
Pacific
Journal of
Mathematics

Volume 261 No. 2 February 2013



PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 261, No. 2, 2013

dx.doi.org/10.2140/pjm.2013.261.257

GEOGRAPHY OF SIMPLY CONNECTED NONSPIN
SYMPLECTIC 4-MANIFOLDS WITH POSITIVE SIGNATURE

ANAR AKHMEDOV, MARK C. HUGHES AND B. DOUG PARK

We construct new families of closed simply connected nonspin irreducible
symplectic 4-manifolds with positive signature that are interesting with re-
spect to the geography problem.

1. Introduction

Given a closed smooth 4-manifold M , let e(M) and σ(M) denote the Euler charac-
teristic and the signature of M , respectively. We define

χh(M)=
e(M)+ σ(M)

4
and c2

1(M)= 2e(M)+ 3σ(M).

Note that e(M) and σ(M) are in turn completely determined by χh(M) and c2
1(M),

that is,

e(M)= 12χh(M)− c2
1(M) and σ(M)= c2

1(M)− 8χh(M).

When M is a complex surface, χh(M) is the holomorphic Euler characteristic of M
while c2

1(M) is the square of the first Chern class of M . The classical “geography
problem” in algebraic geometry, originally posed by Persson [1981], asks which
ordered pairs of positive integers can be realized as the pair (χh(M), c2

1(M)) for
some minimal complex surface M of general type. The related “botany problem”,
which is a lot more difficult, asks for the classification of all minimal complex
surfaces with a given pair of invariants (χh, c2

1).
The symplectic geography problem, first posed in [McCarthy and Wolfson

1994], asks which ordered pairs of integers can be realized as (χh(M), c2
1(M)) for

some minimal symplectic 4-manifold M . There has been steady progress on the
symplectic geography problem in recent years and the problem has been completely
solved for simply connected minimal symplectic 4-manifolds with negative signature

Akhmedov was partially supported by NSF grant DMS-1005741. Hughes was partially supported by
an NSERC Canada graduate scholarship. Park was partially supported by an NSERC discovery grant.
MSC2010: primary 57R17, 57R55; secondary 57M60, 57M12.
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(cf. [Akhmedov et al. 2010a; Akhmedov and Park 2010a; Park and Szabó 2000]).
The symplectic botany problem, that is, the classification problem for minimal
symplectic 4-manifolds with a given pair of invariants (χh, c2

1), seems to be an
intractable problem at the moment. However, we now know that most ordered
pairs are realized by infinitely many pairwise nondiffeomorphic simply connected
minimal symplectic 4-manifolds; see [Gompf and Stipsicz 1999].

In this paper, we will focus our attention on the symplectic geography problem
for simply connected minimal symplectic 4-manifolds with nonnegative signature.
Unlike the negative signature case, the existing literature [Akhmedov and Park 2008;
2010b; Akhmedov et al. 2010b; Li and Stipsicz 2002; Niepel 2005; Park 2002;
2003; Stipsicz 1998; 1999] is far from capturing all possible (χh, c2

1) coordinates,
even if we allow nontrivial fundamental groups. The main goal of this paper
is to summarize the current state of our knowledge when the simply connected
symplectic 4-manifolds are required to be nonspin, or equivalently, are required
to have odd intersection form. By Freedman’s classification theorem [1982] for
simply connected topological 4-manifolds, our problem is then equivalent to finding
a minimal symplectic 4-manifold M with signature σ that is homeomorphic to
kCP2 # (k − σ)CP2, where k is any odd positive integer and σ is any integer
satisfying 0 ≤ σ ≤ k. Here, CP2 is the complex projective plane, CP2 is the
underlying smooth 4-manifold CP2 equipped with the opposite orientation, and
kCP2 # (k− σ)CP2 is the connected sum of k copies of CP2 and k− σ copies of
CP2. Note that a simply connected symplectic 4-manifold M has odd b+2 (M), and
hence our integer k must be odd.

A closed 4-manifold with signature σ corresponds to a point (χh, c2
1) on the line

c2
1 = 8χh + σ . For technical reasons, it will be convenient to fix the signature and

deal with each of these lines separately. It is now well-known (see [Akhmedov and
Park 2008; Park 2003]) that for each signature σ ≥ 0, there exists a constant λ(σ)
depending only on σ such that any point (χh, c2

1) on the line c2
1= 8χh+σ satisfying

χh ≥ λ(σ) is realized by at least one simply connected nonspin minimal symplectic
4-manifold and infinitely many simply connected nonspin irreducible nonsymplectic
4-manifolds (Definition 13 in Section 6). In other words, kCP2 # (k − σ)CP2 is
homeomorphic to at least one minimal symplectic 4-manifold and infinitely many
pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, provided that k
is odd and k≥2λ(σ)−1 for some constant λ(σ) that depends only on the signature σ .

The main result of this paper is the explicit formulation of the smallest values of
λ(σ) that are currently known to the authors. In [Akhmedov and Park 2008], small
λ(σ) values are given when 0 ≤ σ ≤ 4, and these values are listed in Table 1. In
this paper, we will concentrate on the cases when σ ≥ 5 (see Table 2 in Section 6).
For example, when 0≤ σ ≤ 100, we realize more than 20,000 new (χh, c2

1) points
that were not covered by the results in [Akhmedov and Park 2008; Park 2003].
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σ 0 1 2 3 4

λ(σ)≤ 25 25 24 27 26

Table 1. Results from [Akhmedov and Park 2008].

If a 4-manifold M is simply connected, then 2χh(M)− 1 = b+2 (M) ≥ σ(M).
Thus we obtain an a priori lower bound χh ≥ d(σ + 1)/2e, where

dxe =min{k ∈ Z | k ≥ x}

is the ceiling function. It is tempting to conjecture that our a posteriori lower bound
for χh can eventually be improved down to λ(σ)= d(σ + 1)/2e, which will result
in the complete solution of the geography problem for simply connected nonspin
minimal symplectic 4-manifolds.

Our paper is organized as follows. In Section 2, we present a branched covering
construction of Lefschetz fibrations with positive signature, which is a generalization
of Stipsicz’s constructions [1998; 1999]. In Section 3, we show how to glue together
semifree cyclic group actions on closed 2-manifolds, and then we use these actions to
construct new examples of Lefschetz fibrations with positive signature. In Section 4,
we show how to obtain simply connected 4-manifolds from nonsimply connected
Lefschetz fibrations by performing generalized fiber sums with certain 4-manifolds
that were constructed in [Akhmedov and Park 2010a]. In Section 5, we implement
the strategies from previous sections to construct new families of simply connected
irreducible 4-manifolds with positive signature. In Section 6, we compute the lower
bounds λ(σ) for many small values of σ .

2. Branched covering construction

Let 6g be a closed 2-dimensional manifold of genus g > 0. Let ζ :6g→6g be an
orientation-preserving self-diffeomorphism of 6g with q fixed points {y1, . . . , yq}.
Assume that

ζ p
= ζ ◦ · · · ◦ ζ︸ ︷︷ ︸

p

= id,

for some positive integer p ≥ 2, and that ζ generates a semifree Z/p action on
6g. If ζ∗ : H1(6g;Z)→ H1(6g;Z) is the induced homomorphism on the first
homology group, then we also assume that

(1) ζ p−1
∗
+ ζ p−2
∗
+ · · ·+ ζ∗+ id= 0

on H1(6g;Z), which is equivalent to 1 not being an eigenvalue of ζ∗. See Exam-
ples 3 and 5 below for some concrete examples of ζ .
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We will consider 6g ×6g as a symplectic 4-manifold equipped with a product
symplectic form ω̃ = pr∗1ω+ pr∗2ω, where ω is a symplectic volume form on 6g

and pr j :6g ×6g→6g ( j = 1, 2) is the projection map onto the j-th factor. For
each i = 1, . . . , p, let

0i = graph(ζ i )= {(x, ζ i (x)) | x ∈6g} ⊂6g ×6g.

Note that 0p is equal to the diagonal {(x, x) | x ∈ 6g}. The graphs 01, . . . , 0p

are symplectic submanifolds of 6g ×6g with respect to ω̃ (see Lemma 2.1 in
[Akhmedov and Park 2008]), and the graphs intersect at q points

{(y j , y j ) | j = 1, . . . , q}.

If we symplectically blow up 6g×6g at these q intersection points, then the proper
transform B of the union 01 ∪ · · · ∪0p consists of p disjoint genus g symplectic
submanifolds of (6g ×6g) # qCP2.

Let {γk | k = 1, . . . , 2g} be a basis for H1(6g;Z) and let {γ ` | ` = 1, . . . , 2g}
be the dual basis under the intersection product so that γk ·γ

`
= δ`k . If we introduce

the notation

[1] = [6g ×{pt}]+ [{pt′}×6g],

then the homology class of 0i is given by

[0i ] = [1] −

2g∑
k=1

γ k
× ζ i
∗
(γk).

Using (1), we can express the homology class of B as

[B] = p
(
[1] −

q∑
j=1

[E j ]

)
,

where E1, . . . , Eq are the exceptional spheres of the blowups. We also note that

c1((6g ×6g) # qCP2)= PD
(
(2− 2g)[1] −

q∑
j=1

[E j ]

)
,

where PD denotes the Poincaré duality isomorphism.
Since [B] is divisible by p, we may take the cyclic p-fold branched cover of

(6g×6g)#qCP2 that is branched along B. We will denote this branched covering
by β : X ζ

g,p,q → (6g ×6g) # qCP2. The total space X ζ
g,p,q inherits a symplectic
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structure from (6g ×6g) # qCP2, and we have

c1(X ζ
g,p,q)= β

∗

(
c1((6g ×6g) # qCP2)−

p−1
p

PD[B]
)

= β∗PD
(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)
.

The characteristic numbers of X ζ
g,p,q can be computed as follows.

e(X ζ
g,p,q)= pe((6g ×6g) # qCP2)− p(p− 1)e(6g)

= p((2− 2g)2+ q)− p(p− 1)(2− 2g)

= p(4g2
+ 2gp− 10g− 2p+ q + 6),

c2
1(X

ζ
g,p,q)= p

(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)2

= p(2(3− 2g− p)2− q(p− 2)2)

= p(−p2q + 8g2
+ 2p2

+ 8gp+ 4pq − 24g− 12p− 4q + 18),

σ (X ζ
g,p,q)=

1
3

(
c2

1(X
ζ
g,p,q)− 2e(X ζ

g,p,q)
)

=
1
3 p(−p2q + 2p2

+ 4gp+ 4pq − 4g− 8p− 6q + 6),

χh(X ζ
g,p,q)=

1
4

(
e(X ζ

g,p,q)+ σ(X
ζ
g,p,q)

)
=

1
12 p(−p2q + 12g2

+ 2p2
+ 10gp+ 4pq − 34g− 14p− 3q + 24).

Let ε : (6g×6g)#qCP2
→6g×6g be the blowdown map. Then the composition

of maps

(2) X ζ
g,p,q

β
−→ (6g ×6g) # qCP2 ε

−→6g ×6g
pr1
−→6g

gives a fibration of X ζ
g,p,q over 6g. A regular fiber of this fibration is a cyclic

p-fold branched cover of 6g that is branched over p points. Thus a regular fiber is
a closed surface of genus equal to

(3) 1
2(p

2
+ 2gp− 3p+ 2).

The proper transform of each graph 0i (i = 1, . . . , p) gives rise to a section of (2)
whose image is a genus g surface Si in X ζ

g,p,q with self-intersection equal to

[Si ]
2
=
〈
c1(X ζ

g,p,q), [Si ]
〉
− e(6g)

= 2g− 2+ 1
p

(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)
· [B]

= pq − 2g− 2p− 2q + 4.



262 ANAR AKHMEDOV, MARK C. HUGHES AND B. DOUG PARK

Lemma 1. Let f : X ζ
g,p,q → 6g denote the composition of maps in (2). Then f

is a relatively minimal Lefschetz fibration with pq critical points. Moreover, each
critical point of f corresponds to a nonseparating vanishing cycle.

Proof. Clearly the only singular fibers of f are { f −1(y j ) | j = 1, . . . , q}. We will
prove that each f −1(y j ) contains exactly p Lefschetz critical points. To describe
each f −1(y j ) explicitly, we will view X ζ

g,p,q as the minimal desingularization of
another branched cover that we will define below.

Let 0 = 01 ∪ · · · ∪0p. Since [0] = p[1] ∈ H2(6g ×6g;Z) is divisible by p,
we may take the cyclic p-fold branched cover of 6g×6g that is branched along 0.
We will denote this branched covering by β̂ : X̂ ζ

g,p,q →6g ×6g. The total space
X̂ ζ

g,p,q has q singular points, {β̂−1(y j , y j ) | j = 1, . . . , q}, each of which can be
locally modeled by

(4) {(x, y, z) ∈ C3
| z p
= x p

+ y p
}.

In these local coordinates, the singular point β̂−1(y j , y j ) corresponds to (0, 0, 0),
and a neighborhood of the singular point corresponds to the cyclic p-fold cover of
the (x, y)-plane that is branched over p complex lines that intersect transversely at
(0, 0).

Next let f̂ : X̂ ζ
g,p,q→6g denote the singular fibration given by the composition

X̂ ζ
g,p,q

β̂
−→6g ×6g

pr1
−→6g.

A regular fiber of f̂ is again a closed surface of genus equal to (3). There are
exactly q singular fibers { f̂ −1(y j ) | j = 1, . . . , q}. For each j = 1, . . . , q , note that
f̂ −1(y j )\{β̂

−1(y j , y j )} is a smooth and connected surface since it is the unbranched
cyclic p-fold cover of the once punctured surface ({y j }×6g) \ {(y j , y j )} coming
from a surjective homomorphism

(5) π1(({y j }×6g) \ {(y j , y j )})∼= F2g −→ Z/p ⊂ Sp,

where F2g is the free group with 2g generators and Sp is the symmetric group on p
symbols. Since Z/p is abelian, (5) can be factored as the composition

π1(({y j }×6g) \ {(y j , y j )})−→ π1(6g)−→ Z/p.

Thus the cover f̂ −1(y j ) \ {β̂
−1(y j , y j )} → ({y j }×6g) \ {(y j , y j )} can be viewed

as a restriction of the unbranched cyclic p-fold cover of the closed surface 6g. In
other words, f̂ −1(y j ) \ {β̂

−1(y j , y j )} can be embedded into the unbranched cyclic
p-fold cover of 6g. This implies that f̂ −1(y j ) \ {β̂

−1(y j , y j )} is diffeomorphic to
a surface of genus gp − p + 1 having p punctures, and f̂ −1(y j ) is a connected
surface that is smooth away from the point β̂−1(y j , y j ), which is a multiple point
of order p.
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Now recall from [Gompf and Stipsicz 1999; Némethi 1999] that X ζ
g,p,q is

the minimal desingularization of X̂ ζ
g,p,q . The standard algorithm for resolution

of singularities (see [Némethi 1999, Example 1.20(h)]) replaces each singular
point β̂−1(y j , y j ) of X̂ ζ

g,p,q having local model (4) with a closed surface of genus
1
2(p

2
− 3p+ 2) and self-intersection −p. This surface is just β−1(E j ), which is a

cyclic p-fold branched cover of the exceptional sphere E j branched over p points.
It follows that each singular fiber f −1(y j ) is the union of two closed surfaces that
intersect each other transversely at p distinct points. One of the surfaces is β−1(E j ),
and the other is a genus gp− p+ 1 surface of self-intersection −p, which is the
smooth completion of f̂ −1(y j )\{β̂

−1(y j , y j )}. The p transverse intersection points
between the two surfaces are exactly the p Lefschetz critical points of f that get
mapped to y j . Finally, comparing the sum of genera with (3), we observe that each
union of the two surfaces is obtained by replacing the annular neighborhoods of
p nonseparating circles in a regular fiber with p pairs of transversely intersecting
disks. This implies that all the vanishing cycles are nonseparating. �

Remark 2. We can verify the number of critical points of f by computing the
difference

e(X ζ
g,p,q)− e(regular fiber) · e(base)= pq.

We can split the singular fibers of f so that each new singular fiber contains only
one critical point (cf. [Harris and Morrison 1998; Takamura 2004]) but we do not
need to do so for our applications below.

Given a positive integer u, let ηu :6k→6g be a u-fold unbranched covering of
6g, where k = u(g− 1)+ 1. We pull back the branched covering

X ζ
g,p,q

β
−→ (6g ×6g) # qCP2 ε

−→6g ×6g

by the product map ηu1×ηu2 :6k1×6k2→6g×6g, where ui is a positive integer
and ki = ui (g − 1)+ 1 for each i = 1, 2. The total space of this pullback is a
new symplectic 4-manifold X ζ

g,p,q(u1, u2), which is a p-fold branched cover of
6k1 ×6k2 and a u1u2-fold unbranched cover of X ζ

g,p,q . The composition

fu1,u2 : X
ζ
g,p,q(u1, u2)−→6k1 ×6k2

pr1
−→6k1

gives a new relatively minimal Lefschetz fibration, where X ζ
g,p,q(1, 1) = X ζ

g,p,q

and f1,1 = f . A regular fiber of fu1,u2 is a u2-fold unbranched cover of the fiber of
f (or equivalently a p-fold branched cover of 6k2 branched along u2 p points) and
hence has genus equal to

1+ u2
2
(p2
+ 2gp− 3p).
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A section of f gives rise to a section of fu1,u2 whose image is a genus k1 surface
of self-intersection equal to

u1(pq − 2g− 2p− 2q + 4).

Since X ζ
g,p,q(u1, u2) is a u1u2-fold unbranched cover of X ζ

g,p,q , we have

e(X ζ
g,p,q(u1, u2))= u1u2 · e(X ζ

g,p,q), σ (X ζ
g,p,q(u1, u2))= u1u2 · σ(X ζ

g,p,q),

χh(X ζ
g,p,q(u1, u2))= u1u2 ·χh(X ζ

g,p,q), c2
1(X

ζ
g,p,q(u1, u2))= u1u2 · c2

1(X
ζ
g,p,q).

Example 3. Recall from Section 2 of [Akhmedov and Park 2008] that there exists
a semifree Z/(g + 1) action on 6g with 4 fixed points satisfying (1). Applying
the above machinery, we obtain a family of symplectic 4-manifolds X g

u1,u2 =

X ζ

g,g+1,4(u1, u2), where g, u1 and u2 are positive integers, satisfying

e(X g
u1,u2

)= 2u1u2(g+ 1)(3g2
− 5g+ 4),

σ (X g
u1,u2

)= 2
3 u1u2(g+ 1)(g2

+ 2g− 6),

χh(X g
u1,u2

)= 1
6 u1u2(g+ 1)(10g2

− 13g+ 6),

c2
1(X

g
u1,u2

)= 2u1u2(g+ 1)(7g2
− 8g+ 2).

For each triple of positive integers g, u1, u2, there exists a relatively minimal
Lefschetz fibration fu1,u2 : X g

u1,u2 → 6k1 such that the genus of a regular fiber is
equal to 1+ 1

2 u2(g+ 1)(3g− 2) and there is a section whose image is a surface of
genus k1 = u1(g− 1)+ 1 and self-intersection −2u1.

Remark 4. The 4-manifolds Xg, Xg(n) and X̃g(n2) in [Akhmedov and Park 2008]
are equal to X g

1,1, X g
n,1 and X g

n,n , respectively.

3. Gluing self-diffeomorphisms of surfaces

In light of the machinery in Section 2, it will be desirable to find lots of semifree
Z/p actions on closed surfaces. One way to produce such actions is to glue together
semifree Z/p actions on surfaces of low genera as we explain below.

Let v≥2 be an integer. For each i =1, . . . , v, let αi :6gi→6gi be an orientation-
preserving self-diffeomorphism of a closed surface of genus gi with qi fixed points
{yi,1, . . . , yi,qi }. Assume that each αi generates a semifree Z/p action on 6gi . For
each j = 1, . . . , qi , let ρi, j be the rotational number of αi at the fixed point yi, j

so that αi induces rotation by angle 2πρi, j/p in the tangent space at yi, j . The
rotational numbers are well-defined mod p and are relatively prime to p. They
satisfy (see [Nielsen 1937])

qi∑
j=1

1
ρi, j
≡ 0 (mod p),
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where 1/ρi, j denotes the multiplicative inverse of ρi, j in (Z/p)×. We can reverse
the signs of ρi,1, . . . , ρi,qi simultaneously by reversing the orientation of 6gi .

Now choose a single fixed point of αi for i = 1, v, and choose two fixed points
of αi for i = 2, . . . , v−1. Without loss of generality, we may choose y1,2, yv,1 and
yi,1, yi,2 for i = 2, . . . , v− 1. We remove small Z/p-equivariant neighborhoods of
these chosen fixed points and then glue the boundary circle at yi,2 to the boundary
circle at yi+1,1 for i = 1, . . . , v − 1. Such gluing of one-holed and two-holed
surfaces results in a closed surface of genus g =

∑v
i=1 gi . If ρi,2 =−ρi+1,1 for all

i = 1, . . . , v− 1, that is, the rotational numbers are negatives of each other at the
gluing points, then the restrictions of αi ’s to the punctured surfaces can also be
glued together to form an orientation-preserving self-diffeomorphism ζ :6g→6g

with q fixed points, where

q =−2(v− 1)+
v∑

i=1

qi .

We will say that ζ is an equivariant sum of α1, . . . , αv , and write ζ = α1 # · · · #αv .
In case when α1 = · · · = αv, we will write ζ = vα1 for short.

Example 5. For each odd integer p ≥ 3, there exists a semifree Z/p action on
6(p−1)/2 as follows. Consider 6(p−1)/2 as the quotient of a regular 2p-gon by
identifying the opposite sides. The rotation of the 2p-gon by angle 2π/p gives an
orientation-preserving self-diffeomorphism τp :6(p−1)/2→6(p−1)/2 with 3 fixed
points. The fixed points of τp are the center of the 2p-gon and the 2 points coming
from the vertices. The center of the 2p-gon has rotational number 1, and the other
2 fixed points both have rotational number −2.

We can find a basis of H1(6(p−1)/2;Z) such that the induced homomorphism
(τp)∗ : H1(6(p−1)/2;Z)→ H1(6(p−1)/2;Z) is represented by the (p−1)× (p−1)
matrix

(6)


0 · · · 0 −1

−1

Ip−2
...

−1

 ,
where Ip−2 is the identity (p− 2)× (p− 2) matrix. It is easy to check that this
matrix satisfies (1).

For each positive integer v, let ζ = vτp be the equivariant sum of v copies
of τp. (We glue along fixed points with rotational number −2, and we alternate
the orientations of the punctured 6(p−1)/2’s so that the rotational numbers are +2
and −2 at each gluing.) Then ζ : 6v(p−1)/2 → 6v(p−1)/2 generates a semifree
Z/p action on 6v(p−1)/2 with v + 2 fixed points. The induced homomorphism
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ζ∗ : H1(6v(p−1)/2;Z)→ H1(6v(p−1)/2;Z) satisfies (1) since it can be represented
by a block diagonal matrix each of whose blocks is conjugate to (6).

From the branched covering construction in Section 2, we obtain a family of
symplectic 4-manifolds W p,v

u1,u2 = Xvτp
v(p−1)/2,p,v+2(u1, u2), where p ≥ 3 is an odd

integer and v, u1, u2 are positive integers, satisfying

e(W p,v
u1,u2

)= pu1u2[(v
2
+ v)p2

− 2(v2
+ 3v+ 1)p+ v2

+ 6v+ 8],

σ (W p,v
u1,u2

)= 1
3 pu1u2(vp2

− 4v− 6),

χh(W p,v
u1,u2

)= 1
12 pu1u2[(3v2

+ 4v)p2
− 6(v2

+ 3v+ 1)p+ 3v2
+ 14v+ 18],

c2
1(W

p,v
u1,u2

)= pu1u2[(2v2
+ 3v)p2

− 4(v2
+ 3v+ 1)p+ 2v2

+ 8v+ 10].

Moreover, for each quadruple of positive integers p, v, u1, u2 with odd p ≥ 3,
we have a relatively minimal Lefschetz fibration fu1,u2 : W

p,v
u1,u2 → 6k1 such that

the genus of a regular fiber is equal to 1+ 1
2 pu2[(v + 1)p− v − 3] and there is

a section whose image is a surface of genus k1 = 1+ u1[−1+ v(p− 1)/2] and
self-intersection −u1v.

Note that c2
1(W

p,v
u1,u2)≤ 9χh(W

p,v
u1,u2), with equality if and only if p= 5 and v= 1.

If we view the quotient c2
1(W

p,v
u1,u2)/χh(W

p,v
u1,u2) as a function of p and v, then its

gradient vector is
−

24
(
(v3
+3v2

+v)p2
− (5v3

+16v2
+14v)p+4v3

+18v2
+22v+6

)(
(3v2+4v)p2−6(v2+3v+1)p+3v2+14v+18

)2

−
12
(
(p2
−4)(p−1)2v2

−12(p−1)2v+2p3
−14p2

+28p−4
)(

(3v2+4v)p2−6(v2+3v+1)p+3v2+14v+18
)2


When p ≥ 7 and v ≥ 1, both components of this gradient vector are negative and
hence c2

1(W
p,v

u1,u2)/χh(W
p,v

u1,u2) is decreasing as p and v increase. We observe that
limv→∞ c2

1(W
p,v

u1,u2)/χh(W
p,v

u1,u2)= 8, and

lim
p→∞

c2
1(W

p,v
u1,u2)

χh(W
p,v

u1,u2)
=

12(2v+ 3)
3v+ 4

≤
60
7
,

where the rational function 12(2v+ 3)/(3v+ 4) is decreasing for v ≥ 1. Therefore
most W p,v

u1,u2’s lie well below the Bogomolov–Miyaoka–Yau (BMY) line, c2
1 = 9χh .

Remark 6. According to Section 4.5 of [Luo 2000], there is a unique Z/3 action
on 6g with g+ 2 fixed points. It follows that W 3,2

u1,u2
is exactly equal to X2

u1,u2
in

Example 3. More generally, for each odd integer p≥ 5, we conjecture that W p,2
u1,u2 is

diffeomorphic to X p−1
u1,u2 in Example 3. We also conjecture that the 4-manifolds Zg,

Zg(n) and Z̃g(n2) in Section 3 of [Akhmedov and Park 2008] are diffeomorphic
to W 2g+1,1

1,1 , W 2g+1,1
n,1 and W 2g+1,1

n,n , respectively. In particular, we conjecture that
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W 5,1
1,1 , W 5,1

n,1 and W 5,1
n,n , lying on the BMY line c2

1 = 9χh , are diffeomorphic to
complex surfaces H = H(1), H(n) and H(n2) in [Chen 1991; Stipsicz 1998; 1999],
respectively.

4. Generalized fiber sums

Let 6b denote a closed Riemann surface of genus b > 0. Suppose f : X→6b is a
Lefschetz fibration with generic fiber F diffeomorphic to a closed Riemann surface
6a with genus a> 0. Assume that f is a relatively minimal Lefschetz fibration (i.e.,
no fiber contains a sphere of self-intersection −1) so that X is a minimal symplectic
4-manifold (Theorem 1.4 of [Stipsicz 2000]). Also assume that f has a section
whose image S in X has self-intersection d . From Theorem 10.2.18 in [Gompf and
Stipsicz 1999], X can be equipped with a symplectic structure such that both F
and S are symplectic submanifolds. From Proposition 8.1.9 in [Gompf and Stipsicz
1999], we have an exact sequence

(7) π1(F)−→ π1(X)
f∗
−→ π1(6b)−→ 1.

Let t > 0 be an integer. By symplectically resolving the intersection points, we
can find a symplectic genus ta+ b surface 6 ⊂ X representing the homology class
t[F] + [S] ∈ H2(X;Z) with self-intersection 2t + d . By taking t large enough, we
can assume that 2t + d ≥ 0. Let X̃ = X # (2t + d)CP2, where each of the 2t + d
symplectic blowups take place at points on 6 ⊂ X . The proper transform 6̃ ⊂ X̃ is
a symplectic submanifold with genus ta+ b and self-intersection 0. Note that we
have

e(X̃)= e(X)+ 2t + d,

σ (X̃)= σ(X)− 2t − d.

Lemma 7. Let ĩ : 6̃‖ ↪→ X̃ \ ν6̃ be the inclusion map of a parallel copy of 6̃ into
the complement of a tubular neighborhood ν6̃ in X̃ = X # (2t + d)CP2. Then we
have

(8)
π1(X̃ \ ν6̃)〈
ĩ∗(π1(6̃‖))

〉 = 1,

where 〈ĩ∗(π1(6̃
‖))〉 is the normal subgroup of π1(X̃ \ ν6̃) generated by the image

ĩ∗(π1(6̃
‖)).

Proof. Let i : 6‖ ↪→ X \ ν6 be the inclusion map of a parallel copy of 6. From
exact sequence (7), we deduce that π1(X)/〈i∗(π1(6

‖))〉 = 1. Since the blowups do
not effect the fundamental groups, we conclude that π1(X̃)/〈ĩ∗(π1(6̃

‖))〉 = 1. If
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2t + d > 0, then any meridian µ(6̃) of 6̃ in π1(X̃ \ ν6̃) bounds a disk that comes
from a punctured exceptional sphere. Hence π1(X̃ \ ν6̃)= π1(X̃) and (8) follows
from our last conclusion.

If 2t + d = 0, then X̃ = X , 6̃ =6, 6̃‖ =6‖, and ĩ = i . Any meridian µ(6) in
π1(X\ν6) is conjugate to a meridian of S. Since [F]·[S]=1, µ(6) is in the normal
subgroup generated by the generators of π1(F), which in turn lies in 〈i∗(π1(6

‖))〉.
This implies that π1(X \ ν6)/〈i∗(π1(6

‖))〉 = π1(X)/〈i∗(π1(6
‖))〉 = 1. �

For each pair of integers m ≥ 1 and n ≥ 2, let Yn(m) denote the irreducible
4-manifold constructed in Section 2 of [Akhmedov and Park 2010a] that has the
same cohomology ring as the connected sum (2n− 3)(S2

× S2). Recall that Yn(m)
is obtained by performing 2n+ 4 surgeries along Lagrangian tori in the product
4-manifold 62×6n . Thus Yn(m) contains a pair of submanifolds 62 =62×{pt}
and 6n = {pt′}×6n , both of self-intersection 0. When m = 1, Yn(1) is a minimal
symplectic 4-manifold. Moreover, 62 and6n are symplectic submanifolds of Yn(1).
When n ≥ 3, there exist 2n− 4 pairs of geometrically dual Lagrangian tori which,
together with 62 and 6n , form a basis for H2(Yn(1);Z)∼= Z4n−6.

Theorem 8. Let f : X→6b be a relatively minimal Lefschetz fibration as above
having at least one nonseparating vanishing cycle. Suppose that n= ta+b≥ 2. For
a suitable choice of the gluing diffeomorphism ϕ : ∂(ν6̃)→ ∂(ν6n), the generalized
fiber sum

(9) Pm
n (X)= X̃ #ϕYn(m)= (X̃ \ ν6̃)∪ϕ(Yn(m) \ ν6n)

along 6̃ and 6n is simply connected, and satisfies

e(Pm
n (X))= e(X)+ d + (8a+ 2)t + 8b− 8,

σ (Pm
n (X))= σ(X)− 2t − d,

χh(Pm
n (X))= χh(X)+ 2at + 2b− 2,

c2
1(P

m
n (X))= c2

1(X)− d + (16a− 2)t + 16b− 16,

b+2 (P
m
n (X))= b+2 (X)− b1(X)+ 4at + 4b− 4≥ 3,

b−2 (P
m
n (X))= b−2 (X)− b1(X)+ d + (4a+ 2)t + 4b− 4.

If σ(Pm
n (X)) is not divisible by 16 or if 2t + d > 0, then Pm

n (X) is nonspin and
the set {Pm

n (X) | m ≥ 1} contains infinitely many homeomorphic but pairwise
nondiffeomorphic irreducible 4-manifolds. When m = 1, P1

n (X) is symplectic and
irreducible. If n = ta+ b ≥ 3, then P1

n (X) contains disjoint symplectic tori T1 and
T2 of self-intersection 0 satisfying π1(P1

n (X) \ (T1 ∪ T2))= 1.
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Proof. Recall from [Akhmedov and Park 2010a] that e(Yn(m)) = 4n − 4 and
σ(Yn(m))= 0 since torus surgeries change neither e nor σ . Hence we have

e(Pm
n (X))= e(X̃)+ e(Yn(m))− 2e(6n)

= e(X)+ 2t + d + 4n− 4− 2(2− 2n)

= e(X)+ 2t + d + 8n− 8

= e(X)+ 2t + d + 8ta+ 8b− 8,

σ (Pm
n (X))= σ(X̃)+ σ(Yn(m))= σ(X)− 2t − d.

The other characteristic numbers can be computed from the formulas χh =
1
4(e+σ),

c2
1 = 2e+ 3σ , b+2 = b1− 1+ 1

2(e+ σ), and b−2 = b1− 1+ 1
2(e− σ).

To compute π1(Pm
n (X)), we first choose a standard presentation

π1(6n)=
〈
c1, d1, . . . , cn, dn

∣∣∣ n∏
j=1

[c j , d j ] = 1
〉
.

From the presentation of π1(Yn(m)) in [Akhmedov and Park 2010a], we know
that π1(Yn(m))/〈z〉 = 1, where 〈z〉 is the normal subgroup generated by the image
z of any one of the four generators c1, d1, c2, d2 of π1(6n) under the inclusion
induced homomorphism π1(6n)→ π1(Yn(m)). We also know that any meridian
of 6n is conjugate to the image of [a1, b1][a2, b2] in π1(Yn(m) \ ν6n), where ai ,
bi (i = 1, 2) are the images of standard generators of π1(62×{pt}). All relations
of π1(Yn(m)) listed in [Akhmedov and Park 2010a], except [a1, b1][a2, b2] = 1,
continue to hold in π1(Yn(m)\ν6n) since these relations come from torus surgeries
that occur away from ν6n . Since z = 1 still implies ai = bi = 1 (i = 1, 2) in
π1(Yn(m) \ ν6n), we deduce that π1(Yn(m) \ ν6n)/〈z〉 = 1.

When forming the generalized fiber sum Pm
n (X), we choose the gluing diffeo-

morphism ϕ such that the induced homomorphism ϕ∗ maps the element of π1(6̃
‖)

represented by a nonseparating vanishing cycle of the Lefschetz fibration X to z,
viewed as an element of π1(6

‖
n). Thus z = 1 in π1(Pm

n (X)), which then implies
that the inclusion induced homomorphism

(10) π1(Yn(m) \ ν6n)−→ π1(Pm
n (X))

is trivial. Note that the inclusion induced homomorphism π1(6̃
‖)→ π1(Pm

n (X)) is
also trivial since it can be factored through homomorphism (10) after 6̃‖ is identified
with 6‖n via ϕ. It follows from Lemma 7 that the inclusion induced homomorphism
π1(X̃ \ ν6̃)→ π1(Pm

n (X)) is trivial as well. By the Seifert – van Kampen theorem,
we conclude that π1(Pm

n (X))= 1.
If 2t+d > 0, then Pm

n (X) contains a genus 2 surface of self-intersection −1 that
is the internal sum of a punctured exceptional sphere in X̃ \ ν6̃ and a punctured
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62 in Yn(m)\ν6n . In this case, the intersection form of Pm
n (X) is odd and Pm

n (X)
is nonspin. Also recall that the signature of a spin 4-manifold is divisible by 16
according to Rohlin’s theorem [1952].

Note that e(Pm
n (X)) and σ(Pm

n (X)) are independent of m. If σ(Pm
n (X)) is not

divisible by 16 or if 2t+d > 0, then for fixed n, the set {Pm
n (X) |m ≥ 1} consists of

homeomorphic simply connected nonspin 4-manifolds by Freedman’s classification
theorem (cf. [Freedman 1982]).

Since Yn(1) is symplectic, the corresponding fiber sum P1
n (X) is symplectic as

well (cf. [Gompf 1995; McCarthy and Wolfson 1994]). Since (X̃ , 6̃) is a relatively
minimal pair (i.e., every sphere of self-intersection −1 intersects 6̃) by Corollary 3
in [Li 1999], P1

n (X) is minimal by Usher’s theorem [2006]. Recall from [Hamilton
and Kotschick 2006; Kotschick 1997] that a simply connected minimal symplectic
4-manifold is irreducible, and thus P1

n (X) is irreducible.
Any Lefschetz fibration X with fiber genus a and base genus b satisfies b1(X)≤

2a+ 2b. Since X has at least one nonseparating vanishing cycle, we have b1(X) <
2a+ 2b ≤ 2at + 2b. Thus we deduce that b+2 (P

m
n (X)) > b+2 (X)≥ 1. Since P1

n (X)
is symplectic and simply connected, b+2 (P

1
n (X))= b+2 (P

m
n (X)) is odd. It follows

that b+2 (P
m
n (X))≥ 3 and the Seiberg–Witten invariant of Pm

n (X) is well defined.
Let Y0 denote the symplectic 4-manifold that is obtained by performing the same

torus surgeries on 62 ×6n as for Yn(m), except (a′′1 × d ′2, d ′2,+m) surgery (cf.
[Akhmedov and Park 2010a]). Let P0 = X̃ #ϕY0 be the generalized fiber sum of X̃
and Y0 along 6̃ and 6n using the same gluing diffeomorphism ϕ that was used in
the construction of Pm

n (X). Note that P0 is symplectic and minimal for the same
reasons as P1

n (X). We have b2(P0)= b2(Pm
n (X))+ 2, and there is an orthogonal

decomposition H 2(P0;Z) = H ⊕ H⊥, where H is the 2-dimensional hyperbolic
summand generated by the Poincaré duals of [a1 × d2] and [b1 × c2]. Using the
adjunction inequality, we can easily see that every Seiberg–Witten basic class of P0

lies in H⊥.
Since Pm

n (X) can be obtained from P1
n (X) by performing a 1/(m− 1) surgery

on a null-homologous torus, we can apply the product formula in [Morgan et al.
1997] as in [Akhmedov et al. 2008; Fintushel et al. 2007; Szabó 1998] and deduce
that there exist surjective homomorphisms

ξm : H⊥ −→ H 2(Pm
n (X);Z)

that preserve the cup product pairing and satisfy

(11) SWPm
n (X)(ξm(L0))= SWP1

n (X)(ξ1(L0))+ (m− 1)SWP0(L0),

for every characteristic element L0 ∈ H⊥ ⊂ H 2(P0;Z). We note that the right
side of (11) contains only one SWP0 term for the reasons given in the proof of
Corollary 2 in [Fintushel et al. 2007]. By a theorem of Taubes [1994], we have
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SWP0(c1(P0))=±1. By setting L0 = c1(P0) in (11) and observing that there are
infinitely many values for the Seiberg–Witten invariants of Pm

n (X), we conclude that
{Pm

n (X) | m ≥ 1} contains infinitely many pairwise nondiffeomorphic 4-manifolds.
Next we prove that Pm

n (X) is irreducible for all m large enough, or more specifi-
cally when SWPm

n (X)(ξm(c1(P0))) 6= 0. We will argue the same way as in the proof
of Theorem 5.4 in [Kotschick 1997]. Suppose Pm

n (X)= M # N is a connected sum
of two smooth 4-manifolds M and N . Both M and N are simply connected since
Pm

n (X) is. If b+2 (M) and b+2 (N ) are both positive, then the Seiberg–Witten invariant
of Pm

n (X) is trivial (cf. [Witten 1994]), a contradiction. Without loss of generality,
assume b+2 (N )= 0. If b2(N )= 0, then the simply connected 4-manifold N must be
homeomorphic to S4 by Freedman’s theorem in [Freedman 1982]. Thus it remains
to rule out the case when b2(N )= b−2 (N ) > 0. In this case, the intersection form of
N is a nontrivial negative definite form, so by Donaldson’s theorem in [Donaldson
1983], it is equivalent to the standard diagonal form. Let e1, . . . , eb2(N ) be a basis
for H 2(N ;Z) such that e2

i =−1 for each i = 1, . . . , b2(N ), and ei · e j = 0 when
i 6= j . Using the neck pinching argument as in [Donaldson 1996; Kotschick 1997],
we deduce that M has nontrivial Seiberg–Witten invariant. Moreover, if L is any
Seiberg–Witten basic class of M , then the cohomology classes

(12) L +
b2(N )∑
i=1

ai ei ,

where ai =±1 for each i = 1, . . . , b2(N ), are all Seiberg–Witten basic classes of
Pm

n (X)= M # N . Furthermore, every Seiberg–Witten basic class of Pm
n (X) can be

written as (12).
Let Lm=ξm(c1(P0)) be a Seiberg–Witten basic class of Pm

n (X). By changing any
basis element ei to −ei if necessary, we can assume that Lm = L−e1−· · ·−eb2(N )

for some L . Thus Lm+2e1= L+e1−e2−· · ·−eb2(N ) is also a Seiberg–Witten basic
class of Pm

n (X). By the adjunction inequality, we can assume that ξ1(c1(P0)) =

c1(P1
n (X)). It now follows from (11) that there exists ē1 ∈ ξ

−1
m (e1) ⊂ H⊥ such

that c1(P1
n (X))+2ξ1(ē1) or c1(P0)+2ē1 is a Seiberg–Witten basic class of P1

n (X)
or P0, respectively. By a theorem of Taubes [1996], we can then deduce that the
Poincaré dual of ξ1(ē1) or ē1 is represented by an embedded symplectic sphere of
self-intersection −1 in P1

n (X) or P0, respectively (cf. Remark 10.1.16(b) in [Gompf
and Stipsicz 1999]). This implies that P1

n (X) or P0 is not minimal, a contradiction.
Finally, if n≥3, then Yn(1) contains 2n−4 pairs of geometrically dual Lagrangian

tori that are all disjoint from 6n . The images of these 4n− 8 tori in the fiber sum
P1

n (X) are again Lagrangian submanifolds (cf. [Gompf 1995]). Let T1 and T2 be
two of these 4n− 8 Lagrangian tori in P1

n (X) that are not geometrically dual to
each other. By perturbing the symplectic form on P1

n (X), we can turn both T1 and
T2 into symplectic submanifolds of P1

n (X) (cf. [Gompf 1995, Lemma 1.6]).
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To show π1(P1
n (X) \ (T1 ∪ T2))= 1, it will be convenient to fix T1 and T2, say

T1 = a′1× c′′3 and T2 = a′2× d ′′3 . Here, a′1, a′2, c′′3 and d ′′3 are parallel copies of a1,
a2, c3 and d3 as defined in [Fintushel et al. 2007]. Then π1(P1

n (X) \ (T1 ∪ T2))

is normally generated by meridians of T1 and T2, which are all conjugate to the
commutators [b−1

1 , d3] or [b−1
2 , c3]. Note that the generators b1, b2, c3 and d3

are still trivial in π1(P1
n (X) \ (T1 ∪ T2)) since the Luttinger surgery relations in

Section 2 of [Akhmedov and Park 2010a] still hold true in π1(P1
n (X)\(T1∪T2)). It

follows that meridians of T1 and T2 are all trivial and hence π1(P1
n (X)\(T1∪T2))=

π1(P1
n (X))= 1. �

Instead of using Yn(m) summand in generalized fiber sum (9), we may use
Yn−2(m) # 2CP2 when n ≥ 4. Specifically, we resolve the intersection between
62 and 6n−2 in Yn−2(m) to obtain a genus n submanifold of Yn−2(m) with self-
intersection 2. Next we blow up two points on this submanifold to obtain a genus
n submanifold 6′n of self-intersection 0 in Yn−2(m) # 2CP2. When m = 1, the
resolution and the blowups can be performed symplectically, and hence (Yn−2(1) #
2CP2, 6′n) is a relatively minimal pair of symplectic manifolds. The advantage
of using Yn−2(m) # 2CP2 summand is that the resulting generalized fiber sum has
slightly smaller characteristic numbers than Pm

n (X).

Theorem 9. Let f : X→6b be a relatively minimal Lefschetz fibration as above
having at least one nonseparating vanishing cycle. Suppose that n = ta+ b ≥ 4.
For a suitable choice of the gluing diffeomorphism ψ : ∂(ν6̃) → ∂(ν6′n), the
generalized fiber sum

Qm
n (X)= X̃ #ψ (Yn−2(m) # 2CP2)

= (X̃ \ ν6̃)∪ψ
(
(Yn−2(m) # 2CP2) \ ν6′n

)
along 6̃ and 6′n is simply connected, nonspin, and satisfies

e(Qm
n (X))= e(X)+ d + (8a+ 2)t + 8b− 14,

σ (Qm
n (X))= σ(X)− 2t − d − 2,

χh(Qm
n (X))= χh(X)+ 2at + 2b− 4,

c2
1(Q

m
n (X))= c2

1(X)− d + (16a− 2)t + 16b− 34,

b+2 (Q
m
n (X))= b+2 (X)− b1(X)+ 4at + 4b− 8≥ 3,

b−2 (Q
m
n (X))= b−2 (X)− b1(X)+ d + (4a+ 2)t + 4b− 6.

The set {Qm
n (X) | m ≥ 1} contains infinitely many homeomorphic but pairwise

nondiffeomorphic irreducible 4-manifolds. When m = 1, Q1
n(X) is symplectic and

irreducible. If n = ta+ b ≥ 5, then Q1
n(X) contains disjoint symplectic tori T ′1 and

T ′2 of self-intersection 0 satisfying π1(Q1
n(X) \ (T

′

1 ∪ T ′2))= 1.
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Proof. We compute that

e(Qm
n (X))= e(X̃)+ e(Yn−2(m) # 2CP2)− 2e(6′n)

= e(X)+ 2t + d + 4(n− 2)− 4+ 2− 2(2− 2n)

= e(X)+ 2t + d + 8n− 14

= e(X)+ 2t + d + 8ta+ 8b− 14,

σ (Qm
n (X))= σ(X̃)+ σ(Yn−2(m) # 2CP2)= σ(X)− 2t − d − 2.

The other characteristic numbers can be computed from these as before.
Since the exceptional sphere of a blowup intersects 6′n once transversely, any

meridian of 6′n is null-homotopic in the complement of a tubular neighborhood
ν6′n . Hence we conclude that

π1
(
(Yn−2(m) # 2CP2) \ ν6′n

)
= π1

(
Yn−2(m) # 2CP2)

= π1(Yn−2(m)).

From [Akhmedov and Park 2010a], we know that π1(Yn−2(m))/〈z〉 = 1, where
z is the image of any one of the generators c1, d1, c2, d2 of π1(6n−2) under the
inclusion induced homomorphism.

Let 6̃‖ and 6′‖n denote parallel copies of 6̃ and 6′n in the boundaries ∂(ν6̃)
and ∂(ν6′n), respectively. When forming the generalized fiber sum Qm

n (X), we
choose the gluing diffeomorphism ψ such that ψ∗ maps the element of π1(6̃

‖)

represented by a nonseparating vanishing cycle of X to z, viewed as an element of
π1(6

′‖
n ). Thus z = 1 in π1(Qm

n (X)), which then implies that the inclusion induced
homomorphism

(13) π1
(
(Yn−2(m) # 2CP2) \ ν6′n

)
−→ π1(Qm

n (X))

is trivial. Note that the inclusion induced homomorphism π1(6̃
‖)→ π1(Qm

n (X)) is
also trivial since it can be factored through homomorphism (13) after 6̃‖ is identified
with 6′‖n . It follows from Lemma 7 that the inclusion induced homomorphism
π1(X̃ \ ν6̃)→ π1(Qm

n (X)) is trivial as well. By Seifert–van Kampen theorem, we
conclude that π1(Qm

n (X))= 1.
Qm

n (X) is nonspin since it contains a surface of self-intersection −1 and genus
a> 0, namely the internal sum of the image of a punctured fiber of X in X̃ \ν6̃ and
a punctured exceptional sphere in (Yn−2(m) # 2CP2) \ ν6′n . Since Yn−2(1) # 2CP2

is symplectic, the corresponding fiber sum Q1
n(X) is symplectic as well. The

irreducibility of Q1
n(X) and the fact that {Qm

n (X) | m ≥ 1} contains infinitely
many homeomorphic but pairwise nondiffeomorphic irreducible 4-manifolds can
be proved exactly the same way as in the proof of Theorem 8.

Finally, if n ≥ 5, then Yn−2(1) contains 2n − 8 pairs of geometrically dual
Lagrangian tori. The images of these 4n−16 tori in the blowup Yn−2(1)#2CP2 are
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disjoint from 6′n , and hence their images in Q1
n(X) are Lagrangian submanifolds of

Q1
n(X). Let T ′1 and T ′2 denote two of these 4n−16 Lagrangian tori, say T ′1= a′1×c′′3

and T ′2 = a′2 × d ′′3 . By perturbing the symplectic form on Q1
n(X), we can turn

both T ′1 and T ′2 into symplectic submanifolds of Q1
n(X). We can deduce that

π1(Q1
n(X)\(T

′

1∪T ′2))= 1 in exactly the same way as in the proof of Theorem 8. �

For comparison, we note that

(14)

e(Qm
n (X))= e(Pm

n (X))− 6, σ (Qm
n (X))= σ(P

m
n (X))− 2,

χh(Qm
n (X))= χh(Pm

n (X))− 2, c2
1(Q

m
n (X))= c2

1(P
m
n (X))− 18,

b+2 (Q
m
n (X))= b+2 (P

m
n (X))− 4, b−2 (Q

m
n (X))= b−2 (P

m
n (X))− 2.

Remark 10. The irreducible symplectic 4-manifolds M and N (homeomorphic to
47CP2 # 45CP2 and 51CP2 # 47CP2, respectively) in Section 4 of [Akhmedov and
Park 2008] are respectively equal to Q1

n(X) and P1
n (X) with a = 7, b = 2, t = 1,

d =−2, n = 9, e(X)= 36, and σ(X)= 4.

5. Simply connected 4-manifolds with positive signature

We now apply Theorems 8 and 9 to Lefschetz fibrations in Sections 2 and 3 to obtain
new families of simply connected irreducible 4-manifolds with positive signature.

Example 11. For each triple of positive integers g, u1, u2, recall from Example 3
that there is a Lefschetz fibration fu1,u2 : X g

u1,u2 → 6b such that the genus of a
regular fiber is a = 1+ 1

2 u2(g+ 1)(3g− 2) and there is a section whose image is a
surface of genus b= u1(g−1)+1 and self-intersection d =−2u1. Since 2t+d ≥ 0,
we require t ≥ u1. Let

n = t + 1
2 tu2(g+ 1)(3g− 2)+ u1(g− 1)+ 1.

Applying Theorem 8 to fu1,u2 : X
g
u1,u2→6b, we obtain a family of simply connected

4-manifolds Pm
n (X

g
u1,u2), with m ≥ 1 and n ≥ 3, satisfying

(15)

e(Pm
n (X

g
u1,u2

))= 2u1u2(g+ 1)(3g2
− 5g+ 4)

+ 4tu2(g+ 1)(3g− 2)+ 8u1g+ 10t − 10u1,

σ (Pm
n (X

g
u1,u2

))= 2
3 u1u2(g+ 1)(g2

+ 2g− 6)− 2t + 2u1,

χh(Pm
n (X

g
u1,u2

))= 1
6 u1u2(g+ 1)(10g2

− 13g+ 6)

+ tu2(g+ 1)(3g− 2)+ 2t + 2u1(g− 1),

c2
1(P

m
n (X

g
u1,u2

))= 2u1u2(g+ 1)(7g2
− 8g+ 2)

+ 8tu2(g+ 1)(3g− 2)+ 16u1g+ 14t − 14u1,
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(16)

b+2 (P
m
n (X

g
u1,u2

))= 1
3 u1u2(g+ 1)(10g2

− 13g+ 6)

+ 2tu2(g+ 1)(3g− 2)+ 4t + 4u1(g− 1)− 1,

b−2 (P
m
n (X

g
u1,u2

))= 1
3 u1u2(g+ 1)(8g2

− 17g+ 18)

+ 2tu2(g+ 1)(3g− 2)+ 4u1g+ 6t − 6u1− 1.

From Theorem 9, we obtain another family of simply connected nonspin 4-manifolds
Qm

n (X
g
u1,u2), with m ≥ 1 and n ≥ 5, whose characteristic numbers can be computed

from (14) (15), and (16). Moreover, when m = 1, both P1
n (X

g
u1,u2) and Q1

n(X
g
u1,u2)

are irreducible symplectic 4-manifolds and contain symplectic tori T j and T ′j ( j =
1, 2) of self-intersection 0 such that

π1(P1
n (X

g
u1,u2

) \ (T1 ∪ T2))= 1 and π1(Q1
n(X

g
u1,u2

) \ (T ′1 ∪ T ′2))= 1.

Example 12. For each quadruple of positive integers p, v, u1, u2 with odd p ≥ 3,
recall from Example 5 that there is a Lefschetz fibration fu1,u2 :W

p,v
u1,u2 →6b such

that the genus of a regular fiber is a = 1+ 1
2 pu2[(v + 1)p− v − 3] and there is

a section whose image is a surface of genus b = 1+ u1[−1+ v(p − 1)/2] and
self-intersection d =−u1v. Since 2t + d ≥ 0, we require

t ≥ du1v/2e,

where dxe =min{k ∈ Z | k ≥ x}. From Theorems 8 and 9, we obtain two families
of simply connected 4-manifolds Pm

n (W
p,v

u1,u2) and Qm
n (W

p,v
u1,u2) with m ≥ 1 and

n = t + 1
2 tpu2[(v+ 1)p− v− 3] + u1[−1+ v(p− 1)/2] + 1≥ 5.

We compute that

e(Pm
n (W

p,v
u1,u2

))= pu1u2
[
(v2
+ v)p2

− 2(v2
+ 3v+ 1)p+ v2

+ 6v+ 8
]

+ 4tu2(v+ 1)p2
+ 4

[
u1v− tu2(v+ 3)

]
p+ 10t − 5u1v− 8u1,

σ (Pm
n (W

p,v
u1,u2

))= 1
3 pu1u2(vp2

− 4v− 6)− 2t + u1v,

χh(Pm
n (W

p,v
u1,u2

))= 1
12 pu1u2

[
(3v2
+ 4v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 14v+ 18
]

+ tu2(v+ 1)p2
+
[
u1v− tu2(v+ 3)

]
p+ 2t − u1v− 2u1,

c2
1(P

m
n (W

p,v
u1,u2

))= pu1u2
[
(2v2
+ 3v)p2

− 4(v2
+ 3v+ 1)p+ 2v2

+ 8v+ 10
]

+ 8tu2(v+ 1)p2
+ 8

[
u1v− tu2(v+ 3)

]
p+ 14t − 7u1v− 16u1,

b+2 (P
m
n (W

p,v
u1,u2

))= 1
6 pu1u2

[
(3v2
+ 4v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 14v+ 18
]

+ 2tu2(v+ 1)p2
+ 2

[
u1v− tu2(v+ 3)

]
p+ 4t − 2u1v− 4u1− 1,

b−2 (P
m
n (W

p,v
u1,u2

))= 1
6 pu1u2

[
(3v2
+ 2v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 22v+ 30
]

+ 2tu2(v+ 1)p2
+ 2

[
u1v− tu2(v+ 3)

]
p+ 6t − 3u1v− 4u1− 1.
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The characteristic numbers of Qm
n (W

p,v
u1,u2) can be computed from these values via

(14). When m = 1, both P1
n (W

p,v
u1,u2) and Q1

n(W
p,v

u1,u2) are irreducible symplectic
4-manifolds and contain symplectic tori T j and T ′j ( j = 1, 2) of self-intersection 0
such that π1(P1

n (W
p,v

u1,u2) \ (T1 ∪ T2))= 1 and π1(Q1
n(W

p,v
u1,u2) \ (T

′

1 ∪ T ′2))= 1.

6. Upper bounds for the lower bound

We start this section by giving a more rigorous definition of λ(σ) from the intro-
duction.

Definition 13. Given an integer σ ≥ 0, let λ(σ) be the smallest positive integer
with the following properties.

(i) λ(σ)≥ d(σ + 1)/2e.

(ii) Every point (χh, c2
1) on the line c2

1 = 8χh +σ satisfying χh ≥ λ(σ) is realized
as (χh(Mi ), c2

1(Mi )), where {Mi | i ∈Z} is an infinite family of homeomorphic
but pairwise nondiffeomorphic closed simply connected nonspin irreducible
4-manifolds such that Mi is symplectic for each i ≥ 0 and Mi is nonsymplectic
for each i < 0.

As in the introduction, we make the following conjecture.

Conjecture 14. λ(σ)= d(σ + 1)/2e for every integer σ ≥ 0.

Our goal in this section is to calculate explicit upper bounds on λ(σ) for many
small values of σ . First we restate a result from [Akhmedov and Park 2008] (see also
[Akhmedov et al. 2010a, Theorem 23; Akhmedov and Park 2010a, Theorem 2]).

Theorem 15 [Akhmedov and Park 2008, Theorem 5.3]. Let X be a closed sym-
plectic 4-manifold that contains a symplectic torus T of self-intersection 0. Let
νT be a tubular neighborhood of T and ∂(νT ) its boundary. Suppose that the
homomorphism π1(∂(νT ))→ π1(X \ νT ) induced by the inclusion is trivial. Then
for any pair of integers (χ, c) satisfying

(17) χ ≥ 1 and 0≤ c ≤ 8χ,

there exists a symplectic 4-manifold Y with π1(Y )= π1(X),

χh(Y )= χh(X)+χ and c2
1(Y )= c2

1(X)+ c.

Moreover, if X is minimal then Y is minimal as well. If c < 8χ , or if c = 8χ and
X has an odd intersection form, then the corresponding Y has an odd indefinite
intersection form. �

The next theorem gives us a means for constructing infinitely many distinct
smooth structures on some topological 4-manifolds.
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Theorem 16. Let Y be a closed simply connected minimal symplectic 4-manifold
with b+2 (Y ) > 1. Assume that Y contains a symplectic torus T of self-intersection
0 such that π1(Y \ T ) = 1. Then there exist an infinite family of pairwise nondif-
feomorphic irreducible symplectic 4-manifolds and an infinite family of pairwise
nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which are homeo-
morphic to Y .

Proof. We can perform a knot surgery on Y along T using a knot K ⊂ S3 (see
[Fintushel and Stern 2009, Lecture 3]). Let YK denote the resulting 4-manifold.
Since π1(Y \ T )= 1, YK is homeomorphic to Y . By varying the knot K , we obtain
infinitely many pairwise nondiffeomorphic 4-manifolds. If K is a fibered knot, then
YK can be viewed as a symplectic fiber sum [Fintushel and Stern 1998], is minimal
by Usher’s theorem [2006], and hence is irreducible [Hamilton and Kotschick 2006;
Kotschick 1997].

Given an integer k 6= 0, let T (k) denote the k-twist knot on page 372 of [Fintushel
and Stern 1998] with Alexander polynomial kt − (2k+ 1)+ kt−1. If k =±1, then
T (±1) is fibered, and thus YT (±1) is symplectic and irreducible. If k 6= 0,±1,
then YT (k) is nonsymplectic. It only remains to prove that YT (k) is irreducible
when k 6= 0,±1. We will argue the same way as in the proof of Theorem 8. The
computation of the Seiberg–Witten invariant of YT (k) in [Fintushel and Stern 2009]
implies that there exists an isomorphism ξT (k) : H 2(YT (1);Z) −→ H 2(YT (k);Z)

that preserves the cup product pairing and restricts to a one-to-one correspondence
between the Seiberg–Witten basic classes of YT (1) and YT (k). Suppose that YT (k) is
not irreducible. Then there will be some e1 ∈ H 2(YT (k);Z) such that e2

1 =−1 and
ξT (k)(c1(YT (1)))+2e1 is a Seiberg–Witten basic class of YT (k). This will imply that
c1(YT (1))+2ξ−1

T (k)(e1) is a Seiberg–Witten basic class of YT (1). By a result of Taubes
[1996], we can then conclude that the Poincaré dual of ξ−1

T (k)(e1) is represented by
an embedded symplectic sphere of self-intersection −1 in YT (1). Hence YT (1) is not
minimal, a contradiction. �

By combining Theorems 15 and 16, we may deduce the following.

Corollary 17. Let X be a closed simply connected nonspin minimal symplectic 4-
manifold with b+2 (X)> 1 and σ(X)≥ 0. Assume that X contains disjoint symplectic
tori T1 and T2 of self-intersection 0 such that π1(X \ (T1∪ T2))= 1. Suppose σ is a
fixed integer satisfying 0≤ σ ≤ σ(X). If dxe =min{k ∈ Z | k ≥ x} and if we define

`(σ )=

⌈
σ(X)− σ

8
− 1

⌉
,

then

λ(σ)≤ χh(X)+ `(σ )+ 1.
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In other words, if k is any odd integer satisfying k ≥ b+2 (X)+ 2`(σ )+ 2, then
there exist an infinite family of pairwise nondiffeomorphic irreducible symplec-
tic 4-manifolds and an infinite family of pairwise nondiffeomorphic irreducible
nonsymplectic 4-manifolds, all of which are homeomorphic to kCP2 # (k− σ)CP2.

Proof. We can write σ(X)−σ = 8`(σ )+r(σ ) for integers `(σ ) and r(σ ) satisfying
`(σ )≥−1 and 1≤ r(σ )≤ 8. Since π1(X \ νT1)= 1, we can apply Theorem 15 to
the pair, X and T1. Let (χ, c) and Y be as in the conclusion of Theorem 15. Since
π1(Y )= π1(X)= 1, we have b+2 (Y )= b+2 (X)+2χ and b−2 (Y )= b−2 (X)+10χ−c.
By Freedman’s classification theorem [1982], Y must be homeomorphic to

(b+2 (X)+ 2χ)CP2 # (b−2 (X)+ 10χ − c)CP2.

By setting c = 8χ +σ −σ(X) in (17), we obtain a minimal symplectic 4-manifold
Y that is homeomorphic to kCP2 # (k− σ)CP2, where k = b+2 (X)+ 2χ . Since c
is nonnegative, we must have 8χ + σ − σ(X) = 8(χ − `(σ ))− r(σ ) ≥ 0, which
implies that χ ≥ `(σ )+ 1. It follows that χh(Y ) ≥ χh(X)+ `(σ )+ 1 and k ≥
b+2 (X)+ 2`(σ )+ 2.

We recall from [Akhmedov et al. 2010a; Akhmedov and Park 2008; 2010a] that
for each pair of integers (χ, c) satisfying (17), there exist a minimal symplectic
4-manifold Z with χh(Z) = χ , c2

1(Z) = c, and a symplectic torus T ′′ ⊂ Z of
self-intersection 0 such that Y is the generalized fiber sum of X and Z along T1

and T ′′. Note that T2 ⊂ (X \νT1)⊂ Y is a symplectic torus of self-intersection 0 in
Y (cf. [Gompf and Stipsicz 1999, Theorem 10.2.1]). Since π1(X \ (νT1 ∪ T2))= 1,
we have π1(Y \ T2)= 1. We can now apply Theorem 16 to the pair, Y and T2, and
conclude that there are infinitely many distinct smooth structures on Y . �

Next we show that λ(σ) is subadditive in the following sense.

Corollary 18. Let σ1 and σ2 be positive integers such that σ1+ σ2 is not divisible
by 16. For each j = 1, 2, suppose that there exists a closed simply connected
nonspin minimal symplectic 4-manifold N j containing a symplectic torus T j ⊂ N j

of self-intersection 0 such that

(i) π1(N j \ T j )= 1,

(ii) χh(N j )= λ(σ j ), and σ(N j )= σ j .

Then we have λ(σ1+ σ2)≤ λ(σ1)+ λ(σ2).

Proof. Let X be the generalized fiber sum of N1 and N2 along T1 and T2. It is easy
to check that X is a closed simply connected minimal symplectic 4-manifold. Since

σ(X)= σ(N1)+ σ(N2)= σ1+ σ2 6≡ 0 (mod 16),

X is nonspin by Rohlin’s theorem [1952]. Let T be a parallel copy of T1 (and T2)
in X . From (i), there are topological disks bounding the meridians of T1 and T2,
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and these disks can be glued together to form a topological sphere that intersects T
transversely once. It follows that π1(X \T )= 1 and thus we can apply Corollary 17
with σ = σ(X) and conclude that

λ(σ1+ σ2)≤ χh(X)= χh(N1)+χh(N2)= λ(σ1)+ λ(σ2). �

We now proceed to list the smallest upper bounds on λ(σ) currently known to the
authors. We begin by first finding parameters g, p, v, u1, u2 and t in Examples 11
and 12 that yield 4-manifolds with small χh values. By Rohlin’s theorem, these
4-manifolds are nonspin if their signatures are not divisible by 16. Unfortunately,
given an integer σ ≥ 0, there is no clear pattern as to which family or parameters

σ λ(σ)≤ X σ λ(σ)≤ X

0–1 25 Q1
9(W

3,2
1,1 ) 50 86 P1

19(W
5,1
2,1 )

2 24 Q1
9(W

3,2
1,1 ) 51 111 P1

19(W
5,1
2,1 ) #ϕQ1

9(W
3,2
1,1 )

3 27 P1
9 (W

3,2
1,1 ) 52 110 P1

19(W
5,1
2,1 ) #ϕQ1

9(W
3,2
1,1 )

4 26 P1
9 (W

3,2
1,1 ) 53 113 P1

19(W
5,1
2,1 ) #ϕP1

9 (W
3,2
1,1 )

5 47 Q1
15(W

3,2
1,2 ) 54 112 P1

19(W
5,1
2,1 ) #ϕP1

9 (W
3,2
1,1 )

6 46 Q1
15(W

3,2
1,2 ) 55 133 P1

19(W
5,1
2,1 ) #ϕQ1

15(W
3,2
1,2 )

7 49 P1
15(W

3,2
1,2 ) 56 132 P1

19(W
5,1
2,1 ) #ϕQ1

15(W
3,2
1,2 )

8 48 P1
15(W

3,2
1,2 ) 57 135 P1

19(W
5,1
2,1 ) #ϕP1

15(W
3,2
1,2 )

9–13 59 Q1
18(W

5,1
1,1 ) 58 134 P1

19(W
5,1
2,1 ) #ϕP1

15(W
3,2
1,2 )

14–21 58 Q1
18(W

5,1
1,1 ) 59–61 143 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

22 57 Q1
18(W

5,1
1,1 ) 62–69 142 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

23 60 P1
18(W

5,1
1,1 ) 70 141 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

24 59 P1
18(W

5,1
1,1 ) 71 144 Q1

36(W
5,1
3,1 )

25 84 P1
18(W

5,1
1,1 ) #ϕQ1

9(W
3,2
1,1 ) 72 143 Q1

36(W
5,1
3,1 )

26 83 P1
18(W

5,1
1,1 ) #ϕQ1

9(W
3,2
1,1 ) 73 146 P1

36(W
5,1
3,1 )

27 86 P1
18(W

5,1
1,1 ) #ϕP1

9 (W
3,2
1,1 ) 74 145 P1

36(W
5,1
3,1 )

28 85 P1
18(W

5,1
1,1 ) #ϕP1

9 (W
3,2
1,1 ) 75–81 167 Q1

34(W
5,1
2,2 )

29–31 87 Q1
19(W

5,1
2,1 ) 82–89 166 Q1

34(W
5,1
2,2 )

32–39 86 Q1
19(W

5,1
2,1 ) 90–97 165 Q1

34(W
5,1
2,2 )

40–47 85 Q1
19(W

5,1
2,1 ) 98 164 Q1

34(W
5,1
2,2 )

48 84 Q1
19(W

5,1
2,1 ) 99 167 P1

34(W
5,1
2,2 )

49 87 P1
19(W

5,1
2,1 ) 100 166 P1

34(W
5,1
2,2 )

Table 2. Upper bounds on λ(σ).
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will yield a simply connected nonspin 4-manifold X with σ(X) ≥ σ having the
smallest χh(X)+ `(σ )+ 1. Hence we had to resort to a computer search.

Table 2 on the previous page lists some of the smallest upper bounds on λ(σ)
that we found. For example, when σ = 10, Table 2 says that λ(10) ≤ 59, that is,
for each odd integer k ≥ 2 · 59− 1= 117, there exist an infinite family of pairwise
nondiffeomorphic irreducible symplectic 4-manifolds and an infinite family of
pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which are
homeomorphic to kCP2 # (k−10)CP2. The third column in Table 2 lists the simply
connected 4-manifold X that was used to obtain the upper bound via Corollary 17.
The #ϕ symbol denotes a generalized fiber sum along the tori T j and/or T ′j . We
have compiled upper bounds on λ(σ) for σ up to about 1,000,000 but we will only
list a small sample here.
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SCHUR–HORN THEOREMS IN II∞-FACTORS

MARTÍN ARGERAMI AND PEDRO MASSEY

We describe majorization between selfadjoint operators in a σ -finite II∞
factor (M, τ) in terms of simple spectral relations. For a diffuse abelian
von Neumann subalgebra A ⊂ M that admits a (necessarily unique) trace-
preserving conditional expectation, denoted by EA, we characterize the clo-
sure in the measure topology of the image through EA of the unitary orbit
of a selfadjoint operator in M in terms of majorization (i.e., a Schur–Horn
theorem). We also obtain similar results for the contractive orbit of positive
operators in M and for the unitary and contractive orbits of τ -integrable
operators in M.

1. Introduction

Given two vectors x, y ∈ Rn , we say that x is majorized by y (x ≺ y) if

k∑
j=1

x↓j ≤
k∑

j=1

y↓j , k = 1, . . . , n− 1;
n∑

j=1

x j =

n∑
j=1

y j ,

where x↓ ∈ Rn denotes the vector obtained from x by rearranging the entries in
nonincreasing order. The first systematic study of the notion of majorization is
attributed to Hardy, Littlewood, and Pólya [Hardy et al. 1929]. We refer the reader
to [Bhatia 1997] and [Marshall et al. 2011] for further references and properties of
majorization. It is well known that (vector) majorization is intimately related with the
theory of doubly stochastic matrices. Indeed, x ≺ y if and only if x = Dy for some
doubly stochastic matrix D; then, as a consequence of Birkhoff’s characterization
[1946] of the extreme points of the set of doubly stochastic matrices, one can
conclude that

(1-1) {x ∈ Rn
: x ≺ y} = conv{yσ : σ ∈ Sn},

where conv{yσ : σ ∈ Sn} denotes the convex hull of the set of vectors yσ that are
obtained from y by rearrangement of its components through permutations σ ∈ Sn .

Argerami was supported in part by the NSERC Discovery Grant Program. Massey was partially
supported by PIP 0435 - CONICET and UNLP-11X585.
MSC2010: primary 46L51; secondary 46L10, 52A05, 15A18.
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It turns out that majorization also characterizes the relation between the spectrum
and the diagonal of a selfadjoint matrix. Let Mn(C) denote the algebra of complex
n × n matrices. For A ∈ Mn(C), let diag(A) = (a11, a22, . . . , ann) ∈ Cn , and let
λ(A) ∈ Cn be the vector whose coordinates are the eigenvalues of A, counted with
multiplicity. I. Schur [1923] proved that for A∈Mn(C) selfadjoint, diag(A)≺λ(A);
while A. Horn [1954] proved the converse: given x, y ∈Rn with x ≺ y, there exists
a selfadjoint matrix A ∈ Mn(C), with diag(A) = x , λ(A) = y. For y ∈ Cn let
My ∈ Mn(C) denote the diagonal matrix with main diagonal y and let Un ⊂ Mn(C)

denote the group of unitary matrices. The results from Schur and Horn can then be
combined in the following assertion: given y ∈ Rn ,

(1-2) {x ∈ Rn
: x ≺ y} = {diag(U MyU∗) :U ∈Un},

usually known as the Schur–Horn Theorem. The fact that majorization relations
imply a family of entropic-like inequalities makes the Schur–Horn theorem an
important tool in matrix analysis theory [Bhatia 1997]. It has also been observed
that the Schur–Horn theorem plays a crucial role in frame theory [Antezana et al.
2007; Dhillon et al. 2005; Massey and Ruiz 2010].

