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COARSE MEDIAN SPACES AND GROUPS

BRIAN H. BOWDITCH

We introduce the notion of a coarse median on a metric space. This satis-
fies the axioms of a median algebra up to bounded distance. The existence
of such a median on a geodesic space is quasi-isometry invariant, and so
it applies to finitely generated groups via their Cayley graphs. We show
that asymptotic cones of such spaces are topological median algebras. We
define a notion of rank for a coarse median and show that this bounds the
dimension of a quasi-isometrically embedded euclidean plane in the space.
Using the centroid construction of Behrstock and Minsky, we show that
the mapping class group has this property, and recover the rank theorem
of Behrstock and Minsky and of Hamenstädt. We explore various other
properties of such spaces, and develop some of the background material
regarding median algebras.

1. Introduction

In this paper we introduce the notion of a “coarse median” on a metric space.
The existence of such a structure can be viewed as a kind of coarse nonpositive
curvature condition. It can also be applied to finitely generated groups. Many
naturally occurring spaces and groups admit such structures. Simple examples
include Gromov hyperbolic spaces and CAT(0) cube complexes. It is also preserved
under quasi-isometry, relative hyperbolicity and direct products. Moreover (using
the construction of [Behrstock and Minsky 2011]), the mapping class group of a
surface admits such a structure. One might conjecture that it applies to a much
broader class of spaces that are in some sense nonpositively curved, such as CAT(0)
spaces. Much of this work is inspired by the results in [Behrstock and Minsky 2008;
2011; Bestvina et al. 2010; Behrstock et al. 2012; 2011; Chatterji et al. 2010]. It
seems a natural general setting in which to view some of this work.

A “median algebra” is a set with a ternary operation satisfying certain conditions
(see for example [Isbell 1980; Bandelt and Hedlíková 1983; Roller 1998; Chepoi
2000]). As we will see, for many purposes, one can reduce the discussion to a finite
subalgebra. Any finite median algebra is canonically the vertex set of a CAT(0)

MSC2010: 20F65.
Keywords: median algebra, cube complex, rank, mapping class group .

53

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.261-1
http://dx.doi.org/10.2140/pjm.2013.261.53


54 BRIAN H. BOWDITCH

cube complex, with the median defined in the usual way. One way to say this is
that the median of three points is the unique point which minimises the sum of
the distances in the 1-skeleton to these three points. For a fuller discussion, see
Sections 2, 4 and 5.

We will also define a “coarse median” as a ternary operation on a metric space.
We usually assume this to be a “geodesic space”, that is, every pair of points can
be connected by a geodesic. The coarse median operation is assumed to satisfy the
same conditions as a median algebra up to bounded distance. We can define the
“rank” of such a space (which corresponds to the dimension of a CAT(0) complex).
We show that the asymptotic cone [van den Dries and Wilkie 1984; Gromov 1993]
of such a space is a topological median algebra. It has a “separation dimension”
which is at most the rank, when this is finite. We remark that coarse median spaces
of rank 1 are the same as Gromov hyperbolic spaces. In such a case, the asymptotic
cone is an R-tree.

The existence of a coarse median on a geodesic space is a quasi-isometry invariant,
so we can apply this to finitely generated groups via their Cayley graphs. We can thus
define a “coarse median group”. For example, a hyperbolic group is a coarse median
group of rank 1, and a free abelian group is a coarse median group where “rank”
agrees with the standard notion. More substantially we show that the mapping class
group of a surface has a coarse median structure whose rank equals the maximal rank
of a free abelian subgroup. The median we use for this is the centroid constructed
in [Behrstock and Minsky 2011]. In particular, the asymptotic cone has at most (in
fact precisely) this dimension, thereby giving another proof the rank theorem of
[Behrstock and Minsky 2008; Hamenstädt 2005].

Another class of examples arise from relatively hyperbolic groups. We show in
[Bowditch 2011b] that a group that is hyperbolic relative to a collection of coarse
median groups (of rank at most ν) is itself coarse median (of rank at most ν).
Examples of such are geometrically finite kleinian groups (of dimension ν) and
Sela’s limit groups.

It is natural to ask what other classes of spaces or groups admit such a structure.
For example, it is conceivable that every CAT(0) space does, where the rank might
be bounded by the dimension. More modestly one could ask this for higher rank
symmetric spaces. The only immediately evident constraint is that such a space
should satisfy a quadratic isoperimetric inequality.

In [Bowditch 2011a], we show that a metric median algebra of the type that arises
as an asymptotic cone of a finite rank coarse median space admits a bilipschitz
embedding into a finite product of R-trees. One consequence is that coarse median
groups have rapid decay. In fact, their proof of rapid decay of the mapping class
groups was the main motivation for introducing centroids in [Behrstock and Minsky
2011].
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2. Statement of results

We begin by recalling the notion of a “median algebra”. This is a set equipped with
a ternary “median” operation satisfying certain axioms. Discussion of these can be
found in [Isbell 1980; Bandelt and Hedlíková 1983; Roller 1998; Chepoi 2000].
We will give a more detailed account in Sections 4 to 6. For the moment, we use
more intuitive formulations of the definitions. A finite median algebra is essentially
an equivalent structure to a finite cube complex. Recall that a (finite) cube complex
is a connected metric complex built out of unit euclidean cubes. It is CAT(0) if it is
simply connected and the link of every cube is a flag complex. See [Bridson and
Haefliger 1999] for a general discussion. Note that a 1-dimensional CAT(0) cube
complex is a simplicial tree.

Suppose M is a set, and µ : M3
→ M is a ternary operation. Given a, b ∈ M ,

write [a, b] = {e ∈ M | µ(a, b, e)= e}. This is the interval from a to b.
If M = V (5) is the vertex set of a finite cube complex, 5, we can define
[a, b]5 to be the set of points of M which lie in some geodesic from a to b in the
1-skeleton of 5. One can show that there is a unique point, µ5(a, b, c), lying in
[a, b]5∩ [b, c]5∩ [c, a]5. (In fact, it is the unique point which minimises the sum
of the distances in the 1-skeleton to a, b and c.)

For the purposes of this section, we can define a “finite median algebra” to be a
set M with a ternary operation: µ : M3

→ M such that M admits a bijection to the
vertex set, V (5), of some finite CAT(0) cube complex, 5, such that µ=µ5. (This
is equivalent to the standard definition.) Given a, b ∈ M , write [a, b] = {e ∈ M |
µ(a, b, e)= e}. This is the interval from a to b. Under the bijection with V (5) it
can be seen to agree with [a, b]5. Note that µ(a, b, c) = µ(b, a, c) = µ(b, c, a)
and µ(a, a, b)= a for all a, b, c ∈ M . In fact, the complex 5 is determined up to
isomorphism by (M, µ), so we can define the “rank” of M to be the dimension of
5. For more details, see Section 4.

In general, we say that a set, M , equipped with a ternary operation,µ, is a “median
algebra”, if every finite subset A ⊆ M is contained in another finite subset, B ⊆ M ,
which is closed under µ and such that (B, µ) is a finite median algebra. Note that,
defining intervals in the same way, we again have [a,b]∩[b,c]∩[c,a]={µ(a,b,c)}
for all a, b, c ∈ M . We say that M has “rank at most ν” if every finite subalgebra
has rank at most ν. It has “rank ν” if it has rank at most ν but not at most ν− 1.

A median algebra of rank 1 is a treelike structure which has been studied under
a variety of different names. They appear in [Sholander 1952] and as “tree algebras”
in [Bandelt and Hedlíková 1983]. They have also been called “median pretrees”.

We introduce the following notion of a “coarse median space”. Let (3, ρ) be a
metric space and µ :33

→3 be a ternary operation. We say that µ is a “coarse
median” if it satisfies the following:



56 BRIAN H. BOWDITCH

(C1) There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈3 we have

ρ(µ(a, b, c), µ(a′, b′, c′))≤ k(ρ(a, a′)+ ρ(b, b′)+ ρ(c, c′))+ h(0).

(C2) There is a function, h :N→[0,∞), with the following property. Suppose that
A ⊆3 with 1≤ |A| ≤ p <∞, then there is a finite median algebra, (5,µ5)
and maps π : A→5 and λ :5→3 such that for all x, y, z ∈5 we have

ρ(λµ5(x, y, z), µ(λx, λy, λz))≤ h(p)

and
ρ(a, λπa)≤ h(p)

for all a ∈ A.

Using (C1) and (C2) we can deduce that, if a, b, c∈3, thenµ(a, b, c), µ(b, a, c)
and µ(b, c, a) are a bounded distance apart, and that ρ(µ(a, a, b), a) is bounded.
(These facts follow from the corresponding identities in the median algebra (5,µ5);
see the discussion in Section 8.) Thus, there is no essential loss in assuming µ to
be invariant under permutation of a, b, c and assuming that µ(a, a, b)= a.

If (3, ρ) is a geodesic space, then we can replace (C1) by a condition to the
effect that if ρ(c, d) is less than some fixed positive constant (for example, 1, for a
graph) then ρ(µ(a, b, c), µ(a, b, d)) is bounded. It then follows for any a, b, c, d
that ρ(µ(a, b, c), µ(a, b, d)) is, in fact, linearly bounded above in terms of ρ(c, d).

Definition. We refer to µ as a coarse median on (3, ρ) if it satisfies (C1) and (C2)
above. We refer to (3, ρ, µ) as a coarse median space.

If, in the above definition, we can strengthen (C2) to insist that 5 has rank most
ν (independently of p), then we say that µ is a coarse median of rank at most ν,
and that (3, ρ, µ) is a coarse median space of rank at most ν.

We refer to the multiplicative constant k and the additive constants, h(p), featur-
ing in the definitions as the parameters of the coarse median space.

Recall that a metric space is a “geodesic space” (or “length space”) if every
pair of points are connected by a geodesic (that is, a path whose length equals the
distance between its endpoints). In this context, coarse median spaces of rank 1 are
precisely Gromov hyperbolic spaces (as defined in [Gromov 1987]).

Theorem 2.1. Let (3, ρ) be a geodesic space. Then (3, ρ) is Gromov hyperbolic
if and only if it admits a structure as a coarse median space of rank 1.

In the above one can determine the parameters explicitly in terms of the hyper-
bolicity constant. The converse we offer here will be nonconstructive and based on
the fact that any asymptotic cone is an R-tree. (It is possible to give a constructive
argument and explicit constants, but we will not pursue that matter here.)
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By a topological median algebra we mean a topological space, M , equipped
with a median, µ, which is continuous as a map from M3 to M . Such structures
are considered, for example, in [Bandelt and van de Vel 1989]. We will refer to a
“metric median algebra” when the topology is induced by some particular metric.

We define a notion of “local convexity” in Section 7. For a finite-rank algebra
this is equivalent to saying that an interval connecting two points close together
is arbitrarily small. We will also define a notion of “separation dimension” of a
topological space. This is analogous to (though weaker than) the standard notion of
“inductive dimension”. The latter is equivalent to covering dimension [Hurewicz
and Wallman 1941; Engelking 1995]. Every locally compact subspace of a space
of separation dimension at most ν has covering dimension at most ν. In particular,
such a space does not admit any continuous injective map of Rν+1. We show:

Theorem 2.2. A locally convex topological median algebra of rank at most ν has
separation dimension at most ν.

This notion of dimension is weaker than the standard notions of topological
dimension referred to. For example, there is a totally disconnected space of positive
covering dimension [Erdös 1940], but this has separation dimension 0. (I thank
Klaas Hart for providing me with this reference.) Nevertheless, we see that every
locally compact subspace of such a space has (covering) dimension at most ν. For
the mapping class group, this follows from [Behrstock and Minsky 2008].

Topological median algebras arise as ultralimits of coarse median algebras. We
will recall the basic definitions in Section 9. Suppose that ((3i , ρi , µi ))i∈I is
sequence of coarse median spaces, where the additive constants featuring in (C1)
and (C2) tend to zero and where the multiplicative constant, k, featuring in (C1)
remains constant. Let ei ∈3i be a sequence of basepoints. Given a nonprincipal
ultrafilter on I, we can pass to an ultralimit (3∞, ρ∞, µ∞), which is a topological
median algebra. (In fact, (3∞, ρ∞) is a complete metric space.)

Theorem 2.3. If the (3i , ρi , µi ) all have rank at most ν (with respect to these
constants) then (3∞, ρ∞, µ∞) is a locally convex topological median algebra of
rank at most ν.

Suppose we fix a coarse median space, (3, ρ, µ), of rank at most ν. We take
any sequence (ti )i of positive real numbers tending to 0, rescale the metric 3i =3,
ρi = tiρ and µi = µ. Fixing a base point e ∈3, and an ultrafilter, we then get an
“asymptotic” cone, (3∞, ρ∞, µ∞) as above. From this, we can deduce:

Corollary 2.4. If (3, ρ) is a geodesic space admitting a coarse median of rank
at most ν, then (3, ρ) admits no quasi-isometric embedding of Rν+1 (with the
euclidean metric).
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If it did, then an asymptotic cone would contain a bilipschitz copy of Rν+1. But
this contradicts a combination of Theorems 2.2 and 2.3.

The existence, or otherwise, of a coarse median (or rank at most ν) on a geodesic
space is easily seen to be quasi-isometry invariant (Lemma 8.1). This justifies the
following:

Definition. We say that a finitely generated group 0 is coarse median (of rank at
most ν), if its Cayley graph admits a coarse median (of rank at most ν).

Thus, in view of Theorem 2.1 “coarse median of rank 1” is the same as “hyper-
bolic”. We observed in the Introduction that Zν is coarse median of rank ν. We also
note (Corollary 8.3) that a coarse median group has (at worst) a quadratic Dehn
function.

