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(DN)-(�)-TYPE CONDITIONS FOR
FRÉCHET OPERATOR SPACES

KRZYSZTOF PISZCZEK

We introduce (DN)-(�)-type conditions for Fréchet operator spaces. We
investigate which quantizations carry over the above conditions from the
underlying Fréchet space onto the operator space structure. This holds in
particular for the minimal and maximal quantizations in case of a Fréchet
space and — additionally — for the row, column and Pisier quantizations in
case of a Fréchet–Hilbert space. We also reformulate these conditions in the
language of matrix polars.

1. Introduction

The aim of this paper is to continue building a satisfactory theory for Fréchet opera-
tor spaces. The first motivation comes from the work of Effros and Webster [1997]
and Effros and Winkler [1997] who started to build such a theory. The setting in
both of these articles is very general — they define the operator analogues of arbi-
trary locally convex spaces. Another paper dealing with local analogues of operator
spaces is [Beien and Dierolf 2001]. Motivated by the preface to the book of Effros
and Ruan [2000] we restrict ourselves to the class of Fréchet spaces. Moreover the
structure theory of Fréchet spaces is highly developed. One of the aspects of this
structure theory are the so-called (DN)-(�) type conditions which play a very im-
portant role in several problems. They appear in the splitting theory of short exact
sequences; see [Meise and Vogt 1997, Chapter 30; Poppenberg and Vogt 1995].
They play a role in characterizing when L(X, Y )= L B(X, Y ) that is, when every
linear and continuous operator between Fréchet spaces is bounded in the sense that
it maps some zero neighborhood into a bounded set; see [Meise and Vogt 1997,
Chapter 29; Vogt 1983]. These conditions appear also in the lately defined concept
of tameness; see [Dubinsky and Vogt 1989; Piszczek 2009]. Both boundedness and
tameness are strongly connected with the longstanding open problem of Pełczyński
of whether every complemented subspace of a nuclear Fréchet space with a basis
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has a basis itself. So far all known tame Fréchet spaces bring a positive answer to
Pełczyński’s question. In this paper we will try to build a theory that will enable
us to follow the above described point of view.

Section 2 recalls the basic and necessary definitions of the objects we deal with
together with the definitions of our conditions. In Section 3 we investigate which
quantizations satisfy the operator (DN)-(�)-type conditions whenever the under-
lying Fréchet space possesses any of these properties. The main result is contained
in Theorem 14. Recall that many natural Fréchet spaces are nuclear and by [Effros
and Webster 1997, Theorem 7.4] such a space has only one quantization (up to a
complete isomorphism). Therefore if some quantization of a nuclear space carries
over our conditions then any other does, and so it does not seem to be interesting
to consider various quantizations for such spaces. However there do exist Fréchet
spaces that are not nuclear but seem to be important (see [Taskinen 1991]). There-
fore we believe the content of Section 3 is useful. Section 4 shows our conditions
from another point of view. We are able to rewrite (oDN) and (o�) in the language
of matrix polars.

For unexplained details we refer the reader to [Meise and Vogt 1997] in case of
the structure theory of Fréchet spaces and to [Effros and Ruan 2000] and [Pisier
2003] in case of the operator space theory.

2. Preliminaries

Recall that a Fréchet space X is a locally convex space that is metrizable and
complete. The topology of such a space can always be given by a nondecreasing
sequence (‖·‖k)k∈N of seminorms and in this case X = projk Xk , where (Xk, ‖·‖k)

are local Banach spaces and ιk+1
k : Xk+1→ Xk are the linking maps. The closed

unit ball in the k-th seminorm in the space X will be usually denoted by Uk and
its polar by U ◦k , i.e., U ◦k = {x

′
∈ X ′ : |x ′x | 6 1 ∀ x ∈ Uk}. The closed unit ball

in the k-th local Banach space Xk will be denoted by BXk . Following [Effros and
Webster 1997] we define a Fréchet operator space to be the projective limit of a
sequence of operator spaces with the linking maps being completely bounded. To
indicate this we will sometimes write X = m-projk Xk . Usually it will be clear
from the context what kind of projective limit we deal with, therefore we will omit
the symbol m-. This means that the Fréchet space Mn(X) of n× n matrices with
entries in X is given by Mn(X)= projk Mn(Xk) and the linking maps are just

(
ιk+1
k

)
n : Mn(Xk+1)→ Mn(Xk),

(
ιk+1
k

)
n

(
(xi j )

n
i, j=1

)
:=
(
ιk+1
k xi j

)n
i, j=1.

By Mn(X ′)we mean the linear space of all completely bounded maps φ : X→Mn .
Using [Effros and Ruan 2000, Lemma 4.1.1] we see that Mn(X ′)= Tn(X)′ linearly
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and this isomorphism allows us to endow Mn(X ′) with the (DF)-topology (recall
that here Tn(X)=projk Tn(Xk) is a Fréchet space therefore its dual is a (DF)-space).

We can also quantize Fréchet spaces. If X = projk Xk is a Fréchet space and
Q : B→ O is a strict quantization from the category of Banach spaces into the
category of operator spaces then by definition

Q(X) :=m-projkQ(Xk).

For convenience we will write

min X = projk min Xk, max X = projk max Xk,

and in case of Fréchet–Hilbert spaces

Hc = projk(Hk)c, Hr = projk(Hk)r , OH = projkOHk .

Let us recall that by [Effros and Webster 1997, Theorem 7.4], all the quantizations
for nuclear Fréchet spaces are equal (up to a complete isomorphism).

Examples. 1. The space C(R) = projkC([−k, k]) of continuous functions on the
real line is a Fréchet space that carries an operator space structure. In Mn(C(R))
we define seminorms

‖( fi j )‖k := sup{‖( fi j (x))‖Mn : x ∈ [−k, k]}.

