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GEOGRAPHY OF SIMPLY CONNECTED NONSPIN
SYMPLECTIC 4-MANIFOLDS WITH POSITIVE SIGNATURE

ANAR AKHMEDOV, MARK C. HUGHES AND B. DOUG PARK

We construct new families of closed simply connected nonspin irreducible
symplectic 4-manifolds with positive signature that are interesting with re-
spect to the geography problem.

1. Introduction

Given a closed smooth 4-manifold M , let e(M) and σ(M) denote the Euler charac-
teristic and the signature of M , respectively. We define

χh(M)=
e(M)+ σ(M)

4
and c2

1(M)= 2e(M)+ 3σ(M).

Note that e(M) and σ(M) are in turn completely determined by χh(M) and c2
1(M),

that is,

e(M)= 12χh(M)− c2
1(M) and σ(M)= c2

1(M)− 8χh(M).

When M is a complex surface, χh(M) is the holomorphic Euler characteristic of M
while c2

1(M) is the square of the first Chern class of M . The classical “geography
problem” in algebraic geometry, originally posed by Persson [1981], asks which
ordered pairs of positive integers can be realized as the pair (χh(M), c2

1(M)) for
some minimal complex surface M of general type. The related “botany problem”,
which is a lot more difficult, asks for the classification of all minimal complex
surfaces with a given pair of invariants (χh, c2

1).
The symplectic geography problem, first posed in [McCarthy and Wolfson

1994], asks which ordered pairs of integers can be realized as (χh(M), c2
1(M)) for

some minimal symplectic 4-manifold M . There has been steady progress on the
symplectic geography problem in recent years and the problem has been completely
solved for simply connected minimal symplectic 4-manifolds with negative signature
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(cf. [Akhmedov et al. 2010a; Akhmedov and Park 2010a; Park and Szabó 2000]).
The symplectic botany problem, that is, the classification problem for minimal
symplectic 4-manifolds with a given pair of invariants (χh, c2

1), seems to be an
intractable problem at the moment. However, we now know that most ordered
pairs are realized by infinitely many pairwise nondiffeomorphic simply connected
minimal symplectic 4-manifolds; see [Gompf and Stipsicz 1999].

In this paper, we will focus our attention on the symplectic geography problem
for simply connected minimal symplectic 4-manifolds with nonnegative signature.
Unlike the negative signature case, the existing literature [Akhmedov and Park 2008;
2010b; Akhmedov et al. 2010b; Li and Stipsicz 2002; Niepel 2005; Park 2002;
2003; Stipsicz 1998; 1999] is far from capturing all possible (χh, c2

1) coordinates,
even if we allow nontrivial fundamental groups. The main goal of this paper
is to summarize the current state of our knowledge when the simply connected
symplectic 4-manifolds are required to be nonspin, or equivalently, are required
to have odd intersection form. By Freedman’s classification theorem [1982] for
simply connected topological 4-manifolds, our problem is then equivalent to finding
a minimal symplectic 4-manifold M with signature σ that is homeomorphic to
kCP2 # (k − σ)CP2, where k is any odd positive integer and σ is any integer
satisfying 0 ≤ σ ≤ k. Here, CP2 is the complex projective plane, CP2 is the
underlying smooth 4-manifold CP2 equipped with the opposite orientation, and
kCP2 # (k− σ)CP2 is the connected sum of k copies of CP2 and k− σ copies of
CP2. Note that a simply connected symplectic 4-manifold M has odd b+2 (M), and
hence our integer k must be odd.

A closed 4-manifold with signature σ corresponds to a point (χh, c2
1) on the line

c2
1 = 8χh + σ . For technical reasons, it will be convenient to fix the signature and

deal with each of these lines separately. It is now well-known (see [Akhmedov and
Park 2008; Park 2003]) that for each signature σ ≥ 0, there exists a constant λ(σ)
depending only on σ such that any point (χh, c2

1) on the line c2
1= 8χh+σ satisfying

χh ≥ λ(σ) is realized by at least one simply connected nonspin minimal symplectic
4-manifold and infinitely many simply connected nonspin irreducible nonsymplectic
4-manifolds (Definition 13 in Section 6). In other words, kCP2 # (k − σ)CP2 is
homeomorphic to at least one minimal symplectic 4-manifold and infinitely many
pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, provided that k
is odd and k≥2λ(σ)−1 for some constant λ(σ) that depends only on the signature σ .