Note that we do not assume that the median is equivariant, though in the examples
we describe, it can be assumed to be equivariant up to bounded distance.

One of the main motivations is to study mapping class groups. Let6 be a compact
orientable surface of genus g and with p holes. Let Map(6) be its mapping class
group. Set ξ(6)= 3g− 3+ p for the complexity of 6. We assume that ξ(6) > 1,
in which case, ξ(6) is exactly the maximal rank of any free abelian subgroup of
Map(6). Making use of ideas in [Behrstock and Minsky 2011], we show:

Theorem 2.5. Map(6) is a coarse median group of rank at most ξ(6).

We therefore recover the fact that the mapping class group has quadratic Dehn
function [Mosher 1995]. Also, applying Corollary 2.4 we recover the result of
[Behrstock and Minsky 2008; Hamenstädt 2005]:

Theorem 2.6. There is no quasi-isometric embedding of Rξ(6)+1 into Map(6).

One can show that some (in fact any) free abelian subgroup of Map(6) of rank
ξ(6) is necessarily quasi-isometrically embedded [Farb et al. 2001]. In other words,
the rank of Map(6) is exactly the maximal rank of a free abelian subgroup.

In Section 12, be briefly discuss a strengthening of rank to the notion of “coloura-
bility”. We show that the mapping class group has this property.

As mentioned in the Introduction, it is shown in [Bowditch 2011a] that an
asymptotic cone that arises in this way admits a bilipschitz embedding into a
finite product of R-trees. From this, one can deduce the rapid decay of coarse
median groups. For the mapping class group, such an embedding was constructed
in [Behrstock et al. 2011] and rapid decay was shown directly using medians in
[Behrstock and Minsky 2011].

3. Hyperbolic spaces

In this section, we briefly describe the rank-1 case which corresponds to Gromov
hyperbolicity [Gromov 1987]. This case will be used again in Sections 10 and 11.
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We suppose throughout this section that (3, ρ) is a geodesic space.
Let us suppose first that (3, ρ) is K -hyperbolic for some K ≥ 0. This means

that any geodesic triangle (α, β, γ ) in 3 has a K -centre, that is, some point d , with
ρ(d, α)≤ K , ρ(d, β)≤ K and ρ(d, γ )≤ K . If a, b, c ∈3 we take a K -centre, d ,
of any geodesic triangle with vertices at a, b, c, and set µ(a, b, c) = d. (We can
assume this to be invariant under permutation of a, b, c.) This is well defined up to
bounded distance. We claim:

Lemma 3.1. (3, ρ, µ) is a rank-1 coarse median space whose parameters depend
only on K .

Lemma 3.1 can be viewed as an expression of the “treelike” nature of hyper-
bolicity. It is a simple consequence of the following standard fact which can be
found in Section 6.2 of [Gromov 1987, p. 157]. A more detailed statement and
proof is given as Proposition 6.7 of [Bowditch 2006a]. It will be formulated here
as Lemma 3.2, and will be used again in Section 10 (see Lemma 10.3).

Before giving the statement, we give a few definitions. Suppose that τ ⊆ 3
is a simplicial tree in 3 (by which we mean a subset homeomorphic to a finite
simplicial tree). Given x, y ∈ τ , we write [x, y]τ for the arc in τ with endpoints at
x and y. We write ρτ (x, y) for the length of [x, y]τ , which we will always assume
to be finite. (Thus, ρτ is the induced path-metric on τ .) Clearly, ρ(x, y)≤ ρτ (x, y).

Definition. Given t ≥ 0, we say that τ is t-taut if ρτ (x, y) ≤ ρ(x, y)+ t for all
x, y ∈ τ .

Lemma 3.2. There is some function h0 : N→ [0,∞) such that if (3, ρ) is K -
hyperbolic and A ⊆3 with |A| ≤ p, then there is a (K h0(p))-taut simplicial tree,
τ ⊆3, with A ⊆ τ .

Proof. This is essentially due to Gromov. It is a simple consequence of Proposition
6.7 of [Bowditch 2006a]. The conclusion there was stated a little differently, namely
that ρτ (a, b)≤ ρ(a, b)+ K h0(p) for all a, b ∈ A. To recover the statement above,
first note that we can assume that every extreme (degree-1) vertex of τ is contained
in A. (Otherwise, replace τ by the minimal subtree containing A.) Now, given
any x, y ∈ τ , it follows that there exist a, b ∈ A such that x, y ∈ [a, b]τ . The
statement that ρτ (x, y) ≤ ρ(x, y)+ K h0(p) is now a simple consequence of the
same statement for a, b, using the triangle inequalities. �

Note that if τ is a t-taut tree in 3, and x, y ∈ τ , then [x, y]τ lies a Hausdorff
distance at most s from any geodesic in 3 from x to y, where s depends only on
t and K . This proven explicitly in [Bowditch 2006a], but is also an immediate
consequence of the standard fact that quasigeodesics in a hyperbolic space fellow
travel geodesics (where the distance bound depends only on the parameters of the
quasigeodesic and the hyperbolicity constant). From this, one can easily deduce that
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if x, y, z∈ τ , thenµ(x, y, z) lies a bounded distance from the τ -median, µτ (x, y, z),
where the bound again depends only on t and K . In the situation described by
Lemma 3.2, it therefore depends only on p and K .

We can now deduce Lemma 3.1.
Suppose that 3 is K -hyperbolic and that A ⊆ 3 with |A| ≤ p. Let τ ⊆ 3 be

the tree given by Lemma 3.2. Let 5 be the vertex set of τ , and let π : A→5 and
λ :5→3 be the inclusions. Property (C2) is now an immediate consequence of
Lemma 3.2 and the subsequent discussion.

Finally, for (C1), it is well known (and also a consequence of Lemma 3.2) that if
a, b, c, d ∈3, then ρ(µ(a, b, c), µ(a, b, d)) is linearly bounded above in terms of
ρ(c, d). In fact, it is sufficient to note that if we move any one of the points a, b, c
a bounded distance, say r , then the median thus defined moves a bounded distance
depending only on K and r .

This proves Lemma 3.1, that is, one direction of Theorem 2.1.
For the converse, it is possible to give a constructive argument which gives an

explicit constants. However, here we note that it is a consequence of the following
statement proven in [Gromov 1993].

Theorem 3.3. Let (3, ρ) be a geodesic space, and suppose that every asymptotic
cone of (3, ρ) is an R-tree, then (3, ρ) is Gromov hyperbolic.

The notion of an asymptotic cone is due to Van den Dries and Wilkie [1984] and
elaborated on in [Gromov 1993] (see Section 9 here). We will see (Theorem 2.2
and Lemma 9.6) that any asymptotic cone of a rank-1 median algebra is an R-tree.
From this we deduce the converse to Lemma 3.1. This then proves Theorem 2.1.

4. General median algebras

In this section we discuss some of the general theory regarding median algebras.
We will elaborate on particular cases in Sections 5–7. We first describe some
general terms, and then, in turn, finite, infinite and topological median algebras.
Some of the basic material can be found elsewhere, though the references are
somewhat scattered, and often pursued from quite different perspectives. Some
general references are [Isbell 1980; Bandelt and Hedlíková 1983; Roller 1998;
Chepoi 2000].

We begin with the standard formal definition, which is somewhat unintuitive. In
practice, all one needs to know is that every finite subset of a median algebra is
contained in a finite subalgebra (Lemma 4.2) which can be identified as the vertex
set of a CAT(0) cube complex. (In fact, this could serve as an equivalent definition.)

Let M be a set. A median on M is a ternary operation, µ : M3
→ M , such that,

for all a, b, c, d, e ∈ M ,

(M1) µ(a, b, c)= µ(b, c, a)= µ(b, a, c),
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(M2) µ(a, a, b)= a,

(M3) µ(a, b, µ(c, d, e))= µ(µ(a, b, c), µ(a, b, d), e).

The axioms are usually given in the above form, though, in fact, (M3) can be
replaced by a condition on sets of four points [Kolibiar and Marcisová 1974; Bandelt
and Hedlíková 1983].

We refer to (M, µ) as a median algebra.
Given a, b ∈ M the interval [a, b] between a an b is defined by [a, b] = {c ∈

M | µ(a, b, c) = c}. Clearly [a, a] = {a} and [a, b] = [b, a]. One can also verify
that [a, b] ∩ [b, c] ∩ [c, a] = {µ(a, b, c)}.

Definition. A (median) subalgebra of M is a subset closed under µ.

Given A ⊆ M , we write 〈A〉 for the subalgebra generated by A, that is, the
smallest subalgebra containing A.

Definition. A subset C ⊆ M is convex if [a, b] ⊆ C for all a, b ∈ C .

Any convex subset is a subalgebra, but not necessarily conversely. One can check
that any interval in M is convex.

Definition. A (median) homomorphism between median algebras is map which
respects medians.

Note that a direct product of median algebras is a median algebra. Also the
two-point set, I = {−1, 1} has a unique structure as a median algebra. Given any
set, X , the direct product, I X , is naturally a median algebra.

Definition. A hypercube is a median algebra isomorphic to I X for some set X . If
|X | = ν <∞, we refer to it as a ν-hypercube. A square is a 2-hypercube.

If Y ⊆ X , then there is a natural projection epimorphism from I X to I Y . If
a ∈ I X\Y , then F = I Y

×{a} is a convex hypercube in I X , which we refer to as a
face of I X . There is a natural projection φF : I X

→ F .
Let M be a median algebra.

Definition. A directed wall, W , is a pair, (H−(W ), H+(W )), where H−(W ) and
H+(W ) form a partition of M into two nonempty convex subsets. We refer to the
unordered pair, {H−(W ), H+(W )}, as an undirected wall, or simply a wall.

We write W=W(M) for the set of all (undirected) walls in M .
Note that a directed wall, W , is equivalent to an epimorphism φ : M → I ,

where H±(W )= φ−1(±1). We say that W , separates two subsets, A, B ⊆ M , if
A ⊆ H−(W ) and B ⊆ H+(W ), or vice versa. We write A|W B to mean that A, B
are separated by the wall W . We write (A|B) or (A|B)M to mean that there is some
W ∈W such that A|W B.

The following gets the whole subject going:
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Lemma 4.1. Any two distinct points of M are separated by a wall.

A proof can be found in [Bandelt and Hedlíková 1983]. In fact, it can be reduced
to the case of finite median algebras (cf. Lemma 6.1 here).

We note that Lemma 4.1 is equivalent to asserting that M can be embedded in a
hypercube. Indeed, Lemma 4.1 tells us that the natural homomorphism from M to
I W (after arbitrarily assigning a direction to each wall) is injective.

Let S be any finite set. The free median algebra, M(S), on S can be constructed
as follows. First note that we can embed S in a hypercube Q such that the co-
ordinate projections to I are precisely the set of all functions from S to I . Thus, Q
has dimension 2|S|. Now let M(S) be the subalgebra of Q generated by S. Note
that S naturally embeds in M(S). It has the property that any function of S to any
median algebra, M , extends uniquely, to M(S). Indeed, this property determines
M(S) uniquely up to isomorphism fixing S.

Little seems to be known about the general structure of free median algebras,
though some discussion can be found in [Roller 1998]. Here we just note that
|M(S)|< 22|S| .

Suppose that M is a median algebra, and A⊆ M with |A| ≤ p. The inclusion of
A in M extends uniquely to a homomorphism of the free median algebra, M(A),
into M . It’s image is a subalgebra of M containing A. (In fact it is precisely the
subalgebra, 〈A〉, generated by A.) Thus, |〈A〉| ≤ |M(A)| ≤ 22p

. We have therefore
shown:

Lemma 4.2. Suppose that A ⊆ M with |A| ≤ p <∞, then |〈A〉|< 22p
.

Given A⊆M , write G(A)= {µ(a, b, c) | a, b, c ∈ A}. Define Gi (A) inductively
by G0(A)= A and Gi (A)= G(Gi−1(A)). From the above, it follows that 〈A〉 =
Gq(A) where q = 22p

.

5. Finite median algebras

We observed in Section 2 that the vertex set of a finite CAT(0) cube complex has a
median algebra structure. (See, for example, [Bridson and Haefliger 1999], for a
discussion of CAT(0) spaces.)

Conversely, suppose that M is a finite median algebra.

Definition. A cube in M is a convex subset isomorphic to a hypercube. If it has
dimension ν <∞, then we refer to it as a ν-cube.

The set of all cubes in M gives M the structure of the vertex set, V (ϒ), of a
finite cube complex ϒ . One way to view this is to embed M in the hypercube, I W,
where W is the set of walls of M . The complex ϒ is then the full subcomplex of
I W with vertex set M . One can verify that ϒ is simply connected, and that the
link of every cube is a flag complex. Thus, ϒ is CAT(0). Moreover, the median
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structure induced by ϒ (as described in Section 2) agrees with the original. We
can look at this as follows. Given a, b ∈ M , let W(a, b) ⊆W be the set of walls
separating a and b. We write ρϒ(a, b) = |W(a, b)|. Then, ρϒ is the same as the
combinatorial metric on M = V (ϒ) induced from the 1-skeleton of ϒ . In fact,
if α is any shortest path in the 1-skeleton from a to b, then the edges of α are in
bijective correspondence with the elements of W(a, b)— the endpoints of each
edge are separated by a unique element of W(a, b).

In other words, we see that ϒ = ϒ(M) is canonically determined by M . We
can define the “rank” of M as the dimension of ϒ(M). Since this description is
only applicable to finite median algebras, we describe some equivalent formulations
below.