In a similar fashion we can introduce an operator space structure on the spaces
C∞(K ), C∞(�) for arbitrary subsets K compact and � open of Rd .

2. In order to give an example of a Fréchet operator space arising in quantum
physics, let

s =
{

x = (x j ) j∈N : ‖x‖2k :=
+∞∑
j=1

|x j |
2 j2k <+∞ ∀ k ∈ N

}
,

be the (nuclear) Fréchet space of rapidly decreasing sequences, with the topology
given by the sequence of norms (‖ · ‖k)k∈N: in short,

s = projk`2(( j k) j ).

Following [Dubin and Hennings 1990] we call s⊗̃π s the space of physical states
and we endow it with the Fréchet operator space structure

Top = sr⊗̂opsc,

where ⊗̂op stands for the operator projective tensor product.

3. A moment’s reflection shows that the above space Top is in fact L(s ′, s) with
a suitable operator space structure. We can generalize this by introducing such a
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structure on L(X ′, Y ) for arbitrary Fréchet spaces X and Y . Recall that L(X ′, Y )
is a Fréchet space with a sequence (||| · |||k)k of seminorms defined by

|||T |||k := sup{‖T f ‖k : f ∈U ◦k },

where (Uk)k is a zero neighborhood basis in X and (‖·‖k)k defines the topology of
Y . Then the linear isomorphism Mn(L(X ′, Y )) = L(`n

p(X)
′, `n

p(Y )) for arbitrary
16 p 6+∞ provides L(X ′, Y ) with an operator space structure.

Let us now define the operator analogues of the conditions (DN) and (�).

Definition 1. (i) We will say that a Fréchet operator space X satisfies the property
(oDN) if there exists a seminorm p such that for any other seminorm q and arbitrary
number τ ∈ (0, 1) there exist another seminorm r and a constant C > 0 such that
the inequality

(2-1) ‖(xi j )‖q 6 C
(
‖(xi j )‖p

)1−τ (
‖(xi j )‖r

)τ
holds for every matrix (xi j ) ∈ Mn(X) of arbitrary size n ∈ N.

(ii) We will say that a Fréchet operator space X satisfies the property (o�) if
for every seminorm p there exists another seminorm q such that for any other
seminorm r there exist a number θ ∈ (0, 1) and a constant C > 0 such that the
inequality

(2-2) ‖(φi j )‖
∗

q 6 C
(
‖(φi j )‖

∗

p
)θ(
‖(φi j )‖

∗

r
)1−θ

holds for every matrix (φi j ) ∈ Mn(X ′) of arbitrary size n ∈ N.

Remarks. 1. If one of the above conditions holds for a Fréchet operator space X
then we write (respectively) X ∈ (oDN), X ∈ (o�).

2. If X ∈ (oDN) then the seminorm p is in fact a norm and so all the seminorms
become norms.

3. In the above definition the symbol ‖(φi j )‖
∗

k stands for the cb-norm of a map
(φi j ) : X→ Mn . We stress that — in general — it is finite for all but finitely many
k.

4. If we restrict the above definitions to n = 1 then we get the classical (DN) and
(�) conditions of Vogt; see [Meise and Vogt 1997, page 367].

5. There are other versions of these conditions: if we change the quantifiers in (1)
to “. . . ∃ r ∈ N, τ ∈ (0, 1) . . .” then we get the condition (oDN). If we change in
(2) the quantifiers to “∀ p ∈ N, θ ∈ (0, 1) . . .” then we get the condition (o�) and
the change to “. . . ∀ r ∈ N, θ ∈ (0, 1) . . .” leads to the condition (o�). We have
obvious implications

(o�)⇒ (o�)⇒ (o�), (oDN)⇒ (oDN).
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6. It is not difficult to show (see [Meise and Vogt 1997, Lemma 29.10]) that (oDN)
is satisfied whenever (2-1) holds with τ = 1

2 .

7. Recall that by [Tomiyama 1983, Lemma 1.1] (compare also [Paulsen 2002,
page 41]) we have for all operator spaces

‖(ai j )‖6

( n∑
i, j=1

‖ai j‖
2
)1/2

6 n‖(ai j )‖.

Therefore if X has (DN) as a Fréchet space then all the Fréchet spaces Mn(X)
satisfy this property with some constant Cn = C p,q,r (n). The point is that these
constants be uniformly bounded (with respect to the matrix size n). The same can
be observed for (�).

8. Both conditions are invariants in the category of Fréchet operator spaces.

Proposition 2. The Fréchet operator space Top = sr⊗̂opsc of physical states sat-
isfies both properties (DN) and (�).

Proof. By [Effros and Webster 1997, Theorem 7.5] and the commutativity of ⊗̂op

we have the complete isomorphism

Top = sc⊗̌opsr = projk
(
`2( j k)c⊗̌op`2( j k)r

)
,

where ⊗̌op stands for the operator injective tensor product. Applying [Effros and
Ruan 2000, 9.3.1 and 9.3.4] we get the complete isometry

`2( j k)c⊗̌op`2( j k)r ∼= K
(
`2( j k)′, `2( j k)

)
,

where K stands for the compact operators. Therefore

Mn(sc⊗̌opsr )= projkK
(
`n

2(`2( j k))′, `n
2(`2( j k))

)
= projk

(
`n

2(`2( j k))⊗̃ε`
n
2(`2( j k))

)
= `n

2(s)⊗̃ε`
n
2(s).