The main result of this paper is the explicit formulation of the smallest values of
λ(σ) that are currently known to the authors. In [Akhmedov and Park 2008], small
λ(σ) values are given when 0 ≤ σ ≤ 4, and these values are listed in Table 1. In
this paper, we will concentrate on the cases when σ ≥ 5 (see Table 2 in Section 6).
For example, when 0≤ σ ≤ 100, we realize more than 20,000 new (χh, c2

1) points
that were not covered by the results in [Akhmedov and Park 2008; Park 2003].



GEOGRAPHY OF 4-MANIFOLDS WITH POSITIVE SIGNATURE 259

σ 0 1 2 3 4

λ(σ)≤ 25 25 24 27 26

Table 1. Results from [Akhmedov and Park 2008].

If a 4-manifold M is simply connected, then 2χh(M)− 1 = b+2 (M) ≥ σ(M).
Thus we obtain an a priori lower bound χh ≥ d(σ + 1)/2e, where

dxe =min{k ∈ Z | k ≥ x}

is the ceiling function. It is tempting to conjecture that our a posteriori lower bound
for χh can eventually be improved down to λ(σ)= d(σ + 1)/2e, which will result
in the complete solution of the geography problem for simply connected nonspin
minimal symplectic 4-manifolds.

Our paper is organized as follows. In Section 2, we present a branched covering
construction of Lefschetz fibrations with positive signature, which is a generalization
of Stipsicz’s constructions [1998; 1999]. In Section 3, we show how to glue together
semifree cyclic group actions on closed 2-manifolds, and then we use these actions to
construct new examples of Lefschetz fibrations with positive signature. In Section 4,
we show how to obtain simply connected 4-manifolds from nonsimply connected
Lefschetz fibrations by performing generalized fiber sums with certain 4-manifolds
that were constructed in [Akhmedov and Park 2010a]. In Section 5, we implement
the strategies from previous sections to construct new families of simply connected
irreducible 4-manifolds with positive signature. In Section 6, we compute the lower
bounds λ(σ) for many small values of σ .

2. Branched covering construction

Let 6g be a closed 2-dimensional manifold of genus g > 0. Let ζ :6g→6g be an
orientation-preserving self-diffeomorphism of 6g with q fixed points {y1, . . . , yq}.
Assume that

ζ p
= ζ ◦ · · · ◦ ζ︸ ︷︷ ︸

p

= id,

for some positive integer p ≥ 2, and that ζ generates a semifree Z/p action on
6g. If ζ∗ : H1(6g;Z)→ H1(6g;Z) is the induced homomorphism on the first
homology group, then we also assume that

(1) ζ p−1
∗
+ ζ p−2
∗
+ · · ·+ ζ∗+ id= 0

on H1(6g;Z), which is equivalent to 1 not being an eigenvalue of ζ∗. See Exam-
ples 3 and 5 below for some concrete examples of ζ .
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We will consider 6g ×6g as a symplectic 4-manifold equipped with a product
symplectic form ω̃ = pr∗1ω+ pr∗2ω, where ω is a symplectic volume form on 6g

and pr j :6g ×6g→6g ( j = 1, 2) is the projection map onto the j-th factor. For
each i = 1, . . . , p, let

0i = graph(ζ i )= {(x, ζ i (x)) | x ∈6g} ⊂6g ×6g.

Note that 0p is equal to the diagonal {(x, x) | x ∈ 6g}. The graphs 01, . . . , 0p

are symplectic submanifolds of 6g ×6g with respect to ω̃ (see Lemma 2.1 in
[Akhmedov and Park 2008]), and the graphs intersect at q points

{(y j , y j ) | j = 1, . . . , q}.

If we symplectically blow up 6g×6g at these q intersection points, then the proper
transform B of the union 01 ∪ · · · ∪0p consists of p disjoint genus g symplectic
submanifolds of (6g ×6g) # qCP2.

Let {γk | k = 1, . . . , 2g} be a basis for H1(6g;Z) and let {γ ` | ` = 1, . . . , 2g}
be the dual basis under the intersection product so that γk ·γ

`
= δ`k . If we introduce

the notation

[1] = [6g ×{pt}]+ [{pt′}×6g],

then the homology class of 0i is given by

[0i ] = [1] −

2g∑
k=1

γ k
× ζ i
∗
(γk).