Let W ∈W. It’s sometimes helpful to view W geometrically as a closed totally
geodesic codimension-1 subset, ϒ0(W ), of ϒ . This slices in half every cube
of ϒ which meets both H−(W ) and H+(W ). Geometrically this is closed and
convex and has itself a natural structure of a cube complex (one dimension down).
There is a natural nearest point retraction of ϒ to ϒ0(W ), which induces a median
epimorphism. We will describe this more combinatorially later.

Suppose W,W ′ ∈W. There is a natural homomorphism, φ : M→W ×W ′, to
the square W ×W ′.

Definition. We say that W and W ′ cross if φ is surjective.

In other words, each of the four sets H−(W ) ∩ H−(W ′), H−(W ) ∩ H+(W ′),
H+(W )∩ H−(W ′) and H+(W )∩ H+(W ′) is nonempty. (It is also equivalent to
saying that ϒ0(W )∩ϒ0(W ′) 6=∅.)

Lemma 5.1. Suppose that P is a finite-dimensional hypercube, and that A ⊆ P is
a median subalgebra such that φF (A) = F for the projection φF to each square
face, F. Then A = P.

Proof. Suppose that F ⊆ P is a square face. First note that if A∩ F contains two
opposite corners, a, b of F , then F ⊆ A. (Since, if c ∈ F , then c = µ(a, b, d)
for any d ∈ φ−1

F (c), and by assumption, A ∩ φ−1
F (c) 6= ∅.) Now we proceed by

induction on the dimension ν ≥ 2. Let Q ⊆ P be any (ν − 1)-face. Applying
the inductive hypothesis to φQ(A) ⊆ Q, we see that φQ(A) = Q. Now, by the
(diagonal) observation above, we see easily that there must be some a ∈ Q with
φ−1

Q (a) ⊆ A. Again using the same observation, we see that if b ∈ Q is adjacent
to a (i.e., {a, b} is a 1-face) then φ−1(b) ⊆ Q. Proceeding outwards from a, we
eventually see that this holds for all elements of Q, and so A = P as required. �

One immediate consequence of this is the following. Suppose that W0 ⊆W is
a collection of pairwise crossing walls. Then the natural homomorphism, M →∏

W0≡ I W0 , is surjective. In other words, the sets
⋂

W∈W0
H ε(W )(W ) are nonempty

for all functions ε :W0→ I .
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(In terms of CAT(0) complexes, this can be interpreted as the statement that if
the subspaces ϒ0(W ) pairwise intersect, then

⋂
W∈W0

ϒ0(W ) 6=∅.)
Suppose now that φ : M→ Q is an epimorphism of M to a hypercube, Q. (This

corresponds to a collection of pairwise intersecting walls as above.) We say that a
ν-cube, P , of M is transverse to φ if φ(P)= Q, that is, φ|P is an isomorphism.
Let F= F(φ) be the set of such faces, and write F(φ)=

⋃
F(φ). It’s not hard to

see that F(φ) is convex in M , and is isomorphic to the product F(φ)× Q, where
φ|F(φ) is projection to the second factor, and where each {a}× Q is a transverse
face. Note that the sets F(φ)×{b} ⊆ F(φ) are all convex in F(φ) and so also in
M . (Reinterpreting in terms of CAT(0) cube complexes, this corresponds to saying
that the “walls” all intersect in a codimension ν subspace, which intrinsically has
the structure of a cube complex naturally isomorphic to F(φ).)

Proposition 5.2. If φ : M→ Q is an epimorphism to a hypercube, then F(φ) 6=∅.

Proof. One can proof this by induction on the dimension, ν, of Q.
If ν = 1, we have a single wall W . We can choose a ∈ H−(W ) and b ∈ H+(W )

so as to minimise |W(a, b)|. In this case, one can verify that W(a, b)= {W }, and
so {a, b} is a transverse face.

If ν > 1, write Q = P × I , and let ψ : W → I be the composition of φ with
projection of Q to I . Given a ∈ P , note that M(a)=φ−1({a}× I ) is a convex subset
of M . Now ψ |M(a) is an epimorphism, so (by the case ν = 1), F(ψ |M(a)) 6=∅.
But F(ψ) is the disjoint union of the sets F(ψ |M(a)) as a ranges over P . The
natural epimorphism from F(ψ) to P is therefore surjective, so by induction, there
must be a transverse (ν− 1)-face, say R, to this epimorphism. We see that

⋃
R is

now a transverse ν-cube to the original map φ. �

Proposition 5.3. Let M be a finite median algebra. The following are equivalent.

(1) There is a ν-hypercube embedded in M.

(2) There is an epimorphism of M to a ν-hypercube.

(3) There is a set of ν pairwise crossing walls in M.

(4) There is a ν-cube embedded in M.

Proof. (1) implies (3): Let Q ⊆ M be a ν-hypercube. If {a, b} is any 1-face of Q,
then any wall of M separating a and b will also separate the (ν − 1)-faces of Q
containing a and b. In this way, we get a collection, W0, of ν pairwise intersecting
walls — one for each factor of Q.

(3) implies (2): As observed above, using Lemma 5.1, the map from M to the
product,

∏
W0 is surjective.

(2) implies (4): By Proposition 5.2.

(4) implies (1): Trivial. �
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Definition. We say that M has rank at least ν if any (hence all) the conditions of
Proposition 5.3 are satisfied. We say that M has rank ν if it has rank at least ν but
not at least ν+ 1.

Note that the cubes of M correspond exactly to the cubical cells of the complex
ϒ(M), so in view of (4), the definition is equivalent to that given earlier in Section 2.

Lemma 5.4. Suppose that A, B ⊆ M are disjoint nonempty convex subsets. Then
there is a wall separating A and B.

Proof. Choose a ∈ A and b ∈ B so as to minimise |W(a, b)|. One can check that
any W ∈W will separate A and B. �

In the case where A = {a}, there is unique b ∈ B which minimises W(a, b). We
write projB(a) = b. If a ∈ B, then we set projB(a) = a. This gives us a “nearest
point” projection map projB : M→ B to any nonempty convex subset, B, of M .

Now suppose W ∈W. We write F(W ) for the set of transverse 1-faces. Note
that F(W ) =

⋃
F(W ) ∼= F(W )× I . In particular, it follows that rank(F(W )) ≤

rank(M)−1. Write S±= P×{±1}⊆ H±(W ). If a ∈ H±(W ), then projH∓(W )(a)∈
S∓(W ). We set ψW to be the unique element of F(W ) containing projH∓(W )(a).
This gives a map ψW : M→F(W ) which one can verify is a median epimorphism.
(Geometrically, this corresponds to the nearest point projection of ϒ the totally
geodesic subspace ϒ0(W ).)

Definition. The convex hull, hull(A), of a subset A ⊆ M is the smallest convex
subset of M containing A.

One can verify that a /∈ A if and only if there is a wall of M separating a from
A. We also note that if a, b ∈ M , then hull{a, b} = [a, b].

Definition. If A ⊆ M , the join, J (A), of A is defined by J (A)=
⋃

a,b∈A[a, b].

We define J i (A) iteratively by J 0(A) = A, and J i (A) = J (J i−1(A)). Clearly
this must stabilise for some p ∈ N, and we see that hull(A)= J p(A). In fact:

Lemma 5.5. If rank(M)≤ ν, and A ⊆ M , then hull(A)= J ν(A).

Proof. Clearly, J ν(A) ⊆ hull(A). Suppose that a ∈ hull(A) \ J ν(A). Choose
b ∈ A so as to minimise |W(a, b)|. Choose W ∈W(a, b) so that a ∈ S−(W ) and
b ∈ H+(W ) (for example, corresponding to the first edge in the 1-skeleton of ϒ
in a shortest path from a to b). Since a ∈ hull(A), A must meet both H−(W )

and H+(W ). Let ψW : M → F(W ) be the projection defined above. We see
that

⋃
ψW (A) ⊆ J (A). Now one can check (since ψW is an epimorphism) that

ψW (hull(A))=hull(ψW (A)). Now rank F(W )≤ rank M−1≤ ν−1, so inductively,
we have hull(ψW (A)) = J ν−1

W (ψW (A)) (where JW denotes join in F(W )). But⋃
JW (ψW (A)) = J (

⋃
ψW (A)), and so

⋃
hull(ψW (A)) ⊆

⋃
J ν−1

W (ψW (A)) =
J ν−1(

⋃
ψW (A)) ⊆ J ν−1(J (A)) = J ν(A). Thus,

⋃
ψW (hull(A)) ⊆ J ν(A). But
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a ∈ hull(A), and since a ∈ S−(W ), we have a ∈ ψW (a)⊆ ψW (hull(A))⊆ J ν(A).
Technically, this is a contradiction. In any case, we deduce that hull(A)⊆ J ν(A)
as required. �

This is all we need from Section 5 up until Section 9. We conclude this section
with some observations relevant to the discussion of the mapping class group in
Section 10.

Suppose that N ⊆ M is a subalgebra of M . We write hullN and JN for the
intrinsic hulls and joins in N . For future reference, we note that the following does
not make any use of finiteness.

Lemma 5.6. Suppose A ⊆ N , then hullN (A)= N ∩ hullM(A).

Proof. Since hull(A)=
⋃
∞

i=0 J i (A) and hullN (A)=
⋃
∞

i=0 J i
N (A), it is enough to

show that J q
N (A) = N ∩ J q(A) for any q. Clearly J p

N (A) ⊆ J q(A). Conversely,
suppose that a ∈ N ∩ J q(A). Then a ∈ [b0, b1] where b0, b1 ∈ J q−1(A). (Here,
[ , ] denotes an interval in M .) Similarly, b0 ∈ [b00, b01], b1 ∈ [b10, b11], where
b00, b01, b10, b11 ∈ J q−2(A). Continuing in this way, we get points bw ∈ J q− j ,
where w is a word of length j in {0, 1}, so that bw ∈ [bw0, bw1]. Let B j ⊆ J q− j (A)
be the set of such bw. We terminate with a set Bq ⊆ A.

We now work backwards, to give us points cw ∈ hullN (A), as follows. If w
has length q, we set cw = bw ∈ A. If w has length less than q, we set cw =
µ(a, cw0, cw1) ∈ [cw0, cw1]N . By reverse induction, we end up with a point c =
µ(a, c0, c1). We claim that c = a.

For suppose not. Then there is a wall W ∈W(M) of M , with a ∈ H+(W ) and
c ∈ H−(W ). Since a /∈ H+(W ), we cannot have Bq ⊆ H−(W ). Thus, without loss
of generality, we have c0q = b0q ∈ H+(W ), where 0 j is the word consisting of j
0s. Working backwards, we see that c0 j ∈ H+(W ) for all j . Finally, when j = 0,
we arrive at the contradiction that c ∈ H+(W ).

This shows that a = c ∈ hullN (A). �

Recall the notation (A|B)M to mean that subsets A, B ⊆ M are separated by
a wall in M . Note that, in view of Lemma 5.4 this is equivalent to saying that
hull(A)∩ hull(B) 6=∅. In fact, we note that:

Lemma 5.7. Suppose hull(A)∩hull(B) 6=∅, then hull(A)∩hull(B)∩〈A∪B〉 6=∅.

Proof. Let P(A) = hull(A)∩ 〈A ∪ B〉 and P(B) = hull(B)∩ 〈A ∪ B〉. Suppose
that P(A) ∩ P(B) = ∅. Choose a ∈ P(A) and b ∈ P(B) so as to minimise
ρ(a, b)= |W(a, b)|. Choose any W ∈W(a, b) with a ∈ H−(W ) and b ∈ H+(W ).
Since hull(A)∩ hull(B)=∅, we cannot have both A ⊆ H−(W ) and B ⊆ H+(W ),
so without loss of generality, we can find c ∈ B ∩ H−(W ). Let d = µ(a, b, c).
Since d ∈ [a, b] we have ρ(a, d) < ρ(a, b). But d ∈ P(B), so we contradict the
minimality of ρ(a, b). �
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Lemma 5.8. Let N ⊆M be a subalgebra of a finite median algebra M. If A, B⊆ N ,
then (A|B)N if and only if (A|B)M .

Proof. Clearly (A|B)M implies (A|B)N , so suppose that (A|B)M fails. By Lemma
5.7, hullM(A)∩ hullM(B)∩ N 6=∅, so by Lemma 5.6, hullN (A)∩ hullN (B) 6=∅,
so (A|B)N fails. �

If M , N are median algebras, then there are natural inclusions of W(M) and
W(N ) into W(M×N )— by taking inverse images under the co-ordinate projections.
In fact, under this identification, we have:

Lemma 5.9. W(M × N )=W(M)tW(N ).

Proof. This is best seen using the geometric description in terms of CAT(0) com-
plexes. �

This result extends to finite (and indeed infinite) direct products.

6. Infinite median algebras

We now drop the assumption that M be finite. Let M be the set of all finite
median subalgebras of M , which we view as a directed set under inclusion. By
Proposition 5.2, M is cofinal in the directed set of all finite subsets of M .

The definition of convex, wall, crossing etc. remain unchanged from Section 5.
However, we don’t have such an immediate geometrical interpretation in terms
of complexes. (If M is discrete, that is, all intervals are finite, then it is again the
vertex set of a CAT(0) cube complex. However, we are not assuming discreteness
here.) Let W be the set of walls. The following was proven in [Nieminen 1978].

Lemma 6.1. If A, B ⊆ M are disjoint convex subsets, then there is some wall,
W ∈W, separating A from B.

Proof. For finite median algebras, this was Lemma 5.4. For the general case, we
use a compactness argument.