By [Meise and Vogt 1997, Lemma 29.2] the space s satisfies (DN) and it is easy
to see that `n

2(s) satisfies this condition with exactly the same constant C in (2-1).
Applying [Piszczek 2010, Theorem 4] we observe that `n

2(s)⊗̃ε`
n
2(s) satisfies (DN)

with constant C independent of n therefore Top ∈ (oDN). In order to show the
other property let us recall that by [Meise and Vogt 1997, Lemma 29.11] s ∈ (�)
therefore `n

2(s)∈ (�) (with unchanged constants). By [Piszczek 2010, Theorem 5]
`n

2(s)⊗̃ε`
n
2(s) satisfies (�) with constants C independent of the matrix size. This

shows that Top ∈ (o�). �

The (DN)-(�)-type conditions have equivalent forms which are often used in
proofs. Since we will be using these equivalent forms extensively in the sequel we
state them below for convenience of the reader.
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Theorem 3 [Vogt 1977; Vogt and Wagner 1980]. Let X be a Fréchet space.

(1) X satisfies the property (DN) if and only if there exists a seminorm p such that
for any other seminorm q there exist another seminorm r and a constant C > 0
such that the inclusion

U ◦q ⊂ sU ◦p +
C
s

U ◦r

is satisfied for all numbers s > 0.

(2) X satisfies the property (�) if and only if for every seminorm p there exists
another seminorm q such that for any other seminorm r there exist a number γ > 0
and a constant C > 0 such that the inclusion

Uq ⊂ sUp +
C
sγ

Ur

is satisfied for all numbers s > 0.

3. Hereditary properties of quantizations

Now we will try to answer the following question: Suppose X has one of the prop-
erties (DN) or (�). Which quantizations of X automatically satisfy the operator
analogues of these conditions? Let us indicate that the proofs are exactly the same
for all versions of (DN)-type conditions as well as those of (�) type. Therefore
we will always give proofs precisely for (DN) and (�). Moreover the results are
formulated in such a way that only sufficiency will require an argument. First we
focus on the condition (DN). We start this a little bit technical section with the
following result.

Proposition 4. Let X be a Fréchet space. Then X satisfies (DN) if and only if
min X satisfies (oDN).

Proof. Recall that for arbitrary n ∈ N we have in Mn(min X) the seminorms

‖(xi j )‖k = sup
{
‖ξ(xi j )‖Mn : ξ ∈U ◦k

}
,

where U ◦k is the polar of the zero neighborhood Uk . Choosing all the parameters
according to (2-1) and assuming X ∈ (DN) we obtain by Theorem 3 a chain of
inequalities

‖(xi j )‖q 6 sup
{∥∥(sξ(xi j )+Cs−1η(xi j )

)∥∥
Mn
: ξ ∈U ◦p, η ∈U ◦r

}
6 s‖(xi j )‖p +Cs−1

‖(xi j )‖r .

Taking the infimum over positive s we get

‖(xi j )‖
2
q 6 4C‖(xi j )‖p‖(xi j )‖r ,
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and since the constant C is independent of the matrix size (that is, C does not
depend on n) we obtain the condition (oDN). �

In order to prove the analogous result for the max quantization we will need two
lemmata.

Lemma 5. Let X, E be locally convex spaces. Suppose U, V ⊂ X and B ⊂ E are
absolutely convex subsets. Then (U ∩ V )⊗ B =U ⊗ B ∩ V ⊗ B.

Proof. Since the inclusion ⊂ is obvious we take an element φ with representations
φ = x ⊗ b ∈U ⊗ B and φ = y⊗ c ∈ V ⊗ B. If g(b)= 0 for all functionals g ∈ E ′

then b = 0 and so φ = 0 ∈ (U ∩ V )⊗ B. Therefore we may suppose f (b) 6= 0 for
some functional f ∈ E ′. If f (c)= 0 then for every functional x ′ ∈ X ′ we have

(x ′⊗ f )(x ⊗ b)= (x ′⊗ f )(y⊗ c),

which means x ′x = 0 for every x ′ ∈ X ′. This gives x = 0 and φ= 0∈ (U ∩V )⊗B.
So let us suppose f (c) 6= 0. We may also assume | f (b)/ f (c)|6 1 (otherwise we
take the inverse). For every x ′ ∈ X ′ we get x ′(x) f (b)= x ′(y) f (c) which leads to
y = ( f (b)/ f (c))x . But we deal with absolutely convex sets, therefore y ∈ U and
so φ ∈ (U ∩ V )⊗ B, which shows the other inclusion. �

Lemma 6. Let X be a Fréchet space and E a Banach space. If X has the property
(DN) or (�) then their projective tensor product as well as the injective one satisfy
the same condition too.

Proof. We start with the projective tensor product. By [Köthe 1979, Chapter VIII,
§41, 2(4)] one basis of zero neighborhoods in X⊗̃π E has the form(

0(Uk ⊗ BE)
)

k∈N
,

where (Uk)k is a basis of zero neighborhoods in X and BE is the closed unit ball
in E . Let us now assume X ∈ (DN). By Theorem 3(1) we have

1
2s

Up ∩
s

2C
Ur ⊂Uq .

Tensoring by BE and taking polars we obtain, with the help of Lemma 5,(
Uq ⊗ BE

)◦
⊂

( 1
2s
(
Up⊗ BE

)
∩

s
2C
(
Ur ⊗ BE

))◦
.

If now U and V are arbitrary zero neighborhoods in a locally convex space Y then
by the Bipolar theorem we have

(U ∩ V )◦ ⊂ 0(U ◦+ V ◦)
σ(Y ′,Y )

=U ◦+ V ◦,

the last equality being a consequence of absolute convexity and weak* compactness
of U ◦ and V ◦. Adapting the above inclusion to Y = X⊗̃π E and the considered
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zero neighborhoods we get(
Uq ⊗ BE

)◦
⊂ 2s

(
Up⊗ BE

)◦
+

2C
s
(
Ur ⊗ BE

)◦
.