Using (1), we can express the homology class of B as

[B] = p
(
[1] −

q∑
j=1

[E j ]

)
,

where E1, . . . , Eq are the exceptional spheres of the blowups. We also note that

c1((6g ×6g) # qCP2)= PD
(
(2− 2g)[1] −

q∑
j=1

[E j ]

)
,

where PD denotes the Poincaré duality isomorphism.
Since [B] is divisible by p, we may take the cyclic p-fold branched cover of

(6g×6g)#qCP2 that is branched along B. We will denote this branched covering
by β : X ζ

g,p,q → (6g ×6g) # qCP2. The total space X ζ
g,p,q inherits a symplectic
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structure from (6g ×6g) # qCP2, and we have

c1(X ζ
g,p,q)= β

∗

(
c1((6g ×6g) # qCP2)−

p−1
p

PD[B]
)

= β∗PD
(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)
.

The characteristic numbers of X ζ
g,p,q can be computed as follows.

e(X ζ
g,p,q)= pe((6g ×6g) # qCP2)− p(p− 1)e(6g)

= p((2− 2g)2+ q)− p(p− 1)(2− 2g)

= p(4g2
+ 2gp− 10g− 2p+ q + 6),

c2
1(X

ζ
g,p,q)= p

(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)2

= p(2(3− 2g− p)2− q(p− 2)2)

= p(−p2q + 8g2
+ 2p2

+ 8gp+ 4pq − 24g− 12p− 4q + 18),

σ (X ζ
g,p,q)=

1
3

(
c2

1(X
ζ
g,p,q)− 2e(X ζ

g,p,q)
)

=
1
3 p(−p2q + 2p2

+ 4gp+ 4pq − 4g− 8p− 6q + 6),

χh(X ζ
g,p,q)=

1
4

(
e(X ζ

g,p,q)+ σ(X
ζ
g,p,q)

)
=

1
12 p(−p2q + 12g2

+ 2p2
+ 10gp+ 4pq − 34g− 14p− 3q + 24).

Let ε : (6g×6g)#qCP2
→6g×6g be the blowdown map. Then the composition

of maps

(2) X ζ
g,p,q

β
−→ (6g ×6g) # qCP2 ε

−→6g ×6g
pr1
−→6g

gives a fibration of X ζ
g,p,q over 6g. A regular fiber of this fibration is a cyclic

p-fold branched cover of 6g that is branched over p points. Thus a regular fiber is
a closed surface of genus equal to

(3) 1
2(p

2
+ 2gp− 3p+ 2).

The proper transform of each graph 0i (i = 1, . . . , p) gives rise to a section of (2)
whose image is a genus g surface Si in X ζ

g,p,q with self-intersection equal to

[Si ]
2
=
〈
c1(X ζ

g,p,q), [Si ]
〉
− e(6g)

= 2g− 2+ 1
p

(
(3− 2g− p)[1] + (p− 2)

q∑
j=1
[E j ]

)
· [B]

= pq − 2g− 2p− 2q + 4.
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Lemma 1. Let f : X ζ
g,p,q → 6g denote the composition of maps in (2). Then f

is a relatively minimal Lefschetz fibration with pq critical points. Moreover, each
critical point of f corresponds to a nonseparating vanishing cycle.

Proof. Clearly the only singular fibers of f are { f −1(y j ) | j = 1, . . . , q}. We will
prove that each f −1(y j ) contains exactly p Lefschetz critical points. To describe
each f −1(y j ) explicitly, we will view X ζ

g,p,q as the minimal desingularization of
another branched cover that we will define below.

Let 0 = 01 ∪ · · · ∪0p. Since [0] = p[1] ∈ H2(6g ×6g;Z) is divisible by p,
we may take the cyclic p-fold branched cover of 6g×6g that is branched along 0.
We will denote this branched covering by β̂ : X̂ ζ

g,p,q →6g ×6g. The total space
X̂ ζ

g,p,q has q singular points, {β̂−1(y j , y j ) | j = 1, . . . , q}, each of which can be
locally modeled by

(4) {(x, y, z) ∈ C3
| z p
= x p

+ y p
}.

