C2k (I, J )= 0, for all k ∈N.
We compute,7 using Lemma 4.3 and both statements of Lemma 4.5,

(2k)J,J = (2k−1)I,J,J =−
1
3((2k−1)J,J,I + (2k−1){J,{I,J }})

=−
1
3((2k−1)J,J,I + λk−1(2k−1)J,J,I )

=−
1+λk−1

3
(2k−1)J,J,I

=−
(1+λk−1)λ0

3λk−1
2J,J,I, k... ,I

=
λ0
λk
2J,J,I, k... ,I .

The tensor J being deforming for 2, we have 2J,J = η2 for some η ∈ R,
and the last equality becomes

(2k)J,J =
λ0
λk
η2k,

which means that J is a deforming tensor for 2k .

(ii) Case λ0 = 0. If J is deforming for 2, that is, 2J,J = η2 with η ∈ R, then,
from Lemma 4.5c) we immediately get

(2k)J,J =
(
−

1
3

)k
η2k for all k ∈ N,

which means that J is deforming for 2k . �

Now, we establish the main result of this section.

7Notice that if λ0 6= 0 then λk 6= 0 for all k ∈ N.
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Theorem 4.7. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant (respectively, Courant) algebroid (E,2) such that 2{J,{I,J }} = λ02J,J,I

for some λ0 ∈R\{4/((−3)m−1),m ∈N}. If (J, I ) is a deforming-Nijenhuis pair for
2, then (J, I 2n+1) is a deforming-Nijenhuis pair for the pre-Courant (respectively,
Courant) structures 2k for all k, n ∈ N.

Proof. Let (J, I ) be a deforming-Nijenhuis pair for 2. Combining Corollary 3.2,
Theorem 3.16 and Proposition 4.6, we have that (J, I ) is a deforming-Nijenhuis
pair for 2k for all k ∈ N. From Proposition 3.5 we obtain that I 2n+1 is Nijenhuis
for 2k for all k, n ∈ N. Since I and J anticommute, the tensors I 2n+1 and J also
anticommute and, from Theorem 3.20, we have that C2k (I

2n+1, J ) = 0, for all
k, n ∈N. Thus, (J, I 2n+1) is a deforming-Nijenhuis pair for 2k for all k, n ∈N. �

4B. Hierarchy of Poisson–Nijenhuis pairs for 2k, k ∈ N. We introduce the no-
tions of Poisson tensor, Poisson–Nijenhuis pair and compatible Poisson tensors for a
pre-Courant algebroid (E,2) and construct a hierarchy of Poisson–Nijenhuis pairs.

We start by introducing the notion of Poisson tensor.

Definition 4.8. A skew-symmetric (1, 1)-tensor J on a pre-Courant algebroid
(E,2) satisfying 2J,J = 0 is said to be a Poisson tensor for 2.

In the next example, we show that the previous definition extends the usual
definition of a Poisson bivector on a Lie algebroid.

Example 4.9. Let (A, µ) be a Lie algebroid. Consider the Courant algebroid
(A⊕ A∗,2= µ) and the (1, 1)-tensor Jπ of Example 2.6. Then, Jπ is a Poisson
tensor for 2= µ if and only if π is a Poisson tensor on (A, µ).

Example 4.10. The tensors introduced in Example 2.3 are Poisson tensors on
Lie algebras.

The next theorem follows directly from Lemma 4.5c).

Theorem 4.11. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that (I, J ) is a compatible pair with respect to 2,
2{J,{I,J }} = 0 and T2 I (J X, Y )= T2 I (X, JY )= 0 for all sections X and Y of E.
If J is Poisson for 2, then J is Poisson for 2k for all k ∈ N.

Requiring 2{J,{I,J }} = 0 might seem somewhat arbitrary, but it is not. In fact, in
the case where I and J anticommute, this condition may be interpreted as I ◦ J 2

being a 2-cocycle. When E = A⊕ A∗, a (1, 1)-tensor Jπ of the type considered in
Example 2.6 trivially satisfies this condition because J 2

π = 0.
Now, we introduce the main notion of this section.

Definition 4.12. Let I and J be two skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2). The pair (J, I ) is said to be a Poisson–Nijenhuis pair
for 2 if
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• (J, I ) is a compatible pair with respect to 2,

• J is Poisson for 2,

• I is Nijenhuis for 2.

Remark 4.13. If (J, I ) is a Poisson–Nijenhuis pair for 2, then it is a deforming-
Nijenhuis pair for 2.