Taking t = 2s, D = 4C and recalling that 0(A)
◦
= A◦ for every set A we arrive at

0(Uq ⊗ BE)
◦
⊂ t0(Up⊗ BE)

◦
+

D
t
0(Ur ⊗ BE)

◦
.

Again by Theorem 3(1) we obtain the property (DN) for the space X⊗̃π E . More-
over the crucial constant D in the above inclusion does not depend on the Banach
space E but only on the Fréchet space X . The case of the condition (�) is even
simpler since by Theorem 3(2) we have

0(Uq ⊗ BE)⊂ s0(Up⊗ BE)+Cs−γ0(Uq ⊗ BE)

⊂ s0(Up⊗ BE)+ (C + 1)s−γ0(Ur ⊗ BE).

Again the constant C + 1 depends only on the Fréchet space X .
In the case of the injective tensor product we recall that by [Köthe 1979, Chap-

ter VIII, §44, 2(3)] one basis of zero neighborhoods in X⊗̃εE is of the form(
(U ◦k ⊗ B◦E)

◦
)

k∈N
.

Suppose now that X ∈ (�). By Theorem 3(2) this gives

Uq ⊂ sUp +Cs−γUr ,

whence the meaning of all the parameters follows. Using a technique similar to
the one in the beginning of the proof we obtain

(U ◦q ⊗ B◦E)
◦
⊂

( 1
2s
(U ◦p⊗ B◦E)∩

sγ

2C
(U ◦r ⊗ B◦E)

)◦
.

By [Köthe 1969, Chapter IV, §20, 8(10)] we get

(U ◦q ⊗ B◦E)
◦
⊂ 0

{
2s
(
U ◦p⊗ B◦E

)◦
∪ 2Cs−γ

(
U ◦r ⊗ B◦E

)◦}
⊂ 2s

(
U ◦p⊗ B◦E

)◦
+ 2Cs−γ

(
U ◦r ⊗ B◦E

)◦
.

But the sets under consideration are zero neighborhoods therefore we may drop
the closure by increasing one of them which leads to

(U ◦q ⊗ B◦E)
◦
⊂ 2s(U ◦p⊗ B◦E)

◦
+ 3Cs−γ (U ◦r ⊗ B◦E)

◦.

Now taking t = 2s, D = 3 · 2γC and applying Theorem 3(2) we arrive at the
property (�) in the injective tensor product. To show that the property (DN) also
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passes onto X⊗̃εE we start with u =
∑m

j=1 x j ⊗ a j ∈ X ⊗ε E . By [Köthe 1979,
Chapter VIII, §44, 2(5)] its seminorms are calculated as

‖u‖k = sup
{ m∑

j=1

| f (x j )g(a j )| : f ∈U ◦k , g ∈ BE ′

}
.

If X satisfies (DN) then for f ∈U ◦q we obtain by Theorem 3(1) functionals f1 ∈U ◦p
and f2 ∈U ◦r with f = s f1+Cs−1 f2. Consequently,

m∑
j=1

| f (x j )g(a j )|6 s
m∑

j=1

| f1(x j )g(a j )| +Cs−1
m∑

j=1

| f2(x j )g(a j )|.

Taking the supremum over all such f, f1, f2 we get

‖u‖q 6 s‖u‖p +Cs−1
‖u‖r ,

and taking the infimum over all s > 0 we arrive at our condition. Finally it is easy
to observe that the above property passes onto the completion, therefore X⊗̃εE
satisfies (DN) and the constant C does not depend on the Banach space E . �

Proposition 7. Let X be a Fréchet space. Then X satisfies (DN) if and only if
max X satisfies (oDN).

Proof. Recall that by [Effros and Ruan 2000, 3.3] for (xi j )∈Mn(max(X)) we have

‖(xi j )‖k = sup
∥∥( fuv(xi j )

)∥∥
Mnm

,

where the supremum runs over all ( fuv)∈ L(X,Mm) with ‖( fuv)‖L(Xk ,Mm)6 1 and
all m ∈N. We have L(X,Mm)= (X ⊗π Mm)

′ by [Köthe 1979, Chapter VIII, §41,
3(3)] (since Mm is finite-dimensional we may drop the tensor product completion).
Moreover, by [Meise and Vogt 1997, Remark 24.5(b)], BL(Xk ,Mm) = (Uk⊗ BMm )

◦.
If X satisfies the property (DN) then by Lemma 6 we get

BL(Xq ,Mm) ⊂ s BL(X p,Mm)+Cs−1 BL(Xr ,Mm),

where all the parameters are chosen according to Theorem 3(1). Choosing ( fuv)

in L(X,Mm) with ‖( fuv)‖L(Xq ,Mm) 6 1 we obtain∥∥( fuv(xi j )
)∥∥

Mnm
=
∥∥((sguv +Cs−1huv)(xi j )

)∥∥
Mnm

for some (guv) ∈ BL(X p,Mm), (huv) ∈ BL(Xr ,Mm). Now taking the supremum over
all such ( fuv), (guv), (huv) and all natural m we obtain

‖(xi j )‖q 6 s‖(xi j )‖p +Cs−1
‖(xi j )‖r .

Finally, taking the infimum over all s > 0 we arrive at

‖(xi j )‖
2
q 6 4C‖(xi j )‖p‖(xi j )‖r ,
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and since the constant C is independent of the matrix size we obtain the condition
(oDN). �

We now move to row and column quantizations of Fréchet–Hilbert spaces.

Proposition 8. Let H be a Fréchet–Hilbert space.

(1) H ∈ (DN) if and only if Hr ∈ (oDN).

(2) H ∈ (DN) of and only if Hc ∈ (oDN).