Majorization in the context of von Neumann algebras has been widely studied
(see for instance [Argerami and Massey 2008b; Hiai 1987; 1992; Hiai and Nakamura
1987; Kamei 1983; 1984]). F. Hiai showed several characterizations of majorization
in a semifinite von Neumann algebra, including a generalization of (1-1), i.e., a
“Birkhoff” theorem. Nevertheless, the lack of the corresponding “Schur–Horn”
theorems in the general context of von Neumann factors was only recently observed.
Early work on this topic was developed by A. Neumann [1999; 2002] in relation
with an extension to infinite dimensions of the linear Kostant convexity theorem in
Lie theory.

W. Arveson and R.V. Kadison [2006] conjectured a Schur–Horn theorem in II1

factors. Although this conjecture remains an open problem, there has been progress
on related (but weaker) Schur–Horn theorems in this context [Argerami and Massey
2007; 2008a; 2009]. There has also been significant improvements of Neumann’s
work on majorization between sequences in c0(R

+) due to V. Kaftal and G. Weiss
[2008; 2010] because of the relations between infinite dimensional versions of the
Schur–Horn theorem (via majorization of bounded structured real sequences) and
arithmetic mean ideals (see also [Arveson and Kadison 2006] for improvements in
the compact case in B(H)).

In this paper we prove versions of the Schur–Horn theorem (i.e., generalizations
of (1-2)) in the case of a σ -finite II∞-factor. These results extend those obtained
in [Argerami and Massey 2007; 2008a; Neumann 1999]. Our results are in the
vein of Neumann’s work, and they are related with a weak version of Arveson and
Kadison’s scheme for Schur–Horn theorems, but modeled in II∞ factors. These
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extensions are formally analogous to the Schur–Horn theorems in [Argerami and
Massey 2007; 2008a], but the techniques are more involved in the infinite case. We
show that our results are optimal, in the sense that they can not be strengthened for
a general selfadjoint operator in a II∞ factor.

The paper is organized as follows. In Section 2 we develop notation and some
basic results on the measure topology and the τ -singular values in von Neumann
algebras. Section 3 deals with majorization in B(H), including some results
complementing those in [Neumann 1999]. In Section 4 we consider a notion
of majorization between selfadjoint operators in a II∞ factor (M, τ )— in line
with Neumann’s idea — together with several of its basic properties. Although
majorization in II∞ factors is not a new notion [Hiai 1987; 1992], our approach is
quite different from the previous presentations. In Section 5 we state and prove the
generalizations of the Schur–Horn theorem in II∞ factors. Our strategy is to reduce
the problem to a discrete version, where we can apply the Schur–Horn theorems
developed in Section 3 for B(H). We then proceed to show that Hiai’s notion of
majorization in terms of Choquet’s theory of comparison of measures [Hiai 1992]
coincides with ours. We finally consider similar results for the contractive orbit of a
positive operator and for the unitary and contractive orbits of bounded τ -measurable
operators.

2. Preliminaries

Let (M, τ ) be a σ -finite, semifinite, diffuse von Neumann algebra. The real subspace
of selfadjoint elements in M is denoted by Msa; the group of unitary operators by
UM; and the set of selfadjoint projections by P(M). Given p ∈ P(M), we use the
notation p⊥ = I − p. For any a ∈Msa and any Borel set 1 ⊂ R, pa(1) ∈ P(M)

denotes the spectral projection of a corresponding to 1.
T. Fack [1982] considered in M the ideals F(M)= {x ∈M : τ(supp x∗) <∞}—

the τ -finite rank operators — and K(M)= F(M), the ideal of τ -compact operators.
The quotient C∗-algebra M/K(M) is called the generalized Calkin algebra. The
essential spectrum of x — denoted σe(x)— is the spectrum of x + K(M) as an
element of M/K(M). The complement of σe(x) within σ(x) is the discrete spectrum
σd(x) of x . As shown in [Hiai 1992], for x ∈Msa,

σe(x)= {t ∈ σ(x) : τ(px(t − ε, t + ε))=∞ for all ε > 0}.

It follows from the previous definitions that x ∈ Msa is τ -compact if and only if
σe(x)= {0}.

We consider in M the measure topology T, which is the linear topology given by
the neighborhoods of 0 ∈M,

V (ε, δ)= {r ∈M : there exists p ∈ P(M) such that ‖r p‖< ε, τ(p⊥) < δ},
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where ε, δ > 0. For a II1 factor, T reduces to the σ -strong topology on bounded
sets, while in a type I∞ factor it reduces to the norm topology.

Definition 2.1. The upper spectral scale of b ∈ Msa is the nonincreasing right-
continuous real function

λt(b)=min{s ∈ R : τ(pb(s,∞))≤ t}, t ∈ [0,∞).

The lower spectral scale of b is the nondecreasing right-continuous function

µt(b)=−λt(−b)=max{s ∈ R : τ(pb(−∞, s))≤ t}, t ∈ [0,∞).

A direct consequence of these definitions is that λt(b), µt(b) ∈ σ(b) for every
t ∈ R+. The function t 7→ λt(b) is the analogue of the rearrangement of the
eigenvalues (in nonincreasing order and counting multiplicities) of a self-adjoint
matrix.

For x ∈M we can consider the τ -singular values of x given by νt(x)= λt(|x |),
t ∈ [0,∞). The spectral scale and τ -singular values have been extensively studied
[Fack 1982; Fack and Kosaki 1986; Hiai and Nakamura 1987; Kadison 2004; Petz
1985] in the broader context of τ -measurable operators affiliated to (M, τ ).

The elements of K(M) can be described in terms of τ -singular values. Indeed,
x ∈M is τ -compact if and only if limt→∞ νt(x) = 0 [Hiai 1987]. We will make
frequent use of the fact that (since M is diffuse) a given τ -compact x ∈M+ admits
a complete flag, i.e., an increasing assignment R+ 3 t 7→ e(t) ∈ P(M) such that
τ(e(t))= t , and

(2-1) x =
∫
∞

0
λt(x) de(t).

Unlike the finite case [Argerami and Massey 2007], the equality in (2-1) does not
hold for arbitrary τ -compact selfadjoint operators in M. This is possibly one of the
reasons why majorization has been considered mainly between positive operators
in the semifinite algebras (see the remarks at the end of [Hiai 1987]). We shall
overcome this issue by considering both the upper and lower spectral scale, as done
in [Neumann 1999] in the case of separable I∞ factors.

The following fact is used in [Hiai 1992] (in the context of possibly unbounded
operators) but we do not know of an explicit proof in the literature. For x ∈M, we
denote its usual one-norm or trace norm in (M, τ ) by ‖x‖1 = τ(|x |) ∈ [0,∞].

Proposition 2.2. Let (M, τ ) be a semifinite von Neumann algebra. For s > 0 let
‖ · ‖(s) be the norm given by

‖x‖(s) = inf{‖x1‖1+ s‖x2‖ : x = x1+ x2, x1, x2 ∈M}, x ∈M.

Then ‖x‖(s) =
∫ s

0 νt(x) dt , and the topology induced by ‖ · ‖(s) agrees with the
measure topology on bounded sets.
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Proof. The equality ‖x‖(s) =
∫ s

0 νt(x) dt is proven in [Fack and Kosaki 1986] in the
argument after Theorem 4.4. We now show that the topology induced by ‖ ·‖(s) and
the measure topology agree on bounded sets. Indeed, if 0< s ≤ r then there exists
k ∈ N such that r ≤ ks and therefore ‖x‖(s) ≤ ‖x‖(r) ≤ k‖x‖(s), since t 7→ νt(x)
is a nonincreasing function. This shows that the norms ‖ · ‖(s), for s > 0, are all
equivalent and induce the same topology. Hence we can assume without loss of
generality that s = 1.

If ‖x‖(1) < d, then
∫ 1

0 νt(x) dt < d. Using that νt(x) is nonincreasing, there
exists t0 with 0 < t0 <

√
d such that νt0(x) <

√
d. By [Fack and Kosaki 1986,

Proposition 2.2],

(2-2) νt0(x)= inf{‖xq‖ : τ(q⊥)≤ t0},

so there is a projection q ∈ P(M) such that ‖xq‖<
√

d and τ(q⊥) <
√

d; that is,
x ∈ V (

√
d,
√

d).
Conversely, if x ∈ V (ε, δ) and ‖x‖ ≤ k, there exists a projection q ∈P(M) such

that ‖xq‖< ε, τ(q⊥) < δ. Since x = xq⊥+ xq,

‖x‖(1) ≤ ‖xq⊥‖1+‖xq‖ ≤ kδ+ ε;

that is, V (ε, δ)∩ {x ∈M : ‖x‖ ≤ k} ⊂ {x ∈M : ‖x‖(1) ≤ kδ+ ε}. �

Corollary 2.3. Let N be a II1-factor with trace τN, and let {x j } be a bounded net.
Then x j

‖·‖1
−−→ x if and only if x j

T
−→ x.

Proof. For any x ∈Nsa we have ‖x‖1 = τN(|x |)=
∫ 1

0 νt(x) ds. Then ‖ ·‖1 = ‖·‖(1)
and Proposition 2.2 yields the result. �

We will often and without mention make use of the following properties of the
measure topology.

Corollary 2.4. Let A ⊂M be a von Neumann subalgebra that admits a (unique)
trace preserving conditional expectation, denoted by EA. Let {x j } ⊂ Msa satisfy
x j

T
−→ x , and let α, β ∈ R with α I ≤ x j ≤ β I for every j . Then:

(i) x ∈Msa and α ≤ x ≤ β.

(ii) EA(x j )
T
−→ EA(x).

Proof. In order to prove (i) first notice that if x j
T
−→ x with x j ≥ 0 for every j then

x ∈Msa; indeed, this follows from the facts that the operation of taking adjoint is
continuous in the measure topology and that this topology is Hausdorff. If x 6∈M+,
there exists a nonzero projection q ∈M and k ∈ R+ such that qxq ≤ (−k)q. By
replacing q by a smaller projection if necessary, we may assume that τ(q) <∞.
We have qx j q

T
−→ qxq, so for j big enough there exists a projection p such that
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‖(qxq − qx j q)p‖< k/3 and τ(p⊥) < τ(q)/2. Then pqp 6= 0, since

τ(pqp)= τ(pq)= τ(q)− τ(p⊥q)≥ τ(q)− τ(q)/2= τ(q)/2> 0.

We also get from above that τ(q) ≤ 2τ(pqp). But then τ(pq(x j − x)qp) =
τ(q[q(x j − x)qp])≤ 1

3 kτ(q), so

0≤ τ(pqx j qp)= τ(pqxqp)+ τ(pq(x j − x)qp)≤ (−k)τ (pqp)+ 1
3 kτ(q)

≤ (−k)τ (pqp)+ 2
3 kτ(pqp)=− 1

3 kτ(pqp) < 0,

a contradiction. This shows that x ≥ 0. By linearity we get that if x j
T
−→ x and

α ≤ x j ≤ β then α ≤ x ≤ β.
Item (ii) follows from the fact that EA is contractive with respect to ‖ · ‖(1)

together with Proposition 2.2. Indeed, it is well known that ‖EA(x)‖ ≤ ‖x‖ for
x ∈M. Using that τ(EA(x)y)= τ(x EA(y))≤ ‖EA(y)‖τ(|x |) we get

‖EA(x)‖1 = sup{|τ(EA(x)y)| : y ∈M, ‖y‖ ≤ 1} ≤ ‖x‖1.

For any decomposition x = y+ z, since EA(x)= EA(y)+ EA(z),

‖EA(x)‖(1) ≤ ‖EA(y)‖1+‖EA(z)‖ ≤ ‖y‖1+‖z‖.

So, by Proposition 2.2, ‖EA(x)‖(1) ≤ ‖x‖(1) for all x ∈ M, and so EA is T-
continuous. �

3. Majorization in `∞(N) and B(H) revisited

Let H be a complex separable Hilbert space. In this section we revise and comple-
ment A. Neumann’s [1999] theory on majorization between self-adjoint operators
in B(H). These results will play a key role in our proof of the Schur–Horn theorem
in II∞-factors (Theorem 5.5). For conceptual and notational convenience, we shall
follow the exposition in [Antezana et al. 2007] (see also [Kadison 2004]).

In B(H) we consider the canonical trace Tr. We write U(H) for the group of
unitary operators in H , and C(H) for the semigroup of contractive operators in
B(H), i.e.,

C(H)= {v ∈ B(H) : v∗v ≤ I }.

For k ∈ N, let Pk be the set of orthogonal projections p ∈ B(H) such that
Tr(p)= k. For b ∈ B(H)sa, k ∈ N, we consider

(3-1) Uk(b)= sup
p∈Pk

Tr(bp), and Lk(b)= inf
p∈Pk

Tr(bp).

For each k ∈N, both b 7→Uk(b) and b 7→ Lk(b) are norm-continuous in B(H), with
Lk(b)=−Uk(−b). Moreover, Uk(u∗bu)=Uk(b) for every b ∈ B(H)sa, u ∈U(H).
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Following [Neumann 1999] (but with a different notation) we define, for f ∈
`∞(N) and k ∈ N,

(3-2) Uk( f )= sup
{∑

j∈K
f j : |K | = k

}
, Lk( f )= inf

{∑
j∈K

f j : |K | = k
}
.

Again, for each k ∈ N, Lk( f )=−Uk(− f ). The similarity of the notations in (3-1)
and (3-2) is justified by the following fact: if b∈ B(H) is selfadjoint and there exists
an orthonormal basis {ei }i∈N of H and f = ( fi )i∈N ∈ `

∞

R (N) such that bei = fi ei ,
i ∈ N (i.e., if b is diagonal), then by [Antezana et al. 2007, Proposition 3.3]

(3-3) Uk(b)=Uk( f ), Lk(b)= Lk( f ), k ∈ N.

Definition 3.1 (operator majorization in B(H) [Antezana et al. 2007]). Let a,
b ∈ B(H)sa.

(i) We say that a is submajorized by b, and write a ≺w b, if Uk(a) ≤Uk(b) for
every k ∈ N.

(ii) We say that a is majorized by b, and write a ≺ b, if a ≺w b and Lk(a)≥ Lk(b)
for every k ∈ N.

We will also use the notion of vector majorization in `∞R (N) (used implicitly in
[Neumann 1999]) as follows:

Definition 3.2 (vector majorization in `∞R (N)). Let f , g ∈ `∞R (N).

(i) We say that f is submajorized by g, and write f ≺w g, if Uk( f )≤Uk(g) for
every k ∈ N.

(ii) We say that f is majorized by g, and write f ≺ g, if f ≺w g and Lk( f )≥ Lk(g)
for every k ∈ N.

We fix an orthonormal basis B= {ei }i∈N on H , with associated system of matrix
units {ei j }i, j∈N in B(H). For each f ∈ `∞(N) we denote by M f ∈ B(H) the
induced diagonal operator with respect to B, i.e., M f =

∑
i∈N fi ei i . By (3-3), it is

immediate that for all f, g ∈ `∞R (N),

(3-4) M f ≺ Mg⇐⇒ f ≺ g, M f ≺w Mg⇐⇒ f ≺w g.

We denote by PD : B(H)→ B(H) the trace preserving conditional expectation
onto the (discrete) diagonal masa with respect to the fixed orthonormal basis.
Explicitly, for each x ∈ B(H),

PD(x)=
∑

i

ei i xei i =
∑

i

fi ei i = M f , where fi = 〈xei , ei 〉, i ∈ N.

The next theorem is a combination of Theorems 2.18 and 3.13 of [Neumann
1999]. Although Neumann phrases the result in terms of vectors in `∞R (N), we
phrase it in terms of operators in B(H), as in [Antezana et al. 2007, Theorem 3.10].
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Theorem 3.3 (A Schur–Horn theorem for B(H)). Let H be a separable complex
Hilbert space and let PD denote the unique trace preserving conditional expectation
onto the discrete masa of diagonal operators with respect to the orthonormal basis
B of H. Then, for b ∈ B(H)sa,

{PD(ubu∗) : u ∈U(H)}
‖ ‖
= {M f : f ∈ `∞R (N),M f ≺ b}.

As a consequence of Theorem 3.3 and (3-4) we recover Neumann’s result for
majorization in `∞R (N) which states that, for f , g ∈ `∞R (N),

(3-5) M f ∈ {PD(uMgu∗) : u ∈U(H)}
‖ ‖

if and only if f ≺ g.

In the rest of this section we will develop a contractive version of Theorem 3.3
for positive operators of B(H) (Theorem 3.7). We will need a few preliminary
results.

A proof of the following elementary inequality can be found in [Kadison 2004,
Lemma 24].

Lemma 3.4. Let y1 ≥ y2 ≥ · · · be positive real numbers and α1, α2, . . . ∈ [0, 1]
with

∑
∞

j=1 α j ≤ k. Then

(3-6)
∞∑
j=1

α j y j ≤

k∑
j=1

y j .

Lemma 3.5. For any g ∈ `∞(N)+, k ∈ N we have

Uk(g)= sup{Tr(Mgx) : x ∈ C(H)+,Tr(x)≤ k}.

Proof. The inequality “≤” is clear by (3-1) and (3-3). To prove the reverse inequality,
fix k ∈ N, let ε > 0, and fix x ∈ C(H)+ with Tr(x) ≤ k. As x is a compact and
positive contraction, x =

∑
j γ j h j , where {h j } j is a pairwise-orthogonal family of

rank-one projections, 0≤ γ j ≤ 1 for all j , and
∑

j γ j ≤ k. We also have that Mg =∑
i gi ei i , where {ei i }i is the pairwise-orthogonal family of rank-one projections

associated with the canonical basis B. Let β = lim supn gn = max σe(Mg) and
define g′ ∈ `∞(N) by

g′i =
{

gi if gi ≥ β + ε,

β otherwise.

Using [Neumann 1999, Lemma 2.17] it is readily seen that |Uk(g′)−Uk(g)|< kε.
Notice that the set D = {i : g′i > β} is finite. So there is a unitary u ∈ U(H)
(induced by an appropriate permutation) such that g′′ given by Mg′′ = uMg′u∗

satisfies g′′1 ≥ g′′2 ≥ · · · ≥ g′′m , where m = |D|, and g′′i = β if i > m. For each
j ∈N, let h′j = u∗h j u; then {h′j } j is another family of pairwise orthogonal rank-one
projections with sum I . We have
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∑
i

(∑
j

γ j Tr(ei i h′j )
)
=

∑
j

γ j Tr(h′j )=
∑

j

γ j ≤ k

and
0≤

∑
j

γ j Tr(ei i h′j )≤
∑

j

Tr(ei i h′j )= Tr(ei i )= 1.

Since x ≥ 0 and g ≤ g′,

(3-7) Tr(Mgx)≤ Tr(Mg′x)= Tr(Mg′′u∗xu)=
∑

i

g′′i

(∑
j

γ j Tr(ei i h′j )
)
.

Now, starting from (3-7) and applying the inequality (3-6) to the numbers g′′1 ≥
g′′2 ≥ · · · ≥ 0 and {

∑
j γ j Tr(ei i h j )}i , we get

Tr(Mgx)≤
∑

i

g′′i

(∑
j

γ j Tr(ei i h′j )
)
≤

k∑
i=1

g′′i

=Uk(g′′)=Uk(g′) <Uk(g)+ εk.

As ε and x were arbitrary, we have proven the reverse inequality. �

Remark 3.6. Two operators a, b ∈ B(H) are said to be approximately unitarily
equivalent if there exists a sequence {un}n∈N ⊂U(H) such that

lim
n→∞
‖a− unbu∗n‖ = 0.

This equivalence is well-known to operator theorists and operator algebraists. As
a consequence of the Weyl – von Neumann theorem, it follows from the proof of
Theorem II.4.4 of [Davidson 1996] that a, b ∈ B(H)sa are approximately unitarily
equivalent if and only if their essential spectra (with respect to the classical Calkin
algebra) coincide and dim ker(a− λI )= dim ker(b− λI ) for every λ that is not in
the essential spectrum of these operators. From this it can be deduced, again as in
the proof of the result just cited, that for every b ∈ B(H)+ and every orthonormal
basis B of H , there exists Mg ∈ B(H)+— diagonal with respect to B — that is
approximately unitarily equivalent to b.

The following is the main result of this section.

Theorem 3.7 (A contractive Schur–Horn theorem for B(H)). Let H be a separable
complex Hilbert space and let PD denote the unique trace preserving conditional
expectation onto the discrete masa of diagonal operators with respect to the or-
thonormal basis B of H. Then, for b ∈ B(H)+,

{PD(vbv∗) : v ∈ C(H)}
‖ ‖
= {M f : f ∈ `∞(N)+,M f ≺w b}.
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Proof. We first consider a reduction to the case where b is diagonalizable with
respect to the orthonormal basis B. Indeed, by Remark 3.6 there exists g ∈ `∞(N)+

such that b and Mg are approximately unitarily equivalent. It is then straightforward
to see that

{vbv∗ : v ∈ C(H)}
‖ ‖
= {vMgv∗ : v ∈ C(H)}

‖ ‖
,

and that

(3-8) {PD(v∗bv) : v ∈ C(H)}
‖ ‖
= {PD(v∗Mgv) : v ∈ C(H)}

‖ ‖
.

By (3-3), Uk(b) = Uk(Mg) and Lk(b) = Lk(Mg) for all k ∈ N. These identities,
together with (3-8), imply that — without loss of generality — we can assume that
b = Mg for some g ∈ `∞(N)+.

Let v ∈ C(H) and let p ∈ B(H) be a projection with Tr(p) = k. Since
vv∗ ≤ I and 0 ≤ PD(p) ≤ I we have v∗PD(p)v ∈ C(H)+ and Tr(v∗PD(p)v) =
Tr(PD(p)1/2vv∗PD(p)1/2)≤ Tr(PD(p))= k. Put M f = PD(vMgv

∗). Then

Uk(M f )= sup{Tr(PD(vMgv
∗)p) : Tr(p)= k}

= sup{Tr((vMgv
∗)PD(p)) : Tr(p)= k}

= sup{Tr(Mg(v
∗PD(p)v)) : Tr(p)= k} ≤Uk(Mg),

where in the last inequality we are using Lemma 3.5 and the fact that v∗PD(p)v ∈
C(H)+. Thus, M f ≺w Mg and, as Uk(·) is norm-continuous for every k ∈ N, we
get the inclusion “⊂”.

For the reverse inclusion, assume that M f ≺w Mg (i.e., f ≺w g) and let ε > 0.
We follow the idea of the proof of [Bhatia 1997, Theorem II.2.8]. Consider f ′, g′ ∈
`∞(N)⊕ `∞(N), given by

f ′ = ( f + εe)⊕ εe, g′ = (g+ εe)⊕ 0.

where e ∈ `∞(N) is the identity. Note that ‖ f ⊕ 0− f ′‖∞, ‖g ⊕ 0− g′‖∞ < ε.
Since f, g ≥ 0, we have Uk( f ′)=Uk( f )+ kε, Uk(g′)=Uk(g)+ kε, Lk( f ′)= kε,
Lk(g′)= 0, for all k ∈ N. Hence we have f ′ ≺ g′. By Theorem 3.3, there exists a
unitary operator u ∈ B(H ⊕ H) such that

(3-9) ‖M f ′ − PD⊕D(uMg′u∗)‖< ε.

We have

(3-10) ‖Mg⊕0−Mg′‖< ε, ‖M f⊕0−M f ′‖< ε.

Now let q = I ⊕ 0 ∈ B(H ⊕ H), and let c = quq (clearly a contraction), seen as
an operator in B(H). Then, as q PD⊕D = PD⊕ 0 and q M f⊕0 = q M f⊕0q = M f⊕0,
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we can use (3-9) and (3-10) to get

‖M f − PD(cMgc∗)‖ = ‖q(M f⊕0− PD⊕D(uMg⊕0u∗))q‖

≤ ‖M f⊕0− PD⊕D(uMg⊕0u∗)‖

< 2ε+‖M f ′ − PD⊕D(uMg′u∗)‖< 3ε.

As ε was arbitrary, we conclude that M f ∈ {PD(v∗Mgv) : v ∈ C(H)}
‖ ‖

. �

Remark 3.8. The positivity assumption in Theorem 3.7 is not just a technicality:
even in dimension one we have −1≺w 0, and {v0v∗ : |v| ≤ 1} = {0}.

As a consequence of Theorem 3.7 we get that, for f , g ∈ `∞(N)+,

(3-11) M f ∈ {PD(vMgv∗) : v ∈ C(H)}
‖ ‖

if and only if f ≺w g.

4. Majorization in II∞-factors

Recall that (M, τ ) denotes a σ -finite and semifinite diffuse von Neumann algebra.
Given a ∈Msa, we consider the functions

Ut(a)=
∫ t

0
λs(a) ds and L t(a)=

∫ t

0
µs(a) ds, t ∈ R+,

where t 7→ λt(a) and t 7→ µt(a) denote the upper and lower spectral scales
(Definition 2.1).

Our next goal is to describe the maps b 7→ Ut(b) and b 7→ L t(b) by means of
[Fack and Kosaki 1986, Lemma 4.1]. We will make use of the following relation
between spectral scales and singular values:

(4-1) λt(a)= νt(a+ γ I )− γ, µt(a)= ρ− νt(−a+ ρ I ), a ∈Msa,

for any γ , ρ ∈ R such that a+ γ I , −a+ ρ I ∈M+. We will denote by Pt(M) the
set of all projections in M of trace t , i.e.,

Pt(M)= {p ∈ P(M) : τ(p)= t}.

Since (M, τ ) is diffuse and semifinite, Pt(M) 6=∅ for every t ≥ 0.

Lemma 4.1. For any a ∈Msa,

Ut(a)= sup{τ(ap) : p ∈ Pt(M)}, L t(a)= inf{τ(ap) : p ∈ Pt(M)}, t ∈ R+.

Proof. The equalities are an immediate consequence of the identities (4-1) together
with [Fack and Kosaki 1986, Lemma 4.1] and the fact that, for every t ∈ R+,

sup{τ(ap) : p ∈ Pt(M)} = sup{τ((a+ γ I )p) : p ∈ Pt(M)}− γ t. �
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Remark 4.2. If a ∈K(M)+, then µt(a+)= 0 for t ∈ R+. Let {e(t)}t∈R+ ⊂M be a
complete flag for a such that a =

∫
∞

0 λt(a) de(t) (which exists by the assumptions
on M). Then, using [Fack and Kosaki 1986, Proposition 2.7] and (4-1), we have

Ut(a)=
∫ t

0
λs(a) ds = τ(ae(t)) and L t(a)= 0, t ∈ R+.

Thus, for a positive τ -compact operator a the supremum in Lemma 4.1 is attained
explicitly by means of the projection e(t) in Pt(M)∩ {a}′.

Lemma 4.3. Let b ∈Msa. Then, for each t ∈ R+, the functions b 7→ Ut(b), b 7→
L t(b) are ‖ · ‖1-continuous, and they are also T-continuous on bounded sets of Msa.

Proof. It is enough to prove the statement for Ut(·), since L t(b)=−Ut(−b). Given
ε > 0, by Lemma 4.1 there exists p ∈ Pt(M) with Ut(x)≤ τ(xp)+ ε. Then

Ut(x)−Ut(y)≤ τ(xp)+ ε− τ(yp)≤ ‖x − y‖(t)+ ε ≤ ‖x − y‖1+ ε,

where we used the inequality τ((x − y)p)≤ τ(|x − y|p)≤ ‖x − y‖(t) that follows
from Lemma 4.1. By letting ε→ 0 and reversing the roles of x and y we conclude
the T and ‖ · ‖1 continuity of b 7→Ut(b) on bounded sets, by Proposition 2.2. �

From now on we will specialize (M, τ ) to be a σ -finite II∞-factor with faithful
normal semifinite tracial weight τ .

We begin by describing the notion of majorization between selfadjoint operators
in the II∞-factor M. In the setting of nonfinite von Neumann algebras, this concept
was developed for selfadjoint operators in [Hiai 1992]. Our presentation, inspired
by Neumann’s work [1999], is fairly different (see Remark 4.5 below).

Definition 4.4. Let a, b ∈Msa.

(i) We say that a is submajorized by b, and write a ≺w b, if

Ut(a)≤Ut(b) for every t ∈ R+.

(ii) We say that a is majorized by b, and write a ≺ b, if a ≺w b and

L t(a)≥ L t(b) for every t ∈ R+.

Remark 4.5. If b ∈K(M)+, then µt(b)= 0 for all t ∈ R+ and therefore L t(b)= 0
for all t ∈ R+. Thus, if a ∈M+ and a ≺w b, then a ≺ b.

For a, b ∈ M+, our notion of majorization is strictly stronger than the one
considered in [Hiai 1987]. As we have already mentioned, our notion of majorization
does coincide with that of [Hiai 1992] for selfadjoint operators in a II∞-factor (see
Corollary 5.7). It is worth pointing out that in [Hiai 1992] majorization is described
(for normal operators) in terms of Choquet’s theory on comparison of measures,
rather than in the simple terms used above: Lemma 4.1 shows that the notion of
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majorization in a II∞-factor from Definition 4.4 is an analogue of the notion of
operator majorization in B(H) as described in Definition 3.1.

For a fixed b ∈Msa, we write �M(b) for the set of all elements in Msa that are
majorized by b, i.e.,

�M(b)= {a ∈Msa
: a ≺ b}.

Proposition 4.6. Let b ∈Msa. Then �M(b) is a bounded T-closed convex set that
contains the unitary orbit UM(b).

Proof. For any x ∈ Msa, the definition of Ut(x) and L t(x), together with the
right-continuity of λt(x) and µt(x), imply that

lim
t→0+

Ut(x)
t
= λt(0)=max σ(x) and lim

t→0+

L t(x)
t
= µt(0)=min σ(x).

Hence, a ≺ b implies σ(a) ⊂ [min σ(b),max σ(b)]; in particular ‖a‖ ≤ ‖b‖, so
�M(b) is a bounded set. Lemma 4.3 immediately implies that it is closed in the
measure topology. Moreover, if u ∈ UM, it is easy to see that λt(ubu∗) = λt(b).
So Ut(ubu∗) = Ut(b) and, similarly, L t(ubu∗) = L t(b). Thus ubu∗ ≺ b, and
UM(b)⊂�M(b).

Let a1, a2 ∈Msa, γ ∈ [0, 1], with a1 ≺ b, a2 ≺ b. Using Lemma 4.1,

Ut(γ a1+ (1− γ )a2)= sup{τ(p(γ a1+ (1− γ )a2)) : τ(p)= t}

= sup{γ τ(pa1)+ (1− γ )τ(pa2) : τ(p)= t}

≤ γUt(a1)+ (1− γ )Ut(a2)≤Ut(b).

Similarly,

L t(γ a1+ (1− γ )a2)≥ γ L t(a1)+ (1− γ )L t(a2)≥ L t(b),

so γ a1+ (1− γ )a2 ≺ b, and �M(b) is convex. �

Remark 4.7. Let b ∈Msa. The function t 7→ λt(b) is nonincreasing and bounded;
therefore the numbers λe

max(b)= limt→∞ λt(b) and λe
min(b)= limt→∞ µt(b) exist.

Indeed, we have

(4-2) λe
max(b)=max σe(b)= lim

t→∞

Ut(b)
t

, λe
min(b)=min σe(b)= lim

t→∞

L t(b)
t

.

Consider the operators b̄, b ∈M+ given by

(4-3) b̄ = (b− λe
max(b)I )

+ and b = (λe
min(b)I − b)+.

Both b̄, b are positive τ -compact operators with orthogonal support. It is easy to
check that, for all t ≥ 0, Ut(b) = Ut(b̄)+ tλe

max(b), L t(b) = −Ut(b)+ tλe
min(b),
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and L t(b)= L t(b̄)= 0. If a ≺ b then, by (4-2),

λe
min(b)≤ λ

e
min(a)≤ λ

e
max(a)≤ λ

e
max(b).

We finish the section with three lemmas on perturbations to be used later.

Lemma 4.8. Let x ∈ K(M)+, z ∈ P(M) infinite with zx = 0 and ε > 0. Then there
exists x ′ ∈ K(M)+ such that

(i) the support of x ′ contains z;

(ii) ‖x ′− x‖< ε;

(iii) λt(x ′)= λt(x)+ ε/(6+ t), t ∈ [0,∞).

Proof. Since x is τ -compact, there exists s0 > 0 such that λs0(x) < ε/6. Let
p1 = px(λs0(x),∞). The τ -compactness of x guarantees that τ(p1) <∞.

As x is τ -compact and positive, there exists a complete flag ex(t) with x =∫
∞

0 λt(x) dex(t). Note that p1 = ex(s0). Let e1(t) be a complete flag over z, and
define

x ′ =
∫ s0

0

(
λt(x)+

ε

6+ t

)
dex(t)+

∫
∞

0

(
λt+s0(x)+

ε

6+ t + s0

)
de1(t).

The second term above equals x ′ p⊥1 = x ′z and its norm is less than ε/3; so

‖x − x ′‖ ≤
∥∥∥∥∫ s0

0

ε

6+ t
dex(t)

∥∥∥∥+‖xp⊥1 ‖+‖x
′ p⊥1 ‖<

ε

6
+
ε

6
+
ε

3
< ε.

It is clear by construction (since ex(t)e1(s)= 0 for all t, s) that

λt(x ′)= λt(x)+
ε

6+ t
, t ∈ [0,∞),

and this implies x ′ ∈ K(M). �

Lemma 4.9. Let A⊂M be a diffuse von Neumann subalgebra. Let a ∈Asa, b∈Msa

with a ≺ b, and fix ε > 0. Then there exist a′ ∈Asa, b′ ∈Msa such that

(i) ‖a− a′‖< ε, ‖b− b′‖< ε;

(ii) a′ ≺ b′;

(iii) a′, a′, b′, b′ (as defined in Remark 4.7) have infinite support.

Proof. We first consider a partition of the identity

s1 = pb
[
λe

max(b)+
ε

8
,∞

)
, s2 = pb

(
λe

min(b)−
ε

8
, λe

max(b)+
ε

8

)
,

s3 = pb
(
−∞, λe

min(b)−
ε

8

]
.

The projection s2 is infinite, while the others may or may not be infinite. We
consider a decomposition s2 = z1+ z2+ z3 into three mutually orthogonal infinite
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projections, such that

z1 ≤ pb
(
λe

max(b)−
ε

8
, λe

max(b)+
ε

8

)
, z3 ≤ pb

(
λe

min(b)−
ε

8
, λe

min(b)+
ε

8

)
.

Let a, ā ∈ K(A)+ and b, b̄ ∈ K(M)+ be as in (4-3). Apply Lemma 4.8 to b̄s1 with
the projection z1 and to bs3 with z3, to obtain (b̄)′, (b)′ ∈K(M)+, both with infinite
support and such that ‖(b̄)′− b̄s1‖< ε/4, ‖(b)′− bs3‖< ε/4. Define

b′ =
(
(b̄)′+ λe

max(b)(s1+ z1)
)
+ (s2− z1− z3)b−

(
(b)′− λe

min(b)(s3+ z3)
)
.

As b = (b̄s1+ λ
e
max(b)s1)+ bs2− (bs3− λ

e
min(b)s3), we get

‖b′− b‖ ≤ ‖(b̄)′− b̄s1‖+‖λ
e
max(b)z1− bz1‖+‖λ

e
min(b)z3− bz3‖+‖(b)′− bs3‖

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Note that λe
max(b

′)= λe
max(b); then b′ = (b̄)′, b′ = (b)′ have infinite support,

λt(b′)= λt(b′)+ λe
max(b

′)= λt((b)′)+ λe
max(b)(4-4)

= λt(b)+
ε

6+ t
+ λe

max(b)= λt(b)+
ε

6+ t

and similarly
µt(b′)= µt(b)−

ε

6+ t
.

Proceeding with a in the same way we did for b, we obtain a′ ∈ Asa with
‖a− a′‖< ε, with a′ and a′ having infinite support, and such that

(4-5) λt(a′)= λt(a)+
ε

6+ t
, µt(a′)= µt(a)−

ε

6+ t
, t ∈ [0,∞).

From (4-4), (4-5), and the fact that a ≺ b, we deduce that a′ ≺ b′. �

Let N be a semifinite diffuse von Neumann algebra with fns (faithful, normal,
semifinite) trace τ . We consider the set L1(N)∩N, which consists of those x ∈
N with ‖x‖1 < ∞. The elements in L1(N) ∩ N are necessarily compact, since∫
∞

0 λt(|x |) dt <∞ forces νt(x)= λt(|x |)−−−→t→∞ 0.

Lemma 4.10. Let N be a semifinite diffuse von Neumann algebra with fns trace τ ,
and let x ∈ L1(N)sa, ε > 0. Then there exists x ′ ∈ L1(N)sa such that

(i) ‖x ′− x‖1 < ε;

(ii) λt(x ′)= λt(x)+ ε/(10+ 4t2);

(iii) µt(x ′)= µt(x)− ε/(10+ 4t2);

(iv) τ(px ′(0,∞))=∞, τ(px ′(−∞, 0))=∞;

(v) px ′(−∞, 0)+ px ′(0,∞)= I .
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Proof. Since x is τ -compact, its essential spectrum contains zero. Then λt(x)≥ 0,
µt(x)≤ 0 for all t . With that in mind, the proof runs as the proof of Lemma 4.8,
using the L1 property instead of compactness to choose p1 and considering the
positive and negative parts of x separately. �

5. Schur–Horn theorems in II∞-factors

In this section we prove versions of the Schur–Horn theorem in the σ -finite II∞-
factor (M, τ ) (Theorems 5.5 and 5.8), in the spirit of Neumann’s work [1999]. We
also consider versions of these results for τ -integrable operators (Theorems 5.10
and 5.12).

We begin with the following result, which comprises the main technical part
of the proof of Theorem 5.5 (by allowing us to reduce the argument to a discrete
case). Recall that V (ε, δ) denotes the canonical basis of neighborhoods of 0 in the
measure topology, indexed by ε, δ > 0.

Proposition 5.1. Let A ⊂M be a diffuse von Neumann subalgebra. Let a ∈ Asa,
b ∈ Msa be such that a ≺ b and fix m ∈ N. Then there exist {pn}n≥1 ⊂ P(A),
{qn}n≥1 ⊂ P(M) such that

(i) pi p j = qi q j = 0 for i 6= j ;

(ii) τ(pn)= τ(qn)= τ(p1) for all n ∈ N;

(iii) τ(1−
∑

n≥1 pn)= τ(1−
∑

n≥1 qn) <
1
m ;

(iv) there exist f, g ∈ `∞R (N) such that
(a) f ≺ g;

(b)
(

a−
∑
n≥1

f (n)pn

)
,
(

b−
∑
n≥1

g(n)qn

)
∈ V

( 1
m
,

1
m

)
.

Proof. By Lemma 4.9 there exist a′ ∈ Asa, b′ ∈ Msa with ‖a − a′‖ < 1/2m,
‖b− b′‖< 1/2m, a′ ≺ b′, and such that ā, a, b̄, b (as defined in Remark 4.7) have
infinite support. So, at the cost of replacing 1/m with 2/m in (b) above, we can
assume without loss of generality that τ(r1)= τ(s1)= τ(r3)= τ(s3)=∞, where
r1, s1, r3, s3 ∈ P(M) are as in the proof of Lemma 4.9.

Since A is diffuse, there exist complete flags {eā(t)}t∈[0,∞), {ea(t)}t∈[0,∞) in A

over r1 and r3 respectively such that τ(eā(t))= τ(ea(t))= t for t ≥ 0 and

ā =
∫
∞

0
λs(ā) deā(s), a =

∫
∞

0
λs(a) dea(s).

Similarly, there exist complete flags {eb̄(t)}t∈[0,∞), {eb(t)}t∈[0,∞) over s1 and s3

respectively such that τ(eb̄(t))= τ(eb(t))= t for t ≥ 0 and

b̄ =
∫
∞

0
λs(b̄) deb̄(s), b =

∫
∞

0
λs(b) deb(s).
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Let qt = I−(eb̄(t)+eb(t)), pt = I−(eā(t)+ea(t)). Then {qt }, {pt } are decreasing
nets of projections that converge strongly to s2, r2 respectively. For the rest of the
proof, we will fix t > 0 big enough so that the following three properties hold (all
guaranteed by the fact that λt(x)→ 0 as t→∞ if x ∈ K(M)):(

λe
min(b)−

1
m

)
qt ≤ bqt ≤

(
λe

max(b)+
1
m

)
qt ,(5-1) (

λe
min(b)−

1
m

)
pt ≤ apt ≤

(
λe

max(b)+
1
m

)
pt ,(5-2)

max{λt(ā), λt(b̄), λt(a), λt(b)}<
1
m
.(5-3)

Now apply [Argerami and Massey 2007, Lemma 3.2] and Corollary 2.3 to aeā(t)
in the II1 factor eā(t)Meā(t) and to aea(t) in the II1-factor ea(t)Mea(t). This way
we get N ∈ N with N ≥ t · 3m · (2‖b‖m + 3), partitions {p j }

N
j=1 and {p′j }

N
j=1 of

eā(t) and ea(t) respectively given by

p j = eā

(
j t
N

)
− eā

(
( j − 1)t

N

)
, p′j = ea

(
j t
N

)
− ea

(
( j − 1)t

N

)
, 1≤ j ≤ N ,

and coefficients α′1 ≥ α
′

2 ≥ · · · ≥ α
′

N , α′′1 ≥ α
′′

2 ≥ · · · ≥ α
′′

N given by

α′j =
N
t

∫ j t/N

( j−1)t/N
λs(aeā(t)) ds =

N
t
τ(ap j ), α′′j =

N
t
τ(ap′j ),

such that

(5-4)
(

aeā(t)−
N∑

j=1

α′j p j

)
,

(
aea(t)−

N∑
j=1

α′′j p′j

)
∈ V

(
1
m
,

1
2m

)

(recall that ‖x‖(1) ≤ ‖x‖1 and that if ‖x‖(1) < 1/4m2, then x ∈ V (1/2m, 1/2m);
see the proof of Proposition 2.2). Similarly, we obtain for b partitions {q j }

N
j=1 and

{q ′j }
N
j=1 of eb̄(t) and eb(t) respectively such that

q j = eb̄

(
j t
N

)
− eb̄

(
( j − 1)t

N

)
, q ′j = eb

(
j t
N

)
− eb

(
( j − 1)t

N

)
, 1≤ j ≤ N ,

and coefficients β ′1 ≥ β
′

2 ≥ · · · ≥ β
′

N , β ′′1 ≥ β
′′

2 ≥ · · · ≥ β
′′

N given by

β ′j =
N
t
τ(bq j ), β ′′j =

N
t
τ(bq ′j )

with

(5-5)
(

beb̄(t)−
N∑

j=1

β ′j q j

)
,

(
beb(t)−

N∑
j=1

β ′′j q ′j

)
∈ V

(
1
m
,

1
2m

)
.
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Consider now a partition {I j }
L
j=1 of

[
λe

min(b)−
1
m , λ

e
max(b)+

1
m

]
into L consecutive

disjoint subintervals with 2 ≤ L ≤ 2‖b‖m + 3, with I1 =
[
λe

min(b)−
1
m , λ

e
min(b)

)
,

IL =
(
λe

max(b), λ
e
max(b)+

1
m

]
, and such that the length of each I j is no greater than

1
m . Define

ae = pt a, be = qt b.

Let γ1 = λ
e
min(b), γL = λ

e
max(b), and choose γ j ∈ I j for 2≤ j ≤ L− 1. The choice

of the γ j , together with (5-1) and (5-2), imply that

(5-6)
∥∥∥ae−

L∑
j=1
γ j pae(I j )

∥∥∥< 1
m
,

∥∥∥be−
L∑

j=1
γ j pbe(I j )

∥∥∥< 1
m
.

For j ∈ {1, . . . , L} let

ta
j =


⌊
τ(pae(I j ))N

t

⌋
if τ(pae(I j )) <∞,

∞ if τ(pae(I j ))=∞,

where bxc denotes the integer part of x ∈ R. We construct {tb
j }

L
j=1 in the same way.

For each j , if ta
j =∞ we consider a partition

{p( j)
i }i∈N ⊂ P(A)

of pae(I j ) with τ(p( j)
i ) = t/N for all i ∈ N; otherwise, if ta

j <∞, we consider a
partition

{p( j)
i }

ta
j+1

i=1 ⊂ P(A)

with τ(p( j)
i )= t/N for 1≤ i ≤ ta

j , and τ(p( j)
ta

j+1) < t/N .

Analogously, we consider partitions {q( j)
i }i ⊂ P(M) of pbe(I j ) for 1 ≤ j ≤ L .

Since b and b have infinite support, we have

(5-7) tb
1 = tb

L =∞, λe
min(b)≤ min

1≤ j≤L
γ j ≤ max

1≤ j≤L
γ j ≤ λ

e
max(b)

and there exists i0 ∈ {1, . . . , L} with ta
i0
= ∞. And, since L ≤ 2‖b‖m + 3 and

N ≥ t · 3m · (2‖b‖m+ 3), we have

(5-8)
∑

j :ta
j <∞

τ(p( j)
ta

j+1)≤

L∑
i=1

t
N
≤

1
3m
,

∑
j :tb

j<∞

τ(q( j)
tb

j+1
)≤

1
3m
.

We can assume that the projections
∑

j :ta
j <∞

p( j)
ta

j+1 and
∑

j :tb
j<∞

q( j)
tb

j+1
have equal

trace; indeed we can take the necessary mass (which will be certainly less than 1/2m)
from one of the projections pae(Ii0), pbe(IL) respectively (since each of them is an
infinite projection) before considering the partitions of these projections (this, at
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the cost of replacing both occurrences of “< 1/m” in (5-6) by “∈ V (1/m, 1/2m)”).
From (5-6) and (5-8),

(5-9)
(

ae−
L∑

j=1
γ j

ta
j∑

i=1
p( j)

i

)
,
(

be−
L∑

j=1
γ j

tb
j∑

i=1
q( j)

i

)
∈ V

( 1
m
,

1
m

)
.

Let {(αi , pi )}i≥1 be an enumeration of the countable set

{(α′j , p j ) :1≤ j ≤ N } ∪ {(α′′j , p′j ) :1≤ j ≤ N } ∪ {(γ j , p( j)
i ) :1≤ j ≤ L , 1≤ i ≤ ta

j }

and let {(βi , qi )}i≥1 be an enumeration of the countable set

{(β ′j , q j ) :1≤ j ≤ N } ∪ {(β ′′j , q ′j ) :1≤ j ≤ N } ∪ {(γ j , q( j)
i ) :1≤ j ≤ L , 1≤ i ≤ tb

j }.

By construction, {pn}n∈N ⊂A. It also follows that (i), (ii), and (iii) in the statement
of the theorem hold. Moreover, from (5-4), (5-5) and (5-9) we get part (b) of (iv)
(with f = {αn}n≥1, g = {βn}n≥1). It remains to show that f ≺ g in the sense of
Definition 3.1. We will only prove that Uk( f ) ≤ Uk(g) for k ≥ 1, since the Lk

inequalities follow in a similar way. We have

Uk(g)=

{∑k
i=1 β

′

j if 1≤ k ≤ N ,∑N
i=1 β

′

j + (k− N )λe
max(b) if N < k

(recall that γL = λ
e
max(b) and that there is an infinity of γL in the list {βn}). For

Uk( f ) we get

Uk( f )=

{∑k
i=1 α

′

j if 1≤ k ≤ N ,∑N
i=1 α

′

j +
∑k

i=N+1 γσ(i) if N < k,

for appropriate choices σ(i) ∈ {1, . . . , L}. If 1≤ k ≤ N , then

Uk(g)=
k∑

i=1

β ′i =
N
t

∫ kt
N

0
λs(b) ds =

N
t

Ukt/N (b)

≥
N
t

Ukt/N (a)=
N
t

∫ kt
N

0
λs(a) ds =

k∑
i=1

α′i =Uk( f ).

If N < k,

Uk(g)=
N
t

∫ t

0
λs(b) ds+ (k− N )λe

max(b)

≥
N
t

∫ t

0
λs(a) ds+

k∑
i=N+1

γσ(i) =Uk( f )

since, by (5-7), γσ(i) ≤ λe
max(b) for all i . �
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Remark 5.2. Let A ⊂ M be a diffuse von Neumann subalgebra. Fix a ∈ A+,
b ∈M+ such that a ≺w b and let m ∈ N. Then a slightly modified version of the
proof of Proposition 5.1 (with r3 = s3 = 0, λe

min(b)= λ
e
min(a)= 0) shows that there

exist {pn}n≥1 ⊂ P(A), {qn}n≥1 ⊂ P(M) and f, g ∈ `∞(N)+ such that conditions
(i)–(iii) and (b) hold, and such that f ≺w g. We will use these facts for the proof of
the contractive Schur–Horn theorem (Theorem 5.8).

The following result is standard, so its proof is omitted.

Lemma 5.3. Let N ⊂ M be a von Neumann subalgebra that admits a (unique)
trace-preserving conditional expectation, denoted by EN. Let {p j } j∈N ⊂ Z(N) be a
family of mutually orthogonal projections, pairwise equivalent in M. Let {ei j } be
a system of matrix units in B(H). Then there exists a (possibly nonunital) normal
*-monomorphism π : B(H)→M such that

(5-10) π(e j j )= p j , j ∈ N,

and

(5-11) EN(π(x))= π(PD(x)), x ∈ B(H).

The characterization of Ut in Lemma 4.1 allows us to prove that conditional
expectations are “contractive” from a majorization point of view:

Lemma 5.4. Let A⊂M be a diffuse abelian von Neumann subalgebra that admits
a (unique) trace preserving conditional expectation, denoted by EA. Then, for every
b ∈Msa, we have EA(b)≺ b.

Proof. Fix t > 0 and let ε > 0. Then we can apply Lemma 4.1 in A to get a
projection q ∈P(A)with τ(q)= t and such that Ut(EA(b))≤ τ(EA(b)q)+ε. Since
τ(EA(b)q)=τ(EA(bq))=τ(bq)≤Ut(b), we conclude that Ut(EA(b))≤Ut(b)+ε
for all ε > 0; so, Ut(EA(b)) ≤ Ut(b). Applying the same proof to −b, we get
L t(EA(b)) = −Ut(EA(−b)) ≥ −Ut((−b)) = L t(b). As t was arbitrary, we get
EA(b)≺ b. �

We are finally in position to state and prove our main theorem.

Theorem 5.5 (Schur–Horn theorem for II∞-factors). Let A⊂M be a diffuse abelian
von Neumann subalgebra that admits a (unique) trace preserving conditional
expectation, denoted by EA. Then, for any b ∈Msa,

EA(UM(b))
T
= {a ∈Asa

: a ≺ b}.

Proof. By Proposition 4.6 and Lemma 5.4, EA(UM(b))
T
⊂{a ∈A : a≺ b}. To show

the reverse inclusion, fix a ∈Asa with a≺ b and fix m ∈N. Applying Proposition 5.1
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to a, b we obtain sequences f ={αn}, g={βn}⊂`
∞

R (N), {pn}⊂P(A), {qn}⊂P(M)

with

pi p j = qi q j = 0 if i 6= j, τ (p1)= τ(p j )= τ(q j ) for all j,(5-12)

τ
(

1−
∑
n≥1

pn

)
= τ

(
1−

∑
n≥1

qn

)
<

1
m
,(5-13)

(
a−

∑
n≥1

αn pn

)
,
(

b−
∑
n≥1

βnqn

)
∈ V

( 1
m
,

1
m

)
,(5-14)

and f ≺ g. By Theorem 3.3 there exists a unitary v ∈ B(H) such that

‖M f − PD(vMgv
∗)‖<

1
m
.

The conditions on the projections in (5-12) and (5-13) guarantee that we can choose
w ∈ UM with wqnw

∗
= pn for all n. Let p =

∑
n pn , q =

∑
n qn; then by (5-13)

there exists a partial isometry z ∈M with z∗z = p⊥, zz∗ = q⊥. Let u be the unitary
u = (π(v)+ z)w, where π is the *-monomorphism from Lemma 5.3 with respect
to the projections {pn}n . From (5-14),

a−π(M f ) ∈ V
( 1

m
,

1
m

)
, wbw∗−π(Mg) ∈ V

( 1
m
,

1
m

)
.

Note that by (5-13) we have τ(p⊥) < 1/m, τ(q⊥) < 1/m, so z, z∗ ∈ V (ε, 1/m)
for any ε > 0. From this we conclude that

(π(v)+ z)π(Mg)(π(v)+ z)∗−π(vMgv
∗) ∈ V

(
ε,

2
m

)
, ε > 0.

It follows that
ubu∗−π(vMgv

∗) ∈ V
( 2

m
,

3
m

)
.

Letting m vary all along N, we have constructed sequences of unitaries {um}m ⊂M

and {vm}m ⊂U(H), and sequences { fm}m, {gm}m ⊂ `
∞

R (N) with

π(M fm )− a T
−−−→m→∞ 0, M fm − PD(vm Mgmv

∗

m)
‖ ‖
−−−→m→∞ 0,(5-15)

umbu∗m −π(vm Mgmv
∗

m)
T
−−−→m→∞ 0.

Using that π is a *-monomorphism, the T-continuity of EA (Corollary 2.4) and the
fact that EA ◦π = π ◦ PD (Lemma 5.3) we get from (5-15) that

(5-16) π(M fm )−π(PD(vm Mgmv
∗

m))
‖ ‖
−−−→m→∞ 0

and

(5-17) EA(umbu∗m)−π(PD(vm Mgmv
∗

m))
T
−−−→m→∞ 0.
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From (5-15), (5-16), and (5-17), we get E(umbu∗m)− a T
−−−→m→∞ 0. That is, a lies in

EA(UM(b))
T

. �

Remark 5.6. Consider the notations and hypothesis in the statement of Theorem 5.5.
It is natural to ask whether one can remove the closure bar in the description of the
set {a ∈Asa

: a ≺ b} given in Theorem 5.5. Next we show an example in which

EA(UM(b))⊂ EA

(
UM(b)

T)( EA(UM(b))
T
.

This implies that the characterization of {a ∈ Asa
: a ≺ b} given in Theorem 5.5

cannot be strengthened in the II∞ case.
We consider p∈P(M) an infinite projection with p⊥ also infinite. Then Ut(p)= t ,

L t(p)= 0 for all t . Since Ut(I )= t , L t(I )= t , we have I ≺ p; then

(5-18) I ∈ EA(UM(p))
T

but I 6∈ EA

(
UM(p)

T)
.

Indeed, Theorem 5.5 guarantees the claim to the left in (5-18). On the other hand,
assume that there exists x ∈UM(p)

T
with I = EA(x). By Corollary 2.4, 0≤ x ≤ I

and then
0= τ(I − EA(x))= τ(EA(I − x))= τ(I − x).

This last fact implies that I = x ∈UM(p)
T

by the faithfulness of τ . But as ‖ · ‖(1)
is a unitarily invariant norm, for any u ∈UM we get

‖I − upu∗‖(1) = ‖u(I − p)u∗‖(1) = ‖I − p‖(1) > 0

as p 6= I . Since ‖ · ‖(1) is T-continuous (see Proposition 2.2), there is positive
distance from I to the T-closure of the unitary orbit of p, a contradiction.

It would be interesting to have a description of the set EA(UM(b)
T
) for an

abelian diffuse von Neumann subalgebra A of a general σ -finite semifinite factor
(M, τ ), that admits a trace preserving conditional expectation EA. But even in the
I∞ factor case this problem is known to be hard (see [Kadison 2002, Theorem 15;
Arveson 2007; Arveson and Kadison 2006] for further discussion). In the II1-factor
case Arveson and Kadison [2006] conjectured that

(5-19) EA

(
UM(b)

T)
= {a ∈Asa

: a ≺ b},

which is still an open problem (see [Argerami and Massey 2007; 2008a; 2009] for
a detailed discussion). �

The next result shows that the notion of majorization in Msa from Definition 4.4
coincides with the majorization introduced in [Hiai 1992]. Thus, several other
characterizations of majorization can be obtained from Hiai’s work. Following Hiai,
we say that a map is doubly stochastic if it is unital, positive and preserves the trace.
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Corollary 5.7. Let A ⊂ M be a diffuse abelian von Neumann subalgebra that
admits a (unique) trace preserving conditional expectation, denoted by EA. Given
a, b ∈Msa, the following statements are equivalent:

(i) a ≺ b.

(ii) a ∈ EA(UM(b))
T

.

(iii) a ∈ conv{UM(b)}
T

.

(iv) There exists a doubly stochastic map F on M with a = F(b).

(v) There exists a completely positive doubly stochastic map F on M with a= F(b).

(vi) τ( f (a))≤ τ( f (b)) for every convex function f : I → [0,∞) with σ(a)⊂ I
and σ(b)⊂ I .

(vii) a is spectrally majorized by b (in the sense of [Hiai 1992]).

Proof. By Theorem 5.5, (i) and (ii) are equivalent. The statements (iii)–(vii)
are mutually equivalent by [Hiai 1992, Theorem 2.2]. Also, (iii) implies (i) by
Proposition 4.6. So it will be enough to show that (i) implies (iv).

Let a ∈ A with a ≺ b. By Theorem 5.5, there exist unitaries {u j } ⊂ M such
that a = limT EA(u j bu∗j ). Consider the sequence of completely positive contrac-
tions EA(u j · u∗j ) :M→ A; by compactness in the BW topology [Paulsen 2002,
Theorem 7.4], this sequence admits a convergent (pointwise ultraweakly) subnet
{EA(u jk · u

∗

jk )}. Let F be the limit of such subnet. Since a = limT EA(u j bu∗j ) and
F(b)= limσ−wot EA(u jk bu∗jk ), we conclude (mimicking the argument in the proof
of Lemma 3.3 in [Hiai 1992]) that F(b) = a. It is easy to check that F is unital
and that it preserves the trace. �

We finish this section with contractive and L1 analogs of Theorem 5.5.

Theorem 5.8. Let A⊂M be a diffuse abelian von Neumann subalgebra that admits
a (unique) trace preserving conditional expectation, denoted by EA. If b ∈M+ then

(5-20) EA({cbc∗ : ‖c‖ ≤ 1})
T
= {a ∈A+ : a ≺w b}.

Proof. If c ∈ M is a contraction, then λt(cbc∗) ≤ λt(b) [Fack and Kosaki 1986,
Lemma 2.5]. So cbc∗ ≺w b and then Lemmas 5.4 and 4.3 give the inclusion “⊂”
above.

For the reverse inclusion, the proof runs exactly as that of Theorem 5.5, but
instead of using Proposition 5.1 and (3-5) to obtain a sequence of unitary operators
in M, we use (3-11) and Remark 5.2 to obtain a convenient sequence of contractions
in M. �

Remark 5.9. The positivity condition in Theorem 5.8 cannot be relaxed to selfad-
jointness. As a trivial example, take b = 0; then −I ≺w b, but cbc∗ = 0 for all c,
so the set on the left in (5-20) is {0}.
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Recall that L1(M)∩M consists of those x ∈M with τ(|x |) <∞, and that such
elements are necessarily τ -compact.

Theorem 5.10. Let A ⊂ M be a diffuse abelian von Neumann subalgebra that
admits a (unique) trace preserving conditional expectation, denoted by EA. If
b ∈ L1(M)∩Msa then

EA(UM(b))
‖·‖1
= {a ∈ L1(M)∩Asa

: a ≺ b, τ (a)= τ(b)}.

Proof. Proposition 4.6 together with Lemma 5.4 show that EA(UM(b))⊂ {a ∈Asa
:

a ≺ b, τ (a)= τ(b)}. Then Lemma 4.3 and the ‖ · ‖1-continuity of the trace imply
the inclusion of the corresponding closure.

Conversely, suppose that a≺ b and τ(a)= τ(b). First assume that b ∈M+. Then
a ∈A+. By Theorem 5.5, there exists a sequence of unitaries {u j } such that

EA(u j bu∗j )
T
−→ a.

Since b is positive, ‖EA(u j bu∗j )‖1 = τ(EA(u j bu∗j ))= τ(b)= τ(a)= ‖a‖1. Then
[Fack and Kosaki 1986, Theorem 3.7] guarantees that ‖EA(u j bu∗j )− a‖1→ 0.

If b is not positive, we apply Lemma 4.10 to obtain a′ ∈A, b′ ∈M, with

(i) a′ ≺ b′;

(ii) ‖a′− a‖1 < ε, ‖b′− b‖1 < ε;

(iii) τ(pa′(0,∞))= τ(pb′(0,∞))=∞;

(iv) τ(pa′(−∞, 0))= τ(pb′(−∞, 0))=∞;

(v) pa′(−∞, 0)+ pa′(0,∞)= pb′(−∞, 0)+ pb′(0,∞)= I .

Let r1 = pa′+(0,∞), r2 = pa′−(0,∞). The last three conditions above guarantee
that we can find a unitary v ∈UM with

v(pb′+(0,∞))v∗ = r1, v(pb′−(0,∞))v∗ = r2.

Let b′′ = vb′v∗. Then a′ ≺ b′′. Since both are τ -compact, we deduce that a′
+
≺ b′′
+

,
a′
−
≺ b′′
−

. Note that

a′
+
, b′′
+
∈ r1Mr1, a′

−
, b′′
−
∈ r2Mr2.

As both r1, r2 ∈ A are infinite projections, the factors r1Mr1 and r2Mr2 are II∞.
So we can apply the first part of the proof to obtain unitaries {u(1)j } ⊂ U(r1Mr1),

{u(2)j } ⊂U(r2Mr2), with

‖EA(u
(1)
j b′′
+
(u(1)j )

∗)− a′
+
‖1→ 0, ‖EA(u

(2)
j b′′
−
(u(2)j )

∗)− a′
−
‖1→ 0.

Since r1 + r2 = I , r1r2 = 0, the operators u j = (u
(1)
j + u(2)j )v are unitaries in M.



SCHUR–HORN THEOREMS IN II∞-FACTORS 307

Then

‖EA(u j bu∗j )− a‖1
≤ ‖EA(u j bu∗j )− EA(u j b′u∗j )‖1+‖EA(u j b′u∗j )− a′‖1+‖a′− a‖1

≤‖b′−b‖1+‖a′−a‖1+‖EA(u
(1)
j b′′(u(1)j )

∗)−a′
+
‖1+‖EA(u

(2)
j b′′(u(2)j )

∗)−a′
−
‖1

≤ 2ε+‖EA(u
(1)
j b′′
+
(u(1)j )

∗)− a′
+
‖1+‖EA(u

(2)
j b′′
−
(u(2)j )

∗)− a′
−
‖1.

So lim sup j ‖EA(u j bu∗j ) − a‖1 < 2ε, and as ε was arbitrary we conclude that
lim j ‖EA(u j bu∗j )− a‖1 = 0, i.e., a ∈ EA(UM(b))

‖·‖1 . �

Remark 5.11. The condition τ(a) = τ(b) in Theorem 5.10 cannot be removed
because of the ‖ · ‖1-continuity of the trace τ . Actually, below we characterize the
case where the trace restriction is removed but only in the case of positive operators.

Theorem 5.12. Let A ⊂ M be a diffuse abelian von Neumann subalgebra that
admits a (unique) trace preserving conditional expectation, denoted by EA. If
b ∈ L1(M)∩M+ then

EA({cbc∗ : ‖c‖ ≤ 1})
‖·‖1
= {a ∈A+ : a ≺w b} = {a ∈A+ : a ≺ b}.

Proof. If b ∈ L1(M)∩M+ and a ≺w b then, since λt(b) ∈ L1(R+), we get λt(a) ∈
L1(R+). In particular, a ∈ K(M)+. Thus, the second equality is immediate from
the fact that for positive τ -compact operators one has L t = 0. So for the rest of the
proof we focus on the first equality.

The inclusion “⊂” is obtained by combining the arguments at the beginning of
the proofs of Theorems 5.8 and 5.10.

Conversely, let a ≺w b for some a ∈A+ (so that a ∈ K(A)+). We write both a
and b in terms of complete flags in A and M respectively, i.e.,

a =
∫
∞

0
λt(a) dea(t), b =

∫
∞

0
λt(b) deb(t),

with ea(t)∈A for all t (this can be done since A is diffuse). Then a≺w b means that,
for any s>0,

∫ s
0 λt(a) dt≤

∫ s
0 λt(b) dt . For each s>0, let ps=ea(s)∨eb(s), a finite

projection. So we have aea(s) ≺w beb(s) in the II1-factor psMps . By [Argerami
and Massey 2008a, Theorem 3.4], there exists a contraction cs ∈ psMps ⊂M with

ks := τs(|aea(s)− EAea(s)(cseb(s)beb(s)c∗s )|) <
1

τ(ps)2
.

The trace τs is given by τs = τ/τ(ps); using the fact that ea(s) ∈A and that A is
abelian, we get that EAea(s)( · )= ea(s)EA( · ). So

τ(|aea(s)− EA(ea(s)cseb(s)beb(s)c∗s ea(s))|)= τ(ps)ks <
1

τ(ps)
≤

1
s
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(note that ps ≥ ea(s), so τ(ps) ≥ s). Let ε > 0; fix s > 0 such that s > 2/ε and∫
∞

s λt(a) dt < ε/2. Put c = ea(s)cseb(s), a contraction in M. Then

‖a− EA(cbc∗)
∥∥

1 ≤ ‖a− aea(s)
∥∥

1+
∥∥aea(s)− EA(ea(s)cseb(s)beb(s)c∗s ea(s))

∥∥
1

=

∫
∞

s
λa(t) dt + τ

(
|aea(s)− EA(ea(s)cseb(s)beb(s)c∗s ea(s))|

)
≤
ε

2
+

1
s
<
ε

2
+
ε

2
= ε.

As ε was arbitrary, this shows that a ∈ EA({cbc∗ : ‖c‖ ≤ 1})
‖·‖1 . �

Remark 5.13. The proof of Theorem 5.12 uses a reduction to a II1 case, under the
hypothesis that the operators belong to L1(M). This last assumption seems to be
essential for such a reduction, and there is no immediate hope of using the same
idea to obtain results like Theorems 5.5 and 5.8. Conversely, one cannot expect to
use those results to obtain Theorem 5.12, since convergence in measure does not
imply ‖ · ‖1-convergence.
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CLASSIFICATION OF POSITIVE SOLUTIONS
FOR AN ELLIPTIC SYSTEM

WITH A HIGHER-ORDER FRACTIONAL LAPLACIAN

JINGBO DOU AND CHANGZHENG QU

We discuss properties of solutions to the following elliptic PDE system in Rn:{
(−1)α/2u = λ1u p1 +µ1v

p2 +β1u p3v p4,

(−1)α/2v = λ2uq1 +µ2v
q2 +β2uq3vq4,

where 0 < α < n, λ j , µ j , β j ( j = 1, 2) are nonnegative constants and pi

and qi (i = 1, 2, 3, 4) satisfy some suitable assumptions. It is shown that
this PDE system is equivalent to the integral system

u(x)=
∫

Rn

λ1u p1( y)+µ1v
p2( y)+β1u p3( y)v p4( y)
|x− y|n−α

d y,

v(x)=
∫

Rn

λ2uq1( y)+µ2v
q2( y)+β2uq3( y)vq4( y)
|x− y|n−α

d y

in Rn. The radial symmetry, monotonicity and regularity of positive solu-
tions are proved via the method of moving plane in integral forms and a
regularity lifting lemma. For the special case with

p1 = p2 = q1 = q2 = p3+ p4 = q3+ q4 =
n+α
n−α

,

positive solutions of the integral system (or the PDE system) are classified.
Furthermore, our symmetry results, together with some known results on
nonexistence of positive solutions, imply that, under certain integrability
conditions, the PDE system has no positive solution in the subcritical case.

1. Introduction

In this paper, we study positive solutions of the following higher-order elliptic
system in Rn:

(1)
{
(−1)α/2u = λ1u p1 +µ1v

p2 +β1u p3v p4,

(−1)α/2v = λ2uq1 +µ2v
q2 +β2uq3vq4,

MSC2010: 35J99, 45K05, 35R09, 35J48, 35B65, 45G15.
Keywords: system of integral equations, regularity, moving plane method in integral form,

classification of solutions.
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where (−1)α/2 is a higher-order fractional Laplacian, 0 < α < n, λi , µi , βi ≥ 0
(i = 1, 2) are constants, and pi and qi (i = 1, 2, 3, 4) satisfy some suitable assump-
tions.

System (1) arises from N -coupled higher-order nonlinear Schrödinger systems

(2)

i
∂8 j

∂t
− (−1)m8 j +

N∑
i=1
βi j |8i |

28 j = 0, y ∈ Rn, t > 0,

8 j (y, t)→ 0, as y→∞, t > 0, j = 1, 2, . . . , N ,

for m ∈ N, βi j = β j i . System (2) appears in some physical problems, especially
in nonlinear optics. When m = 1, n ≤ 3, it describes physical phenomena such as
the propagation in birefringent optical fibers, Kerr-like photo refractive media in
optics (see [Akhmediev and Ankiewicz 1999]) and Bose–Einstein condensates (see
[Esry et al. 1997]). When the spatial dimension is one, i.e., n = 1, system (2) has
applications in quantum mechanics (see [Liu et al. 2007; Fu et al. 2009]).

Letting8 j (y, t)= e−iλ j t u j (y), system (2) is transformed into the elliptic system

(3)

(−1)
mu j = λ j u j +

N∑
i=1
βi j |ui |

2u j in Rn,

u j (x)→ 0, as |x | →∞, j = 1, 2, . . . , N .

Clearly, in some sense, system (1) extends system (3) with N = 2.
For further discussion, we need an integral form of system (1). In Section 5, we

will show that system (1) is equivalent to the following system:

(4)


u(x)=

∫
Rn

λ1u p1(y)+µ1v
p2(y)+β1u p3(y)v p4(y)
|x − y|n−α

dy,

v(x)=
∫

Rn

λ2uq1(y)+µ2v
q2(y)+β2uq3(y)vq4(y)
|x − y|n−α

dy.

In particular, when µ1 = λ2 = 1 and λ1 =µ2 = β1 = β2 = 0, system (4) reduces to

(5)


u(x)=

∫
Rn

v p2(y)
|x − y|n−α

dy,

v(x)=
∫

Rn

uq1(y)
|x − y|n−α

dy,

which is closely related to the maximizer of the best constant in a Hardy–Littlewood–
Sobolev (HLS) inequality; see [Chen et al. 2005; Chen and Li 2005].

In recent years many works have been devoted to the study of the special cases
of system (1) or system (4). In the case of α = 2, under certain assumptions, the
existence of bound state solutions and radially symmetric solutions of (3) was
studied in [Bartsch et al. 2007; 2010; Busca and Sirakov 2000; Dancer et al. 2010;
Liu and Wang 2008; Guo and Liu 2008; Hioe 1999; Lin and Wei 2005; Maia
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et al. 2006; Sirakov 2007; Wei and Weth 2007; 2008]. In particular, for α = 2
(n ≥ 3) and λi = µi = 1, βi ≥ 0 (i = 1, 2), de Figueiredo and Sirakov [2005]
proved the nonexistence of positive solutions for system (1) under some subcritical
exponent conditions. When m = n = 1, system (2) is integrable, and there are
many analytical and numerical results on solitary wave solutions of higher-order
nonlinear Schrödinger equations (e.g., see [Liu et al. 2007; Fu et al. 2009]).