We identify the power set, P, of M with the Tychonoff cube, {−1, 1}M , of all
functions from M to {−1, 1}. Here, a function, f , is identified with f −1(1). In
particular, P is compact in this topology.

Suppose that C ⊆ M. Let S(C) ⊆ P be the set of subsets, C ⊆ P with the
property that C ∩ H and C \ H are both convex in C and such that C ∩ H ⊆ A and
C ∩ H ∩ B = ∅. In other words, (C ∩ H,C \ H) is an intrinsic wall in A which
separates C ∩ A from C ∩ B. By Lemma 5.4, S(C) 6=∅. Moreover, S(C) is closed
in P.

Note that if C ⊆ D, then S(D) ⊆ S(C). Since M is cofinal in the set of all
finite subsets, it follows that {S(C) |C ∈M} has the finite intersection property. By
compactness,

⋂
C∈M S(C) 6=∅. Let H ∈

⋂
C∈M S(C).
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If a ∈ A and b ∈ B, then there is some C ∈M with a, b ∈ C . Since C ∩ A ⊆ H ,
we have a ∈ H , and since C ∩H ∩ B =∅, we have b /∈ H . This shows that B ⊆ H
and B ∩ H =∅.

Also, H , and M \ H are both convex. Suppose, for example, that c, d ∈ H , and
e ∈ [c, d] (the interval in M). Choose C ∈M with c, d, e ∈ C . Now [c, d] ∩ A is
an interval in C . Also, c, d ∈ A∩ H , which is convex in C . Thus, e ∈ C ∩ H ⊆ H .
This shows that H is convex. Similarly M \ H is convex.

We have shown that {H,M \ H} is a wall in M separating A and B. �

In particular, any pair of distinct points of M are separated by a wall. (This
shows how Lemma 4.1 can be reduced to the finite case.)

Proposition 6.2. Let M be a median algebra. The following are equivalent.

(1) There is a ν-hypercube embedded in M.

(2) There is an epimorphism of M to a ν-hypercube.

(3) There is a set of ν pairwise crossing walls in M.

Proof. (1) implies (3): As in Proposition 5.3, this time using Lemma 6.1.

(3) implies (2): As in Proposition 5.3.

(2) implies (1): Let φ : M→ Q be an epimorphism to an ν-hypercube. There is
some A ∈M with φ(A)= Q. By Proposition 5.2, A contains a ν-cube. This gives
us a ν-hypercube in M . �

Definition. We say that the rank of M is at least ν if any (hence all) the conditions
of Proposition 6.2 hold. We say that it has rank ν if it has rank at least ν but not at
least ν+ 1. We write rank(M) ∈ N∪ {∞} for the rank of M .

Clearly the above agrees with the definition already given in the finite case.
Also, using Lemma 4.2 and Proposition 6.2, we see that it is consistent with the
descriptions of median algebras and rank as given in Section 2.

Let A⊆M . We define hull(A), J (A) and J i (A) in the same way as before. This
time, hull(A)=

⋃
∞

i=1 J i (A).
If B ⊆ M is a finite median algebra, we write JB for the intrinsic join in A, that

is, JB(A)= B ∩ J (A) for A ⊆ B. Note also that, by Lemma 5.6, B ∩ hull(A∩ B)
is the intrinsic convex hull of A∩ B in B.

Lemma 6.3. If A ⊆ M , then hull(A) is the union of the sets B ∩ hull(A∩ B) as B
ranges over M.

Proof. Note that hull(A)=
⋃
∞

i=1 J i (A). We prove inductively on i that J i (A)=⋃
B∈M(J

i
B(A∩ B)). First note that J 0(A)= A = J 0

B(A) for any B ∈M containing
A. Suppose that a ∈ J i (A). Then a ∈ [b, c] where b, c ∈ J i−1(A). By the inductive
hypothesis, b ∈ J i−1

B (A∩ B) and c ∈ J i−1
C (A∩C) for B,C ∈M. Now let D ∈M
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with {a}∪ B∪C ⊆ D. We see that b, c ∈ J i−1
D (A∩D), so a ∈ JD(J i−1

D (A∩D))=
J i

D(A ∩ D). This proves the inductive statement. Now note that if B ∈ M then
J i

B(A∩ B)⊆ B ∩ hull(A∩ B), proving the result. �

Lemma 6.4. Suppose that M has rank at most ν. Then for any A ⊆ M , we have
hull(A)= J ν(A).

Proof. If a ∈ hull(A), then by Lemma 6.3, a ∈ B ∩ hull(A∩ B) for some B ∈M.
But B∩hull(A∩ B) is the intrinsic convex hull of A∩ B in B. (Indeed, in the proof
of Lemma 6.3, we saw directly that a ∈

⋃
∞

i=0 J i
B(A∩ B).) Thus, by Lemma 5.5,

we see that a ∈ J νB(A∩ B)⊆ J ν(A) as required. �

Finally we note the following generalisation of Lemma 5.8 to arbitrary median
algebras.

Lemma 6.5. Let N ⊆ M be a subalgebra of the median algebra M. If A, B ⊆ N ,
then (A|B)N if and only if (A|B)M .

Proof. First note that, by Lemma 5.6, for any A ⊆ N , we have hullN (A) =
N ∩ hullM(A) (this did not make use of finiteness). We are therefore claiming that
N ∩hullM(A)∩hullM(B)=∅ implies hullM(A)∩hullM(B)=∅. This was shown
by Lemma 5.8, when M was finite. In the general case, suppose, for contradiction
that there is some c ∈ hullM(A)∩ hullM(B). It follows that c ∈ hull5(A ∩5)∩
hull5(B ∩5) for some finite subalgebra, 5, of M . Now, N ∩5 is a subalgebra of
5, and so, from the finite case, we have N ∩ hull5(A∩5)∩ hull5(A∩5) 6= ∅.
But this is contained in N ∩ hullM(A)∩ hullM(B), so we get a contradiction. �

7. Topological median algebras

In this section we define the terms relevant to Theorem 2.2, and give a proof.
By a topological median algebra we mean a hausdorff topological space, M ,

together with a continuous ternary operation, µ : M3
→ M such that (M, µ) is a

median algebra.

Definition. We say that M is locally convex if every point has a base of convex
neighbourhoods.

Put another way, if a ∈ M and U 3 a is open, then there is another open set
V 3 a with hull(V )⊆U .

Definition. We say that M is weakly locally convex if, given any a ∈ M , and any
open U 3 a, there is an open set V 3 a such that [b, c] ⊆U for all b, c ∈ V .

In other words, J (V )⊆U .

Lemma 7.1. If M has finite rank and is weakly locally convex, then it is locally
convex.
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Proof. Let a ∈ U , where U ⊆ M is open. We inductively construct open sets Ui

with J i (Ui )⊆U . By Lemma 6.4 if ν = rank(M), then hull(Uν)= J ν(Uν)⊆U , so
we can set V =Uν . �

Given a set C ⊆ M , we write C̄ for its topological closure. The following is an
elementary observation:

Lemma 7.2. If C is convex, then so is C̄.

Suppose W ∈W. By Lemma 7.2, the closures, H̄−(W ) and H̄+(W ) are both
convex. We write L(W )= H̄−(W )∩ H̄+(W ). It follows that L(W ) is also convex.
Let O±(W ) = M \ H̄∓(W ). Note that O±(W ) is contained in the interior of
H±(W ).

Definition. We say that W strongly separates two points a, b ∈ M if a ∈ O−(W )

and b ∈ O+(W ), or vice versa.

For the rest of this section, we will assume that M is locally convex.

Lemma 7.3. Any two distinct points of M are strongly separated by a wall.

Proof. Let a, b ∈ M be distinct. Let A 3 a and B 3 b be disjoint convex neighbour-
hoods. By Lemma 6.1, there is a wall W ∈W with A ⊆ H−(W ) and B ⊆ H+(W ).
It now follows that a ∈ O−(W ) and b ∈ O+(W ). �

Lemma 7.4. Suppose that Q ⊆ M is a finite dimensional hypercube, and that
{P−, P+} is an intrinsic wall of Q (i.e., a partition of Q into two codimension-1
faces). Then there is a wall W ∈W with P− ⊆ O−(W ) and P+ ⊆ O+(W ).

Proof. Choose a ∈ P− and b ∈ P+ so that {a, b} is a 1-face of Q. Let W ∈W be a
wall as given by Lemma 7.3. Suppose c ∈ P−. Then a ∈ [b, c]. Since H̄+(W ) is
convex, if c ∈ H̄+(W ), we would arrive at the contradiction that a ∈ H̄+(W ). It
follows that c ∈ O−(W ). Thus P− ⊆ O−(W ). Similarly, P+ ⊆ O+(W ). �

Lemma 7.5. If rank(M)≤ ν and W ∈W, then rank(L(W ))≤ ν− 1.

Proof. Suppose, for contradiction, that Q⊆ L(W ) is a ν-hypercube. Let a : I ν→ Q
be an isomorphism. Given ε ∈ I ν , we write εi ∈ I = {−1,+1} for the i-th co-
ordinate. For each i ∈{1, . . . , n}, we can partition Q as P−i tP+i , where P−i and P+i
correspond to εi =−1 and ε+ =+1. By Lemma 7.4, there is a wall, Wi ∈W with
P−i ⊆ O−(Wi ) and P+i ⊆ O+(Wi ). Given ε ∈ I ν , let O(ε)=

⋂ν
i=1 Oεi . Thus O(ε)

is an open subset of M containing a(ε). Now a(ε) ∈ L(W )= H̄−(W )∩ H̄+(W ).
Thus, there are points, a±(ε) ∈ O(ε)∩H±(W ). In particular, a±(ε) ∈ H εi (Wi ) for
all i . It now follows that the walls, W1,W2, . . . ,Wν,W , all pairwise intersect. We
derive the contradiction that rank(M)≥ ν+ 1. �
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We also note that L(W ) is intrinsically a locally convex median algebra.
We now move on to our definition of “separation dimension”. (One can find

related ideas in [Behrstock and Minsky 2008].)
Let D be a collection of (homeomorphism classes) of hausdorff topological

spaces. Let 2 be a hausdorff topological space. We say two points x, y ∈2 are
D-separated if there are closed sets, X, Y ⊆ M with x /∈ Y , y /∈ X , X ∪Y = M and
X ∩ Y ∈ D.

Define D(n) inductively as follows. Set D(−1)= {∅}. We say 2 ∈ D(n+ 1) if
any two distinct points of 2 are D(n)-separated.

Definition. A space is has separation dimension n if it lies in D(n) \D(n− 1).

Note that a space has separation dimension 0 if and only if it is nonempty and
totally disconnected (in contrast to covering dimension [Erdös 1940]).

Suppose that 2 ∈ D(n) and that 8⊆2. Then 8 ∈ D(n). This can be seen by
induction on n as follows. Suppose that x, y ∈ 8 with x 6= y. There are closed
sets X, Y ⊆2, with x /∈ Y , y /∈ X , X ∪ Y =2 and X ∩ Y ∈ D(n− 1). Inductively,
X ∩Y ∩8∈D(n−1). But X ∩8 and Y ∩8 are closed in 8, x /∈ Y ∩8, y /∈ X ∩8,
and (X ∩8)∪ (Y ∩8)=8, so x and y are D(n− 1)-separated in 8.

We claim that if x, y ∈2∈D(n), then there are open sets, U 3 x and V 3 y with
Ū∪V̄ =2 and Ū∩V̄ ∈D(n−1). To see this, let X, Y be as in the definition of D(n).
Let U =2\Y and V =2\ X . Now U ⊆ X , so Ū ⊆ X . Thus, 2\ X ⊆2\ Ū = V .
Similarly, 2 \ V̄ ⊆ U . In particular, x ∈ U and y ∈ V . Also Ū ∪ V̄ = 2. We
similarly have V̄ ⊆ Y , and so Ū ∩ V̄ ⊆ X ∩ Y ∈ D(n− 1). Thus, by the preceding
paragraph, we have Ū ∩ V̄ ∈ D(n− 1), thereby proving the claim.

Conversely, if U, V are as above, then Ū and V̄ are as in the inductive definition of
D(n). This therefore gives rise to an equivalent formulation of separation dimension.

Finally, putting together Lemmas 7.3 and 7.5, we see by induction on n that
if rank(M) ≤ n, then M has separation dimension at most n, thereby proving
Theorem 2.2.

The usual notion of inductive dimension is similar — replacing separation of
points with separation of disjoint closed sets. These notions are equivalent for
locally compact spaces (see for example Section III(6) of [Hurewicz and Wallman
1941]). In particular, we note:

Lemma 7.6. If 2 is a hausdorff topological space of separation dimension at most
ν, then every locally compact subset has (covering) dimension at most ν.

In particular, such a space does not admit any continuous injective map of Rν+1.
We note that the conclusion of Lemma 7.6 suggests another notion of dimension

for a topological space, namely the maximal dimension of a locally compact
subspace. Indeed this was the notion that was used in [Behrstock and Minsky
2008].
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8. Coarse median spaces

We establish some basic facts about coarse median spaces. We show that such a
space satisfies certain quadratic isoperimetric inequality (Proposition 8.2).

Let (3, ρ) be a geodesic space. (A path-metric space would be sufficient.)
Suppose that µ :33

→3 is (for the moment) any ternary operation on 3.

Definition. If (5,µ5) is a median algebra then a h-quasimorphism of 5 into 3
is a map λ :5→3 satisfying

ρ(λµ5(x, y, z), µ(λx, λy, λz))≤ h

for all x, y, z ∈5.

Definition. We say that (3, ρ, µ) is a coarse median space if it satisfies:

(C1) There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈3,

ρ(µ(a, b, c), µ(a′, b′, c′))≤ k(ρ(a, a′)+ ρ(b, b′)+ ρ(c, c′))+ h(0).