Proof. We start with the row quantization. Recall that by [Pisier 2003, page 22]
the seminorms in Mn(Hr ) are given by the following formula: If φi j ∈ H for
i, j = 1, . . . , n, then

‖(φi j )‖k = sup
{( n∑

i=1

∣∣∣∣ n∑
j=1

〈x j , φi j 〉

∣∣∣∣2)1/2

: (x j )
n
j=1 ∈ B`n

2(Hk)′

}
.

If H satisfies the property (DN) then there exists p such that for all q we can find
r and C > 0 with

‖h‖2q 6 C‖h‖p‖h‖r , ∀ h ∈ H.

Using the Cauchy–Schwarz inequality we get

‖(h j )‖
2
q 6 C‖(h j )‖p‖(h j )‖r , ∀ (h j ) ∈ `

n
2(H)

with the same constant C . By Theorem 3(1) this gives

B`n
2(Hq )′ ⊂ s B`n

2(Hp)′ +Cs−1 B`n
2(Hr )′

for all positive s and a constant C independent of n. For arbitrary (x j )
n
j=1∈ B`n

2(Hq )′

the above inclusion allows us to find (y j )
n
j=1 ∈ B`n

2(Hp)′ and (z j )
n
j=1 ∈ B`n

2(Hr )′ with

n∑
i=1

∣∣∣∣ n∑
j=1

〈x j , φi j 〉

∣∣∣∣2 = n∑
i=1

∣∣∣∣ n∑
j=1

〈sy j +Cs−1z j , φi j 〉

∣∣∣∣2.
Applying once again the Cauchy–Schwarz inequality we arrive at( n∑

i=1

∣∣∣∣ n∑
j=1

〈x j , φi j 〉

∣∣∣∣2) 1
2

6 s
( n∑

i=1

∣∣∣∣ n∑
j=1

〈y j , φi j 〉

∣∣∣∣2) 1
2

+Cs−1
( n∑

i=1

∣∣∣∣ n∑
j=1

〈z j , φi j 〉

∣∣∣∣2) 1
2

.

Taking the supremum over all such (x j ), (y j ), (z j ) we obtain

‖(φi j )‖q 6 s‖(φi j )‖p +Cs−1
‖(φi j )‖r .

Finally taking the infimum over all s > 0 leads to the condition (oDN). Moving to
the column quantization we recall that by [Pisier 2003, page 22] the seminorms in
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Mn(Hc) are given by the following formula: If φi j ∈ H for i, j = 1, . . . , n, then

‖(φi j )‖k = sup
{( n∑

i=1

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥2

k

)1/2

: (ξ j )
n
j=1 ∈ B`n

2

}
.

If H ∈ (DN) then by the Cauchy–Schwarz inequality we have for arbitrary (ξ j )
n
j=1

in B`n
2

that

n∑
i=1

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥2

q
6 C

n∑
i=1

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥
p

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥
r

6 C
( n∑

i=1

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥2

p

)1/2( n∑
i=1

∥∥∥∥ n∑
j=1

ξ jφi j

∥∥∥∥2

r

)1/2

.

This leads to

‖(φi j )‖
2
q 6 C‖(φi j )‖p‖(φi j )‖r

with the constant C independent of the matrix size, therefore we conclude that the
column quantization also carries over the property (DN). �

Proposition 9. Let H be a Fréchet–Hilbert space.

(1) H ∈ (DN) if and only if OH ∈ (oDN).

(2) H ∈ (�) if and only if OH ∈ (o�).

Proof. Recall that if K is a Hilbert space then by [Effros and Ruan 2000, Proposi-
tion 3.5.2] the norm in Mn(OK) is given by

‖φ‖ = ‖〈〈φ, φ〉〉‖1/2 :=

∥∥∥((〈φi j , φkl〉
)n

k,l=1

)n

i, j=1

∥∥∥1/2
,

where 〈 · , · 〉 denotes the inner product in K . With the above notation the scalar
matrix 〈〈φ, φ〉〉 need not be positive in Mn2 , therefore (for the reasons that will
become apparent shortly) we quickly describe how to change it isometrically into
a positive one. Suppose A = (Ai, j ) is in Mn(Mn) and each Ai, j = (ai, j,k,l) ∈ Mn .
We reorder the first row of A in the following way: the first row of A1,1 remains
untouched, the first row of A1,2 exchanges with the second row of A1,1 and in
general the first row of A1, j exchanges with the j-th row of A1,1. Next the second
row of A1,2 remains untouched and the second row of A1, j ( j > 3) exchanges with
the j-th row of A1,2. We continue until the first row of A is completely reordered
and apply the same procedure to any other row of A. Such a reordering (call it ρ)
is an isometry and ρ(〈〈φ, φ〉〉) is positive in Mn2 . Indeed, if ξ = (ξ i )i ∈ `

n
2(`

n
2) and
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each ξ i
= (ξ i

j ) j ∈ `
n
2 then

(3-1)
〈
ρ(〈〈φ, φ〉〉)ξ, ξ

〉
=

〈 n∑
i, j=1

ξ
i
jφi j ,

n∑
k,l=1

ξ
k
l φkl

〉
=

∥∥∥∥ n∑
i, j=1

ξ
i
jφi j

∥∥∥∥2

,

and the last quantity is nonnegative. Suppose now H satisfies the condition (DN)
and let p, q, r,C have the same meaning as in (2-1). Take n in N and x = (xi j ) in
Mn(OH). By (3-1) and positivity of ρ(〈〈x, x〉〉) we get

‖x‖2q = ‖ρ(〈〈x, x〉〉q)‖2

= sup
{∥∥∥∥ n∑

i, j=1

ξ
i
j xi j

∥∥∥∥2

q
: ‖ξ‖

`n2
2
6 1

}

6 C sup
{∥∥∥∥ n∑

i, j=1

ξ
i
j xi j

∥∥∥∥
p
: ‖ξ‖

`n2
2
6 1

}
sup

{∥∥∥∥ n∑
i, j=1

ξ
i
j xi j

∥∥∥∥
r
: ‖ξ‖

`n2
2
6 1

}
= C‖x‖p‖x‖r .