Recall that a Poisson–Nijenhuis structure on a Lie algebroid (A, µ) is a pair
(π, N ), where π is a Poisson bivector and N : A→ A is a Nijenhuis tensor such
that Nπ#

= π# N ∗ and Cµ(π, N )= 0.
The next example shows the relation between Definition 4.12 and the notion of

Poisson–Nijenhuis structure on a Lie algebroid.

Example 4.14. Let (π, N ) be a Poisson–Nijenhuis structure on a Lie algebroid
(A, µ) with N 2

= α idA, α ∈ R. Consider the Courant algebroid (E,2), with
E = A⊕ A∗ and 2= µ, Jπ and IN as in Examples 2.6 and 2.9, respectively. Then,
(Jπ , IN ) is a Poisson–Nijenhuis pair for 2. In fact,

Nπ#
= π# N ∗⇔ IN ◦ Jπ =−Jπ ◦ IN

and Cµ(π, N )=Cµ(Jπ , IN )= 0, so that (Jπ , IN ) is a compatible pair with respect
to µ. Moreover, π is a Poisson bivector on (A, µ) if and only if Jπ is Poisson for
2= µ (see Example 4.9) and IN is Nijenhuis for 2= µ (see Example 2.9). The
above arguments show that conversely, if (Jπ , IN ) is a Poisson–Nijenhuis pair for
2= µ with N 2

= α idA, then (π, N ) is a Poisson–Nijenhuis structure on (A, µ).

Definition 4.15. Let J and J ′ be two Poisson tensors for the pre-Courant structure2
on the vector bundle (E, 〈 · , · 〉). The tensors J and J ′ are said to be compatible
Poisson tensors for 2 if J + J ′ is a Poisson tensor for 2, i.e., 2J+J ′,J+J ′ = 0.

An immediate consequence of this definition is the following:

Lemma 4.16. Let J and J ′ be two Poisson tensors for 2. Then, J and J ′ are
compatible Poisson tensors for 2 if and only if 2J,J ′ +2J ′,J = 0. In other words,
J and J ′ are compatible Poisson tensors for 2 if and only if C2(J, J ′)= 0.

Example 4.17. Let (A, µ) be a Lie algebroid, consider the Courant algebroid
(A⊕ A∗,2= µ) and take two Poisson tensors for 2= µ, Jπ and Jπ ′ , of the type
considered in Example 2.6. Then,

2Jπ ,Jπ ′ +2Jπ ′ ,Jπ = {π
′, {π,µ}}+ {π, {π ′, µ}} = 2{π ′, {π,µ}} = −2[π, π ′]µ,

so that Jπ and Jπ ′ are compatible Poisson tensors on (A⊕ A∗, µ) if and only if π
and π ′ are compatible Poisson tensors on the Lie algebroid (A, µ).

In order to construct a hierarchy of Poisson–Nijenhuis pairs, we need the next
proposition.
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Proposition 4.18. Let (I, J ) be a pair of anticommuting skew-symmetric (1, 1)-
tensors on a pre-Courant algebroid (E,2). Then, for all sections X and Y of E ,

(29) T2I J (X, Y )

=−J (C2(I, J )(X, Y ))− T2 J (I X, Y )− T2 J (X, I Y )− I (T2 J (X, Y ))

and

(30) T2J I (X, Y )

=−I (C2(I, J )(X, Y ))− T2 I (J X, Y )− T2 I (X, JY )− J (T2 I (X, Y )).

Proof. Since the roles of I and J can be exchanged, we only prove (29). We
compute T2I J and C2(I, J ). For any sections X, Y of E , we have

T2I J (X, Y )= [J X, JY ]I − J [J X, Y ]I − J [X, JY ]I + J 2
[X, Y ]I

= [I J X, JY ] + [J X, I JY ] − I [J X, JY ] − J [I J X, Y ]
−J [J X, I Y ] + J I [J X, Y ] − J [I X, JY ] − J [X, I JY ]

+J I [X, JY ] + J 2
[I X, Y ] + J 2

[X, I Y ] − J 2 I [X, Y ]

and

C2(I, J )(X, Y )

= 2([J X, I Y ] + [I X, JY ] − I ([J X, Y ] + [X, JY ])− J ([I X, Y ] + [X, I Y ])).

