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In 1979, Kazhdan and Lusztig developed a combinatorial theory associated
with Coxeter groups, defining in particular partitions of the group in left
and two-sided cells. In 1983, Lusztig generalized this theory to Hecke alge-
bras of Coxeter groups with unequal parameters. We propose a definition
of left cells and two-sided cells for complex reflection groups, based on ram-
ification theory for Calogero-Moser spaces. These spaces have been defined
via rational Cherednik algebras by Etingof and Ginzburg. We conjecture
that these coincide with Kazhdan-Lusztig cells, for real reflection groups.
Counterparts of families of irreducible characters have been studied by Gor-
don and Martino, and we provide here a version of left cell representations.
The Calogero-Moser cells will be studied in details in a forthcoming paper,
providing thus several results supporting our conjecture.

1. Introduction

Kazhdan and Lusztig [1979] developed a combinatorial theory associated with
Coxeter groups. They defined in particular partitions of the group in left and two-
sided cells. For Weyl groups, these have a representation-theoretic interpretation in
terms of primitive ideals, and they play a key role in Lusztig’s description [1984] of
unipotent characters for finite groups of Lie type. Lusztig [1983; 2003] generalized
this theory to Hecke algebras of Coxeter groups with unequal parameters.

We propose a definition of left cells and two-sided cells for complex reflection
groups, based on ramification theory for Calogero–Moser spaces. These spaces have
been defined via rational Cherednik algebras by Etingof and Ginzburg [2002]. We
conjecture that these coincide with Kazhdan–Lusztig cells, for real reflection groups.
Counterparts of families of irreducible characters have been studied by Gordon and
Martino [2009], and we provide here a version of left cell representations. The
Calogero–Moser cells are studied in detail in [Bonnafé and Rouquier ≥ 2013].
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2. Calogero–Moser spaces and cells

Rational Cherednik algebras at t = 0. Let us recall some constructions and results
from [Etingof and Ginzburg 2002]. Let V be a finite-dimensional complex vector
space and W a finite subgroup of GL(V ). Let S be the set of reflections of W ,
that is, elements g such that ker(g− 1) is a hyperplane. We assume that W is a
reflection group, that is, it is generated by S.

We denote by S/∼ the quotient of S by the conjugation action of W and we let
{cs}s∈S/∼ be a set of indeterminates. We put A = C[CS/∼

] = C[{cs}s∈S/∼]. Given
s ∈ S, let vs ∈ V and αs ∈ V ∗ be eigenvectors for s associated to the nontrivial
eigenvalue.

The 0-rational Cherednik algebra H is the quotient of A⊗ T (V ⊕ V ∗)o W by
the relations

[x, x ′] = [ξ, ξ ′] = 0,

[ξ, x] =
∑
s∈S

cs
〈vs, x〉·〈ξ, αs〉

〈vs, αs〉
s for x, x ′ ∈ V ∗ and ξ, ξ ′ ∈ V .

We put Q = Z(H) and P = A⊗ S(V ∗)W⊗ S(V )W ⊂ Q. The ring Q is normal.
It is a free P-module of rank |W |.

Galois closure. Let K = Frac(P) and L = Frac(Q). Let M be a Galois closure
of the extension L/K and R the integral closure of Q in M . Let G = Gal(M/K )
and H = Gal(M/L). Let P = Spec P = A

S/∼
C
× V/W × V ∗/W , Q = Spec Q the

Calogero–Moser space, and R= Spec R.
We denote by π :R→Q the quotient by H , and byϒ :Q→P and φ :P→A

S/∼
C

the canonical maps. We put p = ϒπ :R→ P the quotient by G.

Ramification. Let r ∈ R be a prime ideal of R. We denote by D(r) ⊂ G its
decomposition group and by I(r)⊂ D(r) its inertia group.