In the case of α = 2m (m = 1, 2, . . . ) and µ1 = λ2 = 1, λ1 = µ2 = β1 = β2 = 0,
system (1) becomes

(6)
{
(−1)mu = v p2,

(−1)mv = uq1,

in Rn . This system is equivalent to the integral system (5) with α = 2m (see [Chen
and Li 2009b]). Guo, Liu and Zhang [Liu et al. 2006; Zhang 2007] proved that any
positive solutions of (6) are radially symmetric for critical exponents p2=q1=

n+2m
n−2m .

Moreover, they also showed that there are no positive solutions of (6) if p2, q1 ≥ 1,
but are not both equal to 1, and satisfy the following subcritical exponent condition:

1
p2+1

+
1

q1+1
>

n−2m
n

.

Assuming that p2 and q1 satisfy α
n−α < p2, q1 <∞, under natural integrability

conditions on u and v, Chen, Li and Ou [Chen et al. 2005; Chen and Li 2005]
and Hang [2007] discussed the symmetry, monotonicity and regularity of positive
solutions of system (5) with the critical exponent condition

1
p2+1

+
1

q1+1
=

n−α
n
.

Furthermore, Chen and Li [2009b] proved the nonexistence of positive solutions of
system (5) satisfying some subcritical exponents assumptions.

In [Dou et al. 2011], we studied the symmetry, monotonicity and regularity of
positive solutions of integral system (5) with weighted functions for max{1, α

n−α }<

p2, q1 <∞ and
1

p2+1
+

1
q1+1

≥
n−α

n
.

In addition, the nonexistence result for positive solutions of system (5) with 0<
p2, q1 <

n+α
n−α was established.

In the case of λi = 1, µi = βi = 0 and u(x) = v(x), system (1) reduces to the
single elliptic equation

(7) (−1)α/2u = u p, in Rn.

For p = n+α
n−α , Chen et al. [2006] and Li [2004] proved that any positive solutions u

of Equation (7) are radially symmetric and monotonic about some point. Indeed all
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the positive solutions are given by

(8) u(x)=
(

Cα
d + |x − x̄ |2

)(n−α)/2
,

where d > 0 is a constant and Cα =
(
2−α0(n+α

2 )0(n−α
2 )−1d

)1/2. When α = 2m is
any even number, the above result was also proved by Wei and Xu [1999], and they
showed that there exist no positive solutions of (7) with 0< τ < n+2m

n−2m . Moreover,
for α = 2, the problem is the so-called Yamabe problem, and the radial symmetry
of solutions was discussed by Gidas, Ni and Nirenberg [Gidas et al. 1981].

In this paper, we show that system (1) is equivalent to integral system (4). By
the discussion of the symmetry, monotonicity and regularity of positive solutions of
integral system (4), we are able to perform the classification of positive solutions to
system (1).

Throughout the paper, we use the following notation:

51 =
{

f (x) | x ∈ Rn, f ∈ Ls11(Rn)∩ Ls21(Rn)∩ Lk0(Rn)
}
,

52 =
{

f (x) | x ∈ Rn, f ∈ Ls12(Rn)∩ Ls22(Rn)∩ Lk0(Rn)
}
,

where s1i = n(pi −1)/α, s2i = n(qi −1)/α, i = 1, 2, and k0 = n(p3+ p4−1)/α =
n(q3+q4−1)/α with n/(n−α)< pi , qi , p3+p4, q3+q4<∞, and p3+p4=q3+q4.

We are now in a position to state our main results.

Theorem 1.1. Assume that λi , µi , βi ≥ 0 (i = 1, 2), and they are not equal to zero
simultaneously. Let (u, v) be a pair of solutions to system (4) with u ∈51, v ∈52.
Then u, v ∈ Ls(Rn)∩ L∞(Rn) for any n

n−α < s <∞. Furthermore, u, v ∈ C∞.

Theorem 1.2. Assume that λi , µi , βi ≥ 0 (i = 1, 2) and they are not equal to zero
at the same time. Let (u, v) ∈51×52 be a pair of solutions to system (4). Then u
and v are radially symmetric and decreasing about some point.

For system (4) with critical exponents, i.e., p1 = p2 = q1 = q2 = p3 + p4 =

q3+ q4 =
n+α
n−α , we have:

Theorem 1.3. Let (u, v) ∈ L2n/(n−α)(Rn)× L2n/(n−α)(Rn) be a pair of positive
solutions to system (4) with λi , µi , βi ≥ 0 (i = 1, 2) but not equal to zero at the same
time. If p1= p2= q1= q2= p3+ p4= q3+q4=

n+α
n−α , then u, v ∈ Ls(Rn)∩L∞(Rn)

for any n
n−α < s <∞, and u, v ∈ C∞. Moreover, u and v are radially symmetric

and decreasing about some point, and u, v must be of the following forms:

(9) u(x)=
(

c1

d + |x − x̄ |2

)(n−α)/2
, v(x)=

(
c2

d + |x − x̄ |2

)(n−α)/2
,

where x̄ ∈ Rn , c1, c2 > 0, d > 0 and satisfy the conditions
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C2
αc(n−α)/21 = λ1c(n+α)/21 +µ1c(n+α)/22 +β1

(
cp3

1 cp4
2

)(n−α)/2
,

C2
αc(n−α)/22 = λ2c(n+α)/21 +µ2c(n+α)/22 +β2

(
cq3

1 cq4
2

)(n−α)/2
.

Theorem 1.4. System (1) is equivalent to integral system (4).

Combining our symmetry and equivalence results with the known results on
nonexistence of positive solutions in the subcritical case (see [Dancer et al. 2010;
de Figueiredo and Sirakov 2005]), we can obtain results on the nonexistence of
positive solutions (u, v) of system (1) with some suitable conditions.

Theorem 1.5. (i) Suppose n ≥ 3, α = 2, λi = µi = 1 and βi = 0 for i = 1, 2, and

n
n−2

< p1, q2 <
n+2
n−2

, p2 =
p1(q2−1)

p1−1
, q1 =

q2(p1−1)
q2−1

.

Then system (1) has no positive solutions (u, v) satisfying u ∈ Ln(p1−1)/2(Rn) ∩

Ln(q1−1)/2(Rn) ∩L∞(Rn) and v ∈ Ln(p2−1)/2(Rn)∩ Ln(q2−1)/2(Rn)∩ L∞(Rn).

(ii) Assume that n ≥ 3, α = 2 and λi , µi > 0, βi ≥ 0, βi 6≡ 0, and p j , q j satisfy

n
n−2

< p1, q2 <
n+2
n−2

with p2 =
p1(q2−1)

p1−1
, q1 =

q2(p1−1)
q2−1

,

and
p3
p1
+

p4
p2
=

q3
q1
+

q4
q2
= 1

with 0 ≤ p3 ≤ p1, 0 ≤ p4 ≤ p2, 0 ≤ q3 ≤ q1, 0 ≤ q4 ≤ q2, p3 + p4 = q3 + q4.
Then system (1) has no positive solutions (u, v) satisfying u ∈51 ∩ L∞(Rn) and
v ∈52 ∩ L∞(Rn).

(iii) Assume that n = 3, α = 2, λ2 = µ1 = 0, β1 = β2 >−
√
λ1µ2. Then system (1)

has no positive solutions (u, v) satisfying u ∈51∩ L∞(Rn) and v ∈52∩ L∞(Rn),
where p1 = q2 = 3, p3 = q4 = 1, p4 = q3 = 2.

Remark 1.6. We can show that the results above hold for the more general system

(10)
{
(−1)α/2u = λ1u p1 +µ1v

p2 +β1u p3v p4,

(−1)κ/2v = λ2uq1 +µ2v
q2 +β2uq3vq4

in Rn , where 0< α, κ < n, λi , µi , βi ≥ 0 (i = 1, 2). That is, if

p1, p2, p3+p4>
n

n−α
, q1, q2, q3+q4>

n
n−κ

, s1i =
n(pi−1)

α
, s2i =

n(qi−1)
κ

for i = 1, 2, and u, v ∈ Lk0(Rn)∩ Lk1(Rn), where

k0 =
n(p3+ p4− 1)

α
, k1 =

n(q3+ q4− 1)
κ

,

then the results of Theorem 1.1, Theorem 1.2 and Theorem 1.4 are still valid.
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We remark that a more general system of m equations has been discussed by
Chen and Li [2009a]. That is,

(11)

 u j (x)=
∫

Rn

f j (u(y))
|x − y|n−α

dy, j = 1, 2, . . . ,m,

u(x)= (u1(x), u2(x), . . . , um(x)),
in Rn

where f j (u)≥ 0 are continuous real-valued functions and homogeneous of degree
n+α
n−α , and satisfy ∂ fi/∂u j ≥ 0 for i = 1, 2, . . . ,m. System (11) includes only
the critical exponent case of system (4). It was shown in [Chen and Li 2009a]
any positive solutions of (11) are radially symmetric under the assumptions u j ∈

L∞loc(R
n). Furthermore, based on the Kelvin transformation and the results in [Chen

et al. 2006], any positive solutions of (11) must be the form of (8). In our proof
of Theorem 1.3, a key calculus lemma due to Li and Zhu [1995] and the Kelvin
transformation are used to show that all positive solutions of (4) are given by (9).

The main difficulty in our proof is the lack of a maximum principle for the higher-
order fractional Laplace operator. Theorem 1.4 says that system (1) is equivalent to
the integral system (4), which is helpful for our discussion since we can use the
method of moving planes in integral forms (see [Chen et al. 2006]) to discuss the
radial symmetry and monotonicity of positive solution of the integral system (4).
Furthermore, the regularity of solutions to system (4) is proved by the regularity
lifting lemma introduced in [Chen and Li 2010; Ma et al. 2011].

The paper is organized as follows. In Section 2, we prove the regularity of
solutions of system (4) (Theorem 1.1). The radially symmetric property and
monotonicity of solutions are studied in Section 3 (Theorem 1.2). In Section 4,
positive solutions of system (4) with critical exponents are classified. Namely,
Theorem 1.3 is proved. In Section 5, we obtain some nonexistence results by
proving Theorems 1.4 and 1.5.

Throughout the paper, we always assume that λi , µi , βi ≥ 0 (i = 1, 2) and they
are not equal to zero simultaneously. Moreover, for convenience of presentation we
shall use c, c1, C , etc. for a suitable positive constants unless indicated otherwise.

2. Regularity

In this section, we prove the regularity of solutions to system (4). To this end,
we need the following regularity lifting lemma (see [Chen and Li 2010; Ma et al.
2011]). An earlier version was introduced in [Chen and Li 2005].

Let V be a topological vector space. Suppose there are two extended norms (i.e.,
the norm of an element in V might be infinity) defined on V ,

‖ · ‖X , ‖ · ‖Y : V → [0,∞].
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Let
X := { f ∈ V : ‖ f ‖X <∞} and Y := { f ∈ V : ‖ f ‖Y <∞}.

Lemma 2.1. Let T be a contraction map from X into itself and from Y into itself.
Assume that for any f ∈ X there exists a function g ∈ Z := X ∩ Y such that
f = T f + g in X. Then f ∈ Z.

We also need an equivalent form of the HLS inequality (see [Chen and Li 2005;
2010]): let C(n, α, p) be a uniform positive constant and define

T f (x)=
∫

Rn

f (y)
|x−y|n−α

dy.

Assume that f ∈ L p(Rn) for n
n−α < p <∞. Then

(12) ‖T f ‖L p(Rn) ≤ C(n, α, p)‖ f ‖
L

np
n+αp (Rn)

.

Denote

u R(x)=
{

u(x), |u(x)|> R,
0, |u(x)| ≤ R.

Assume that φ ∈ Lr (Rn), ϕ ∈ Ls(Rn) for n
n−α < r, s <∞. Define

T1(φ, ϕ)=

∫
Rn

λ1u p1−1
R (y)

|x−y|n−α
φ(y) dy+

∫
Rn

µ1v
p2−1
R (y)+β1u p3

R (y)v
p4−1
R (y)

|x−y|n−α
ϕ(y) dy,

T2(φ, ϕ)=

∫
Rn

µ2v
q2−1
R (y)

|x−y|n−α
ϕ(y) dy+

∫
Rn

λ2uq1−1
R (y)+β2v

q4
R (y)u

q3−1
R (y)

|x−y|n−α
φ(y) dy.

Let ub(x)= u(x)− u R(x), and

fR(x)=
∫

Rn

µ1v
p2−1
b (y)+β1u p3

b (y)v
p4−1
b (y)

|x − y|n−α
v(y) dy+

∫
Rn

λ1u p1−1
b (y)

|x − y|n−α
u(y) dy,

gR(x)=
∫

Rn

λ2uq1−1
b (y)+β2v

q4
b (y)u

q3−1
b (y)

|x − y|n−α
u(y) dy+

∫
Rn

µ2v
q2−1
b (y)

|x − y|n−α
v(y) dy.

Denote the norm in the cross product space Lr (Rn)× Ls(Rn) by

‖(u, v)‖r×s = ‖u‖r +‖v‖s,

and define the mapping T : Lr (Rn)× Ls(Rn)→ Lr (Rn)× Ls(Rn) by

T (φ, ϕ)=
(
T1(φ, ϕ), T2(φ, ϕ)

)
.

Throughout the paper, we use the notation ‖u‖s = ‖u‖Ls(Rn).
Consider the equation

(13) (φ, ϕ)= T (φ, ϕ)+ ( fR, gR).
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Notice that there is no intersection between the supports of u R, vR and ub, vb, so
(u, v) is a pair of solutions of (13).

Proof of Theorem 1.1. The proof is divided into three steps.

Step 1. Firstly, we show u, v ∈ Ls(Rn) for all s > n
n−α . To this end, we show that

(i) T is a contracting map from Ls(Rn)× Ls(Rn) to itself for R large enough;
(ii) fR and gR belong to Ls(Rn).

We first show (i). For any φ, ϕ ∈ Ls(Rn), using the HLS inequality (12) and the
Minkowski inequality, we have

(14) ‖T1(φ, ϕ)‖s

≤ C(n, α, γ )
(
λ1
∥∥u p1−1

R φ
∥∥
θ
+µ1

∥∥vR
p2−1ϕ

∥∥
θ
+β1

∥∥u R
p3vR

p4−1ϕ
∥∥
θ

)
,

where θ = ns
n+αs . By the Hölder inequality, we have

(15)
∥∥u p1−1

R φ
∥∥
θ
≤ ‖u R‖

p1−1
s11
‖φ‖s,

∥∥vR
p2−1ϕ

∥∥
θ
≤ ‖vR‖

p2−1
s12
‖ϕ‖s,

where s1 j = n(p j − 1)/α, j = 1, 2, and

(16)
∥∥u R

p3vR
p4−1ϕ

∥∥
θ

≤

(∫
Rn

u p3t1θ
R (y) dy

) 1
t1θ
(∫

Rn
v
(p4−1)t2θ
R (y) dy

) 1
t2θ
(∫

Rn
ϕt3θ (y) dy

) 1
t3θ

= ‖u R‖
p3
k0
‖vR‖

p4−1
k0
‖ϕ‖s .

In the above inequality we have chosen t3= (n+sα)/n>1, so we take 1/t1+1/t2=
sα/(n+ sα) with

k0 = t1 p3θ = t2(p4− 1)θ,

and then
p3
k0
+

p4−1
k0
=
α

n
.

Substituting (15) and (16) into (14), we deduce that

(17) ‖T1(φ, ϕ)‖s ≤ c‖u R‖
p1−1
s11
‖φ‖s + c

(
‖vR‖

p2−1
s12
+‖u R‖

p3
k0
‖vR‖

p4−1
k0

)
‖ϕ‖s .

Since u ∈ Ls11(Rn) ∩ Lk0(Rn), v ∈ Ls12(Rn) ∩ Lk0(Rn), we may choose R large
enough such that

‖u R‖
p2−1
s11
≤

1
4 , ‖vR‖

p2−1
s12
+‖u R‖

p3
k0
‖vR‖

p4−1
k0
≤

1
4 .

Hence, from (17) we obtain

(18) ‖T1(φ, ϕ)‖s ≤
1
4

(
‖φ‖s +‖ϕ‖s

)
.
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Similarly, we have

(19) ‖T2(φ, ϕ)‖s ≤
1
4

(
‖φ‖s +‖ϕ‖s

)
.

Combining (18) and (19), one obtains

‖T (φ, ϕ)‖s×s ≤
1
2

(
‖φ‖s +‖ϕ‖s

)
.

It turns out that T is the contracting map from Ls(Rn)× Ls(Rn) to itself.

(ii) Next we estimate fR and gR . We write

(20) fR(x)=
∫

Rn

µ1v
p2−1
b (y)+β1u p3

b (y)v
p4−1
b (y)

|x−y|n−α
v(y) dy+

∫
Rn

λ1u p1−1
b (y)

|x−y|n−α
u(y) dy

=: J1+J2.

For any s > n
n−α , we apply the HLS inequality, Minkowski inequality and Hölder

inequality to get

(21) ‖J1‖s ≤ c
∥∥vb

p2−1v
∥∥
θ
+ c

∥∥ub
p3vb

p4−1v
∥∥
θ

≤ c‖vb‖
p2−1
k1
‖v‖k2 + c‖ub‖

p3
k3
‖vb‖

p4−1
k4
‖v‖k5,

and

(22) ‖J2‖s ≤ c
∥∥u p1−1

b u
∥∥
θ
≤ c‖ub‖

p1−1
k6
‖u‖k7,

where

p2−1
k1
+

1
k2
=

p3
k3
+

p4−1
k4
+

1
k5
=

p1−1
k6
+

1
k7
=

n+αs
ns
=

1
s
+
α

n
.

Since vb, ub are bounded, k1, k3, k4, k6 can be chosen arbitrarily. Notice that n
n−α <

p3+ p4 = q3+q4, so it follows that k0 = n(p3+ p4− 1)/α = n(q3+q4− 1)/α >
n/(n−α). In view of u, v ∈ Lk0(Rn), we may choose k2 = k5 = k7 = k0 such that

1
s
=

p2−1
k1
+

1
k0
−
α

n
=

p2−1
k1
+

n−αk0
nk0

=
p3
k3
+

p4−1
k4
+

n−αk0
nk0

=
p1−1

k6
+

n−αk0
nk0

.

Now, letting k1, k3, k4, k6→∞, the previous equation implies that

s→ nk0
n−αk0

.

We conclude that fR ∈ Lnk0/(n−αk0)−ε(Rn) for any small ε > 0. Obviously, nk0/

(n−αk0) > k0. Similarly, we can show gR ∈ Lnk0/(n−αk0)−ε(Rn).
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By Lemma 2.1, if n ≤ αk0, we are done. If n>αk0, we repeat the above process,
and after a few steps, we obtain

u, v ∈ Ls(Rn),
n

n−α
< s <∞.

Step 2. We show u, v ∈ L∞(Rn). We split u(x) into two parts, i.e., u(x) can be
written as

u(x)=
∫

B1(x)

λ1u p1(y)+µ1v
p2(y)+β1u p3(y)v p4(y)
|x−y|n−α

dy

+

∫
Rn\B1(x)

λ1u p1(y)+µ1v
p2(y)+β1u p3(y)v p4(y)
|x−y|n−α

dy

=: J3+ J4.

We estimate J3 and J4 separately. First consider J4. Since 1/|x − y|n−α < 1,
and u, v ∈ Ls(Rn) for any n

n−α < s, according to the assumptions that n
n−α <

p1, p2, p3+ p4, and using the Hölder inequality, we have

J4 ≤ c
∫

Rn\B1(x)
u p1(y) dy+ c

∫
Rn\B1(x)

v p2(y) dy+ c
∫

Rn\B1(x)
u p3(y)v p4(y) dy

<∞.

Next, we compute J3:

J3 ≤ c
(∫

B1(x)

1
|x−y|(n−α)p

dy
)1/p(∫

B1(x)
|u(y)|p1 p/(p−1) dy

)(p−1)/p

+ c
(∫

B1(x)

1
|x−y|(n−α)p

dy
)1/p(∫

B1(x)
|v(y)|p2 p/(p−1) dy

)(p−1)/p

+ c
(∫

B1(x)

1
|x−y|(n−α)p

dy
)1/p(∫

B1(x)

(
|u p3(y)v p4(y)|

)p/(p−1) dy
)(p−1)/p

.

Choose the constant p such that (n−α)p < n, and then(∫
B1(x)

1
|x−y|(n−α)p

dy
)1/p

< C.

Since u, v ∈ Ls(Rn) for any n
n−α < s <∞, we get

(∫
B1(x)
|u(y)|p1 p/(p−1) dy

)(p−1)/p

< C,
(∫

B1(x)
|v(y)|p2 p/(p−1) dy

)(p−1)/p

< C,
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and by the Hölder inequality, we obtain(∫
B1(x)
|u p3(y)v p4(y)|

p
p−1 dy

)p−1
p

≤

(∫
B1(x)
|u(y)|p3l1

p
p−1 dy

)p−1
l1 p
(∫

B1(x)
|v(y)|p4l2

p
p−1 dy

)p−1
l2 p

< C,

where l1, l2 > 1 and 1/l1 + 1/l2 = 1. (We may choose l1 = (p3 + p4)/p3 and
l2 = (p3 + p4)/p4.) So u ∈ L∞(Rn). Arguing as above, it also follows that
v ∈ L∞(Rn).

Step 3. Using the usual bootstrap method, as in [Li 2004], we conclude u, v ∈
C∞(Rn). �

3. Radial symmetry and monotonicity

In this section, we use the method of moving plane in integral form to prove
Theorem 1.2. The moving plane method in integral form used here was introduced
by Chen, Li and Ou [2006] and exploits global properties of integral equations
instead of using the amount of local properties of differential operators as the
traditional moving plane method (e.g., see [Guo and Liu 2008; de Figueiredo and
Sirakov 2005; Liu et al. 2006; Zhang 2007; Wei and Xu 1999; Gidas et al. 1981]).

We first deduce two representation formulas related to u(x) and v(x), respectively.
Let λ be a real number. Define

6λ = {x = (x1 · · · xn) | x1 ≥ λ},

and set

xλ = (2λ− x1, x2, . . . , xn), uλ(x)= u(xλ) and vλ(x)= v(xλ).

For convenience, we set Q y(u, v) = λ1u p1(y)+µ1v
p2(y)+ β1u p3(y)v p4(y) and

K y(u, v)= λ2uq1(y)+µ2v
q2(y)+β2uq3(y)vq4(y). In view of (4), we have

uλ(x)=
∫

Rn

Q y(u, v)
|xλ− y|n−α

dy

=

∫
6λ

Q y(u, v)
|xλ− y|n−α

dy+
∫

Rn\6λ

Q y(u, v)
|xλ− y|n−α

dy

=

∫
6λ

Q y(u, v)
|xλ− y|n−α

dy+
∫
6λ

Q y(uλ, vλ)
|xλ− yλ|n−α

dy.

We also have

vλ(x)=
∫
6λ

K y(u, v)
|xλ−y|n−α

dy+
∫
6λ

K y(uλ, vλ)
|xλ−yλ|n−α

dy.
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Noting that |xλ− yλ| = |x − y|, it is easy to see that

(23) uλ(x)−u(x)

=

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)
(Q y(uλ, vλ)−Q y(u, v)) dy

=

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)[
λ1
(
u p1
λ (y)−u p1(y)

)
+µ1

(
v

p2
λ (y)−v

p2(y)
)

+β1
(
u p3
λ (y)v

p4
λ (y)−u p3(y)v p4(y)

)]
dy

and

(24) vλ(x)−v(x)

=

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)
(K y(uλ, vλ)−K y(u, v)) dy

=

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)[
λ2
(
uq1
λ (y)−uq1(y)

)
+µ2

(
v

q2
λ (y)−v

q2(y)
)

+β2
(
uq3
λ (y)v

q4
λ (y)−uq3(y)vq4(y)

)]
dy.

The next lemma shows the plane can start moving from x1 =−∞ to the right.

Lemma 3.1. Let (u, v) ∈51×52 be a pair of positive solutions of (4). Then, for
λ sufficiently negative,

(25) u(x)≥ uλ(x) and v(x)≥ vλ(x) for all x ∈6λ.

Proof. Define

6u
λ = {x ∈6λ | u(x) < uλ(x)} and 6vλ = {x ∈6λ | v(x) < vλ(x)}.

Let 6c
λ be the complement of 6λ. From (23) and the mean value theorem, we have

(26) uλ(x)−u(x)

=

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)
×
[
λ1(u

p1
λ (y)−u p1(y))+µ1(v

p2
λ (y)−v

p2(y))

+β1
(
u p3
λ (y)(v

p4
λ (y)−v

p4(y))+v p4(y)(u p3
λ (y)−u p3(y))

)]
dy

≤

∫
6λ

(
1

|x−y|n−α
−

1
|xλ−y|n−α

)
×
[

p1λ1φ
p1−1
1 (u)(uλ(y)−u(y))+ p2µ1φ

p2−1
2 (v)(vλ(y)−v(y))

+ p4β1u p3
λ (y)φ

p4−1
4 (v)(vλ(y)−v(y))

+ p3β1v
p4(y)φ p3−1

3 (u)(uλ(y)−u(y))
]

dy,
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where u(y)≤ φi (u)≤ uλ(y), i = 1, 3, on 6u
λ , and v(y)≤ φ j (v)≤ vλ(y), j = 2, 4

on 6vλ . It follows that we can write

uλ(x)− u(x)≤ c(I1+ I2+ I3+ I4),

where

I1 :=

∫
6u
λ

u p1−1
λ (y)
|x−y|n−α

(uλ(y)−u(y)) dy, I2 :=

∫
6vλ

v
p2−1
λ (y)
|x−y|n−α

(vλ(y)−v(y)) dy,

I3 :=

∫
6vλ

u p3
λ (y)v

p4−1
λ (y)

|x−y|n−α
(vλ(y)−v(y)) dy,

I4 :=

∫
6u
λ

v p4(y)u p3−1
λ (y)

|x−y|n−α
(uλ(y)−u(y)) dy.

Using the HLS inequality and the Hölder inequality, we get

(27)
(∫

6u
λ

|I1|
γ

)1/γ

≤ C(n, α, γ )
∥∥uλ p1−1(uλ− u)

∥∥
Lθ (6u

λ )

for any n
n−α < γ <∞ and θ = nγ

n+αγ . Let m1 =
n+αγ
αγ

> 1 and m2 =
n+αγ

n > 1.
Thus, we invoke the Hölder inequality to obtain

(28)
{∫

6u
λ

[
uλ p1−1(y)(uλ(y)− u(y))

]θ dy
}1/θ

≤

{[∫
6u
λ

(uλ(y))θ(p1−1)m1 dy
]1/m1

[∫
6u
λ

(uλ(y)− u(y))θm2 dy
]1/m2

}1/θ

= ‖uλ‖
p1−1
L

s11
(6u
λ
)

‖uλ− u‖Lγ
(6u
λ
)
,

where s11 = n(p1− 1)/α. Substituting (28) into (27), we get

(29)
(∫

6u
λ

|I1|
γ

)1/γ

≤ C(n, α, γ )‖uλ‖
p1−1
L

s11
(6u
λ
)

‖uλ− u‖Lγ
(6u
λ
)
.

Similarly, one has

(30) ‖I2‖Lγ
(6u
λ
)
≤ C(n, α, γ )‖vλ‖

p2−1
L

s12
(6v
λ
)

‖vλ− v‖Lγ
(6v
λ
)
,

where s12 = n(p2− 1)/α.
Next, we estimate I3 and I4. By the HLS inequality we have

(31) ‖I3‖Lγ
(6u
λ
)
≤ C(n, α, γ )

∥∥uλ p3vλ
p4−1(vλ− v)

∥∥
Lθ
(6v
λ
)

.

Letting 1/t1+ 1/t2+ 1/t3 = 1 for t1 > 1, it follows that
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(32)
∥∥uλ p3vλ

p4−1(vλ− v)
∥∥

Lθ
(6v
λ
)

≤

[∫
6vλ

u p3θ t1
λ (y)dy

] 1
t1θ
[∫

6vλ

v
(p4−1)θ t2
λ (y)dy

] 1
t2θ
[∫

6vλ

(vλ(y)−v(y))θ t3 dy
] 1

t3θ

≤ ‖uλ‖
p3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

‖vλ− v‖Lγ
(6v
λ
)
.

Arguing as Section 2, we choose t3= (n+αγ )/n> 1, t1= (n+αγ )(p3+ p4−1)/
(p3αγ ) and t2= (n+αγ )(p3+p4−1)/((p4−1)αγ ), satisfying 1/t1+1/t2+1/t3=1.
Then k0 = t1 p3θ = t2(p4− 1)θ . Substituting (32) into (31), we conclude

(33) ‖I3‖Lγ
(6u
λ
)
≤ C(n, α, γ )‖uλ‖

p3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

‖vλ− v‖Lγ
(6v
λ
)
.

In the same way, one has

(34) ‖I4‖Lγ
(6u
λ
)
≤ C(n, α, γ )‖v‖p4

L
k0
(6u
λ
)

‖uλ‖
p3−1

L
k0
(6u
λ
)

‖uλ− u‖Lγ
(6u
λ
)
.

Now, we compute the norm Lγ (6u
λ) of (26) for any n

n−α < γ <∞. Using the
Minkowski inequality and combining (29), (30), (33) and (34), we arrive at

(35) ‖uλ−u‖Lγ
(6u
λ
)

≤ c‖uλ‖
p1−1
L

s11
(6u
λ
)

‖uλ−u‖Lγ
(6u
λ
)
+c‖vλ‖

p2−1
L

s12
(6v
λ
)

‖vλ−v‖Lγ
(6v
λ
)

+c‖uλ‖
p3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

‖vλ−v‖Lγ
(6v
λ
)
+c‖v‖p4

L
k0
(6u
λ
)

‖uλ‖
p3−1

L
k0
(6u
λ
)

‖uλ−u‖Lγ
(6u
λ
)

≤ c
(
‖uλ‖

p1−1
L

s11
(6u
λ
)

+‖uλ‖
p3−1

L
k0
(6u
λ
)

‖v‖
p4

L
k0
(6u
λ
)

)
‖uλ−u‖Lγ

(6u
λ
)

+c
(
‖vλ‖

p2−1
L

s12
(6v
λ
)

+‖uλ‖
p3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

)
‖vλ−v‖Lγ

(6v
λ
)
.

Along the same line, noting that p3+ p4 = q3+ q4, we have

(36) ‖vλ− v‖Lγ
(6v
λ
)
≤ c

(
‖uλ‖

q1−1
L

s21
(6u
λ
)

+‖uλ‖
q3−1

L
k0
(6u
λ
)

‖v‖
q4

L
k0
(6u
λ
)

)
‖uλ− u‖Lγ

(6u
λ
)

+c
(
‖vλ‖

q2−1
L

s22
(6v
λ
)

+‖uλ‖
q3

L
k0
(6v
λ
)

‖vλ‖
q4−1

L
k0
(6v
λ
)

)
‖vλ− v‖Lγ

(6v
λ
)
,

where s21 = n(q1− 1)/α, s22 = n(q2− 1)/α, k0 = n(q3+ q4− 1)/α.
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By adding (35) and (36), we obtain

(37) ‖uλ− u‖Lγ
(6u
λ
)
+‖vλ− v‖Lγ

(6v
λ
)

≤ c
(
‖uλ‖

p1−1
L

s11
(6u
λ
)

+‖uλ‖
q1−1
L

s21
(6u
λ
)

+‖v‖
p4

L
k0
(6u
λ
)

‖uλ‖
p3−1

L
k0
(6u
λ
)

+‖v‖
q4

L
k0
(6u
λ
)

‖uλ‖
q3−1

L
k0
(6u
λ
)

)
×‖uλ− u‖Lγ

(6u
λ
)

+ c
(
‖vλ‖

p2−1
L

s12
(6v
λ
)

+‖vλ‖
q2−1
L

s22
(6v
λ
)

+‖uλ‖
p3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

+‖uλ‖
q3

L
k0
(6v
λ
)

‖vλ‖
q4−1

L
k0
(6v
λ
)

)
×‖vλ− v‖Lγ

(6v
λ
)

≤ c
(
‖u‖p1−1

L
s11
(6c
λ
)

+‖u‖q1−1
L

s21
(6c
λ
)

+‖v‖
p4

L
k0
(6u
λ
)

‖u‖p3−1

L
k0
(6c
λ
)

+‖v‖
q4

L
k0
(6u
λ
)

‖u‖q3−1

L
k0
(6c
λ
)

)
×‖uλ− u‖Lγ

(6u
λ
)

+ c
(
‖v‖

p2−1
L

s12
(6c
λ
)

+‖v‖
q2−1
L

s22
(6c
λ
)

+‖u‖p3

L
k0
(6c
λ
)

‖v‖
p4−1

L
k0
(6c
λ
)

+‖u‖q3

L
k0
(6c
λ
)

‖v‖
q4−1

L
k0
(6c
λ
)

)
×‖vλ− v‖Lγ

(6v
λ
)
.

Since u ∈51 and v ∈52, we can choose λ sufficiently negative such that

c
(
‖u‖p1−1

L
s11
(6c
λ
)

+‖u‖q1−1
L

s21
(6c
λ
)

+‖v‖
p4

L
k0
(6u
λ
)

‖u‖p3−1

L
k0
(6c
λ
)

+‖v‖
q4

L
k0
(6u
λ
)

‖u‖q3−1

L
k0
(6c
λ
)

)
≤

1
2 ,

c
(
‖v‖

p2−1
L

s12
(6c
λ
)

+‖v‖
q2−1
L

s22
(6c
λ
)

+‖u‖p3

L
k0
(6c
λ
)

‖v‖
p4−1

L
k0
(6c
λ
)

+‖u‖q3

L
k0
(6c
λ
)

‖v‖
q4−1

L
k0
(6c
λ
)

)
≤

1
2 .

Hence

‖uλ− u‖Lγ
(6u
λ
)
+‖vλ− v‖Lγ

(6v
λ
)
≤

1
2‖uλ− u‖Lγ

(6u
λ
)
+

1
2‖vλ− v‖Lγ

(6v
λ
)
.

This implies that ‖uλ−u‖Lγ
(6u
λ
)
= ‖vλ−v‖Lγ

(6v
λ
)
= 0, and therefore 6u

λ and 6vλ must

be empty. Thus, (25) is proved. �

Next we define

λ0 = sup{λ ∈ R | uµ(x)≤ u(x), vµ(x)≤ v(x) for all µ≤ λ and all x ∈6µ}.

By the regularity of positive solutions to system (4), we observe the fact that u
and v are bounded as |x | →∞. Combining this and noting u, v > 0, we conclude
λ0 <∞. Thus, we will move the plane to the limiting position to derive symmetry.
That is, we have the following lemma.

Lemma 3.2. Under the assumptions of Theorem 1.2, we have

(38) uλ0(x)≡ u(x) and vλ0(x)≡ v(x) for all x ∈6λ0 .
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Proof. We use argument by contradiction. Assume that there exists a λ0 < 0 such
that u(x) ≥ uλ0(x), and vλ(x) ≥ vλ0(x), but u(x) 6≡ uλ0(x) or vλ(x) 6≡ vλ0(x) for
any x ∈6λ0 .

We show that the plane can be moved further to the right. More precisely, there
exists an ε depending on n, α, and the solution (u, v) itself such that

u(x)≥ uλ(x) and v(x)≥ vλ(x), on 6λ

for λ ∈ [λ0, λ0+ ε).
In the case of v(x) 6≡ vλ0(x) on 6λ0 , from (23) and (24) we obtain u(x) 6≡ uλ0(x),

that is, u(x) > uλ0(x) in the interior of 6λ0 . Let

6u
λ0
= {x ∈6λ0 | u(x)≤ uλ0(x)} and 6vλ0

= {x ∈6λ0 | v(x)≤ vλ0(x)}.

Obviously, 6u
λ0

has measure zero, and limλ→λ0 6
u
λ ⊂6

u
λ0

. The same fact holds for
that of v. Let (6u

λ)
∗ be the reflection of set 6u

λ about the plane x1 = λ. Similarly
to (37), we have

(39) ‖uλ−u‖Lγ
(6u
λ
)
+‖vλ−v‖Lγ

(6v
λ
)

≤ c
(
‖uλ‖

p1−1
L

s11
(6u
λ
)

+‖uλ‖
q1−1
L

s21
(6u
λ
)

+‖v‖
p4

L
k0
(6u
λ
)

‖uλ‖
p3−1

L
k0
(6u
λ
)

+‖v‖
q4

L
k0
(6u
λ
)

‖uλ‖
q3−1

L
k0
(6u
λ
)

)
×‖uλ−u‖Lγ

(6u
λ
)

+c
(
‖vλ‖

p2−1
L

s12
(6v
λ
)

+‖vλ‖
q2−1
L

s22
(6v
λ
)

+‖uλ‖
q3

L
k0
(6v
λ
)

‖vλ‖
p4−1

L
k0
(6v
λ
)

+‖uλ‖
q3

L
k0
(6v
λ
)

‖vλ‖
q4−1

L
k0
(6v
λ
)

)
×‖vλ−v‖Lγ

(6v
λ
)

≤ c
(
‖u‖p1−1

L
s11
((6u

λ
)∗)

+‖u‖q1−1
L

s21
((6u

λ
)∗)

+‖v‖
p4

L
k0
(6u
λ
)

‖u‖p3−1

L
k0
((6u

λ
)∗)

+‖v‖
q4

L
k0
(6u
λ
)

‖u‖q3−1

L
k0
((6u

λ
)∗)

)
×‖uλ−u‖Lγ

(6u
λ
)

+c
(
‖v‖

p2−1
L

s12
((6v

λ
)∗)

+‖v‖
q2−1
L

s22
((6v

λ
)∗)

+‖u‖q3

L
k0
((6v

λ
)∗)

‖v‖
p4−1

L
k0
((6v

λ
)∗)

+‖u‖q3

L
k0
((6v

λ
)∗)

‖v‖
q4−1

L
k0
((6v

λ
)∗)

)
×‖vλ−v‖Lγ

(6v
λ
)

for any n
n−α < γ <∞. Since u ∈51, v ∈52, we can choose ε small enough, such

that for all λ ∈ [λ0, λ0+ ε), we have

‖uλ− u‖Lγ
(6u
λ
)
+‖vλ− v‖Lγ

(6v
λ
)
≤

1
2

(
‖uλ− u‖Lγ

(6u
λ
)
+‖vλ− v‖Lγ

(6v
λ
)

)
.

This implies that ‖uλ−u‖Lγ
(6u
λ
)
= ‖vλ− v‖Lγ

(6v
λ
)
= 0. So 6u

λ and 6vλ must be empty.

The proof of (38) is then completed. �
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Proof of Theorem 1.2. From Lemma 3.1, it follows that u(x)≥ uλ(x) and v(x)≥
vλ(x) on 6λ for λ enough negative. This implies the possibility of moving the
plane from near x1 =−∞, so we can invoke Step 2: move the plane to the limiting
position to derive symmetry. Furthermore, it follows from Lemma 3.2 that if the
plane stops at x1 = λ0 for some λ0 < 0, then u(x) and v(x) must be symmetric and
monotonic about the plane x1 = λ0. Otherwise, we can move the plane all the way
to x1 = 0. Since the direction of x1 can be chosen arbitrarily, we deduce that u(x)
and v(x) must be radially symmetric and monotonically decreasing about some
point. This completes the proof of Theorem 1.2. �

4. Classification of positive solutions to system (4) with critical exponents

In this section, we prove Theorem 1.3. Since we have established the regularity and
radial symmetry of solutions to system (4) in previous sections, we may employ a
proposition in [Li and Zhu 1995; Li and Zhang 2003] to show the form of radially
symmetric solutions of (4) with critical exponents. Throughout this section, we
always assume that p1= p2= q1= q2= p3+ p4= q3+q4=

n+α
n−α in system (4) and

(u, v) ∈ L2n/(n−α)(Rn)× L2n/(n−α)(Rn). It is well known that system (4) (or (1)) is
invariant with respect to scaling, translation, and inversion transformations with the
above exponent conditions.

For x ∈ Rn and λ > 0, consider the Kelvin transformation of w:

wx,λ(y)=
(

λ

|y− x |

)n−α

w

(
x +

λ2(y− x)
|y− x |2

)
.

To classify solutions, we need the following lemma.

Lemma 4.1. Let (u, v) be a pair of solutions of system (4) with the assumptions of
Theorem 1.3. Then there exist λ > 0 and x0 ∈ Rn such that

ux0,λ(y)= u(y),(40)

vx0,λ(y)= v(y).(41)

Proof. It suffices to prove (40). The proof of (41) is similar. Consider x0 = 0, for
otherwise we make a translation transform and a scaling transform on ux0,λ(y).
Let (u, v) be a pair of solutions of (4). By radial symmetry we assume with-
out loss of generality that u(x) and v(x) are symmetric about the origin and
lim|x |→∞ |x |n−αu(x)= u∞ = u(0). Let λn−α

= u∞/u(0) and e be any unit vector
in Rn . We define

w(y)=
1
|y|n−α

u
(

y
|y|2
− e

)
.

Then
w(0)= u∞ and w(e)= u(0).
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Thus, w must be symmetric about 1
2 e.

Now, choosing y = (1
2 − h)e for any h, as in [Chen et al. 2006], it is easy to see

w
(( 1

2 − h
)
e
)
=

(
1∣∣ 1

2−h
∣∣
)n−α

u
( 1

2 − h∣∣ 1
2 − h

∣∣2 e− e
)
=

(
1∣∣1

2−h
∣∣
)n−α

u
( 1

2 + h
1
2 − h

e
)
,

where

1
2 − h∣∣ 1

2 − h
∣∣2 e− e = e

((1
2 − h

)
−
( 1

2 − h
)2∣∣ 1

2 − h
∣∣2

)
= e

( 1
2 − h

)(
1− 1

2 + h
)( 1

2 − h
)2 = e

1
2 + h
1
2 − h

.

Taking y = (1
2 − h)e, we have

w
((1

2 + h
)
e
)
=

(
1∣∣ 1

2+h
∣∣
)n−α

u
( 1

2 − h
1
2 + h

e
)
.

Since w is symmetric about 1
2 e, by scaling we have

λ(n−α)/2∣∣ 1
2−h

∣∣n−α u
(
λ

1
2 + h
1
2 − h

e
)
=

λ(n−α)/2∣∣ 1
2+h

∣∣n−α u
(
λ

1
2 − h
1
2 + h

e
)
.

Letting t = (1
2 − h)/( 1

2 + h), it follows that

u
(
λe
t

)
= tn−αu(λte).

Replacing t , e by λ/|x − y|, y− x/|x − y|, respectively, it follows that u(y− x)=
(λ/|y− x |)n−αu(λ2(y − x)/|y− x |2). Furthermore, we can take the translation
transform to obtain (40). �

To prove our main result, we also need the following proposition from [Li and
Zhang 2003]. Earlier versions with stronger assumptions were first proved by Li
and Zhu [1995].

Proposition 4.2 [Li and Zhang 2003]. Let f ∈ C1(Rn), λ > 0 and µ > 0. Suppose
that for every x ∈ Rn , there exists λ(x) > 0 such that(

λ

|y−x |

)µ
f
(

x + λ
2(y−x)
|y−x |2

)
= f (y), y ∈ Rn

\ {x}.

Then for some a ≥ 0, d > 0 and x̄ ∈ Rn , we have

f (x)≡±a
( 1

d+|x− x̄ |2
)µ/2

.

Proof of Theorem 1.3. From Lemma 4.1 and Proposition 4.2, we obtain directly
that the solution of system (4) must be of the form (9). �
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5. Equivalence of system (1) and system (4)

In this section, we show the equivalence of system (1) and the integral system (4).
The proof is similar to that in [Chen and Li 2011] which is based on properties and
the Fourier transform of the Riesz potential. For completeness and convenience of
the reader, the details will be included. However, by choosing a suitable cut-off
function, we provide a different approach for the case of even numbers α = 2m.

First, we define a positive solution of (1) in the distribution sense, i.e, u, v ∈
Hα/2(Rn), and they satisfy∫

Rn
(−1)α/4u(−1)α/4φ dx =

∫
Rn

(
λ1u p1 +µ1v

p2 +β1u p3v p4
)
φ dx,(42) ∫

Rn
(−1)α/4v(−1)α/4φ dx =

∫
Rn

(
λ2uq1 +µ2v

q2 +β2uq3vq4
)
φ dx(43)

for any φ ∈ C∞0 (R
n) with φ(x) > 0. As usual, by the Fourier transform we have

(44)
∫

Rn
(−1)α/4u(−1)α/4φ dx = cn

∫
Rn
|ξ |αû(ξ) ˆφ(ξ) dξ,

where û and φ̂ are the Fourier transforms of u and φ, respectively.
For α = 2m, where m is a positive integer, we prove that every positive solution

of PDE system (1) satisfies integral system (4). Here we don’t use the maximum
principles for higher-order elliptic operators; the method be used here comes from
[Lu and Zhu 2011].

Lemma 5.1. Any positive solutions of system (1) with α = 2m satisfy the integral
system (4).

Proof. We define the cut-off function on BR(0):

η(x)=
{

1, x ∈ B1(0),
0, x 6∈ B2(0),

and 0<η(i) < 2 on B2(0) for i = 1, 2, . . . , 2m. Let ηR(x− y)= η( |x−y|
R ) on B2(x)

and choose φ(x− y)= ηR(x− y)/|x − y|n−2m . It is easy to check that φ ∈C∞0 (R
n).

Hence, for any u, v ∈ H m(Rn), by definition (42) and integration by parts, we have

(45)
∫

Rn
(−1)m/2u(−1)m/2φ dy =

∫
Rn

u(−1)mφ dy

=

∫
Rn

u(−1)m
(
ηR(x − y)
|x − y|n−2m

)
dy

=

∫
Rn

Q y(u, v)
ηR(x − y)
|x − y|n−2m dy,
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where Q y(u, v) is defined in Section 3. Since

(−1)m
(
ηR(x − y)
|x − y|n−2m

)
= (−1)m

(
1

|x − y|n−2m

)
ηR(x − y)+

2m∑
i=1

ci |x − y|−n+iη
(i)
R R−i ,

one has

(46)
∫

Rn
u(−1)m

(
ηR(x − y)
|x − y|n−2m

)
dy=

∫
Rn

u(−1)m
(

1
|x − y|n−2m

)
ηR(x−y) dy

+

2m∑
i=1

ci

∫
Rn

R−i u|x − y|−n+iη
(i)
R dy.

As in [Lu and Zhu 2011], for u ∈ L2n/(n−2m)(Rn), using the Hölder inequality we
get

(47)
∫

Rn
u(x − y)−n−iη

(i)
R R−i dy

≤ ci R−i
(∫

Rn
u2n/(n−2m)dy

)n−2m
2n

(∫
B2R\BR

|x − y|2n(i−n)/(n+2m)dy
)n+2m

2m

≤
ci
Ri

∫ 2R

R
r2n(i−n)/(n+2m)rn−1dr→ 0,

as R→∞. We also note that

(48)
∫

Rn
u(−1)m

(
ηR(x − y)
|x − y|n−2m

)
dy =

∫
Rn
δ(x − y)u(y) dy = u(x).

Therefore, combining (45), (46), (47) with (48), we have

u(x)=
∫
λ1u p1(y)+µ1v

p2(y)+β1u p3(y)v p4(y)
|x − y|n−2m dy.

In the same way, we obtain

v(x)=
∫

Rn

λ2uq1(y)+µ2v
q2(y)+β2uq3(y)vq4(y)
|x − y|n−2m dy.

The proof of the lemma is completed. �

Now, we consider the case that α is not even, that is, system (1) is equivalent to
the integral system (4) for any α.

Proof of Theorem 1.4. (i) For any φ ∈ C∞0 (R
n), set

ψ(x)=
∫

φ(x)
|x−y|n−α

dy,
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so that (−1)α/2ψ = φ, and then ψ ∈ Hα(Rn)⊂ Hα/2(Rn), and satisfies∫
Rn
(−1)α/4u(−1)α/4ψ dx =

∫
Rn

Qx(u, v)ψ(x) dx .

This implies∫
Rn

u(−1)α/2ψ dx =
∫

Rn
uφ dx =

∫
Rn

{∫
Rn

Q y(u, v)
|x − y|n−α

dy
}
φ(x) dx

for any nonnegative φ ∈ C∞0 (R
n). Thus, we get

u(x)=
∫
λ1u p1(y)+µ1v

p2(y)+β1u p3(y)v p4(y)
|x − y|n−α

dy.

Similarly, we have

v(x)=
∫
λ2uq1(y)+µ2v

q2(y)+β2uq3(y)vq4(y)
|x − y|n−α

dy.

(ii) Now we show that any positive solutions of the integral system (4) satisfy
system (1). Assume that u, v ∈ L2n/(n−2m)(Rn) are the solutions of the integral
system (4). Invoking the Fourier transform on both sides of the first equation of (4),
we have

û(ξ)= cn|ξ |
−α Q̂ξ (u, v).

Then
|ξ |αû(ξ)= cn Q̂ξ (u, v)(ξ).

Hence, for any φ ∈ C∞0 (R
n), by (44) one has∫

Rn
(−1)α/4u(−1)α/4φ dx = cn

∫
Rn
|ξ |αû(ξ) ˆφ(ξ) dξ

= cn

∫
Rn

Q̂ξ (u, v)φ̂(ξ) dξ

= cn

∫
Rn

Qx(u, v)φ(x) dx .

Similarly, we have∫
Rn
(−1)α/4v(−1)α/4φ dx = cn

∫
Rn

K̂ξ (u, v)(ξ)φ̂(ξ) dξ

= cn

∫
Rn

Kx(u, v)φ(x) dx .

This means that (u, v) is a pair of solutions of{
(−1)α/2u = cn(λ1u p1 +µ1v

p2 +β1u p3v p4),

(−1)α/2v = cn(λ2uq1 +µ2v
q2 +β2uq3vq4),
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for x ∈Rn , in the sense of distributions. This completes the proof of the theorem. �

Now, we can combine Theorems 1.2 and 1.4 to show the nonexistence results.

Proof of Theorem 1.5. It suffices to verify the condition for exponents.

(i) and (ii) Under conditions (i) and (ii), respectively, the nonexistence results
have been proved in [de Figueiredo and Sirakov 2005]. Combining this with our
symmetry results, we find that there exist no nontrivial positive solutions (u, v) with
u ∈51 ∩ L∞(Rn), v ∈52 ∩ L∞(Rn) satisfying conditions (i) and (ii), respectively.

(iii) Combining the nonexistence results of Dancer, Wei and T. Weth [2010] and
our symmetry results, we conclude that there exist no nontrivial positive solutions
(u, v) with u ∈51∩ L∞(Rn) and v ∈52∩ L∞(Rn) with p1= q2= 3, p3= q4= 1,
p4 = q3 = 2. �
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BOUND STATES OF ASYMPTOTICALLY
LINEAR SCHRÖDINGER EQUATIONS

WITH COMPACTLY SUPPORTED POTENTIALS

MINGWEN FEI AND HUICHENG YIN

We study the existence and concentration of bound states to N-dimensional
nonlinear Schrödinger equation −ε24uε + V (x)uε = K (x) f (uε), where
N ≥ 3, ε > 0 is sufficiently small, and the function f (s) is nonnegative and
asymptotically linear at infinity. More concretely, when f (s) ∼ O(s) as
s → +∞, the potential function V (x) lies in C1

0(R
N) with V (x) ≥ 0 and

V (x) 6≡ 0, and K (x) ≥ 0 is permitted to be unbounded under some other
necessary restrictions, we can show that a positive H1(RN)-solution uε(x)

exists and concentrates around the local maximum point of the correspond-
ing ground energy function.

1. Introduction and statements of main results

This paper deals with the problem on the existence and concentration of bound
states for the nonlinear Schrödinger equation

(1-1)

{
−ε2
4uε + V (x)uε = K (x) f (uε), x ∈ RN ,

uε ∈ H 1(RN ), uε(x) > 0,

where N ≥ 3, ε > 0 is small, K (x) ≥ 0, V (x) ≥ 0 with V (x) 6≡ 0, f (s) ≥ 0 and
f (s) ∼ O(s) as s→+∞, which is asymptotically linear. Such a solution uε is
called as a bound state for uε ∈ H 1(RN ) and uε(x) > 0.

Consider in particular the superlinear problem given by the equation

(1-2)

{
−ε2
4uε + V (x)uε = K (x)|uε|p−1uε, x ∈ RN ,

uε ∈ H 1(RN ), uε > 0,

for N ≥ 3 and 1< p < N+2
N−2 . Under various assumptions on the potential function

V (x) ≥ C0 > 0 for large |x | or lim|x |→∞ V (x) = 0 or even V (x) is compactly
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supported with V (x)≥ 0 and V (x) 6≡ 0, the existence of H 1-positive solutions has
been established, and the concentration properties of uε can be obtained at a global
or local minimum point of the ground energy function G(ξ)≡ V θ (ξ)K−2/(p−2)(ξ)

with θ = p
p−2 −

N
2 (one can see [Ambrosetti et al. 2005; Ambrosetti and Malchiodi

2007; Ambrosetti and Wang 2005; Berestycki and Lions 1983; Bonheure and
Van Schaftingen 2008; Byeon and Wang 2006; Dávila et al. 2007; del Pino and
Felmer 1996; del Pino et al. 2007; Fei and Yin 2010; Gui 1996; Rabinowitz 1992;
Wang and Zeng 1997; Yin and Zhang 2009]).

For the asymptotically linear problem (1-1) with ε= 1, there are many papers on
the existence of solution in recent years. For examples, in the case of V (x)≥C0> 0
for large |x |, one can see [Costa and Tehrani 2001; Jeanjean and Tanaka 2002; Liu
et al. 2006; Liu and Wang 2004; Stuart and Zhou 1999]; in the special case that
V (x) vanishes at infinity like a/(1+ |x |σ ) ≤ V (x) ≤ A (the constants σ ∈ (0, 2),
a > 0 and A > 0) and some other restrictions, the authors in [Liu et al. 2008]
established the existence of bound states.

We now consider the following interesting problems indicated in [Ambrosetti
and Malchiodi 2007]: if the potential function V (x) decays faster than 1/(1+|x |σ )
with σ ∈ (0, 2) at infinity or is compactly supported with V (x)≥ 0 and V (x) 6≡ 0,
does the bound state of (1-1) still exist? If it exists, what is the concentration
profile of uε(x) as ε→ 0? In this paper, we will treat these two problems. We
only focus on the case that V (x) is compactly supported, since the other cases of
V (x) = O(1/(1+ |x |σ )) with σ ∈ R can be treated analogously and even more
simply.

To proceed, we define the ground energy function G(ξ). The constant coefficient
asymptotically linear equation is as follows:

(1-3)

{
−4u(x)+ V (ξ)u(x)= K (ξ) f (u), x ∈ RN ,

u ∈ H 1(RN ), u(x) > 0,

where V (ξ), K (ξ)>0 with ξ ∈ 3̄, and the meaning of3 is given in assumption (H4)
below.

The associated Euler functional is defined as

(1-4) I ξ (u)= 1
2

∫
RN
|∇u|2 dx + V (ξ)

2

∫
RN
|u|2 dx − K (ξ)

∫
RN

F(u) dx,

where F(u)=
∫ u

0 f (x, τ ) dτ .
In the terminology in [Wang and Zeng 1997], the function G(ξ)= infu∈Mξ I ξ (u)

is the ground energy function of (1-3) and ω(x) is a ground state of the functional
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I ξ if G(ξ)= I ξ (ω), where Mξ is the Nehari manifold, defined as

(1-5) Mξ
={

u∈H 1(RN )\{0} :
∫

RN
|∇u|2 dx+V (ξ)

∫
RN
|u|2 dx=K (ξ)

∫
RN

f (u)u dx
}
.

Under certain assumptions, we will solve the constant coefficient asymptotically
linear problem (1-3) and prove that the ground state exists and G(ξ) is a continuous
function in 3̄ in Section 3 below. The assumptions are as follows:

(H1) V (x) ∈ C1
0(R

N ), V (x)≥ 0; K (x) ∈ C1(RN ), K (x)≥ 0.

(H2) f ∈C(R,R+)∩C1,γ
loc (R) with some constant γ satisfying 0<γ ≤ 1; f (s)= 0

for s ≤ 0; f (s)= O(sα) with some α > 1 near s = 0.

(H3) f (s)/s is a nondecreasing function for s > 0 and

(1-6) f (s)
s
→ l ∈ (0,+∞) as s→+∞.

(H4) There exists a smooth bounded domain3 of RN such that V (x)> 0, K (x)> 0
on 3̄ and

µ∗ ≡max
ξ∈3̄

V (ξ)
K (ξ)

< l,(1-7)

0< c0 ≡ inf
ξ∈3

G(ξ) < inf
ξ∈∂3

G(ξ).(1-8)

(H5) Let N ≥ 5. There exist some constants k > 0 and β < (α− 1)(N − 2)− 2
such that

(1-9) 0≤ K (x)≤ k(1+ |x |)β in RN .

Our main results in this paper can be stated as follows:

Theorem 1.1 (existence and concentration). Let assumptions (H1)–(H5) hold.

(i) Equation (1-1) has at least one bound state uε provided that ε is small.

(ii) uε has exactly one maximum point xε ∈3, which satisfies

(1-10) C1 ≤ uε(xε)≤ C2

and

(1-11) dist(xε,M)→ 0 as ε→ 0,

where C1,C2 are positive constants independent of ε, and the set M is defined
by M = {x ∈3 : G(x)= c0}. Moreover, if M only contains a single point x0,
then uε is a single peak solution; more precisely,

(1-12) uε(x)= v
( x−xε

ε

)
+wε(x),
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wherewε(x)→ 0 in C2
loc(R

N )∩L∞(RN ) as ε→ 0 and v ∈C2(RN )∩H 1(RN )

is the positive solution of the equation

(1-13) −4v+ V (x0)v = K (x0) f (v), x ∈ RN .

Remark 1.1. In the assumption (H5), N ≥ 5 can not be removed to obtain uε ∈
L2(RN ) in Theorem 1.1 since this is also necessary even for the N -dimensional
linear Laplacian equation. For more details, one can see Remark 1.2 of [Yin and
Zhang 2009]. On the other hand, if we do not require uε ∈ L2(RN ) in Theorem 1.1,
for example, only uε ∈ Lq(RN ) is permitted for some q > 1, then Theorem 1.1 still
holds for all N ≥ 2 by our proof procedure since N ≥ 5 is only used in (4-52) of
Section 4 to derive uε ∈ L2(RN ) through the whole paper.

Remark 1.2. In the assumption (H2), due to f ∈ C1,γ
loc (R), f (s)= 0 for s ≤ 0 and

f (s)= O(sα) near s = 0 with α > 1, then we actually have 0< γ ≤min{1, α−1}.

Remark 1.3. With respect to the assumption (1-7) in (H4), if V (x)∼ l∗/(1+|x |β1)

with β1 > 0 and K (x)∼ 1/(1+ |x |β2) with 0< β2 < β1 or V (x)∼ l∗e−|x |
β1 with

β1> 0 and K (x)∼ e−|x |
β2 with 0<β2<β1, then for 0< l∗< l, we have µ∗≤ l∗< l,

namely, (1-7) holds true. However, assumption (1-7) does not satisfy the condition
(K1) in [Liu et al. 2008], to the effect that sup

{ f (s)
s : s > 0

}
< inf

{ V (x)
K (x) : |x | ≥ R0

}
for some R0 > 0, which seems to be crucial to the proof there. On the other hand,
the main assumptions (K1) and (1.8) in Theorem 1.1 of [Liu et al. 2008] are rather
restricted. If we use instead of (K1) the more natural assumption sup

{ f (s)
s : s>0

}
<

inf
{ V (x)

K (x) : x ∈ Rn
}
, one can easily derive l < inf

{ V (x)
K (x) : x ∈ Rn

}
and

µ∗ = inf f
∫

RN

(
|∇u|2+ V (x)u2) dx

∫
RN

K (x)u2 dx

≥ inf

∫
RN (|∇u|2+ l K (x)u2) dx∫

RN K (x)u2 dx
≥ l,

which yields an obvious contradiction between the main assumption l >µ∗ of (1.8)
and (K1) in Theorem 1.1 of [Liu et al. 2008].

Remark 1.4. The function K (x) in (1-1) can be permitted to be unbounded if
α > N

N−2 in view of the assumption (1-9). Moreover, as in Remark 1.2 of [Yin and
Zhang 2009], we can illustrate that the restriction on β < (α− 1)(N − 2)− 2 in
(1-9) is optimal in order to obtain the existence of H 1-positive solution to (1-1).

Remark 1.5. The assumption in (H3) that f (s)/s is a nondecreasing function for
s > 0 can be removed by more careful analysis than that employed in this paper.
This will be done in a forthcoming paper.

Next let’s make some comments on the proof of Theorem 1.1. First, we modify
the nonlinear term K (x) f (uε) of (1-1) outside3 to gε(x, uε), as in [Yin and Zhang
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2009], with the expression

gε(x, u)=min
{

K (x) f (u), ε3/(1+ |x |θ0)u+, ε/(1+ |x |N )
}

for x ∈ RN and u ∈ R, for a positive constant θ0 to be chosen suitably. Then we
study the modified equation

(1-14) −ε21uε + V (x)uε = χ3(x)K (x) f (uε)+ (1−χ3(x))gε(x, uε)

instead of −ε2
4uε + V (x)uε = K (x) f (uε) in (1-1). It can be shown that the

corresponding Euler functional Iε of the modified equation is well-defined and has
a mountain pass geometry in the weighted Sobolev space

Eε ≡
{

u ∈ D1,2(RN ) :

∫
RN
(ε2
|∇u|2+ V (x)|u|2) dx <∞

}
,

with D1,2(RN )= {u ∈ L2N/(N−2)(RN ) : ∇u ∈ L2(RN )}. Motivated by techniques in
Chapter IV of [Ekeland 1990] or [Jeanjean and Tanaka 2002], we can use a variant
of the mountain pass theorem to find a so-called Cerami sequence, and further show
by contradiction that such a Cerami sequence is bounded and prove the existence
of a positive solution uε to the modified equation.

In order to show such a solution uε is just the solution of the original problem
(1-1), we require to derive the decay property of solution uε and further show
gε(x, uε)= K (x) f (uε) outside the domain 3. To this end, we establish a compact-
ness estimate of integral type to prove that uε is small away from their extreme
points (see Lemma 4.6 below). Based on such an integral estimate together with
the Harnack inequality, we obtain the pointwise decay property of uε at infinity and
then complete the proof of Theorem 1.1.

Here we point out that some phenomena arising from the asymptotically linear
case are quite different from those in superlinear cases, since the exponent p > 1
of f (u) ∼ u p plays a crucial role in showing the concentration-compactness of
uε and deriving the decay property of uε at infinity. (Especially important is the
property F(s)≡

∫ s
0 f (τ ) dτ ≤ k0 f (s)s, with a positive constant k0 <

1
2 and s > 0

in superlinear cases; one can see details in [Yin and Zhang 2009; Fei and Yin
2010] and the illustrations before Lemma 4.3 in this paper.) This means that some
methods used in [Yin and Zhang 2009] cannot be employed directly here.

Our paper is organized as follows. In Section 2, we replace the nonlinearity
K (x) f (uε) outside 3 by a suitably truncated function gε(x, uε) and give a detailed
analysis of the modified equation (1-14), so that the existence of nontrivial positive
solution uε can be established. In Section 3, we give some preliminary results
regarding the properties of the nonlinear Schrödinger equation −4u+ V (ξ)u =
K (ξ) f (u). In Section 4, we derive an integral decay estimate and use the Harnack
inequality to derive the pointwise decay estimate of uε at infinity, inspired by
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Lemma 17 of [Ambrosetti et al. 2005] and Lemmas 4.3 and 4.4 of [Yin and Zhang
2009]. From these, together with some involved analysis, we can complete the
proof of Theorem 1.1.

We will use the following notations:

Br denotes the ball centered at the origin with the radius r .

For a set A ⊂ RN , we put Aε = {ε−1x : x ∈ A}.

2. Existence of critical points for a modified nonlinear equation

We define a class of weighted Sobolev spaces as follows:

Eε :
{

u ∈ D1,2(RN ) :

∫
RN
(ε2
|∇u|2+ V (x)|u|2) dx <∞

}
with D1,2(RN )= {u ∈ L2N/(N−2)(RN ) : ∇u ∈ L2(RN )}.

The norm of the space Eε is denoted by

‖u‖ε =
(∫

RN
(ε2
|∇u|2+ V (x)|u|2) dx

)1/2

for u ∈ Eε.

Towards proving Theorem 1.1, it is necessary to modify (1-1) and further discuss
the existence of solution to the modified equation.

To this end, we define a function gε(x, ξ) by

gε(x, ξ)=min
{

K (x) f (ξ), ε3

1+|x |θ0
ξ+,

ε

1+|x |N

}
, x ∈ RN , ξ ∈ R,

where ξ+ =max{ξ, 0}, and θ0 > 2 will be suitably chosen in (4-51).
Set

hε(x, ξ)= χ3(x)K (x) f (ξ)+ (1−χ3(x))gε(x, ξ),

where χ3(x) represents the characteristic function of the set 3.
We now consider the modified nonlinear equation

(2-1) −ε21u+ V (x)u = hε(x, u), x ∈ RN .

The functional corresponding to (2-1) is

(2-2) Iε(u)= 1
2‖u‖

2
ε −

∫
3

K (x)F(u) dx −
∫

RN \3

Gε(x, u) dx,

where F(s)=
∫ s

0 f (τ ) dτ and Gε(x, s)=
∫ s

0 gε(x, τ ) dτ .
By (H2) and (H3), for any δ>0, there exists Cδ>0 such that f (s)≤δs+Cδ|s|2

∗
−1



BOUND STATES OF ASYMPTOTICALLY LINEAR SCHRÖDINGER EQUATIONS 341

and further

(2-3)
∫
3

K (x)F(u) dx ≤ Cδ‖u‖2ε +Cε−2∗
‖u‖2

∗

ε .

On the other hand, a direct computation yields for u ∈ Eε

(2-4)
∫

RN \3

Gε(x, u) dx ≤
∫

RN \3

gε(x, u)u dx ≤ Cε‖u‖2ε.

It follows from (2-3) and (2-4) that Iε(u) is well-defined on Eε. That Iε lies in
C1(Eε,R) is obvious.

Next we show that Iε has a mountain pass geometry. Given small ε > 0, by (2-3)
and (2-4), there are two small numbers δ and r > 0 such that

(2-5) Iε(u)≥ 1
2‖u‖

2
ε−Cδ‖u‖2ε−Cε−2∗

‖u‖2
∗

ε −Cε‖u‖2ε ≥
1
4‖u‖

2
ε for ‖u‖ε ≤ r.

We now claim that

(2-6) inf
ψ∈H1(RN )\{0}

∫
RN |∇ψ |

2 dx∫
RN ψ2 dx

= 0.

Indeed, ifψ0(x) 6=0∈ H 1(RN ), then for any fixed λ∈R, one hasψ0(λx)∈ H 1(RN ).
A direct computation yields that∫

RN
|∇
(
ψ0(λx)

)
|
2 dx = λ2−N

∫
RN
|∇ψ0(x)|2 dx

and ∫
RN
|ψ0(λx)|2 dx = λ−N

∫
RN
|ψ0(x)|2 dx .

Therefore, we arrive at

(2-7)

∫
RN |∇

(
ψ0(λx)

)
|
2 dx∫

RN |ψ0(λx)|2 dx
= λ2

∫
RN |∇ψ0(x)|2 dx∫

RN |ψ0(x)|2 dx
→ 0 as λ→ 0,

proving (2-6).
From (2-6), we obtain for any fixed ξ ∈3,

(2-8) inf
ψ∈H1(RN )\{0}

∫
RN (|∇ψ |

2
+ V (ξ)|ψ |2) dx∫

RN K (ξ)ψ2 dx
=

V (ξ)
K (ξ)

.

This, together with (1-7), yields that for fixed ξ ∈ 3 there exists a function
ϕ ∈ C∞0 (R

N ) such that

(2-9)

∫
RN (|∇ϕ|

2
+ V (ξ)|ϕ|2) dx∫

RN K (ξ)ϕ2 dx
< l.

Choose R > 0 such that BR(ξ) ⊂ 3. We define a smooth cut-off function
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η : R+→ R+ satisfying η(t)= 1 if 0≤ t ≤ R
4 , η(t)= 0 if t ≥ R

2 and |η′(t)| ≤ 8
R .

Set
ϕε(x)= η(|x − ξ |)ϕ

( x−ξ
ε

)
∈ C∞0 (3).

Then

(2-10) Iε(tϕε)

= εN
( t2

2

∫
RN

(
|∇ϕ|2+ V (ξ)|ϕ|2

)
dx − 1

2

∫
RN

K (ξ)F(tϕ) dx + oε(1)
)
;

here and below the notation oε(1) stands for a quantity which satisfies oε(1)→ 0
as ε→ 0.

Thus we have, for ε ≤ 1,

(2-11) lim inf
t→+∞

Iε(tϕε)
t2 ≤

1
2

∫
R2

(
|∇ϕ|2+ V (ξ)|ϕ|2

)
dx − l

2

∫
RN

K (ξ)ϕ2 dx < 0.

Consequently, there exists some t0 > 0 such that Iε(t0ϕε) < 0. This, together
with (2-5), means that Iε has a mountain pass geometry. Let

cε = inf
γ∈0ε

max
0≤t≤1

Iε(γ (t)),

where 0ε = {γ ∈ C([0, 1], Eε) : γ (0) = 0, Iε(γ (1)) < 0}. By the mountain pass
theorem in Chapter IV of [Ekeland 1990], as in [Liu et al. 2008], one has the
following lemma.

Lemma 2.1. Under the assumptions (H1)–(H4), for small ε > 0, there exists a
sequence {un} ⊂ Eε such that Iε(un)→ cε and ‖I ′ε(un)‖E ′ε(1+ ‖un‖ε)→ 0 as
n→∞, where E ′ε and ‖I ′ε(un)‖E ′ε denote by the dual space of Eε and the norm of
I ′ε(un) in E ′ε.

Such a sequence is called a Cerami sequence. Next we will prove the sequence
{un} is bounded in Eε. We reason by contradiction: we assume up to a subsequence
that ‖un‖ε→+∞ as n→+∞, and derive a contradiction in Lemmas 2.2 and 2.3.

So assume ‖un‖ε→∞ and set ωn = un/‖un‖ε. By the boundedness of {ωn} in
Eε there exists ω ∈ Eε satisfying, after passing to a subsequence if necessary,

ωn ⇀ω weakly in Eε,(2-12)

ωn→ ω strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

,(2-13)

ωn→ ω almost everywhere in RN .(2-14)

Lemma 2.2. Under the assumptions (H1)–(H3), if ‖un‖ε→+∞, then ω(x)≥ 0
with ω(x) 6≡ 0 and ω solves the following equation weakly in Eε:

(2-15) −ε2
4u+ V (x)u = χ3(x)l K (x)u.
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Proof. Since it follows from Lemma 2.1 that I ′ε(un)u−n = on(1), then ‖u−n ‖ε = on(1)
holds true. This means ‖ω−n ‖ε = on(1); hence ω− = 0 and ω ≥ 0.