(C2) There is a function h :N→[0,∞) such that 1≤ |A| ≤ p <∞, then there is a
finite median algebra and a h(p)-quasimorphism, λ :5→3 such that for all
a ∈ A, ρ(a, λπa)≤ h(p).

We therefore have one multiplicative constant, k, and a sequence, h(p), of
additive constants. We can assume that h(p) is increasing in p.

In (C2), we note that we can always assume that 5= 〈π(A)〉, so by Lemma 4.2,
|5| ≤ 22p

. In particular, we can take 5 to be finite. Our definition therefore agrees
with that given in Section 2.

Remark. Note that in defining a coarse median space, there would be no loss in
taking 5 = M(A) to be the free median algebra on A (since this will admit an
epimorphism to any such 5). Also in (C2), there would be no loss in assuming that
λπa = a for all a ∈ A. However, when we define a “coarse median space of rank
ν” below, we can no longer assume these things.

Definition. If we can always take 5 to have rank at most ν, then we say that
(3, ρ, µ) has rank at most ν.

Here, of course, the function h is fixed independently of ν.

Lemma 8.1. Suppose that (3, ρ) and (3′, ρ ′) are quasi-isometric geodesic spaces.
Then (3, ρ) admits a coarse median (of rank ν) if and only if (3′, ρ ′) does.

Proof. Let f :3→3′ and g :3′→3 be quasi-inverse quasi-isometries. (That is,
f ◦ g and g ◦ f are each a bounded distance from the respective identity maps) We
define µ′ on 3′ by setting µ′(a, b, c)= f µ(ga, gb, gc). �
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Definition. A finitely generated group 0 is coarse median (of rank ν) if and only
if its Cayley graph with respect to any finite generating set admits a coarse median.

Any two such Cayley graphs are quasi-isometric, so this is well defined by
Lemma 8.1.

Returning to 3, suppose a, b, c ∈ 0. Let A = {a, b, c}, and let π : A→5 and
λ : 5→ 3 be as in (C2). From the second part of (C2), we see that ρ(a, λπa),
ρ(b, λπb) and ρ(c, λπc) are all bounded above by h(3). Applying (C1), it follows
that

ρ(µ(a, b, c), µ(λπa, λπb, λπc))≤ 3kh(3)+ h(0).

Also from the first part of (C2),

ρ(µ(λπa, λπb, λπc), λµ5(πa, πb, πc))≤ h(3),

and so
ρ(µ(a, b, c), λµ5(πa, πb, πc))≤ (3k+ 1)h(3)+ h(0).

The same holds for any permutation of a, b, c, and since µ5 is invariant under such
permutation, we deduce

ρ(µ(a, b, c), µ(b, c, a))≤ (6k+ 2)h(3)+ 2h(0),

ρ(µ(a, b, c), µ(b, a, c))≤ (6k+ 2)h(3)+ 2h(0).

Since µ5(πa, πa, πb)= πa, a similar argument gives

ρ(µ(a, a, b), a)≤ (3k+ 2)h(3)+ h(0).

In view of this, there is no essential loss in assuming (M1) and (M2), namely,
µ(a, b, c)=µ(b, c, a)=µ(b, a, c) and µ(a, a, b)= a. We have already implicitly
used this in Section 3.

Given this, we note that (C1) could be replaced by the assumption that

ρ(µ(a, b, c), µ(a, b, d))

is uniformly bounded above in terms of ρ(c, d). Given that (3, ρ) is a geodesic
space, it is easy to see that such a bound can always be taken to be linear.

Next, we discuss the quadratic isoperimetric inequality. Suppose, l, L > 0.

Definition. An l-cycle is a cyclically ordered sequence of points, a0, a1, . . . , ap =

a0 in 3, with ρ(ai , ai+1)≤ l for all i .

Definition. An L-disc consists of a triangulation of the disc, together with a map
b : V → 3 of the vertex set, V , into 3 such that ρ(b(x), b(y)) ≤ L whenever
x, y ∈ V are adjacent in the 1-skeleton.

Definition. We say that b spans an l-cycle, (ai )i if we can label the vertices on the
boundary as xi such that xi+1 is adjacent to xi and with ai = b(xi ) for all i .
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Proposition 8.2. Suppose that 3 is a coarse median space. Given any l > 0, there
is some L > 0, depending only on l and the parameters such that for any p ∈ N,
any l-cycle of length at most p bounds an L-disc with at most p2 2-simplices.

In fact, all we require of µ is (M1) and (M2) and the statement that

ρ(µ(a, b, c), µ(a, b, d))≤ L/2

whenever a, b, c, d ∈3 with ρ(c, d)≤ l.
To see this, we construct a triangulation of the disc as follows. Let

V = {{0}} ∪ {{i, j} | 1≤ i, j ≤ p− 1}.

We define the edge set by deeming {i, j} to be adjacent to {i + 1, j} and to {i +
1, j + 1} for all 1 ≤ i, j ≤ p− 2, and deeming {0} to be adjacent to {1, i} and to
{p− 1, i} for all 1≤ i ≤ p− 1. Note that {i, i} = {i}, so {i} is adjacent to {i + 1}
for all 0≤ i ≤ p− 2, and {p− 1} is adjacent to {0}. Filling in every 3-cycle with a
2-simplex, we can see that this defines a triangulation of the disc whose boundary
is the circuit with vertices ({i})i . In total, it has 1

2(p
2
− p+ 2) vertices, p

2 (3p− 5)
edges and p2

− 2p triangles.
(We can realise this in the euclidean plane, R2, as follows. We make the iden-

tification V ⊆ Z2
⊆ R2, by identifying {i, j} with the ordered pair, (i, j), for

1≤ j ≤ i ≤ p− 1, and identifying {0} with (p, 0). We can triangulate the convex
hull of {(1, 1), (p− 1, p− 1), (p− 1, 1)} by cutting along straight lines with slope
0, 1, and∞ through the integer lattice points. We then connect (p, 0) by a geodesic
segment to each of the points (i, 1) and (p−1, i) for 1≤ i ≤ p−1. This gives us a
triangulation of the convex hull, 1, of {(1, 1), (p− 1, p− 1), (p, 0)}, with vertices
V ≡Z2

∩1. Note that V∩∂1≡{(p, 0)}∪{(i, i) |1≤ i≤ p−1}≡{{i} |0≤ i≤ p−1}.)
Now suppose that a0, a1, . . . , ap = a0 is an l-cycle in 3. Define b : V →3 by

b({i, j}) = µ(a0, ai , a j ) thus, b({i}) = ai for all i . Now, if {i ′, j ′} is adjacent to
{i, j}, then |i−i ′| ≤ 1 and | j− j ′| ≤ 1, and so ρ(b({i, j}), b({i ′, j ′}))≤ 2(L/2)= L .

This proves Proposition 8.2.
Note that, if3 is the Cayley graph of a finitely generated group, then this implies

that 0 is finitely presented, and that the Dehn function for any finite presentation is
at most quadratic. In other words:

Corollary 8.3. Any coarse median group is finitely presented, and has Dehn func-
tion that is at most quadratic.

The following observations will be needed in the next section.

Lemma 8.4. Suppose that 5 is a finite median algebra generated by B ⊆5, with
|B| ≤ p. Suppose that λ : 5 → 3 is a h-quasimorphism. then diam(λ5) ≤
K0(diam(λB) + h(0) + h(p)), where the constant, K0, depends only on k (the
multiplicative constant of (C1)) and p.
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Proof. Given C ⊆5, let G(C)= {µ(x, y, z) | x, y, z ∈ C}. Let Gi (C) be the i-th
iterate of G. Set q = 22p

. By Lemma 4.2, |5| ≤ q , so 5= Cq(B).
Now suppose x, y, z ∈5 and set w = µ5(x, y, z). Now µ5(x, x, y)= x , and

so ρ(µ5(λx, λx, λy), λx)≤ h. Also

ρ(µ(λx, λy, λz), µ(λx, λx, λy))≤ kρ(x, y)+ h(0)

and ρ(λw,µ(λx, λy, λz))≤ h. Thus, ρ(λx, λw)≤ kρ(x, y)+h(0)+2h. It follows
that if C ⊆5, then diam(λG(C))≤ k diam(λC)+ h(0)+ 2h.

Now iterating this q times, starting with B ⊆ 5, we obtain diam(λ5) ≤
K0(diam(λB)+ h(0)+ h) where K0 = kq . �

Lemma 8.5. Suppose that A ⊆3 with 1≤ |A| ≤ p <∞ and that π : A→5 and
λ :5→3 are as in (C2), with 5= 〈π A〉. Then

diam(λ5)≤ K (diam(A)+ h(0)+ h(p)),

where K depends only on k and p.

Proof. By Lemma 8.4, we have diam(λ5)≤ K0(diam(π A)+ h(0)+ h(p)). But if
a ∈ A, then ρ(a, λπa)≤ h(p), so diam(λπ A)≤ diam(A)+ 2h(p), and the result
follows. �

9. Ultralimits

In this section we discuss ultralimits of coarse median spaces. When the ultralimit
is obtained through a sequence of rescalings of a given space, we will refer to the
resulting space as an “asymptotic cone”. Asymptotic cones of groups and metric
spaces were introduced by Van den Dries and Wilkie [1984] and elaborated upon
by Gromov [1993]. They now play a major role in geometric group theory. We
will show that the asymptotic cone of a coarse median space of rank at most ν is a
locally convex topological median algebra of rank at most ν. (This was stated as
Theorem 2.3.)

First, we give a general discussion. We fix an indexing set, I, with a nonprincipal
ultrafilter. Throughout this section, if (ti )i∈I is a sequence of real numbers, we will
write ti → t to mean that ti tends to t with respect to this ultrafilter. We refer to
a sequence as bounded if it is bounded with respect to the ultrafilter (i.e., there is
some K ≥ 0 so that the set of indices, i ∈ I for which |ti | ≤ K lies in the ultrafilter).
Note that any bounded sequence has a unique limit. We recall the following (e.g.,
[Gromov 1993]). Let ((3i , ρi ))i∈I be a collection of metric spaces indexed by I.
We will write a = (ai )i ∈

∏
i 3i for a typical sequence of elements. We fix some

basepoint e = (ei )i ∈
∏

i 3i . Let B be the set of sequences a in
∏

i 3i such that
ρi (ei , ai ) is bounded (in the above sense). Given a, b∈B, write a∼ b to mean that
ρi (ai , bi ) is bounded. This is an equivalence relation, and we write 3∞ = B/∼.
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Given a ∈ B, and a ∈ 3∞, we write ai → a to mean that a is the equivalence
class of a. Given a, b ∈3∞, choose any a, b ∈B with ai → a and bi → b. Now
ρi (ai , bi ) is bounded and we define ρ∞(a, b) to be the limit of ρi (ai , bi ). One can
easily check that this is well defined, and that ρ∞ is a metric on 3∞. With a bit
more work, one can see that (3∞, ρ∞) is complete.

Now suppose that ((3i , ρi , µi ))i∈I is a sequence of coarse median spaces. We
write ki and hi for the constants featuring in (C1) and (C2). We suppose:

(U1) ki is bounded, and hi (p)→ 0 for all p ∈ N.

We may as well fix ki = k.
Also, we will suppose that the spaces also satisfy properties (M1) and (M2) of a

median algebra (that is, with no additive constant). As discussed earlier, there is no
essential loss of generality in doing this.

Now suppose that a, b, c ∈3∞. Choose ai → a, bi → b and ci → c. Now

ρi (ei , µi (ai , bi , ci ))≤ k(ρi (ei , ai )+ ρi (ei , bi )+ ρi (ei , ci ))+ hi (0),

so ρi (ei , µi (ai , bi , ci )) is bounded. Moreover, if a′i → a, b′i → b and c′i → c, is
another such sequence, then

ρi (µi (ai , bi , ci ), µi (a′i , b′i , c′i ))≤ k(ρi (ai , a′i )+ ρi (bi , b′i )+ ρi (ci , c′i ))+ hi (0),

so ρi (µi (ai , bi , ci ), µi (a′i , b′i , c′i ))→ 0. It follows that the limit of µi (ai , bi , ci ) in
3∞ is well defined, and we write it as µ∞(a, b, c).

Now the metric ρ∞ defines a topology in 3∞. With respect to this topology, we
claim:

Proposition 9.1. (3∞, ρ∞, µ∞) is a topological median algebra.

Proof. For this, we only need to consider a finite subset A ⊆3∞. (In view of fact
that the median axioms only require sets of four points we could restrict to the case
where |A| ≤ 4 here, and hence only require that hi (4)→ 0. We will however need
sets of arbitrary finite cardinality later, when we need to bound the rank.)

Let A⊆3∞ be finite, and set p= |A|. We define maps fi : A→3i by choosing
a sequence ai→a for all a ∈3∞, and setting fi (a)=ai . We write Ai = fi (A)⊆3i .
Thus |Ai | ≤ p. Let πi : Ai →5i and λi :5i → 3i be as in (C2). Thus λi is an
hi (p)-quasimorphism, and we can assume that 5i = 〈πi Ai 〉, so that |5i | ≤ 22p

.
There are only finitely many possibilities for the median algebra (5i , µ5i ) up to
isomorphism, so we can assume that 5i =5 is fixed. We can now also assume
that the compositions πi fi : A→5 are all equal to some fixed map π : A→5.
Note again that 5= 〈π A〉.