We have a decomposition into irreducible components

R×P Q=
⋃

g∈G/H

Og, where Og = {(x, π(g−1(x))) | x ∈R},

inducing a decomposition into irreducible components

V (r)×PQ=
∐

g∈I(r)\G/H

Og(r), where Og(r)={(x, π(g−1g′(x))) | x ∈V (r), g′∈ I(r)}.

Undeformed case. Let p0 = φ
−1(0)=

∑
s∈S/∼ Pcs . We have

P/p0 = C[V ⊕ V ∗]W×W , Q/p0 Q = C[V ⊕ V ∗]1W ,

where 1(W )= {(w,w) | w ∈W } ⊂W ×W . A Galois closure of the extension of
C(p0 Q)= C(V ⊕ V ∗)1W over C(p0)= C(V ⊕ V ∗)W×W is C(V ⊕ V ∗)1Z(W ).
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Let r0 ∈ R above p0. Since p0 Q is prime, we have G = D(r0)H = H D(r0),
I(r0) = 1, and C(r0) is a Galois closure of the extension C(p0 Q)/C(p0). Fix an
isomorphism ι : C(r0)−→

∼ C(V ⊕ V ∗)1Z(W ) extending the canonical isomorphism
of C(p0 Q) with C(V ⊕ V ∗)1W .

The application ι induces an isomorphism D(r0) −→
∼ (W ×W )/1Z(W ), that

restricts to an isomorphism D(r0)∩H −→∼ 1W/1Z(W ). This provides a bijection
G/H −→∼ (W ×W )/1W . Composing with the inverse of the bijection

W −→∼ (W ×W )/1W, w 7→ (1, w),

we obtain a bijection G/H −→∼ W .
From now on, we identify the sets G/H and W through this bijection. Note

that this bijection depends on the choices of r0 and of ι. Since M is the Galois
closure of L/K , we have

⋂
g∈G H g

= 1, hence the left action of G on W induces
an injection G ⊂S(W ).

Calogero–Moser cells.

Definition 2.1. Let r∈R. The r-cells of W are the orbits of I(r) in its action on W .

Let c ∈ A
S/∼
C

. Choose rc ∈ R with p(rc) = c̄× 0× 0. The rc-cells are called
the two-sided Calogero–Moser c-cells of W . Choose now rleft

c ∈R contained in rc

with p(rleft
c )= c̄×V/W ×0 ∈P. The rleft

c -cells are called the left Calogero–Moser
c-cells of W . We have I(rleft

c )⊂ I(rc). Consequently, every left cell is contained in
a unique two-sided cell.

The map sending w ∈ W to π(w−1(rc)) induces a bijection from the set of
two-sided cells to ϒ−1(c× 0× 0).

Families and cell multiplicities. Let E be an irreducible representation of C[W ].
We extend it to a representation of S(V )o W by letting V act by 0. Let

1(E)= e · IndH
S(V )oW (A⊗C E), where e = 1

|W |

∑
w∈W

w,

be the spherical Verma module associated with E . It is a Q-module.
Let c ∈ A

S/∼
C

and let 1left(E)= (R/rleft
c )⊗P 1(E).

Definition 2.2. Given a left cell 0, we define the cell multiplicity m0(E) of E as
the length of 1left(E) at the component O0(r

left
c ).

Note that
∑

0 m0(E) · [O0(rleft
c )] is the support cycle of 1left(E).

There is a unique two-sided cell3 containing all left cells 0 such that m0(E) 6= 0.
Its image in Q is the unique q ∈ ϒ−1(c× 0× 0) such that (Q/q)⊗Q 1(E) 6= 0.
The corresponding map Irr(W )→ ϒ−1(c× 0× 0) is surjective, and its fibers are
the Calogero–Moser families of Irr(W ), as defined by Gordon [2003].
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Dimension 1. Let V be a one-dimensional complex vector space, let d ≥ 2 and
let W be the group of d-th roots of unity acting on V . Let ζ = exp(2iπ/d), let
s = ζ ∈W and ci = csi for 1≤ i ≤ d − 1. We have A = C[c1, . . . , cd−1] and

H= A
〈
x, ξ, s

∣∣∣ sxs−1
= ζ−1x, sξs−1

= ζ ξ and [ξ, x] =
d−1∑
i=1

ci si
〉
.