Since the constant C does not depend on the matrix size n, we get the condition
(oDN).

In order to prove the other equivalence recall first that for every functional φ∈H ′

we get a sequence of functionals (φk)k>k0 acting on the local Hilbert steps which
satisfy

φk ◦ ιk = φ (k > k0),

where ιks are the canonical projections. We also have ‖φ‖∗k = ‖φk‖H ′k . If now
φ = (φi j ) ∈ Mn((OH)′) then we may find matrices φk = (φk,i, j ) ∈ Mn((OHk)

′) of
functionals such that

(3-2) ‖φ‖∗k = ‖φk‖(OHk)′ .

By the selfduality of Pisier’s quantization we have ‖φk‖
∗

(OHk)′
= ‖φk‖OHk . Sup-

pose now H ∈ (�) and let p, q, r, θ,C have the same meaning as in (2-2). We
take n ∈N, φ = (φi j ) ∈ Mn(H ′) and apply exactly the same reasoning as above to
obtain the inequality

‖φq‖OHq 6 C‖φp‖
θ
OH p
‖φr‖

1−θ
OHr

,

where the constant C does not depend on the matrix size n. Applying (3-2) we get
the condition (o�). �

Now we will investigate the minimal and maximal quantizations in view of the
condition (�). Here the Blecher duality will play an important role.
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Proposition 10. Let X be a Fréchet space. Then X satisfies (�) if and only if
max X satisfies (o�).

Proof. Recall that for an arbitrary Banach space X we have by [Blecher 1992,
Corollary 2.8] that (max X)′ =min X ′ completely isometrically. Therefore if X is
a Fréchet space then for (φi j ) ∈ Mn((max X)′) we have

‖(φi j )‖k = sup
{
‖x ′′(φi j )‖Mn : x ′′ ∈ BX ′′k

}
.

Taking together the Separation theorem [Köthe 1969, Chapter IV, §20, 7(1)] and
the Bipolar theorem [Köthe 1969, Chapter IV, §20, 8(5)] it is enough to take in the
above supremum vectors x ∈ BXk . By the density of Uk in BXk we may restrict
ourselves to vectors x ∈ Uk . If X satisfies (�) then by Theorem 3(2) we get for
arbitrary p a number q such that for all r there exist positive C and γ with

Uq ⊂ sUp +
C
sγ

Ur

for all s>0. Repeating the proof of Proposition 4 we obtain the condition (o�). �

In order to prove the analogous result for the minimal quantization we will need
a lemma. It seems to be known to specialists but for the sake of convenience we
will state and prove it.

Proposition 11. Let X be a Fréchet space.

(1) X ∈ (DN) if and only if X ′′ ∈ (DN).

(2) X ∈ (�) if and only if X ′′ ∈ (�).

Proof. Suppose X satisfies the condition (DN). By Theorem 3(1) we find p such
that for all q there exist r and C > 0 with

U ◦q ⊂ sU ◦p +Cs−1U ◦r

for all s > 0. For arbitrary x ′′ ∈ X ′′ we have by [Meise and Vogt 1997, Proposi-
tion 25.9] that

‖x ′′‖q = sup
{
|x ′′x ′| : x ′ ∈U ◦q

}
6 s sup

{
|x ′′y′| : y′ ∈U ◦p

}
+Cs−1 sup

{
|x ′′z′| : z′ ∈U ◦r

}
= s‖x ′′‖p +Cs−1

‖x ′′‖r .

taking the infimum over positive s we get the property (DN) for the bidual. Since
by [Meise and Vogt 1997, Corollary 25.10] every Fréchet space is a topological
subspace of its bidual, the converse of (1) follows. Suppose now that X satisfies
the condition (�). By Theorem 3(2) we get

Uq ⊂ sUp +Cs−γUr .
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Taking polars twice (each of which in the consecutive dual) and applying [Köthe
1969, Chapter IV, §20, 8(9)] we obtain

U ◦◦q ⊂ (2sUp + 2Cs−γUr )
◦◦.

By the Separation theorem [Köthe 1969, Chapter IV, §20, 7(1)] U ◦◦k = U
σ(X ′′,X ′)
k

and these sets constitute a basis of zero neighborhoods in the bidual, therefore

U
σ(X ′′,X ′)
q ⊂ 2sUp + 2Cs−γUr

σ(X ′′,X ′)
⊂ 2sU

σ(X ′′,X ′)
p + 2Cs−γU

σ(X ′′,X ′)
r .

Taking t = 2s and D = 2γ+1C we arrive at the (�) property in the bidual. The
converse of (2) is valid by the Separation theorem which implies that for every
functional φ acting on X we have ‖φ‖∗k,X ′ = ‖φ‖

∗

k,X ′′′ . �

Proposition 12. Let X be a Fréchet space. Then X satisfies (�) if and only if
min X satisfies (o�).