Thus,

T2I J (X,Y )+ J (C2(I, J )(X,Y ))

=−[J I X, JY ]−[J X, J I Y ]−I [J X, JY ]+J [J I X,Y ]+J [J X, I Y ]+I J [J X,Y ]

+J [I X, JY ]+J [X, J I Y ]+ I J [X, JY ]−J 2
[I X,Y ]−J 2

[X, I Y ]− I J 2
[X,Y ]

= −T2 J (I X,Y )− T2 J (X, I Y )− I (T2 J (X,Y )). �

The next theorem defines a hierarchy of Poisson–Nijenhuis pairs.

Theorem 4.19. Let (J, I ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that (J, I ) is a Poisson–Nijenhuis pair for 2 and
2{J,{I,J }} = 0. Then:

(1) I n
◦ J is a Poisson tensor for 2k for all n, k ∈ N.

(2) (I n
◦ J )n∈N is a hierarchy of pairwise compatible Poisson tensors for 2k , for

all k ∈ N.

(3) (I n
◦ J, I 2m+1) is a Poisson–Nijenhuis pair for 2k , for all m, n, k ∈ N.

The proof of this theorem needs two auxiliary lemmas.
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Lemma 4.20. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that (I, J ) is a compatible pair with respect to 2.
If I is Nijenhuis for 2, then I is Nijenhuis for (2k)J for all k ∈ N.

Proof. Fix k ∈ N. From Corollary 3.2, I is Nijenhuis for 2k . Also, applying
Theorem 3.16, we obtain C2k (I, J ) = 0. Finally, using (30) for the pre-Courant
structure 2k , we conclude that I is Nijenhuis for (2k)J . �

Lemma 4.21. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2) such that J is Poisson for 2 and 2{J,{I,J }} = 0. Assume,
moreover, that T2 I (J X, Y )= T2 I (X, JY )= 0 for all sections X and Y of E. If
(I, J ) is a compatible pair with respect to 2, then (I, J ) is a compatible pair with
respect to (2k)J for all k ∈ N.

Proof. Fix k ∈ N. By definition, C(2k)J (I, J )= (2k)J,I,J + (2k)J,J,I . In order to
compute (2k)J,I,J , recall formula (26) for the pre-Courant structure 2k :

(2k)J,I,J =
1
3

(
(2k)J,J,I + (2k){J,{I,J }}+{J,C2k (I, J )}

)
.

Since (I, J ) is a compatible pair with respect to 2, applying Theorem 3.16, we
obtain C2k (I, J ) = 0. Furthermore, the relation (2k){J,{I,J }} = 0 follows from
Lemma 4.2(ii). Then, the above formula yields (2k)J,I,J =

1
3(2k)J,J,I , so that

C(2k)J (I, J )= 4
3(2k)J,J,I .

Now, using Theorem 4.11, we obtain (2k)J,J,I = 0. Therefore, (I, J ) is a
compatible pair with respect to (2k)J . �

We now the prove the above theorem.

Proof of Theorem 4.19. Let (I, J ) be a Poisson–Nijenhuis pair for 2 such that
2{J,{I,J }} = 0. We start by proving that

(31) (2k)I m ◦ J,I n ◦ J = 0

for all m, n, k ∈ N. From the above auxiliary lemmas, (I, J ) is a compatible pair
with respect to (2k+m)J and I is Nijenhuis for (2k+m)J . Then, using Lemma 3.18
for the pre-Courant structure (2k+m)J , we obtain

(2k)I m ◦ J,I n ◦ J = ((2k+m)J )I n ◦ J = ((2k+m)J )I, n... ,I,J

=2I, k+m... ,I,J,I, n... ,I,J = (−1)n 2I, k+m+n... ,I,J,J ,

where in the last equality we used n times that C2s (I, J ) = 0 for all s ∈ N (see
Theorem 3.16). Using Theorem 4.11, we obtain (31), from which statements (1) and
(2) follow. From Theorem 3.20, (I n

◦ J, I 2m+1) is a compatible pair with respect
to 2k and, from Proposition 3.5, I 2m+1 is Nijenhuis for 2k . Combining this with
statement (1), we obtain statement (3). �
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Using the Poisson–Nijenhuis pair arising from a Poisson–Nijenhuis structure as
in Example 4.14, we recover most of the hierarchy already studied in [Kosmann-
Schwarzbach and Magri 1990], up to a minor difference. In this general setting it
is not possible to consider I 2n since it is not a skew-symmetric (1, 1)-tensor.