On the other hand, by Lemma 2.1 and (2-4), we have

on(1)=
I ′ε(un)un

‖un‖
2
ε

= 1−
∫
3

K (x) f (un)

un
ω2

n dx −
∫

RN \3

gε(x, un)un
‖un‖

2
ε

dx

≥ 1−
∫
3

K (x) f (un)

un
ω2

n dx −Cε;

here and below on(1) denotes a quantity that vanishes as n→∞.
From this, for small ε and large n we obtain

(2-16) C
∫
3

ω2
n dx ≥

∫
3

K (x) f (un)

un
ω2

n dx ≥ 1− on(1)−Cε ≥ 1
2 .

Combining (2-13) with (2-16) yields
∫
3
ω2 dx ≥ C , which obviously leads to

ω 6≡ 0.
Next we prove that ω satisfies (2-15).

In fact, for any φ ∈ C∞0 (R
N ), we have

I ′ε(un)φ

‖un‖ε
= on(1), which is equivalent to

(2-17)
∫

RN
(ε2
∇ωn∇φ+ V (x)ωnφ) dx

=

∫
3

K (x) f (un)

un
ωnφ dx −

∫
RN \3

gε(x, un)

‖un‖ε
φ dx + on(1).

Due to (2-12) and (2-17), there holds

(2-18)
∫

RN
(ε2
∇ω∇φ+ V (x)ωφ) dx

= lim
n→∞

(∫
3

K (x) f (un)

un
ωnφ dx −

∫
RN \3

gε(x, un)

‖un‖ε
φ dx

)
.

Noting that ∫
3

(
K (x) f (un)

un
ωn

)2

dx ≤ C
∫
3

V (x)ω2
n dx ≤ C

and

K (x) f (un)

un
ωn→ l K (x)ω almost everywhere in 3,

we get

(2-19) lim
n→∞

∫
3

K (x) f (un)

un
ωnφ dx =

∫
3

l K (x)ωφ dx .
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In addition, one has

(2-20) lim
n→∞

∫
RN \3

g(x, un)

‖un‖ε
φ dx = 0.

Substituting (2-19) and (2-20) into (2-18) yields the conclusion of Lemma 2.2. �

Lemma 2.3. Under the assumptions (H1)–(H4), Equation (2-15) has no nontrivial
solution ω(x) with ω(x)≥ 0.

Proof. By (1-7), along the proof line of (2-9), there exists vε ∈ C∞0 (3) such that∫
3
(ε2
|∇vε|

2
+ V (x)|vε|2) dx∫

3
K (x)v2

ε dx
< l.

Let 30 be a set satisfying supp vε (30 (3 and

µ0 = inf
ϕ∈C∞0 (30)

∫
30
(ε2
|∇ϕ|2+ V (x)|ϕ|2) dx∫
30

K (x)ϕ2 dx
;

then µ0 < l.
Due to the compactness of the embedding H 1

0 (30) ↪→ L2(30), a direct argument
then shows there exists a nontrivial nonnegative function v0 ∈ H 1

0 (30) such that

(2-21) −ε2
4v0+ V (x)v0 = µ0K (x)v0, x ∈30.

In addition, by the strong maximum principle [Gilbarg and Trudinger 1983,
Lemma 3.4 and Theorem 3.5], one has

v0 > 0, x ∈30,
∂v0
∂ν

< 0, x ∈ ∂30.

Moreover, we can assert that if ω ≥ 0 is a nontrivial solution of (2-15), then
ω 6≡ 0 in 3 for small ε. Indeed, if ω ≡ 0 in 3, we get ‖ω‖2ε = 0 by (2-15), which
yields a contradiction since ω is nontrivial.

Hence, we can choose the domain 30 so that
∫
30

K (x)v0ω dx > 0. In this case,
we have

µ0

∫
30

K (x)v0ω dx =
∫
30

(−ε2
4v0+ V (x)v0)ω dx

= l
∫
30

K (x)v0ω dx −
∫
∂30

ε2 ∂v0
∂ν
ω dσ ≥ l

∫
30

K (x)v0ω dx .

This means µ0 ≥ l, which contradicts with µ0 < l. Hence we complete the proof
of Lemma 2.3. �

Combining Lemma 2.2 with Lemma 2.3, we immediately obtain the announced
result:
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Lemma 2.4. Under the assumptions (H1)–(H4), the sequence {un} in Lemma 2.1
is bounded in Eε.

Next we state the main result in this section.

Lemma 2.5. Under the assumptions (H1)–(H4), for small ε > 0, the modified
functional Iε of (2-1) has a nontrivial critical point uε ∈ Eε with the level Iε(uε)= cε.

Proof. The boundedness of {un} in Eε implies that there exists uε ∈ Eε satisfying,
after passing to a subsequence if necessary,

un ⇀ uε weakly in Eε,(2-22)

un→ uε strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

.(2-23)

Next we show ‖un‖ε→‖uε‖ε as n→∞, which together with (2-22) leads to
the strong convergence of {un} in Eε.

In fact, by I ′ε(un)uε→ 0 and (2-22), we arrive at

(2-24) on(1)=
∫

RN
(ε2
∇un · ∇uε + V (x)unuε) dx

−

∫
3

K (x) f (un)uε dx −
∫

RN \3

gε(x, un)uε dx,

which implies

(2-25) ‖uε‖2ε −
∫
3

K (x) f (un)uε dx −
∫

RN \3

gε(x, un)uε dx = on(1).

In addition, we have

(2-26) ‖un‖
2
ε−

∫
3

K (x) f (un)un dx−
∫

RN \3

gε(x, un)un dx = I ′ε(un)un = on(1).

On the other hand, by use of (2-23), we find

(2-27) lim
n→∞

∫
3

K (x) f (un)un dx = lim
n→∞

∫
3

K (x) f (un)uε dx,

and for any fixed large R > 0 (without loss of generality, 3⊂ BR is assumed),

(2-28) lim
n→∞

∫
BR\3

gε(x, un)un dx = lim
n→∞

∫
BR\3

gε(x, un)uε dx .

Thus, in order to obtain ‖un‖ε→‖u0‖ε, it follows from (2-25)–(2-28) that we
only need to prove the following statement:

For any given δ > 0, there exists R > 0 such that for all n

(2-29)
∣∣∣∣∫

RN \BR

gε(x, un)uε dx
∣∣∣∣< δ, ∣∣∣∣∫

RN \BR

gε(x, un)un dx
∣∣∣∣< δ.
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It is only enough to check the first inequality in (2-29) since the second one is
similar. By direct computations, we have∣∣∣∣∫

RN \BR

gε(x, un)uε dx
∣∣∣∣≤ Cε

R(θ0−2)/2 ‖un‖ε‖uε‖ε→ 0 as R→∞.

The last estimate follows from the choice of θ0 > 2 and the boundedness of
{un}. Thus we have shown that un → uε in Eε, which completes the proof of
Lemma 2.5. �

Remark 2.1. Since hε(x, ξ) is Lipschitzian continuous in ξ for fixed x , it follows
from second order elliptic regularity theory that uε is a classical solution of (2-1).
Furthermore, uε > 0.

3. Solving a related constant coefficient problem

In this section, toward the proof of Theorem 1.1 in Section 4, we study the asymp-
totically linear problem (1-3) with constant coefficients. Some conclusions and
techniques in this section are very similar to those in Section 2, but we give the
argument anyway, for the reader’s convenience.

We consider the functional I ξ (u) defined in (1-4) for u ∈ E ≡ H 1
r (R

N )= {u ∈
H 1(RN ) : u(x)= u(|x |)}. Set

‖u‖ξ =
(∫

RN
(|∇u|2+ V (ξ)|u|2) dx

)1/2

,

which is a norm equivalent to the H 1(RN ) norm. We now verify that I ξ has a
mountain pass geometry. Similar to the proof of (2-5), there are two small numbers
δ, r > 0 such that

(3-1) I ξ (u)≥ 1
2‖u‖

2
ξ −Cδ‖u‖2ξ −C‖u‖2

∗

ξ ≥
1
4‖u‖

2
ξ for ‖u‖ξ ≤ r.

In addition, by (2-9), there exists a function ϕ ∈ H 1(RN ) \ {0} such that

(3-2)

∫
RN (|∇ϕ|

2
+ V (ξ)|ϕ|2) dx∫

RN K (ξ)ϕ2 dx
< l.

Let ϕ∗ be the symmetrization of ϕ (see [Berestycki and Lions 1983, Appen-
dix A.III]). Then ϕ∗(x) = ϕ∗(|x |) is a nonnegative function. Moreover, for any
continuous function H(s) such that H(ϕ(x)) is integrable in RN there holds

(3-3)
∫

RN
H(ϕ∗) dx =

∫
RN

H(ϕ) dx

and

(3-4)
∫

RN
|∇ϕ∗|2dx ≤

∫
RN
|∇ϕ|2dx .
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By (3-2)–(3-4), we have

(3-5)

∫
RN (|∇ϕ

∗
|
2
+ V (ξ)|ϕ∗|2) dx∫

RN K (ξ)|ϕ∗|2 dx
< l;

by the same argument as in (2-11) we can derive

(3-6) lim inf
t→+∞

I ξ (tϕ∗)
t2 < 0.

Thus there exists t0 > 0 such that I ξ (t0ϕ∗) < 0, showing that I ξ has a mountain
pass geometry. Define the mountain level

(3-7) c1 = inf
γ∈0

max
0≤t≤1

I ξ (γ (t)),

where 0 = {γ ∈ C([0, 1], E) : γ (0)= 0, I ξ (γ (1)) < 0}.
The next two lemmas are established analogously to Lemma 2.1 and Lemma 2.4,

respectively.

Lemma 3.1. There exists a sequence {un} ⊂ E such that I ξ (un)→ c1 and

‖(I ξ )′(un)‖H−1(1+‖un‖ξ )→ 0 as n→∞.

Lemma 3.2. The sequence {un} given in Lemma 3.1 is bounded in E.

Based on Lemma 3.2, we have:

Lemma 3.3. The functional I ξ has a positive critical point ω ∈ H 1
r (R

N ) with the
level I ξ (ω)= c1. That is, ω is a radially symmetric solution to the problem (1-3).

Proof. It follows from the boundedness of {un} in Lemma 3.2 that there exists
ω ∈ E satisfying, after passing to a subsequence if necessary,

un ⇀ω weakly in E,(3-8)

un→ ω strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

.(3-9)

As in Lemma 2.5, we only need to show ‖un‖ξ → ‖ω‖ξ as n →∞, which
together with (3-8) leads to the strong convergence of {un} in E .

Since (I ξ )′(un)ω→ 0 and using (3-8), we arrive at

on(1)=
∫

RN
(∇un · ∇ω+ V (ξ)unω) dx −

∫
RN

K (ξ) f (un)ω dx .

This implies

(3-10) ‖ω‖2ξ −

∫
RN

K (ξ) f (un)ω dx = on(1).
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In addition, we have

(3-11) ‖un‖
2
ξ −

∫
RN

K (ξ) f (un)un dx = on(1).

On the other hand, it follows from (3-9) and the Hölder inequality that

(3-12)
∣∣∣∣∫

RN
f (un)(un −ω) dx

∣∣∣∣≤ C
∫

RN
|un| |un −ω| dx

≤ C‖un‖L2‖un −ω‖L2 = on(1).

Hence, collecting (3-10)–(3-12) yields ‖un‖ξ→‖ω‖ξ as n→∞ and I ξ (ω)= c1.
Moreover, ω is a nontrivial critical point of I ξ to E . By the principle of symmetric
criticality (see [Willem 1996, Theorem 1.28]), ω is also a nontrivial critical point
of I ξ to H 1(RN ). In addition, ω > 0 can be shown as in Remark 2.1. Therefore,
Lemma 3.3 is proved. �

Next we assert that the radial function ω(x) = ω(V (ξ), K (ξ); x) found in
Lemma 3.3 is a ground state of the functional I ξ , that is,

(3-13) G(ξ)= I ξ (ω).

Obviously, G(ξ)≤ I ξ (ω) since ω ∈Mξ , ω being defined in (1-5). What is left
is to show I ξ (ω)≤ G(ξ) in order to get (3-13).

For any u ∈ Mξ , let u∗ be the symmetrization of u. Then u∗ ∈ H 1(RN ) and
u∗ ≥ 0. Consider the function

(3-14) J (t)= I ξ (tu∗)= t2

2

∫
RN

(
|∇u∗|2+V (ξ)|u∗|2

)
dx−K (ξ)

∫
RN

F(tu∗) dx .

A direct computation yields

lim
t→∞

J (t)
t2 =

1
2

∫
RN

(
|∇u∗|2+ V (ξ)|u∗|2

)
dx − l K (ξ)

2

∫
RN
|u∗|2 dx(3-15)

≤
K (ξ)

2

∫
RN

( f (u∗)
u∗
− l
)
|u∗|2 dx .

In addition, by the Strauss inequality [Willem 1996, Lemma 4.5], we have
u∗(x)→ 0 as |x | → +∞. On the other hand, it follows from lims→0+ f (s)/s = 0
that there exists �⊂ RN with |�|> 0 such that

(3-16)
(

f (u∗(x))
u∗(x)

− l
)
|u∗(x)|2 < 0

for x ∈�. If x ∈ RN
\�, the left-hand side of (3-16) is nonnegative, by (H3). Thus,

we have ∫
RN

(
f (u∗)

u∗
− l
)
|u∗|2 dx < 0.
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This, together with (3-15), yields that there exists t0 = t0(u∗) > 0 such that
I ξ (t0u∗) < 0. Define γ (t)= t t0u∗; then γ (t) ∈ 0. By the definition of c1, we see
that

I ξ (ω)= c1 ≤ max
0≤t≤1

I ξ (t t0u∗)≤ max
0≤t≤1

I ξ (t t0u)≤max
t≥0

I ξ (tu)= I ξ (u).

Since u is arbitrary, we have I ξ (ω)≤ G(ξ) and (3-13) is shown.

Remark 3.1. By the Gidas–Ni–Nirenberg result [Fei and Yin 2010, Theorem 2 and
following remark], 0 is the unique maximum point of ω(x) in RN . This motivates
us to establish a similar result in Lemma 4.5 in Section 4 below.

Finally, we show that the ground energy function G(ξ) is continuous for ξ ∈ 3̄.
Here we point out that the continuity of G(ξ) corresponding to the superlinear case
of f (u) in (1-3) has been proved in [Wang and Zeng 1997].

Lemma 3.4. G(ξ) is continuous with respect to ξ ∈ 3̄.

Proof. Consider a sequence {ξ j } ⊆ 3̄ such that ξ j → ξ0 ∈ 3̄ as j →+∞. Then
V (ξ j )→ V (ξ0), K (ξ j )→ K (ξ0) as j→∞. Set

I j (u)=
1
2

∫
RN
|∇u|2 dx +

V (ξ j )

2

∫
RN
|u|2 dx − K (ξ j )

∫
RN

F(u) dx,

I0(u)=
1
2

∫
RN
|∇u|2 dx +

V (ξ0)

2

∫
RN
|u|2 dx − K (ξ0)

∫
RN

F(u) dx,

and
0 j = {γ ∈ C([0, 1], E) : γ (0)= 0, I j (γ (1)) < 0},

00 = {γ ∈ C([0, 1], E) : γ (0)= 0, I0(γ (1)) < 0}.

From (3-7) and (3-13), we have

G(ξ j )= inf
γ∈0 j

max
0≤t≤1

I j (γ (t)) and G(ξ0)= inf
γ∈00

max
0≤t≤1

I0(γ (t)).

The proof of the continuity of G(ξ) now proceeds in two steps.

Step 1: lim sup j→∞ G(ξ j )≤ G(ξ0).
For any fixed path γ (t) satisfying γ (0)=0 and I0(γ (1))<0, we have I j (γ (1))<

0 for large j and

lim sup
j→∞

G(ξ j )≤ lim sup
j→∞

max
0≤t≤1

I j (γ (t))= max
0≤t≤1

I0(γ (t)).

Since the path γ (t) is arbitrary, this yields

(3-17) lim sup
j→∞

G(ξ j )≤ G(ξ0).
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Step 2: lim inf j→∞ G(ξ j )≥ G(ξ0).
We split this step into four parts.
Let ω j (x)∈ H 1

r (R
N ) satisfy G(ξ j )= I j (ω j (x)) (the existence of ω j (x) has been

shown in Lemma 3.3).

Part 1.
∫

RN |∇ω j |
2 dx is uniformly bounded with respect to j .

According to Pohozaev identity [Willem 1996, Appendix], we have

N−2
2N

∫
RN
|∇ω j |

2 dx =−
V (ξ j )

2

∫
RN
|ω j |

2 dx + K (ξ j )

∫
RN

F(ω j ) dx .

This implies

(3-18) G(ξ j )= I j (ω j )=
1
N

∫
RN
|∇ω j |

2 dx .

It follows from (3-17) and (3-18) that there is a positive constant C such that

(3-19)
∫

RN
|∇ω j |

2 dx ≤ C for any j.

Part 2.
∫

RN ω
2
j dx has a uniform upper bound independent of j .

Note that up to a subsequence, there exists a radial symmetric function ω(x)
such that, as j→∞,

ω j ⇀ω, weakly in D1,2(RN ),(3-20)

ω j → ω, strongly in L t
loc(R

N ), 1≤ t < 2N
N−2

,(3-21)

ω j → ω, almost everywhere in RN .(3-22)

By the Strauss inequality [Berestycki and Lions 1983, Lemma A.III, p. 340] for
the radial function in D1,2(RN ), we have

(3-23) |ω j (x)|2 ≤ C(N )|x |2−N
∫

RN
|∇ω j (x)|2 dx, for all |x | ≥ 1,

where the positive constant C(N ) only depends on N .
Since f (s)/s→ 0 as s→ 0 by the assumption (H2), we get from (3-23) and the

fact that N ≥ 5 that

f (ω j (x))
ω j (x)

→ 0 as |x | →∞ uniformly with respect to j .

This implies that there exists a large number R > 0 such that

(3-24)
∫
|x |≥R

(
V (ξ j )− K (ξ j )

f (ω j )

ω j

)
|ω j |

2 dx ≥ C
∫
|x |≥R
|ω j |

2 dx,

where C > 0 is independent of R and j .
It follows from (3-24) and the partial differential equation satisfied by ω j that
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for large R,

C
∫
|x |≥R
|ω j |

2 dx ≤
∫
|x |≥R

(
V (ξ j )− K (ξ j )

f (ω j )

ω j

)
|ω j |

2 dx(3-25)

≤ C
∫
|x |≤R
|ω j |

2 dx→ C
∫
|x |≤R
|ω|2 dx as j→∞.

Combining (3-24) with (3-25) yields that
∫

RN |ω j |
2 dx has a uniform supper

bound with respect to j . Thus ω ∈ L2(RN ) and further ω ∈ H 1(RN ). Moreover, ω
is a solution of the equation

(3-26) −4ω(x)+ V (ξ0)ω(x)= K (ξ0) f (ω), x ∈ RN .

Part 3.
∫

RN |ω j |
2 dx has a uniform positive lower bound with respect to j .

We now show that
∫

RN |ω j |
2 dx has a uniform positive lower bound with respect

to j . If so, this assertion together with (3-21) and (3-25) will yield

(3-27) ω 6≡ 0.

Note that V (ξ0)/K (ξ0) < l and V (ξ j )→ V (ξ0), K (ξ j )→ K (ξ0) as j →∞.
Thus we can choose a fixed small number η > 0 satisfying

(3-28)
V (ξ0)− η

K (ξ0)+ η
< l,

and, for large j ,

(3-29) V (ξ j ) > V (ξ0)− η, K (ξ j ) < K (ξ0)+ η.

Let m0 be the ground energy of the functional

H 1(RN )3u 7→ 1
2

∫
RN
|∇u|2 dx+

V (ξ0)− η

2

∫
RN
|u|2 dx−(K (ξ0)+η)

∫
RN

F(u) dx

in the Nehari manifold Mη, which is defined as

Mη
=

{
u ∈ H 1(RN ) \ {0} :∫

RN
|∇u|2 dx + (V (ξ0)− η)

∫
RN
|u|2 dx = (K (ξ0)+ η)

∫
RN

f (u)u dx
}
.

By (3-28) and the similar proof on Lemma 3.3, one can show that m0 is achieved
and is positive (in the arguments of Lemma 3.3, we have used the condition
V (ξ)/K (ξ) < l parallel to (3-28)).
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Consider the function

g j (t)

=

∫
RN
|∇(tω j )|

2 dx+(V (ξ0)−η)

∫
RN
|tω j |

2 dx−(K (ξ0)+η)

∫
RN

f (tω j )tω j dx .

Recalling that lims→0 F(s)/s2
= lims→0 f (s)/(2s) = 0, we get g j (t) > 0 for

0 < t � 1. In addition, by (3-29) we get g j (1) < I ′j (ω j )ω j = 0. Therefore there
exists a t j ∈ (0, 1) such that g j (t jω j )= 0, that is,

(3-30) 1
2

∫
RN
|∇(t jω j )|

2 dx

+
V (ξ0)−η

2

∫
RN
|t jω j |

2 dx − (K (ξ0)+ η)

∫
RN

F(t jω j ) dx ≥ m0.

Set

h j (t)=
1
2

∫
RN
|∇(tω j )|

2 dx +
V (ξ j )

2

∫
RN
|tω j |

2 dx − K (ξ j )

∫
RN

F(tω j ) dx .

It follows from a direct computation and the assumption (H3) that, for t ∈ (0, 1],

(3-31) h′j (t)= t
∫

RN
|∇ω j |

2 dx+tV (ξ j )

∫
RN
|ω j |

2 dx−K (ξ j )

∫
RN

f (tω j )ω j dx

≥ 0.

Combining (3-29), (3-30), and (3-31), we obtain, for large j ,

I j (ω j )≥ m0.

Together with (3-18), this yields, for large j ,

(3-32) 1
N

∫
RN
|∇ω j |

2 dx = I j (ω j )≥ m0.

In addition, since(
F(s)
s2

)′
=

f (s)s− 2F(s)
s3 ≥ 0 and lim

s→+∞

F(s)
s2 = lim

s→+∞

f (s)
2s
=

l
2
,

we have

(3-33) 0≤ F(s)
s2 ≤

l
2
, s 6= 0.

Therefore, by (3-32), (3-33), and the Pohozaev identity we find that

(3-34) 0< C ≤ N−2
2N

∫
RN
|∇ω j |

2 dx ≤ C
∫

RN
ω2

j dx,
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where C is a generic positive constant independent of j , that is,
∫

RN |ω j |
2 dx have

a uniform positive lower bound with respect to j .

Part 4. lim j→∞
∫

RN F(ω j ) dx =
∫

RN F(ω) dx .
In order to show

(3-35) lim
j→∞

∫
RN

F(ω j ) dx =
∫

RN
F(ω) dx,

then by (3-21) we only need to prove:
For any given δ > 0, there exists R > 0 such that, for large j ,

(3-36)
∣∣∣∣∫

RN \BR

F(ω j ) dx
∣∣∣∣< δ.

In fact, if we set ηR to be a smooth cut-off function such that ηR = 0 for |x | ≤ R
2 ,

ηR = 1 for |x | ≥ R and |∇η| ≤ 4
R , then multiplying by ηRω j the equation

−4ω j + V (ξ j )ω j = K (ξ j ) f (ω j ), x ∈ RN ,

yields, for large R and j ,

C
∫
|x |≥R

(
|∇ω j |

2
+ |ω j |

2) dx ≤ C
R
→ 0 as R→+∞,

which means that (3-36) and further (3-35) hold.
Finally, we show lim inf j→∞ G(ξ j ) ≥ G(ξ0). In view of (3-35), (3-26)–(3-27)

and the fact that G(ξ0) is the ground energy of the functional I0, we have

(3-37) lim inf
j→∞

G(ξ j )

= lim inf
j→∞

{
1
2

∫
RN

(
|∇ω j |

2
+ V (ξ j )|ω j |

2) dx − K (ξ j )

∫
RN

F(ω j ) dx
}
≥ G(ξ0).

Thus the continuity of G(ξ) is derived from (3-17) and (3-37), that is, Lemma 3.4
is proved. �

4. The proof of Theorem 1.1

At first, we intend to obtain an upper bound estimate of the critical value cε
corresponding to the functional Iε(u) defined in Section 2, which will play a
crucial role in establishing the concentration and decay estimates of solution uε to
Equation (2-1). From the decay estimates of uε we can show gε(x, uε)≡K (x) f (uε)
in RN

\3 and subsequently complete the proof of Theorem 1.1.

Lemma 4.1. Under the hypotheses (H1)–(H4), and with c0 as in (H4), we have, for
small ε > 0,

(4-1) cε ≤ (c0+ oε(1))εN .
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Proof. For ξ ∈ 3, choose R > 0 such that BR(ξ) ⊂ 3. Define a smooth cut-off
function η : R+ → R+ satisfying η(t) = 1 if 0 ≤ t ≤ R

4 , η(t) = 0 if t ≥ R
2 and

|η′(t)| ≤ 8
R . Set

wε(x)= η(|x − ξ |)ω
( x−ξ
ε

)
,

where ω(x)= ω(V (ξ), K (ξ); x) is the solution of (1-3).
Noting that wε is compactly supported in 3, one can get Gε(x, twε) = 0 for

all t ≥ 0 and x ∈ 3, where Gε(x, u) is the function defined in (2-2). Then as in
the argument in (2-11), there exists a sufficiently large T > 0 such that Iε(Twε) <
0. This implies that the path γε(t) = {tTwε : t ∈ [0, 1]} is an element of 0ε
satisfying cε ≤ max0≤t≤1 Iε(γε(t)). Also, similar to the proof of (2-10), we infer
that Iε(tTwε)= εN (I ξ (tTw)+ oε(1)). Hence

max
0≤t≤1

Iε(γε(t))= max
0≤t≤1

Iε(tTwε)=εN (max
0≤t≤1

I ξ (tTw)+oε(1))=εN (G(ξ)+oε(1)).

Since ξ is arbitrary and the smallness of ε is independent of the choice of ξ , then
Lemma 4.1 is proved. �

The next result illustrates that the maximum of uε on 3 has a uniform positive
lower bound.

Lemma 4.2. Let xε be the maximum point of uε on 3, then there exists a positive
constant C independent of ε such that

(4-2) uε(xε)≥ C.

Proof. By (H2) and (H3), for any δ > 0, there exists Cδ > 0 such that f (s) ≤
δs+Cδ|s|2. From I ′ε(uε)uε = 0, one has, for small δ and ε,

‖uε‖2ε =
∫
3

K (x) f (x, uε)uε dx +
∫

RN \3

gε(x, uε)uε dx

≤
1
2
‖uε‖2ε +C‖uε‖2ε max

3

uε.

Obviously this means that there exists a positive number C independent of ε
such that uε(xε)≥ C holds true due to ‖uε‖ε 6= 0, then the proof of Lemma 4.2 is
completed. �

Note that since f (s) is asymptotically linear, then in the general case, there is no
number θ > 0 such that (2+θ)F(s)≤ f (s)s for any s> 0, here F(s)=

∫ s
0 f (τ ) dτ .

However, in the superlinear case, this property of (2+ θ)F(s)≤ f (s)s with θ > 0
play a crucial role in obtaining the uniform boundedness of ε−N

‖uε‖ε from (4-1),
which will be used to derive the decay estimate of uε at infinity and the concentration
of uε as ε→ 0 (one can see the details in [Fei and Yin 2010] and some references
therein). To overcome this kind of difficulty, next we will use some different
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ingredients (motivated by the proofs of Lemmas 2.2–2.3) to treat the uniform
boundedness of ε−N

‖uε‖ε.

Lemma 4.3. There exists a positive constant C independent of small ε such that

(4-3) ε−N
∫

RN

(
ε2
|∇uε|2+ V (x)|uε|2

)
dx ≤ C,

namely,

(4-4)
∫

RN

(
|∇vε|

2
+ V (εx + xε)|vε|2

)
dx ≤ C,

where vε(x)= uε(εx + xε) and the meaning of xε is given in Lemma 4.2.

Proof. For convenience we will use the notation ‖vε‖ with

‖vε‖ =

(∫
RN

(
|∇vε|

2
+ V (εx + xε)|vε|2

)
dx
)1/2

.

If (4-4) does not hold, there exists a sequence of functions vn(x)≡ uεn (εnx+ xn)

such that ‖vn‖→+∞ as n→∞ and vn(x) satisfies

(4-5) −1vn + V (εnx + xn)vn

= χ�n (x)K (εnx + xn) f (vn)+ (1−χ�n (x))gεn (εnx + xn, vn),

where �n ≡ ε
−1
n (3− xn) and xn ≡ xεn ∈3.

Set ωn = vn/‖vn‖, then ‖ωn‖ = 1 and ωn(x) satisfies

(4-6) −1ωn + V (εnx + xn)ωn

= χ�n (x)K (εnx + xn)
f (vn)

vn
ωn + (1−χ�n (x))

gεn (εnx + xn, vn)

‖vn‖
.

We rewrite (4-6) as

(4-7) −1ωn = an(x)ωn,

where

an(x)=−V (εnx+xn)+χ�n (x)K (εnx+xn)
f (vn)

vn
+(1−χ�n (x))

gεn (εnx + xn, vn)

vn
.

For any fixed and bounded smooth domain �⊂ RN and fixed α ∈ (0, 1), due to
‖an(x)‖L∞(�) ≤C(�), it follows from ‖ωn‖= 1 and the elliptic equation (4-7) that
‖ωn‖C1,α(�̄) ≤C(�, α), where the positive constants C(�) and C(�, α) depend on
� and �,α respectively. Therefore, for fixed β ∈ (0, α), there exists a subsequence
still denoted by {ωn} and a function ω such that ωn→ ω in C1,β(�̄).

In particular, for a series of closed ball sequences Bk(0), k = 1, 2, . . . , then there
exists a subsequence {ω1n} and a function ω1 such that ω1n→ ω1 in C1,β(B1(0)),
and there exists a subsequence {ω(k+1)n} ⊆ {ωkn} and a function ωk+1 such that
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ω(k+1)n→ ωk+1 in C1,β(Bk+1(0)) as n→∞ for k ≥ 1. By the diagonal process,
one knows that there exists a subsequence still denoted by {ωn} and a function ω
such that ωn → ω in C1,β

loc (R
N ) as n→+∞. Of course, limn→∞ ωn(x) = ω(x)

holds for x ∈ RN .
Let xn→ x0 ∈3. We consider two cases.

Case I: limn→∞ dist(xn, ∂3)/εn =+∞.
In this case, by taking a subsequence, we can assume xn ∈ 3. Hence 0 ∈

�n and limn→∞ dist(0, ∂�n) = limn→∞ dist(xn, ∂3)/εn = +∞, which leads to
limn→∞�n = RN .

For any fixed ϕ ∈ C∞0 (R
N ), there holds suppϕ ⊆�n for lager n. Multiplying ϕ

on two hand sides of (4-6) and integrating by parts yield, for large n,

(4-8)
∫
[∇ωn∇ϕ+ V (εnx + xn)ωnϕ]dx =

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx .

Note that

(4-9) lim
n→∞

∫
[∇ωn∇ϕ+ V (εnx + xn)ωnϕ]dx =

∫
[∇ω∇ϕ+ V (x0)ωϕ]dx .

Next we show that

(4-10) lim
n→∞

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx =

∫
K (x0)lωϕ dx .

Define the set A = {x ∈ RN
: limn→∞ vn(x) = +∞} and let Ac

= RN
\ A. If

x ∈ A, then limn→∞ f (vn(x))/vn(x) = l. If x ∈ Ac, since limn→∞ ‖vn‖ = +∞,
we have ω(x)= limn→∞ ωn(x)= lim infn→∞ vn(x)/‖vn‖ = 0.

On the other hand, since K (εnx + xn) is uniformly bounded for x ∈ suppϕ with
respect to n and f (s)/s is also bounded, we have

(4-11) lim
n→∞

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx = lim

n→∞

∫
K (εnx + xn)

f (vn)

vn
ωϕ dx .

Therefore,

(4-12) lim
n→∞

∫
suppϕ∩A

K (εnx + xn)
f (vn)

vn
ωϕ dx =

∫
suppϕ∩A

K (x0)lωϕ dx .

In addition, obviously,

(4-13) lim
n→∞

∫
suppϕ∩Ac

K (εnx + xn)
f (vn)

vn
ωϕ dx = 0=

∫
suppϕ∩Ac

K (x0)lωϕ dx .

Collecting (4-11)–(4-13) yields (4-10).
From (4-8)–(4-10), we arrive at

(4-14)
∫

RN
∇ω∇ϕ+ V (x0)ωϕ =

∫
RN

K (x0)lωϕ,
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which means that ω solves

(4-15) −1ω+ V (x0)ω = K (x0)lω.

Case II: lim infn→∞ dist(xn, ∂3)/εn ≤ C .
In this case, we can show that x0 ∈ ∂3. Thus, up to a rotation, we can obtain

limn→∞�n = {x ∈RN
: x1 < 0}. Similarly to Case I, we conclude that the function

ω(x) satisfies

(4-16) −1ω+ V (x0)ω = K (x0)lωχ{x1<0}(x).

In Case I or Case II, for any fixed bounded domain M ⊂ RN or M ⊂ {x ∈ RN
:

x1 < 0} we have∫
M

[
|∇ω|2+ V (x0)ω

2]dx = lim
n→∞

∫
M

[
|∇ωn|

2
+ V (εnx + xn)ω

2
n
]
dx

≤

∫
RN

[
|∇ωn|

2
+ V (εnx + xn)ω

2
n
]
dx = 1;

then

(4-17)
∫

RN

[
|∇ω|2+ V (x0)ω

2]dx ≤ 1,

which means ω ∈ H 1(RN ) due to V (x0) > 0.
It follows the equations (4-15)–(4-16), together with (4-17), the fact that ω ≥

0, regularity theory and the strong maximum principle for second-order elliptic
equations, that we can get ω(x) ∈ C2,γ (RN ) in Case I and ω(x) ∈ C1,α(RN ) for
any α ∈ (0, 1) in Case II, and ω(x) > 0 with ω(x)→ 0 as |x | →∞. However, this
is contradictory with the conclusion of Lemma 2.3. Thus (4-15) and (4-16) have no
nontrivial nonnegative solutions. Lemma 4.3 is proved. �

Next we assert that the maximum point of uε on 3̄ must lie in the interior of 3.

Lemma 4.4. limε→0 max∂3 uε = 0.

Proof. To prove this, we argue by contradiction assuming that there exists a sequence
εn→ 0 as n→∞ such that for each n,

(4-18) max
∂3

uεn ≥ C > 0.

Let xn ∈ ∂3 such that uεn (xn)=max∂3 uεn and xn→ x0 ∈ ∂3 as n→∞. Define
vn(x)= uεn (εnx + xn), then vn(0)≥ C and vn(x) satisfies

(4-19) −1vn + V (εnx + xn)vn

= χ�n (x)K (εnx + xn) f (vn)+ (1−χ�n (x))gεn (εnx + xn, vn),

where �n ≡ ε
−1
n (3− xn).
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By (4-4), there holds ∫
RN
|∇vn|

2 dx ≤ C,

which deduces that for large n, for any fixed R > 0, there exists a positive constant
C(R) depending on R such that∫

BR(0)

(
|∇vn|

2
+ v2

n
)

dx ≤ C(R).

In terms of this and (4-19), as in the proof of Lemma 4.3, there exists some
nonnegative function v(x) such that vn→ v(x) in C2

loc(R
N ) and v(x) satisfies

(4-20) −1v+ V (x0)v = K (x0)χ{x1<0} f (v), x = (x1, x ′) ∈ RN .

Note that vn(0)≥C , then v(0)≥C and further v(x) > 0 in RN by the maximum
principle and Equation (4-20).

On the other hand, acting the test function ∂x1v on (4-20) yields∫
RN−1

F(v(0, x ′)) dx ′ = 0,

which leads to v(0, x ′) = 0. However, this is impossible due to v(x) > 0 in RN .
Thus Lemma 4.4 is proved. �

Lemma 4.5. For small ε, uε possesses at most one maximum point xε on 3 and
G(xε)→ c0 as ε→ 0.

Proof. First, we prove G(xε)→ c0 as ε→ 0.
If not, we have lim supε→0 G(xε)> c0. Let xε j→ x0∈3; then lim j→∞ G(xε j )=

lim supε→0 G(xε) > c0, which means G(x0) > c0.
Set v j (x)= uε j (ε j x + xε j ). Then v j solves

(4-21) −1v j + V (ε j x + xε j )v j

= χ� j (x)K (ε j x + xε j ) f (v j )+ (1−χ� j (x))gε j (ε j x + xε j , v j ).

As before, we can show that v j converges in C1,α
loc (R

N ) for α ∈ (0, 1) to some
function v0 that satisfies

(4-22) −1v0+ V (x0)v0 = K (x0) f (v0), x ∈ RN

or

(4-23) −1v0+ V (x0)v0 = K (x0)χ{x1<0} f (v0), x = (x1, x ′) ∈ RN .

The case of (4-23) can be excluded by the same argument as in Lemma 4.4, so we
focus on the case of (4-22).
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Set

(4-24) Jε j (v j )=
1
2

∫
RN
|∇v j |

2 dx + V (ε j x + xε j )|v j |
2 dx

−

∫
(3−xε j )/ε j

K (ε j x + xε j )F(v j ) dx −
∫

RN \(3−xε j )/ε j

G(ε j x + xε j , v j ) dx .

By invoking Lemma 2.2 in [del Pino and Felmer 1996] together with 2F(s)≤
f (s)s, we conclude that

(4-25) lim inf
j→∞

Jε j (v j )≥ I x0(v0).

This, together with (4-1), yields

c0 ≥ lim inf
j→∞

ε−N
j Iε j (uε j )= lim inf

j→∞
Jε j (v j )≥ I x0(v0)≥ G(x0) > c0,

which leads to a contradiction.
In addition, using the arguments in [del Pino and Felmer 1996, p. 133], we can

show that uε possesses at most one maximum point xε on 3. We omit the details.
This concludes the proof of Lemma 4.5. �

Next we establish a compactness result for uε which will be crucial to derive the
decay of uε(x) as |x | →∞.

Lemma 4.6. For any ν > 0, there exist ρ0(ν), ε0(ν) > 0 such that for ρ > ρ0(ν),
ε < ε0(ν), then

(4-26) dist(xε,M) < ν,

and

(4-27) ε−N
∫

RN \Bερ(xε)

(
ε2
|∇uε|2+ V (x)|uε|2

)
dx < ν,

where M = {ξ ∈3 : G(ξ)= c0}, and the meaning of c0 is given in (1-8).

Proof. Since the first conclusion can be directly derived from Lemma 4.5, then it
suffices to prove (4-27).

As a consequence of Lemma 4.5 and the assumption on G(x) in (H4), we have
d = infn dist(xn, ∂3) > 0 and 3n = (3− xn)/εn ⊃ Bd/εn ≡ Bρ̃n .

If (4-27) does not hold, then we can assume that there exist ν0 > 0, ρ̃n > ρn→

+∞, εn→ 0 as n→∞ such that

(4-28) T≡ ε−N
n

∫
RN \Bεnρn (xn)

(
ε2
|∇un|

2
+ V (x)|un|

2) dx > ν0,

where xn ≡ xεn , un ≡ uεn .
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Set vn(x)= un(εnx + xn), Vn(x)= V (εnx + xn) and vn ⇀v0, xn→ x0 ∈ M as
n→∞. Then, by (4-1) and (4-25) as n→∞,

1
2 T= ε−N

n
1
2

∫
RN

(
ε2

n|∇un|
2
+ V (x)|un|

2) dx

− ε−N
n

1
2

∫
Bεnρn (xn)

(
ε2

n|∇un|
2
+ V (x)|un|

2) dx→ 0,

which is contradictory with (4-28). We have completed the proof of Lemma 4.6. �

Before we treat the decay estimate of uε at infinity, we need to establish more
integration estimates based on Lemma 4.6.

Note that by the assumptions in (H2) and (H3), then for any fixed p > 1, there
exists a positive constant C1 = C1(p) depending on p such that

(4-29) f (s)≤ 1
16

max
ξ∈3̄

V (ξ)
K (ξ)

s+C1|s|p.

Furthermore we have a relation between ‖u‖ε and
∫
3

K (x)|u|p+1dx for any
1< p < N+2

N−2 as follows, which comes from Lemma 2.1 of [Yin and Zhang 2009].

Lemma 4.7. Under the assumptions (H1) and (H4), for each ε ∈ (0, 1], then there
exists a positive constant C2 = C2(p) depending only on p such that

(4-30)
∫
3

K (x)|u|p+1dx ≤ C2ε
−N (p−1)/2

‖u‖p+1
ε for u ∈ Eε,

where the domain 3 is defined in the assumption (H4).

For later use, we introduce two fixed positive numbers K0 > 128 and c> 0 such
that c2

≥ 128K 2
0/(d

2
0 V1), where d0=dist(∂3,M)> 0 and V1=

1
2 minx∈3 V (x)> 0.

Set ν0 =min{d0/K0, (16C1C2)
−2/(p−1)

}, where C1 and C2 are given in (4-29)–
(4-30). Take ε1 = min{ε0(ν0), d0/(K0ρ0(ν0)), (ln 2)/c}, where ε0(ν0) and ρ0(ν0)

are given in Lemma 4.6. From now on, we always assume ε < ε1 and ν < ν0 in
(4-26)–(4-27).

It follows from (4-26) that, for ε < ε1 and ν < ν0,

(4-31) dist(xε, ∂3) >
d0

2
and ερ0(ν0) <

d0

K0
.

Define �n,ε = RN
\ BRn,ε(xε) with Rn,ε = ecεn and let ñ > n̂ be integers such

that

(4-32) Rn̂−1,ε <
d0

K0
≤ Rn̂,ε, Rñ+2,ε ≤

d0

2
< Rñ+3,ε.
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By the second inequality in (4-31), one gets Rn,ε ≥ Rn̂,ε ≥ d0/K0 > ερ0(ν0) for
n ≥ n̂ and ε < ε1, and this also yields

(4-33) �n,ε ∩ Bερ0(ν0)(xε)=∅.

Let χn,ε(x) be smooth cut-off functions such that χn,ε(x) = 0 in BRn,ε(xε),
χn,ε(x)= 1 in �n+1,ε, 0≤ χn,ε ≤ 1 and |∇χn,ε| ≤ 2/(Rn+1,ε − Rn,ε).

Lemma 4.8. Under assumptions (H1) and (H2), if ε < ε1 and n̂ ≤ n ≤ ñ, we have

(4-34)
∫

RN
An,εdx ≤ 1

2

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx,

where An,ε(x)= ε2
|∇(χn,εuε)|2+ V (x)(χn,εuε)2.

Proof. For ε < ε1, it follows from a straightforward computation that

Rn+1,ε − Rn,ε ≥
cεRn+1,ε

2
.

This yields

(4-35) ε2
|∇χn,ε|

2
≤

4ε2

|Rn+1,ε−Rn,ε|
2 ≤

16
c2 R2

n+1,ε
.

From the choice of c, for ε < ε1 and n̂ ≤ n ≤ ñ, we arrive at

(4-36) 128
c2 R2

n+1,ε
≤ V (x) for x ∈ {x : Rn,ε ≤ |x − xε|< Rn+1,ε}.

Noting that ∇χn,ε is supported in {x : Rn,ε ≤ |x − xε|< Rn+1,ε}, then for ε < ε1

and n̂ ≤ n ≤ ñ, by (4-35) and (4-36), we obtain

(4-37) ε2
|∇χn,ε|

2
≤

1
8 V (x) in RN .

Multiplying (2-1) by χ2
n,εuε and integrating over RN yields∫

RN
An,εdx = I+ II+ III,

where

I =
∫
�n,ε

ε2
|∇χn,ε|

2u2
ε dx,

II =
∫
3∩�n,ε

K (x) f (uε)χ2
n,εuε

≤
1
16

∫
3∩�n,ε

V (x)u2
εdx +C1

∫
3∩�n,ε

K (x)|uε|p+1dx,

III =
∫
(RN \3)∩�n,ε

gε(x, uε)χ2
n,εuε dx .
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By (4-37), we have

(4-38) |I| ≤ 1
8

∫
�n,ε

V (x)u2
ε dx .

Next we treat |II|.
Clearly, we only need to consider the case 3∩�n,ε 6=∅. In this situation, there

is a set 6n,ε such that 6n,ε ∩�n,ε has the uniform cone property and 3⊂6n,ε ⊂

3r0 = {x : dist(x,3)≤ r0}, where r0 > 0 is a small constant such that V (x)≥ V1

holds true for x ∈32r0 .
By (4-30), one has

(4-39)
∫
6n,ε∩�n,ε

K (x)|uε|p+1dx

≤ C2ε
−N (p−1)/2

(∫
6n,ε∩�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx
)(p+1)/2

.

In addition, by (4-33), we arrive at 6n,ε ∩�n,ε ⊂ RN
\ Bερ0(ν0)(xε) for ε < ε1

and n ≥ n̂. Thus, it follows from (4-27), (4-39) and the definition of ν0 that

(4-40) |II| ≤ 1
8

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx .

Finally, we estimate |III|.
Similar to the proof of (2-3), for ε < ε1, we have

(4-41) |III| ≤
∫
�n,ε

2ε3

1+ |x |θ0
u2
ε dx ≤ 1

8

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx .

Combining (4-38), (4-40) with (4-41) yields the conclusion of Lemma 4.8. �

From Lemma 4.8, repeating the same argument as in Lemma 3.3 of [Fei and Yin
2010] leads to the following result.

Lemma 4.9. Under the assumptions of Lemma 4.8, for small ε < ε1, one has

(4-42)
∫

RN
|∇(χñ,εuε)|2 dx ≤ CεN−22−(ln 2)/(cε).

Next, we establish an estimate of uε(x) for large |x |.

Lemma 4.10. Under the assumptions of Lemma 4.8, for x ∈RN satisfying |x−xε|≥
d0/2, where the meaning of xε is given in Lemma 4.2, we have

(4-43) uε(x)≤ C2−(ln 2)/(2cε).

Proof. First we assert that

(4-44) max
3

uε ≤ C,
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where C > 0 is independent of small ε.
In fact, for any fixed p with 1< p< N+2

N−2 , it follows from (2-1) that vε(x)=uε(εx)
satisfies

(4-45) −4vε+V (εx)vε=K (εx) f (vε)≤ 1
16 V (εx)vε+C(p)v p

ε in Bd0(ε
−1xε)),

where C(p) is a positive constant dependent of p.
Define aε(x)= 15

16 V (εx)−C(p)v p−1
ε ; then vε(x) is a weak subsolution of the

equation

(4-46) −4vε + aε(x)vε = 0 in Bd0(ε
−1xε)).

By (4-3), then we obtain, for N
2
< q = 2N

(p−1)(N−2)
and small ε,(∫

Bd0 (ε
−1xε)
|aε|q dx

)1/q

≤ C +C(ε−N/2
‖uε‖ε)2N/(q(N−2))

≤ C.

This, together with the weak Harnack inequality (see [Gilbarg and Trudinger
1983, p. 193]), yields that there is a positive constant C depending only on the
space dimension N and the Lq(Bd0(ε

−1xε)) norm of aε(x) such that

max
3

uε = uε(xε)= vε(ε−1xε)≤ C
(∫

Bd0 (ε
−1xε)

v2
ε dx

)1/2

= C
(
ε−N

∫
Bεd0 (xε)

u2
ε dx

)1/2

≤ Cε−N/2
‖uε‖ε ≤ C,

namely, (4-44) is proved.
In addition, as in (4-45)–(4-46), one knows that vε(x)= uε(εx) is also a weak

subsolution of the equation

(4-47) −4vε + bε(x)vε = 0,

where bε(x)= 15
16 V (εx)−C(p)χε(x)v

p−1
ε − (1−χε(x))ε3/(1+|εx |θ0), and χε is

a characteristic function of 3ε = {ε−1x : x ∈3}. Moreover, bε(x) has a uniform
L∞ bound independent of small ε by (4-44).

On the other hand, it is noted that for x ∈ RN with x ∈ RN
\ Bd0/2(xε), then

Bεcd0(x) ⊂ �ñ+1,ε holds true for small ε and a direct computation yields, for
2∗ = 2N/(N − 2),

(4-48)
(∫

Bcd0 (ε
−1x)
|vε|

2∗dy
)1/2∗

≤ Cε−(N−2)/2
(∫

RN
|∇(χñ,εuε)|2(z) dz

)1/2

≤ C2−(ln 2)/(2cε).
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Subsequently, with the aid of Harnack inequality [Gilbarg and Trudinger 1983,
Theorem 8.17] and (4-48), we arrive at

(4-49) uε(x)= vε(ε−1x)≤ C
(∫

Bcd0 (ε
−1x)
|vε|

2∗dy
)1/2∗

≤ C2−(ln 2)/(2cε),

where C > 0 depends only on d0, N and the uniform L∞ bound of bε(x).
Since the L∞ norm of bε(x) is uniformly bounded, the proof of Lemma 4.10 is

complete. �

Remark 4.1. By Lemma 4.10, for θ ≥ 1, there exists an ε0 such that for ε < ε0,

(4-50) |uε(x)| ≤ εθ for x ∈ RN
\ Bd0/2(xε).

Next, we show that the local maximum point xε of uε(x) in the domain 3̄ is also
a maximum point of uε(x) in the whole space.

Lemma 4.11. Under the assumptions of Lemma 4.8, xε is the maximum point of uε
in RN .

Proof. Let yε be the maximum point of uε in RN ; then uε(yε) = maxRN uε ≥
max3 uε ≥ C . According to (4-50), we have yε ⊂ Bd0/2(xε) ⊂ 3 for small ε.
Hence yε = xε for small ε by Lemma 4.5. Namely, the proof of Lemma 4.11 is
completed. �

Proof of Theorem 1.1. It follows from the assumption (H5) that there exist positive
constants σ0, θ0, θ1 and θ2 such that

(4-51) β < (α− θ1)σ0− θ0 and 4+ 2(α− θ1)≤ (θ1− 1)θ2,

where N − 9
4 < σ0 < N − 2, θ0 > 2, θ1 > 1.

We define the comparison function

U (x)=
1

|x − xε|σ0
for x ∈ RN

\ Bd0/2(xε).

It is easy to know that Z(x)=U (x)− ε2uε(x)≥ 0 on ∂(Bd0/2(xε)) for small ε.
Recalling that vε(x)= uε(εx) vanishes at infinity, this is also true for Z(x).

On the other hand, using the expression for hε(x, uε) and noting that σ0 < N−2,
we conclude from (4-50) that 1Z =1U −ε21uε ≤ 0 holds for x ∈RN

\ Bd0/2(xε)
and sufficiently small ε.

Thus, by the maximum principle, we deduce uε ≤U/ε2 in x ∈ RN
\ Bd0/2(xε).

This and the uniform boundedness of xε imply

(4-52) uε(x)≤
C

ε2(1+ |x |σ0)
in RN

\3.
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Next we verify that uε actually solves Equation (1-1). Indeed, since f (s)=O(sα)
near s = 0, together with (4-50) we have, for small ε,

(4-53) f (uε)≤ C |uε|α in RN
\3.

Combining (4-50)–(4-53), we have, for small ε,

(4-54) K (x) f (uε)≤ Ck(1+ |x |β)|uε|α ≤
ε3

1+ |x |θ0
|uε| in RN

\3.

Choose two positive numbers θ3 and θ4 such that

β < (α− θ3)σ0− N and 2+ 2(α− θ3)≤ θ3θ4.(4-55)

Collecting (4-50), (4-52), (4-53), and (4-55) yields for small ε,

(4-56) K (x) f (uε)≤ Ck(1+ |x |β)|uε|α−θ3 |uε|θ3 ≤
ε

1+ |x |N
in RN

\3.

Therefore, it follows from (4-54) and (4-56) that gε(x, uε)≡ K (x) f (uε) holds
true in RN

\3 and subsequently uε solves the original equation (1-1). In addition,
noting that N − 9

4 < σ0, then the estimate (4-52) leads to uε ∈ L2(RN ) for N ≥ 5.
Finally, combining the conclusions in Lemma 4.2, Lemma 4.5 and Lemma 4.11,

in order to finish the proof of Theorem 1.1, we only need to verify (1-12). Set
M = {x0}, due to (4-26), one has xε→ x0 as ε→ 0. Let vε(x)= uε(εx + xε), then
vε is uniformly bounded in H 1

loc(R
N ) and satisfies the equation

(4-57) −4vε + V (εx + xε)vε = K (εx + xε) f (vε), x ∈ RN .

As in the arguments of Lemma 4.3 or Lemma 4.5, we can show that vε converges
to v∈C2(RN )∩H 1(RN ) in C2

loc(R
N ) as ε→ 0. With the aid of (4-43), vε converges

to v in L∞(RN ) as ε→ 0. Therefore v is a solution of the equation

(4-58) −4v+ V (x0)v = K (x0) f (v), x ∈ RN
;

moreover, by virtue of strong maximum principle, v > 0 can be derived. On the
other hand, as a consequence of Theorem 2 [Gidas et al. 1981] and the subsequent
remark, v is radially symmetric and decays exponentially.

Thus the proof of Theorem 1.1 is completed. �
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TYPE I ALMOST HOMOGENEOUS MANIFOLDS OF
COHOMOGENEITY ONE, III

DANIEL GUAN

This paper is one of a series in which we generalize our earlier results on
the equivalence of existence of Calabi extremal metrics to the geodesic sta-
bility for any type I compact complex almost homogeneous manifolds of
cohomogeneity one. In this paper, we actually carry all the earlier results
to the type I cases. As requested by earlier referees of this series of pa-
pers, in this third part, we shall first give an updated description of the
geodesic principles and the classification of compact almost homogeneous
Kähler manifolds of cohomogeneity one. Then, we shall give a proof of the
equivalence of the geodesic stability and the negativity of the integral in
the first part. Finally, we shall address the relation of our result to Ross–
Thomas version of Donaldson’s K-stability. One should easily see that their
result is a partial generalization of our integral condition in the first part.
And we shall give some further comments on the Fano manifolds with the
Ricci classes. In Theorem 14, we give a result of Nadel type. We define
the strict slope stability. In our case, it is stronger than Ross–Thomas slope
stability. We strengthen two Ross–Thomas results in Theorems 15 and 16.
The similar proofs of the results other than the existence for the type II cases
are more complicated and will be done elsewhere.

1. Introduction

This paper is one of a series of papers in which we finished the project of studying
the existence (or not) of extremal metrics in any Kähler class on any compact almost
homogeneous manifolds of cohomogeneity one.

In [Guan 2011a; 2011b] we proved that for the type I compact almost homoge-
neous Kähler manifolds of cohomogeneity one, the existence of Calabi extremal
metrics is the same as the negativity of a topological integral. We also proved in
[Guan 2011b] that for any two Kähler metrics in the Mabuchi moduli space of
Kähler metrics there is a smooth geodesic connecting them. That is, the geodesic
principle I is true for these manifolds.
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As in [Guan 2003], the major tool is from [Guan 1999]. Although the problem of
existence of the extremal metrics can be reduced to an ordinary differential equation
for our manifolds, the problem of the existence of the geodesics has two variables.
Thanks to the Legendre transformation, we can carry it out for the type I manifolds.
But for a general type II manifolds, this method does not work any more. And we
need a new method, which will be carried out in [Guan ≥ 2013a].

Even for the Kähler–Einstein equation, our method in [Guan 2011a] is different
from [Guan and Chen 2000]. We used a semisimple method in [Guan 2011a]. One
notices that our exponential map there is not the one for the geodesics. No geodesic
in that situation could have infinite length. It was well known for many years that
there were many nonsmooth solutions for even a real homogeneous Monge–Ampère
equations. In [Chen and Tian 2008] Professor Chen gave an example which looks
like a nonsmooth solution for the one-dimensional toric case, that is, CP1. He also
mentioned it earlier to me in 1999 at Princeton. Mabuchi also mentioned it to me
in Pisa, Italy in 2004. However, we already solved the smoothness question for
the toric manifolds in [Guan 1999]. In this simple case, the method of X. X. Chen
should also produce the smooth solution; see [Guan and Phong 2012]. The content
of this note was presented in the AMS meeting in Pomona California May 2008.
Recently, L. Lempert and L. Vivas claimed (also mentioned by the referee) that
they found a counterexample to our geodesic principle I on the torus. However,
their examples are not very explicit and not published yet. We are not able to
check their examples in this paper. As we know, there is no much equivariant
geometry on the torus. The geodesic problem was trivial on the torus. However,
see also [Feng 2012]. We checked that all the geodesic principles hold on compact
cohomogeneity-one Kähler manifolds. We conjecture that the geodesic principles
hold for all the spherical manifolds. We take them as working principles in our
research. For our safety, we just require that everything is analytic. For example,
for any analytic initial value in the tangent space of the equivariant Mabuchi moduli
space at a given metric, there is a geodesic ray. That is, the geodesic principle I
is not really needed for the geodesic stability. In [Guan and Chen 2000], some
possible obstructions emerged that I eventually treated in [Guan 2002], which led to
the strict slope stability. After a long run, we are able to overcome all the difficulties.
To solve the extremal metrics cases, we have to deal with a fourth-order ordinary
differential equation, which in our cases is fortunately reduced to a second-order
nonlinear equation and is successfully treated.

All the solutions we find in the cohomogeneity-one cases are not explicit except
those in [Guan 1995a; Guan 2007].

In this paper, we shall prove that the negativity of the integral is actually the
same as the geodesic stability.
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A classification which we refer to in this paper can be found in [Guan 2003,
Section 12].

Here we shall describe our updated geodesic stability principles. We conclude
these principles by following the cumulation of other people’s observations and
the evidence from our examples. See [Guan 2003]. We do not assume that these
principles are due to us completely, in particular the first principle.

Motivated by the Donaldson’s functional in the vector bundle case, Mabuchi
[1986] defined a functional on the Mabuchi moduli space of the Kähler metrics (see
also a conjecture therein). It was later modified independently by several people to
fit the situation of Calabi extremal metrics (see [Guan 1999; Guan and Chen 2000],
etc.) on the equivariant Mabuchi moduli space of Kähler metrics, which we call the
modified Mabuchi functional.

Principle I. For any two Kähler metrics in a given Kähler class, there is a unique
(smooth) geodesic in the Mabuchi moduli space of Kähler metrics connecting them.

This principle has been tested for toric bundles in [Guan 1999]. We also found
that the same method applies to Kähler metrics on type-I and type-III compact
almost homogeneous Kähler manifolds of cohomogeneity one in [Guan 2003;
2011b]; see also [Guan 2007]. It seems to us that there is not any complete geodesic
except the ones induced by the holomorphic vector fields. X. X. Chen [2000] proved
the existence of an unique C1,1 solution in general.

We shall concentrate on the maximal geodesic rays. It turns out that the majority
of the maximal geodesic rays are of finite length (this is different from holomorphic
vector bundle theory on vector bundles; cf. [Kobayashi 1987, p. 197] and also the
picture shown in [Semmes 1992, p. 544]). The maximal geodesic rays with infinite
length are very special with some strong convex property, which we call “effective”
maximal geodesic rays. The direction of the effective geodesic rays at each metric
might form a convex cone C.

Principle II. The limit metrics of the maximal geodesics are concentrations:

A. Finite ray: cone concentration — partial concentration.

B. Infinite ray: blow up caused by some subvarieties outside a compact set —
complete concentration outside the compact set, the metric on this compact set
does not change.

We call the limit of the ratio of the modified Mabuchi functional the generalized
Futaki invariants of the maximal geodesic rays. The generalized Futaki invariant
is positive infinite for finite rays, that is, the only interesting generalized Futaki
invariants come from the effective maximal geodesic rays.

The second principle is based on our work on toric manifolds and cohomogeneity-
one manifolds; see [Guan 2003; 2007] for examples.
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For all the examples we consider in this paper, the Mabuchi equivariant moduli
space is flat (see [Guan 1999]); this is similar to the vector bundle case and is not true
in general (see [Mabuchi 1987]). For two maximal geodesic rays, the generalized
Futaki invariants might be the same if there is a curve connecting the beginning
points such that there is a parallel vector field along this curve which connects the
two tangent vectors at these two points. This observation makes the definition of
the generalized Futaki invariants independent of the initial Kähler metrics.

The generalized Futaki invariants define a function of the effective geodesic cone
which is probably a linear function FM,ω, which is continuous on a certain given
Banach space. Therefore, F can be defined on the closure C̄ of the effective cone
C in the Banach space. We call F |C̄ the generalized Futaki invariant functional
or simply the generalized Futaki invariant. There is a seminorm ‖·‖∗, which is
locally equivalent to the given norm except on some subvarieties and is zero on the
functions induced by the holomorphic vector fields.

Principle III. There is a unique extremal metric in a given Kähler class up to the
automorphism group if and only if the Kähler class is geodesic stable, that is, with
positive generalized Futaki invariant which is bounded below by the given seminorm.

(Note: in many of our papers, this is called the fourth principle and the next
principle is called the third, reflecting the order in which they were formulated.)

In general, the Mabuchi moduli space might not be flat. We might have some
way to relate the Futaki invariants for two infinite maximal geodesic rays starting
from different points. Let γi (t), i = 1, 2 be two maximal geodesic rays. We say
that they have the same infinite points if

d(γ1, γ2)= sup
t∈[0,+∞)

d(γ1(t), γ2(t))

is finite. Then we have (see also [Guan 2007, Remark 4]):

Principle IV. The Futaki invariants of two maximal geodesic rays with the same
infinite point are the same.

In the last section, we shall see that our stability in this case is the same as a
version of the slope stability which is stronger than that in [Ross and Thomas 2006].

2. Preliminaries

Here we summarize some known results about the compact complex almost ho-
mogeneous manifolds of cohomogeneity one. In this paper, we only consider
manifolds with a Kähler structure. For earlier results one might check [Ahiezer
1983; Huckleberry and Snow 1982].

We call a compact complex manifold an almost homogeneous manifold if its
complex automorphism group has an open orbit. We say that a manifold is of



TYPE I ALMOST HOMOGENEOUS MANIFOLDS OF COHOMOGENEITY ONE, III 373

cohomogeneity one if the maximal compact subgroup has a (real) hypersurface
orbit. In [Guan and Chen 2000; Guan 2003], we reduced the compact complex
almost homogeneous manifolds of cohomogeneity one into three types of manifolds.

We denote the manifold by M and let G be a complex subgroup of its automor-
phism group which has an open orbit on M .

Let us assume first that M is simply connected. Let the open orbit be G/H ,
K be the maximal connected compact subgroup of G, L be the generic isotropic
subgroup of K , that is, K/L be a generic K -orbit. We have [Guan and Chen 2000,
Theorem 1]:

Proposition 1. If G is not semisimple, then M is a completion of a C∗-bundle over
a projective rational homogeneous space.

If a compact almost homogeneous Kähler manifold is a completion of a C∗-bundle
over a product of a torus and a projective rational homogeneous space, we call it a
manifold of type III. We dealt with this kind of manifold in our dissertation [Guan
1995a; 1995b]. There always exists an extremal metric in any Kähler class. In
[Guan 2007], we generalized this existence result to a family of metrics connecting
the extremal metric of [Guan 1995a] and the generalized quasi-Einstein metric of
[Guan 1995b]; we called this family the extremal-soliton metrics. The existence of
the extremal-soliton is the same as geodesic stability with respect to a generalized
Mabuchi functional.

More recently in [Guan 2012], we even generalized the extremal-solitons to the
generalized extremal solitons, which also include Nakagawa’s [2011] generalized
Kähler–Ricci solitons as a special case. We proved the existence of both generalized
extremal solitons and the generalized Kähler–Ricci solitons on these manifolds.
In a forthcoming paper [Guan ≥ 2013b], we proved the existence of the so called
m-extremal metrics on these manifolds.

In general, if M is a compact almost homogeneous Kähler manifold and O is
the open orbit, then D = M − O is a proper closed submanifold. Moreover, D
has at most two components. We call each component of D an end. If D has two
components or one component, we say M is an almost homogeneous manifold
with two ends or one end, respectively. We have [Huckleberry and Snow 1982,
Theorem 3.2]:

Proposition 2. If M is a compact almost homogeneous Kähler manifold with two
ends, then M is a manifold of type III.

Therefore, we only need to deal with the case with one end. In [Guan and Chen
2000], we treated the first example, that is, the blowup of the diagonal of the product
of two copies of CPn . We treated another series in [Guan 2003]. We treated many
more of them in [Guan 2009; 2011b; 2011c], etc. Again, in the case of M being
simply connected, we only need to take care of the case in which G is semisimple.
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If G is semisimple and M has two G orbits, one open and one closed, and moreover
if the closed orbit is a complex hypersurface, there are two possibilities. Let K,L

be the Lie algebras of K , L . Then the centralizer of L in K is a direct sum of
the center of L and a Lie subalgebra A with A being either one-dimensional or a
3-dimensional Lie algebra su(2). If A is one-dimensional, we call M a manifold of
type I. If A is su(2), we call M a manifold of type II.

In general, if the closed orbit has a higher codimension, we can always blow
up the closed orbit to obtain a manifold M̃ with a hypersurface end. We call the
manifold M a manifold of type I or II if M̃ is of type I or II, respectively.

There is a special case of the type II manifolds. If the open orbit is a Ck-bundle
over a projective rational homogeneous manifold, we call M an affine type manifold
(not to be confused with the closed complex submanifolds of Cm).

Then we have (see [Guan 2003, Section 12]):

Proposition 3. Any compact almost homogeneous Kähler manifold M of cohomo-
geneity one is an Aut0(M) equivariant fibration over a product of a rational projec-
tive homogeneous manifold Q and a complex torus T with a fiber F. Therefore, M
can be regarded as a fiber bundle over T with a simply connected fiber M1. One of
following holds:

(i) M is a manifold of type III.

(ii) M1 is of type II but not affine.

(iii) M1 is affine.

(iv) M1 is of type I.

We say that M is a manifold of type I, or type II, affine, if M1 is, respectively, a
manifold of type I or type II, affine.

We actually can also obtain the structure of an M1-bundle over T from [Huckle-
berry and Snow 1982]. We only need to understand the bundle structure for the open
orbit. By [ibid., Corollary 4.4] we have that the bundle structure is a product unless,
when we apply Proposition 3 to M̃ , F=Qk . In the latter case, there is an unbranched
double covering M̄ of M such that the bundle structure of M̄ is a product.

Proposition 4. The M1-bundle over T is a product except in the case where the
open orbit is an F0-bundle over Q × T such that F0 is in the second, sixth and
eighth cases in [Ahiezer 1983, p. 67]. In the latter cases, the M1-bundle has an
unbranched double covering which is a product of M1 and T .

In [Guan 2011a; 2011b], we dealt with the type I cases.
One updated remark is that since we are dealing with the Kähler metrics it is

more convenient to separate the type II case into two cases in [Guan 2009] and
[Guan 2011c]. We call the cases in [Guan 2009] (and the papers between [ibid.]
and [Guan 2003]) the type IV cases. They are the affine cases such that the group
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π(G F ), the restriction of the subgroup G F of G fixing a given fiber F , is not of
type A. Therefore, one might also call them the non-type-A type II cases. All of
them are Fano.

One might call the rest (in [Guan 2011c]) of the type II cases the new type II
cases (or simply the type II cases). They are those type II cases such that π(G F ) is
of type A. Therefore, one might also call them the type A type II cases.

This note is a continuation of the first part and the second part of this paper
[Guan 2011a; 2011b]. We shall retain all the notation from those papers here.

3. The complex structures of the type I almost homogeneous manifolds

In this section, we shall deal with the complex structure of the type I almost
homogeneous manifolds. We retain the notation in [Guan 2011a; 2011b]. Let us
recall some basic notation of the Lie algebras.

Let G be the complex Lie group action and S be the connected complex Lie
subgroup acting on a given fiber. According to [Guan 2003, p. 283, Theorem
12.1(ii)], a compact complex almost homogeneous manifold of cohomogeneity one
is type I if and only if the fiber F is one of (1) the second and third case with n ≥ 3,
(2) the fourth case, (3) the eight and ninth cases, (4) the fifth case in [Ahiezer 1983,
p. 67].

The fiber F in (4) has S = π(G F ) = F4, so G = F4 = S, that is, M = F is
homogeneous. Therefore, every Kähler class of M has a metric with constant scalar
curvature. So, we do not need to do anything with (4).

In [Guan 2011a], we look at three special possible fiber cases [Ahiezer 1983,
p. 67] first:

(1) F = F(OPn): The third case in [Ahiezer 1983, p. 67] with n ≥ 3. We have
F = CPn and

S = π(G F )= SO(n,C),

regarding CPn as a completion of Cn . The corresponding compact rank-one
symmetric space is the real n-dimensional real projective space. It has an
equivariant branched double covering Qn of the second case. We denote the
latter case by F(OQn).

(2) F = F(Grk): The fourth case with a standard S = Sp(k,C)-action on the
manifold F = Gr(2k, 2). The corresponding compact rank one symmetric
space is the quaternionic projective space.

(3) F = F(Spp
7 ): The ninth case with an S= Spin(7,C)-action on F =CP7. This

is the restriction of (1) with n+1= 8 to the complex Lie subgroup Spin(7,C).
It has an equivariant branched double covering Q7 of the eighth case. In [Guan
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2011a], we also denote the latter case by F(Spq
7) and denote both of them by

F(Sp7) whenever there is no confusion.

In [ibid.], we defined a certain basis of the Lie algebra α, Fα and Gα for positive
roots α. And, we considered a fixed point p0 and its orbit ps generated by a
semisimple element −i H in the Lie algebra. Let T be the tangent vector of ps and
p∞ be the limit point in the closed orbit.

In the case (1), we obtained:

Proposition 5. For F(OPn) and F(OQn), along ps we have
J (Fe1+ei ± Fe1−ei )=−(tanh s)∓1(Ge1+ei ±Ge1−ei )

(and J Fe1 = −(tanh s)Ge1). We also have that Fei±ek = Gei±ek = 0 (and Fei =

Gei = 0) for i > 1. In particular, at p∞, J Fα = −Gα for α 6= ei ± ek (and ei ),
1< i < k.

In the case of (2), we obtained:

Proposition 6. For F(Grk), we have

J Fα1 =−(tanh 2s)Gα1,

J (F2e1 ± F2e2)=−(tanh 2s)∓1(G2e1 ∓G2e2),

J (Fe1−ek ±Ge2−ek )=−(tanh s)∓1(Ge1−ek ± Fe2−ek ),

J (Fe1+ek ±Ge2+ek )=−(tanh s)∓1(Ge1+ek ± Fe2+ek ).

Fα = Gα = 0 for α = e1+ e2, ei − ek, 2ei , ei + ek with i > 2.
At p∞, we have Fα = Gα = 0 if α = e1+ e2, 2ei , ei ± ek , i > 2, and J Fα = Gα

if α = 2e2, e2± ek . Otherwise J Fα =−Gα.