Proof. Recall that for an arbitrary Banach space X we have by [Blecher 1992,
Corollary 2.8] that (min X)′ =max X ′ completely isometrically. Therefore if X is
a Fréchet space then for (φi j ) ∈ Mn((min X)′) we have

‖(φi j )‖
∗

k = sup
∥∥( fuv(φi j )

)∥∥
Mnm

,

where the supremum runs over all ( fuv)∈ L(X ′,Mm)with ‖( fuv)‖L(X ′k ,Mm)61 and
all m ∈ N. We have L(X ′,Mm)= X ′′⊗ε Mm by [Köthe 1979, Chapter VIII, §44,
2(6)] (since Mm is finite-dimensional we may drop the tensor product completion).
Moreover BL(X ′k ,Mm) = (V

◦

k ⊗ BM ′m )
◦, where Vk = U

σ(X ′′,X ′)
k and (Uk)k is a basis

of zero neighborhoods in X . By Lemma 6 and Proposition 11(2) we observe that
for every p there exists q such that for all r we can find positive C and γ with

BL(X ′q ,Mm) ⊂ s BL(X ′p,Mm)+Cs−γ BL(X ′r ,Mm).

Choosing ‖( fuv)‖L(X ′q ,Mm) 6 1 we obtain∥∥( fuv(φi j )
)∥∥

Mnm
=
∥∥((sguv +Cs−1huv)(φi j )

)∥∥
Mnm

for some (guv) ∈ BL(X ′p,Mm), (huv) ∈ BL(X ′r ,Mm). Now taking the supremum over
all such ( fuv), (guv), (huv) and all natural m we obtain

‖(φi j )‖
∗

q 6 s‖(φi j )‖
∗

p +Cs−1
‖(φi j )‖

∗

r .

Finally, taking the infimum over all s > 0 we arrive at

‖(φi j )‖q 6 D
(
‖(φi j )‖

∗

p
)1−θ(
‖(φi j )‖

∗

r
)θ
,

where θ = 1/(γ + 1) and D = (Cγ )1/(γ+1)(1+ γ−γ ). Since the constant D is
independent of the matrix size of (φi j ) we obtain the condition (o�). �



(DN)-(�)-TYPE CONDITIONS FOR FRÉCHET OPERATOR SPACES 251

By the duality of row and column Hilbert spaces (see [Effros and Ruan 2000,
page 59]) we get the following result. Its proof is analogous to that of Proposition 8,
therefore we omit it.

Proposition 13. Let H be a Fréchet–Hilbert space. Then H ∈ (�) if and only if
Hc ∈ (o�) if and only if Hr ∈ (o�).

We now put together all the previously obtained results.

Theorem 14. Let X be an arbitrary Fréchet space. Then the minimal and maximal
quantizations carry over both properties (DN) as well as (�) onto their operator
space structures. If H is an arbitrary Fréchet–Hilbert space then the above re-
mains valid for the additional row, column and Pisier quantizations.

4. The conditions of type (oDN)–(o�) in the language of polars

In this section we will prove an analogous version of Theorem 3 for Fréchet op-
erator spaces. In order to do that we will slightly change the notation. So far we
have worked with a sequence (Mn(X))n of spaces where the n-th space denoted
n × n matrices with entries in X . Now we prefer to have one space of infinite
matrices. This will enable us to provide an operator space with a suitable notation
of weak topologies and polars. Suppose that X is an operator space so that we
have a sequence (Mn(X), ‖ · ‖n) of Banach spaces with (‖ · ‖n)n satisfying Ruan’s
axioms (see [Effros and Ruan 2000, page 20]). Let us denote by I (X) the linear
space of infinite matrices with entries in X and identify Mn(X) with a subspace of
I (X) of the form {(

A 0
0 0

)
: A ∈ Mn(X)

}
.

This subspace can be naturally endowed with a norm that makes it isometric to
Mn(X). Therefore we will still denote it by Mn(X). The above identification
allows us to consider Mn(X) isometrically embedded into Mn+1(X). Therefore⋃

n Mn(X) has a structure of a normed space and its completion will be denoted
by K (X). The norm of x ∈ K (X) is given by

‖x‖ = lim
n
‖xn
‖,

where xns are the truncations of x to Mn(X). Following [Effros and Ruan 2000,
Chapter 10] we will also use the notation

T (X) := {w = αxβ : α, β ∈ H S(`2), x ∈ K (X)}

and endow this space with a norm defined by

|||w||| := inf ‖α‖2‖x‖‖β‖2,
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where the infimum runs over all such decompositions. Additionally we write

M(X)= {x ∈ I (X) : ‖x‖<+∞}.

As a simple example let us note that K (C)=K(`2), T (C)=N(`2), M(C)=B(`2).
Moreover by [Effros and Ruan 2000, Theorem 10.1.4], we have isometrically

(4-1) K (X)′ = T (X ′), T (X)′ = M(X ′).

This is in fact a complete isometry but this will be beyond our interests here.
The above notation may also be introduced for an arbitrary locally convex operator
space. As usual we restrict ourselves to Fréchet operator spaces. If X = projk Xk

is such a space then we obtain Fréchet spaces K (X), T (X), M(X). These spaces
may be viewed as

K (X)= projk K (Xk), T (X)= projk T (Xk), M(X)= projk M(Xk).

Equivalently we can easily observe that

K (X)=
(⋃

n

Mn(X)
)̃
, T (X)=

(⋃
n

Tn(X)
)̃
,

M(X)= {x ∈ I (X) : ‖x‖k <+∞ ∀ k ∈ N},

where ˜ stands for the completion. We can also define a dual Fréchet operator
space to be the linear space

K (X ′) :=
⋃

k

K (X ′k)

equipped with the topology inherited from the space B(K (X), K (`2)), as well as
the space

M(X ′) :=
⋃

k

M(X ′k)

equipped with the topology inherited from the space B(K (X), B(`2)). For the sake
of correctness let us point out that if X is a Fréchet operator space then K (X ′) is
no longer a Fréchet space and that the Ruan’s axioms are now fulfilled by the dual
norms

‖φ‖∗k = sup
{
‖〈〈φ, x〉〉‖B(`2) : x ∈ K (X), ‖x‖k 6 1

}
.