Let eu= ξ x−
∑d−1

i=1 (1−ζ
i )−1ci si . We have P = A[xd , ξ d

] and Q= A[xd , ξ d , eu].
Define κ1, . . . , κd = κ0 by κ1+· · ·+κd = 0 and

∑d−1
i=1 ci si

=
∑d−1

i=0 (κ i −κ i+1)εi ,
where εi =

1
d

∑d−1
j=0 ζ

i j s j . We have A = C[κ1, . . . , κd ]/(κ1+ · · ·+ κd).
The normalization of the Galois closure is described as follows. There is an

isomorphism of A-algebras

A[X, Y, Z ]
/(

XY −
d∏

i=1
(Z − κ i )

)
−→∼ Q, X 7→ xd , Y 7→ ξ d and Z 7→ eu.

We have an isomorphism of A-algebras

A[X, Y, λ1, . . . , λd ]

/( ei (λ)= ei (κ), i = 1, . . . , d−1
ed(λ)= ed(κ)+ (−1)d+1 XY

)
−→∼ R,

where Z = λd and where ei denotes the i-th elementary symmetric function. We
have G =Sd , acting by permuting the λi , and H =Sd−1.

Let p0 = (κ1, . . . , κd) ∈ Spec P and

r0 = (κ1, . . . , κd , λ1− ζλd , . . . , λd−1− ζ
d−1λd) ∈ Spec R.

We have D(r0)= 〈(1, 2, . . . , d)〉 ⊂Sd and

C(r0)= C(X, Y, λd =
d
√

XY )= C(X, Y, Z = d
√

XY ).

The composite bijection D(r0)−→
∼ G/H −→∼ W is an isomorphism of groups given

by (1, . . . , d) 7→ s.
Fix c ∈ Cd−1 and let κ1, . . . , κd ∈ C corresponding to c. Consider r= rc or rleft

c
as in Section 2 (see right after Definition 2.1). Then I(r) is the subgroup of Sd

stabilizing (κ1, . . . , κd). The left c-cells coincide with the two-sided c-cells and
two elements si and s j are in the same cell if and only if κi = κ j . Finally, the
multiplicity m0(det j ) is 1 if s j

∈ 0 and 0 otherwise.

3. Coxeter groups

Kazhdan–Lusztig cells. Following [Kazhdan and Lusztig 1979; Lusztig 1983;
2003], let us recall the construction of cells.

We assume here V is the complexification of a real vector space VR acted on
by W . We choose a connected component C of VR −

⋃
s∈S ker(s − 1) and we
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denote by S the set of s ∈ S such that ker(s− 1)∩ C̄ has codimension 1 in C̄ . This
makes (W, S) into a Coxeter group, and we denote by l the length function.

Let 0 be a totally ordered free abelian group and let L : W → 0 be a weight
function, that is, a function such that

L(ww′)= L(w)+ L(w′) if l(ww′)= l(w)+ l(w′).

We denote by vγ the element of the group algebra Z[0] corresponding to γ ∈ 0.
We denote by H the Hecke algebra of W : this is the Z[0]-algebra generated by

elements Ts with s ∈ S subject to the relations

(Ts − v
L(s))(Ts + v

−L(s))= 0 and Ts Tt Ts · · ·︸ ︷︷ ︸
mst terms

= Tt Ts Tt · · ·︸ ︷︷ ︸
mst terms

,

for s, t ∈ S with mst 6=∞, where mst is the order of st . Given w ∈ W , we put
Tw = Ts1 · · · Tsn , where w = s1 · · · sn is a reduced decomposition.

Let i be the ring involution of H given by i(vγ )= v−γ for γ ∈0 and i(Ts)= T−1
s .