Before we consider the isolated case (3), we can look at the general cases in
which G 6= S=π(G F )⊂Aut(F), where G F is the subgroup that acts on the fiber F
and π : G F → Aut(F) is the induced map from G F to Aut(F). As in [Ahiezer
1983], G is semisimple, UG = H is the 1-subgroup. There is a parabolic subgroup
P = SS1 R with S, S1 semisimple and R solvable such that UG = U S1 R where
U = H ∩ S is a 1-subgroup of S. The manifold is a fibration over G/P with the
completion of P/UG = S/U as the isotropic open orbit of the almost homogeneous
fiber. In this case, the root system of S is a subsystem of the root system of G.
In the Lie algebra of G, we also have some other Fα,Gα outside S. Let K be a
maximal connected compact Lie subgroup of G and L be the isotropic subgroup
of K at a generic orbit. Let K,L be the corresponding Lie algebras. The tangent
space of G/UG along ps is decomposed into irreducible L-representations. These
Fα,Gα are in the complement representation of the Lie algebra S of S. As it is in
the tangent space of G/P , J Fα =−Gα(mod S). Therefore, we have J Fα =−Gα

for any α which is not in the root system of S.
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If S is B2, G can be Bn , Cn , F4. If S is B3, G can be Bn , F4. If S is C3, G can
be Cn , F4. If S is Bn with n > 3, G can only be Bm+n . If S is Cn with n > 3, then
G can be Cn+m . The case of a B2-action that has an isotropic group of SO(4,C)

generated by roots ±e1± e2 is exactly the same as the case of an Sp(2,C)-action,
which has an isotropic subgroup of Sp(1,C)×Sp(1,C) generated by ±2e1,±2e2.

We have a few more possibilities. If S = Dk , k > 3, G can only be Dn , n > 3 or
En , n > k. If S = D3, that is an A3, G can be An , n > 2, Bn , n > 3, Cn n > 3, Dn

n > 2 and En . If S = D2, G can be any simple group or product of simple groups
other than G2.

We then treated the isolated case (3) of the Spin(7,C)-action on CP7 in [Guan
2011a]. This case is the restriction of the case (1) with an G = S= SO(8,C)-action
to the Spin(7,C)-action induced by the spinor representation.

We obtained:

Proposition 7. For F(Sp7), we have

J (
√

2Fhi ± Fh j+hk )=−
(

tanh
√

3
2

s
)∓1(√

2Ghi ±Gh j+hk

)
,

J H =−T,

Fei−e j = Gei−e j = 0 for 0< i < j < 4.

At p∞, J Fhi =−Ghi , J Fh j+hk =−Gh j+hk , Fhi−hk = Ghi−hk = 0.

However, in this case S = B3, G can only be Bn or F4.

4. The Kähler structures

In [Guan 2011a], we examined the Kähler structure for the S = SO(n,C)-actions
and obtained that for any possible G and S = SO(n,C) we always have a Kähler
metric: ω([X, Y ]) = (aH + I, [X, Y ]) with the I in the C center of L and a a
nonpositive function of s.

See [Guan 2011a, Section 3].
Therefore, we have the volume formula

V =−Ma′a2(n−1)
r∏
1

(ai − a)
s∏
1

(b j + a)

(
or V = Ma′a2n−1(tanh s)

r∏
1

(ai − a)
s∏
1

(b j + a)
)
,

with some positive numbers ai and b j .
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Then in [Guan 2011a], we dealt with the Kähler metrics with Sp(k,C) and
Spin(7,C)-actions. We have the volume form

V = Ma′a4k−5(tanh 2s)
r∏
1

(ai − a)
s∏
1

(b j + a)

for the Sp(k,C)-actions.
For the S = Spin(7,C)-action, we obtained the volume form

V =−Ma′a6
r∏

i=1

(ai − a)
s∏

j=1

(b j + a).

We also observe that ai and b j come in pairs, and b j (i) = ai .
Altogether, we have:

Proposition 8. For the type I case the volume is

V =−Ma′a2m
∏
(a2

i − a2)

for the cases S = Dk or Spin(7,C) and

V = Ma′a2m+1(tanh bs)
∏
(a2

i − a2)

for the cases S= Bk (or Ck) with b= 1 (or 2), where M and ai are positive numbers,
m are nonnegative integers. We also have that 2m+1 (or 2m+2) are the dimensions
of the fiber. Moreover, the vectors in Propositions 5, 6 and 7 are orthogonal to each
other.

Let h = log V . In [Guan 2011a, Section 5, Theorem 2] we obtained:

Proposition 9. If the fiber with the S-action is of type I of complex dimension n,
then the function a for the Ricci form ρ is

aρ = 1
2

((
log
(

a′an−1
r∏
1

(a2
i − a2)

))′
− 2

n−1∑
1

Ni coth 2Ni s
)
.

Moreover, the Ni are (1) 1 for S = SO(n + 1,C) and (2) 1 except three of them
being 2 for S of type Ck , (3)

√
3/2 for the case S = Spin(7,C). Other coef-

ficients come from the Ricci curvature of G/P , which is −(qG/P , [X, Y ]) with
qG/P =

∑
α∈1+−1P

Hα with the standard inner product.

Then we calculated the scalar curvature in [Guan 2011a, Section 6, Theorem 3].
We write

V =−Ma′ Q̃(a)=−Ma′(−a)n−1 Q1(a)g(s),

with g(s)= 1 for S = Dk or Spin(7,C) and g(s)= tanh bs for S = Bk or Ck . We
write Q(a)= (−a)n−1 Q1(a) and obtained ρ ∧ωN−1

= M((−aρQ(a))′+ p0a′).
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Proposition 10. The scalar curvature is

R =
2(−aρQ)′+ pa′

−a′Q
.

Moreover, p(a) = (−a)n−1 p1(a) with p1(a) a polynomial of a and is a positive
linear sum of Q1 and product of deg Q1 − 1 factors of Q1. The contribution
of each constant factor k j (that is, the vector Fα such that the corresponding
metrics ω(Fα, J Fα)= k j is a constant along ps) is 2kρ, j/k j for the Q1 factor. The
contribution of each ai ± a is 2aρ,i Q1/qi .

Therefore, we have

R0 =

∫
−l

0 [(2uρQ)x + p] dx∫
−l

0 Q dx
=

2uρ(−l)Q(−l)+
∫
−l

0 p dx∫
−l

0 Q dx
,

where we let u =−a and l = lims→+∞ a. We also obtained in [Guan 2011a] that
aρ(0)= 0.

5. Geodesic stability and existence of the Calabi extremal metrics

In [Guan 2011b, Section 2], for any metric we obtained a function 0(s) such that
−4a = 4u = 0′ and the geodesic equation is 0̈0′′ = (0̇′)2, where ′ is the derivative
with respect to s, the parameter from the manifold, and ˙ is the derivative with
respect to t , the parameter for the geodesic. We obtain the smooth geodesics and
so the uniqueness. Therefore, we might regard U = 4u as g in [Guan 2011a].

We also have

4us(+∞)= 0ss(+∞)= 0

since u is increasing and bounded by −l (see the end of last section).
We shall apply the method in [Guan 2003] to prove the second and third geodesic

stability principles for all the type I Kähler almost homogeneous manifolds of
cohomogeneity one.

The proof is parallel to what we have in [ibid.] but even simpler (with our
advanced notation).

Letting H be the Legendre transformation of 0 as in [ibid.], a path 0t represents
a geodesic in the Mabuchi moduli space of the equivariant Kähler metrics in a given
Kähler class is a geodesic if and only if Ht is linear on t . We denote h = Ḣ .

Recall that R is the scalar curvature, H R its average, Q the volume function
appeared right before Proposition 10. Applying the scalar curvature formula in
Proposition 10, we have that with a positive constant C the derivative of Mabuchi
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functional is:

−

∫
M
0̇(R− H R)ω2n

=−C
∫
−l

0
0̇(s, t)

(
2uρQ+

∫
(p− R0 Q) du

)
x

dx

= C
∫
−l

0
Ḣ(x, t)

(
2uρQ−

∫
(R0 Q− p) du

)
x

dx

= C
(

2h(−l)uρ(−l)Q(−l)− 2h(0)uρ(0)Q(0)− R0h(−l)
∫
−l

0
Q dx

+ R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx + h(−l)

∫
−l

0
p dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

∫
−l

0
Ni coth(2Ni s)h′Q dx +

∫
−l

0
h′(log(Qus))s Q dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni s)h′Q dx +

∫
−l

0
h′(Qus)x dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni s)h′Q dx −

∫
−l

0
Qush′′ dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni Hx)h′Q dx −

∫
−l

0
Q(Hxx)

−1h′′ dx
)
.

The change of sign in the second equality comes from 0̇(s, t)=−Ḣ(x, t) for the
Legendre transformation as in [Guan 2003].

If h′′ is negative somewhere, then the geodesic is finite and the limit is a cone
metric. The point−l cannot be a singular point. At the singular points h′′ is negative.
Therefore, the last term of the right hand side is positive infinite. The second term
from the right hand side is finite if 0 is not a singular point and positive if 0 is a
singular point since in that case h′′(0) < 0 and h′(0) = s(0)− s0(0) = 0, h′ < 0
near 0.
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If h′′ is nonnegative, then the geodesic ray is infinite and h′ is increasing. s
becomes infinite at each point with h′ > 0, so coth(2Ni s) is 1 at such points. It is
not difficult to see that (Hxx)

−1 is zero whenever h′′ is not zero. The limit of the
derivative is:

Theorem 11. For type I compact Kähler almost homogeneous manifolds of co-
homogeneity one, the generalized Futaki invariant of a maximal geodesic ray with
a convex function h is

C
(∫

−l

0
h′
(∫ x

0
(R0 Q− p) du− 2

n−1∑
1

Ni Q
)

dx
)

with a constant C > 0.

According to [Guan 2011a, (14)], this is proportional to the negative of∫
−l

0
h′gl dx .

We notice that all the generalized Futaki invariants of the maximal geodesic rays
do not depend on the initial metrics and they are positive if there is an extremal
metric.

Moreover, if there is a Kähler metric with a constant scalar curvature, then at
the corresponding H0 we have that the slopes of Mabuchi functionals are zeros.
Therefore, for any h,∫
−l

0

[
h′
[∫ x

0
(R0 Q− p) du−2

n−1∑
1

Ni Q coth(2Ni H0,x)

]
−Q(H0,xx)

−1h′′
]

dx = 0.

In general, the slope of the Mabuchi functional is

C
∫
−l

0
Q
(

2
n−1∑

1

Ni (coth(2Ni H0,x)−coth(2Ni Hx))h′+((H0,xx)
−1
−(Hxx)

−1)h′′
)

dx

= C
∫
−l

0
Q
(

4
n−1∑

1

Ni
e2Ni H0,x (e2Ni th′ − 1)

(e2Ni (H0,x+th′)− 1)(e2Ni H0,x − 1)
h′

+
(
(H0,xx)

−1
− (Hxx)

−1)h′′) dx .

It turns into

C
∫
−l

0
Q
( n−1∑

1

4Ni

e2Ni H0,x − 1
h′+ H−1

0,xx h′′
)

dx .
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Therefore, using this formula as a hint, we can define

‖h‖2,1
∗
=

∫
−l

0
Q
(n−1∑

1

4Ni

e2Ni H0,x − 1
|h′| + H−1

0,xx |h
′′
|

)
dx

to be the norm of W 2,1
∗

. A calculation shows that this is related to∫
−l

0
|10h|Q dx and also

∫
−l

0
sup{|∂2h(v)|0/|v|0} dV,

with dV the volume element. The generalized Futaki functional is positive on the
closure of the effective cone in W 2,1

∗
.

The generalized Futaki functional is positive if and only if it is positive for

h′ =
{

1 if x > x0,
0 if x ≤ x0,

with x0 ∈ [0,−l). These functions h′ correspond to functions of h in W 2,1
∗

which
are the extremal rays of the effective cone. As we see in the sentence right after
Theorem 11, this is the same as the partial integral∫

−l

x0

gl du =
∫ l2

x2
0

fl dx < 0

for the gl, fl in [Guan 2011a]. This is the same as the necessary and sufficient
condition in [ibid.] (see (7) and (16) there) for the existence of the Kähler metrics
with constant scalar curvatures.

Therefore, we obtain:

Theorem 12. For type I Kähler compact almost homogeneous manifolds of cohomo-
geneity one, there is a unique extremal metric in a Kähler class on the manifold
up to the automorphism group if and only if the Kähler class is geodesically stable.

The same method works for some of Kähler classes on type II compact Kähler
almost homogeneous manifolds of cohomogeneity one. But in general, we will use
a different method. Theorem 12 and a result similar to Theorem 11 are true for
general compact almost homogeneous manifolds of cohomogeneity one. But it will
take us some more time to publish the related results and proofs. We also expect
that Theorem 12 is true for any Kähler class on any compact Kähler manifold.

Theorem 11 also gives another proof for the stability (the necessary condition)
in [ibid.]. However, the integral itself and its partial integrals do not occur directly
as generalized Futaki invariants of any (smooth) geodesic.

A generalization of our argument is essential to prove the necessary condition
for the type II cases (and the type IV case in [Guan 2009]). However, since we
have not seen any example with a zero value of the integral for the Ricci classes,
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for all the known cases so far in [Guan 2009], etc., the corresponding result in the
next section is enough for the necessary part for the Kähler–Einstein case.

6. Geodesic stability and strict slope stability

In this section, we shall discuss our result and the strict slope stability. This is
something also similar to the holomorphic vector bundle case and can be defined
on any Kähler class of any compact Kähler manifold.

6.1. To make the things simpler, first we assume that the Kähler class is the
anticanonic class −KM , N is a smooth subvariety and M(N ) is the blow-up of M
along N . Let E be the exceptional divisor and e be the largest number such that
−KM − aE > 0 on M(N ), regarding KM as the pullback line bundle for any a
such that 0< a < e,

m(N )=
∫ e

0
(−KM − (n− dim N )E)(−KM − aE)n−1 da,

m =
∫ e

0
(−KM − aE)n da.

We say that M is strictly slope stable if for any subvariety N (not necessary smooth)
that is not a component of the fixed point set of a holomorphic vector field we have
m(N ) < m. That is∫ e

0
(a− (n− dim N ))E(−KM − aE)n−1 da < 0.

Notice that there is only one possible zero for a− (n− dim N ), we see that if
m(N )−m < 0 then∫ c

0
(a− (n− dim N ))E(−K − aE)n−1 da < 0

for any 0 < c < e. That is, when N is smooth, our stability is stronger than
Ross–Thomas’s slope stability in [Ross and Thomas 2006], which only requires the
inequality for rational c with 0< c < e, while our inequality is true for any c with
0< c ≤ e. If N is not smooth, we do not know whether the slope stability in [Ross
and Thomas 2006] implies these inequalities or not.

A smooth N destabilizes M only if −KM − (n− dim N )E is ample, therefore,
−K (E) is ample on E if E is smooth, and is kind of ample even if E is singular.
When N is smooth, we see that E is Fano. By [Futaki 1987], we see that N is Fano
also. This is quite similar to the calculation in [Guan 2003; 2011a].

Actually, when F = CPk or Gr(2k, 2), we have D(F) = 2 by [Guan 2011b,
Section 3, Theorem 15]. Therefore, for the closed orbit N , e = −2−1lρ and the
codimension can only be 1; see [ibid., Section 3]. If y = −lρ − 2a, the integral
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above is∫
−lρ

0
(−2−1(y+ lρ)− 1)E(ω+ 2−1(y+ lρ)E)n−12−1 dy

= C
∫
−K (F)

0
(−K (F)− D(F)− y)Q dy,

with a positive number C . That is exactly the same condition as in Theorem 15 just
cited.

When F = Qk , D(F)= 1. Therefore, e =−lρ . Let

y =−lρ − a =−K (F)+m− 1− a,

with m = n− dim N . The integral above is∫
−lρ

0
(−lρ − y−m)E(ω+ (y+ lρ)E)n−1 dy

= C
∫
−K (F)+m−1

(−K (F)− D(F)− y)Q dy,

with C > 0. Again, that is exactly Theorem 15 in [ibid.].

6.2. In general, for any given Kähler class ω we let

mc(N )=
∫ c

0
(−KM − (n− dim N )E)(ω− aE)n−1 da,

mc =

∫ c

0
(ω− aE)n da,

with 0< c≤ e and e the largest number such that ω−aE > 0 for 0< a < e. We let
µc(N )=mc(N )/mc. If N = M , we let m(M)= (−KM)ω

n−1 and µ=m(M)/ωn .
Then the strict slope stability says that µc(N )−µ < 0 for all 0< c ≤ e. Similar
obstructions appeared in [Guan 2003]. At that time I was not able to understand
the general meaning of this obstruction and related it to the Ding–Tian generalized
Futaki invariant forcibly. But it was clear in [Guan 2003] it was not the Ding–Tian
generalized Futaki invariant. I also talked on this at Pisa, Italy in 2004. Ross and
Thomas [2006] partially generalized this obstruction but without the strict part for a
smooth N , that is, they assume that 0< c < e. Also, they assume that c is rational,
which makes their slope stability much weaker. For a nonsmooth subvariety N , I
am not sure that their stability implies these inequalities or not. For our case, our
strict slope stability is equivalent to the existence. But the Ross–Thomas slope
stability is only a necessary condition. Therefore, a Kähler class with the integral
equal to zero when c = e or c is irrational would give a counterexample for the
equivalence between the Ross–Thomas slope stability or Donaldson K-stability and
the existence. See also [Guan 2003; 2007].
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It is very easy to check that if KM is the Kähler class and we replace −KM−aE
by KM − aE , and let

mc(N )=
∫ c

0
(−KM − (n− dim N )E)(KM − aE)n−1 da,

the strict slope stability means that mc(N )+mc < 0 holds automatically. Moreover,
if KM = 0, for any Kähler metric ω we replace −KM − aE by ω− aE and let

mc(N )=
∫ c

0
(−n+ dim N )E(ω− aE)n−1 da,

the strict slope stability means that mc(N )<0 holds automatically. These strengthen
the Theorem 5.4 in [Ross and Thomas 2006], which is only concerned with when
N is smooth and 0< c < e is rational.

In the remainder of this section, we want to see that the strict slope stability is
the same as the existence for type I manifolds.

To make things simpler, let us take care of the F(OPn) fiber case first. In our
setting, we only need to deal with the case in which N is the closed orbit. In this case,
by [Guan 2011b, Section 3], we have dim N = n− 1. Let us calculate the number
e for our case. By [ibid., Section 3] we see that the curvature of the exceptional
divisor has eigenvalues D(CPn)= 2 times the coefficient of u. Therefore, ω− aE
has the first zero eigenvalues when a = (D(F))−1(−l). That is, e =−2−1l.

ωnmc(N )−m(M)mc =

∫
−l

0
Q du

[∫ c

0
(−KM)((ω− x E)n−1

−ωn−1)

−E(ω− x E)n−1
− R0((ω− x E)n −ωn) dx

]
.

This is proportional to∫ c

0

[∫ x

0

[
(n−1)KM E(ω−uE)n−2

+n R0 E(ω−uE)n−1] du−E(ω−x E)n−1
]

dx .

Letting y =−l − 2x and v =−l − 2u, d =−l − 2c, we obtain that the integral
is proportional to∫
−l

d

[∫
−l

y

[
(n− 1)KM E(ω+ 2−1(v+ l)E)n−2

+ n R0 E(ω+ 2−1(v+ l)E)n−1] dv

−2E(ω+ 2−1(y+ l)E)n−1
]

dy =
∫
−l

d
hl dy.

By taking the derivative twice we have

h′l =−(n− 1)K (E)E(ω+ 2−1(y+ l)E)n−2
− n R0 E(ω+ 2−1(y+ l)E)n−1.
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By the argument in [Guan 2011a] after (14) and in the proof of Lemma 6, we see
that h′l is proportional to g′l there. Therefore, we only need to check for a point 0,
the function hl is right. To prove our conclusion, we only need to check that

hl(0)

=

∫
−l

0

[
(n−1)KM E(ω+2−1(v+ l)E)n−2

+n R0 E(ω+2−1(v+ l)E)n−1] dv = 0,

since gl(0)= 0. Notice that nE(ω+ 2−1(v+ l)E)n−1 is related to ωn there.
The exact same argument works for the case in which the fiber F = Gr(2k, 2).
For the case in which the fiber F = Qn , we have D(F)= 1. Therefore, we could

let y =−l − x , v =−l − u, d =−l − c instead and we notice

−K (E)=−KM − (n− dim N )E .

The same proof goes through.

Theorem 13. On a type I compact almost homogeneous manifold of cohomogeneity
one there is a Kähler metric of constant scalar curvature in a given Kähler class if
and only if the Kähler class is strictly slope stable with respect to the closed orbit.

This is also true for general compact Kähler almost homogeneous manifolds of
cohomogeneity one. But it will take some time for us to publish the detailed results
and proofs.

6.3. In the case of Fano manifolds, our discussion in Section 6.1 shows:

Theorem 14. Let M be any Fano manifold. If a smooth submanifold N destabilizes
the Ricci class, then N , the blowing-up manifold M(N ) of M along N and the
exceptional divisor E are all Fano manifolds.

One could also consider the case where N is a union of smooth submanifolds.
We expect that each of them should be Fano also. Similarly, it should be easy to
obtain some results similar to those of Nadel [1990] and to check out the unstable
Fano threefolds.

For the compact Kähler manifolds with a zero or negative first Chern class we
showed at the beginning of Section 6.2 that:

Theorem 15. Let M be any compact Kähler manifold with a negative first Chern
class. Then the negative Ricci class is strictly slope stable.

Theorem 16. Let M be any compact Kähler manifold with a zero first Chern class.
Then any Kähler class is strictly slope stable.

Theorems 14, 15, 16 give a good reason why the Calabi conjecture is true for
the negative and zero case but not true in general for the positive case.
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THE SUBREPRESENTATION THEOREM
FOR AUTOMORPHIC REPRESENTATIONS

MARCELA HANZER

We prove that every irreducible subrepresentation in the space of automor-
phic forms on G(A), where G is a connected reductive group defined over a
number field k, and A is the related ring of adeles, is a subrepresentation of
the representation induced from a cuspidal automorphic representation of
a Levi subgroup.

1. Introduction

In this note we prove the global (automorphic) version (over a number field k) of
Casselman’s subrepresentation theorem. We explain it in more detail: in the local
theory (i.e., considering admissible representations of reductive groups over local
fields) there is Harish-Chandra’s subquotient theorem [1954], and then there is also
Casselman’s subrepresentation theorem [1980; 1995]; both of them state that every
irreducible representation (in the appropriate category) of this given reductive group
is a subquotient or (in the case of Casselman’s theorem) a subrepresentation of a
representation induced from a “simpler” one (of an appropriate subgroup). The
global analog of the Harish-Chandra subquotient theorem would be Langlands’
theorem which describes a general automorphic representation as a subquotient of
a representation induced from a cuspidal representation of a Levi subgroup.

We prove the following global version of Casselman’s subrepresentation theorem.

Theorem. Let G be a connected reductive group defined over k. Let (5, V ) be an
((g∞, K∞)×G(A f ))-irreducible subspace of automorphic forms in A(G(k)\G(A)).
Then, there exists a parabolic subgroup P = MU of G, an irreducible automor-
phic cuspidal representation π0 of M (thus appearing in the space of cuspidal
automorphic forms on M) such that, as abstract global representations, we have

5 ↪→ indG(A)
P(A)π0,

where we consider the normalized parabolic induction (so we extend π0 trivially on
U (A)) and we take K-finite vectors.
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We explain all the notation in the Preliminaries section.
We are sure that the experts in the field are aware of the above claim, but we were

not able to find the reference for this statement, which is somewhat more precise
than the aforementioned Langlands’ result in his Corvallis lecture [Borel and Jacquet
1979]. The proof is a pretty straightforward application of the Langlands proof in
his Corvallis lecture, with the decomposition results (on the spaces of automorphic
forms) obtained (along with much stronger results) in [Mœglin and Waldspurger
1995]. We hope that this result will be very helpful for explicit calculations with
automorphic forms, since it is explicitly applicable to the discrete (and K-finite)
part of automorphic L2 situation.

2. Preliminaries

Let k be a number field, and A its ring of adeles. Let G be a connected reductive
group defined over k, and G∞ =

∏
v G(kv), where the product is over archimedean

places of k. We further denote G(A f ) =
∏
′

v<∞ G(kv). Let U be the enveloping
algebra of the complexified Lie algebra g of G∞ (and g∞ is the Lie algebra of G∞).
We follow the notation of the first chapter of [Mœglin and Waldspurger 1995]. We
denote by z the center of U and by Kv a maximal compact subgroup of G(kv),
where Kv = G(Okv ) for almost all v <∞. Here Okv is the ring of integers in kv.
We set K∞ =

∏
v|∞ Kv and K =

∏
v Kv. We fix a minimal parabolic subgroup

P0 of G defined over k, and consequently, standard parabolic subgroups (defined
over k) with respect to P0. We denote by S a maximal k-split torus of G, chosen
inside P0 and by 1 the set of simple k-roots of G with respect to S (and P0). We
know that each standard k-parabolic subgroup corresponds to a subset θ of 1. We
denote this by putting P = Pθ . We denote the modular function on P by δP . For a
standard Levi k-subgroup M of G, we denote by zM the analogue of z for group M .
We denote by Z M the center of M .

We use the following definition of an automorphic form: Let P = MU be a
standard k-parabolic subgroup of G and φ : U (A)M(k) \ G(A)→ C a function.
We say that φ is automorphic if it satisfies the following conditions:

(1) φ has moderate growth (see [Mœglin and Waldspurger 1995, I.2.3]).

(2) φ is smooth (see [Mœglin and Waldspurger 1995, I.2.5]).

(3) φ is K-finite.

(4) φ is z-finite.

Note that the space A(U (A)M(k)\G(A)) of all automorphic forms as above can
be related to the usual situation with the automorphic forms on M(k) \M(A) by
attaching to each k ∈K and φ as above a function φk :M(k)\M(A)→C defined by
φk(m)= δ

−1/2
P (m)φ(mk) by noting that φ is automorphic if and only if it is smooth,
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K-finite, and for all k ∈K, φk is an automorphic form on M(k)\M(A). We denote
by A0(U (A)M(k)\G(A)) the cuspidal part of the space A(U (A)M(k)\G(A)); i.e.,
the space of all automorphic forms φ from A(U (A)M(k)\G(A)) with the property
that for every standard k-parabolic subgroup P ′ = M ′U ′ such that P0 ⊂ P ′ $ P we
have φP ′ = 0 (the constant term along P ′, defined by φP ′(g)=

∫
U ′(k)\U ′(A) φ(ug)du).

The space A(U (A)M(k)\G(A)) is a module for the action of (g∞, K∞)×G(A f ),
i.e., for the global idempotent Hecke algebra H=H∞⊗H f , where H∞ is related to
U and finite measures on K∞, and H f =⊗

′
v<∞Hv , where Hv, v <∞ is the Hecke

algebra of compactly supported, locally constant functions on G(kv) (see [Borel
and Jacquet 1979, Section 4]). Note that A0(U (A)M(k) \G(A)) is a submodule of
A(U (A)M(k)\G(A)) with this action. Note that the constant term (with respect to
some standard k-parabolic subgroup P = MU ) is an intertwining operator between
A(G(k)\G(A)) and A(U (A)M(k)\G(A)) [Mœglin and Waldspurger 1995, I.2.6].

Let ξ be a character of Z M(k) \ Z M(A), and let π be an irreducible submodule
of A(M(k) \ M(A)), for a standard k-Levi subgroup M of G. We denote by
A(M(k) \M(A))π the isotypic submodule attached to π (in the theorem below we
deal with cuspidal π , so the relevant subquotients are indeed subspaces). We set

A(U (A)M(k) \G(A))ξ =
{
φ ∈ A(U (A)M(k) \G(A)) :

φ(zg)= δ1/2
P (z)ξ(z)φ(g) for all z ∈ Z M(A), g ∈ G(A)

}
,

A(U (A)M(k) \G(A))π =
{
φ ∈ A(U (A)M(k) \G(A)) :

φk ∈ A(M(k) \M(A))π for all k ∈K
}
.

Analogously, we define by A0(U (A)M(k) \G(A))ξ and A0(U (A)M(k) \G(A))π
the cuspidal parts of the above spaces (i.e., the parts realized in the space of cuspidal
automorphic forms).

Proposition 2.1. Let ξ be a character of Z M(k) \ Z M(A) and let 50(M)ξ denote
the set of isomorphism classes of irreducible representations of M(A) occurring as
submodules in A0(M(k) \M(A))ξ . We have the decomposition

A0(U (A)M(k) \G(A))ξ =
⊕

π∈50(M)ξ

A0(U (A)M(k) \G(A))π .

Proof. This is explained in [Mœglin and Waldspurger 1995, p. 44]. �

Remark. By the proof of Lemma I.3.2 of [Mœglin and Waldspurger 1995], zM

acts on A(U (A)M(k) \G(A)) by left translations; every automorphic form there
is zM -finite; analogously every element of that space is Z M(A)-finite, again here
Z M(A) acts by left translations (because we examine K-finite automorphic forms).
Also, it is easy to see that A0(U (A)M(k) \ G(A)) is Z M(A)-invariant subspace
with this Z M(A)-action.
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3. The theorem

In this section we prove the main theorem stated in Section 1. The proof follows
directly from the next theorem, so our embedding from the main theorem is realized
through the calculation of the constant term.

Theorem 3.1. Let (5, V ) be an ((g∞, K∞)× G(A f )-) irreducible subspace of
automorphic forms inside A(G(k) \ G(A)) such that some constant term of a
function from V does not vanish along a k-parabolic subgroup Pθ of G; assume that
θ is minimal (set of simple roots) with this property. Then, there exists an irreducible
automorphic representation π0 of Mθ (A) (appearing in A0(Mθ (k) \Mθ (A)) such
that the space of constant terms of V along Pθ , denoted by V0, belongs (up to a left
translation by an element from Z Mθ

(A)) to the space A0(Uθ (A)Mθ (k)\G(A))π0 of
cuspidal automorphic forms.

Proof. Let f ∈ V . By definition, the constant term fPθ (g)=
∫

Uθ (k)\Uθ (A)
f (ug)du

belongs to A(Uθ (A)Mθ (k)\G(A)), more precisely, to the cuspidal part of this space
(because of the minimality of θ ; see [Mœglin and Waldspurger 1995, I.2.6, I.2.18]).
By the remark above the Theorem, Z Mθ

(A) acts on A0(Uθ (A)Mθ (k) \G(A)) by
left translations, and every function from this space is Z Mθ

(A)-finite. For every
z ∈ Z Mθ

(A), let V z
0 = l(z)V0 (the action by left translations). We know that

taking the constant term is intertwining operator, so V0 (and V z
0 ) is (as an abstract

(g∞, K∞)×G(A f )- representation) irreducible and isomorphic to V . Let W =∑
z∈Z Mθ (A)

V z
0 .

We prove that there exists F ∈ W, F 6= 0 such that dimC spanC{l(z)F : z ∈
Z Mθ

(A)} = 1. Firstly, let F 6= 0 be an element from W such that the dimension of
the space Y := spanC{l(z)F : z ∈ Z Mθ

(A)} is minimal. We claim that this dimension
is one. Indeed, let us assume that this dimension (of Y ) is greater than one. If,
for every a ∈ Z Mθ

(A) acting on Y , the whole space Y is an eigenspace for certain
eigenvalue, it would mean that l(a), for every a, acts as a scalar operator on Y ,
and then every one-dimensional subspace, (also the one spanned by F) would be
Z Mθ

(A)-invariant; a contradiction (this would mean that Y is one-dimensional). So,
there exists a ∈ Z Mθ

(A) with a nonzero eigenspace strictly smaller than Y , attached
to an eigenvalue α 6= 0. This means that Y1 := (l(a)−α)Y is a proper subspace of
Y . Let F1 := (l(a)−α)F ∈ Y1. F1 is obviously nonzero; otherwise l(b)F would
be an eigenvector of l(a) for eigenvalue α for every b ∈ Z Mθ

(A), so that the whole
Y is an eigenspace for α; a contradiction. Now, we easily see that the span of the
set {l(b)F1 : b ∈ Z Mθ

(A)} is inside Y1, which leads to contradiction with our choice
of F .

So, we conclude that there exists a character ξ of Z M(k) \ Z M(A) such that

(1) l(z)F(g)= δ1/2
Pθ (z)ξ(z)F(g) for all g ∈ G(A), z ∈ Z Mθ

(A).



THE SUBREPRESENTATION THEOREM FOR AUTOMORPHIC REPRESENTATIONS 393

Now, let W0 denote the (g∞, K∞)×G(A f )-subspace of W generated by F . For
every vector from this space, (1) holds. Now, since W =

∑
a∈Z Mθ (A)

V a
0 , where

V a
0 are irreducible subspaces, W is also a direct sum of irreducible subspaces (for

example, [Lang 2002, Chapter XVII]), and every (g∞, K∞)×G(A f )-submodule
of W is a direct summand. From this directly follows that W0 has an irreducible
submodule; indeed if W =

⊕
z∈I V z

0 , for some I ⊂ Z Mθ
(A), then some projection

attached to this decomposition pz :W → V z
0 is nonzero on W0. Now Ker pz ∩W0

has a direct (invariant) complement W1 in W , and it is easy to see that W1 ∩W0

is an irreducible submodule of W0. This means that we have found an irreducible
subspace of W (so necessarily isomorphic to V i.e., to V0) where the relation (1)
holds. This realization of V inside A0(Uθ (A)Mθ (k) \ G(A))ξ is thus obtained
through taking of (maybe translated) constant term along Pθ . From Proposition 2.1
we have

A0(Uθ (A)Mθ (k) \G(A))ξ =
⊕

π∈50(Mθ )ξ

A0(Uθ (A)Mθ (k) \G(A))π ,

and, combining our embedding with an appropriate projection, we have obtained
an embedding

5 ↪→ A0(Uθ (A)Mθ (k) \G(A))π0,

for some automorphic (cuspidal) representation π0 of Mθ (A). �

Note that the space A0(Mθ (k) \Mθ (A))π0 is semisimple (Gelfand and Piatetski–
Shapiro; see [Borel and Jacquet 1979, Section 4]); so there exists an irreducible
subspace V ′0 of automorphic forms in A0(Mθ (k) \Mθ (A))π0 (thus isomorphic to
π0) such that there is an embedding

5 ↪→ A0(Uθ (A)Mθ (k) \G(A))V ′0
(the space on the right-hand side has an obvious meaning). We note that, as a
(g∞, K∞)×G(A f )-module, the latter space is isomorphic to the global representa-
tion indG(A)

Pθ (A) π0 (where we use normalized induction and K-finite vectors in this
space) [Kim 2004, Section 4.5]. This isomorphism can also be given explicitly by
φ 7→ φ′, where φ′(g)= φg and φg(m)= δPθ (m)

−1/2φ(mg). This is easily checked
to be G(A)-isomorphism on the space of the smooth (not necessarily K-finite
automorphic forms), but then taking K-finite vectors from both spaces, we get the
claim (see the second and third lectures in [Cogdell 2004]). This, in turn, proves
our main theorem from Section 1.
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VARIATIONAL CHARACTERIZATIONS
OF THE TOTAL SCALAR CURVATURE

AND EIGENVALUES OF THE LAPLACIAN

SEUNGSU HWANG, JEONGWOOK CHANG AND GABJIN YUN

For the dual operator s0�g of the linearization s0g of the scalar curvature
function, it is well-known that if ker s0�g ¤ 0, then sg is a nonnegative con-
stant. Moreover, if the Ricci curvature does not vanish, then sg=.n� 1/ is
an eigenvalue of the Laplacian of the metric g. In this work, we give some
variational characterizations for the space ker s0�g . To accomplish this, we
introduce a fourth-order elliptic differential operator A and a related geo-
metric invariant �. We prove that � vanishes if and only if ker s0�g ¤ 0, and
if the first eigenvalue of the Laplace operator is large compared to its scalar
curvature, then � is positive and ker s0�g D 0. We calculate a lower bound
for � in the case of ker s0�g D 0. We also show that if there exists a function
which is A-superharmonic and the Ricci curvature has a lower bound, then
the first nonzero eigenvalue of the Laplace operator has an upper bound.

1. Introduction

Let M be a compact smooth n-manifold (without a boundary). The space of all
Riemannian metrics, M, on M is then open in the space of symmetric 2-tensors,
S2.M/, for the compact-open topology or theW k;p-topology, whereW k;p denotes
the Sobolev space. For a Riemannian metric g and a symmetric 2-tensor h, the
differential s0g.h/ of the scalar curvature at g in the direction h is given by

(1-1) s0g.h/D��g tr.h/C ıg.ıgh/�g.rg ; h/;

where �g is the negative Laplacian of g, and rg and ıg denote the Ricci curvature
and divergence operator of g, respectively [Besse 1987]. In addition, the L2-adjoint
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is the corresponding author.
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operator s0�g of s0g is given by

(1-2) s0�g .f /DDdf � .�gf /g�f rg ;

where Ddf denotes the Hessian of f with respect to the metric g. Note that both
s0g and s0�g are linear second-order differential operators.

In this paper, we consider the fourth-order elliptic differential operator A D

s0g ıs
0�
g WC

1.M/!C1.M/. The existence of homogeneous or nonhomogeneous
solutions to A is closely related to the kernel space of s0�g . For example, Bourguignon
[1975] and Fischer and Marsden [1974] proved that if ker s0�g ¤0, then either .M; g/
is Ricci-flat and ker s0�g D R � 1, or the scalar curvature is a strictly positive constant
and sg=.n� 1/ is an eigenvalue of the Laplacian. In particular, combined with
the Lichnerowicz–Obata theorem [Lichnerowicz 1958; Obata 1962; Berger et al.
1971], it follows that if g is an Einstein metric with positive scalar curvature, then
ker s0�g D 0 or g is the standard round metric on the sphere.

On the other hand, if ker s0�g D 0, then for any function � 2 C1.M/ there exists
a unique function u 2 C1.M/ such that A.u/ D � (Theorem 2.2). In fact, the
condition ker s0�g D 0 implies the injectivity of s0�g and the surjectivity of s0g . In order
to perform variational characterizations of the condition ker s0�g ¤ 0, we introduce
a geometric invariant � which is defined by

� D inf
�Z
M

'A' dvg

�
;

where the infimum is taken over all functions ' 2 H 2.M/ D W 2;2.M/ withR
M '2 D 1. Here H 2.M/DW 2;2.M/ denotes the Sobolev space which is L2 up

to the second (weak) derivatives.
A basic result related to the invariant � is the following.

Theorem A. The invariant � vanishes if and only if ker s0�g D 0.

For the case ker s0�g D 0, we give a lower bound on � and its relationship to the
first nonzero eigenvalue of the Laplacian. We also show that if the first eigenvalue
is large compared to the scalar curvature, then � is positive and ker s0�g D 0. In
addition, if M is the product of two standard spheres of the same dimension, then �
is exactly equal to the dimension of the spheres.

Theorem B. Let M D Sm �Sm .m� 2/ with the standard product metric. Then

� DmD
dim.M/

2
:

We also obtain upper bounds for the first nonzero eigenvalue of the Laplace
operator when A satisfies a condition on evaluating functions. We say that a
Riemannian manifold .M; g/ satisfies the A-superharmonic condition if there exists
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a smooth function ' such that MC' ¤∅ and A' � 0 on MC' , and �' D 0 on the
boundary @MC' of MC' . Here MC' D fx 2M W '.x/ > 0g. For example, if M is
the standard sphere, then the first eigenfunction of the Laplacian satisfies these
conditions. In general, any compact Riemannian manifold .M; g/ with positive
scalar curvature and ker s0�g ¤ 0 satisfies the A-superharmonic condition.

One of our main results is the following.

Theorem C. Let .M n; g/ be a compact n-dimensional Riemannian manifold with
a positive constant scalar curvature sg . Suppose that .M; g/ satisfies the A-
superharmonic condition. If Ricg � k � 0, then the first nonzero eigenvalue
�1 of the Laplacian satisfies

(1-3) �1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

Inequality (1-3) is sharp since the equality holds for the standard sphere. In
performing analysis with the operator A, the main difficulty is that we cannot apply
the theory of second-order elliptic partial differential equations directly since A is
a fourth-order differential operator.

The kernel space of s0�g plays an important role in the critical point equation
arising from the total scalar curvature functional. Let M1 be the set of all smooth
Riemannian metrics of unit volume on M , and let C�M1 be the set of all smooth
Riemannian metrics on M with constant scalar curvature, i.e.,

CD fg 2M1 W sg D constantg:

The total scalar curvature S WM1! R is defined as

S.g/D

Z
M

sg dvg :

It is well-known that the total scalar curvature functional S restricted to C will be
critical at g if and only if there is a function f with

R
M f D 0 such that

(1-4) zg D s
0�
g .f /;

where zg is the traceless Ricci tensor defined as zg D rg � .sg=n/g. We call (1-4)
the critical point equation (CPE). Note that if f D 0, it follows from (1-4) that
zg D 0, and thus g is an Einstein metric. However, the existence of a nonzero
solution is a very strong condition. The only known case with a nonzero solution is
that of a standard sphere, and it has been conjectured that this is the only possible
case [Besse 1987]. Namely, it is believed that if there exists a nonzero function f
satisfying the CPE, then g must be an Einstein metric. We remark that a solution
.g; f / to the CPE is a nontrivial example of the A-superharmonic condition since
Af D�jzg j

2 and �gf D�.sg=.n� 1//f .
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Unless stated otherwise, we only consider Riemannian metrics on M whose
scalar curvatures are positive constants.

2. Variational properties

Let .M; g/ be a closed Riemannian n-manifold and ı be the adjoint operator of the
differential d with respect to the metric g. Unless explicitly stated, we will use r
rather than rg as the Ricci tensor of the metric g, and s rather than sg as the scalar
curvature. The following expressions are well-known definitions and identities: for
a function ' and any tensor T ,

ıDd' D�d�' � r.d'; � /; ıd' D��'; and ı.'T /D 'ıT �T .d'; � /:

Moreover, for any two functions ',  ,

(2-1)  hDd'; ri D �ı. r.d'; � //� r.d'; d /:

Lemma 2.1. Let AD s0g ı s
0�
g and assume the scalar curvature sg D s is constant.

Then, for any function ',

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2:

Proof. It follows directly from (1-2) that

s0�g .'/DDd' � .�'/g�'r

and thus
A.'/D s0g ı s

0�
g .'/D s

0
g.Dd' � .�'/g�'r/:

By (1-1), we have

s0g.Dd'/D�ı.r.d'; � //� hDd'; ri:

Similarly, since ıgD0 and ırD�1
2
dsD0, we also obtain the following from (1-1):

s0g..�'/g/D .1�n/�
2'�s�' and s0g.'r/D�s�'Cı.�r.d'; � //�'jr j

2:

Combining these two expressions, we obtain

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2: �

Note that A is a fourth-order linear partial differential operator. The following
theorem shows that A is elliptic and self-adjoint. We say that a fourth-order
differential operator is elliptic if the symbol is injective.

Theorem 2.2. The operator A is a self-adjoint, fourth-order elliptic linear operator.
Furthermore, if ker s0�g D 0, then for any  2C1.M/ there exists a unique function
u 2 C1.M/ such that  DA.u/.
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Proof. We first show that s0�g has injective symbol. Recall that for any p 2 M
and any cotangent vector t 2 T �pM , there is a linear map �t .s0�g / W TpC

1.M/!

TpC
1.S2M/ called the symbol ofDD s0�g , and the symbol ofD is called injective

if �t .D/ is injective for all nonzero t . Note that for t 2 T �M ,  2 C1.M/,

�t .s
0�
g / � D .�g.t; t/gC t ˝ t / ;

which is clearly injective for n> 1. Thus s0�g is an operator of order 2 with injective
symbol. By Lemma 4.4 of [Berger and Ebin 1969], A D s0g ı s

0�
g is an elliptic

operator of order 4. It is clear from definition that A is self-adjoint.

Secondly, we show that A is surjective. Since s0g is surjective, for any nontrivial
 2 C1.M/, there exists � 2 C1.S2M/ such that s0g.�/D  . From the fact that
sg is constant and the proof of Theorem 5.2 in the same reference, C1.S2M/D

im s0�g ˚ ker s0g . Thus, � D �1C �2 with �1 2 im s0�g and �2 2 ker s0g . Therefore, for
�1 D s

0�
g .u/, we have A.u/D  .

Finally uniqueness comes from the assumption that ker s0�g D 0 since ker AD

ker s0�g ; clearly ker s0�g � ker s0g ı s
0�
g , and sg ı s0�g .u/D 0 implies

0D
�
u; sg ı s

0�
g .u/

�
L2 D

�
s0�g .u/; s

0�
g .u/

�
L2 ;

where .f; g/L2 D
R
M fg dvg , and so s0�g .u/D 0. �

Given a smooth compact n-dimensional Riemannian manifold .M; g/, we let
H 2.M/DW 2;2.M/ be the Sobolev space defined as the completion of the space
of smooth functions on M with respect to the norm

k'k2
H2.M/

D

Z
M

jDd'j2 dvg C

Z
M

jr'j2 dvg C

Z
M

'2 dvg :

To investigate the properties of operator A from the perspective of the calculus of
variations, we define E.'/ for any function ' 2H 2.M/ as

(2-2) E.'/D
1

2

Z
M

�
.n� 1/.�'/2� 2sjd'j2C r.d'; d'/C'2jr j2

�
:

Since 'hDd'; ri D div.'r.d'; � //� r.d'; d'/, and thusZ
M

'hDd'; ri D �

Z
M

r.d'; d'/;

the Euler–Lagrange equation for the functional E is exactly

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2 D 0:
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Note that if ' D constant and A.'/D 0, then ' D 0 if the Ricci curvature r does
not identically vanish. Furthermore,

(2-3) E.'/D
1

2

Z
M

'A.'/D
1

2

Z
M

js0�g 'j
2
� 0

for any function '. In other words, E is the energy of A.
A simple direct observation is as follows.

Lemma 2.3. The kernel of s0�g vanishes if and only if ker AD 0.

Proof. The proof follows from the fact thatZ
M

.s0�g '/
2
D

Z
M

'A.'/

for any function '. In fact, assume that ker AD 0 and let s0�g uD 0. Then u realizes
the infimum of E.'/ among all smooth functions C1.M/. That is, u is a critical
point for E, and thus A.u/D 0. �

Example 2.4. Let M be a round n-sphere Sn with a standard round metric. Also,
let ' be the first nontrivial eigenfunction for the Laplacian so that

�' D�n';

Z
Sn

jd'j2 D n

Z
Sn

'2:

Since rg D .n� 1/g, it is easy to see that E.'/D 0. Thus the first eigenfunction '
realizes the infimum of the functional E and so

A.'/D 0 and ker s0�g ¤ 0:

On the other hand, consider M D Sn � SnC1 with the standard product metric.
Then

(2-4) sg D 2n
2; jrg j

2
D n.2n2�nC 1/;

and the first nonzero eigenvalue is given as

�1.M/D �1.S
n/D n:

Let ' be the first eigenfunction corresponding to �1.M/ so that

(2-5) �' D�n'; rg.d'; d'/D .n� 1/jd'j
2:

Substituting (2-4) and (2-5) into (2-2), we obtain E.'/D 0. Therefore, we have
A.'/D 0, and thus ker s0�g ¤ 0.

Recall that H 2.M/ D W 2;2.M/ is the Sobolev space consisting of functions
that are L2 up to the second (weak) derivative. Let

WD

�
' 2H 2.M/ W

Z
M

'2 D 1

�
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and define

� D inf
�Z
M

'A.'/ W ' 2W

�
:

Note that � � 0, and ker A¤ 0 implies � D 0 by (2-3). The converse is also true.

Theorem 2.5. Suppose that � D 0. Then ker A¤ 0.

Proof. Since � D 0, there exists a sequence .'k/ of functions in H 2.M/ withR
M '2

k
D 1 such that

E.'k/! 0 as k!1:

We now claim that .'k/ is bounded in H 2.M/. On the contrary, suppose that the
sequence .'k/ is unbounded in H 2.M/. Defining z'k as

z'k D
'k

k'kkH2.M/

;

where k'kkH2.M/ denotes the Sobolev norm in H 2.M/, we have

kz'kkH2.M/ D 1 and
Z
M

z'2k ! 0 as k!1:

Furthermore, E.z'k/! 0 as k!1. Thus the rescaled sequence .z'k/ is bounded
in H 2.M/ and so .z'k/ converges weakly to a function z'1 2H 2.M/. Applying
the Rellich–Kondrakov embedding theorem H 2.M/ � H 1.M/ � L2.M/, z'k
converges strongly to z'1 in L2, and thus, there exists a subsequence, say .z'k/, that
converges almost everywhere. However, since kz'kkL2.M/! 0, the limit function
z'1D0, which is contradictory to the fact that kd z'kL2.M/¤0 or kDd z'kL2.M/¤0.
Therefore, .'k/ is bounded, and so 'k converges weakly to a function ' in H 2.M/.
By the Rellich–Kondrakov embedding theorem again, it is easy to see that 'k
converges strongly to ' in L2.M/, and thus, there exists a subsequence, say .'k/,
that converges almost everywhere. Consequently, we have

E.'/� lim inf
k!1

E.'k/D 0:

Hence since E.'/D 0 and
R
M '2 D 1, ' is a nonconstant function and A.'/D 0.

�

Corollary 2.6. The invariant � vanishes if and only if ker s0�g ¤ 0 or ker A¤ 0.

Now we consider a special operator stemming from A that also plays a very
important role in the kernel space of s0�g . For a function ', define P' as

P' D .n� 1/�2'C 2sg�' � hDd'; rgi

and define
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�D inf
'2H2.M/
'¤0

R
'P'R
'2

:

Note that � � 0 since P' D 0 when ' is a nonzero constant. Furthermore, it is
easy to see that if �D 0, then either .M; g/ is Ricci-flat or ker AD 0. In fact, if
u 2 ker A and r ¤ 0, thenZ

M

uPuD�

Z
M

u2jrg j
2
� 0:

Since �D 0 and rg ¤ 0, u must be zero because
R
M u2jrg j

2 D 0. The following
theorem shows that if ker A¤ 0, then � must be nonpositive.

Theorem 2.7. Assume that ker A¤ 0 and s D sg is constant. Then

�max
M
jrg j

2
� �� �

s2g

n
:

Proof. Let u 2 ker A be a nonconstant function and r be the Ricci tensor of the
metric g. Since s2=n� jr j2, we have

�

Z
M

u2 �

Z
M

uPuD�

Z
M

u2jr j2 � �
s2

n

Z
M

u2:

Thus

�� �
s2

n
:

On the other hand, it follows from Lemma 2.1 thatZ
M

.s0�g '/
2
D

Z
M

'A.'/D

Z
M

˚
.n�1/.�'/2�2sjd'j2�'hDd'; riC'2jr j2

	
:

Thus,Z
M

˚
.n�1/.�'/2�2sjd'j2�'hDd'; ri

	
��

Z
M

'2jr j2 ��
�
max
M
jr j2

� Z
M

'2:

Therefore, since Z
M

'P' � �
�
max
M
jr j2

� Z
M

'2

for any function ', we conclude that

�� �max
M
jr j2: �

In view of Theorem 2.7, the invariant�may designate a criteria for how close g is
to an Einstein metric. In fact, when .M; g/ is Einstein, it follows from Theorem 2.7
that, if ker A¤ 0,

�D�
s2

n
:
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In view of the operators A and P , for any real number ˛, we introduce an elliptic
fourth-order partial differential operator A˛ defined by

A˛.'/D .n� 1/�
2'C 2sg�' � hDd'; rgiC .1�˛/'jrg j

2;

where rg is the Ricci tensor and sg is the scalar curvature, which is assumed to be
a positive constant. Note that A0 DA and A1 D P .

Theorem 2.8. Assume that ker AD 0 and s D sg is constant. Then there exists a
positive real number ˛0 > 0 such that ker A˛ D 0 for all ˛, 0� ˛ � ˛0.

Proof. For 0 < ˛ < 1, let u 2 ker A˛ be a nontrivial function. Then

A.u/D ˛ujrg j
2
�
�
max
M
jrg j

2
�
˛u

and so � �
�
maxM jrg j2

�
˛. Since ker AD 0, Corollary 2.6 states that � >0. Hence,

0 <
�

maxM jrg j2
� ˛: �

3. Case of � > 0

In this section, we consider the case in which � is positive, or, equivalently, ker AD0.
We will investigate some necessary and sufficient conditions for � to be positive
and derive lower bounds on �.

Lemma 3.1. Assume � > 0. Then

inf
'2W;'¤1

E.'/

k'kH2.M/

> 0:

Here k'kH2.M/ denotes the Sobolev norm in H 2.M/.

Proof. Suppose that

inf
'2W;'¤1

E.'/

k'kH2.M/

D 0:

Then there exists a sequence .'k/ in W such that k'kkL2.M/ D 1 and

E.'k/

k'kkH2.M/

! 0 as k!1:

Since � > 0, we have k'kkH2.M/!1 as k!1. Defining z'k as

z'k D
'k

k'kkH2.M/

;

we can obtain a contradiction, as in the proof of Theorem 2.5. �
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Theorem 3.2. Let .M; g/ be a compact Riemannian n-manifold with positive con-
stant scalar curvature s. If ker AD 0, then � > 0 is contained in the spectrum of A.

Proof. Recall that WD
˚
' 2H 2.M/ W

R
M '2 D 1

	
. Theorem 2.5 and Lemma 3.1

imply that
a WD inf

'2W;'¤1

E.'/

k'kH2.M/

> 0:

Then, for any function ' 2W, we have E.'/� ak'kH2.M/, and thus,

E.'/!1 as k'kH2.M/!1:

In other words, the functional E is coercive on W.
On the other hand, let .'k/ be a sequence in H 2.M/ such that 'k! ' weakly

in H 2.M/. Then, according to the Rellich–Kondrakov theorem, 'k! ' strongly
in L2.M/, and thus, a subsequence .'k/ converges almost everywhere. This shows
that the subspace W is weakly closed inH 2.M/. Furthermore, sinceM is compact,
the subsequence .'k/ uniformly converges to ', and we obtain

E.'/� lim inf
k!1

E.'k/:

The functional E is bounded below and attains its minimum in H 2.M/ [Struwe
1990]. Letting

E.u/Dmin
˚
E.'/ W ' 2W

	
;

it is easy to see from the variational principle that

A.u/D �u: �

The properties of the operator A and the lower bound on � are closely related to
the first nonzero eigenvalue of the Laplacian. Let � be the first nonzero eigenvalue
of the Laplace operator �, which is characterized by

�D inf
�R

M jr'j
2R

M '2
W

Z
M

' D 0

�
:

It follows from the characterization of the first nonzero eigenvalue that, for any
function ' with

R
M ' D 0,

(3-1)
Z
M

'2 �
1

�

Z
M

jd'j2:

Lemma 3.3. Let .M n; g/ be a compact Riemannian n-manifold. Then, for any
function ' 2 C1.M/,

(3-2)
Z
M

jd'j2 �
1

�

Z
M

.�'/2 �
n

�

Z
M

jDd'j2;

where � is the first nonzero eigenvalue of the Laplacian.
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Proof. It follows from integration by parts and the Cauchy–Schwarz inequality thatZ
M

jd'j2 �
1

�

Z
M

.�'/2:

The second inequality in (3-2) follows from the fact that .�'/2 � njDd'j2. �

Furthermore, for a function ' with
R
M ' D 0, we haveZ

M

'2 �
1

�2

Z
M

.�'/2 and
Z
M

'2 �
n

�2

Z
M

jDd'j2:

A direct observation from the definition of A is the following theorem, which
shows that if the first nonzero eigenvalue for the Laplacian is large compared to the
sum of the scalar curvature and the norm of the Ricci tensor, then � is positive.

Theorem 3.4. Let .M n; g/ be a compact Riemannian n-manifold with positive
constant scalar curvature s. If .n�1/�� 2sCmaxM jrg j, then � � s2=n, and thus
ker AD 0, or, equivalently, ker s0�g D 0.

Proof. Note that jrg j2 � s2=n. It follows from Lemma 3.3 thatZ
M

jd'j2 �
1

�

Z
M

.�'/2

for any function '. Thus, for any function ' 2W,

E.'/D
1

2

Z
M

.n� 1/.�'/2� 2sjd'j2C rg.d'; d'/Cjrg j
2'2

�
1

2

˚
.n� 1/�� .2sCmax jrg j/

	 Z
M

jd'j2C
s2

2n

Z
M

'2:

Hence, � � s2=n. �

Remark 3.5. Assume � > 0 for a compact Riemannian n-manifold .M; g/ with a
positive constant scalar curvature. Then it follows from Theorem 3.2 that

A.u/D �u

for some function u 2W. In particular, we haveZ
M

ujr j2 D �

Z
M

u:

Since ker s0�g D 0, by Theorem 2.2, there exists a unique function ' 2C1.M/ such
that A.'/D ujrg j

2. Therefore,

s2

n
�

Z
M

u2jrg j
2
D

Z
M

uA' D

Z
M

'AuD �

Z
M

'u� �k'kL2 :
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On the other hand, by the Cauchy–Schwarz inequality,

�k'k2
L2 �

Z
M

'A' D

Z
M

'ujrg j
2
�

�Z
M

'2jrg j
2

�1
2
�Z
M

u2jrg j
2

�1
2

�
�
max
M
jrg j

�
k'kL2

p
�k'kL2 :

Therefore, we have �k'kL2 �maxM jrg j2, and so

s2

n
� �k'kL2 �max

M
jrg j

2;

where ' is the function satisfying A.'/D ujrg j
2.

Theorem 3.6. Let M D Sm �Sm .m� 2/ with the standard product metric. Then

� DmD
dim.M/

2
:

Proof. First, we will examine the case mD 2 since key ingredients of the proof are
contained in this setting. The cases of m� 3 will then be briefly explained.

For M 4 D S2 � S2 with the standard product metric g, we obviously have
sg D jrg j

2 D 4, �D 2, and rg D g. Thus, hDd'; ri D�' for any function ', and
so

A.'/D 3�2'C 7�'C 4':

Let u be a first eigenfunction of S2 so that �uD�2u, 2
R
M u2 D

R
M jduj

2, and
rg.du; du/D jduj

2. Therefore,Z
M

uA.u/D

Z
M

3.�u/2� 7jduj2C 4u2 D 2

Z
M

u2:

Hence � � 2. To show the converse inequality � � 2, it is sufficient to prove that,
for any C1 function ',

F.'/ WD

Z
M

�
3.�'/2� 7jd'j2C 2'2

�
� 0:

First, note that

F.'/D

Z
M

.�'C 2'/.3�'C'/:

It follows from Lemma 3.3 that

2

Z
M

jd'j2 �

Z
M

.�'/2:
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Thus, from the monotonicity of eigenvalues, it follows that, for any function ' that
vanishes on the smooth boundary @D of a domain D �M , we have

(3-3) 2

Z
D

jd'j2 �

Z
D

.�'/2:

Assume for a moment that 0 is a regular value of '. Let D1 be a region on M
such that

�'C 2' � 0 and �'C 1
3
' � 0;

and D2 be a region such that

�'C 2' � 0 and �'C 1
3
' � 0:

Note that ' � 0 on region D1, and ' � 0 on region D2. Thus, @D1 D @D2. On
region D1, we have

(3-4) 0 < �1
3
' ��' � �2':

Multiplying (3-4) by ' and integrating over D1, we obtain

�2

Z
D1

'2 �

Z
D1

'�' � �
1

3

Z
D1

'2:

Since ' D 0 on @D1, we get

(3-5) �2

Z
D1

'2 � �

Z
D1

jd'j2 � �
1

3

Z
D1

'2:

Similarly, on region D2, we have

(3-6) �2

Z
D2

'2 �

Z
D2

'�' � �
1

3

Z
D2

'2:

Let D DD1[D2. It follows from (3-5) and (3-6) that

(3-7) 1

3

Z
D

'2 �

Z
D

jd'j2 � 2

Z
D

'2:

Note that on M �D, we have

(3-8) .�'C 2'/.3�'C'/� 0:

Furthermore, since the function ' vanishes on the boundary @D of D, we can apply
integration by parts and Green’s identity. Thus, it follows from (3-3), (3-7), and
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(3-8) that

F.'/D

Z
D

.�'C 2'/.3�'C'/C

Z
M�D

.�'C 2'/.3�'C'/

D 3

Z
D

�
.�'/2�2jd'j2

�
C

Z
D

�
2'2�jd'j2

�
C

Z
M�D

.�'C2'/.3�'C'/

� 0:

Now, assume that 0 is a critical value of '. By Sard’s theorem, for any positive
real number � > 0, there exists a real number a, �� < a < 0, such that a is a regular
value of '. Let D1;a be a region such that

(3-9) �'C 2' � 5
3
a and �'C 1

3
' � 0:

Note that ' � a< 0 on regionD1;a, and 'D a on the boundary @D1;a. Multiplying
(3-9) by ' and integrating it over D1;a, we obtain

(3-10) 5
3
a

Z
D1;a

' � a

Z
@D1;a

@'

@n1
�

Z
D1;a

�
2'2� jd'j2

�
;

where n1 is the outward-pointing unit normal vector field to @D1;a. Next, let D2;a
be a region such that

(3-11) �'C 2' � �5
3
a and �'C 1

3
' � 0:

We may assume that �a is also a regular value of '. Note that 0 < �a � ' on
region D2;a, and ' D �a on the boundary @D2;a. Multiplying (3-11) by ' and
integrating it over D2;a, we obtain

(3-12) a

Z
@D2;a

@'

@n2
�
5
3
a

Z
D2;a

' �

Z
D2;a

�
2'2� jd'j2

�
;

where n2 is a unit normal vector field on @D2;a. DecomposingM into three regions,
we can write

F.'/D 3

Z
D1;a

�
.�'/2�2jd'j2

�
C

Z
D1;a

�
2'2�jd'j2

�
C3

Z
D2;a

�
.�'/2�2jd'j2

�
C

Z
D2;a

�
2'2� jd'j2

�
C

Z
M�.D1;a[D2;a/

.�'C 2'/.3�'C'/:

Applying inequality (3-3) to ' � a, we haveZ
D1;a

�
.�'/2� 2jd'j2

�
� 0 and

Z
D2;a

�
.�'/2� 2jd'j2

�
� 0:
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Thus, from (3-10) and (3-12), we obtain

F.'/� 5
3
jaj

Z
D1;a[D2;a

j'j � a

Z
@D1;a

@'

@n1
C a

Z
@D2;a

@'

@n2

C

Z
M�.D1;a[D2;a/

.�'C 2'/.3�'C'/:

Since j@'=@n1j � jd'j and j@'=@n2j � jd'j, the first three terms on the right-hand
side tend to 0 as �! 0. Finally, let E1;a be a region such that �'C 2' > 5

3
a and

�'C 1
3
' � 0, and E2;a be a region such that �'C 2' < �5

3
a and �'C 1

3
' � 0.

Then we haveZ
M�.D1;a[D2;a/

.�'C2'/.3�'C'/� 5
3
a

Z
E1;a

.3�'C'/� 5
3
a

Z
E2;a

.3�'C'/:

The right-hand side tends to 0 as �! 0. Hence, F.'/� 0.

In the general case, M 2m D Sm �Sm when m� 2, it is easy to see that

sg D 2m.m� 1/; jrg j
2
D 2m.m� 1/2; rg D .m� 1/g; �Dm:

Thus,Z
M

'A.'/D .2m� 1/

Z
M

�
.�'/2�mjd'j2

�
� .2m2� 4mC 1/

Z
M

jd'j2C 2m.m� 1/2
Z
M

'2:

Using a first eigenfunction u of Sm, �uD�mu, we can demonstrate that � �m.
To show that � �m, it is sufficient to prove that, for any function ',

F.'/ WD

Z
M

.�'Cm'/
�
.2m� 1/�'C .2m2� 4mC 1/'

�
� 0:

Note that

m

Z
M

jd'j2 �

Z
M

.�'/2:

An argument identical to that used in the case S2 �S2 shows that F.'/� 0, and
thus, � Dm. �

Remark 3.7. For the case of M D Sm � SmCk with k � 2, the first nonzero
eigenfunction of Sm can be used to show that

� �min
˚
.mC k/.k� 1/2; m.kC 1/2

	
:

However, we do not know the exact value of �.
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4. The first eigenvalue of the Laplacian

As mentioned above, the first nonzero eigenvalue � D �1.M/ of the Laplace
operator for a Riemannian manifold .M; g/ is related to the operator A. For
example, if ker A¤ 0 and g is an Einstein metric with positive scalar curvature, then
�D s=.n� 1/, from the results obtained in [Berger et al. 1971] and [Bourguignon
1975]. We shall now see that, if there is a nontrivial function on which the action
of A is nonpositive where the function is positive, then the first nonzero eigenvalue
of the Laplacian is bounded above, and vice versa. Recall that we assumed that
the scalar curvature sg D s of a Riemannian manifold .M; g/ is always a positive
constant.

For a function ' on a smooth manifold M , let us define

MC' D fx 2M W '.x/ > 0g:

We say that a Riemannian manifold .M; g/ satisfies the A-superharmonic condition
if there exists a smooth function ' such that

(i) MC' ¤∅ and A' � 0 on MC' ;

(ii) �' D 0 on the boundary @MC' of MC' .

For example, if M D Sn with the standard round metric g0, and ' is the first
nonzero eigenfunction of the Laplacian, i.e., �'D�n', then A'D 0 and .Sn; g0/
satisfies the A-superharmonic condition. Furthermore, note that any eigenfunction
of the Laplacian satisfies condition (ii). The following lemma shows that the
A-superharmonic condition is implied by ker A¤ 0.

Lemma 4.1. Let .M n; g/ be a compact n-dimensional Riemannian manifold with
a positive constant scalar curvature sg . If ker A ¤ 0, then .M; g/ satisfies the
A-superharmonic condition.

Proof. By Lemma 2.3, ker A¤ 0 is equivalent to ker s0g
� ¤ 0. Let s0g

�' D 0 and
' ¤ 0. Then

Dd' � .�'/g�'rg D 0:

In particular, taking the trace yields

�' D�
sg

n� 1
';

and so MC' ¤∅. Since A' D 0, the function ' satisfies conditions (i) and (ii) in
the definition of the A-superharmonic condition. �

Theorem 4.2. Let .M n; g/ be a compact n-dimensional Riemannian manifold
with a positive constant scalar curvature sg . Suppose that .M; g/ satisfies the
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A-superharmonic condition. If Ricg � k � 0, then the first nonzero eigenvalue �1
of the Laplacian satisfies

(4-1) �1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

Proof. Let sg D s and Ricg D rg D r . In addition, let ' be a smooth function
satisfying MC' ¤∅, A' � 0 on MC' and �' D 0 on the boundary @MC' . If ' is
a constant function, then ' is a positive constant since MC' ¤ ∅. However, we
have 0�A' D 'jr j2, which is a contradiction. Thus, we may assume that ' is a
nonconstant function. By the above hypothesis, we have

(4-2)
Z
M

C
'

'A' � 0:

By the definition of A and integration by parts, together with the fact that �' D 0
on @MC' , we obtain

(4-3)
Z
M

C
'

'A' D

Z
M

C
'

.n� 1/.�'/2�

Z
@M

C
'

�'
@'

@�

C

Z
M

C
'

�
2s'�'C'hDd'; riC jr j2'2

�
�

Z
M

C
'

h
.n� 1/.�'/2C .2s� k/'�'C

s2

n
'2
i
:

Note that

(4-4) .n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 D ..n� 1/�'C˛'/.�'Cˇ'/;

where

˛ D
2s� kC

p
k2� 4ksC 4s2=n

2
; ˇ D

2s� k�
p
k2� 4ksC 4s2=n

2.n� 1/
:

Observe that k2� 4ksC 4s2=n > 0 if and only if either

k < 2

�
1�

r
1�

1

n

�
sg or k > 2

�
1C

r
1�

1

n

�
sg ;

and the first inequality always holds.

Claim. If

(4-5) �1 >
2s� kC

p
k2� 4ksC 4s2=n

2.n� 1/
D

˛

n�1
;

then any subset � of MC' with C 1 boundary on which .n� 1/�'C ˛' � 0 and
�'Cˇ' � 0 has a measure of zero.
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Proof. Suppose that a subset � of MC' contains an open n-ball. Note that since
�' D ' D 0 on @�, we can apply the Dirichlet principle on the first nonzero
eigenvalue of the Laplacian. By monotonicity, we have

�1 D �1.M/� �1.�/:

Since .n� 1/�'C˛' � 0 and ' > 0 on �, we have

'�' � �
˛

n�1
'2:

Integrating this over �, we obtainZ
�

jd'j2 �
˛

n�1

Z
�

'2 �
˛

n�1
�

1

�1.�/

Z
�

jd'j2:

Thus,

1�
˛

n�1
�

1

�1.�/
;

and so
�1 � �1.�/�

˛

n�1
;

which contradicts (4-5). This completes the proof of the claim. �

Now, suppose that �1 >
˛

n�1
. Since ˛ > .n�1/ˇ, it follows from (4-4) and the

above claim that

.n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 � 0 a.e. on MC' ;

which implies that
R
M

C
'
'A' � 0. Consequently, from (4-2), we haveZ

M
C
'

'A' D 0:

Thus, on the set MC' , we have A' D 0 and

.n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 D ..n� 1/�'C˛'/.�'Cˇ'/D 0

by (4-3). Since ˛ > .n� 1/ˇ, either .n� 1/�'C˛' D 0 or �'Cˇ' D 0 on the
entire set MC' . Therefore, we obtain

�1 � �1.M
C
' /�max

n
˛

n�1
; ˇ
o
D

˛

n�1
;

which contradicts the assumption �1 >
˛

n�1
. Hence,

�1 D �1.M/�
˛

n�1
:

This completes the proof of Theorem 4.2. �
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Remark 4.3. If M D Sn with the standard round metric, then taking k D n� 1,
the right-hand side in inequality (4-1) becomes

2sg � kC
q
k2� 4ksg C 4s2g=n

2.n� 1/
D n;

and so the result in Theorem 4.2 is optimal.
In fact, in the case Ricg � k and sg D nk— corresponding to the assumption

that g is Einstein — the conclusion of Theorem 4.2 is that �1 � nk
n�1

. Thus, by
the Lichnerowicz–Obata theorem [Lichnerowicz 1958; Obata 1962; Berger et al.
1971], the only Einstein metric with positive constant scalar curvature which is
A-superharmonic is the standard metric on the sphere. This fact also shows that
the assumption ker A¤ 0 cannot be removed from Lemma 4.1.

Remark 4.4. Let .M n; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k � 0, where the scalar curvature sg is a positive constant. In addition,
suppose that there exists a function ' such that M�' D fx 2M W '.x/ < 0g ¤∅ and
A' � 0 on M�' . Then, by simply applying Theorem 4.2 to the function N' D�',
we can see that the first nonzero eigenvalue �1 of the Laplacian satisfies

�1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

In particular, if k D 0, then

�1 �
s

n�1

�
1C

1
p
n

�
:

Finally, we consider the relationship of � to the first nonzero eigenvalue of
the Laplace operator. In the case of � > 0, it follows from Theorem 3.2 that a
minimizer u for the functional E satisfies AuD �u. In particular, since ker s0�g D 0
when � > 0, we cannot, in general, expect that sg=.n � 1/ is contained in the
spectrum of the Laplace operator.