We conclude this section with a particular case of deforming-Nijenhuis pairs.

Proposition 4.22. Let (J, I ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2), such that I 2

= α idE and 2{J,{I,J }} = λ02J,J,I for
some α, λ0 ∈ R. If (J, I ) is a deforming-Nijenhuis pair for 2, then (I n

◦ J, I ) is a
deforming-Nijenhuis pair for 2, for all n ∈ N.

Proof. Let (J, I ) be a deforming-Nijenhuis pair for 2. First, we prove that I n
◦ J

is deforming for 2. Since I 2
= α idE , I n

◦ J is proportional either to J or to I ◦ J .
So, we only need to prove that I ◦ J is deforming for 2. Using Lemma 3.17 and
the fact that I and J anticommute, we have

2I ◦ J,I ◦ J =2I,J,I ◦ J =
1
22I,J,{J,I } =

1
2

(
2I,J,I,J −2I,J,J,I

)
,

where in the last equality we used the Jacobi identity of the bracket { · , · }. Using
(26) for 2I and Lemma 4.2, we get

22I ◦ J,I ◦ J =
1
3

(
2I,J,J,I +2I,{J,{I,J }}

)
−2I,J,J,I =−

2
32I,J,J,I +

1
32{J,{I,J }},I .

Now, from the equality (27), we obtain

22I ◦ J,I ◦ J =
2
92J,J,I,I +

5
92{J,{I,J }},I .

Since 2{J,{I,J }} = λ02J,J,I and 2J,J = η2 for some η ∈ R, we get

2I ◦ J,I ◦ J =
2+5λ0

18
η2I,I =

2+5λ0
18

η2I 2 =
2+5λ0

18
ηα2,

where, in the last equalities, we used the fact that I is Nijenhuis and satisfies
I 2
= α idE . Therefore, I ◦ J is deforming for 2.
The tensors I and I n

◦ J anticommute and, from Theorem 3.14, C2(I, I n
◦ J )=0.

Thus, (I n
◦ J, I ) is a deforming-Nijenhuis pair for 2. �

Notice that (I n
◦ J, I )n∈N is a very poor hierarchy of deforming-Nijenhuis pairs

since, as we already mentioned, all the pairs are of type either (J, I ) or (I ◦ J, I ).
In fact we have, for all n ∈ N,

I 2n
◦ J = αn J, I 2n+1

◦ J = αn I ◦ J.

5. Hierarchies of Nijenhuis pairs

The last part of this article is devoted to the study of pairs of Nijenhuis tensors on
pre-Courant algebroids.
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5A. Nijenhuis pair for a hierarchy of pre-Courant structures. We introduce the
notion of Nijenhuis pair for a pre-Courant algebroid (E,2) and prove that a
Nijenhuis pair (I, J ) for 2 is still a Nijenhuis pair for any deformation of 2, either
by I or J .

We first introduce the notion of Nijenhuis pair for a pre-Courant algebroid.

Definition 5.1. Let I and J be two skew-symmetric tensors on a pre-Courant alge-
broid (E,2). The pair (I, J ) is called a Nijenhuis pair for 2, if it is a compatible
pair with respect to 2 and I and J are both Nijenhuis for 2.

Example 5.2. Let J be a deforming tensor on (E,2), that is 2J,J = η2, for some
η ∈ R. If (J, I ) is a deforming-Nijenhuis pair, with J 2

= η idE , then (J, I ) is a
Nijenhuis pair. In particular, if (J, I ) is Poisson–Nijenhuis pair, and J 2

= 0, then
(J, I ) is a Nijenhuis pair. Notice that this happens when J = Jπ as in Example 2.6.

In the next proposition we compute the torsion of the composition I ◦ J .

Proposition 5.3. Let (I, J ) be a pair of anticommuting tensors on a pre-Courant
algebroid (E,2). Then, for all sections X and Y of E ,

(32) 2T2(I ◦ J )(X, Y )=
(
T2 I (J X, JY )− J

(
T2 I (J X, Y )+ T2 I (X, JY )

)
−J 2(T2 I (X, Y ))

)
+ 	

I,J
,

where 	
I,J

stands for permutation of I and J .