We denote by {Cw}w∈W the Kazhdan–Lusztig basis of H . It is uniquely defined by
the properties that i(Cw)= Cw and Cw − Tw ∈

⊕
w′∈W Z[0<0]Tw′ .

We introduce the partial order ≺L on W . It is the transitive closure of the
relation given by w′ ≺L w if there is s ∈ S such that the coefficient of Cw′ in
the decomposition of CsCw in the Kazhdan–Lusztig basis is nonzero. We define
w ∼L w

′ to be the corresponding equivalence relation: w ∼L w
′ if and only if

w ≺L w
′ and w′ ≺L w. The equivalence classes are the left cells. We define ≺L R

as the partial order generated by w ≺L R w
′ if w ≺L w

′ or w−1
≺L w

′−1. As above,
we define an associated equivalence relation ∼L R . Its equivalence classes are the
two-sided cells.

When 0 = Z, L = l, and W is a Weyl group, a definition of left cells based on
primitive ideals in enveloping algebras was proposed by Joseph [1980]: let g be
a complex semisimple Lie algebra with Weyl group W . Let ρ be the half-sum of
the positive roots. Given w ∈ W , let Iw be the annihilator in U (g) of the simple
module with highest weight −w(ρ)−ρ. Then, w and w′ are in the same left cell if
and only if Iw = Iw′ .

Representations and families. Let 0 be a left cell. Let W≤0 and W<0 be the sets
of w ∈W such that there is w′ ∈ 0 with w ≺L w

′ and, respectively, w ≺L w
′ and

w 6∈0. The left cell representation of W over C associated with 0 [Kazhdan and
Lusztig 1979; Lusztig 2003] is the unique representation, up to isomorphism, that
deforms into the left H -module( ⊕

w∈W≤0
Z[0]Cw

) / ( ⊕
w∈W<0

Z[0]Cw
)
.
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Lusztig [1982; 2003] has defined the set of constructible characters of W induc-
tively as the smallest set of characters with the following properties: it contains
the trivial character, it is stable under tensoring by the sign representation and it
is stable under J -induction from a parabolic subgroup. Lusztig’s families are the
equivalences classes of irreducible characters of W for the relation generated by
χ ∼χ ′ if χ and χ ′ occur in the same constructible character. Lusztig has determined
constructible characters and families for all W and all parameters.

Lusztig has shown for equal parameters, and conjectured in general, that the set
of left cell characters coincides with the set of constructible characters.

A conjecture. Let c ∈ RS/∼. Let 0 be the subgroup of R generated by Z and
{cs}s∈S. We endow it with the natural order on R. Let L : W → 0 be the weight
function determined by L(s)= cs if s ∈ S.

The following conjecture is due to Gordon and Martino [2009]. A similar
conjecture has been proposed independently by the second author.1 It is known
to hold for types An , Bn , Dn and I2(n) [Gordon 2008; Gordon and Martino 2009;
Bellamy 2011; Martino 2010a; 2010b].

Conjecture 3.1. The Calogero–Moser families of irreducible characters of W
coincide with the Lusztig families.

We propose now a conjecture involving partitions of elements of W , via ramifi-
cation. The part dealing with left cell characters could be stated in a weaker way,
using Q and not R, and thus not needing the choice of prime ideals, by involving
constructible characters.

Conjecture 3.2. There is a choice of rleft
c ⊂ rc such that

• the Calogero–Moser two-sided cells and left cells coincide with the Kazhdan–
Lusztig two-sided cells and left cells, respectively, and

• the representation
∑

E∈Irr(W ) m0(E)E , where 0 is a Calogero–Moser left cell, co-
incide with the left cell representation of the corresponding Kazhdan–Lusztig cell.

Various particular cases and general results supporting Conjecture 3.2 are pro-
vided in [Bonnafé and Rouquier ≥ 2013]. In particular, the conjecture holds for
W = B2, for all choices of parameters.
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