Now diam(Ai ) is bounded. By Lemma 8.5,

diam(λi5)≤ K (diam(Ai )+ hi (0)+ hi (p))
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is also bounded. (Here K depends only on k and p and is therefore constant.) If
a ∈ A, recall that ai = fi (a)→ a. Also ρi (ai , λiπi ai )≤ hi (p)→ 0, so λiπi ai→ a.
Now if x ∈5, then ρi (ai , λi x) is bounded, by the above. So ρi (ei , λi x) is bounded,
and so λi x→ b for some b ∈3∞. This gives us a well defined map λ :5→3∞,
with λi x→ λx .

Now 3i : 5→ 3i is a hi (p)-quasimorphism where hi (p)→ 0, so it follows
that λ : 5→ 3 is a homomorphism; that is, for all x, y, z ∈ 5, λµ5(x, y, z) =
µ∞(λx, λy, λz). Moreover, if a∈ A, we have seen that λiπa=λiπi fi a=λiπi ai→

a. By definition of λ, we have λiπa→ λπa, and so λπa = a. Setting B = λ5 we
have A ⊆ B.

Now λ is a homomorphism, so it follows easily that B is closed under µ∞. Also,
since 5 is a median algebra, it follows easily that (B, µ∞) is intrinsically a median
algebra.

In summary, we have shown that any finite subset, A ⊆ 3∞, is contained in
another finite subset B ⊆3∞ that is closed under µ∞ and intrinsically a median
algebra. It follows that (3∞, µ∞) is a median algebra. Note in particular, that
µ∞(a, b, c) is invariant under permuting a, b, c.

Suppose that a, b, c, d ∈3∞. Let ai → a, bi → b, ci → c and di → d . Then

ρi (µi (ai , bi , ci ), µi (ai , bi , di ))≤ kρi (ci , di )+ hi (0),

and so
ρ∞(µ∞(a, b, c), µ∞(a, b, d))≤ kρ∞(c, d).

We see that µ∞ : 33
∞
→ 3∞ is continuous. In other words, (3∞, ρ∞, µ∞) is a

topological median algebra. �

In fact, we can say more. Suppose a, b, c ∈3∞ with c ∈ [a, b]. Now ρ∞(a, c)≤
ρ∞(µ∞(a, a, c), µ∞(a, b, c)) ≤ kρ∞(a, b). Therefore, diam([a, b]) ≤ kρ∞(a, b).
We deduce:

Lemma 9.2. (3∞, ρ∞, µ∞) is weakly locally convex.

Note that the conclusion of Lemma 9.2 is a consequence of the fact that

ρ∞(µ∞(a, b, c), µ∞(a, b, d))≤ kρ∞(c, d)

for all a, b, c, d ∈3∞. This is a key property used in the embedding theorem in
[Bowditch 2011a].

Suppose now that each (3i , ρi , µi ) is coarse median of rank at most ν. We now
interpret property (U1) above to mean that the constants ki and hi (p) of (C2) refer
to median algebras 5i of rank at most ν.

Following the proof of Proposition 9.1, we see that 5 has rank at most ν. It
follows that B = λ5 also has rank at most ν (using, for example, condition (2) of
Proposition 6.2. We deduce:
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Proposition 9.3. If the spaces (3i , ρi , µi ) all have rank at most ν and satisfy (U1),
then (3∞, ρ∞, µ∞) has rank at most ν.

Putting together these results with Lemma 7.1, we deduce that (3∞, ρ∞, µ∞)
is locally convex.

This proves Theorem 2.3.
Now suppose that (3, ρ, µ) is a coarse median space. Let I = N with any

nonprincipal ultrafilter. Let ti be any sequence of positive numbers with ti → 0
(with respect to the ultrafilter is enough). Let 3i =3, ρi = tiρ and µi = µ. Let
e ∈3, and set ei = e for all i to give us a fixed basepoint. The sequence (3i , ρi , µi )

satisfies the condition of Proposition 9.1, and so we get a topological median algebra
(3∞, ρ∞, µ∞).

Definition. We refer to a topological median algebra arising in this way as an
asymptotic cone of (3, ρ, µ).

Thus (3∞, ρ∞) is an asymptotic cone in the traditional sense. The following is
an immediate consequence of the above:

Proposition 9.4. If (3, ρ, µ) has rank at most ν, then any asymptotic cone is
locally convex and has rank at most ν.

We can now deduce Corollary 2.4 as explained in Section 2.
Finally, we note:

Lemma 9.5. Any geodesic space which admits a structure as a rank-1 topological
median algebra is an R-tree.

Proof. We see that any pair of distinct points are separated by a rank-0 subalgebra,
in other words, a point. This implies that a geodesic connecting any pair of point
must in fact be the unique arc connecting those points. In other words, any two
points are connected by a unique arc which is isometric to a real interval. This is
one of the standard definitions of an R-tree. �

Using Proposition 9.4, we deduce:

Lemma 9.6. Let (3, ρ) be a geodesic space which admits a rank-1 coarse median.
Then any asymptotic cone of (3, ρ) is an R-tree.

This now gives us what we need to complete the proof of Theorem 2.1 as
explained in Section 3.

10. Projection maps

In this section, we explain how the existence of certain projection maps imply that
a given ternary operation on a geodesic space is a coarse median. We first give the
constructions in a formal manner. The main application we have in mind is to the
mapping class group, as we explain in Section 11.
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Let (3, ρ) be a geodesic space, and let µ : 33
→ 3 be a ternary operation.

Let X be an indexing set, and suppose that to each X ∈ X, we have associated a
uniformly coarse median space (2(X), σX , µX ), together with a uniformly lipschitz
quasimorphism, θX :3→2(X). Here, “uniform” means that the various parameters
are independent of X . In particular, we are assuming that θX : (3, ρ)→ (2(X), σX )

is k0-lipschitz, and that θX : (3,µ)→ (2(X), µX ) is a h0-quasimorphism for fixed
k0 and h0.

We also assume:

(P1) For all l there is some l ′ such that if a, b ∈3 satisfy σX (θX a, θX b)≤ l for all
X ∈ X, then ρ(a, b)≤ l ′.

Proposition 10.1. A ternary operation µ satisfying the above is a coarse median
on (3, ρ). (In fact, we will see that the parameters of (3, ρ, µ) depend only on
those arising in the hypotheses.)

Before giving the proof, we note how the hypotheses arise in nature. In Section 11,
3 will be the “marking complex” of a compact surface 6. This is quasi-isometric
to the mapping class group of 6. The map µ will be the “centroid” map defined in
[Behrstock and Minsky 2011]. The set X is the set of homotopy classes of essential
subsurfaces of 6. In this, we include annuli and 6 itself, but do not allow three-
holed spheres. For a nonannular surface, the space (2(X), σX ) will be the curve
graph of X , which is hyperbolic by [Masur and Minsky 1999], and hence is coarse
median of rank 1. If X is an annulus, then (2(X), σX ) is a certain arc complex,
which is quasi-isometric to the real line. In all cases, the maps θX :3→2(X) arises
from the subsurface projection map described in [Masur and Minsky 2000]. The
property (P1) can be shown using the distance formula used in the same reference.
A consequence of Proposition 10.1, is that the mapping class group is coarse median.
We recover the fact that it is finitely presented and has a quadratic Dehn function
[Mosher 1995].

Proof of Proposition 10.1. We need to verify (C1) and (C2).

(C1) Let a,b,c,a′,b′,c′ ∈3, and write e=µ(a,b,c), f =µ(a′,b′,c′). Let X ∈X.
Write t = σ(a,a′)+ σ(b,b′)+ σ(c,c′). Since θX is a quasimorphism, we have

σX
(
θX e,µX (θX a,θX b,θX c)

)
≤ h0,

σX
(
θX f,µX (θX a′,θX b′,θX c′)

)
≤ h0.

Since µX satisfies (C1) and θX is k0-lipschitz, we have

σX
(
µX (θX a,θX b,θX c),µX (θX a′,θX b′,θX c′)

)
≤ k

(
σX (θX a,θX a′)+ σX (θX b,θX b′)+ σX (θX c,θX c′)

)
≤ kk0

(
ρ(a,a′)+ ρ(b,b′)+ ρ(c,c′)

)
= kk0t.
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Thus, σX (θX e,θX f ) is (linearly) bounded above in term of t .
Now since this holds uniformly for all X ∈ X, it follows by (P1) that ρ(e, f ) is

bounded above in terms of t . Since (3,ρ) is a geodesic space, this is sufficient to
verify (C1) for µ (as observed in Section 8).

(C2): Let A ⊆ 3, with |A| ≤ p <∞. Let q = 22p
. Let 5 be the free median

algebra on A, and write π : A→5 for the inclusion map. Note that 5 = 〈π A〉,
and recall from Section 4, that 5= Gi , where Gi

= Gi (π A) is defined by iterating
the median operation, µ5.

We define λ :5→3 inductively as follows. Given x ∈ G0
= π A, set λx = a,

where x = πa. Given u ∈ Gi+1
\Gi , choose any x, y, z ∈ Gi with u = µ5(x, y, z)

and set λu = µ(λx,λy,λz). By construction, we have λπa = a for all a ∈ A. We
want to show that λ is a quasimorphism.

Let X ∈ X. We have a quasimorphism θX : 3 → 2(X). There is also a
quasimorphism, ωX :5→2(X) such that ωXπa = θX a for all a ∈ A. (Certainly,
such a quasimorphism exists from some median algebra to 2(X), by (C2) applied
to 2(X). But since we have taken 5 to be free on A, we can precompose this with
a homomorphism from 5 to the given median algebra which fixes A. Thus, we can
take the domain to be 5.) By assumption, the additive constants depend only on
the parameters and on p. In particular, they are independent of X .

In what follows, it will be convenient to adopt the following convention. Given
points, x, y in a metric space (namely3 or2(X)), we will write x ∼ y to mean that,
at any particular stage in the argument, the distance between x and y is bounded
above by some explicit constant, depending only on the parameters and on p. The
bound may increase as the argument proceeds, though we won’t keep track of it
explicitly here.

We first claim that θXλx ∼ ωX x for all x ∈5. We show this by induction on
i , where x ∈ Gi+1

\Gi . Note first that if x ∈ G0, then setting x = πa, we have
θXλx = θX a = ωXπa = ωX a.

Now suppose that u ∈ Gi+1
\Gi . Let x, y, z ∈ Gi be the three points that were

chosen in the definition of λ, so that λu = µ(λx,λy,λz). We now have

θXλu = θXµ(λx,λy,λz)

∼ µX (θXλx,θXλy,θXλz)

∼ µX (ωX x,ωX y,ωX z)

∼ ωX u.

(The above follow respectively from the fact that θX :3→2(X) is a quasimorphism;
the inductive hypothesis; and the fact that ωX :5→2(X) is a quasimorphism.)
This proves that θXλx ∼ ωX x for all x ∈5= Gq .
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Now suppose that x, y, z ∈5 are any three points. We have

θXλµ5(x, y, z)∼ ωXµ5(x, y, z)

∼ µX (ωX x,ωX y,ωX z)

∼ µX (θXλx,θXλy,θXλz)

∼ θXµ(λx,λy,λz).

(These relations follow respectively from the claim already proven above; the fact
that ωX :5→2(X) is a quasimorphism; the claim again, together with property
(C1) applied to (2(X),µX ); and the fact that θX :3→2(X) is a quasimorphism.)

In other words, we have shown that

θXλµ5(x, y, z)∼ θXµ(λx,λy,λz)

for all X ∈ X, and for all x, y, z ∈5. Applying (P1), we get

λµ5(x, y, z)∼ µ(λx,λy,λz).

Thus λ : 5→ 3 is a quasimorphism. The constants depend only on p and the
parameters inputted. This verifies (C2). �

We have shown that (3, ρ, µ) is a coarse median space With some additional
hypotheses (justified for the mapping class group in Section 11), we can control
the rank. For this we will assume the spaces 2(X) to be uniformly hyperbolic. In
this regard, we introduce the following notation.

Suppose that (2, σ) is k0-hyperbolic. Given x, y, z, w ∈2, we write

(x, y : z, w)= 1
2

(
max{σ(x, z)+σ(y, w), σ (x, w)+σ(y, z)}−(σ (x, y)+σ(z, w))

)
.

Up to an additive constant, depending only on k0, this “crossratio” is equal to the
distance between any geodesic from x to y and any geodesic from z to w. Note
that (x, y : z, w)≤ σ(x, z), and that (x, x : y, y)= σ(x, y). Also, (x, y : z, z) is the
“Gromov product” of x and y with respect to z. Again, up to an additive constant,
this equals the distance from z to any geodesic from x to y.

We now make the following additional hypotheses. We suppose that X comes
equipped with a symmetric relation, ∧, with not X ∧ X for all X ∈ X. We suppose:

(P2) There is some k0 ≥ 0 such that each (2(X), σX ) is k0-hyperbolic.

(P3) There is some ν ∈ N such that if we have a subset Y⊆ X with X ∧ Y for all
distinct X, Y ∈ Y, then |Y| ≤ ν.

(P4) There is some l0 ≥ 0 such that if X, Y ∈ X and there exist a, b, c, d ∈3 with

(θX a, θX b : θX c, θX d)≥ l0 and (θY a, θY c : θY b, θY d)≥ l0,

then X ∧ Y .



82 BRIAN H. BOWDITCH

In relation to the mapping class group, where 3 is the marking complex, these
are interpreted as follows. The relation, ∧, refers to disjointness of the subsurfaces
in 6. Thus, (P3) is a purely topological observation, where ν = ξ(6) as defined in
Section 2. For (P2), we have already noted that curve complexes are hyperbolic
[Masur and Minsky 1999]. Property (P4) follows from properties of subsurface
projection as we discuss in Section 11.