In fact K (X ′) has the structure of a (DF)-space where the fundamental sequence
of bounded sets consists of absolutely matrix convex sets (we recall this defini-
tion below). Therefore we may introduce the notion of a (DF)-operator space but
we will not go into details since this concept lies beyond our interests. With the
above introduced topologies we also obtain for a Fréchet operator space complete
isomorphisms (4-1).
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Recall that by the unitary isometry `2(`2)= `2 we may always think that 〈〈φ, x〉〉
is in B(`2). Let us now define weak matrix topologies, absolutely matrix convex
sets and matrix polars. We follow the notation of [Effros and Webster 1997; Effros
and Winkler 1997; Effros and Ruan 2000, Chapter 5.5] with only slight modifi-
cation coming from the fact that instead of the space

⋃
n Mn(X) we consider its

completion. Suppose X is a Fréchet operator space. We define on K (X) the weak
matrix topology mσ(K (X), K (X ′)) to be determined by the seminorms

ρξ,φ,η(x) := |〈〈〈φ, x〉〉η, ξ〉|,

where φ ∈ K (X ′), ξ, η ∈ `2. Analogously we define on K (X ′) the weak* matrix
topology mσ(K (X ′), K (X)) to be determined by the seminorms

ρξ,x,η(φ) := |〈〈〈φ, x〉〉η, ξ〉|,

where x ∈ K (X), ξ, η ∈ `2. It is easy to notice that

mσ(K (X), K (X ′))= σ(K (X), K (X)′),

mσ(K (X ′), K (X))= σ(T (X)′, T (X))|K (X ′).

A subset S ⊂ K (X) is called absolutely matrix convex if the following two condi-
tions hold:

(1) If x, y ∈ S then
( x 0

0 y
)
∈ S.

(2) If x ∈ S and α, β are contractions on `2 then αxβ ∈ S.

Since the intersection of two absolutely matrix convex sets is again absolutely
matrix convex we may define amc(S) to be the absolutely matrix convex hull of
S, i.e., the smallest absolutely matrix convex set containing S. It can be precisely
described (see [Effros and Webster 1997, Lemma 3.2]). If A ⊂ K (X) then its
matrix polar A}

⊂ K (X ′) is defined as

A}
:=
{
φ ∈ K (X ′) : ‖〈〈φ, x〉〉‖B(`2) 6 1 for all x ∈ A

}
.

Similarly for A ⊂ K (X ′) we define

A}
:=
{

x ∈ K (X) : ‖〈〈φ, x〉〉‖B(`2) 6 1 for all φ ∈ A
}
.

As in the classical case we have the Bipolar theorem. The original proof is for⋃
n Mn(X) while we work with its completion but the argument is analogous.

Theorem 15 [Effros and Webster 1997]. Let X be a Fréchet operator space.

(1) If A ⊂ K (X) then A}}
= amc(A)

mσ(K (X),K (X ′))
.

(2) If A ⊂ K (X ′) then A}}
= amc(A)

mσ(K (X ′),K (X))
.
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We are now ready to reformulate our (oDN)-(o�) conditions in the spirit of
Theorem 3. The proofs are analogous to the ones in [Vogt 1977, Lemma 1.4] and
[Vogt and Wagner 1980, Lemma 2.1].

Theorem 16. Let X be a Fréchet operator space and let (Uk)k∈N be a basis of zero
neighborhoods in K (X).

(1) X satisfies the property (oDN) if and only if

∃ p ∈ N ∀ q ∈ N ∃ r ∈ N,C > 0 ∀ s > 0 : U}
q ⊂ sU}

p +
C
s

U}
r ,

(2) X satisfies the property (o�) if and only if

∀ p ∈ N ∃ q ∈ N ∀ r ∈ N ∃ γ > 0,C > 0 ∀ s > 0 : Uq ⊂ sUp +
C
sγ

Ur .

We end this section by operator space versions of Lemma 6 and Proposition 11.
Let us first note that if X and Y are operator spaces and U ⊂ K (X), V ⊂ K (Y )
then

U ⊗ V = {x ⊗ y : x ∈U, y ∈ V }.

Recalling the definitions of the operator projective ⊗̂op and injective ⊗̌op tensor
products and denoting by BE the unit ball of E we can observe that

BK (X⊗̂opY ) = amc(BK (X)⊗ BK (Y )), BK (X⊗̌opY ) =
(
B}

K (X)⊗ B}
K (Y )

)}
.

Therefore repeating the proof of Lemma 6 we obtain the following result.

Theorem 17. Let X be a Fréchet operator space and E an operator space. If X
has the property (oDN) or (o�) then their operator projective tensor product as
well as the operator injective one satisfy the same condition too.

Theorem 18. Let X be a Fréchet operator space.

(1) X ∈ (oDN) if and only if X ′′ ∈ (oDN).

(2) X ∈ (o�) if and only if X ′′ ∈ (o�).

Proof. (1) Observe that X satisfies (oDN) if and only if K (X) satisfies (DN). By
Proposition 11(1) K (X)′′=M(X ′′)∈ (DN) and K (X ′′) is a topological subspace of
M(X ′′), therefore it satisfies the condition (DN) and so X ′′ ∈ (oDN). Conversely
X ′′ ∈ (oDN) leads to K (X ′′) ∈ (DN) and by [Effros and Webster 1997, Corol-
lary 8.2, Proposition 9.1] K (X) is its topological subspace which gives X ∈ (oDN).

(2) Observe that by [Effros and Ruan 2000, Lemma 4.1.1] X ∈ (o�) if and only
if Tn(X) ∈ (�) with the constants C p,q,r (n) uniformly bounded with respect to n.
By Proposition 11(2) this is equivalent to Tn(X)′′ = Tn(X ′′) ∈ (�) which is then
equivalent to X ′′ ∈ (o�). �
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