Proof. Let us compute the first four terms of the right hand side of (32):

T2 I (J X, JY )= [I J X, I JY ] − I [I J X, JY ] − I [J X, I JY ] + I 2
[J X, JY ]

−J (T2 I (J X, Y ))=−J [I J X, I Y ] + J I [I J X, Y ] + J I [J X, I Y ] − J I 2
[J X, Y ]

−J (T2 I (X, JY ))=−J [I X, I JY ] + J I [I X, JY ] + J I [X, I JY ] − J I 2
[X, JY ]

−J 2(T2 I (X, Y ))=−J 2
[I X, I Y ] + J 2 I [I X, Y ] + J 2 I [X, I Y ] − J 2 I 2

[X, Y ].

The terms appearing on the right hand sides of the above equalities can be written
in a matrix form:

M(I, J )(X, Y )

=


[I J X, I JY ] −I [I J X, JY ] −I [J X, I JY ] I 2

[J X, JY ]
−J [I J X, I Y ] J I [I J X, Y ] J I [J X, I Y ] −J I 2

[J X, Y ]
−J [I X, I JY ] J I [I X, JY ] J I [X, I JY ] −J I 2

[X, JY ]
−J 2
[I X, I Y ] J 2 I [I X, Y ] J 2 I [X, I Y ] −J 2 I 2

[X, Y ]

 .
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Because I and J anticommute, exchanging the tensors I and J , we obtain the
matrix M(J, I ) with entries given by

M(J, I )m,n =
{
−M(I, J )n,m if m 6= n,
M(I, J )m,n if m = n,

for all m, n = 1, . . . , 4.
Note that the right hand side of (32) is the sum of all the entries of both matrices

M(I, J )(X, Y ) and M(J, I )(X, Y ). Thus,

T2 I (J X, JY )− J
(
T2 I (J X, Y )+ T2 I (X, JY )

)
− J 2(T2 I (X, Y ))+ 	

I,J

= 2
(
[I J X, I JY ] + J I [I J X, Y ] + J I [X, I JY ] − J 2 I 2

[X, Y ]
)

= 2T2(I ◦ J )(X, Y ),

and the proof is complete. �

Proposition 5.4. Let (I, J ) be a pair of skew-symmetric tensors on a pre-Courant
algebroid (E,2). If (I, J ) is a Nijenhuis pair for 2, then (I, I ◦ J ) and (J, I ◦ J )
are also Nijenhuis pairs for 2.

Proof. It is obvious that I and I ◦ J anticommute, as well as J and I ◦ J . From (32)
we conclude that I ◦ J is a Nijenhuis tensor and from (19), with n = 1, we obtain
C2(I, I ◦ J )= 0 and C2(J, I ◦ J )= 0. �

Using Proposition 5.4, we may establish a relationship between Nijenhuis pairs
and hypercomplex triples.

A triple (I, J, K ) of skew-symmetric (1, 1)-tensors on a pre-Courant algebroid
(E,2) is called a hypercomplex triple if I 2

= J 2
= K 2

= I ◦ J ◦ K = − idE and
all the six Nijenhuis concomitants N2(I, I ), N2(J, J ), N2(K , K ), N2(I, J ),
N2(J, K ) and N2(I, K ) vanish [Stiénon 2009]. (See (17) for the definition of
N2).

Example 5.5. Given a Nijenhuis pair (I, J ) such that I 2
= J 2

=− idE , the triple
(I, J, I ◦ J ) is a hypercomplex structure. Conversely, for every hypercomplex
structure (I, J, K ), the pairs (I, J ), (J, K ) and (K , I ) are Nijenhuis pairs.

The main result of this section is the following.

Theorem 5.6. Let (I, J ) be a pair of (1, 1)-tensors on a pre-Courant algebroid
(E,2). If (I, J ) is a Nijenhuis pair for 2, then (I, J ) is a Nijenhuis pair for
2T1,T2,...,Ts , for all s ∈N, where Ti stands either for I or for J , for every i = 1, . . . , s.

Proof. Combining formulae (18) and (20) we get, for all X, Y ∈ 0(E),

(33) C2I (I, J )(X,Y )= 2I (C2(I, J )(X,Y ))+ 4T2 I (J X,Y )+ 4T2 I (X, JY )

= 0.
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Now, from Corollary 3.2, (29) and (33), we conclude that (I, J ) is a Nijenhuis
pair for 2I . Since we may exchange the roles of I and J , we also conclude that
(I, J ) is a Nijenhuis pair for 2J .