In these local coordinates, the singular point β̂−1(y j , y j ) corresponds to (0, 0, 0),
and a neighborhood of the singular point corresponds to the cyclic p-fold cover of
the (x, y)-plane that is branched over p complex lines that intersect transversely at
(0, 0).

Next let f̂ : X̂ ζ
g,p,q→6g denote the singular fibration given by the composition

X̂ ζ
g,p,q

β̂
−→6g ×6g

pr1
−→6g.

A regular fiber of f̂ is again a closed surface of genus equal to (3). There are
exactly q singular fibers { f̂ −1(y j ) | j = 1, . . . , q}. For each j = 1, . . . , q , note that
f̂ −1(y j )\{β̂

−1(y j , y j )} is a smooth and connected surface since it is the unbranched
cyclic p-fold cover of the once punctured surface ({y j }×6g) \ {(y j , y j )} coming
from a surjective homomorphism

(5) π1(({y j }×6g) \ {(y j , y j )})∼= F2g −→ Z/p ⊂ Sp,

where F2g is the free group with 2g generators and Sp is the symmetric group on p
symbols. Since Z/p is abelian, (5) can be factored as the composition

π1(({y j }×6g) \ {(y j , y j )})−→ π1(6g)−→ Z/p.

Thus the cover f̂ −1(y j ) \ {β̂
−1(y j , y j )} → ({y j }×6g) \ {(y j , y j )} can be viewed

as a restriction of the unbranched cyclic p-fold cover of the closed surface 6g. In
other words, f̂ −1(y j ) \ {β̂

−1(y j , y j )} can be embedded into the unbranched cyclic
p-fold cover of 6g. This implies that f̂ −1(y j ) \ {β̂

−1(y j , y j )} is diffeomorphic to
a surface of genus gp − p + 1 having p punctures, and f̂ −1(y j ) is a connected
surface that is smooth away from the point β̂−1(y j , y j ), which is a multiple point
of order p.
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Now recall from [Gompf and Stipsicz 1999; Némethi 1999] that X ζ
g,p,q is

the minimal desingularization of X̂ ζ
g,p,q . The standard algorithm for resolution

of singularities (see [Némethi 1999, Example 1.20(h)]) replaces each singular
point β̂−1(y j , y j ) of X̂ ζ

g,p,q having local model (4) with a closed surface of genus
1
2(p

2
− 3p+ 2) and self-intersection −p. This surface is just β−1(E j ), which is a

cyclic p-fold branched cover of the exceptional sphere E j branched over p points.
It follows that each singular fiber f −1(y j ) is the union of two closed surfaces that
intersect each other transversely at p distinct points. One of the surfaces is β−1(E j ),
and the other is a genus gp− p+ 1 surface of self-intersection −p, which is the
smooth completion of f̂ −1(y j )\{β̂

−1(y j , y j )}. The p transverse intersection points
between the two surfaces are exactly the p Lefschetz critical points of f that get
mapped to y j . Finally, comparing the sum of genera with (3), we observe that each
union of the two surfaces is obtained by replacing the annular neighborhoods of
p nonseparating circles in a regular fiber with p pairs of transversely intersecting
disks. This implies that all the vanishing cycles are nonseparating. �

Remark 2. We can verify the number of critical points of f by computing the
difference

e(X ζ
g,p,q)− e(regular fiber) · e(base)= pq.

We can split the singular fibers of f so that each new singular fiber contains only
one critical point (cf. [Harris and Morrison 1998; Takamura 2004]) but we do not
need to do so for our applications below.

Given a positive integer u, let ηu :6k→6g be a u-fold unbranched covering of
6g, where k = u(g− 1)+ 1. We pull back the branched covering

X ζ
g,p,q

β
−→ (6g ×6g) # qCP2 ε

−→6g ×6g

by the product map ηu1×ηu2 :6k1×6k2→6g×6g, where ui is a positive integer
and ki = ui (g − 1)+ 1 for each i = 1, 2. The total space of this pullback is a
new symplectic 4-manifold X ζ

g,p,q(u1, u2), which is a p-fold branched cover of
6k1 ×6k2 and a u1u2-fold unbranched cover of X ζ

g,p,q . The composition

fu1,u2 : X
ζ
g,p,q(u1, u2)−→6k1 ×6k2

pr1
−→6k1

gives a new relatively minimal Lefschetz fibration, where X ζ
g,p,q(1, 1) = X ζ

g,p,q

and f1,1 = f . A regular fiber of fu1,u2 is a u2-fold unbranched cover of the fiber of
f (or equivalently a p-fold branched cover of 6k2 branched along u2 p points) and
hence has genus equal to

1+ u2
2
(p2
+ 2gp− 3p).
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A section of f gives rise to a section of fu1,u2 whose image is a genus k1 surface
of self-intersection equal to

u1(pq − 2g− 2p− 2q + 4).