Theorem 4.5. Let .M; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k � 0 and assume that � > s2g=n, where the scalar curvature sg is a
positive constant. In addition, suppose that MCu ¤ ∅ for a function u satisfying
AuD �u. Then the first nonzero eigenvalue of the Laplacian satisfies

�1.M/�
2sg � kC

q
k2� 4ksg C 4s2g=nC 4.n� 1/�

2.n� 1/
;

unless .M; g/ is Einstein.
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Proof. We shall denote sg by s and Ricg D rg by r . From
R
M uAuD �

R
M u2,

0D

Z
M

uAu� �u2 D

Z
M

.n� 1/.�u/2C 2su�uC r.du; du/C .jr j2� �/u2

>

Z
M

.n� 1/.�u/2C .2s� k/u�uC
�
s2

n
� �

�
u2:

The third inequality is strict since .M; g/ is not Einstein. We may factor the
integrand as follows:

.n�1/.�u/2C.2s�k/u�uC
�
s2

n
��
�
u2D ..n�1/�uC˛u/

�
�uC

ˇ

n� 1
u

�
;

where

˛ D
1

2

�
2s� kC

r
k2� 4ksC

4s2

n
C 4.n� 1/�

�
;

ˇ D
1

2

�
2s� k�

r
k2� 4ksC

4s2

n
C 4.n� 1/�

�
:

Note that if � > s2=n, the radicand is positive for any k � 0.
The remainder of the proof is similar to that of Theorem 4.2. Hence, if g is not

an Einstein metric and � > ˛
n�1

, then

0�

Z
M

uAu� �u2 >

Z
M

.n� 1/.�u/2C .2s� k/u�uC
�
s2

n
� �

�
u2 � 0;

which is a contradiction. �

Theorem 4.6. Let .M; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k with

(4-6) 0� k � 2sg

�
1�

r
1�

1

n
� .n� 1/

�

s2g

�
:

Suppose that 0 < � � s2g=n. In addition, assume that MCu ¤ ∅ for a function u
satisfying AuD �u. Then the first nonzero eigenvalue �1 of the Laplacian satisfies

�1 �
2sg � kC

q
k2� 4ksg C 4s2g=nC 4.n� 1/�

2.n� 1/
;

unless .M; g/ is Einstein.

Proof. Note that if � � s2g=n and (4-6) is satisfied,

k2� 4ksg C
4s2g

n
C 4.n� 1/� � 0:

The remainder of the proof proceeds in the same manner as that of Theorem 4.5. �
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FILL-INS OF NONNEGATIVE SCALAR CURVATURE,
STATIC METRICS, AND QUASI-LOCAL MASS

JEFFREY L. JAUREGUI

Consider a triple of “Bartnik data” (6, γ, H), where 6 is a topological 2-
sphere with Riemannian metric γ and positive function H . We view Bartnik
data as a boundary condition for the problem of finding a compact Riemann-
ian 3-manifold (�, g) of nonnegative scalar curvature whose boundary is
isometric to (6, γ ) with mean curvature H . Considering the perturbed
data (6, γ, λH) for a positive real parameter λ, we find that such a “fill-in”
(�, g) must exist for λ small and cannot exist for λ large; moreover, we
prove there exists an intermediate threshold value.

The main application is the construction of a new quasi-local mass, a con-
cept of interest in general relativity. This mass has a nonnegativity property
and is bounded above by the Brown–York mass. However, our definition
differs from many others in that it tends to vanish on static vacuum (as
opposed to flat) regions. We also recognize this mass as a special case of a
type of twisted product of quasi-local mass functionals.

1. Introduction

Riemannian 3-manifolds of nonnegative scalar curvature arise naturally in general
relativity as totally geodesic spacelike submanifolds of spacetimes obeying Ein-
stein’s equation and the dominant energy condition. In this setting, scalar curvature
plays the role of energy density. Black holes in this setting are manifested as
connected minimal surfaces that minimize area to the outside. If S is a disjoint
union of such surfaces of total area A, the number

√
A/16π is interpreted to encode

the total mass of the collection of black holes, possibly accounting for potential
energy between them [Bray 2001].

A fundamental question in general relativity is to quantify how much mass
is contained in a compact region � in a spacelike slice of a spacetime [Penrose
1982]. Constructing examples of such quasi-local mass has led to a very active field
of research (we mention here a small number of possible references: [Szabados
2009; Wang and Yau 2009; Huisken and Ilmanen 2001]). For most definitions,
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the quasi-local mass of � depends only boundary data of �: namely the induced
2-metric and induced mean curvature function. We reference pioneering work of
Bartnik [1997; 1989], whose name is given in the following definition.

All metrics and functions in this paper are assumed to be smooth, unless otherwise
stated.

Definition 1. A triple B = (6, γ, H), where 6 is a topological 2-sphere, γ is a
Riemannian metric on 6 of positive Gauss curvature, and H is a positive function
on 6 is called Bartnik data.

While not always necessary, it is often customary to restrict to positive Gauss
curvature and positive functions H , as we do here. A typical problem involving
Bartnik data (6, γ, H) is to construct a Riemannian 3-manifold (M, g) satisfying
some nice geometric properties such that the boundary ∂M is isometric to (6, γ ),
and the mean curvature of ∂M agrees with H . For instance, one might require
(M, g) to be asymptotically flat with nonnegative or zero scalar curvature (see
[Bartnik 1993], for instance). Such a manifold is called an extension of the Bartnik
data.

We focus on the dual problem of constructing compact fill-ins of the Bartnik
data, realizing (6, γ, H) as the boundary of a compact 3-manifold. This problem
was considered by Bray in the construction of the Bartnik inner mass [Bray 2001]
(see Section 2.3 below).

Definition 2. A fill-in of Bartnik data (6, γ, H) is a compact, connected Riemann-
ian 3-manifold (�, g) with boundary such that there exists an isometric embedding
ι : (6, γ )→ (�, g) with the following properties:

(1) the image ι(6) is some connected component S0 of ∂�, and

(2) H = HS0 ◦ ι on 6, where HS0 is the mean curvature of S0 in (�, g).

We adopt the sign convention that the mean curvature equals −g( EH , En), where EH
is the mean curvature vector and En is the unit normal pointing out of � (e.g., the
boundary of a ball in Rn has positive mean curvature).

Without loss of generality, if (�, g) is a fill-in of (6, γ, H), we shall henceforth
identify 6 with ι(6) and H with the mean curvature of ι(6).

We will primarily be concerned with fill-ins satisfying the following geometric
constraints.

Definition 3. A fill-in (�, g) of (6, γ, H) is valid if the metric g has nonnegative
scalar curvature and either

(1) ∂�=6, or

(2) ∂� \6 is a minimal (zero mean curvature) surface, possibly disconnected.
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(62, γ, H)

(�3, g)
R ≥ 0

(62, γ, H)

(�3, g)

R ≥ 0

Figure 1. Left: a valid fill-in of (6, γ, H) of the first type (i.e.,
∂� = 6). Right: a valid fill-in of the second type (∂� \ 6 is
minimal). R denotes the scalar curvature of g.

Figure 1 provides a graphical depiction. In physical terms, a valid fill-in is a
compact region in a slice of a spacetime that has nonnegative energy density and
possibly contains black holes. Another characterization of the second class of valid
fill-ins is a cobordism of nonnegative scalar curvature that joins the given Bartnik
data to a minimal surface. Note that we require ∂� \6 to be minimal, but not
necessarily area-minimizing.

Interestingly, Bartnik data falls into one of three types. Although trivial to prove,
the following fact motivates much of the present paper.

Observation 4 (trichotomy of Bartnik data). Bartnik data (6, γ, H) belongs to
exactly one of the following three classes:

(1) Negative type: (6, γ, H) admits no valid fill-in.

(2) Zero type: (6, γ, H) admits a valid fill-in, but every valid fill-in (�, g) has
∂�=6.

(3) Positive type: (6, γ, H) admits a valid fill-in (�, g) with nonempty minimal
boundary ∂� \6.

Outline. In Section 2, we give some geometric characterizations of valid fill-ins
of Bartnik data of zero and positive type, making connections with static vacuum
metrics. We also recall in Section 2.3 the Bartnik inner mass, which explains the
use of the words positive, zero, and negative in the trichotomy.

The essential idea of this paper, presented in Section 3, is to study the behavior
of Bartnik data (6, γ, λH), where the real parameter λ > 0 is allowed to vary. We
show in Theorem 11, the main result, that the data passes through all three classes
of the trichotomy, with interesting behavior at some unique borderline value λ= λ0.
In Section 3.1, we introduce a function that probes the geometry of valid fill-ins of
(6, γ, λH).

The main application occurs in Section 4, where we use the number λ0 to
define a quasi-local mass for regions in 3-manifolds of nonnegative scalar curvature
(Definition 14). Several properties are shown to hold, including nonnegativity. What
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distinguishes this definition from most others is its tendency to vanish on static
vacuum, as opposed to flat, data. We give a brief physical argument for why such a
property may be desirable in Section 4.1.

Section 5 consists of examples of Bartnik data of all three types, and compares
our definition with the Hawking mass and Brown–York mass. In Section 6 we
introduce a general construction for “twisting” two quasi-local mass functionals
together, of which the above quasi-local mass is a special case. The final section is
a discussion of some potentially interesting open problems.

2. Fill-ins of nonnegative type and the inner mass

2.1. Zero type data and static vacuum metrics. First, we classify the geometry of
valid fill-ins of Bartnik data of zero type. Recall that a Riemannian 3-manifold
(�, g) is static vacuum if there exists a function u ≥ 0 (called the static potential),
with u > 0 on the interior of �, such that the Lorentzian metric

h =−u2dt2
+ g

on R× int(�) has zero Ricci curvature. This condition is equivalent to the system
of equations

1u = 0,(1)

u Ric= Hess u,(2)

where 1,Ric and Hess are the Laplacian, Ricci curvature, and Hessian with respect
to g. Equation (1) together with the trace of (2) shows that static vacuum metrics
have zero scalar curvature. The following result is primarily a consequence of
Corvino’s work [2000] on local scalar curvature deformation.

Proposition 5. If B is Bartnik data of zero type, then any valid fill-in is static
vacuum.

The idea of the proof is to use a valid fill-in that is not static vacuum to construct
a valid fill-in that contains a black hole. By a very rough analogy, one might think
of this physically as taking some of the energy content in a fill-in and squeezing it
down into a black hole. The delicate issue is that we must preserve the boundary
data in the process.

Proof. Let (�, g) be a valid fill-in of zero type data (6, γ, H). By definition,
∂�=6.

We claim g has identically zero scalar curvature. If not, there exists p ∈ int(�)
and r > 0 such that on the closed metric ball B(p, r), the scalar curvature of g
is bounded below by some ε > 0. On the set B(p, r/2) \ {p}, let G be a Green’s
function for the Laplacian that blows up at p and vanishes on ∂B(p, r/2) (see
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[Aubin 1998, Theorem 4.17]). By the maximum principle, G is positive, except on
∂B(p, r/2). Extend G by zero to the rest of � \ {p}, so that G Lipschitz, smooth
away from ∂B(p, r/2). Perturb G to a smooth, nonnegative function G̃ on � \ {p}
that agrees with G except possibly on the annular region B(p, 3r/4) \ B(p, r/4).
For a parameter δ > 0 to be determined, define the conformal metric

g̃ = (1+ δG̃)4g

on �\ {p}. By construction, g̃ = g outside B(p, r) and thus has nonnegative scalar
curvature outside this ball. For points inside B(p, r), we apply the rule for the
change in scalar curvature under a conformal deformation (see Appendix A):

R̃ = (1+ δG̃)−5(−81(1+ δG̃)+ (1+ δG̃)R)

≥ (1+ δG̃)−5(−8δ1G̃+ ε),

Here, R̃ and R are the scalar curvatures of g̃ and g. Since 1G̃ has compact support,
we may choose δ > 0 sufficiently small so that the above is strictly positive. In
particular, R̃ ≥ 0 on � \ {p}.

Now, suppose s is the distance function with respect to g from the point p. For
s sufficiently small, G is of the form c/s + O(1) for some constant c > 0. The
normal derivative of G to the sphere of radius s about p in the outward direction
is −c/s2

+ O(s−1) (see [Aubin 1998, Proposition 4.12 and Theorem 4.13]). The
mean curvature of the sphere of radius s with respect to g is 2/s+ O(1) (by [Fan
et al. 2009, Lemma 3.4]), and so the mean curvature of this sphere with respect to
g̃ is (using Appendix A):

(1+ δG̃)−3((2s−1
+ O(1))(1+ δcs−1

+ O(1))− 4δcs−2
+ O(s−1)

)
.

The dominant term is −2δcs−2, so that for some s > 0 sufficiently small, ∂B(p, s)
has negative mean curvature (with respect to g̃) in direction pointing away from p.
Let �̃ be � \ B(p, s), and restrict g̃ to �̃.

The manifold (�̃, g̃) has boundary with two connected components, both of
positive mean curvature in the outward direction. By Lemma 6 below, (�̃, g̃)
contains a subset that is a valid fill-in of (6, γ, H) with a minimal boundary
component. This contradicts the assumption that the Bartnik data is of zero type,
and so we have proved the claim that g is scalar-flat.

Finally, if (�, g) is not static vacuum, then Corvino proves the existence of a
metric ḡ on � with nonnegative, scalar curvature, positive at some interior point p,
such that g− ḡ is supported away from ∂� [Corvino 2000]. In particular, (�, ḡ) is
a valid fill-in for the type-zero data (6, γ, H), and the above argument leads to a
contradiction. �

To complete the proof of the proposition, we need also the following lemma:
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Lemma 6. Suppose B= (6, γ, H) admits a fill-in (�, g) with nonnegative scalar
curvature, such that ∂� \6 has positive mean curvature in the outward direction.
Then a subset �′ of � is a valid fill-in of B with metric g|�′ . Moreover, �′ has at
least one minimal boundary component.

Proof. By assumption 6 has positive mean curvature H and ∂� \6 has positive
mean curvature. By Theorem 19 in Appendix B, there exists a smooth, embedded
minimal surface S homologous to 6. The closure of the region bounded between
6 and S is the desired valid fill-in. �

2.2. Data of positive type.

Proposition 7. Given Bartnik data B, the following are equivalent:

(1) B is of positive type.

(2) B admits a valid fill-in that has positive scalar curvature at some point.

(3) B admits a valid fill-in that has positive scalar curvature everywhere.

The idea of proving the proposition is to create positive energy density at some
interior points at the expense of decreasing the size of the minimal surface. As
in the previous section, the delicate issue is preserving the boundary data in the
process.

Proof. If B admits a valid fill-in with positive scalar curvature at a point, then
B is of nonnegative type and Proposition 5 rules out the case of zero type (since
static vacuum metrics have zero scalar curvature). This shows (2) implies (1); (3)
trivially implies (2).

Last, we show (1) implies (3). Suppose B= (6, γ, H) has positive type, so there
exists some valid fill-in (�, g) of B with boundary 6∪̇S, where S is a nonempty
minimal surface. If (�, g) is not static vacuum, we may complete the proof by
again using the work of Corvino [2000] to perturb (�, g) to a valid fill-in with
positive scalar curvature at a point. Thus, assume (�, g) is static vacuum, and so
in particular it is scalar-flat.

Replace (�, g) with its double across the minimal surface S. Now, (�, g) has
two boundary components 6 and 6′ (its reflected copy), and contains a minimal
surface S that is fixed by the Z2 reflection symmetry. Moreover, g is Lipschitz
continuous across S and smooth elsewhere1. For simplicity of exposition, we
separately treat the cases in which g is smooth and nonsmooth across S.

1This doubling trick across a minimal surface was used by Bunting and Masood-ul-Alam [1987] to
classify static vacuum metrics with compact minimal boundary that are asymptotically flat. Because
of the asymptotic condition, their theorem does not apply to the present case. We also mention the
fact that because of minimality and the static vacuum condition, S is totally geodesic, which implies
that g̃ is C1,1 across S [Bunting and Masood-ul Alam 1987; Corvino 2000]. However, we do not need
this fact.
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Σ

Σ'

(Ω,g)

6

S

6′

1ϕ = 0

ϕ = 0

(�, g)

ϕ = 1− ε

6

6′

(�, g̃)

Figure 2. Construction in proof of Proposition 7. Left: the double
of (�, g), which we also refer to as (�, g), abusing notation. The
function ϕ is harmonic, with the given prescribed Dirichlet bound-
ary values. Right: � equipped with the metric g̃, obtained from g
by applying the conformal factor ϕ4.

Smooth case. For ε ∈ (0, 1), let ϕ be the function on � solving the following
Dirichlet problem: 

1ϕ = 0 on �,
ϕ = 1 on 6,
ϕ = 1− ε on 6′.

Consider the conformal metric g̃= ϕ4g, which is smooth with zero scalar curvature.
Moreover, the mean curvature H̃ of 6 with respect to g̃ strictly exceeds H (for all
choices of ε), since ϕ has positive outward normal derivative on6 (see Appendix A).
The mean curvature of 6′ remains positive for ε > 0 sufficiently small. Fix such
an ε. This construction is demonstrated in Figure 2.

Fix any smooth function ρ > 0 on �. For all δ ≥ 0 small, let uδ be the unique
solution to the elliptic problem

L̃uδ = δρ in �̃,
uδ = 1 on 6,
∂ν(uδ)= 0 on 6′,

where L̃ =−81̃ is the conformal Laplacian of g̃. Clearly u0 ≡ 1, and uδ converges
in C2 to 1 as δ→ 0+. For δ > 0 small enough to ensure uδ > 0, the conformal
metric u4

δ g̃ has:

• positive scalar curvature (equal to δρu−5
δ );

• induced metric on 6 equal to γ (by the boundary condition uδ|6 = 1);

• positive mean curvature on 6′ (by the boundary condition ∂ν(uδ)|6′ = 0);

• mean curvature on 6 converging uniformly to H̃ as δ→ 0+.
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Fix a particular value of δ such that the mean curvature of 6′ is positive and the
mean curvature H̃δ of 6 is pointwise greater than H (which is possible, since
H̃ > H ). By Lemma 6, there is a valid fill-in of (6, γ, H̃δ) that contains a minimal
surface. By Lemma 20 in Appendix C, this valid fill-in can be perturbed to a valid
fill-in of (6, γ, H) so that the latter fill-in still has positive scalar curvature.

Lipschitz case. In general we must carry out an extra step to deal with the lack of
smoothness across S. Define ϕ analogously by first solving 1ϕ1 = 0 with boundary
conditions of 1 on 6 and 1−ε/2 on S, then defining ϕ2= 2−ε−ϕ1 in the reflected
copy. The function ϕ obtained by gluing ϕ1 and ϕ2 is C1,1 on �, and smooth and
harmonic away from S. Again, let g̃ = ϕ4g, which has zero scalar curvature (away
from S), is Lipschitz across S, and induces the same mean curvature on both sides
of S. Fix ε > 0 so that H̃ > H and the g̃-mean curvature of 6′ is positive.

By the work of Miao [2002], the fact that both sides of S have the same mean
curvature implies the existence of a family of C2 metrics {g̃δ}0<δ<δ0 such that

(1) g̃δ converges to g̃ in C0 as δ→ 0+,

(2) g̃δ agrees with g̃ outside a δ-neighborhood of S, and

(3) the scalar curvature R̃δ of g̃δ is bounded below by a constant independent of δ.

In particular, the L p norm of R̃δ (taken with respect to g̃ or g̃δ) for any 1≤ p <∞
converges to zero as δ→ 0. We mimic arguments of Schoen and Yau [1979] to
prove:

Lemma 8. For each δ > 0 sufficiently small, the conformal Laplacian

L̃δ =−81̃δ + R̃δ

of g̃δ has trivial kernel on the space of functions v with boundary conditions of
v = 0 on 6 and ∂νv = 0 on 6′.

Proof. Let v belong to the kernel of L̃δ with the above boundary conditions.
Multiplying L̃δv by v and integrating by parts gives

0=
∫
�

(8|∇v|2g̃δ + R̃δv2) dṼδ.

Let R̃−δ =−min(R̃δ, 0), so that∫
�

8|∇v|2g̃δdṼδ ≤
∫
�

R̃−δ v
2dṼδ

≤

(∫
�

(R̃−δ )
3/2dṼδ

)2/3(∫
�

v6dṼδ

)1/3

≤ c
(∫

�

(R̃−δ )
3/2dṼδ

)2/3(∫
�

|∇v|2g̃δdṼδ

)
,
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having used the Hölder and Sobolev inequalities (where c > 0 is a constant). Thus,
for δ sufficiently small, a nonzero v may not exist, since the L3/2 norm of R̃−δ
converges to zero. �

Fix a smooth function ρ > 0 on �. By the lemma and standard elliptic theory,
for δ > 0 small there exists unique solution uδ to the problem:

L̃δuδ = δρ in �̃,
uδ = 1 on 6,
∂ν(uδ)= 0 on 6′.

A key fact is that uδ converges to 1 in C0 as δ→ 0+, and this convergence is C2

away from S (see the proof of Proposition 4.1 of [Miao 2002]).
At this point, the proof follows nearly the same steps as in the smooth case, where

we work with the metric u4
δ g̃δ (which has positive scalar curvature and induces the

metric γ on6). We pick δ > 0 sufficiently small so that H̃δ > H and6′ has positive
mean curvature with respect to u4

δ g̃δ . Now, if necessary, perturb the C2 metric u4
δ g̃δ

on a neighborhood of S to a C∞ metric, preserving the above properties. The proof
now goes as in the smooth case, making use of Lemmas 6 and 20. �

We remark that our assumption of positive Gauss curvature of (6, γ ) is not
necessary in Propositions 5 and 7.

2.3. Bartnik inner mass. One source of inspiration for the problem of considering
valid fill-ins with minimal boundary is Bray’s definition of the Bartnik inner mass
[Bray 2001], an example of a quasi-local mass (see Section 4 for more on quasi-local
mass). The Bartnik inner mass aims to measure the size of the largest black hole
that could be placed inside a valid fill-in of given Bartnik data.

Definition 9. The Bartnik inner mass of Bartnik data B is the real number

minner(B)= sup
(�,g)

{√
A

16π

}
where the supremum is taken over the class of all valid fill-ins (�, g) of B, and A
is the minimum area in the homology class of 6 in (�, g).

This definition, though formulated differently, is equivalent to Bray’s. The
purpose of using the minimum area in the homology class of 6 is to ignore any
large minimal surfaces “hidden behind” a smaller minimal surface.

We observe that the sign of minner(B) corresponds directly to the type of the
Bartnik data B. To see this, first note that for fill-ins with a minimal boundary, the
minimum area of A in the homology class of 6 in (�, g) is always attained by a
smooth minimal surface, and so A is positive (see Theorem 19). For fill-ins without
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boundary, 6 is homologically trivial, and so A = 0. Thus, minner(B) is positive if
B is of positive type; zero if B is of zero type; and −∞ if B is of negative type.

3. The interval of positivity

The following idea was suggested by Bray: as a function of a parameter λ > 0,
consider the Bartnik data (6, γ, λH). The main purpose of this section is to state
and prove Theorem 11, which partially answers the question of how the type of the
data depends on λ.

One key ingredient is the following well-known theorem.2

Theorem 10 [Shi and Tam 2002]. If Bartnik data (6, γ, H) has a valid fill-in
(�, g), then

(3)
∫
6

(H0− H)d Aγ ≥ 0,

where H0 is the mean curvature of an isometric embedding of (6, γ ) into Euclidean
space R3, and d Aγ is the area form on 6 with respect to the metric γ . Moreover,
equality holds if and only if (�, g) is isometric to a subdomain of R3.

Recall that we assume γ to have positive Gauss curvature, which is necessary for
the theorem: H0 is well-defined, since an isometric embedding of a positive Gauss
curvature surface into R3 exists and is unique up to rigid motions (see references
[13] and [19] in [Shi and Tam 2002]).

In our case, inequality (3), which depends only on the Bartnik data, must be
satisfied for data that admits a valid fill-in. In particular, by increasing H (while
keeping γ , and therefore H0, fixed), it is clear that some Bartnik data do not possess
fill-ins (i.e., are of negative type). Hence, the Shi–Tam theorem gives an obstruction
to Bartnik data being of nonnegative type.

The following main theorem demonstrates that there exists a unique interval of
values of λ for which this data (6, γ, λH) is of positive type.

Theorem 11. Fix Bartnik data (6, γ, H). There exists a unique number λ0>0 such
that (6, γ, λH) is of positive type if and only if λ ∈ (0, λ0). Moreover, (6, γ, λH)
is of negative type if λ > λ0.

As a consequence, (6, γ, λH) is zero type for at most one value of λ, namely λ0.

2We remark that the Shi–Tam theorem was originally stated for the case in which every component
of ∂� has positive Gauss and mean curvatures. However, one can allow additional minimal surface
components (as we have done here) by observing the positive mass theorem is true for manifolds with
compact minimal boundary. Alternatively, one could employ a reflection argument to eliminate any
minimal surface boundary components.
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Proof. Define

I+ = {λ ∈ R+ : (6, γ, λH) is of positive type},
I0 = {λ ∈ R+ : (6, γ, λH) is of zero type},

I≥0 = I+ ∪ I0.

Step 1: We first show I+ is nonempty. Consider the space �=6× [−1, 0] with
product metric g, and identify 6 with 6 × {0}. Let S be the other boundary
component of �, namely 6×{−1}. Observe that 1) � has positive scalar curvature
since 6 has positive Gauss curvature, and 2) all leaves 6×{t} are minimal surfaces.

Choose a smooth function v on � satisfying the following properties: v ≤ 0, v
vanishes on 6 and in a neighborhood of S, and ∂νv = 1

4 H on 6. For ε > 0, let
uε = 1+ εv. In particular, uε is positive for ε > 0 sufficiently small. Consider the
conformal metric gε = u4

εg. Note that gε induces the metric γ on 6, and assigns
the following value to the mean curvature of 6:

Hε = 4∂ν(uε)= 4ε∂νv = εH,

by our choice of v. Moreover, the scalar curvature of gε is

Rgε = u−5
ε (−81guε + Rguε)= u−5

ε (−8ε1gv+ Rguε),

which is positive for ε sufficiently small, since Rg > 0 and uε is uniformly bounded
below as ε→ 0+. Fix such an ε. We can see (�, gε) is a valid fill-in of (6, γ, εH),
since this fill-in has positive scalar curvature, induces the correct boundary geometry
on 6, and S is minimal (since gε = g near S). In particular, ε belongs to I+, so
I+ 6=∅.

Step 2: The next step is to show that I≥0 is connected, and I0 contains at most one
point. To accomplish this, we show that for every number in I≥0, every smaller
positive number belongs to I+. It suffices to show that if (6, γ, H) is of nonnegative
type, then (6, γ, λH) is of positive type for all λ ∈ (0, 1). This fact follows from
the next lemma, by Proposition 7.

Lemma 12. Let (�, g) be a fill-in of arbitrary Bartnik data (6, γ, H). Fix λ ∈
(0, 1) and a neighborhood U of 6 in �. There exists a metric g̃ on � such that

(a) g̃ is a fill-in of (6, γ, λH),

(b) g̃ ≥ g, with equality outside U , and

(c) Rg̃ ≥ min(0, Rg) pointwise, with strict inequality on a neighborhood of 6,
where R and Rg̃ are the scalar curvature of g and g̃.

In particular, if (�, g) is a valid fill-in, so is (�, g̃).
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Proof. Working in a neighborhood of 6 in � diffeomorphic to (−t0, 0] ×6 and
contained in U , we may assume g takes the form

g = dt2
+G t ,

where t is the negative of g-distance to 6, and G t is a Riemannian metric on
the surface 6t = 6 × {t}. Shrinking t0 if necessary, we may assume that every
(6t ,G t) has positive Gauss curvature Kt and positive mean curvature Ht (in the
outward direction ∂t ). Let ρ : (−t0, 0] → R be a smooth function equal to 1 in a
neighborhood of −t0, and satisfying

ρ(0)= λ−1 > 1, ρ ′(t)≥ 0, ρ ′(0) > 0.

Define a new metric g̃ on � by setting

(4) g̃ = ρ(t)2dt2
+G t

on the neighborhood of 6, and extending smoothly by g to the rest of �; claim
(b) is satisfied. A straightforward calculation shows that 6 has mean curvature λH
in the metric g̃; moreover g̃ induces the metric γ on 6, so claim (a) holds. Last,
we must study the scalar curvature of g̃ on the neighborhood (−t0, 0] ×6. The
following well-known formula, obtained from computing the variation of mean
curvature under a unit normal flow, gives the scalar curvature of g as:

(5) Rg =−2
∂Ht

∂t
+ 2Kt − H 2

t −‖ht‖
2,

where ht is the second fundamental form of 6t in (�, g), and its norm ‖ · ‖2 is
taken with respect to G t . Applying this formula to the metric g̃ yields

(6) Rg̃ =
1

ρ(t)2
Rg + 2Kt(1− ρ(t)−2)+ 2

ρ ′(t)
ρ(t)3

Ht .

Now, Kt > 0, ρ(t) ≥ 1, ρ ′(t) ≥ 0 and Ht > 0, so we see Rg̃(x) ≥ 0 if Rg(x) ≥ 0
and Rg̃(x) ≥ Rg(x) if Rg(x) < 0; both are strict inequalities near t = 0, proving
claim (c). �

We conclude that I≥0 is a convex subset of R+, containing all arbitrarily small
positive numbers. Moreover, I0 contains at most a single point.

Step 3: We prove that I≥0 is bounded above. This follows immediately from the
work of Shi and Tam. More precisely, if λ ∈ I≥0, then

λ≤

∫
6

H0d Aγ∫
6

Hd Aγ
.

Together with step 2, we see I≥0 and I+ are intervals of the form (0, λ0] or (0, λ0).
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Step 4: Here we prove that λ0 does not belong to I+. If λ0∈ I+, then by Proposition 7,
there exists a valid fill-in (�, g) of (6, γ, λ0 H) with positive scalar curvature at
some point and boundary 6∪̇S0, with S0 minimal and nonempty. Solve the mixed
Dirichlet–Neumann problem:

(7)


1u = 1

8 Rgu in �,
u = 1 on 6,
∂ν(u)= 0 on S0.

Here, ν is the unit normal, always chosen to point out of �. Note that a solution
exists because Rg ≥ 0. By the maximum principle, u > 0 in � and ∂ν(u) > 0
on 6. Let g′ = u4g. Note that g′ has zero scalar curvature, induces the metric
γ on 6 and assigns zero mean curvature to S0. In particular, if we let H ′ be the
mean curvature of 6 with respect to g′, then (6, γ, H ′) has a valid fill-in with
minimal boundary, namely (�, g′), and is therefore of positive type. Observe that
H ′ > λ0 H . Choose β > 1 so that H ′ > βλ0 H . By Lemma 20 in Appendix C, we
see that (6, γ, βλ0 H) is of positive type. Therefore βλ0 ∈ I+, which contradicts
λ0 = sup I+. We conclude I+ = (0, λ0), and either I≥0 = (0, λ0) or (0, λ0]. It
follows that if λ > λ0, then (6, γ, λH) must be of negative type. �

To emphasize the picture, the data (6, γ, λH) is of positive type for λ small. As
we increase λ, this behavior persists until λ= λ0. At this point, the data is zero or
negative, and for λ > λ0, the data is negative. See Section 7 for further discussion
of the behavior near λ= λ0.

3.1. Inner mass function. In the rest of this section we will study the function

(8) m(λ)= minner(6, γ, λH)

defined for λ ∈ (0, λ0). Intuitively, one would expect the following behavior of the
function m(λ). For λ small, the mean curvature λH is close to zero, so one might
anticipate the existence of a valid fill-in with minimal boundary of approximately
the same area as 6.

As λ increases, one would expect the class of valid fill-ins to shrink; one reason
is that the Shi–Tam inequality is more difficult to satisfy. Consequently, the Bartnik
inner mass ought to decrease as well. The following statement supports this intuition.

Proposition 13. Given Bartnik data (6, γ, H), the function m : (0, λ0)→ R+ is
continuous and decreasing, with the limiting behavior

lim
λ→0+

m(λ)=

√
|6|γ

16π
,

where |6|γ is the area of 6 with respect to γ .
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Proof. Monotonicity: Given 0< λ1 < λ2 < λ0, we showed in Lemma 12 that any
valid fill-in of (6, γ, λ2 H) gives rise to a valid fill-in of (6, γ, λ1 H) with a metric
that is pointwise at least as large (see (4)). From the definition of the Bartnik inner
mass, this shows that m(λ1)≥ m(λ2).

Continuity: Suppose 0< λ1 < λ0, and let ε > 0. From the definition of the Bartnik
inner mass, there exists a valid fill-in (�, g) of (6, γ, λ1 H) whose minimum area
A in the homology class of 6 satisfies

m(λ1)−

√
A

16π
<
ε

3
.

From Proposition 7, there exists a valid fill-in (�̃, g̃) of (6, γ, λ1 H) that has strictly
positive scalar curvature, and whose minimum area Ã in the homology class of 6
is close to A: √

A
16π
−

√
Ã

16π
<
ε

3
.

Now, for λ0 > λ > λ1, (�̃, g̃) can be perturbed to a fill-in (�̃, g̃λ) of (6, γ, λH)
using a metric of the form (4). The scalar curvature of g̃λ has potentially decreased
relative to that of g̃, but remains positive for λ > λ1 sufficiently close to λ1. Since
g̃λ→ g̃ in C0, we may assume λ− λ1 is small enough so that√

Ã
16π
−

√
Ãλ

16π
<
ε

3
,

where Ãλ is the minimum g̃λ-area in the homology class of 6. Adding the last
three inequalities and using the definition of the Bartnik inner mass gives

m(λ1) < ε+

√
Ãλ

16π
≤ ε+m(λ),

for λ− λ1 sufficiently small. Together with the fact that m( · ) is decreasing, we
have shown m( · ) is continuous at λ1.

Lower limit behavior: To study the behavior of m(ε) for ε small, recall that in Step
1 of the proof of Theorem 11 we constructed a valid fill-in of (6, γ, εH) by a
metric gε uniformly close (controlled by ε) to a cylindrical product metric g over
(6, γ ). As ε→ 0+, the minimum gε area in the homology class of 6 converges to
the minimum g-area in the same homology class, which is |6|γ . On the other hand,
the Bartnik inner mass of (6, γ, H ′) (for any H ′) never exceeds

√
|6|γ /16π by

definition. This proves

lim
λ→0+

m(λ)=

√
|6|γ

16π
. �
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In Section 7 we conjecture that m(λ) limits to zero as λ→λ−0 , behavior supported
by the explicit computation of m(λ) in a spherically symmetric case in Section 5.1.

4. Quasilocal mass

Recall from the introduction the problem of assigning a “quasi-local mass” to
a bounded region � in a totally geodesic spacelike slice (M, g) of a spacetime.
By most definitions, the quasi-local mass of � depends only on the Bartnik data
(6, γ, H) of the boundary, and we adopt this perspective here. That is, we define
a quasi-local mass functional to be a map from (a subspace of) the set of Bartnik
data to the real numbers. We refer the reader to [Szabados 2009] for a recent
comprehensive survey of quasi-local mass.

We begin by recalling some well-known examples of quasi-local mass. First, the
Hawking mass of (6, γ, H) is defined to be

m H (6, γ, H)=

√
|6|γ

16π

(
1− 1

16π

∫
6

H 2d Aγ

)
.

There is no correlation between the sign of the Bartnik data and the sign of the
Hawking mass. That is, the Hawking mass can be negative for positive Bartnik
data, and vice versa (see Section 5).

Next, the Brown–York mass is defined for Bartnik data (6, γ, H) (assuming as
we do that Kγ > 0 and H > 0) by

mBY(6, γ, H)= 1
8π

∫
6

(H0− H)d Aγ ,

where H0 is the mean curvature of an isometric embedding of (6, γ ) into R3.
Theorem 10 establishes that the Brown–York mass is nonnegative for Bartnik data
of nonnegative type. However, there exist Bartnik data of both negative and zero
type for which the Brown–York mass is strictly positive (see Section 5).

A third example is the Bartnik inner mass, defined in Section 2.3.
A key observation is that Theorem 11 canonically associates to any Bartnik

data (with H > 0 and Kγ > 0) a positive number λ0, which we call the critical
parameter. In this section we use λ0 to construct a new example of a quasi-local
mass functional.

To motivate this definition, we will compute the number λ0 for concentric round
spheres 6r in the Schwarzschild manifold of mass m, with induced metric γr and
mean curvature Hr . For our purposes the Schwarzschild manifold of mass m is
R3 minus the open Euclidean ball of radius m/2, where m > 0, equipped with the
metric

(9) g =
(

1+ m
2r

)4
δ,
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where δ is the Euclidean metric. Note that g is scalar-flat and its boundary is a
minimal 2-sphere, called the horizon.

Straightforward computations show that (6r , γr ) is a round sphere of area
4πr2(1+m/2r)4, and that

Hr =
2
r

(
1+

m
2r

)−2

−
2m
r2

(
1+

m
2r

)−3

,

where we have used (19). The mean curvature H 0
r of (6r , γr ) embedded in R3 is

H 0
r =

2
r

(
1+

m
2r

)−2

.

Therefore, if we let λr =H 0
r /Hr , then (6r , γr , λr Hr ) admits a valid fill-in — namely

a closed ball in flat-space of boundary area 4πr2(1+m/2r)4. On the other hand,
if λ belongs to the interval of positivity for (6r , γr , Hr ), then by Shi–Tam

λ≤

∫
6

H 0
r d Aγ∫

6
Hr d Aγ

= λr .

Thus, λr is the critical parameter for the Bartnik data. Some simplifications show

(10) λr =
1+m/2r
1−m/2r

.

In particular, we have the identity in Schwarzschild space:

m =

√
|6r |g

16π

(
1−

1
λ2

r

)
,

for all values of r , motivating the following definition of quasi-local mass.

Definition 14. Let B= (6, γ, H) be Bartnik data with critical parameter λ0 (from
Theorem 11). Define

m(B)= m(6, γ, H)=

√
|6|γ

16π

(
1−

1
λ2

0

)
.

Recall that we assume γ has positive Gauss curvature and H > 0.

Theorem 15. Definition 14 of quasi-local mass satisfies the following properties:

(1) (nonnegativity) If Bartnik data B admits a valid fill-in, then its mass m(B) is
nonnegative and is zero only if every valid fill-in is static vacuum.

(2) (spherical symmetry) If Bartnik data B arises from a coordinate sphere in a
Schwarzschild metric of mass m, then m(B)= m.
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(3) (black hole limit) If Bn = (6, γ, Hn) is a sequence of Bartnik data and Hn→ 0
uniformly, then

lim
n→∞

m(Bn)=

√
|6|γ

16π
.

(4) (ADM-sublimit) If (M, g) is an asymptotically flat manifold with nonnegative
scalar curvature, and if Sr is a coordinate sphere of radius r with induced
metric γr and mean curvature Hr , then

(11) mADM(M, g)≥ lim sup
r→∞

m(Sr , γr , Hr ).

Remarks. The proof of Theorem 15 uses the positive mass theorem [Schoen and
Yau 1979] implicitly, via Lemma 16 below, which relies on the theorem of Shi and
Tam. On the other hand Theorem 15 also recovers the positive mass theorem: if
(M, g) is asymptotically flat, has nonnegative scalar curvature, with ∂M empty or
consisting of minimal surfaces, then by property (1), m(Sr ) ≥ 0 for all Sr . From
this, inequality (11) gives mADM ≥ 0.

Proof. Nonnegativity: Observe the following four statements are equivalent, using
Theorem 11: m(B) > 0; λ0 > 1; the number 1 belongs to the interval of positivity
I+; B is of positive type. Also, if (6, γ, H) is of zero type, then λ0 = 1 (as follows
from Theorem 11), so m(B) vanishes. On the other hand, if m(B) vanishes, then
λ0=1, so the data is either negative or zero (again, by Theorem 11). But if it is given
that the data admits a fill-in, then the data must be of zero type. By Proposition 5,
any such fill-in is static vacuum.

Spherical symmetry: This is clear from the construction at the beginning of this
section; we defined quasi-local mass so that it has this property.

Black hole limit: It is straightforward to check that if Hn→ 0 uniformly, then the
sequence of critical parameters λn diverges to infinity.

ADM-sublimit: For all r sufficiently large, the coordinate spheres Sr have positive
mean and Gauss curvatures. To prove (11), recall that the Brown–York mass limits
to the ADM mass in the sense that

mADM(M, g)= lim
r→∞

mBY(Sr ).

(See Theorem 1.1 of [Fan et al. 2009] and the references therein.) Since we assume
(M, g) has nonnegative scalar curvature, Sr is of positive or zero type for all r for
which the coordinate sphere is defined. We invoke Lemma 16 below, which states
m(Sr )≤ mBY(Sr ), completing the proof. �

Lemma 16. For Bartnik data B= (6, γ, H) of nonnegative type,

m(B)≤ mBY(B).
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Proof. Let H0 be the mean curvature of an isometric embedding of (6, γ ) in R3,
which is well-defined because Kγ > 0. By Shi–Tam, we have

λ0 ≤

∫
6

H0d Aγ∫
6

Hd Aγ
.

In particular,

(12) m(B)=

√
|6|γ

16π

(
1−

1
λ2

0

)
≤

√
|6|γ

16π

(
1−

( ∫
6

Hd Aγ∫
6

H0d Aγ

)2)

≤

√
|6|γ

16π

((∫
6

H0d Aγ +
∫
6

Hd Aγ
)(∫

6
H0d Aγ −

∫
6

Hd Aγ
)(∫

6
H0d Aγ

)2

)

≤

√
|6|γ

16π
16πmBY(B)∫
6

H0d Aγ
,

where again we have used Shi–Tam and the fact that the data is of nonnegative type.
The Minkowski inequality for convex regions in R3 [Pólya and Szegö 1951] states
that (∫

6

H0d Aγ

)2

≥ 16π |6|γ .

Together with the above, this completes the proof. �

The right-hand side of (12) is a definition of quasi-local mass proposed by Miao,
which he observed is bounded above by the Brown–York mass using the same
argument [Miao 2009].

4.1. Physical remarks. It has been suggested in the literature (see [Bartnik 2002],
for instance) that if the quasi-local mass of the boundary of a region � vanishes,
then � ought to be flat. The Brown–York mass and Bartnik mass both satisfy this
property (see [Bartnik 1989; Huisken and Ilmanen 2001]). Definition 14 suggests
an alternative viewpoint that such � ought to be static vacuum, which includes flat
metrics as a special case. Indeed, one could make a physical argument that in a
region of a spacetime that is static vacuum, quasi-local mass should vanish since
there is no matter content and no gravitational dynamics (cf. [Anderson 2010],
which also discusses the vanishing of quasi-local mass on static vacuum regions).

5. Examples

Let (M, g) be a Riemannian 3-manifold. If � is a subset of M with boundary ∂�
homeomorphic to S2, and if ∂� has positive mean curvature H (with respect to
some chosen normal direction), define

m(�)= m(∂�, gT ∂�, H),
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where T ∂� is the tangent bundle of ∂�. If g has nonnegative scalar curvature, then
m(�)≥ 0 by Theorem 15.

Euclidean space. Consider R3 with the standard flat metric. Let�⊂R3 be a strictly
convex open set with smooth boundary that is not round, with mean curvature H0

and induced metric γ0. There is no valid fill-in of (∂�, γ0, H0) with mean curvature
H > H0; this statement follows from the Shi–Tam inequality (3) or alternatively
by Miao’s positive mass theorem with corners [Miao 2002]. This implies λ0 = 1,
and so m(�) = 0. The Brown–York mass of � also vanishes, as H0 = H . A
straightforward computation shows that the Hawking mass of � is strictly negative.

Schwarzschild, positive mass. Next let (M, g) be a Schwarzschild manifold of
mass m > 0; see (9). Suppose �⊂ M is topologically an open 3-ball with boundary
6 disjoint from the horizon.

Lemma 17. For the Bartnik data induced on ∂�, λ0 = 1. Equivalently, m(�)= 0.

Figure 3 gives a depiction of the Bartnik data in question.

Proof. Certainly λ0 ≥ 1, since � is tautologically a valid fill-in. If λ0 > 1, there
exists a valid fill-in �′ of 6 (with the same boundary metric and mean curvature),
such that ∂�′ \6 is nonempty and consists of minimal surfaces. Glue �′ to M \�
along 6, obtaining a manifold (M ′, g′) that is smooth and has nonnegative scalar
curvature away from 6. Moreover, g′ is Lipschitz across S, and ∂M ′ consists
of minimal surfaces (including the Schwarzschild horizon). Let A and A′ be the
minimum areas in the homology class of the boundary for the respective manifolds
(M, g) and (M ′, g′). A is attained uniquely by the horizon S in M , and by a similar
consideration A′ is attained by a surface S′ that includes S as a proper subset. (To
see this, observe that the Schwarzschild manifold minus its horizon is foliated by
the {r = const.} spheres, which are convex; thus S′ may not intersect the interior of
M ′ \� yet must intersect M ′ \� to be homologous to the boundary of M ′.) Thus

(Σ,γ,H)(6, γ, H)

Figure 3. Off-center ball in Schwarzschild. The Bartnik data
(6, γ, H) arises from the boundary of a small ball away from the
horizon in a Schwarzschild manifold.
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A′ > A. By direct computation,

m =

√
A

16π
,

and so

(13) m′ <

√
A′

16π
,

where m′ = m is the ADM mass of (M ′, g′) (equal because g and g′ agree outside
a compact set). Using an argument similar to that of [Miao 2002], one can mollify
(M ′, g′) to a smooth, asymptotically flat metric of nonnegative scalar curvature and
minimal boundary that gives strict inequality in (13). This violates the well-known
Riemannian Penrose inequality [Huisken and Ilmanen 2001; Bray 2001]. This
contradiction implies that λ0 = 1, so m(�)= 0. �

Thus, we have examples of Bartnik data of zero type that do not arise as the
boundaries of regions in flat space. In other words, we have nonflat domains � for
which m(�)= 0. Of course, by Theorem 15, such � must be static vacuum (as is
the case for the Schwarzschild metric).

To further extend this example, Huisken and Ilmanen [2001] show that there
exist small balls � away from the horizon in the Schwarzschild manifold whose
Bartnik data (6, γ, H) have strictly positive Hawking mass. Moreover, the case
of equality in Theorem 10 shows that the Brown–York mass of � is also strictly
positive. It follows that for λ > 1 sufficiently close to 1, the data (6, γ, λH) is of
negative type, yet still has strictly positive m H and mBY.

Note that we have not stated � being static vacuum implies m(�)= 0. Coun-
terexamples are unknown to the author.

Schwarzschild, negative mass. Let (M, g) be the Schwarzschild metric of mass
m< 0 (defined by (9) on R3 minus the closed ball of radius |m|/2). The Bartnik data
induced on spheres {r = const.} is of negative type because the critical parameter
λr is less than one by (10).

5.1. Example m(λ) function. Here we give an explicit computation of the inner
mass function m(λ) defined in Section 3.1 for Bartnik data B corresponding to the
coordinate sphere Sr of radius r >m/2 in the Schwarzschild metric of mass m > 0,
with induced metric γ and mean curvature H . The Riemannian Penrose inequality
[Bray 2001] shows that3 the Bartnik inner mass of B equals m. Let λ > 0; the
data (Sr , γ, λH) embeds uniquely as a coordinate sphere Sr ′ of some radius r ′ in a

3In a Schwarzschild manifold, m =
√

A/16π , where A is the area of the horizon. Now,
minner(B) ≥ m follows from the definition. If minner(B) > m, there exists a fill-in of B with
minimum area A′ > A attained by a minimal surface. One can then arrange a strict violation of
the Penrose inequality by gluing the exterior Schwarzschild region of B to the fill-in. The gluing is
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Schwarzschild metric of some mass m′. Equating the areas of Sr and Sr ′ in their
respective metrics, we have

(14) 4πr2
(

1+
m
2r

)4

= 4π(r ′)2
(

1+
m′

2r ′

)4

.

Equating λH with the mean curvature of Sr ′ leads to

(15) λ
(

2
r

(
1+

m
2r

)−2

−
2m
r2

(
1+

m
2r

)−3)
=

2
r ′

(
1+

m′

2r ′

)−2

−
2m′

(r ′)2

(
1+

m′

2r ′

)−3

.

With some calculations, one can compute r ′ and m′ explicitly. For λ ∈ (0, λ0),
we know m(λ), the Bartnik inner mass of Sr ′ , simply equals m′ (again, by the
Riemannian Penrose inequality). Omitting some details, we give the formula:

(16) m(λ)=
r
2

((
1+

m
2r

)2

− λ2
(

1−
m
2r

)2)
.

As anticipated by Proposition 13, m(λ) is continuous, decreasing, and m(0) =
√

A/16π , where A is the area of Sr in the Schwarzschild metric of mass m. More-
over, m(λ) vanishes at the critical value λ0 = (1+m/2r)/(1−m/2r) (computed in
Section 4), a property conjectured to hold in general (see the paragraph following
Problem 2 in Section 7).

6. An algebraic operation on quasi-local mass functionals

For a quasi-local mass functional mi (i.e., a map from the set of Bartnik data to the
real numbers), define the following quantity in [−∞,∞]:

λi (6, γ, H)= sup{λ > 0 : mi (6, γ, λH)≥ 0}.

In other words, λi measures how much one can scale the boundary mean curvature
until the mass mi becomes negative. Up to this point, we have studied this quantity
for the case in which mi is the Bartnik inner mass (since minner(6, γ, H) ≥ 0 if
and only if (6, γ, H) has a valid fill-in). Theorem 11 implies that λi is a positive,
finite number for the case mi = minner.

Here we use the number λi to construct an algebraic product of two quasi-local
mass functionals, of which that constructed in Section 4 is a special case. We restrict
to quasi-local mass functionals mi satisfying the following mild assumptions on all
Bartnik data:

(1) λi (6, γ, H) is a positive real number, and

(2) mi (6, γ, λH) is decreasing as a function of λ.

only Lipschitz across B, but the smoothing and conformal techniques in [Miao 2002] can be used to
produce a smooth example, leading to a contradiction.
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For example the Hawking mass, Brown–York mass, and Bartnik inner mass (see
Proposition 13) satisfy these properties.

Define the following binary operation on the set of quasi-local mass functionals.
Given m1 and m2, let

(17) (m1 ∗m2)(6, γ, H)= m1

(
6, γ,

λ1

λ2
H
)
,

where λi = λi (6, γ, H) for i = 1, 2. This operation satisfies a number of properties.

Proposition 18. Let m1, m2, and m3 be quasi-local mass functionals.

(1) m1 ∗m1 = m1.

(2) (m1 ∗m2) ∗m3 = m1 ∗m3 = m1 ∗ (m2 ∗m3). In particular, ∗ is associative.

(3) m2 controls the sign of m1 ∗m2 in the following sense:

(a) m1 ∗m2(6, γ, H) > 0 if and only if m2(6, γ, H) > 0.
(b) m1 ∗m2(6, γ, H)= 0 if and only if m2(6, γ, H)= 0.

(4) If m1 has the black hole limit property (see Theorem 15), so does m1 ∗m2.

(5) If both m1 and m2 produce the value m on concentric round spheres in the
Schwarzschild metric of mass m, then so does m1 ∗m2.

(6) If m2 ≤ m3 (as functions), then m1 ∗m2 ≤ m1 ∗m3.

Sketch of proof. These properties all follow easily from the definitions, so we omit
detailed proofs. We sketch some of the steps as a sample.

We compute (m1 ∗m2)∗m3. First, (m1 ∗m2)(6, γ, H)=m1

(
6, γ,

λ1

λ2
H
)

has
critical parameter λ2. Then

((m1 ∗m2) ∗m3(6, γ, H))= (m1 ∗m2)

(
6, γ,

λ2

λ3
H
)
= m1

(
6, γ,

λ1

λ2

λ2

λ3
H
)
,

which equals (m1 ∗m3)(6, γ, H).

We also demonstrate property (3a). Note

(m1 ∗m2)(6, γ, H)= m1

(
6, γ,

λ1

λ2
H
)

is positive if and only if λ1/λ2 < λ1; that is, λ2 > 1. However, λ2 > 1 if and only if
m2(6, γ, H) > 0. �

6.1. Examples of m1 ∗m2. In this section, we demonstrate m1 ∗m2 generally does
not equal m2 ∗m1.
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Hawking mass and Bartnik inner mass. The quasi-local mass of Definition 14 is
equal to m H ∗minner, where m H is the Hawking mass. To see this, note that

λH =

√
16π∫

6
H 2d Aγ

and λinner = λ0. Then, by definition,

m H ∗minner(6, γ, H)= m H

(
6, γ,

λH

λ0
H
)
=

√
|6|γ

16π

(
1−

1
λ2

0

)
.

We reiterate that m H ∗minner inherits the following property from minner: vanishing
precisely on Bartnik data of zero type.

Hawking mass and Brown–York mass. To compute m H ∗mBY, we note that λH

was found in the last example, and

λBY =

∫
6

H0d Aγ∫
6

Hd Aγ
.

Using the definition,

m H ∗mBY(6, γ, H)=

√
|6|γ

16π

(
1−

( ∫
6

Hd Aγ∫
6

H0d Aγ

)2)
.

This quasi-local mass was written down in a different context by Miao [2009].

Brown–York mass and Hawking mass. The steps from the last example show

mBY ∗m H (6, γ, H)=
∫
6

H0 d Aγ

(
1−

√∫
6

H 2d Aγ
16π

)
,

illustrating concretely the noncommutativity of ∗.

7. Concluding remarks and open problems

We conclude by mentioning some questions raised in this paper.

Problem 1. Determine whether the quasi-local mass of Definition 14 is monotone
under some flow.

Monotonicity means that if {(6t , γt , Ht)}t∈[0,ε) is some family of surfaces (to-
gether with their Bartnik data) moving outward in a manifold of nonnegative scalar
curvature, then m(6t , γt , Ht) is nondecreasing. Monotonicity is often (but not
universally) suggested as a desirable property of quasi-local mass [Bartnik 2002].

Problem 2. Determine whether the Bartnik data (6, γ, λ0 H) is of zero type. Equiv-
alently, construct a static vacuum fill-in of (6, γ, λ0 H).
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That the two statements above are equivalent follows from Proposition 5 and
Theorem 11. The precise nature of the Bartnik data rescaled with the critical
parameter λ0 is perhaps the biggest open question of this paper. An affirmative
answer to Problem 2 would imply that (6, γ, λ0 H) admits a static vacuum fill-in.
In general, constructing static vacuum metrics with prescribed boundary data is a
very difficult problem (cf. the work of Anderson and Khuri [2011] on static vacuum
asymptotically flat “extensions” of Bartnik data ).

More generally, one could ask what happens to the geometry of the class valid
fill-ins of (6, γ, λH) in the limit λ↗ λ0. An optimistic conjecture would be that
in the limit λ↗ λ0, any valid fill-in (�λ, gλ) of (6, γ, λH) satisfies:

• the black holes (area-minimizing minimal surfaces) in (�λ, gλ) are shrinking
to zero size (i.e., limλ→λ−0

m(λ)= 0), and

• the metric gλ is approaching a static vacuum metric in an appropriate sense.

There may be a connection between the first point and Miao’s localized Riemannian
Penrose inequality [Miao 2009].

The above discussion is basically a localization of the near-equality case of the
positive mass theorem [Schoen and Yau 1979]. In such a global setting, the question
is: what happens to the geometry of a sequence of asymptotically flat manifolds
(Mi , gi ) of nonnegative scalar curvature whose total mass is approaching zero?
The Riemannian Penrose inequality [Huisken and Ilmanen 2001; Bray 2001] shows
that any black holes in (Mi , gi ) must be approaching zero, and some partial results
exist for proving that gi is approaching a flat metric [Bartnik 1997; Lee 2009; Bray
and Finster 2002; Lee and Sormani 2011].

Appendix A. Conformal transformation of curvatures

We repeatedly used the following formulas that relate the scalar curvature and mean
curvature of conformal metrics. Suppose g and ḡ are Riemannian metrics on a
3-manifold for which

ḡ = u4g

for some smooth function u > 0. If R and R are the scalar curvatures of g and ḡ,
then

(18) R = u−5(−81u+ Ru),

where 1 is the Laplacian with respect to g. Next, suppose S is a hypersurface with
unit normal field ν with respect to g. Then the mean curvatures H and H (in the
direction defined by ν) with respect to g and ḡ satisfy

(19) H = u−2 H + 4u−3∂ν(u).
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Appendix B. Geometric measure theory

Here is an extremely useful result from geometric measure theory on the existence
and regularity of area-minimizing surfaces.

Theorem 19. Let (M, g) be a smooth, compact Riemannian manifold of dimension
2≤ n ≤ 7 with boundary ∂M. Suppose ∂M has positive mean curvature (i.e., its
mean curvature vector points inward). Given a connected component S of ∂M , there
exists a smooth, embedded hypersurface S̃ of zero mean curvature that minimizes
area among surfaces homologous to S. Moreover, S̃ does not intersect ∂M.

These results are essentially due to Federer and Fleming [1960; Fleming 1962;
Federer 1970]. The rough idea of the proof of Theorem 19 is to take a minimizing
sequence of surfaces {Si } (viewed as integral currents) in [S], the homology class
of S. By the Federer–Fleming compactness theorem, some subsequence converges
to a surface S̃. Standard arguments show that S̃ remains in [S] and indeed has the
desired minimum of area. Regularity theory (requiring n ≤ 7) proves that S̃ is a
smooth, embedded hypersurface. By the first variation of area formula, S̃ has zero
mean curvature and may not touch the positive mean curvature boundary (which
acts as a barrier). See the appendix of [Schoen and Yau 1979] for a careful proof of
the last fact.

Appendix C. Deformations of scalar curvature near a boundary

Here we prove the following useful lemma.

Lemma 20. Suppose that (6, γ, H1) admits a valid fill-in. If 0 < H2 < H1, then
(6, γ, H2) admits a valid fill-in with positive scalar curvature at a point. In
particular, (6, γ, H2) is of positive type.

Although we only prove the case Kγ > 0 here, Lemma 20 is true without this
hypothesis. The proof is an application of techniques developed recently by Brendle,
Marques, and Neves [2011].

Proof. Step 1: We construct a valid fill-in of (6, γ ) with mean curvature strictly
greater than H2 and with positive scalar curvature in a neighborhood of 6.

Since 6 is compact, we may choose α ∈ (0, 1) so that αH1 > H2. We proved in
step 2 of Theorem 11 that (6, γ, αH1) is of positive type and moreover admits a
valid fill-in (�, g1) whose scalar curvature is strictly positive in a neighborhood U
of 6. (For the latter statement, refer to Equation (6) and note that ρ ′(0) > 0.)

Step 2: We define a metric g2 on� as follows, with the goal of making the boundary
mean curvature of g2 equal to H2. First, consider a neighborhood of 6 contained
in U that is diffeomorphic to 6× (−t0, 0] (where t = 0 corresponds to 6). Define
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for x ∈6 and t ∈ (−t0, 0]:

g2(x, t)= ρ(t)2dt2
+ (1+ t H2(x))γ (x),

where ρ(t) is a function satisfying ρ(0)= 1 and will be specified later. It is readily
checked that g2 induces on 6 the metric γ and mean curvature H2. Shrinking t0 if
necessary and choosing ρ(t) bounded below by a positive constant with ρ ′(t) > 0
sufficiently large, we may arrange g2 to have strictly positive scalar curvature on
6 × (−t0, 0]. This is readily checked using (5). Now, extend g2 arbitrarily to
a smooth metric on � (not necessarily preserving nonnegative scalar curvature).
Replace U with the smaller neighborhood 6× (−t0, 0]

To summarize, we have two metrics g1 and g2 on the compact manifold �,
inducing boundary data (6, γ, αH1) and (6, γ, H2), respectively, each with pos-
itive scalar curvature on the neighborhood U of 6. By compactness, the scalar
curvatures of g1|U and g2|U are bounded below by a constant R0 > 0.

Step 3: Apply Theorem 5 of [Brendle et al. 2011] to produce a metric ĝ on �
satisfying the following properties4:

(i) Rĝ(x)≥min{Rg1(x), Rg2(x)}− R0/2.

(ii) ĝ agrees with g1 outside of U .

(iii) ĝ agrees with g2 in some neighborhood of 6.

(To apply the theorem, it is crucial that αH1 > H2.)
By the third condition, (�, ĝ) is a fill-in of (6, γ, H2). By the first and second

conditions, ĝ has nonnegative (but not identically zero) scalar curvature and ∂�\6
(if nonempty) is a minimal surface. In particular, (�, ĝ) is a valid fill-in with
positive scalar curvature at some point.

Finally, the last statement in the lemma follows from Proposition 7. �
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The conjugacy problem for the pseudo-Anosov automorphisms of a com-
pact surface is studied. To each pseudo-Anosov automorphism φ, we assign
an AF C∗-algebra Aφ (an operator algebra). It is proved that the assignment
is functorial, i.e., every φ′, conjugate to φ, maps to an AF C∗-algebra Aφ′ ,
which is stably isomorphic to Aφ . The new invariants of the conjugacy of the
pseudo-Anosov automorphisms are obtained from the known invariants of
the stable isomorphisms of the AF C∗-algebras. Namely, the main invariant
is a triple (3, [I], K ), where 3 is an order in the ring of integers in a real
algebraic number field K and [I] an equivalence class of the ideals in 3.
The numerical invariants include the determinant 1 and the signature 6,
which we compute for the case of the Anosov automorphisms. A question
concerning the p-adic invariants of the pseudo-Anosov automorphism is for-
mulated.
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Introduction

A. Conjugacy problem. Let Mod(X) be the mapping class group of a compact
surface X , i.e., the group of orientation preserving automorphisms of X modulo the
trivial ones. Recall that φ, φ′ ∈Mod(X) are conjugate automorphisms whenever
φ′ = h ◦ φ ◦ h−1 for an h ∈Mod(X). It is not hard to see that conjugation is an
equivalence relation which splits the mapping class group into disjoint classes
of conjugate automorphisms. The construction of invariants of the conjugacy
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classes in Mod(X) is an important and difficult problem studied by Hemion [1979],
Mosher [1986], and others. Any knowledge of such invariants leads to a topological
classification of three-dimensional manifolds, which fiber over the circle with
monodromy φ ∈Mod(X) [Thurston 1982].

B. Pseudo-Anosov automorphisms. It is known that any φ ∈Mod(X) is isotopic
to an automorphism φ′, such that either (i) φ′ has a finite order, or (ii) φ′ is a
pseudo-Anosov (aperiodic) automorphism, or else (iii) φ′ is reducible by a system
of curves 0 surrounded by the small tubular neighborhoods N (0), such that on
X \ N (0), φ′ satisfies either (i) or (ii). Let φ be a representative of the equivalence
class of a pseudo-Anosov automorphism. Then there exist a pair consisting of
the stable Fs and unstable Fu mutually orthogonal measured foliations on the
surface X , such that φ(Fs)= (1/λφ)Fs and φ(Fu)= λφFu , where λφ > 1 is called
a dilatation of φ. The foliations Fs , Fu are minimal, uniquely ergodic and describe
the automorphism φ up to a power. In the sequel, we shall focus on the conjugacy
problem for the pseudo-Anosov automorphisms of a surface X .

C. AF C∗-algebras. A C∗-algebra is an algebra A over C with a norm a 7→‖a‖ and
an involution a 7→ a∗ such that it is complete with respect to the norm and ‖ab‖ ≤
‖a‖‖b‖ and ‖a∗a‖ = ‖a2

‖ for all a, b ∈ A. The C∗-algebras have been introduced
by Murray and von Neumann as rings of bounded operators on a Hilbert space and
are strongly connected with the geometry and topology of manifolds [Blackadar
1986, Section 24]. Any simple finite-dimensional C∗-algebra is isomorphic to
the algebra Mn(C) of the complex n × n matrices. A natural completion of the
finite-dimensional semisimple C∗-algebras (as n →∞) is known as an AF C∗-
algebra [Effros 1981]. An AF C∗-algebra is most conveniently given by an infinite
graph, which records the inclusion of the finite-dimensional subalgebras into the AF
C∗-algebra. The graph is called a Bratteli diagram. When the diagram is periodic,
the AF C∗-algebra is stationary; this is an important special case. In addition to the
usual isomorphism ∼=, the C∗-algebras A, A′ are called stably isomorphic whenever
A⊗K∼= A′⊗K, where K is the C∗-algebra of compact operators.

D. Motivation. Let φ ∈Mod(X) be a pseudo-Anosov automorphism. The main
idea of the present paper is to assign to φ an AF C∗-algebra, Aφ , so that for every
h ∈Mod(X) the following diagram commutes:

? ?
-

-

Aφ Aφ′

φ φ′ = h ◦φ ◦ h−1

stable
isomorphism

conjugacy
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(In other words, if φ and φ′ are conjugate pseudo-Anosov automorphisms, then the
AF C∗-algebras Aφ and Aφ′ are stably isomorphic.) For the sake of clarity, we shall
consider an example illustrating the idea in the case X = T 2 (a torus).

E. Model example. Let φ ∈Mod(T 2) be the Anosov automorphism given by a
nonnegative matrix Aφ ∈ SL2(Z). (The assumption is not restrictive; each Aφ with
Tr(Aφ) > 0 is similar to a nonnegative matrix. The case Tr(Aφ) < 0 is treated
likewise — by reduction to a nonpositive matrix; then the absolute value of all
entries must be taken.) Consider a stationary AF C∗-algebra, Aφ , given by the
following periodic Bratteli diagram:

•

•

•

•

•

•

•

•

•

�
�
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@�
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@
@ . . .

. . .
a11 a11 a11

a12 a12 a12
a21 a21 a21

a22 a22 a22

Aφ =
(

a11 a12

a21 a22

)
,

Figure 1. The AF C∗-algebra Aφ .

where ai j indicate the multiplicity of the respective edges of the graph. We encourage
the reader to verify that F : φ 7→Aφ is a well-defined function on the set of Anosov
automorphisms given by the hyperbolic matrices with nonnegative entries. Let
us show that if φ, φ′ ∈Mod(T 2) are conjugate Anosov automorphisms, then Aφ ,
Aφ′ are stably isomorphic AF C∗-algebras. Indeed, let φ′ = h ◦ φ ◦ h−1 for an
h ∈Mod(X). Then Aφ′ = T AφT−1 for a matrix T ∈ SL2(Z). Note that

(A′φ)
n
= (T AφT−1)n = T An

φT−1,

where n ∈ N. We shall use the following criterion: the AF C∗-algebras A, A′ are
stably isomorphic if and only if their Bratteli diagrams contain a common block
of an arbitrary length (compare with [Effros 1981, Theorem 2.3]; recall that an
order-isomorphism mentioned in the theorem is equivalent to the condition that the
corresponding Bratteli diagrams have the same infinite tails — i.e., a common block
of infinite length). Consider two sequences of matrices:

AφAφ · · · Aφ︸ ︷︷ ︸
n

,

which mimics the Bratteli diagram of Aφ , and

T AφAφ · · · Aφ︸ ︷︷ ︸
n

T−1,

which mimics that of Aφ′ . Letting n→∞, we conclude that Aφ ⊗K∼= Aφ′ ⊗K.
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F. Invariants of torus automorphisms obtained from the operator algebras. The
conjugacy problem for the Anosov automorphisms can now be recast in terms of
AF C∗-algebras: find invariants of stable isomorphism classes of the stationary
AF C∗-algebras. One such invariant is due to Handelman [1981]. Consider an
eigenvalue problem for the hyperbolic matrix Aφ ∈ SL2(Z): AφvA = λAvA, where
λA > 1 is the Perron–Frobenius eigenvalue and vA = (v

(1)
A , v

(2)
A ) the corresponding

eigenvector with the positive entries normalized so that v(i)A ∈ K =Q(λA). Denote
by m=Zv

(1)
A +Zv

(2)
A the Z-module in the number field K . Recall that the coefficient

ring, 3, of module m consists of the elements α ∈ K such that αm⊆m. It is known
that 3 is an order in K (i.e., a subring of K containing 1) and, with no restriction,
one can assume that m⊆3. It follows from the definition that m coincides with an
ideal, I , whose equivalence class in 3 we shall denote by [I ]. It has been proved
by Handelman that the triple (3, [I ], K ) is an arithmetic invariant of the stable
isomorphism class of Aφ : the Aφ , Aφ′ are stably isomorphic AF C∗-algebras if and
only if 3 = 3′, [I ] = [I ′] and K = K ′. It is interesting to compare the operator
algebra invariants with the matrix invariants obtained in [Latimer and MacDuffee
1933] and [Wallace 1984].

G. AF C∗-algebra Aφ (pseudo-Anosov case). Denote by Fφ the stable foliation
of a pseudo-Anosov automorphism φ ∈ Mod(X). For brevity, we assume that
Fφ is an oriented foliation given by the trajectories of a closed 1-form ω ∈

H 1(X;R). Let v(i) =
∫
γi
ω, where {γ1, . . . , γn} is a basis in the relative homology

H1(X,Sing Fφ;Z), such that θ = (θ1, . . . , θn−1) is a vector with positive coordi-
nates θi = v

(i+1)/v(1). (Note that the θi depend on a basis in the homology group,
but a Z-module generated by the θi does not — see Lemma 5.) Consider the (infinite)
Jacobi–Perron continued fraction [Bernstein 1971] of θ :(

1
θ

)
= lim

k→∞

(
0 1
I b1

)
· · ·

(
0 1
I bk

)(
0
I

)
,

where bi = (b
(i)
1 , . . . , b(i)n−1)

T is a vector of nonnegative integers, I the unit matrix
and I = (0, . . . , 0, 1)T . By definition, Aφ is an (isomorphism class of the) AF
C∗-algebra given by the Bratteli diagram whose incidence matrices coincide with
Bk = (

0 1
I bk

) for k = 1, . . . ,∞. Note that this yields the Bratteli diagram derived in
the model example (the Anosov case).

H. Main results. For a matrix A ∈GLn(Z) with positive entries, we denote by λA

the Perron–Frobenius eigenvalue and let (v(1)A , . . . , v
(n)
A ) denote the corresponding

normalized eigenvector with v(i)A ∈ K =Q(λA). The coefficient (endomorphism)
ring of the module m= Zv

(1)
A +· · ·+Zv

(n)
A will be denoted by 3. The equivalence

class of ideal I in 3 will be denoted [I ]. Finally, we denote by 1=Det(ai j ) and 6
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the determinant and signature of the symmetric bilinear form q(x, y)=
∑n

i, j ai j xi x j ,
where ai j = Tr(v(i)A v

( j)
A ), with Tr( · ) the trace function. Our main results can be

expressed as follows.

Theorem 1. Aφ is a stationary AF C∗-algebra.

Let 8 be a category of all pseudo-Anosov (Anosov, respectively) automorphisms
of a surface of the genus g ≥ 2 (g = 1, respectively); the arrows (morphisms) are
conjugations between the automorphisms. Likewise, let A be the category of all
stationary AF C∗-algebras Aφ , where φ runs over the set 8; the arrows of A are
stable isomorphisms among the algebras Aφ .

Theorem 2. Let F :8→A be a map given by the formula φ 7→ Aφ . Then:

(i) F is a functor; it maps conjugate pseudo-Anosov automorphisms to stably
isomorphic AF C∗-algebras.

(ii) Ker F = [φ], where [φ] = {φ′ ∈8 | (φ′)m = φn,m, n ∈N} is the commensura-
bility class of the pseudo-Anoov automorphism φ.

Corollary 3. The triple (3, [I ], K ) and the integers 1 and 6 are invariants of the
conjugacy classes of the pseudo-Anosov automorphisms.