Since Corollary 3.2 and the formulae (29) and (33) hold for any anticommuting
tensors I and J and for any pre-Courant structure2 on E , we can repeat the previous
argument iteratively to conclude that (I, J ) is a Nijenhuis pair for 2T1,T2,...,Ts for
all s ∈ N, where Ti stands either for I or for J for every i = 1, . . . , s. �

As a consequence of the above theorem, we deduce:

Corollary 5.7. Let (I, J ) be a pair of (1, 1)-tensors on a Courant algebroid (E,2).
If (I, J ) is a Nijenhuis pair for 2 then, for all s ∈ N, 2T1,T2,...,Ts is a Courant
structure on E , where Ti stands either for I or for J , for every i = 1, . . . , s.

5B. Hierarchies of Nijenhuis pairs. Starting with a Nijenhuis pair (I, J ) for a
pre-Courant algebroid (E,2), we construct several hierarchies of Nijenhuis pairs
for any deformation of 2, either by I or J .

We start with the construction of a hierarchy (I 2m+1, J )m∈N of Nijenhuis pairs
where one of the Nijenhuis tensors remains unchanged.

Proposition 5.8. Let (I, J ) be a pair of (1, 1)-tensors on a pre-Courant algebroid
(E,2). If (I, J ) is a Nijenhuis pair for 2 then, for all m ∈ N, (I 2m+1, J ) is a
Nijenhuis pair for 2T1,T2,...,Ts , for all s ∈ N, where Ti stands either for I or for J
for every i = 1, . . . , s.

Proof. The proof follows from Proposition 3.5, Theorem 3.20 and Theorem 5.6. �

Now we consider the hierarchy (I 2m+1, J 2n+1)m,n∈N. This case follows from
the previous one: for every m ∈ N, (I 2m+1, J ) is a Nijenhuis pair. Applying
Proposition 5.8 to each of these pairs, we get that (I 2m+1, J 2n+1)m,n∈N is a hierarchy
of Nijenhuis pairs and we obtain the following.

Theorem 5.9. Let (I, J ) be a pair of (1, 1)-tensors on a pre-Courant algebroid
(E,2). If (I, J ) is a Nijenhuis pair for 2 then, for all m, n ∈ N, (I 2m+1, J 2n+1) is
a Nijenhuis pair for 2T1,T2,...,Ts , for all s ∈N, where Ti stands either for I or for J ,
for every i = 1, . . . , s.

Let I and J be two skew-symmetric (1, 1)-tensors on a pre-Courant algebroid
(E,2). If I and J are Nijenhuis tensors, we know (see Proposition 3.5) that, for
any m, n ∈N, I m and J n are also Nijenhuis tensors for 2. The next lemma gives a
condition ensuring that I m

◦ J n is also Nijenhuis.

Lemma 5.10. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2). If I and J are anticommuting Nijenhuis tensors, then
I m
◦ J n is a Nijenhuis tensor provided that at least one of the integers m, n is odd.
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Proof. As the roles of the tensors I and J are symmetric, we can suppose that m is
odd (and n is even or odd). If n is also odd then I m and J n anticommute and the
result follows from Proposition 5.3. Suppose now that m is odd and n is even. By
the previous case, I m

◦ J n−1 is Nijenhuis and anticommutes with J :

(I m
◦ J n−1) ◦ J = I m

◦ J n
=−J ◦ (I m

◦ J n−1).

Then, using again Proposition 5.3, we conclude that I m
◦ J n is a Nijenhuis tensor. �

The main result of this section is the following theorem.

Theorem 5.11. Let (I, J ) be a pair of skew-symmetric (1, 1)-tensors on a pre-
Courant algebroid (E,2). If (I, J ) is a Nijenhuis pair for2, then for all m, n, t ∈N,
(I 2m+1

◦ J n, J 2t+1) is a Nijenhuis pair for2T1,T2,...,Ts , for all s ∈N, where Ti stands
either for I or for J for every i = 1, . . . , s.

Proof. First, we prove that (I 2m+1
◦ J n, J 2t+1) is a Nijenhuis pair for 2 for all

m, n, t ∈N. We already know that I 2m+1
◦ J n is Nijenhuis (see Lemma 5.10) and

that J 2t+1 is Nijenhuis (see Proposition 3.5). Moreover, I 2m+1
◦ J n anticommutes

with J 2t+1 and, applying (22), we obtain C2(I 2m+1
◦ J n, J 2t+1)= 0.

Using Theorem 5.6, this result can be extended to all pre-Courant structures
2T1,T2,...,Ts , where Ti stands either for I or for J for every i = 1, . . . , s. �
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