Proposition 10.2. Suppose that (3, ρ, µ) satisfies the above — in particular, con-
ditions (P1)–(P4). Then (3, ρ, µ) is a coarse median space of rank at most ν.

Here, ν is the constant featuring in (P3). As usual, the parameters outputted
depend only on those of the hypotheses.

Before giving the proof, we need a general observation regarding hyperbolic
spaces. Let (2, σ) be k0-hyperbolic. Let µ be the median as defined in Section 3.
We know that (2, σ, µ) is coarse median of rank 1. In fact:

Lemma 10.3. Given k0, l ≥ 0 and p ∈ N, there is some h ≥ 0 with the following
property. Suppose that (2, σ) is k0-hyperbolic, and that µ is the median on (2, σ).
Suppose that A is any set with |A| ≤ p < ∞ and that θ : A → 2 is any map.
Then there is a rank-1 median algebra, 5, and maps π : A→5 and λ :5→2,
satisfying:

(L1) σ(θa, λπa)≤ h for all a ∈ A.

(L2) λ is an h-quasimorphism.

(L3) If a, b, c, d ∈ A with (πa, πb|πc, πd)5, then (θa, θb : θc, θd)≥ l.

Here, of course, 5 is just the vertex set, V (τ ), of a simplicial tree, τ . As in
Section 4, we use the notation (x, y|z, w)5 to mean that the sets {x, y} and {z, w}
are separated by a wall in 5. Here, this is equivalent to saying that the arcs [x, y]τ
and [z, w]τ are disjoint.

Proof. Let τ0 ⊆ 2 be the embedded tree arising from θ(A) ⊆ 2, as given by
Lemma 3.2. Thus, if a, b ∈ A, then στ0(θa, θb) ≤ σ(θa, θb)+ k1, where k1 =

k0h0(p). Let t = l+2k1 and let τ be the metric tree obtained from τ0 by collapsing
down each edge of length at most t . Let 5= V (τ ). Given x ∈5, let τ(x)⊆ τ be
the preimage of x under the collapsing map. Thus, τ(x) is a subtree of diameter at
most k2 = pt .

Now let π : A→5 be the postcomposition of θ with the collapsing map of τ0

to τ , define λ :5→2 by setting λx to be any vertex of τ(x).
If a ∈ A, then θa, λπa ∈ τ(θa), so σ(θa, λπa)≤ k2. This gives (L1) provided

h ≥ k2.
For (L2), suppose that x, y, z ∈ 5. By definition, λx ∈ τ(x), λy ∈ τ(y) and

λz ∈ τ(z). Let w = µ5(x, y, z). Let w′ = µτ0(λx, λy, λz) ∈ τ0 ⊆ 2. Now
w′, λw ∈ τ(w), and so σ(w′, λw) ≤ k2. Now, as in the proof of Lemma 3.1, the
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median µ2(λx, λy, λz) in2 is a bounded distance from the median w′ in τ0, where
the bound depends only on p and k0. This gives a bound on σ(λw,µ2(λx, λy, λz))
as required.

Finally, suppose that a, b, c, d ∈ A with (πa, πb|πc, πd)5. It follows that
[πa, πb]τ0 ∩ [πc, πd]τ0 =∅, and so the crossratio (θa, θb : θc, θd) defined intrin-
sically to τ0 must be at least t . But this agrees with the crossratio defined in 2 up
to an additive constant 2k1. This proves property (L3). �

Now let l0 be the constant in property (P4). Suppose that A⊆3with |A|≤ p<∞.
Let X ∈ X. Property (P2) tells us that (2(X), σX ) is k0-hyperbolic, where k0

depends only on ξ(6). Let µX be the median operation on 2(X). Lemma 10.3
now gives us a rank-1 median algebra 5(X), and maps πX : A→5(X) as well
as a h-quasimorphism, λX : 5(X) → 2(X), such that if a, b, c, d ∈ A, with
(πX a, πX b|πX c, πX d)5(X) then (θX a, θX b : θX c, θX d) > l0.

Now let 50 =
∏

X∈X5(X), and let ψX : 50→ 5(X) be the projection map.
We define π : A→50 so that ψXπa = πX a for all a ∈ A. Let 5 = 〈π A〉 ⊆50,
be the subalgebra generated by π A. Note that 5 is finite.

(We note that, a-priori, 50 might be infinite. In fact, in the application to the
mapping class group, we will see that 5(X) is trivial for all but finitely many X ,
so in fact, 50, can be taken to be finite. We do not formally need that here.)

Recall that we can naturally identify the set of walls, W(50), with
⊔

X∈XW(5(X))
via the projection maps, ψX . Also, by Lemma 6.5 any wall, W , in 5 arises from a
wall in 50, and hence from a wall in 5(X) for some X ∈ X. (In fact, Lemma 5.8
will suffice in the case of the mapping class group, where 50 is finite.) We write
X (W ) for some such X . (It might not be uniquely determined by W .) Note that
the map [W 7→ X (W )] is injective.

Lemma 10.4. Suppose that W,W ′ ∈W(5) cross. Then X (W )∧ X (W ′).

Proof. Write X = X (W ) and Y = X (W ′). Since W and W ′ cross, there is a natural
epimorphism of 5 to the square W ×W ′. Since 5= 〈π A〉, the restriction to π A
is also surjective (since any subset of W ×W ′ is a subalgebra). In other words,
we can find a, b, c, d ∈ A satisfying (πX a, πX b | πX c, πX d)5(X) and (πY a, πY c |
πY b, πY d)5(Y ). Thus, by the construction of 5(X) and 5(Y ), we have

(θX a, θX b : θX c, θX d)≥ l0 and (θY a, θY c : θY b, θY d)≥ l0.

By (P4) it now follows that X ∧ Y . �

Corollary 10.5. 5 has rank at most ν.

Proof. Suppose that W⊆W(5) is a set of pairwise crossing walls. By Lemma 10.4,
we have X (W )∧ X (W ′) for all distinct W,W ′ ∈W0. It now follows by (P3) that
|W0| ≤ ν. �
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Proof of Proposition 10.2. We proceed as in the proof of Proposition 10.1. We
already have (C1).

For (C2), we need that the rank of 5 is at most ν. Instead of taking the free
median algebra on A, we take 5 as constructed above. In the verification of (C2)
we only used the fact that 5 = 〈π A〉, together with the existence of uniform
quasimorphisms ωX :5→2(X) with θX a ∼ ωXπa for all a ∈ A. (In the proof
of Proposition 10.1, we had θX a = ωXπa, but we only need that these agree up to
bounded distance.)

This time, we have 5= 〈π A〉 by construction. The quasimorphism ωX can now
be defined as the composition ωX = λXψX .

The proof now proceeds as before. �

11. Surfaces

In this section we verify the hypotheses of Proposition 10.2 in the case where 3 is
a connected locally finite graph on which the mapping class group, Map(6), acts
properly discontinuously with finite quotient. This shows that Map(6) is a coarse
median group of rank at most ξ(6).

Here, 2 will be the curve graph C=C(6), of 6, X will be the set of subsurfaces
of 6, and 2(X) = C(X) will be the curve graph defined intrinsically to X ∈ X

(appropriately interpreted if X is an annulus). Briefly, Property (P1) is a consequence
of the distance formula of [Masur and Minsky 2000] (see Lemma 11.5), Property
(P2) is the hyperbolicity of the curve complex proven in [Masur and Minsky 1999],
Property (P3) is an elementary topological observation (see Lemma 11.1) and
Property (P4) follows from a result in [Behrstock 2006] which is reformulated here
as Lemma 11.3 (see Lemma 11.7).

For the graph, 3, we could use a Cayley graph with respect to a finite generating
set, though we will find it more convenient to work with a “marking complex”;
compare [Masur and Minsky 2000].

We now give more formal definitions. Let6 be a compact orientable surface with
(possibly empty) boundary ∂6. Let ξ(6)= 3g+ p−3, where g is the genus, and p
the number of boundary components. We assume that ξ(6) > 1. Let C0

= C0(6)

be the set of homotopy classes of essential nonperipheral simple closed curves in
6, referred to here simply as “curves”. Given α, β ∈ C0, we write ι(α, β) for their
geometric intersection number, in other words, the minimal possible number of
intersections taken over all representative curves in the respective homotopy classes.
(We remark that given any finite set of curves in 6, we can find realisations which
simultaneously achieve these minima for all pairwise intersections — for example,
take geodesic representatives with respect to any complete hyperbolic structure
on the interior of 6.) The curve graph, C = C(6), is the graph with vertex set,
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V (C)= C0, where α, β ∈ C0 are adjacent if ι(α, β)= 0. (This is the 1-skeleton of
Harvey’s curve complex.) We write σ for the combinatorial metric on C. It was
shown in [Masur and Minsky 1999] that C is hyperbolic. (A constructive proof can
be found in [Bowditch 2006b].) It is not hard to see that σ(α, β) is bounded above
in terms of ι(α, β) (for example, σ(α, β) ≤ ι(α, β)+ 1). We will write α t β to
mean that ι(α, β) > 0.

Given a ⊆ C0, we write ι(a)=max{ι(α, β) | α, β ∈ a} for the self-intersection
of a. If ι(a) <∞ then a is finite. (In fact,

∑
{ι(α, β) | α, β ∈ a} is bounded above

in terms of ι(a) and ξ(6).) We say that a fills 6 if, for all γ ∈ C0, there is some
α ∈ a with α t γ . Given p ∈ N, we write L(p) for the set of subsets a ⊆ C0 with
ι(a) ≤ p and which fill 6. Given p, q ∈ N we write 3(p, q) for the graph with
vertex set L(p) where a, b ∈ L(p) are deemed to be adjacent if ι(a∪ b)≤ q . Thus,
3(p, q) is locally finite, and Map(6) acts on 3(p, q) with finite quotient. For a
“marking complex”, we could take any connected Map(6)-invariant subgraph of
3(p, q) for some p, q (which might be allowed to depend on ξ(6)). The notion
is quite robust, so it doesn’t much matter exactly what construction we use. For
definiteness, we can set 3 to be the marking complex used in [Masur and Minsky
2000]. In this case, 3⊆3(4, 4). (We could also use 3(p, q) itself for sufficiently
large p, q.)

We define a map χ :3→ C, which chooses some element χ(a) ∈ a from each
a ∈ V (3). Note that this is uniformly lipschitz with respect to the metrics ρ and
σ on V (3) and V (C)= C0. (We can extend to a map 3→ C, by first collapsing
each of 3 to an incident vertex.)

We now move on to consider subsurfaces.

Definition. By a subsurface realised in6 we mean a compact connected subsurface
X ⊆6 such that each boundary component of X is either a component of ∂6, or
else an essential nonperipheral simple closed curve in 6 \ ∂6, and such that X is
not homeomorphic to a three-holed sphere.

Note that we are allowing 6 itself as a subsurface, as well as nonperipheral
annuli.

Definition. A subsurface is a free homotopy class of realised subsurfaces.

We will sometimes abuse notation and use the same symbol for a subsurface and
some realisation of it in 6.

We write X = X(6) for the set of subsurfaces of 6. We write X = XA tXN

where XA and XN are respectively the sets of annular and nonannular subsurfaces.
Note that there is a natural bijective correspondence between XA and the set of
curves, C0. (We will, however, treat them as distinct from the point of view of the
notation introduced below.)
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Suppose X ∈ XN . We have 0 < ξ(X) ≤ ξ(6), and write C0(X), C(X), 3(X)
respectively for C0, C, 3 defined intrinsically to X . (In the exceptional cases where
ξ(X) = 1, C(X) is defined by deeming two curves to be adjacent if they have
minimal possible intersection for that surface, that is, 1 for a one-holed torus, and 2
for a four-holed sphere. In both cases this gives us a Farey graph.) Note that we
can identify C0(X) as a subset of C0. We write σX and ρX for the combinatorial
metrics on C(X) and 3(X). Let C0(6, X) and C0(6, ∂X) be the subsets of C0

consisting of curves of 6 homotopic into X or ∂X respectively. In this way,
C0(6, X)= C0(X)tC0(6, ∂X).

If X ∈ XA, the set C(X) is defined as an arc complex in the cover of 6 corre-
sponding to X , as in [Masur and Minsky 2000]. This is quasi-isometric to the real
line. We set 3(X)= C(X).

Given X, Y ∈ X, we distinguish five mutually exclusive possibilities denoted as
follows:

(1) X = Y .

(2) X ≺ Y : X 6= Y , and X can be homotoped into Y but not into ∂Y .

(3) Y ≺ X : Y 6= X , and Y can be homotoped into X but not into ∂X .

(4) X ∧ Y : X 6= Y and X, Y can be homotoped to be disjoint.

(5) X t Y : none of the above.

In (2)–(4) one can find realisations of X, Y in 6 such that X ⊆ Y , Y ⊆ X ,
X ∩ Y =∅, respectively. (Note that X ∧ Y covers the case where X is an annulus
homotopic to a boundary component of Y , or vice versa.) We can think of (5) as
saying that the surfaces “overlap”.

Lemma 11.1. Suppose Y ⊆ X satisfies X ∧ Y for all distinct X, Y ∈ Y. Then
|Y| ≤ ξ(6).

Proof. For each Y ∈Y, choose an essential curve, αY in Y which is nonperipheral if
Y ∈XN and the core curve if Y ∈XA. The curves αY are all pairwise nonhomotopic
in 6, so there can be at most ξ(6) of them. �

Next we consider subsurface projections. These were defined in [Masur and
Minsky 2000].