I. How can the invariants (3, [I], K ), 1 and 6 be calculated? There is no easy
way; the problem is comparable to that of numerical invariants of the fundamental
group of a knot. A step in this direction would be computation of the matrix A;
the latter is similar to the matrix ρ(φ), where ρ : Mod(X)→ PIL is a faithful
representation of the mapping class group as a group of the piecewise-integral-
linear transformations [Penner 1984, p. 45]. The entries of ρ(φ) are the linear
combinations of the Dehn twists along the (3g − 1) (Lickorish) curves on the
surface X . Then one can effectively determine whether ρ(φ) and A are similar
matrices (over Z) by bringing the polynomial matrices ρ(φ)− x I and A− x I to
the Smith normal form; when the similarity is established, the numerical invariants
1 and 6 become the polynomials in the Dehn twists. A tabulation of the simplest
elements of Mod(X) is possible in terms of 1 and 6 (see the Examples section,
page 459); however, this task lies beyond the scope of present paper.

J. Structure of the paper. Proofs of the main results can be found in Section 3.
Sections 1 and 2 consist of lemmas used to prove the main results. Section 4
includes some examples, open problems and conjectures. Since the paper does not
include a formal section on the preliminaries, we encourage the reader to consult
[Blackadar 1986; Effros 1981; Krieger 1980] (operator algebras and dynamics),
[Hubbard and Masur 1979; Thurston 1988] (measured foliations) and [Bernstein
1971; Perron 1907] (Jacobi–Perron continued fractions).
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1. The jacobian of a measured foliation

Let F be a measured foliation on a compact surface X [Thurston 1988]. For
the sake of brevity, we shall always assume that F is an oriented foliation, i.e.,
given by the trajectories of a closed 1-form ω on X . (The assumption is not a
restriction; by [Hubbard and Masur 1979], every measured foliation is oriented on a
double cover X̃ of X ramified at the singular points of the half-integer index of the
nonoriented foliation.) Let {γ1, . . . , γn} be a basis in the relative homology group
H1(X,Sing F;Z), where Sing F is the set of singular points of the foliation F. It
is well known that n = 2g+m− 1, where g is the genus of X and m = |Sing(F)|.
The periods of ω in this basis will be written

λi =

∫
γi

ω.

The real numbers λi are coordinates of F in the space of all measured foliations
on X (with the fixed set of singular points) [Douady and Hubbard 1975].

Definition 4. By the jacobian Jac(F) of the measured foliation F, we understand
the Z-module m= Zλ1+ · · ·+Zλn regarded as a subset of the real line R.

The importance of the jacobian stems from the observation that although the
periods, λi , depend on the choice of a basis in H1(X,Sing F;Z), the jacobian does
not. Moreover, up to a scalar multiple, the jacobian is an invariant of the equivalence
class of the foliation F. We formalize these observations in the following two results.

Lemma 5 (invariance of the jacobian). The Z-module m is independent of the
choice of a basis in H1(X,Sing F;Z) and depends solely on the foliation F.

Proof. Indeed, let A = (ai j ) ∈ GLn(Z) and let

γ ′i =

n∑
j=1

ai jγ j

be a new basis in H1(X,Sing F;Z). Then using the integration rules,

λ′i =

∫
γ ′i

ω =

∫
∑n

j=1 ai jγ j

ω =

n∑
j=1

∫
γ j

ω =

n∑
j=1

ai jλ j .

To prove that m=m′, consider the following equations:

m′ =

n∑
i=1

Zλ′i =

n∑
i=1

Z

n∑
j=1

ai jλ j =

n∑
j=1

( n∑
i=1

ai j Z

)
λ j ⊆m.
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Let A−1
= (bi j ) ∈ GLn(Z) be an inverse to the matrix A. Then λi =

∑n
j=1 bi jλ

′

j
and

m=

n∑
i=1

Zλi =

n∑
i=1

Z

n∑
j=1

bi jλ
′

j =

n∑
j=1

( n∑
i=1

bi j Z

)
λ′j ⊆m′.

Since both m′ ⊆m and m⊆m′, we conclude that m′ =m. Lemma 5 follows. �

Now recall that two measured foliations F and F′ are equivalent if there exists an
automorphism h ∈Mod(X) that sends the leaves of the foliation F to the leaves of
the foliation F′. This equivalence deals with topological foliations, i.e., projective
classes of measured foliations; see [Thurston 1988] for an explanation.

Lemma 6 (projective invariance). Let F, F′ be the equivalent measured foliations
on a surface X. Then

Jac(F′)= µ Jac(F),

where µ > 0 is a real number.

Proof. Let h : X → X be an automorphism of the surface X . Denote by h∗ its
action on H1(X,Sing(F);Z) and by h∗ on H 1(X;R) connected by the formula∫

h∗(γ )
ω =

∫
γ

h∗(ω), for all γ ∈ H1(X,Sing(F);Z) and ω ∈ H 1(X;R).

Let ω,ω′ ∈ H 1(X;R) be the closed 1-forms whose trajectories define the foliations
F and F′, respectively. Since F, F′ are equivalent measured foliations,

ω′ = µh∗(ω)

for a µ > 0.
Let Jac(F)= Zλ1+ · · ·+Zλn and Jac(F′)= Zλ′1+ · · ·+Zλ′n . Then

λ′i =

∫
γi

ω′ = µ

∫
γi

h∗(ω)= µ
∫

h∗(γi )

ω, 1≤ i ≤ n.

By Lemma 5, we have

Jac(F)=
n∑

i=1

Z

∫
γi

ω =

n∑
i=1

Z

∫
h∗(γi )

ω.

Therefore

Jac(F′)=
n∑

i=1

Z

∫
γi

ω′ = µ

n∑
i=1

Z

∫
h∗(γi )

ω = µ Jac(F).

Lemma 6 follows. �
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2. Equivalent foliations are stably isomorphic

Let F be a measured foliation on the surface X . We introduce an AF C∗-algebra, AF,
corresponding to the foliation F as explained in Section G of the Introduction (for
the foliation Fφ). The goal of this section is to prove the commutativity of the
following diagram:

? ?
-

-

AF AF′

F F′

stable
isomorphism

equivalence

We start with a simple property of Jacobi–Perron fractions [Bernstein 1971].

Lemma 7 (modules and continued fractions). Let m= Zλ1+ · · ·+Zλn and m′ =

Zλ′1 + · · · + Zλ′n be two Z-modules, such that m′ = µm for a µ > 0. Then the
Jacobi–Perron continued fractions of the vectors λ and λ′ coincide except, possibly,
at a finite number of terms.

Proof. Let m= Zλ1+· · ·+Zλn and m′ = Zλ′1+· · ·+Zλ′n . Since m′ =µm, where
µ is a positive real, one gets the following identity of the Z-modules:

Zλ′1+ · · ·+Zλ′n = Z(µλ1)+ · · ·+Z(µλn).

One can always assume that λi and λ′i are positive reals. For obvious reasons, there
exists a basis {λ

′′

1, . . . , λ
′′

n} of the module m′, such that{
λ′′ = A(µλ),

λ′′ = A′λ′,

where A, A′ ∈ GL+n (Z) are the matrices whose entries are nonnegative integers. In
view of Proposition 3 of [Bauer 1996], we have

A =
(

0 1
I b1

)
· · ·

(
0 1
I bk

)
and A′ =

(
0 1
I b′1

)
· · ·

(
0 1
I b′l

)
,

where bi , b′i are nonnegative integer vectors. Since the (Jacobi–Perron) continued
fraction for the vectors λ and µλ coincide for any µ > 0 [Bernstein 1971], we
conclude that (

1
θ

)
=

(
0 1
I b1

)
· · ·

(
0 1
I bk

)(
0 1
I a1

)(
0 1
I a2

)
· · ·

(
0
I

)
,(

1
θ ′

)
=

(
0 1
I b′1

)
· · ·

(
0 1
I b′l

)(
0 1
I a1

)(
0 1
I a2

)
· · ·

(
0
I

)
,
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where (
1
θ ′′

)
= lim

i→∞

(
0 1
I a1

)
· · ·

(
0 1
I ai

)(
0
I

)
.

In other words, the continued fractions of the vectors λ and λ′ coincide except at a
finite number of terms. �

Lemma 8 (main lemma). Let F and F′ be equivalent measured foliations on a
surface X. Then the AF C∗-algebras AF and AF′ are stably isomorphic.

Proof. Notice that Lemma 6 implies that equivalent measured foliations F, F′ have
proportional jacobians, i.e., m′ = µm for a µ > 0. On the other hand, by Lemma 7
the continued fraction expansion of the basis vectors of the proportional jacobians
must coincide, except a finite number of terms. Thus, the AF C∗-algebras AF and
AF′ are given by the Bratteli diagrams, which are identical, except a finite part of
the diagram. It is well known [Effros 1981, Theorem 2.3] that AF C∗-algebras that
have such a property are stably isomorphic. �

3. Proofs

Proof of Theorem 1. Let φ ∈Mod(X) be a pseudo-Anosov automorphism of the
surface X . Denote by Fφ the invariant foliation of φ. By definition of such a
foliation, φ(Fφ)= λφFφ , where λφ > 1 is the dilatation of φ.

Consider the jacobian Jac(Fφ)=mφ of Fφ . Since Fφ is an invariant foliation
of the pseudo-Anosov automorphism φ, one gets the following equality of the
Z-modules:

(1) mφ = λφmφ, λφ 6= ±1.

Let {v(1), . . . , v(n)} be a basis in module mφ , such that v(i) > 0. In view of (1), one
obtains the following system of linear equations:

(2)


λφv

(1)
= a11v

(1)
+ a12v

(2)
+ · · ·+ a1nv

(n),

λφv
(2)
= a21v

(1)
+ a22v

(2)
+ · · ·+ a2nv

(n),
...

λφv
(n)
= an1v

(1)
+ an2v

(2)
+ · · ·+ annv

(n),

where ai j ∈ Z. The matrix A = (ai j ) is invertible. Indeed, since the foliation Fφ

is minimal, the real numbers v(1), . . . , v(n) are linearly independent over Q. So
are the numbers λφv(1), . . . , λφv(n), which therefore can be taken for a basis of the
module mφ . Thus, there exists an integer matrix B= (bi j ), such that v( j)

=
∑

i, j w
(i),

where w(i) = λφv(i). Clearly, B is an inverse to matrix A. Therefore, A ∈ GLn(Z).
Moreover, without loss of generality one can assume that ai j ≥ 0. Indeed, if

this is not yet the case, consider the conjugacy class [A] of the matrix A. Since
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v(i)> 0, there exists a matrix A+ ∈ [A] whose entries are nonnegative integers. One
has to replace basis v = (v(1), . . . , v(n)) in the module mφ by a basis T v, where
A+ = T AT−1. It will be further assumed that A = A+.

Lemma 9. The vector (v(1), . . . , v(n)) is the limit of a periodic Jacobi–Perron
continued fraction.

Proof. It follows from the discussion above that there exists a nonnegative integer
matrix A, such that Av = λφv. In view of [Bauer 1996, Proposition 3], matrix A
admits a unique factorization:

(3) A =
(

0 1
I b1

)
· · ·

(
0 1
I bk

)
,

where bi = (b
(i)
1 , . . . , b(i)n )

T are vectors of nonnegative integers. Let us consider
the periodic Jacobi–Perron continued fraction:

(4) Per
(

0 1
I b1

)
· · ·

(
0 1
I bk

)(
0
I

)
.

According to [Perron 1907, Satz XII], the above fraction converges to a vector

w = (w(1), . . . , w(n))

satisfying the equation (B1 B2 · · · Bk)w = Aw = λφw. In view of the equation
Av = λφv, we conclude that vectors v and w are collinear. Therefore, the Jacobi–
Perron continued fractions of v and w must coincide. �

It is now straightforward to prove that the AF C∗-algebra attached to foliation Fφ

is stationary. Indeed, by Lemma 9, the vector of periods v(i) =
∫
γi
ω unfolds into a

periodic Jacobi–Perron continued fraction. By definition, the Bratteli diagram of
the AF C∗-algebra Aφ is periodic as well. In other words, the AF C∗-algebra Aφ is
stationary. �

Proof of Theorem 2. (i) For completeness, we give a proof of the following well-
known lemma.

Lemma 10. If φ and φ′ are conjugate pseudo-Anosov automorphisms of a sur-
face X , their invariant foliations Fφ and Fφ′ are equivalent as measured foliations.

Proof. Let φ, φ′ ∈Mod(X) be conjugate, i.e., φ′ = h ◦φ ◦h−1 for an automorphism
h ∈Mod(X). Since φ is the pseudo-Anosov automorphism, there exists a measured
foliation Fφ , such that φ(Fφ)= λφFφ . Let us evaluate the automorphism φ′ on the
foliation h(Fφ):

(5) φ′(h(Fφ))= hφh−1(h(Fφ))= hφ(Fφ)= hλφFφ = λφ(h(Fφ)).
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Thus, Fφ′=h(Fφ) is the invariant foliation for the pseudo-Anosov automorphism φ′

and Fφ , Fφ′ are equivalent foliations. Note also that the pseudo-Anosov automor-
phism φ′ has the same dilatation as the automorphism φ. �

Suppose that φ and φ′ are conjugate pseudo-Anosov automorphisms. The functor
F acts by the formulas φ 7→Aφ and φ′ 7→Aφ′ , where Aφ , Aφ′ are the AF C∗-algebras
corresponding to the invariant foliations Fφ , Fφ′ . In view of Lemma 10, Fφ and
Fφ′ are equivalent measured foliations. Then, by Lemma 8, the AF C∗-algebras
Aφ and Aφ′ are stably isomorphic AF C∗-algebras. Item (i) follows.

(ii) We start with an elementary observation. Let φ ∈ Mod(X) be a pseudo-
Anosov automorphism. Then there exists a unique measured foliation, Fφ , such that
φ(Fφ)= λφFφ , where λφ > 1 is an algebraic integer. Let us evaluate automorphism
φ2
∈Mod(X) on the foliation Fφ:

(6) φ2(Fφ)= φ(φ(Fφ))= φ(λφFφ)= λφφ(Fφ)= λ
2
φFφ = λφ2Fφ,

where λφ2 :=λ2
φ . Thus, foliation Fφ is an invariant foliation for the automorphism φ2

as well. By induction, one concludes that Fφ is an invariant foliation of the
automorphism φn for any n ≥ 1.

Even more is true. Suppose that ψ ∈Mod(X) is a pseudo-Anosov automorphism,
such that ψm

= φn for some m ≥ 1 and ψ 6= φ. Then Fφ is an invariant foliation for
the automorphism ψ . Indeed, Fφ is invariant foliation of the automorphism ψm . If
there exists F′ 6=Fφ such that the foliation F′ is an invariant foliation of ψ , then the
foliation F′ is also an invariant foliation of the pseudo-Anosov automorphism ψm .
Thus, by uniqueness, F′ = Fφ . We have just proved the following lemma.

Lemma 11. Let φ be the pseudo-Anosov automorphism of a surface X. Denote
by [φ] a set of the pseudo-Anosov automorphisms ψ of X , such that ψm

= φn

for some positive integers m and n. Then the pseudo-Anosov foliation Fφ is an
invariant foliation for every pseudo-Anosov automorphism ψ ∈ [φ].

In view of Lemma 11, one arrives at the following identities among the AF C∗-
algebras:

(7) Aφ = Aφ2 = · · · = Aφn = Aψm = · · · = Aψ2 = Aψ .

Thus, functor F is not an injective functor: the preimage, Ker F , of algbera Aφ

consists of a countable set of the pseudo-Anosov automorphisms ψ ∈ [φ], commen-
surable with the automorphism φ. This proves Theorem 2(ii). �

Proof of Corollary 3.

Proof that (3, [I ], K ) is an invariant. (i) It follows from Theorem 1 that Aφ is
a stationary AF C∗-algebra. An arithmetic invariant of the stable isomorphism
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classes of the stationary AF C∗-algebras has been found by D. Handelman [1981].
Summing up his results, the invariant is as follows.

Let A ∈ GLn(Z) be a matrix with strictly positive entries, such that A is equal
to the minimal period of the Bratteli diagram of the stationary AF C∗-algebra. (In
case the matrix A has zero entries, it is necessary to take a proper minimal power
of the matrix A.) By the Perron–Frobenius theory, matrix A has a real eigenvalue
λA > 1, which exceeds the absolute values of other roots of the characteristic
polynomial of A. Note that λA is an invertible algebraic integer (the unit). Consider
the real algebraic number field K = Q(λA) obtained as an extension of the field
of the rational numbers by the algebraic number λA. Let (v(1)A , . . . , v

(n)
A ) be the

eigenvector corresponding to the eigenvalue λA. One can normalize the eigenvector
so that v(i)A ∈ K .

The departure point of Handelman’s invariant is the Z-module

m= Zv
(1)
A + · · ·+Zv

(n)
A .

The module m brings in two new arithmetic objects: (i) the ring 3 of the endo-
morphisms of m and (ii) an ideal I in the ring 3, such that I =m after a scaling
[Borevich and Shafarevich 1966, Lemma 1, p. 88]. The ring 3 is an order in the
algebraic number field K and therefore one can talk about the ideal classes in 3.
The ideal class of I is denoted by [I ]. Omitting the embedding question for the
field K , the triple (3, [I ], K ) is an invariant of the stable isomorphism class of the
stationary AF C∗-algebra Aφ [Handelman 1981, Section 5]. �

Proof that 1 and 6 ae invariants. Numerical invariants of the stable isomorphism
classes of the stationary AF C∗-algebras can be derived from the triple (3, [I ], K ).
These invariants are rational integers — called the determinant and signature — and
can be obtained as follows.

Let m, m′ be the full Z-modules in an algebraic number field K . It follows
from (i) that if m 6=m′ are distinct as the Z-modules, then the corresponding AF
C∗-algebras cannot be stably isomorphic. We wish to find the numerical invariants,
which discern the case m 6=m′. It is assumed that a Z-module is given by the set of
generators {λ1, . . . , λn}. Therefore, the problem can be formulated as follows: find
a number attached to the set of generators {λ1, . . . , λn}, which does not change on
the set of generators {λ′1, . . . , λ

′
n} of the same Z-module.

One such invariant is associated with the trace function on the algebraic number
field K . Recall that Tr : K → Q is a linear function on K , that is, Tr(α + β) =
Tr(α)+Tr(β) and Tr(aα)= a Tr(α) for all α, β ∈ K and all a ∈Q.

Let m be a full Z-module in the field K . The trace function defines a symmetric
bilinear form q(x, y) :m×m→Q by the formula

(8) (x, y) 7−→ Tr(xy) for all x, y ∈m.
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The form q(x, y) depends on the basis {λ1, . . . , λn} in the module m:

(9) q(x, y)=
n∑

j=1

n∑
i=1

ai j xi y j , where ai j = Tr(λiλ j ).

However, the general theory of bilinear forms (over the fields Q, R, C or the ring
of rational integers Z) tells us that certain numerical quantities will not depend on
the choice of such a basis.

Namely, one such invariant is as follows. Consider a symmetric matrix A
corresponding to the bilinear form q(x, y):

(10) A =


a11 a12 · · · a1n

a12 a22 · · · a2n
...

...

a1n a2n · · · ann

 .
It is known that the matrix A, written in a new basis, will take the form A′=U T AU ,
where U ∈ GLn(Z). Then Det(A′) = Det(U T AU ) = Det(U T )Det(A)Det(U ) =
Det(A). Therefore, the rational integer number

(11) 1= Det(Tr(λiλ j )),

called a determinant of the bilinear form q(x, y), does not depend on the choice
of the basis {λ1, . . . , λn} in the module m. We conclude that the determinant 1
discerns1 the modules m 6=m′.

Finally, recall that the form q(x, y) can be brought by an integer linear transfor-
mation to the diagonal form:

(12) a1x2
1 + a2x2

2 + · · ·+ anx2
n ,

where ai ∈ Z \ {0}. We let a+i be the positive and a−i the negative entries in the
diagonal form. In view of the law of inertia for bilinear forms, the integer number
6 = (#a+i )− (#a−i ), called a signature, does not depend on a particular choice of
the basis in the module m. Thus, 6 discerns the modules m 6= m′. Corollary 3
follows. �

1Note that if 1=1′ for the modules m, m′, one cannot conclude that m=m′. The problem of
equivalence of symmetric bilinear forms over Q (i.e., the existence of a linear substitution over Q that
transforms one form to the other), is a fundamental question of number theory. The Minkowski–Hasse
theorem says that two such forms are equivalent if and only if they are equivalent over the field Qp
for every prime number p and over the field R. Clearly, the resulting p-adic quantities will give new
invariants of the stable isomorphism classes of the AF C∗-algebras. The question is similar to the
Minkowski units attached to knots; see, e.g., [Reidemeister 1932]. We will not pursue this topic here
and refer the reader to the section on open problems, on page 460.
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4. Examples, open problems and conjectures

In the present section we shall calculate invariants 1 and 6 for the Anosov auto-
morphisms of the two-dimensional torus. Examples of two nonconjugate Anosov
automorphisms with the same Alexander polynomial, but different determinants 1
are constructed. Recall that isotopy classes of the orientation-preserving diffeomor-
phisms of the torus T 2 are bijective with the 2×2 matrices with integer entries and
determinant+1, i.e., Mod(T 2)∼=SL(2,Z). Under the identification, the nonperiodic
automorphisms correspond to the matrices A ∈ SL(2,Z) with |Tr A|> 2.

Full modules and orders in the quadratic field. Let K = Q(
√

d) be a quadratic
extension of the field of rational numbers Q. Further we suppose that d is a positive
square free integer. Let

(13) ω =


1+
√

d
2

if d ≡ 1 mod 4,
√

d if d ≡ 2, 3 mod 4.

Proposition 12. Let f be a positive integer. Every order in K has form 3 f =

Z+ ( f ω)Z, where f is the conductor of 3 f .

Proof. See [Borevich and Shafarevich 1966, pp. 130–132]. �

Proposition 12 allows to classify the similarity classes of the full modules in the
field K . Indeed, there exists a finite number of m(1)f , . . . ,m

(s)
f of the nonsimilar

full modules in the field K , whose coefficient ring is the order 3 f ; cf. [Borevich
and Shafarevich 1966, Theorem 3, Chapter 2.7]. Thus, Proposition 12 gives a
finite-to-one classification of the similarity classes of full modules in the field K .

Numerical invariants of Anosov automorphisms. Let 3 f be an order in K with
the conductor f . Under the addition operation, the order3 f is a full module, which
we denote by m f . Let us evaluate the invariants q(x, y), 1 and 6 on the module
m f . To calculate (ai j )= Tr(λiλ j ), we let λ1 = 1, λ2 = f ω. Then

(14)
a11 = 2, a12 = a21 = f, a22 =

1
2 f 2(d + 1) if d ≡ 1 mod 4,

a11 = 2, a12 = a21 = 0, a22 = 2 f 2d if d ≡ 2, 3 mod 4,

and

(15)
q(x, y)= 2x2

+ 2 f xy+ 1
2 f 2(d + 1)y2 if d ≡ 1 mod 4,

q(x, y)= 2x2
+ 2 f 2dy2 if d ≡ 2, 3 mod 4.

Therefore

(16) 1=

{
f 2d if d ≡ 1 mod 4,
4 f 2d if d ≡ 2, 3 mod 4,
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and 6 = +2 in both cases, where 6 = #(positive)− #(negative) entries in the
diagonal normal form of q(x, y).

Examples. Let us consider some numerical examples, which illustrate advantages
of our invariants in comparison to the classical Alexander polynomials.

Example 13. Denote by MA and MB the hyperbolic 3-dimensional manifolds
obtained as a torus bundle over the circle with the monodromies

(17) A =
(

5 2
2 1

)
and B =

(
5 1
4 1

)
,

respectively. The Alexander polynomials of MA and MB are identical: 1A(t) =
1B(t)= t2

−6t +1. However, the manifolds MA and MB are not homotopy equiv-
alent. Indeed, the Perron–Frobenius eigenvector of matrix A is vA = (1,

√
2− 1)

while of the matrix B is vB = (1, 2
√

2− 2). The bilinear forms for the modules
mA = Z+ (

√
2− 1)Z and mB = Z+ (2

√
2− 2)Z can be written as

(18) qA(x, y)= 2x2
− 4xy+ 6y2, qB(x, y)= 2x2

− 8xy+ 24y2,

respectively. The modules mA, mB are not similar in the number field K =Q(
√

2),
since their determinants 1(mA) = 8 and 1(mB) = 32 are not equal. Therefore,
matrices A and B are not conjugate2 in the group SL(2,Z). Note that the class
number hK = 1 for the field K .

Example 14 [Handelman 2009, p. 12]. Let MA and MB be 3-dimensional manifolds
corresponding to matrices

(19) A =
(

4 3
5 4

)
and B =

(
4 15
1 4

)
,

respectively. The Alexander polynomials of MA and MB are identical: 1A(t) =
1B(t)= t2

− 8t + 1. Yet the manifolds MA and MB are not homotopy equivalent.
Indeed, the Perron–Frobenius eigenvector of matrix A is vA= (1, 1

3

√
15)while of the

matrix B is vB = (1, 1
15

√
15). The corresponding modules are mA = Z+ ( 1

3

√
15)Z

and mB = Z + ( 1
15

√
15)Z; note that d = 15 ≡ 3 mod 4 in both cases, but the

corresponding conductors are f A = 3 and fB = 15. Using formulas (15) one finds

(20) qA(x, y)= 2x2
+ 18y2, qB(x, y)= 2x2

+ 450y2,

2The reader may verify this fact using the method of periods, which dates back to Gauss. First we
have to find the fixed points Ax = x and Bx = x , which gives us xA = 1+

√
2 and xB = (1+

√
2)/2,

respectively. Then one unfolds the fixed points into a periodic continued fraction, which gives us
xA = [2, 2, 2, . . . ] and xB = [1, 4, 1, 4, . . . ]. Since the period (2) of xA differs from the period (1, 4)
of B, the matrices A and B belong to different conjugacy classes in SL(2,Z).
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respectively. The modules mA, mB are not similar in the number field K =Q(
√

15),
since formulas (16) imply that their determinants 1(mA)= 36 and 1(mB)= 900
are not equal. Therefore, matrices A and B are not conjugate in the group SL(2,Z).

Example 15 [Handelman 2009, p. 12]. Let a, b be positive integers satisfying the
Pell equation a2

− 8b2
= 1; the latter has infinitely many solutions, e.g., a = 3,

b = 1, etc. Denote by MA and MB the 3-dimensional manifolds corresponding to
matrices

(21) A =
(

a 4b
2b a

)
and B =

(
a 8b
b a

)
.

MA and MB have the same Alexander polynomial, 1A(t)=1B(t)= t2
− 2at + 1,

yet they are not homotopy equivalent. Indeed, the Perron–Frobenius eigenvector of
matrix A is vA= (1, 1

4b

√
a2− 1) while of the matrix B is vB = (1, 1

8b

√
a2− 1). The

corresponding modules are mA = Z+ ( 1
4b

√
a2− 1)Z and mB = Z+ ( 1

8b

√
a2− 1)Z.

It is easy to see that the discriminant d = a2
− 1≡ 3 mod 4 for all a ≥ 2. Indeed,

d = (a− 1)(a+ 1), so the integer a satisfies a 6≡ 1; 3 mod 4; hence a ≡ 2 mod 4,
so that a − 1 ≡ 1 mod 4 and a + 1 ≡ 3 mod 4 and, thus, d = a2

− 1 ≡ 3 mod 4.
Therefore the corresponding conductors are f A = 4b and fB = 8b, and

(22) qA(x, y)= 2x2
+ 32b2(a2

− 1)y2, qB(x, y)= 2x2
+ 128b2(a2

− 1)y2.

The modules mA, mB are not similar in the number field K =Q(
√

a2− 1), because
their determinants 1(mA) = 64b2(a2

− 1) and 1(mB) = 256b2(a2
− 1) are not

equal. Therefore, the matrices A and B are not conjugate in SL(2,Z).

Open problems and conjectures. This section is devoted to some questions and
conjectures in connection with the invariants (3, [I ], K ), q(x, y), 1 and 6.

1. P-adic invariants of pseudo-Anosov automorphisms

A. Let φ ∈Mod(X) be a pseudo-Anosov automorphism of a surface X . If λφ is the
dilatation of φ, then one can consider a Z-module m= Zv(1)+ · · ·+Zv(n) in the
number field K =Q(λφ) generated by the normalized eigenvector (v(1), . . . , v(n))
corresponding to the eigenvalue λφ . The trace function on the number field K gives
rise to a symmetric bilinear form q(x, y) on the module m. The form is defined over
the field Q. It has been shown that a pseudo-Anosov automorphism φ′, conjugate
to φ, yields a form q ′(x, y), equivalent to q(x, y), i.e., q(x, y) can be transformed
to q ′(x, y) by an invertible linear substitution with the coefficients in Z.

B. Recall that two rational bilinear forms q(x, y) and q ′(x, y) are equivalent when-
ever the following conditions are met:

(i) 1=1′, where 1 is the determinant of the form.
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(ii) For each prime number p (including p=∞), certain p-adic equations between
the coefficients of forms q, q ′ must be satisfied; see, e.g., [Borevich and
Shafarevich 1966, Chapter 1, Section 7.5]. (In fact, only a finite number of
such equations have to be verified.)

Condition (i) has already been used to discern between the conjugacy classes of
the pseudo-Anosov automorphisms. One can use condition (ii) to discern between
the pseudo-Anosov automorphisms with 1=1′. The following question can be
posed: find the p-adic invariants of the pseudo-Anosov automorphisms.

2. Signature of pseudo-Anosov automorphism

The signature is an important and well-known invariant connected to the chirality and
knotting number of knots and links [Reidemeister 1932]. It will be interesting to find
a geometric interpretation of the signature6 for the pseudo-Anosov automorphisms.
One can ask the following question: find a geometric meaning of the invariant 6.

3. Number of conjugacy classes of pseudo-Anosov automorphisms with the same
dilatation

The dilatation λφ is an invariant of the conjugacy class of the pseudo-Anosov auto-
morphism φ ∈Mod(X). On the other hand, it is known that there exist nonconjugate
pseudo-Anosov’s with the same dilatation and the number of such classes is finite
[Thurston 1988]. It is natural to expect that the invariants of operator algebras can
be used to evaluate the number. We conclude with the following conjecture.

Conjecture 16. Let (3, [I ], K ) be the triple corresponding to a pseudo-Anosov
automorphism φ ∈ Mod(X). Then the number of the conjugacy classes of the
pseudo-Anosov automorphisms with the dilatation λφ is equal to the class number
h3 = |3/[I ]| of the integral order 3.
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CONNECTED SUMS OF CLOSED RIEMANNIAN MANIFOLDS
AND FOURTH-ORDER CONFORMAL INVARIANTS

DAVID RASKE

In this note we take some initial steps in the investigation of a fourth-order
analogue of the Yamabe problem in conformal geometry. The Paneitz con-
stants and the Paneitz invariants considered are believed to be very helpful
to understand the topology of the underlying manifolds. We calculate how
those quantities change, analogous to how the Yamabe constants and the
Yamabe invariants do, under the connected sum operations.

1. Introduction

Let .M; g/ be a connected compact Riemannian manifold without boundary of
dimension n� 5. Let
(1-1)

QŒg�D�
n� 4

4.n� 1/
�RC

.n� 4/.n3� 4n2C 16n� 16/

16.n� 1/2.n� 2/2
R2�

2.n� 4/

.n� 2/2
jRicj2

be the so-called Q-curvature, where R is the scalar curvature, Ric is the Ricci
curvature. And let

(1-2) P Œg�D .��/2� divg

��
.n� 2/2C 4

2.n� 1/.n� 2/
Rg�

4

n� 2
Ricg

�
d

�
CQŒg�

be the so-called the Paneitz–Branson operator. It is known that

(1-3) P Œg�uDQŒgu�u
nC4
n�4

which is called the Paneitz–Branson equation, where guDu
4
n�4g (see [Paneitz 1983;

Branson 1987; Xu and Yang 2001; Djadli et al. 2000]). We consider the equation
(1-3) as a fourth-order analogue of the well-known scalar curvature equation

(1-4) LŒg�v DRŒgv�v
nC2
n�2 ;

where

(1-5) LŒg�D�
4.n� 1/

n� 2
�CR
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is the so-called conformal Laplacian and gv D v
4
n�2g. The well-known Yamabe

problem in conformal geometry is to find a metric, in a given class of conformal
metrics, which is of constant scalar curvature, i.e., to solve

LŒg�v D Yv
nC2
n�2

on a given manifold .M; g/ for some positive function v and a constant Y . The
affirmative resolution to the Yamabe problem was given in [Schoen 1984] after
other notable works [Yamabe 1960; Trudinger 1968; Aubin 1976]. In fact, it was
proven that there exists a so-called Yamabe metric gv in the class Œg� which is a
minimizer for the so-called Yamabe functional

Y.v/D

R
M .vLŒg�v/ dvg�R
M v

2n
n�2dvg

�n�2
n

:

In this paper we investigate a fourth-order analogue of the Yamabe problem. Let
CC
1.M/ be the space of smooth positive functions on M . Similar to the Yamabe

problem, we define the Paneitz functional

(1-6) }g.u/D

R
M .uP Œg�u/ dvg�R
M u

2n
n�4dvg

�n�4
n

for u 2 CC1.M/ and the Paneitz constant associated with .M; Œg�/

(1-7) �.M; Œg�/D inf
u2CC

1.M/
}g.u/:

It is clear that �.M; Œg�/ is a conformal invariant of the conformal class Œg� because
of the conformally covariant property of the Paneitz–Branson operator:

(1-8) P Œgw �uD w
�
nC4
n�4P Œg�.w �u/

where gw D w
4
n�4g 2 Œg�. To describe the differential structure of M , we define

(1-9) �.M/D sup
Œg�

�.M; Œg�/:

We will refer to �.M/ as the Paneitz invariant of the manifoldM as the counterpart
of Yamabe invariant. In [1986], Gil-Medrano studied the Yamabe constant for a
connected sum of two closed manifolds. One interesting consequence of connected
sum results in [Gil-Medrano 1986] is that every compact manifold without boundary
admits a conformal class of metrics whose Yamabe constant is very negative. In
Section 3 we calculate as Gil-Medrano did in [1986] to verify that

Theorem 1.1. Let .M1; g1/ and .M2; g2/ be two compact Riemannian manifolds
of dimension n� 5. Then, for each � > 0, there is a conformal class Œg� of metrics
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on M1 #M2 such that

(1-10) �.M1 #M2; Œg�/ <min
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
C �

and there exists a conformal class Œh� of metrics on M1 #M2 such that

(1-11) �.M1 #M2; Œh�/ < 2
�n�4

n

�
�.M1; Œg1�/C�.M2; Œg2�/

�
C �:

Due to the works of Schoen and Yau [1979] (see also [Gromov and Lawson
1980]), one knows that there is some topological constraint for a manifold to possess
a metric of positive Yamabe constant. Therefore it is interesting to see how the
Yamabe invariant is effected by connected sum. It was proven in [Kobayashi 1987],
[Schoen and Yau 1979], and [Gromov and Lawson 1980] that the Yamabe invariant
of connected sum of two manifolds with positive Yamabe invariants is still positive.
More precisely, Kobayashi in [1987] showed that the Yamabe invariant of connected
sum of two manifolds is greater than or equal to the smaller of the Yamabe invariants
of the two. In Section 4 we obtain an analogue for the Paneitz invariant.

Theorem 1.2. If M1 and M2 are compact manifolds of dimension n� 5, then

(1-12) �.M1 #M2/�minf�.M1/; �.M2/g:

The positivity of Paneitz invariant in dimension higher than 4 should be a
topological constraint, as indicated by successful researches in [Chang and Yang
2002] (references therein) for a fourth-order analogue of how Gaussian curvature
influences the geometry of surfaces in dimension 2. Another testing ground is to
consider closed locally conformally flat manifolds. Then the recent works in [Chang
et al. 2004] and [González 2005] indicate to us that the positivity of fourth-order
curvature is indeed very informative about the topology of the underlying manifolds.
We would also like to mention the work by Xu and Yang in [2001] where they
demonstrated that positivity of the Paneitz–Branson operator is stable under the
process of taking connected sums of two closed Riemannian manifolds.

In Section 2 we discuss some preliminary facts about the Paneitz functional. In
Section 3 we calculate and verify Theorem 1.1. In Section 4 we prove Theorem 1.2.

2. Preliminaries

Recall that the Yamabe constant of any closed manifold of dimension greater than 2
is a finite number and the largest possible Yamabe constant is realized and only
realized by the Yamabe constant of the standard round sphere in each dimension.
The difficult part is to show that the round sphere is the only one that has the largest
Yamabe constant, which was the last step in the resolution of Yamabe problem
solved by Schoen in [1984] based on a positive mass theorem of Schoen and Yau.
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We observe that, by (1-3),

(2-1)
Z
M

.uP Œg�u/ dvg D

Z
M

uQŒgu�u
nC4
n�4 dvg

D

Z
M

QŒgu�u
2n
n�4dvg D

Z
M

QŒgu�dvgu ;

where gu D u
4
n�4g 2 Œg�. HenceZ

M

.uP Œg�u/ dvg

D

Z
M

��
.n� 4/.n3� 4n2C 16n� 16/

16.n� 1/2.n� 2/2
R2�

2.n� 4/

.n� 2/2
jRicj2

�
dv

�
Œgu�

� cn

Z
M

..R2/ dv/Œgu�;

where

cn D
.n� 4/.n3� 4n2C 16n� 1g/

16.n� 1/2.n� 2/2
�
2.n� 4/

n.n� 2/2
:

When we consider a Yamabe metric gu, we have

(2-2)

R
M .Rdv/Œgu�

vol.M; gu/
n�2
n

D Y vol.M; gu/
2
n � n.n� 1/ vol.Sn; g0/

2
n ;

and since Y and cn are nonnegative by hypothesis, we have

(2-3)

R
M .uP Œg�u/ dvg

vol.M; gu/
n�4
n

� cnY
2 vol.M; gu/

4
n � cn.n.n� 1//

2 vol.Sn; g0/
4
n

D

R
Sn.Qdv/Œg0�

vol.Sn; g0/
n�4
n

D �.Sn; Œg0�/:

Consequently we obtain:

Lemma 2.1. Let .M n; g/ be a closed Riemannian manifold of dimension greater
than 5 with nonnegative Yamabe constant. Then

(2-4) �.M n; Œg�/� �.Sn; Œg0�/

and the equality holds if and only if .M; g/ is conformally equivalent to the standard
round sphere .Sn; g0/.

On the other hand, by some choices of testing functions similar to the ones used
to estimate the Yamabe functional, we get:
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Lemma 2.2. Let .M n; g/ be a closed Riemannian manifold of dimension greater
than 4. Then

(2-5) �1< �.M n; Œg�/� �.Sn; Œg0�/;

where g0 is the standard round metric on the sphere Sn.

Proof. The Paneitz constant is easily seen to be bounded from below, because, by
(1-2),

(2-6)
Z
M

.uP Œg�u/ dv DZ
M

j�uj2dvCan

Z
M

Rjruj2dv�
4

n�4

Z
M

Ric.ru;ru/ dvC
Z
M

Qu2dv;

where

an D
.n� 2/2C 4

2.n� 1/.n� 2/
:

It suffices to estimate (2-3) for nonnegative functions such thatZ
M

u
2n
n�4dv D 1:

Hence, by Hölder’s inequality,

(2-7)
Z
M

.uP Œg�u/ dv �

Z
M

j�uj2dv�C1

Z
M

jruj2dv�C2

Z
M

u2dv

�

Z
M

j�uj2dv�C1

Z
M

.��u/udv�C2

Z
M

u2dv

�
1

2

Z
M

j�uj2dv� 1
2
C 21

Z
M

u2dv�C2

Z
M

u2dv

� �
�
1
2
C 21 CC2

��Z
M

u
2n
n�4dv

�n�4
n

vol.M; g/
4
n

� �
�
1
2
C 21 CC2

�
vol.M; g/

4
n ;

for some constants C1; C2 > 0 depending on .M n; g/.
To estimate the upper bound we choose to work in geodesic normal coordinates

in a very small geodesic ball B2� �M and transplant the rescaled round sphere
metric. Let B2�.0/�Rn and

(2-8) gij .x/D ıij CO.jxj
2/ for all x 2 B2�.0/:
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Define a smooth nonnegative function u� on M by

(2-9) u�.x/D

8̂<̂
:
�

2�3

�6Cjxj2

�n�4
2

for x 2 B�.0/;

0 for x … B2�.0/
:

It is easily calculated that

(2-10)
Z
M

.u�P Œg�u�/ dv D

Z
B�.0/

j�u�j
2dxC o.1/

D

Z
Rn

ˇ̌̌̌
�

�
2�3

�6Cjxj2

�n�4
2
ˇ̌̌̌2
dxC o.1/

D

Z
Rn

ˇ̌̌̌
�

�
2

1Cjxj2

�n�4
2
ˇ̌̌̌2
dxC o.1/

and

(2-11)
Z
M

u
2n
n�4
� dv D

Z
B�.0/

u
2n
n�4
� dxC o.1/

D

Z
Rn

�
2�3

�6Cjxj2

�n
dxC o.1/

D

Z
Rn

�
2

1Cjxj2

�n
dxC o.1/:

Therefore

(2-12) }.u�/D

R
M .u�P Œg�u�/ dv�R
M u

2n
n�4
� dv

�n�4
n

D

R
Rn j�sj

2dx�R
Rn s

2n
n�4dx

�n�4
n

C o.1/;

where s D
�

2

1Cjxj2

�n�4
2

. Thus, taking �! 0, we arrive at

(2-13) �.M; Œg�/� �.Sn; Œg0�/: �

One interesting question would be whether .M; g/ is conformally equivalent to
.Sn; g0/ when �.M; Œg�/D �.Sn; Œg0�/ without assuming the Yamabe constant of
.M; g/ is nonnegative. In other words one would be interested in searching for
some analogue of a positive mass theorem of Schoen and Yau here if it make any
sense.

3. Connected sums and the Paneitz constant

In this section we will calculate the Paneitz functional on a connected sum of two
closed manifolds and verify Theorem 1.1. Let .M; g/ be a closed manifold of
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dimension higher than 4. Fix a point p 2M and let

(3-1) fı D

�
0 for x 2 Bı.p/;
1 for x 2M nB2ı.p/;

be a family of smooth functions. We may ask that

(3-2) 0� fı � 1; jrfı j<
C0

ı
; j�fı j<

C0

ı2

for some number C0 > 0.

Lemma 3.1. Let .M; g/ be a closed manifold of dimension greater than 4. Let
u 2 CC

1.M/ be given. Then uı D fıu 2 CC1.M/ and

(3-3) }g.uı/D }g.u/C o.1/

as ı! 0.

Proof. We simply calculate, for a fixed ı > 0, by (2-6) and (3-2),

(3-4)
Z
M

.uıP Œg�uı/ dv

D

Z
M

j�uı j
2dvCan

Z
M

Rjruı j
2dv�

4

n�4

Z
M

Ric.ruı ;ruı/ dvC
Z
M

Qu2ıdv

D

Z
M

.uP Œg�u/ dvCo.1/

and

(3-5)
Z
M

u
2n
n�4

ı
dv D

Z
M

u
2n
n�4dvC o.1/;

as ı! 0. �

Now let us consider the connected sum of two closed Riemannian manifolds. Let
.M1; g1/ and .M2; g2/ be two compact Riemannian manifolds without boundary of
dimension n� 5. For x1 2M1 and x2 2M2, let Bı1.x1/�M1 and Bı2.x2/�M2

be geodesic balls respectively. To make the connected sum one simply takes off
the open balls B 1

2
ı1
.x1/ and B 1

2
ı2
.x2/ from M1 and M2, identify @B 1

2
ı1
.x1/ with

@B 1
2
ı2
.x2/. Hence

(3-6)
M1 #M2 D

��
M1 nB 1

2
ı1
.x1/

�
[
�
M2 nB 1

2
ı2
.x2/

��ı˚
@B 1

2
ı1
.x1/� @B 1

2
ı2
.x2/

	
:

We may construct a metric g on the connected sumM1#M2 such that g agrees with
g1 on M1 nBı1.x1/ and g2 on M2 nBı2.x2/. Notice that topologically M1 #M2

does not depend on the value of ıi when they are sufficiently small. Now let us
calculate and estimate the Paneitz functional on the connected sum.
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Theorem 3.2. Let .M1; g1/ and .M2; g2/ be two closed Riemannian manifolds of
dimension n� 5. Then for each � >0, there is a conformal structure Œg� onM1#M2

such that

(3-7) �.M1 #M2; Œg�/ <min
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
C �:

Alternatively, we may find a conformal structure Œg� on M1 #M2 such that

(3-8) �.M; Œg�/ < �.M1; Œg1�/C�.M2; Œg2�/2
�n�4

n C �:

Proof. Let us assume that �.M1; Œg1�/ � �.M2; Œg2�/ and � > 0 fixed. By the
definition of the Paneitz constant, we know that there is a real number ı > 0 and a
smooth function uı 2 CC1.M/ such that uı vanishes on a geodesic ball Bı.x1/ of
radius ı and centered at x1 2M1 and such that

}g.uı/ < �.M1; Œg1�/C �:

Let g be a metric on M D M1 #M2 which agrees with g1, when restricted to
M1 nBı.x1/. And define the function Quı on M1 #M2 as follows:�

Quı D uı on M1 nBı.x1/;

Quı D 0 elsewhere:

We then have

}g. Quı/D

R
M

�
� Quı

2
C anRjr Quı j

2�
4
n�2

Ric.r Quı ;r Quı/CQ Qu2ı
�
dv�R

M Qu
2n
n�4

ı
dv
� n
n�4

:

Recalling that uı vanishes on Bı.x1/ we see that

}g. Quı/D }g1.uı/ < �.M1; Œg1�/C �:

Consequently,

�.M; Œg�/ < �.M1; Œg1�/C � Dmin.�.M1; Œg1�/; �.M2; Œg2�//C �:

We now proceed to prove (3-8). First, Lemma 3.1 can be used to say that for any
fixed � > 0; x1 2M1; x2 2M2, we can find two positive reals ı1; ı2 and smooth
functions uı1 ; uı2 , where uıi 2 C

1.Mi /, with the following properties:

uı1 D 0 on Bı1.x1/; }g1.uı1/ < �.M1; Œg1�/C �1;

uı2 D 0 on Bı2.x2/; }g2.uı2/ < �.M2; Œg2�/C �1;

where �1 D 2
�nC4
n �. Also, notice that we can assume without loss of generality

that the L
2n
n�4 .M/ norms of uı1 and uı2 are normalized. Using the same reasoning

as in the proof of (3-7), a metric g on M1 #M2 can be constructed such that g
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agrees with gi when restricted to Mi nBıi .xi /. Let us consider now the function Qu
on M DM1 #M2 given by

(3-9) QuD

8<:
uı1 on M1 nBı1.x1/;

uı2 on M2 nBı2.x1/;

0 elsewhere;

then

}g. Qu/D

R
M1nBı1 .x1/

�
.� Qu/2C anRjr Quj

2�
4
n�4

Ric.r Qu;r Qu/CQ Qu2
�
dv�R

M1nBı1 .x1/
Qu
2n
n�4dvC

R
M2nBı2 .x2/

Qu
2n
n�4dv

� n
n�4

C

R
M2nBı2 .x2/

�
.� Qu/2C anRjr Quj

2�
4
n�2

Ric.r Qu;r Qu/CQ Qu2
�
dv�R

M1nBı1 .x1/
Qu
2n
n�4dvC

R
M2nBı2 .x2/

Qu
2n
n�4dv

� n
n�4

:

Using (3-9) we then obtain

}g. Qu/D

R
M1nBı1 .x1/

�
.� Quı1/

2CanRjr Quı1j
2�

4
n�2

Ric.r Quı1;r Quı1/CQ Qu
2
ı1

�
dv�R

M1nBı1 .x1/
Qu
2n
n�4

ı1
dvC

R
M2nBı2 .x2/

Qu
2n
n�4

ı2
dv
� n
n�4

C

R
M2nBı2 .x2/

�
.� Quı2/

2CanRjr Quı2 j
2�

4
n�2

Ric.r Quı2 ;r Quı2/CQ Qu
2
ı2

�
dv�R

M1nBı1 .x1/
Qu
2n
n�4

ı1
dvC

R
M2nBı2 .x2/

Qu
2n
n�4

ı2
dv
� n
n�4

:

Now, recalling the above stated properties of uı1 and uı2 , we may also assumeZ
MinBıi .xi /

uıi
2n
n�4dv D 1;

and
}gi .uıi /

D

Z
MinBıi .xi /

�
� Quıi

2
C anRjr Quıi j

2
�

4

n�2
Ric.r Quıi ;r Quıi /CQ Qu

2
ıi

�
dv

< �.Mi ; Œgi �/C �1:

Thus

�.M; Œg�/� }g. Qu/ <
�
�.M1; Œg1�/C�.M2; Œg2�/C 2�1

�
2�

n�4
n

D
�
�.M1; Œg1�/C�.M2; Œg2�/

�
2�

n�4
n C �: �

4. Connected sums and the Paneitz invariants

Kobayashi in [1987] showed that the Yamabe invariant of connected sum of two
manifolds is greater than or equal to the smaller of the Yamabe invariants of the
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two. The aim of this section is to generalize this result of Kobayashi to the case
of compact manifolds of dimension n� 5, and with the Yamabe invariant Y.M/

replaced by it’s fourth-order analogue the Paneitz invariant �.M/. Namely, we
have

Theorem 4.1. LetM1 andM2 be closed manifolds of dimension n�5. If �.M1/>0

and �.M2/ > 0 then

(4-1) �.M1 #M2/�minf�.M1/; �.M2/g:

We will basically follow the approach taken in [Kobayashi 1987]. First we
consider the Paneitz invariant on the disjoint union of compact manifolds. Take
two n-manifolds with conformal structures, say .M1; Œg1�/ and .M2; Œg2�/. We
write .M; Œg�/D .M1; Œg1�/t .M2; Œg2�/ if M is the disjoint union of M1 and M2,
and gi D fgjMi Ig 2 Œg�g for i D 1; 2. Let u be a smooth nonnegative function
on M . Since M is the disjoint union of M1 and M2 it follows that we can write
u D u1C u2, where ui D 0 on Mj , where i ¤ j and where ui is a nonnegative
smooth function on Mi . If we assume that �.Mi ; Œgi �/� 0 for i D 1; 2, then it can
easily be seen that

�.M; Œg�/Dmin
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
:

Due to Lemma 2.2, we can assume that �.M1/ and �.M2/ are finite; and we can
use the above equation to conclude that

�.M/Dminf�.M1/; �.M2/g:

Let M be a compact manifold of dimension n � 5, and p1 and p2 two points
of M . We take off two small balls around p1 and p2, and then attach a handle
instead, the handle being topologically the product of a line segment and Sn�1.
The new manifold obtained in this way will be denoted by M . Let M1 and M2 be
Riemannian manifolds and let M1 tM2 denote the disjoint union of M1 and M2.
If M DM1 tM2 and p1 and p2 are taken from M1 and M2 respectively, then
M DM1 #M2. Therefore we see that in order to prove Theorem 4.1 it suffices to
show

�.M/� �.M/:

Proof of Theorem 4.1. Let � be an arbitrary positive number, which will be fixed
throughout. First, we take a metric g on M such that

(4-2) �.M; Œg�/ > �.M/� �:

Due to continuity considerations we may assume that Œg� is conformally flat around
the points p1 and p2. Then there is a function  2 C1.M n fp1; p2g/ and g 2 Œg�
such that Qg D eg is a complete metric of M n fp1; p2g and that each of the two
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ends is isometric to the half-infinite cylinder Œ0;1/�Sn�1.1/. For convenience,
we write

.M n fp1; p2g; Qg/D Œ0;1/�S
n�1.1/[ . zM; Qg/[ Œ0;1/�Sn�1.1/;

where zM is the complement of the two cylinders. We can glue . zM; Qg/ and Œ0; l��
Sn�1.1/, along their boundaries to get a smooth Riemannian manifold .M; gl/,
where M is as mentioned in the beginning of the section:

(4-3) .M; Ngl/D . zM; Qg/[ Œ0; l��Sn�1.1/:

We then have

�.M; Œgl �/D inf
f >0

R
M

�
.�f /2C anRjrf j

2�
4
n�2

Ric.rf;rf /CQf 2
�
dv�R

M f
2n
n�4dv

� n
n�4

;

So, take a positive function fl 2 C1.M/ such that

(4-4)
Z
M

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2

�
dv

< �.M; Œgl �/C
1

l C 1

and

(4-5)
Z
M

fl
2n
n�4dv D 1:

Lemma 4.2. There is a section, say ftlg �Sn�1, in the cylindrical part of M such
thatZ
ftlg�Sn�1

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2

�
dv <

B

l
;

where B is a constant independent of l .

Proof. Using (4-4) we haveZ
Sn�1�Œ0;l�

�
.�fl/

2
C anRjrfl j

2
�

4

n�2
Ric.rfl ;rfl/CQf

2
l

�
dv

< �.M; Œgl �/C
1

1Cl

�

Z
zM

�
.�fl/

2
C anRjrfl j

2
�

4

n�2
Ric.rfl ;rfl/CQfl

2

�
dv:

Now suppose that
R
M jrfl j

2dv goes to infinity as l !1. It would follow
that

R
M .�fl/

2!1 as l !1 and that this divergence is much faster than the
divergence of

R
M jrfl j

2dv. But this implies that
R
M flPlfldv>�.M; Œgl �/C

1
lC1

for large l , which forces a contradiction (here Pl is the Paneitz–Branson operator



474 DAVID RASKE

of the metric gl .) It follows that there exists a constant D independent of l such
that Z

M

anRjrfl j
2
�

4

n� 2
Ric.rfl ;rfl/ dv �D:

Note as well that there exists a constant E such that �
R
M Qf 2

l
dv � E. Putting

this together we conclude that there exists a t1 2 Œ0; l� such that

l

Z
t1�Sn�1

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2
l

�
dv

< �.M; Œgl �/C
1

1C l
CDCE:

The lemma follows. �

Now we cut off M on the section ft1 � Sn�1g, and attach two half-infinite
cylinders to it, so .M; nfp1; p2g; Ng/ reappears. But this time we describe it as
follows:

.M; nfp1; p2g; Ng/D Œ0;1/�S
n�1.1/[.M�ft1g�S

n�1; gl/[Œ0;1/�S
n�1.1/:

We think of the function fl as defined on M �fftlg �Sn�1g, and extend it to the
whole space M �fp1; p2g as follows: Let Fl be W 2;1 function of M �fp1; p2g
such that

Fl D fl on M �ftlg �S
n�1

and

Fl.t; x/D

�
g.t/ Qfl.x/ for .t; x/ 2 Œ0; 1��Sn�1;
0 for .t; x/ 2 Œ1;1��Sn�1;

where Qfl D fl jftlg�Sn�1 2 C
1.Sn�1/ and where g is a smooth function on Œ0; 1�

that goes from a value of 1 to a value of 0, and whose derivative vanishes at 1. Now
it easy to see from (4-4) and the above lemma thatZ
Mnfp1;p2g

�
.�Fl/

2
C anRjrFl j

2
�

4

n� 2
Ric.rFl ;rFl/CQF

2

�
dv

< �.M; Œgl �/C
B

l
;

where B is a constant independent of l . Obviously from (4-5) we getZ
Mnfp1;p2g

Fl
2n
n�4dv > 1:

Therefore, we have

inf

R
Mnfp1;p2g

�
.�F /2C anRjrF j

2�
4
n�2

Ric.rF;rF /CQF 2
�
dv�R

Mnfp1;p2g
F

2n
n�4dv

� n
n�4

� �.M/;
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where the infimum is taken over all nonnegative W 2;1 functions F with compact
support. It follows from the choice of the metric Qg that the left side of the preceding
equation is equal to �.M; Œg�/. Since � can be chosen arbitrarily in (4-2), we
conclude �.M/� �.M/, which completes the proof. �
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It is shown that parts of planes, helicoids and hyperbolic paraboloids are
the only minimal surfaces ruled by geodesics in the three-dimensional Rie-
mannian Heisenberg group. It is also shown that they are the only sur-
faces in the three-dimensional Heisenberg group whose mean curvature is
zero with respect to both the standard Riemannian metric and the standard
Lorentzian metric.

1. Introduction

The three-dimensional Heisenberg group H3 is the two-step nilpotent Lie group
(R3, ? ) where

(x, y, z) ? (x ′, y′, z′) :=
(
x + x ′, y+ y′, z+ z′+ 1

2(xy′− x ′y)
)
.

It is in general identified with a subgroup of GL3(R) by

(x, y, z)↔

1 x z+ 1
2 xy

0 1 y
0 0 1

 .
We consider in this paper two left-invariant metrics on H3: one is Riemannian and
the other Lorentzian. Let us denote by Nil3 the 3-dimensional Heisenberg group H3

endowed with the left-invariant Riemannian metric

g = dx2
+ dy2

+
(
dz+ 1

2(y dx − x dy)
)2
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on R3. The Riemannian Heisenberg group Nil3 is a three-dimensional homogeneous
manifold with a 4-dimensional isometry group; hence it is the most simple 3-
manifold apart from the space-forms. Moreover, it is a Riemannian fibration over
the Euclidean plane R2, with the projection (x, y, z) 7→ (x, y).

In the first part of this paper, we give a classification of all ruled minimal surfaces
in Nil3. In order to do this, we first show in Lemma 2.1 that if a ruled surface is
minimal and if a ruling geodesic is not tangent to the fiber, then the ruled surface
should be horizontally ruled. That is, its ruling geodesics are orthogonal to the
fibers. In fact, it was one of the key observations in classifying the ruled minimal
surfaces in S2

×R or in H2
×R in our previous paper [Kim et al. 2009a]. It turns

out that this fact simplifies the nonlinear partial differential equations describing
ruled minimal surfaces. Then we show in Theorem 2.3 that any ruled minimal
surface in Nil3 is, up to isometries, a part of the horizontal plane z = 0, the vertical
plane y= 0, a helicoid tan(λz)= y/x, λ 6= 0 or a hyperbolic paraboloid z=−xy/2;
see page 480 for the definition of planes. Moreover, we show on pages 488–489
that all of them can be regarded as helicoids or the limits of sequences of helicoids
in the Hausdorff sense.

In fact, it was shown in [Bekkar and Sari 1992] that, up to isometries, parts of
planes, the helicoids and the hyperbolic paraboloids are the only minimal surfaces
in Nil3 ruled by straight lines that are geodesics. According to Lemma 2.1, any
ruling geodesic of a ruled minimal surface is either parallel or orthogonal to the
fibers. We then note in Proposition 2.4 that geodesics parallel or orthogonal to
the fibers everywhere are straight lines (in the Euclidean sense), and thereby show
that “straight line” condition may be deleted in the aforementioned claim. For the
properties of the Gauss map and representation formulae of the minimal surfaces
in Nil3, see for example [Bekkar et al. 2007; Daniel 2011; Inoguchi 2005; 2008;
Mercuri et al. 2006; Sanini 1997].

In the second part, we consider the natural left-invariant Lorentzian metric

gL = dx2
+ dy2

−
(
dz+ 1

2(y dx − x dy)
)2

on H3. (Lorentzian metrics on H3 are discussed in [Rahmani 1992; Rahmani and
Rahmani 2006].) Then we consider surfaces in H3 whose mean curvature is zero
with respect to both metrics g and gL and show in Theorem 3.2 that they must be
one of the above mentioned surfaces, that is, a part of planes, helicoids or hyperbolic
paraboloids. It can be considered as a generalization of the fact that the helicoids
are the only surfaces except the planes in R3 whose mean curvature is zero with
respect to both the standard Riemannian metric and the standard Lorentzian metric
[Kobayashi 1983] and the fact that the helicoids (surfaces invariant under the screw
motion) are the only surfaces except the trivial ones in S2

×R or H2
×R whose

mean curvature is zero with respect to both the standard Riemannian metric and the
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standard Lorentzian metric [Kim et al. 2009a]. For this we derive the equation for
the mean curvature of a graph in H3 to be zero with respect to the Lorentzian metric
gL and compare it with the minimal surface equation. The idea of considering these
two equations at the same time is not new — see [Albujer and Alías 2009; Alías
and Palmer 2001; Kobayashi 1983]; also, the “dualities” between minimal surfaces
in Nil3 and maximal surfaces in the Lorentzian Nil3 were studied in [Lee 2011].

2. Ruled minimal surfaces in Nil3

We first state several facts on the geometry of Nil3, necessary for the proof of the
main result in this section. For their proofs, one may refer, for example, to [Inoguchi
et al. 1999].

A frame field. It can be easily seen that

e1 =
∂

∂x
−

y
2
∂

∂z
, e2 =

∂

∂y
+

x
2
∂

∂z
, e3 =

∂

∂z

is a left-invariant orthonormal frame field on Nil3 and in particular, e3 is tangent to
the fibers. Letting ∇ be the Levi-Civita connection on Nil3, we have for this frame
field

∇ei ei = 0, i = 1, 2, 3,

∇e1 e2 =−∇e2 e1 =
1
2 e3, ∇e1 e3 =∇e3 e1 =−

1
2 e2, ∇e2 e3 =∇e3 e2 =

1
2 e1.

Isometries. The isometry group of Nil3 has two connected components: an isometry
either preserves the orientation of both the fibers and the base of the fibration, or
reverses both orientations. The identity component of the isometry group of Nil3 is
isomorphic to SO(2)nR3 whose action is given by[cos θ −sin θ

sin θ cos θ

]
,

a
b
c

 ·
x

y
z


=

 cos θ −sin θ 0
sin θ cos θ 0

1
2(a sin θ − b cos θ) 1

2(a cos θ + b sin θ) 1

cx
y
z

+
a

b
c

 ,
which shows that Nil3 is a homogeneous space. In fact, one can see that, for
any point p ∈ H3 and a unit tangent vector v orthogonal to e3(p), there exists a
unique isometry ϕ such that ϕ(p)= 0, dϕ(v)= e1(0) and dϕ(e3(p))= e3(0). Note
also that the translations along the z-axis (in the Euclidean sense) are isometries
belonging to the identity component.
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Euclidean planes. A Euclidean plane or simply a plane is a set of points (x, y, z)∈
H3 satisfying a linear equation ax + by+ cz+ d = 0. It is easy to see that all the
planes except the “vertical” planes ax + by+ d = 0 are congruent. In fact, every
nonvertical plane ax + by+ z+ d = 0 is congruent to the “horizontal” plane z = 0
under the left translation by (−2b, 2a,−d), (x, y, z) 7→ (−2b, 2a,−d) ? (x, y, z),
that is, x

y
z

 7→
 1 0 1

0 1 0
−a −b 1

cx
y
z

+
r − 2b

2a
−d

 .
Moreover, a vertical plane is not congruent to a nonvertical plane since every
isometric image of a fiber is a fiber. In fact, one can check that a vertical plane is
not isometric to a nonvertical plane by computing their curvatures.

A parametrization of ruled surfaces. Let6 be a ruled surface in Nil3 and let p∈6
be a point at which Tp6 is transversal to the fiber. Assume, furthermore, that the
direction of the ruling geodesic at p is not perpendicular to the fibers. Then, in a
neighborhood of p, we can take a tangent vector field V to 6 in the direction of
the ruling (everywhere on the neighborhood) as

V = η(cos θ e1− sin θ e2)+ e3

for some functions η and θ on 6. Since Tp6 is transversal to the fiber, the unit
normal vector field n of 6 is not perpendicular to e3: 〈n, e3〉 6= 0. Then

W = sin θ e1+ cos θ e2−
〈n, sin θ e1+ cos θ e2〉

〈n, e3〉
e3

gives another tangent vector field on 6 which is transversal to V . Now we take
a parametrization X (s, t) of 6 in the neighborhood of p such that X (s, 0) is the
integral curve of W with X (0, 0) = p and such that t parameter curves are the
ruling geodesics with X t(s, 0)= V (X (s, 0)). Then X (s, t) is a parametrization of
the ruled surface 6 in the neighborhood of p satisfying

(1)

Xs(s, 0)= sinα(s) e1+ cosα(s) e2+ g(s)e3,

X t(s, 0)= h(s)(cosα(s) e1− sinα(s) e2)+ e3,

∇X t X t = 0,

for some smooth functions h(s), α(s) and g(s).
For the parametrization X satisfying the condition (1), we are to compute the

functions Xsi and X ti defined by

Xs(s, t)= Xs1(s, t)e1+ Xs2(s, t)e2+ Xs3(s, t)e3,

X t(s, t)= X t1(s, t)e1 + X t2(s, t)e2+ X t3(s, t)e3.
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Now, since t parameter curves are geodesics, we have

∇X t X t =
∑

i

∂X ti
∂t

ei +
∑
i, j

X ti X t j∇ei e j

=

(
∂X t1
∂t
+ X t2 X t3

)
e1+

(
∂X t2
∂t
− X t1 X t3

)
e2+

∂X t3
∂t

e3 = 0.

By solving the system of equations

∂X t1
∂t
+ X t2 X t3 = 0, ∂X t2

∂t
− X t1 X t3 = 0, ∂X t3

∂t
= 0

with the initial condition

X t1(s, 0)= h(s) cosα(s), X t2(s, 0)=−h(s) sinα(s), X t3(s, 0)= 1,

we have

X t1(s, t)= h(s) cos(t −α(s)), X t2(s, t)= h(s) sin(t −α(s)), X t3(s, t)= 1.

On the other hand, since the Levi-Civita connection ∇ is torsion-free, one has

∇X t Xs =∇Xs X t .

Hence we have(
∂Xs1

∂t
+

1
2(X t2 Xs3+ X t3 Xs2)

)
e1+

(
∂Xs2

∂t
−

1
2(X t1 Xs3+ X t3 Xs1)

)
e2

+

(
∂Xs3

∂t
+

1
2(X t1 Xs2− X t2 Xs1)

)
e3

=

(
∂X t1

∂s
+

1
2(Xs2 X t3+ Xs3 X t2)

)
e1+

(
∂X t2

∂s
−

1
2(Xs1 X t3+ Xs3 X t1)

)
e2

+

(
∂X t3

∂s
+

1
2(Xs1 X t2− Xs2 X t1)

)
e3,

and Xsi satisfies the equations

∂Xs1
∂t
=
∂X t1
∂s
= h′(s) cos(t −α(s))+ h(s)α′(s) sin(t −α(s)),

∂Xs2
∂t
=
∂X t2
∂s
= h′(s) sin(t −α(s))− h(s)α′(s) cos(t −α(s)),

∂Xs3
∂t
=
∂X t3
∂s
+ (Xs1 X t2− Xs2 X t1)

= h(s) sin(t −α(s))Xs1− h(s) cos(t −α(s))Xs2

with the initial condition

Xs1(s, 0)= sinα(s), Xs2(s, 0)= cosα(s), Xs3(s, 0)= g(s).
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By solving these equations, we get

Xs1(s, t)= sinα(s)+ h′(s) sin(t −α(s))+ h′(s) sinα(s)

− h(s)α′(s) cos(t −α(s))+ h(s)α′(s) cosα(s),

Xs2(s, t)= cosα(s)− h′(s) cos(t −α(s))+ h′(s) cosα(s)

− h(s)α′(s) sin(t −α(s))− h(s)α′(s) sinα(s),

Xs3(s, t)= g(s)− h(s) sin t + th(s)h′(s)− h(s)h′(s) sin t

+ h(s)2α′(s)− h(s)2α′(s) cos t.

The second derivatives of X. We will compute the derivatives

∇X t X t , ∇Xs X t =∇X t Xs and ∇Xs Xs .

For notational simplicity, let us set

X t;t := ∇X t X t = X t t1e1+ X t t2e2+ X t t3e3,

Xs;t := ∇X t Xs = Xst1e1+ Xst2e2+ Xst3e3,

Xs;s := ∇Xs Xs = Xss1e1+ Xss2e2+ Xss3e3.

Since t parameter curves are geodesics, we have X t;t = 0, that is,

X t t1 = X t t2 = X t t3 = 0.

From the equalities

Xs;t = X t;s =

(
∂Xs1
∂t
+

1
2(X t2 Xs3+ X t3 Xs2)

)
e1

+

(
∂Xs2
∂t
−

1
2(X t1 Xs3+ X t3 Xs1)

)
e2+

(
∂Xs3
∂t
+

1
2(X t1 Xs2− X t2 Xs1)

)
e3,

Xs;s =

(
∂Xs1
∂s
+ Xs2 Xs3

)
e1+

(
∂Xs2
∂s
− Xs1 Xs3

)
e2+

∂Xs3
∂s

e3

we have

Xst1 =
1
2

[
cosα(s)+ h′(s) cos(t −α(s))+ h′(s) cosα(s)

+ h(s)α′(s) sin(t −α(s))− h(s)α′(s) sinα(s)+ h(s) sin(t −α(s))
(
g(s)

+ h(s)
(
−sin t + h′(s)(t − sin t)+ 2h(s)α′(s) sin2 t/2

))]
,

Xst2 =
1
2

[
− sinα(s)+h′(s) sin(t−α(s))−h′(s) sinα(s)−h(s)α′(s) cos(t−α(s))

− h(s)α′(s) cosα(s)+ h(s) cos(t −α(s))
(
−g(s)

+ h(s)
(
sin t − h′(s)(t − sin t)− 2h(s)α′(s) sin2 t/2

))]
,

Xst3 =
1
2 h(s)

[
− cos t − h′(s)(cos t − 1)+ h(s)α′(s) sin t

]
,



RULED MINIMAL SURFACES IN THE THREE-DIMENSIONAL HEISENBERG GROUP 483

Xss1 = α
′(s) cosα(s)− 2h′(s)α′(s) cos(t −α(s))+ 2h′(s)α′(s) cosα(s)

− h(s)α′(s)2 sin(t −α(s))− h(s)α′(s)2 sinα(s)

+
(
−cosα(s)+ cos(t −α(s))− h′(s) cosα(s)

+ h(s) sin(t −α(s))+α′(s) sinα(s)
)

×
(
−g(s)+ h(s)

(
sin t + h′(s)(sin t − t)− 2h(s)α′(s) sin2 t/2

))
+ h′′(s) sin(t −α(s))+ h′′(s) sinα(s)

− h(s)α′′(s) cos(t −α(s))+ h(s)α′′(s) cosα(s),

Xss2 =−α
′(s) sinα(s)− 2h′(s)α′(s) sin(t −α(s))− 2h′(s)α′(s) sinα(s)

+ h(s)α′(s)2 cos(t −α(s))− h(s)α′(s)2 cosα(s)

+
(
sinα(s)+ h′(s)

(
sin(t −α(s))+ sinα(s)

)
+ 2h(s)α′(s) sin t/2 sin(t/2−α(s))

)
×
(
−g(s)+h(s)

(
sin t+h′(s)(sin t−t)−2h(s)α′(s) sin2 t/2

))
− h′′(s) cos(t −α(s))+ h′′(s) cosα(s)

− h(s)α′′(s) sin(t −α(s))− h(s)α′′(s) sinα(s),

Xss3 = g′(s)+ h′(s)2(t − sin t)− h′(s)
(
sin t − 4h(s)α′(s) sin2 t/2

)
+ h(s)

(
h′′(s)(t − sin t)− h(s)α′′(s)(cos t − 1)

)
.

Mean curvature. We give a condition for the ruled surface6 to be minimal in terms
of the parametrization X . Let E, F,G and l,m, n, respectively, be the coefficients
of the first and second fundamental forms of the surface 6 whose parametrization
satisfies (1). Then the mean curvature of 6 in a neighborhood of p is given by

H = 1
2

Gl−2Fm+En
EG−F2 =

1
2
〈X t , X t 〉〈Xs;s, Xs×X t 〉−2〈Xs, X t 〉〈Xs;t , Xs×X t 〉

‖Xs×X t‖
3 .