Let X ∈ X. If α ∈ C0, write α t X to mean that either α ∈ C0(X) or α t γ
for some γ ⊆ ∂X . In other words, α cannot be homotoped to be disjoint from
X . (This is consistent with the notation above if we identify α with an annular
neighbourhood.) In this case, we write θXα for a projection of α in C(X), as defined
in [Masur and Minsky 2000]. There is some ambiguity in the definition, but it is
well defined up to bounded distance. In fact, if X ∈ XN , we can take θXα ∈ C0(X),
and this case, it is well defined up to bounded intersection. Moreover, if α, β t X ,



COARSE MEDIAN SPACES AND GROUPS 87

then ι(θXα, θXβ) is bounded above in terms of ι(α, β). Note that if a fills 6, then
at least one α ∈ a must satisfy a t X . The resulting curve, θXα ∈ C0(X), is well
defined up to bounded intersection number in X , where the bound depends only on
ι(a). This gives rise to a map θX :3→C(X), well defined up to bounded distance.
Moreover, θX is uniformly lipschitz with respect to the metrics ρ and σX .

Suppose that a ∈ L(p), for p ≥ 4. Let aX ⊆ a be the set of curves, α ∈ a,
with α t X . This must be nonempty. Note that {θXα | α ∈ aX } has bounded self-
intersection. Moreover, if p is large enough it’s not hard to see that this set must
fill X . Given these observations, we see that we have also a map φX :3→3(X),
well defined up to bounded distance, and uniformly lipschitz with respect to the
metrics ρ and ρX . (Namely, set φX (α)= θXα for some α ∈ aX .) Moreover, writing
χX :3(X)→ C(X), for the map χ defined intrinsically to X , we see that we the
map θX agrees up to bounded distance with the composition χXφX .

Suppose that X, Y ∈ X with X t Y or Y ≺ X . We define a point θX Y ∈ C(X) as
follows. If Y ∈ XA, we set θX Y = θXα, where α ∈ C0 is the curve homotopic to Y .
If Y ∈ XN , we choose any α ∈ C0(6, ∂X) with α t Y and set θX Y = θXα. Note
that this is well defined up to bounded distance.

We list a few properties of subsurface projections.
First note that if X ≺Y , we have a subsurface projection, θXY defined intrinsically

to Y . In other words, we can replace 6 by Y in the earlier discussion, and work
intrinsically with Y . (Note that Y ∈ XN .)

Lemma 11.2. If α ∈ C0(6) with α t X , then α t Y , and σX (θXα, θXY θYα) is
bounded in terms of ξ(6).

Proof. This is an easy consequence of the construction in [Masur and Minsky
2000]. �

In fact, using that same construction, we see that the intersection number between
θXα and θXY θYα is also bounded. In view of this, we can henceforth drop the suffix
“Y ”, and write θXY as θX .

Lemma 11.3. There is some constant l1, depending only on ξ(6), with the fol-
lowing property. Suppose that X, Y ∈ X with X t Y , and that a ∈ V (3). Then
min{σX (θX a, θX Y ), σY (θY a, θY X)} ≤ l1.

Proof. This is an immediate consequence of the result in [Behrstock 2006]; see
also [Mangahas 2010]. This was stated for curves, namely that if α ∈ C0 with
α t X and α t Y , then min{σX (θXα, θX Y ), σY (θYα, θY X)} is bounded above in
terms on ξ(6). To relate this to our statement, it is a simple exercise to find such a
curve, α ∈ C0, with ι(a ∪ {α}) bounded in terms of ξ(6). Thus, σX (θXα, θX a) and
σY (θYα, θY a) are bounded. �
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Lemma 11.4. There is some l2, depending only on ξ(6) with the following prop-
erty. Suppose X, Y ∈ X with Y ≺ X , and suppose that a, b ∈ 3 with (θX a, θX b :
θX Y, θX Y )≥ l2. Then σY (θY a, θY b)≤ l2.

Proof. Choosing α ∈ a and β ∈ b with α t Y and β t Y , we will also have α t X
and β t X . We can therefore interpret the lemma as a statement about curves rather
than markings (perhaps with a different constant). Also, in view of Lemma 11.2,
we may as well assume that X = 6, so that α = θ6α and β = θ6β, and we set
γ = θ6Y ∈ C0(6, Y ). Now C0(6, Y ) has diameter at most 2 in C. Thus, if the
Gromov product (α, β | γ, γ ) is sufficiently large in relation to the hyperbolicity
constant of C, then any geodesic from α to β in C will miss C0(6, Y ). By the
bounded geodesic image theorem of Masur and Minsky [2000], it then follows that
σY (θYα, θYβ) and hence σY (θY a, θY b) is bounded as required. �

The following two lemmas are both consequences of the distance formula in
[Masur and Minsky 2000] (though can also be seen more directly). The first of
these implies (P1).

Lemma 11.5. Given any l ≥ 0, there is some l ′ ≥ 0, depending only on l and ξ(6)
with the following property. Suppose that a, b ∈3 and that σX (θX a, θX b)≤ l for
all X ∈ X, then ρ(a, b)≤ l ′.

Lemma 11.6. There is some l3 depending only on ξ(6) such that if a, b ∈3, then
{X ∈ X | σX (θX a, θX b)≥ l3} is finite.

We can now verify property (P4) of Proposition 10.1.

Lemma 11.7. There is some l0 ≥ 0, depending only on ξ(6) such that if X, Y ∈ X

and there exist a, b, c, d ∈3 with

(θX a, θX b : θX c, θX d)≥ l0 and (θY a, θY c : θY b, θY d)≥ l0,

then X ∧ Y .

Proof. Since C(X) and C(Y ) are hyperbolic, we must have X 6= Y , provided that
l0 is large enough in relation to the hyperbolicity constant. We will also assume
that l0 ≥ 2 max{l1, l2} (the constants of Lemmas 11.3 and 11.4). If not X ∧ Y , then
either X t Y or, without loss of generality, Y ≺ X .

Note that the hypotheses on a, b, c, d remain unchanged if we simultaneously
swap a with b and c with d. Since (θX a, θX b : θX c, θX d)≥ l0 > 2 max{l1, l2}, we
can assume that (θX a, θX b : θX Y, θX Y )≥max{l1, l2}. In particular, this implies that
σX (θX a, θX Y ) > l1 and σX (θX b, θX Y ) > l1. Now, if X t Y , then Lemma 11.3 tells
us that σY (θY a, θY X)≤ l1 and σY (θY b, θY X)≤ l1, so that σY (θY a, θY b)≤2l1, giving
the contradiction that (θY a, θY c : θY b, θY d) ≤ l1. If Y ≺ X , then by Lemma 11.4,
we have σY (θY a, θY b)≤ l2 again giving a contradiction. �
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We have now verified each of the hypotheses of Proposition 10.2 for the mapping
class group, where ν = ξ(6). This proves Theorem 2.5.

12. Colourability

In this section we briefly describe the notion of colourability for median algebras
and coarse median spaces. In general, this is a strengthening of the rank condition.
This property is used in [Bowditch 2011a] to give embeddings of median algebras
into products of trees.

Let M be a median algebra.

Definition. We say that M is ν-colourable if there is a map, χ : W(M) →
{1, 2, . . . , ν}, such that χ(W ) 6= χ(W ′) whenever W tW ′.

Clearly this implies that the rank of M is at most ν. The converse does not hold
in general, but it does for intervals (see Lemma 12.4).

Proposition 12.1. A median algebra is ν-colourable if and only if every finite
subalgebra is.

(In fact, it is the latter condition that is applied in practice, so in principle one
could bypass this discussion by defining colourability in that way.)

Lemma 12.2. Any subalgebra of a ν-colourable median algebra in ν-colourable.

Proof. Let N be a subalgebra of a ν-colourable median algebra, M . Let ν : M→
{1, . . . , ν} be a ν-colouring. If W ∈W(N ), then by Lemma 6.1, there is a wall in
M separating H−(W )⊆ N from H+(W )⊆ N . Let WM be any such wall. We write
χ(W )= χ(WM). Now if W,W ′ ∈W(N ) cross in N , then certainly WM and W ′M
cross in M , and so χ(W ) 6= χ(W ′). Thus, χ :W(N )→{1, . . . , ν} is a ν-colouring
of N . �

Lemma 12.3. If every finite subalgebra of a median algebra M is ν-colourable
median algebra M is ν-colourable.

Proof. We first note that it’s enough to show that for any finite subset, W0 ⊆W(M),
we can find a map χ : W0 → {1, . . . , ν} such that χ(W ) 6= χ(W ′) whenever
W,W ′ ∈ W0 with W t W ′. To deduce Lemma 12.3 from this, we recall the
standard compactness result from graph theory, namely that a graph is vertex ν-
colourable if and only if every finite subgraph is. Here we construct a graph, G,
with vertex set W(M), where W,W ′ ∈W(M) are deemed adjacent if and only if
W t W ′. Thus, colouring M is equivalent to vertex-colouring the graph G. Our
claim therefore says that every full subgraph of G is ν-colourable.

Let W0 ⊆W(M) be finite. Given any pair, W,W ′ ∈W0 with W tW ′, choose
any a ∈ H−(W )∩ H−(W ′), b ∈ H+(W )∩ H−(W ′), c ∈ H−(W )∩ H+(W ′) and
d ∈ H+(W ) ∩ H+(W ′). Let A be the union of all such {a, b, c, d} as (W,W ′)
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ranges over all such pairs. Let 5 be a finite median algebra of M containing A.
By hypothesis, there is a ν-colouring, χ :W(5)→{1, . . . , ν}. Now each W ∈W0

determines a wall, Ŵ = {H−(W )∩5, H+(W )∩5} in W(5). Clearly, if W,W ′

cross in M , then Ŵ , Ŵ ′ cross in 5, and so we can set χ(W )= χ(Ŵ ) for any such
W to prove the claim. �

Lemmas 12.2 and 12.3 now give Proposition 12.1
Suppose 1 is a metric median algebra with points a, b ∈1 such that 1= [a, b].

We can orient any wall, W ∈W(1), so that a ∈ H−(W ) and b ∈ H+(W ). Given
W,W ′ ∈W(1), we write W ≤W ′ to mean that H−(W )⊆ H−(W ′), or equivalently,
H+(W ′)⊆ H+(W ). This is a partial order on W(1). In fact, given any W,W ′ ∈
W(1), exactly one of W =W ′, W <W ′, W ′ <W or W tW ′ holds. It follows that
the rank of 1 is exactly the maximal cardinality of any antichain in (W(1),<).
Dilworth’s lemma [Dilworth 1950] now tells us that we can partition W(1) into ν
disjoint chains (compare [Brodzki et al. 2009]). This defines a ν-colouring of 1.
We deduce:

Lemma 12.4. Let M be a median algebra of rank a most ν. If a, b ∈ M , then the
interval [a, b] is intrinsically ν-colourable as a median algebra.

The definition for coarse median spaces is now a simple variation on that for
rank:

Definition. A coarse median space is ν-colourable, if in (C2), we can always take
the finite median algebra 5 to be ν-colourable.

Suppose now that (3i , ρi , µi ) is a directed set of coarse median space as in
Theorem 2.3 (where the additive constants tend to 0, and the multiplicative constants
are bounded with respect to the ultrafilter). Let (3∞, ρ∞, µ∞) be the ultralimit
constructed as in Proposition 9.1

Proposition 12.5. If each of the (3i , ρi , µi ) is ν-colourable (for the given parame-
ters) then (3∞, ρ∞, µ∞) is ν-colourable (as a median algebra).

Proof. Substituting colourability for rank in the proof of Theorem 2.3 in Section 9,
exactly the same argument shows that every finite subalgebra of3∞ is ν-colourable.
We now apply Lemma 12.3. �

Again the notion is quasi-isometry invariant, so we can apply it to finitely
generated groups via their Cayley graphs. We note:

Theorem 12.6. The mapping class group Map(6) is ν-colourable for some ν =
ν(6).

In fact, we can get an explicit bound on ν(6) from the statement in [Bestvina
et al. 2010] which gives us a map: χ :X→{1, . . . , ν(6)} such that if χ(X)=χ(Y ),
then X t Y .
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The proof of Lemma 11.2 now only requires a slight modification of that of
Theorem 2.5. Recall that the median algebra 5 used for Property (C2) was con-
structed using projection maps, before the statement of Lemma 10.4. We now need
to check that this is ν(6)-colourable — a slight modification of Corollary 10.5. For
this we need a variation of Property (P3), namely:

(P3′) If X, Y ∈ X with X ∧ Y , then χ(X) 6= χ(Y ).

In the present situation, Property (P3′) is an immediate consequence of the definition
of the relation t in Section 11, and the construction of [Bestvina et al. 2010]
mentioned above.

Now let 5 be the median algebra defined before Lemma 10.4. We define a map
χ :W(5)→ {1, . . . , ν(6)} by setting χ(W )= χ(X (W )). We claim that this is a
ν(6)-colouring of 5. To see this, suppose that W,W ′ ∈W(5) cross. Lemma 10.4
then tells us that X (W )∧ X (W ′) and so, by (P3′), χ(W ) 6= χ(W ′), as required. We
can thus replace Corollary 10.5 by the statement that 5 is ν(6)-colourable, and so
Theorem 12.6 follows.

As a consequence, from [Bowditch 2011a] we recover the result of Behrstock,
Drut,u and Sapir [Behrstock et al. 2011] that any asymptotic cone of Map(6) admits
a bilipschitz embedding in a finite product of R-trees. Moreover, using Lemma 12.3,
any interval in the asymptotic cone is compact, and admits a bilipschitz embedding
in Rξ(6). From this one can recover the fact that Map(6) has rapid decay [Behrstock
and Minsky 2011].
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