Since

Xs × X t = (Xs2 X t3− Xs3 X t2)e1+ (Xs3 X t1− Xs1 X t3)e2+ (Xs1 X t2− Xs2 X t1)e3,

X is a parametrization of a minimal surface if and only if

(2) H̃ := 〈X t , X t 〉〈Xs;s, Xs × X t 〉− 2〈Xs, X t 〉〈Xs;t , Xs × X t 〉

=

(∑
i

X2
ti

)(
(Xs2 X t3− Xs3 X t2)Xss1+ (Xs3 X t1− Xs1 X t3)Xss2

+ (Xs1 X t2− Xs2 X t1)Xss3
)

− 2
(∑

i
Xsi X ti

)(
(Xs2 X t3− Xs3 X t2)Xst1

+ (Xs3 X t1− Xs1 X t3)Xst2+ (Xs1 X t2− Xs2 X t1)Xst3
)

= 0.
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Ruled minimal surfaces in Nil3. Now we will find all ruled minimal surfaces in
Nil3.

Lemma 2.1. If the surface whose parametrization X satisfies (1) is minimal, then
h(s)= 0 for all s.

Proof. Considering the parametrizations X̃(s, t) := X (s − s0, t) if necessary, we
need only to prove h(0) = 0. By rotating the surface in Nil3 if necessary, we
may assume that α(0) = 0. Since we have explicit formulae for all Xs , X t , Xs;s ,
Xs;t , X t;t , we can compute H̃ directly. In particular, since X is minimal, we have
H̃(0, t)= 0 for all t . Since α(0)= 0, H̃(0, t) becomes

H̃(0, t)= A0+ A1t + A2t2
+ A3t3

+B0 cos t + B1t cos t + B2t2 cos t + B3 cos 2t + B4t cos 2t + B5 cos 3t

+C0 sin t +C1t sin t +C2t2 sin t +C3 sin 2t +C4t sin 2t +C5 sin 3t

where the constants Ai , Bi , Ci are functions of h(0), h′(0), h′′(0), α′(0), α′′(0) and
g(0), g′(0). In the following computation, we are to use only the following terms:

A3 = h(0)5h′(0)3,

B1 =−3h(0)h′(0)2− h(0)3h′(0)2− 3h(0)h′(0)3− h(0)3h′(0)3

− 2h(0)3g(0)h′(0)α′(0)− 6g(0)h(0)5h′(0)α′(0)− 3h(0)3h′(0)α′(0)2

− 9h′(0)h(0)5α′(0)2− 6h(0)7h′(0)α′(0)2− h(0)4h′′(0)− h(0)2h′′(0),

B5 =
1
4

(
3h(0)4α′(0)+ 3h(0)6α′(0)+ 6h(0)4h′(0)α′(0)+ 6h(0)6h′(0)α′(0)

+ 3h(0)4h′(0)2α′(0)+ 3h′(0)2α′(0)h(0)6− h(0)6α′(0)3− h(0)8α′(0)3
)
,

C5 =
1
4

(
h(0)3+ h(0)5+ 3h(0)3h′(0)+ 3h(0)5h′(0)+ 3h(0)3h′(0)2

+ 3h(0)5h′(0)2+ h(0)3h′(0)3+ h(0)5h′(0)3− 3h(0)5α′(0)2

− 3h(0)7α′(0)2− 3h(0)5h′(0)α′(0)2− 3h′(0)h(0)7α′(0)2
)
.

Since H̃(0, t)= 0 for all t and since the above expression is a linear combination
of linearly independent functions of t , all of Ai , Bi , Ci must be 0. Since A3 =

h(0)5h′(0)3 = 0, we have either h(0) = 0 or h′(0) = 0. Now suppose h(0) 6= 0.
Then h′(0)= 0 and B1 becomes

B1 =−h′′(0)h(0)4− h′′(0)h(0)2 =−h′′(0)h(0)2(h(0)2+ 1)= 0.

Hence we have h′′(0)= 0 and in addition

4B5 =−α
′(0)3h(0)8−α′(0)3h(0)6+ 3α′(0)h(0)6+ 3α′(0)h(0)4 = 0,

4C5 =−3α′(0)2h(0)7− 3α′(0)2h(0)5+ h(0)5+ h(0)3 = 0.
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Then, since 3B5− h(0)α′(0)C5 = 2α′(0)h(0)4(h(0)2+ 1)= 0, we have α′(0)= 0
and C5 becomes 4C5 = h(0)3(h(0)2 + 1) = 0. This contradicts the assumption
h(0) 6= 0. Hence we must have h(0) = 0 if X is a parametrization of a minimal
surface. �

If p is a point in a ruled surface 6 at which Tp6 is transversal to the fiber
and the direction of the ruling is not perpendicular to the fibers, then 6 has the
parametrization of the type given in (1) in a neighborhood of p. If, in addition,
6 is minimal then the above lemma implies that the direction of the ruling at p
is parallel to the fibers. This contradicts the fact that Tp6 is transversal to the
fibers. Therefore we can conclude that in a ruled minimal surface 6 the directions
of the rulings are horizontal, that is, perpendicular to the fibers wherever Tp6 is
transversal to the fibers.

Now we consider the minimal surfaces which are ruled by horizontal geodesics.

Lemma 2.2. If 6 is a minimal surface in Nil3 ruled by geodesics perpendicular
to the fibers, then up to the isometries in Nil3, 6 is a part of the horizontal plane
z = 0, the vertical plane y = 0, a helicoid tan(λz) = y/x, λ 6= 0 or a hyperbolic
paraboloid z =−xy/2.

Proof. One can see that the surface 6 has a local parametrization Y (s, t) satisfying

(3)

Ys(s, 0)= cosβ(s)(−sinα(s)e1+ cosα(s)e2)+ sinβ(s)e3,

Yt(s, 0)= cosα(s)e1+ sinα(s)e2,

∇Yt Yt = 0.

If we set
Ys(s, t)= Ys1(s, t)e1+ Ys2(s, t)e2+ Ys3(s, t)e3,

Yt(s, t)= Yt1(s, t)e1+ Yt2(s, t)e2+ Yt3(s, t)e3,

by solving the equation ∇Yt Yt = 0 with the initial condition

Yt(s, 0)= cosα(s)e1+ sinα(s)e2,

we have

Yt1(s, t)= cosα(s), Yt2(s, t)= sinα(s), Yt3(s, t)= 0.

Moreover, from ∇Yt Ys =∇Ys Yt , we can see that Ysi satisfies the equations

∂Ys1
∂t
=
∂Yt1
∂s
=−α′(s) sinα(s),

∂Ys2
∂t
=
∂Yt2
∂s
= α′(s) cosα(s),

∂Ys3
∂t
=
∂Yt3
∂s
+ (Ys1Yt2− Ys2Yt1)= sinα(s)Ys1− cosα(s)Ys2
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with the initial condition

Ys1(s, 0)=− cosβ(s) sinα(s), Ys2(s, 0)= cosβ(s) cosα(s), Ys3(s, 0)= sinβ(s).

By solving this system of equations, we get

Ys1(s, t)=− cosβ(s) sinα(s)− tα′(s) sinα(s),

Ys2(s, t)= cosβ(s) cosα(s)+ tα′(s) cosα(s),

Ys3(s, t)= sinβ(s)− t cosβ(s)− 1
2 t2α′(s).

By direct computations, we can see that the minimal surface (2) can be written as

β ′(s)+ t
(
α′(s)β ′(s) cosβ(s)−α′′(s) sinβ(s)

)
+

t2

2
(
α′(s)β ′(s) sinβ(s)+α′′(s) cosβ(s)

)
= 0.

Therefore we have β ′(s) = 0 and α′′(s) = 0, that is, β(s) = b and α(s) = as + c
for some constants a, b, c.

When a 6= 0, relocating the surface6 by an isometry in Nil3, we may assume that

α(s)= as and Y (0, 0)=
(cos b

a
, 0, 0

)
.

Then, since

e1 =
∂

∂x
−

y
2
∂

∂z
, e2 =

∂

∂y
+

x
2
∂

∂z
, e3 =

∂

∂z
,

we have

Ys(s, 0)=− cos b sin(as) e1+ cos b cos(as) e2+ sin b e3

=− cos b sin(as) ∂
∂x
+ cos b cos(as) ∂

∂y

+

(
sin b+ y

2
cos b sin(as)+ x

2
cos b cos(as)

)
∂

∂z
,

Yt(s, t)= cos(as) e1+ sin(as) e2

= cos(as) ∂
∂x
+ sin(as) ∂

∂y
+

(
−

y
2

cos(as)+ x
2

sin(as)
)
∂

∂z
.

Integrating the components of Ys(s, 0) with initial data Y (0, 0)= ((cos b)/a, 0, 0),
we have

Y (s, 0)=
(1

a
cos b cos(as), 1

a
cos b sin(as),m

s
4a
(1+ cos(2b)+ 4a sin b)

)
.
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Then integrating the components of Yt(s, t) with initial data Y (s, 0), we have

Y (s, t)=
(

t cos(as)+ 1
a

cos b cos(as),

t sin(as)+ 1
a

cos b sin(as), s
4a
(1+ cos(2b)+ 4a sin b)

)
.

Noting that

Y (s, t)=
(

t cos(as), t sin(as), s
4a
(1+ cos(2b)+ 4 sin b)

)
,

we can see that Y is a parametrization of either the helicoid

tan λz =
y
x

where λ=
4a2

1+ cos(2b)+ 4a sin b

if 1+ cos(2b)+ 4a sin b 6= 0, or the plane z = 0 if 1+ cos(2b)+ 4a sin b = 0.
When a = 0 and cos b 6= 0, we may assume up to isometries that α(s)= 0 and

Y (0, 0)= (−tan b, 0, 0). Then

Ys(s, 0)= cos b e2+ sin b e3 = cos b ∂
∂y
+

(
sin b+

x
2

cos b
)
∂

∂z
,

Yt(s, t)= e1 =
∂

∂x
−

y
2
∂

∂z
,

and a similar computation as above gives

Y (s, t)=
(
t − tan b, s cos b,−1

2 st cos b+ 1
2 s sin b

)
,

which is a parametrization of the hyperbolic paraboloid z =−xy/2. When a = 0
and cos b = 0, we have

Ys(s, 0)= e3, Yt(s, t)= e1 =
∂

∂x
−

y
2
∂

∂z

and Y (s, t) is a parametrization of the xz-plane if we set Y (0, 0)= (0, 0, 0). �

Theorem 2.3. If 6 is a minimal surface in Nil3 ruled by geodesics, then up to the
isometries in Nil3, 6 is a part of the horizontal plane z= 0, the vertical plane y= 0,
a helicoid tan(λz)= y/x, λ 6= 0 or a hyperbolic paraboloid z =−xy/2.

Proof. If there is a point p ∈ 6 at which Tp6 is transversal to the fibers, then 6
is transversal to the fibers in a neighborhood of p. Therefore, from the argument
following Lemma 2.1, the ruling geodesics through any points in the neighborhood
must be horizontal. Then by Lemma 2.2 the neighborhood coincides with a part
of the helicoids, the hyperbolic paraboloid or the xy-plane up to the isometries in
Nil3. Now since the tangent spaces at every point of these surfaces are transversal
to fibers, the whole 6 must be a part of one of these surfaces.
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On the other hand, if the tangent space Tp6 is tangent to the fibers at every
point p ∈6, then e3 is tangent to 6. Relocating 6 by an isometry of Nil3, we may
assume that (0, 0, 0) ∈6 and that 6 is tangent to the plane y = 0 at (0, 0, 0). So
6 is ruled by the fibers and has a ruled parametrization X (s, t) = (x(s), y(s), t)
satisfying x(0) = y(0) = 0, y′(0) = 0 and x ′(0) = 1. The mean curvature of this
parametrized surface can be easily computed to be

x ′′(s)y′(s)− x ′(s)y′′(s)
(x ′(s)2+ y′(s)2)3/2

.

Solving the equation x ′′(s)y′(s)− x ′(s)y′′(s)= 0 with the above initial conditions,
we have y(s)= 0, which implies that 6 is a part of the vertical plane y = 0. �

We remark that the mean curvature formula of the cylinder over curves in the
xy-plane is given in p. 22 of [Inoguchi et al. 2000], and that characterizations of
these cylinders in terms of the harmonicity of the tangential Gauss maps are given
in [Sanini 1997].

By the above theorem, we know that the ruled minimal surfaces in Nil3 are
congruent to the surfaces given in the theorem, which are all ruled by horizontal
geodesics. In fact, the vertical plane y= 0 is also ruled by vertical geodesics, that is,
fibers, and this is the only doubly ruled surface among the surfaces in Theorem 2.3.
Noting that isometries in Nil3 always move fibers to fibers, we can see that the
ruled minimal surfaces in Nil3 always have horizontal ruling geodesics.

Ruled minimal surfaces as limits of helicoids. Consider the (generic) helicoids

Hλ : y− x tan(λz)= 0

and the point pλ(rλ, 0, 0) on the x-axis, where rλ =
√

2/λ. The isometry which
sends x-axis to itself and sends the origin to pλ is given by the left translation by
(rλ, 0, 0), that is,

(x, y, z) 7→ (rλ, 0, 0) ? (x, y, z)=
(

x + rλ, y, z+ rλ
2

y
)
.

If we pull back Hλ via this isometry, then pλ is moved to the origin and the equation
of the pullback of Hλ becomes

y− (x + rλ) tan
(
λz+

√
2λ
2

y
)
= 0.

Now let µ= 1/rλ =
√
λ/2. Then the above equation can be written as

z =− y
2µ
+

1
2µ2 tan−1

(
µy

µx+1

)
.
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Using the Taylor expansion of tan−1(x), we see that this is equivalent to

z =− xy
2
+ O(µ)

in a fixed-size box around the origin when µ is sufficiently small. This function
converges uniformly to z =−xy/2 as µ goes to 0, which shows that the pointed he-
licoids (Hλ, pλ) converge (in the Hausdorff sense) to the exceptional ruled minimal
surface z+ xy/2= 0:

(Hλ, pλ)→ {z+ xy/2= 0} as λ→ 0+ .

On the other hand, one can easily check that

(Hλ, 0)→ horizontal plane as λ→∞,

(Hλ, 0)→ vertical plane as λ→ 0.

Therefore all ruled minimal surfaces in Nil3 are either helicoids or limits of se-
quences of them.

Straight line geodesics. We characterize the geodesics that are straight lines in the
Euclidean sense and give another proof of the result in [Bekkar and Sari 1992]
mentioned in Section 1.

Proposition 2.4. Let γ (t)= (x(t), y(t), z(t)) be a geodesic in Nil3.

(1) If γ ′(0) is perpendicular to the fiber, then γ (t) is a straight line everywhere
perpendicular to the fibers.

(2) If γ ′(0) is parallel to the fiber, then γ (t) is a straight line everywhere parallel
to the fibers.

Proof. The following equation of geodesics is given in [Inoguchi et al. 1999], but
we derive it here again for self-completeness. Note first that

γ ′ = x ′ ∂
∂x
+ y′ ∂

∂y
+ z′ ∂

∂z
= x ′e1+ y′e2+

(
z′+ 1

2(x
′y− xy′)

)
e3.

Then we have

∇γ ′γ
′
= x ′′e1+ y′′e2+

(
z′+ 1

2(x
′y− xy′)

)′e3

+ x ′∇γ ′e1+ y′∇γ ′e2+
(
z′+ 1

2(x
′y− xy′)

)
∇γ ′e3

=
(
x ′′+ y′(z′+ 1

2(x
′y− xy′))

)
e1+

(
y′′− x ′(z′+ 1

2(x
′y− xy′))

)
e2

+
(
z′+ 1

2(x
′y− xy′)

)′e3.

Hence γ (t)= (x(t), y(t), z(t)) is a geodesic if and only if
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(4)

x ′′+ y′
(
z′+ 1

2(x
′y− xy′)

)
= 0,

y′′− x ′
(
z′+ 1

2(x
′y− xy′)

)
= 0,(

z′+ 1
2(x
′y− xy′)

)′
= 0.

Note that the straight line (a, b, ct + d) parallel to the fiber is a geodesic. Now,
suppose 〈γ ′(0), e3〉 = 0. Then, since 〈γ ′(0), e3〉 =

(
z′+ 1

2(x
′y− xy′)

)
(0)= 0 and

since z′+ 1
2(x
′y−xy′) is a constant function, from the geodesic equation (4) or by the

so-called conservation lemma [O’Neill 1983, p. 152], we have z′+ 1
2(x
′y−xy′)= 0

for all t . Moreover, the geodesic equation (4) gives x ′′(t)= y′′(t)= 0, that is, x(t)
and y(t) are linear functions of t and consequently from the geodesic equation (4)
again, we have

z(t)=− 1
2(x
′(0)y(0)− x(0)y′(0))t + c

for a constant c. Now it is easy to see that γ (t) is perpendicular to the fibers every-
where.

If γ ′(0) is parallel to the fiber, then the fiber through γ (0) is an image of a geo-
desic, and from the uniqueness of the geodesic, we have γ (t)= (x(0), y(0), at+b)
for constants a, b which is parallel to the fiber everywhere. �

Proposition 2.5. Suppose the straight line δ(t)= (a1t + b1, a2t + b2, a3t + b3) is
a geodesic in Nil3. Then δ′(0)= (a1, a2, a3) is either perpendicular or parallel to
the fiber. Moreover, if δ′(0) is perpendicular to the fiber, then δ(t) is perpendicular
to the fiber everywhere and if δ′(0) is parallel to the fiber, then δ(t) is parallel to
the fiber everywhere.

Proof. In the proof of the above Proposition 2.4, one can see that in order for the
straight line δ(t) to be a geodesic, it should be that a3 = −

1
2(a1b2 − a2b1). The

claims follow easily from this fact. �

Now we can also say that every ruled minimal surface in Nil3 is ruled by geodesics
which are also straight lines. We remark that it was shown in [Bekkar and Sari
1992] that if the surface is ruled by geodesics that are also straight lines then the
surface must be a part of the planes, helicoids or hyperbolic paraboloids. However,
in view of Theorem 2.3, we can see that the “straight line” condition is redundant.
On the other hand, one may get Theorem 2.3 by applying the aforementioned result
together with Lemma 2.1 and Proposition 2.4.

3. Another characterization of ruled minimal surfaces in H3

We consider surfaces in H3 whose mean curvature is zero with respect to both
metrics g and gL and show that they must be one of (a part of) the above mentioned
surfaces, that is, planes, helicoids and hyperbolic paraboloids.
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A Lorentzian connection. Let us consider the left-invariant Lorentzian metric

gL = dx2
+ dy2

−
(
dz+ 1

2(y dx − x dy)
)2

on H3 and let 〈 · , · 〉 be the Lorentzian inner product. Let e1, e2 and e3 be the same
as the ones given in Section 2. It is easy to show that they are orthonormal with
respect to the Lorentzian metric gL as well, that is, 〈ei , e j 〉 = 0 if i 6= j and

〈e1, e1〉 = 〈e2, e2〉 = 1, 〈e3, e3〉 = −1.

Let D be the Levi-Civita connection for the metric gL .

Proposition 3.1. We have Dei ei = 0 for i = 1, 2, 3, and

De1 e2 =−De2 e1 =
1
2 e3, De1 e3 = De3 e1 =

1
2 e2, De2 e3 = De3 e2 =−

1
2 e1.

Proof. It is known that the Koszul formula

2〈∇V W, X〉 = V 〈W, X〉+W 〈X, V 〉− X〈V,W 〉

−〈V, [W, X ]〉+ 〈W, [X, V ]〉+ 〈X, [V,W ]〉

holds; see, for instance, [O’Neill 1983]. Since [e1, e2] = e3, [e2, e3] = [e3, e1] = 0,
one has 〈De1 e2, e1〉 = 0, 〈De1 e2, e2〉 = 0, 2〈De1 e2, e3〉 = 〈e3, [e1, e2]〉 = 〈e3, e3〉 =

−1 and De1 e2 =
1
2 e3. Since

〈De1 e3, e1〉= 0, 〈De1 e3, e3〉= 0, 2〈De1 e3, e2〉= 〈e3, [e2, e1]〉= 〈e3,−e3〉= 1,

one has De1 e3 =
1
2 e2. One can check the others in the same manner. �

Lorentzian exterior product. For tangent vectors

v = a1e1+ a2e2+ a3e3, w = b1e1+ b2e2+ b3e3

in Nil31, the Lorentzian exterior product v×L w is computed as

v×L w =

∣∣∣∣∣∣
e1 e2 −e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3− a3b2)e1+ (a3b1− a1b3)e2+ (a2b1− a1b2)e3,

which is orthogonal to both v and w. One can easily see that v×L w = 0 if and
only if v and w are linearly dependent.

Zero mean curvature equation. Let 6 be a graph of a function z = f (x, y) in H3

and consider the parametrization r(x, y)= (x, y, f (x, y)) of 6. Set

p = fx +
y
2
, q = fy −

x
2
.
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If 6 is minimal, that is, the mean curvature is zero in Nil3, the function f satisfies
the minimal surface equation

(1+ q2) fxx − 2pq fxy + (1+ p2) fyy = 0.

For the derivation of this equation, see for example [Inoguchi et al. 2000].
In this section, we will derive an equation for the mean curvature of the graph

6 to be zero with respect to the Lorentzian metric gL . First, let us recall some
definitions. A point z ∈ 6 is called spacelike if the induced metric on Tz6 is
Riemannian, timelike if the induced metric is Lorentzian and lightlike if the induced
metric has rank 1. We will derive the equation when 6 is spacelike, that is, every
point of 6 is a spacelike point. The case when 6 is timelike is almost identical.
Note that when z ∈6 is lightlike, one cannot define the mean curvature.

Now let 6 be a spacelike graph of a function z = f (x, y). Note first that
p2
+ q2 < 1 since the graph is spacelike. We now compute the first fundamental

form I and the second fundamental form II of 6. Since

rx = (1, 0, fx)= e1+ pe3, ry= (0, 1, fy)= e2+ qe3

and
〈rx , rx 〉 = 1− p2,

〈rx , ry〉 = −pq,

〈ry, ry〉 = 1− q2,

one has
E = 〈rx , rx 〉 = 1− p2,

F = 〈rx , ry〉 = −pq,

G = 〈ry, ry〉 = 1− q2.

Since rx ×L ry =−pe1−qe2− e3, the unit normal vector field n to the graph is

n= 1
W
(−pe1− qe2− e3), W =

√
1− (p2

+ q2) .

Since the directional derivatives of p and q , ei (p) and ei (q), are computed as

e1(p)=
(
∂

∂x
−

y
2
∂

∂z

)(
fx +

y
2

)
= fxx ,

e1(q)=
(
∂

∂x
−

y
2
∂

∂z

)(
fy −

x
2

)
= fxy −

1
2 ,

e2(p)=
(
∂

∂y
+

x
2
∂

∂z

)(
fx +

y
2

)
= fxy +

1
2 ,

e2(q)=
(
∂

∂y
+

x
2
∂

∂z

)(
fy −

x
2

)
= fyy,
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one has
Drx rx = D(e1+pe3)(e1+ pe3)= pe2+ fxx e3,

Dry rx =−
p
2

e1+
q
2

e2+ fxy e3,

Dry ry =−qe1+ fyy e3.

Then one has the following coefficients of the second fundamental form II:

l = 〈Drx rx , n〉 = 1
W
(−pq + fxx),

m = 〈Dry rx , n〉 = 1
W

( p2

2
−

q2

2
+ fxy

)
,

n = 〈Dry ry, n〉 = 1
W
(pq + fyy).

Now the mean curvature H of the spacelike graph 6 is computed as

H = 1
2

lG− 2m F + nE
EG− F2 .

Then, since

lG− 2m F + nE

=
1
W

[
(−pq + fxx)(1− q2)+

( p2
−q2

2
+ fxy

)
pq + (pq + fyy)(1− p2)

]
=

1
W
[
(1− q2) fxx + 2pq fxy + (1− p2) fyy

]
,

one can see that the mean curvature of the graph z = f (x, y) of a function f (x, y)
is zero if and only if

(1− q2) fxx + 2pq fxy + (1− p2) fyy = 0.

When the graph 6 is timelike, one has the same equation.

Zero mean curvature surface.

Theorem 3.2. Let 6 be a surface in H3. If the mean curvature of 6 is zero with
respect to both metrics g and gL , then up to the isometries in Nil3, 6 is contained
in one of these surfaces:

• the horizontal plane z = 0;

• the vertical plane y = 0;

• a helicoid tan(λz)= y/x , λ 6= 0;

• a hyperbolic paraboloid z =−xy/2.
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Proof. Suppose first that 6 has a point around which it can be represented as
a graph of a function of (x, y), say, z = f (x, y). Consider the vector field
X = −qe1 + pe2. Since X = −qe1 + pe2 = −q rx + pry , it is tangent to 6.
Since the vector N = rx × ry = −pe1 − qe2 − e3 is orthogonal to 6 and since
N × e3 =−qe1+ pe2 = X , X is orthogonal to both N and e3. Then one has

∇X X =
(
q
(

fxy −
1
2

)
− p fyy

)
e1+

(
p
(

fxy +
1
2

)
− q fxx

)
e2.

Now, since the mean curvature of 6 ⊂ H3 is zero with respect to both g and gL ,
one has

(1+ q2) fxx − 2pq fxy + (1+ p2) fyy = 0,(5)

(1− q2) fxx + 2pq fxy + (1− p2) fyy = 0.(6)

Subtracting the two equations, one has

(7) q2 fxx − 2pq fxy + p2 fyy = 0

and then one has finally by (7),

X ×∇X X = (−qe1+ pe2)×
[(

q
(

fxy −
1
2

)
− p fyy

)
e1+

(
p
(

fxy +
1
2

)
− q fxx

)
e2
]

= (q2 fxx − 2pq fxy + p2 fyy)e3 = 0.

Now, since X and ∇X X have the same direction, the integral curve of X passing
through a point in 6 is a geodesic, and since X is orthogonal to e3, the geodesic is
orthogonal to the fiber. Hence the surface 6 is a horizontally ruled minimal surface
in Nil3.

If the surface 6 has no point around which 6 is represented as the graph
of f (x, y), then it is a vertical cylinder over a curve in the xy-plane and has a
parametrization

X (s, t)= (x(s), y(s), t),

with x(0)= y(0)= 0. By repeating the arguments in Theorem 2.3, one can show
that the surface is isometric to the vertical plane y = 0. Now this completes the
proof. �

Remark. If we add (5) and (6), we have fxx + fyy = 0, that is, if a graph of a
function z = f (x, y) in H3 satisfies the condition of Theorem 3.2, f must be a
harmonic function. This fact is true for the three-dimensional Lorentzian space L3

and is the motivation of [Kim et al. 2009b]. We think it is a nontrivial fact and
would like to find applications of this fact in future study.
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G-BUNDLES OVER ELLIPTIC CURVES
FOR NON-SIMPLY LACED LIE GROUPS AND

CONFIGURATIONS OF LINES IN RATIONAL SURFACES

MANG XU AND JIAJIN ZHANG

We study the relation between the moduli space of flat G-bundles over a
fixed elliptic curve 6 and the moduli space of rational surfaces with G-
configurations containing 6 as a fixed anticanonical curve, where G is a
non-simply laced, compact, simple and simply connected Lie group. Our
method is to reduce G to a simply laced maximal subgroup G′.

1. Introduction

This paper is a continuation of our earlier study, briefly recapitulated below, on the
identification between the moduli space of flat G-bundles over a fixed elliptic curve
6 and the moduli space of rational surfaces with G-configurations containing 6 as
an anticanonical curve. For the case of G = En , the rational surfaces are exactly del
Pezzo surfaces, and the identification was predicted by a duality argument in physics
and proved in [Looijenga 1976; Donagi 1997; 1998; Friedman et al. 1997]. The
essential reason for this identification in this case is the existence of an En-structure
on del Pezzo surfaces [Demazure et al. 1980; Manin 1974], which turns out to be
related to Gosset polytopes [Lee 2010; 2012].

This structure on rational surfaces was extended to the cases An and Dn in
[Leung 2000]. Starting from Leung’s result, we obtained in [Leung and Zhang
2009a] an analogous identification for all simply laced Lie groups G. In [Leung
et al. 2012; Leung and Zhang 2009b], we extended this identification further to
the non-simply laced cases and the affine Kac–Moody Ẽn case. The method in
that last paper consists in reducing non-simply laced cases to simply laced cases,
by considering a non-simply laced Lie group G as the fixed subgroup of a bigger
simply laced group G ′, under the action of the outer automorphism group of G ′.

In this paper, we consider another reduction. From Lie theory (see [Bourbaki
2005], for example), a non-simply laced Lie group G is uniquely determined by

Xu is partially supported by National Natural Science Foundation of China (grant 11126264). Zhang
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a simply laced maximal subgroup G ′ determined by the long roots of G. Hence
it is natural to apply our earlier results for the simply laced cases in [Leung and
Zhang 2009a] to the current situation. In this way, we establish the identification
between flat G-bundles over a fixed elliptic curve 6 and rational surfaces with
6 as an anticanonical curve for non-simply laced Lie groups G (G 6= F4), by
considering the maximal simply laced subgroup G ′ determined by the long roots
of G. Unfortunately, this method is not very effective for the case G = F4. In the
following, we assume that G 6= F4. Similar to the simply laced cases, we define
G-surfaces and rational surfaces with G-configurations (see Definitions 5, 12,
and 16). Let Out(G ′) be the finite group defined in Proposition 2. Our result is this:

Theorem 1 (Propositions 10, 14 and 19). Let 6 be an elliptic curve with identity
element 0 ∈6, and let G be any simple, compact, simply connected Lie group of
Bn,Cn or G2 type. Denote by SG

6 the moduli space of the pairs (S, 6), where S is a
G-surface such that 6 ∈ |− KS|. Denote by MG

6 the moduli space of flat G-bundles
over 6.

(i) SG
6 can be embedded into MG

6 as an open dense subset.

(ii) This embedding can extend to an isomorphism from SG
6 onto MG

6 by including
all rational surfaces with G-configurations, and this gives us a natural and
explicit compactification SG

6 of SG
6 .

This study is motivated by a certain duality in physics. When G = En is
considered as a simple subgroup of E8 × E8, these G-bundles are related to the
duality between F-theory and string theory. Among other things, this duality
predicts the identification between the moduli of flat En-bundles over a fixed elliptic
curve 6 and the moduli of del Pezzo surfaces with the fixed anticanonical curve
6. For more details, one can see [Donagi 1997; 1998; Friedman et al. 1997]. Our
result can be considered as a test of this duality for other Lie groups.

As an application, this identification provides us with an intuitive explanation for
MG
6 . We also provide an interesting geometric realization of root system theory, and

we can see very clearly how the Weyl group acts on the moduli space of (marked)
flat G-bundles over 6.

Notation. Let G be a compact, simple and simply connected Lie group. We
preserve the notation of in [Leung and Zhang 2009a], which is as follows.

r(G) the rank of G 3(G) the root lattice
R(G) the root system 3c(G) the coroot lattice
Rc(G) the coroot system 3w(G) the weight lattice
W (G) the Weyl group ad(G) the adjoint group of G (= G/C(G))
T (G) a maximal torus 1(G) the set of simple roots of G
C(G) the center of G Out(G) the outer automorphism group of G
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Recall that the outer automorphism group of G is defined as the quotient of the
automorphism group of G by its inner automorphism group. As is well-known, it
is isomorphic to the diagram automorphism group of the Dynkin diagram of G.

When there is no danger of confusion, we can omit the letter G.

2. Reductions to the simply laced cases

Let G be a simple, compact and simply connected Lie group. Then G is classified
into the following 7 types according to its Lie algebra.

(1) An-type, G = SU(n+ 1);

(2) Bn-type, G = Spin(2n+ 1);

(3) Cn-type, G = Sp(n);

(4) Dn-type, G = Spin(2n);

(5) En-type, n = 6, 7, 8;

(6) F4-type;

(7) G2-type.

Among these, An, Dn and En are called of simply laced type, while Bn,Cn, F4 and
G2 are called of non-simply laced type. An, Bn,Cn, Dn are called classical Lie
groups, while En, F4 and G2 are called exceptional Lie groups.

From now on, we always assume that G is a compact, simple, simply connected
Lie group of non-simply laced type, that is, of type Bn,Cn, F4,G2. There are two
natural approaches to reduce these situations to the simply laced cases. One is
embedding G into a simply laced Lie group G ′′ such that G is the subgroup fixed by
the outer automorphism group of G ′′. Another is taking the simply laced subgroup
G ′ of maximal rank.

In [Leung and Zhang 2009b] we explained the first reduction. In this paper we
concentrate on the second.

Proposition 2 [Bourbaki 2005]. There exists canonically a simply laced Lie sub-
group G ′ of maximal rank of G determined by the long roots of G, such that G ′ and
G share a common maximal torus. There is a short exact sequence

1→W (G ′)→W (G)→ Out(G ′)→ 1.

This exact sequence is split, that is,

W (G)∼=W (G ′)nOut(G ′).

We write the moduli space of flat G-bundles on 6 as MG
6 .

Corollary 3. MG
6
∼=MG ′

6 /Out(G ′).
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Proof. Let T be the common maximal torus of G and G ′. Then

MG
6
∼= Hom(π1(6),G)/ad(G)∼= Hom(π1(6), T )/W (G)∼= T × T/W (G).

Similarly, MG ′
6
∼= T × T/W (G ′). Therefore

MG
6
∼= T × T/W (G)∼= (T × T/W (G ′))/(W (G)/W (G ′))∼=MG ′

6 /Out(G ′). �

We defined in [Leung and Zhang 2009a] (rational) G ′-surfaces and rational
surfaces with G ′-configurations. Let SG ′

6 be the moduli space of G ′-surfaces
containing 6 as a fixed anticanonical curve. As shows in the same paper, we have
the following identification of moduli spaces

SG ′
6
∼=MG ′

6 .

Let Out(G ′) act on SG ′
6 via the above isomorphism. In the next section, we shall

see explicitly how Out(G ′) acts on SG ′
6 .

Thus we have a natural question: How can we define G-configurations on rational
surfaces when G is non-simply laced, in such a way that SG

6
∼= SG ′

6 /Out(G ′)? We
answer this question in the next section.

Remark 4 [Bourbaki 2005; Humphreys 1978]. We give the construction, the root
system, and the finite group Out(G ′) of G ′ for non-simply laced Lie group G in
each case. We also give the Dynkin diagrams of G and G ′.

(1) For G = Spin(2n+ 1), we take G ′ = Spin(2n).
1(G ′)= {αi , i = 1, . . . , n}.
1(G)= {βi , i = 1, . . . , n}, where β1 = 1

2(α2−α1), β2 = α1, βi = αi , i = 3, . . . , n.
Out(G ′) is the group Z2 that exchanges the two spin representations of Spin(2n). In
fact, Out(G ′)={1, ρ}, where ρ(αi )=αi , i = 3, . . . , n, ρ(α1)=α2, and ρ(α2)=α1.

>Bn Dn
βn βn−1 β2 β1 αn αn−1 α3

α2

α1

(2) For G = Sp(n), we take G ′ = SU(2)n .
1(G ′)= {αi , i = 1, . . . , n}.
1(G)= {βi , i = 1, . . . , n}, where βi = 1

2(αi −αi+1), i = 1, . . . , n− 1, βn = αn .
Out(G ′) is the symmetry group Sn of the n copies of SU(2) in G ′.

<Cn An
1

β1 β2 βn−1 βn α1 α2 αn−1 αn

(3) For G = F4, we take G ′ = Spin(8).
1(G ′)= {αi , i = 1, . . . , 4}.
1(G)={βi , i=1, . . . , 4}, where β1=α2, β2=α3, β3= 1

2(α4−α3), β4= 1
2(α1−α4).
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Out(G ′) is the triality group S3 that permutes the three 8-dimensional representations
of Spin(8).

>F4 D4
β1 β2 β3 β4 α1 α2 α3

α4

(4) For G = G2, we take G ′ = SU(3).
1(G ′)= {αi , i = 1, 2}.
1(G)= {βi , i = 1, 2}, where β1 = α1, β2 =−1/3(α1+α2).
Out(G ′) is the group Z2 that exchanges the 3-dimensional representation of SU(3)
with its dual. In fact, Out(G ′) is generated by −1 ∈ Aut(3(G ′)).

>G2 A2
β1 β2 α1 α2

In the following we let 6 be a fixed elliptic curve with the identity element 0,
and we fix a primitive d-th root of Jac(6) ∼= 6 (equivalently, a level d structure
on 6), where d = 2 for G = Dn, Bn , d = 9− n for G = En , and d = n + 1 for
G = An,Cn,G2, respectively; see [Leung and Zhang 2009a] for the ADE cases.
Recall from the same reference (for instance) that for any compact, simple and
simply connected Lie group H , we have

MH
6
∼= (3c(H)⊗6)/W (H),

where MH
6 is the moduli space of flat H -bundles over 6.

3. Flat G-bundles over elliptic curves and rational surfaces: the non-simply
laced cases

In this section, we study case by case the G-bundles over elliptic curves and
corresponding rational surfaces for a non-simply laced Lie group G (G 6= F4).

3.1. Bn-bundles (n ≥ 2). According to the last section, for G = Spin(2n+ 1) we
take G ′ = Spin(2n)⊆ G.

Let S be a Dn surface containing 6 as a smooth anticanonical curve. Recall
from [Leung and Zhang 2009a] that S is a blow-up of F1 at n points x1, . . . , xn on
6 that are in general position,1 with corresponding exceptional classes l1, . . . , ln .
Let f and s be the classes of fibers and the section in F1. The Picard group of S is
isomorphic to H 2(S,Z), which is a lattice with basis s, f, l1, . . . , ln . The canonical
class is K =−(2s+ 3 f −∑n

i=1 li
)
.

We know from [ibid.] that the set

{x ∈ H 2(S,Z) | x · K = x · f = 0}
1This means that the xi are all distinct and that xi + x j 6= 0 for all i, j .
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is a root lattice of Dn type. We take a simple root system of G ′ = Dn as

1(Dn)= {α1 = l1− l2, α2 = f − l1− l2, α3 = l2− l3, . . . , αn = ln−1− ln}.
Let ρ be the generator of Out(G ′) ∼= Z2, such that ρ(α1) = α2, ρ(α2) = α1 and
ρ(αi )= αi for i = 3, . . . , n.

Recall that a Dn-configuration on S is an n-tuple ζ = (e1, . . . , en)where ei = lσ(i)
or f − lσ(i) such that

∑
ei · s ≡ 0 (mod 2). Equivalently, a Dn-configuration on S

is an n-tuple ζ = (e1, . . . , en) such that after blowing down en, . . . , e1 successively,
we obtain F1 with a fibration F1→ P1 defined by the fiber f .

On the other hand, the exceptional system ζ ′ = (e′1, . . . , e′n) where e′i = lσ(i)
or f − lσ(i) such that

∑
e′i · s ≡ 1 (mod 2) also determines 3(Dn). The condition∑

e′i · s ≡ 1 (mod 2) is equivalent to the fact that after blowing down e′n, . . . , e′1
successively, we obtain P1×P1 with a fibration P1×P1→ P1 defined by f . It is
easy to see that the map which interchanges l1 and f − l1, and preserves all other li

and f − li , plays the role of the generator of Out(Dn)∼= Z2. Therefore we have the
following natural definition of Bn-configurations.

Let S be a rational surface with a ruling f : S→P1 [ibid.], and 6 ∈ |−KS|, such
that f |6 :6→ P1 is a double covering with 0 ∈6 as a ramification point. Recall
that an exceptional system of length n on S is an n-tuple ζ = (e1, e2, . . . , en) where
the ei ’s are exceptional divisors such that ei · e j =−δi j , ei · KS =−1, 1≤ i, j ≤ n.
A divisor defining the ruling f : S→ P1 is still denoted by f , which is effective of
arithmetic genus 0.

Definition 5. A Bn-configuration on S is an exceptional system of length n (if
exists) ζ = (e1, e2, . . . , en) with ei · f = 0 for all i , such that we can consider S as
a blow-up of F1 or P1 ×P1 at n points x1, x2, . . . , xn on 6, with corresponding
exceptional divisors e1, e2, . . . , en . When such a ζ exists, we call S a (rational)
surface with a Bn-configuration. Let ρ ∈ Out(Dn) be the diagram automorphism.
Define ρ(ζ ) := ( f − e1, e2, . . . , en).

Lemma 6. Let ζ = (e1, e2, . . . , en) be a Bn-configuration. Then

ρ(ζ )= ( f − e1, e2, . . . , en)

is also a Bn-configuration.

Proof. By [Leung and Zhang 2009a], if after blowing down en, . . . , e1 successively
we obtain F1, then after blowing down en, . . . , e2, f − e1 we shall obtain P1×P1.
Conversely, if after blowing down en, . . . , e1 successively we obtain P1×P1, then
after blowing down en, . . . , e2, f − e1 we shall obtain F1. The result follows. �

When x1, . . . , xn ∈ 6 are in general position (footnote 1), the surface S in
Definition 5 is called a Bn-surface.
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Lemma 7. Let S be a Bn-surface.

(i) Any Bn-configuration on S consists of exceptional curves.

(ii) The Weyl group W (Dn) acts on all Bn-configurations with two orbits and acts
on each orbit simply transitively.

(iii) These two orbits are exchanged by Out(Dn).

(iv) The group W (Dn)nOut(Dn) acts on all Bn-exceptional systems simply tran-
sitively

Proof. Let S be a Bn-surface with a ruling f : S→ P1. Then by definition, S is
a blow-up of F1 or P1 ×P1 at n points x1, x2, . . . , xn ∈ 6. Let l1, . . . , ln be the
corresponding exceptional divisors. Then we have

{ x ∈ Pic(S) | x2 = x K =−1, x f = 0 }
= { l1, . . . , ln, f − l1, . . . , f − ln }.

Thus a Bn-configuration must be of the form: ζ = (e1, . . . , en) where ei = lσ(i)
or ei = f − lσ(i) and σ is a permutation of 1, . . . , n. Obviously, x1, . . . , xn are in
general position if and only if all the li and f − li are exceptional curves. Therefore,
(i) is true.

(iii) This follows from Definition 5.

(iv) This is a consequence of (ii) and (iii).

(ii) Let (e1, e2, . . . , en) be a Bn-configuration on S. Then ei = lσ(i) or f − lσ(i) for
1≤ i ≤ n, where σ is a permutation of {1, . . . , n}. The Weyl group W (Dn) acts as
the group generated by permutations of the n pairs {(li , f − li ) | i = 1, . . . , n} and
interchanges of li and f − li simultaneously in two pairs in {(li , f − li ) | 1≤ i ≤ n}.
Therefore W (Dn) acts on the set

{
(e1, . . . , en) |

∑
ei · s ≡ 0 (mod 2)

}
simply

transitively. Similarly the condition
∑

ei · s ≡ 1 (mod 2) determines another orbit
on which W (Dn) acts simply transitively. �

Remark 8. Although we know the Bn-configurations on S, unfortunately, we can
not single out the Bn-root system within the Picard lattice Pic(S) ∼= H 2(S,Z).
However, according to Section 2, we have a root system of Bn type consisting of
Q-divisors on S:

R(Bn),
{±( 1

2 f − li
)
,±(li − l j ),±( f − li − l j )

∣∣ i 6= j, 1≤ i, j ≤ n
}
.

It is easy to see that the corresponding root lattice is

3(Bn),
{

x ∈ Z
( 1

2 f
)⊕ n⊕

i=1
Z(li )

∣∣ x f = x K = 0
}

and
R(Bn)= {x ∈3(Bn) | x2 =−2 or x2 =−1}.
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The set of simple roots of Bn is

1(Bn)=
{
β1 = 1

2 f − l1, βi = li−1− li , i = 2, . . . , n
}
.

Recall that the Weyl group W (Bn) is the subgroup of Aut(3(Bn)) generated by
the reflections σα with α ∈ R(Bn).

Corollary 9. Let R(Bn) be defined as above. Then W (Bn) acts on the set of all
Bn-configurations simply transitively.

Let SBn
6 be the moduli space of pairs (S, 6) where S is a Bn-surface (so the

blown-up points x1, x2, . . . , xn are in general position), and 6 ∈ |−KS|, where
two pairs (S, 6) and (S′, 6) are said to be isomorphic to each other if there is
an isomorphism f : S −→∼ S′ such that f |6 = id6 . Denote MBn

6 the moduli space
of flat Bn-bundles over 6. Let SBn

6 be the (marked) moduli space of the triples
(S, 6, ζ = (l1, . . . , ln)). By Lemma 7, we have

SBn
6
∼= SBn

6 /W (Bn)∼= SBn
6 /(W (Dn)nOut(Dn)).

Let (S, 6, ζ = (l1, . . . , ln)) ∈ SBn
6 be as above. For all α = a0

2 f +∑ ai li ∈
3(Bn) ⊆ Pic(S)Q = Pic(S)⊗Q with ai ∈ Z, i = 0, . . . , n, the invertible sheaf
induced by restriction to 6

O6(α) := O6(a0(0))⊗O
(∑

ai li
)|6

is well-defined. Moreover, deg(O6(α))= α · (−KS)= 0. Then

O6(α) ∈ Jac(6)∼=6.
Thus there is a morphism

φ : SBn
6 → Hom(3(Bn),6),

which is induced by the restriction: for all α ∈3(Bn)⊆ Pic(S)Q,

φ((S, 6, ζ ))(α) := O6(α) ∈ Jac(6)∼=6.

Proposition 10. (i) SBn
6 is embedded into MBn

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SBn
6
∼=MBn

6 ,

by including all rational surfaces with Bn-configurations.

Proof. Similarly as in [Leung and Zhang 2009a], we have

MBn
6
∼= Hom(3(Bn),6)/W (Bn).
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Then by Lemma 7 or Corollary 9, since two different sets of simple roots differ by
a W (Bn)-action, we just need to show that the map

φ : SBn
6 ↪→ Hom(3(Bn),6)

is an open dense embedding and that φ can be extended to an isomorphism φ from

the natural compactification SBn
6 of SBn

6 to Hom(3(Bn),6):

φ : SBn
6 −→∼ Hom(3(Bn),6).

The map φ is injective. For this, we take a simple root system of Dn as

β1 = 1
2 f − l1, βi = li−1− li for 2≤ i ≤ n.

Then the restriction induces an element u ∈ Hom(3(Bn),6). For

β = a0
( 1

2 f
)+∑ ai li ∈3(Bn),

let xi = li ∩6 and p = u(β) ∈6. Then we have an equation∑
ai xi = p,

where + is the addition on the elliptic curve 6. Taking β = βi , i = 1, . . . , n
respectively, and setting pi = u(βi ) accordingly, we obtain the following system of
linear equations {−x1 = p1,

xi−1− xi = pi , i = 2, . . . , n.

Obviously, the solution of this system of linear equations exists uniquely for given
pi with 1≤ i ≤ n.

The open dense property of the image of the embedding φ is obvious.
Finally, the statement (ii) comes from the existence of the solutions to the above

system of linear equations. �

3.2. Cn-bundles. We take G ′= An
1 ⊆G =Cn , where Cn = Sp(n) and A1= SU(2).

Note that Out(An
1)
∼= Sn .

Let S be a rational surface with an An
1-configuration that contains 6 as a smooth

anticanonical curve. Recall from [Leung and Zhang 2009a] that S is a (successive)
blow-up of P2 at 2n points x1, y1, . . . , xn, yn on 6, with corresponding exceptional
classes l1, l ′1, . . . , ln, l ′n , where xi + yi = 0 ∈6. The Picard group of S is H 2(S,Z),
which is a lattice with basis h, l1, l ′1, . . . , ln, l ′n . The canonical divisor is K =
−(3h−∑n

i=1(li + l ′i )
)
.

A simple root system of An
1 can be taken as

1(A1
n)= {αi = li − l ′i | 1≤ i ≤ n}.
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When the above simple root system is chosen, the pair (S, 6) determines a
homomorphism u ∈ Hom(3(G ′),6) which is given by the restriction map

u(α) := O(α)|6.
Lemma 11. Let u ∈ Hom(3(G ′),6) be an element corresponding to a triple
(S, 6, ζ ), where S is a surface with an An

1-configuration ζ = (l1, l ′1, . . . , ln, l ′n).
Let ρ ∈ Out(G ′) ∼= Sn . Then ρ · u corresponds to the triple (S, 6, ρ(ζ )), where
ρ(ζ )= (lρ(1), l ′ρ(1), . . . , lρ(n), l ′ρ(n)).
Proof. Since u is the restriction map: αi 7→ O(αi )|6 , u(αi )= O(li − l ′i )|6 = xi − yi

for i = 1, . . . , n. Hence ρ · u(αi )= u(αρ(i))= xρ(i)− yρ(i). Therefore we have the
result, since xρ(i)+ yρ(i) = 0. �

Thus, it is natural to define a Cn-configuration on S to be the form

ζ = ((l1, l ′1), . . . , (ln, l ′n)).

More precisely, denote S the blow-up of P2 at n pairs of points (x1,−x1), . . . ,
(xn,−xn) on 6, with n pairs of corresponding exceptional divisors (l1, l ′1), . . . ,
(ln, l ′n), where li and l ′i are the exceptional divisors corresponding to the blowing
up at xi and −xi , respectively.

Definition 12. A Cn-exceptional system on S is an n-tuple of pairs

((e1, e′1), . . . , (en, e′n))

where (ei , e′i ) = (lσ(i), l ′σ(i)) or (l ′σ(i), lσ(i)), i = 1, . . . , n, and σ is a permuta-
tion of 1, . . . , n. A Cn-configuration on S is a Cn-exceptional system ζCn =
((e1, e′1), . . . , (en, e′n)) such that after blowing down successively e′n, en, . . . , e′1, e1,
we obtain the surface P2.

It can be shown that x1, x2, . . . , xn ∈6⊆P2 are in general position (in the sense
of footnote 1) if and only if any Cn-exceptional system on S consists of smooth
exceptional curves. Such a surface is called a Cn-surface.

Lemma 13. (i) Let S be a surface with a Cn-configuration. The group W (An
1)nSn

acts on all Cn-exceptional systems on S simply transitively.

(ii) Let S be a Cn-surface. The group W (An
1)n Sn acts on all Cn-configurations

on S simply transitively.

Proof. It suffices to prove (i). The Weyl group W (An
1)n Sn acts as the group

generated by permutations of the n pairs {(li , l ′i ) | i = 1, . . . , n} and interchanging of
li and l ′i for each i . From this, we see that W (An

1)n Sn acts on all Cn-configurations
simply transitively. �
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Denote by SG ′
6 the moduli space of G ′ = An

1-surfaces with a fixed anticanonical
curve 6, and by SG ′

6 the natural compactification by including all rational surfaces
with An

1-configurations. From [Leung and Zhang 2009a] we know that there is an
isomorphism φ : SG ′

6 −→∼ MG ′
6 .

Denote by SCn
6 the moduli space of pairs (S, 6), where S is a Cn-surface, that

is, S is the blow-up of P2 at 2n points ±x1, . . . ,±xn ∈6 such that x1, . . . , xn are
in general position, and two pairs (S, 6) and (S′, 6) are said to be isomorphic to
each other if there is an isomorphism f : S −→∼ S′ such that f |6 = id6 . Denote by
MCn
6 the moduli space of flat Cn-bundles over 6.

Proposition 14. (i) SCn
6 is embedded into MCn

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SCn
6
∼=MCn

6 ,

by including all rational surfaces with Cn-configurations.

Proof. By Corollary 3, MCn
6
∼=M

An
1

6 /Sn ∼= S
An

1
6 /Sn . Therefore it is sufficient to show

that SCn
6
∼= S

An
1

6 /Sn . This follows from Lemma 13. �

Remark 15. Obviously, this description in Proposition 14 coincides with the well-
known description of flat Cn-bundles over elliptic curves [Friedman et al. 1997].
A flat Cn = Sp(n)-bundle over 6 corresponds to n pairs (unordered) of points
(xi ,−xi ), i = 1, . . . , n on 6, uniquely up to isomorphism. One pair (xi ,−xi ) will
determine exactly one point on CP1, since the rational map determined by the linear
system |2(0)| induces a double covering from 6 onto CP1. The moduli space of flat
SU(2)-bundles over 6 is isomorphic to P1. So the moduli space of flat Cn-bundles
over 6 is precisely isomorphic to Sn(CP1)= CPn , the ordinary projective n space.

3.3. G2-bundles. For G = G2, we take G ′ = A2 = SU(3).
Let S be a rational surface with an A2-configuration (see [Leung and Zhang

2009a]) containing 6 as a smooth anticanonical curve. Recall [ibid.] that S is
a (successive) blow-up of P2 at 3 points x1, x2, x3 on 6, with corresponding
exceptional classes l1, l2, l3, where x1+ x2+ x3 = 0 ∈6. Let h be the class of lines
in P2. The Picard group of S is Pic(S)∼= H 2(S,Z), which is a lattice with basis
h, l1, l2, l3. The canonical line bundle K =−(3h−∑3

i=1 li
)
.

Recall that
{x ∈ H 2(S,Z) | x · K = x · h = 0}

is a root lattice of A2 type. We can take a simple root system of A2 as

1(A2)= {α1 = l1− l2, α2 = l2− l3}.
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Let ρ ∈ Out(A2) ∼= Z2 be the generator of order 2 (we can take ρ = −1, that is,
ρ(αi )=−αi ).

Denote by SA2
6 the moduli space of A2-surfaces with a fixed anticanonical curve

6, and SA2
6 the natural compactification by including all rational surfaces with

A2-configurations. From [Leung and Zhang 2009a] we know that SA2
6 −→∼ MA2

6 .
Let φ be the isomorphism.

Definition 16. Let S be as immediately above. A G2-exceptional system on S is an
ordered triple (e1, e2, e3) of exceptional divisors such that ei · e j = 0= ei · h, i 6= j
and y1+y2+y3= 0 where yi = ei∩6. A G2-configuration on S is a G2-exceptional
system ζG2 = (e1, e2, e3) such that we can consider S as a blow-up of P2 at these 3
points y1, y2, y3 on 6, with corresponding exceptional divisors e1, e2, e3. When S
has a G2-configuration (of course 6 ∈ |− KS|), we call S a (rational) surface with
a G2-configuration.

When x1, x2, x3 are nonzero distinct points on 6, any G2-exceptional system on
S consists of exceptional curves. Such a surface is called a G2-surface. These 3
points x1, x2, x3 ∈6 are said to be in general position.

Let S, S′ be two surfaces with G2-configurations ζ, ζ ′ respectively. We say
that (S, 6, ζ ) ∼= (S′, 6, ζ ′) if there exists an isomorphism f : S −→∼ S′ such that
f |6 :6→6 is the identity or the involution of 6.

A triple (S, 6, ζ ) determines an element u of Hom(3(A2),6) by the restriction

u(α) := O(α)|6.
Lemma 17. Let u ∈ Hom(3(A2),6) correspond to the triple (S, 6, ζ ), where S
is a surface with a G2-configuration ζ = {l1, l2, l3}. Then ρ · u corresponds to
(S′, 6, ζ ′), where S′ is another surface with a G2-configuration ζ ′= (l ′1, l ′2, l ′3) with
l ′i ∩6 =−xi . Moreover, we have (S, 6, ζ )∼= (S′, 6, ζ ′).
Proof. Since u is the restriction map: αi 7→ O(αi )|6 , u(α1)= O(l1− l2)|6 = x1−x2,
u(α2)= x2−x3. Hence ρ ·u= v⇔ v(αi )=−u(αi )⇔ x1−x2= y2− y1, x2−x3=
y3− y2 ⇔ yi =−xi .

Next we prove the second assertion. We first fix an embedding ι : 6 ↪→ P2

such that (the image of) 6 is defined by the equation zy2 = 4x3 + axz2 + bz3

and 0 = [0, 1, 0] ∈ 6, where [x, y, z] is the coordinate system of P2. Then the
automorphism of P2 defined by [x, y, z] 7→ [x,−y, z] induces an isomorphism f
of the triple (0, 6,P2), which is the involution on 6 that maps x ∈6 to −x . On
the other hand, for x1, x2, x3 ∈6, we have obviously (−x1)+ (−x2)+ (−x3)= 0.
Thus we have the isomorphism φ defined by f . �

Lemma 18. (i) Let S be a surface with a G2-configuration. The Weyl group
W (A2) acts on all G2-exceptional systems on S simply transitively.
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(ii) Let S be a G2-surface. The Weyl group W (A2) acts on all G2-configurations
on S simply transitively.

(iii) Let [(S, 6, ζ )] be the isomorphism class of (S, 6, ζ ). Then W (A2)nZ2 acts
on the set [(S, 6, ζ )] simply transitively.

Proof. Let f : (S′, 6, ζ ′)−→∼ (S, 6, ζ ). If f |6 = id6 , then S = S′ and f = idS . In
this case, W (A2) acts on the G2-configurations on S simply transitively. On the
other hand, by Lemma 17, the involution on 6 can be extended to an isomorphism
from S′ onto S. In this case the involution − id6 acts on the set [(S, 6, ζ )]. Thus
the result follows. �

Proposition 19. Let SG2
6 be the moduli space of pairs (S, 6) where S is a G2-

surface, and MG2
6 be the moduli space of flat G2-bundles over 6. Then we have

(i) SG2
6 is embedded into MG2

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SG2
6
∼=MG2

6 ,

by including all rational surfaces with G2-configurations.

Proof. By Corollary 3 we have MG2
6
∼=MA2

6 /Out(A2)∼= SA2
6 /Z2. Thus it suffices

to show that SG2
6
∼= SA2

6 /Z2. This follows from Lemma 18. �

Remark 20 [Friedman et al. 1997]. A SU(3)-bundles over 6 is determined by a
section of H 0(O6(3(0))), which is a meromorphic function with the only pole 0 of
order at most 3. Let x, y be the local coordinates of 6 around 0, then this function
is a0+a1x+a2 y up to nonzero constant. Thus the moduli space MA2

6 is isomorphic
to P2. By the proof of Lemma 17, the function a0+a1x+ (−a2)y defines the same
G2-bundle over 6. Thus we have MG2

6
∼=WP2

1,1,2.

Remark 21. For the F4 case, unfortunately, the method used in this paper is not
very effective. We can not find a suitable definition for F4-configurations. Thus in
this case, the method used in [Leung and Zhang 2009b] is the better one.
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curves and del Pezzo surfaces with singularities of type A”, Math. Ann. 352:4 (2012), 805–828.
MR 2892453 Zbl 1242.14036

[Looijenga 1976] E. Looijenga, “Root systems and elliptic curves”, Invent. Math. 38:1 (1976), 17–32.
MR 57 #6015 Zbl 0358.17016

[Manin 1974] Y. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical
Library 4, North-Holland, Amsterdam, 1974. MR 57 #343 Zbl 0277.14014

Received September 25, 2011.

MANG XU

DEPARTMENT OF MATHEMATICS

SOUTHWEST JIAOTONG UNIVERSITY

CHENGDU, 610031
CHINA

xumang@home.swjtu.edu.cn

JIAJIN ZHANG

DEPARTMENT OF MATHEMATICS

SICHUAN UNIVERSITY

CHENGDU, 610065
CHINA

jjzhang@scu.edu.cn

http://dx.doi.org/10.1007/BFb0085872
http://dx.doi.org/10.1007/BFb0085872
http://msp.org/idx/mr/82d:14021
http://msp.org/idx/zbl/0415.00010
http://www.intlpress.com/AJM/p/1997/1_2/AJM-1-2-214-223.pdf
http://msp.org/idx/mr/99d:14010
http://msp.org/idx/zbl/0927.14006
http://msp.org/idx/arx/alg-geom/9702002
http://online.kitp.ucsb.edu/online/geom/donagi1/oh/donagi2.ps
http://msp.org/idx/mr/2000a:14015
http://msp.org/idx/zbl/0963.14004
http://dx.doi.org/10.1007/s002200050154
http://msp.org/idx/mr/99g:14052
http://msp.org/idx/zbl/0919.14010
http://msp.org/idx/mr/81b:17007
http://msp.org/idx/zbl/0447.17001
http://msp.org/idx/arx/1001.4174
http://dx.doi.org/10.4153/CJM-2011-063-6
http://msp.org/idx/mr/2932172
http://msp.org/idx/zbl/06023029
http://msp.org/idx/arx/math/0009192
http://dx.doi.org/10.1112/jlms/jdp053
http://dx.doi.org/10.1112/jlms/jdp053
http://msp.org/idx/mr/2011e:14018
http://msp.org/idx/zbl/1188.14025
http://dx.doi.org/10.1093/imrn/rnp101
http://dx.doi.org/10.1093/imrn/rnp101
http://msp.org/idx/mr/2011e:14019
http://msp.org/idx/zbl/1222.14023
http://dx.doi.org/10.1007/s00208-011-0661-4
http://dx.doi.org/10.1007/s00208-011-0661-4
http://msp.org/idx/mr/2892453
http://msp.org/idx/zbl/1242.14036
http://dx.doi.org/10.1007/BF01390167
http://msp.org/idx/mr/57:6015
http://msp.org/idx/zbl/0358.17016
http://www.sciencedirect.com/science/bookseries/09246509/4
http://msp.org/idx/mr/57:343
http://msp.org/idx/zbl/0277.14014
mailto:xumang@home.swjtu.edu.cn
mailto:jjzhang@scu.edu.cn


CONTENTS

Volume 261, no. 1 and no. 2

Anar Akhmedov, Mark C. Hughes and B. Doug Park: Geography of simply
connected nonspin symplectic 4-manifolds with positive signature 257

Paulo Antunes, Camille Laurent-Gengoux and Joana M. Nunes da Costa:
Hierarchies and compatibility on Courant algebroids 1

Cícero P. Aquino, Henrique F. de Lima and Marco A. L. Velásquez: A new
characterization of complete linear Weingarten hypersurfaces in real space
forms 33

Martín Argerami and Pedro Massey: Schur–Horn theorems in II∞-factors 283

Cédric Bonnafé and Raphaël Rouquier: Calogero–Moser versus Kazhdan–Lusztig
cells 45

Brian H. Bowditch: Coarse median spaces and groups 53

Jeongwook Chang with Seungsu Hwang and Gabjin Yun 395

Clifton Cunningham and Masoud Kamgarpour: Geometrization of continuous
characters of Z×p 95

Jingbo Dou and Changzheng Qu: Classification of positive solutions for an elliptic
system with a higher-order fractional Laplacian 311

Mingwen Fei and Huicheng Yin: Bound states of asymptotically linear Schrödinger
equations with compactly supported potentials 335

Roman Golovko: A note on Lagrangian cobordisms between Legendrian
submanifolds of R2n+1 101

Daniel Guan: Type I almost homogeneous manifolds of cohomogeneity one, III 369

Marcela Hanzer: The subrepresentation theorem for automorphic representations 389

Mark C. Hughes with Anar Akhmedov and B. Doug Park 257

Seungsu Hwang, Jeongwook Chang and Gabjin Yun: Variational characterizations
of the total scalar curvature and eigenvalues of the Laplacian 395

Jeffrey L. Jauregui: Fill-ins of nonnegative scalar curvature, static metrics, and
quasi-local mass 417

Masoud Kamgarpour with Clifton Cunningham 95

Young Wook Kim with Heayong Shin, Sung-Eun Koh, Hyung Yong Lee and
Seong-Deog Yang 477



512

Sung-Eun Koh with Heayong Shin, Young Wook Kim, Hyung Yong Lee and
Seong-Deog Yang 477

Camille Laurent-Gengoux with Paulo Antunes and Joana M. Nunes da Costa 1

Hyung Yong Lee with Heayong Shin, Young Wook Kim, Sung-Eun Koh and
Seong-Deog Yang 477

Henrique F. de Lima with Cícero P. Aquino and Marco A. L. Velásquez 33

Yi Liu, Yi Ni, Hongbin Sun and Shicheng Wang: On slope genera of knotted tori in
4-space 117

Álvaro Lozano-Robledo: Formal groups of elliptic curves with potential good
supersingular reduction 145

David Martínez Torres: Codimension-one foliations calibrated by nondegenerate
closed 2-forms 165

Pedro Massey with Martín Argerami 283

Dermot McCarthy: The trace of Frobenius of elliptic curves and the p-adic gamma
function 219

Yi Ni with Yi Liu, Hongbin Sun and Shicheng Wang 117

Igor Nikolaev: Operator algebras and conjugacy problem for the pseudo-Anosov
automorphisms of a surface 445

Joana M. Nunes da Costa with Paulo Antunes and Camille Laurent-Gengoux 1

B. Doug Park with Anar Akhmedov and Mark C. Hughes 257

Krzysztof Piszczek: (DN)-(�)-type conditions for Fréchet operator spaces 237

Changzheng Qu with Jingbo Dou 311

David Raske: Connected sums of closed Riemannian manifolds and fourth-order
conformal invariants 463

Raphaël Rouquier with Cédric Bonnafé 45

Heayong Shin, Young Wook Kim, Sung-Eun Koh, Hyung Yong Lee and
Seong-Deog Yang: Ruled minimal surfaces in the three-dimensional
Heisenberg group 477

Hongbin Sun with Yi Liu, Yi Ni and Shicheng Wang 117

Marco A. L. Velásquez with Cícero P. Aquino and Henrique F. de Lima 33

Shicheng Wang with Yi Liu, Yi Ni and Hongbin Sun 117

Mang Xu and Jiajin Zhang: G-bundles over elliptic curves for non-simply laced Lie
groups and configurations of lines in rational surfaces 497



513

Seong-Deog Yang with Heayong Shin, Young Wook Kim, Sung-Eun Koh and
Hyung Yong Lee 477

Huicheng Yin with Mingwen Fei 335

Gabjin Yun with Seungsu Hwang and Jeongwook Chang 395

Jiajin Zhang with Mang Xu 497



Guidelines for Authors

Authors may submit manuscripts at msp.berkeley.edu/pjm/about/journal/submissions.html
and choose an editor at that time. Exceptionally, a paper may be submitted in hard copy to
one of the editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://msp.berkeley.edu/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 261 No. 2 February 2013

257Geography of simply connected nonspin symplectic 4-manifolds with positive
signature

ANAR AKHMEDOV, MARK C. HUGHES and B. DOUG PARK

283Schur–Horn theorems in II∞-factors
MARTÍN ARGERAMI and PEDRO MASSEY

311Classification of positive solutions for an elliptic system with a higher-order
fractional Laplacian

JINGBO DOU and CHANGZHENG QU

335Bound states of asymptotically linear Schrödinger equations with compactly
supported potentials

MINGWEN FEI and HUICHENG YIN

369Type I almost homogeneous manifolds of cohomogeneity one, III
DANIEL GUAN

389The subrepresentation theorem for automorphic representations
MARCELA HANZER

395Variational characterizations of the total scalar curvature and eigenvalues of the
Laplacian

SEUNGSU HWANG, JEONGWOOK CHANG and GABJIN YUN

417Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass
JEFFREY L. JAUREGUI

445Operator algebras and conjugacy problem for the pseudo-Anosov automorphisms of
a surface

IGOR NIKOLAEV

463Connected sums of closed Riemannian manifolds and fourth-order conformal
invariants

DAVID RASKE

477Ruled minimal surfaces in the three-dimensional Heisenberg group
HEAYONG SHIN, YOUNG WOOK KIM, SUNG-EUN KOH, HYUNG YONG LEE

and SEONG-DEOG YANG

497G-bundles over elliptic curves for non-simply laced Lie groups and configurations of
lines in rational surfaces

MANG XU and JIAJIN ZHANG

0030-8730(201302)261:2;1-B

Pacific
JournalofM

athem
atics

2013
Vol.261,N

o.2


	 vol. 261, no. 2, 2013
	Masthead and Copyright
	Anar Akhmedov and Mark C. Hughes and B. Doug Park
	1. Introduction
	2. Branched covering construction
	3. Gluing self-diffeomorphisms of surfaces
	4. Generalized fiber sums
	5. Simply connected 4-manifolds with positive signature
	6. Upper bounds for the lower bound
	Acknowledgements
	References

	Martín Argerami and Pedro Massey
	1. Introduction
	2. Preliminaries
	3. Majorization in (N) and B(H) revisited
	4. Majorization in II-factors
	5. Schur–Horn theorems in II-factors
	References

	Jingbo Dou and Changzheng Qu
	1. Introduction
	2. Regularity 
	3. Radial symmetry and monotonicity
	4. Classification of positive solutions to system (4) with critical exponents 
	5. Equivalence of system (1) and system (4)
	Acknowledgements
	References

	Mingwen Fei and Huicheng Yin
	1. Introduction and statements of main results
	2. Existence of critical points for a modified nonlinear equation
	3. Solving a related constant coefficient problem
	4. The proof of 0=thm.161=1.1
	References

	Daniel Guan
	1. Introduction
	2. Preliminaries
	3. The complex structures of the type I almost homogeneous manifolds
	4. The Kähler structures
	5. Geodesic stability and existence of the Calabi extremal metrics
	6. Geodesic stability and strict slope stability
	6.1. 
	6.2. 
	6.3. 

	References

	Marcela Hanzer
	1. Introduction
	2. Preliminaries
	3. The theorem
	Acknowledgements
	References

	Seungsu Hwang and Jeongwook Chang and Gabjin Yun
	1. Introduction
	2. Variational properties
	3. Case of >0
	4. The first eigenvalue of the Laplacian
	Acknowledgement
	References

	Jeffrey L. Jauregui
	1. Introduction
	2. Fill-ins of nonnegative type and the inner mass
	2.1. Zero type data and static vacuum metrics
	2.2. Data of positive type
	2.3. Bartnik inner mass

	3. The interval of positivity
	3.1. Inner mass function

	4. Quasilocal mass
	4.1. Physical remarks

	5. Examples
	5.1. Example m() function

	6. An algebraic operation on quasi-local mass functionals
	6.1. Examples of m1 * m2

	7. Concluding remarks and open problems
	Appendix A. Conformal transformation of curvatures
	Appendix B. Geometric measure theory
	Appendix C. Deformations of scalar curvature near a boundary
	Acknowledgements
	References

	Igor Nikolaev
	Introduction
	A. Conjugacy problem
	B. Pseudo-Anosov automorphisms
	C. AF C*-algebras
	D. Motivation
	E. Model example
	F. Invariants of torus automorphisms obtained from the operator algebras
	G. AF C*-algebra A (@pseudo-Anosov case)
	H. Main results
	I. How can the invariants (, [I], K),  and  be calculated?
	J. Structure of the paper

	1. The jacobian of a measured foliation
	2. Equivalent foliations are stably isomorphic
	3. Proofs
	4. Examples, open problems and conjectures
	Acknowledgments
	References

	David Raske
	1. Introduction
	2. Preliminaries
	3. Connected sums and the Paneitz constant
	4. Connected sums and the Paneitz invariants
	References

	Heayong Shin and Young Wook Kim and Sung-Eun Koh and Hyung Yong Lee and Seong-Deog Yang
	1. Introduction
	2. Ruled minimal surfaces in `39`42`"613A``45`47`"603ANil3
	3. Another characterization of ruled minimal surfaces in H3
	Acknowledgments
	References

	Mang Xu and Jiajin Zhang
	1. Introduction
	2. Reductions to the simply laced cases
	3. Flat G-bundles over elliptic curves and rational surfaces: the non-simply laced cases
	3.1. Bn-bundles (n2)
	3.2. Cn-bundles
	3.3. G2-bundles

	Acknowledgments
	References

	Index
	Guidelines for Authors
	Table of Contents