Since X ζ
g,p,q(u1, u2) is a u1u2-fold unbranched cover of X ζ

g,p,q , we have

e(X ζ
g,p,q(u1, u2))= u1u2 · e(X ζ

g,p,q), σ (X ζ
g,p,q(u1, u2))= u1u2 · σ(X ζ

g,p,q),

χh(X ζ
g,p,q(u1, u2))= u1u2 ·χh(X ζ

g,p,q), c2
1(X

ζ
g,p,q(u1, u2))= u1u2 · c2

1(X
ζ
g,p,q).

Example 3. Recall from Section 2 of [Akhmedov and Park 2008] that there exists
a semifree Z/(g + 1) action on 6g with 4 fixed points satisfying (1). Applying
the above machinery, we obtain a family of symplectic 4-manifolds X g

u1,u2 =

X ζ

g,g+1,4(u1, u2), where g, u1 and u2 are positive integers, satisfying

e(X g
u1,u2

)= 2u1u2(g+ 1)(3g2
− 5g+ 4),

σ (X g
u1,u2

)= 2
3 u1u2(g+ 1)(g2

+ 2g− 6),

χh(X g
u1,u2

)= 1
6 u1u2(g+ 1)(10g2

− 13g+ 6),

c2
1(X

g
u1,u2

)= 2u1u2(g+ 1)(7g2
− 8g+ 2).

For each triple of positive integers g, u1, u2, there exists a relatively minimal
Lefschetz fibration fu1,u2 : X g

u1,u2 → 6k1 such that the genus of a regular fiber is
equal to 1+ 1

2 u2(g+ 1)(3g− 2) and there is a section whose image is a surface of
genus k1 = u1(g− 1)+ 1 and self-intersection −2u1.

Remark 4. The 4-manifolds Xg, Xg(n) and X̃g(n2) in [Akhmedov and Park 2008]
are equal to X g

1,1, X g
n,1 and X g

n,n , respectively.

3. Gluing self-diffeomorphisms of surfaces

In light of the machinery in Section 2, it will be desirable to find lots of semifree
Z/p actions on closed surfaces. One way to produce such actions is to glue together
semifree Z/p actions on surfaces of low genera as we explain below.

Let v≥2 be an integer. For each i =1, . . . , v, let αi :6gi→6gi be an orientation-
preserving self-diffeomorphism of a closed surface of genus gi with qi fixed points
{yi,1, . . . , yi,qi }. Assume that each αi generates a semifree Z/p action on 6gi . For
each j = 1, . . . , qi , let ρi, j be the rotational number of αi at the fixed point yi, j

so that αi induces rotation by angle 2πρi, j/p in the tangent space at yi, j . The
rotational numbers are well-defined mod p and are relatively prime to p. They
satisfy (see [Nielsen 1937])

qi∑
j=1

1
ρi, j
≡ 0 (mod p),
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where 1/ρi, j denotes the multiplicative inverse of ρi, j in (Z/p)×. We can reverse
the signs of ρi,1, . . . , ρi,qi simultaneously by reversing the orientation of 6gi .

Now choose a single fixed point of αi for i = 1, v, and choose two fixed points
of αi for i = 2, . . . , v−1. Without loss of generality, we may choose y1,2, yv,1 and
yi,1, yi,2 for i = 2, . . . , v− 1. We remove small Z/p-equivariant neighborhoods of
these chosen fixed points and then glue the boundary circle at yi,2 to the boundary
circle at yi+1,1 for i = 1, . . . , v − 1. Such gluing of one-holed and two-holed
surfaces results in a closed surface of genus g =

∑v
i=1 gi . If ρi,2 =−ρi+1,1 for all

i = 1, . . . , v− 1, that is, the rotational numbers are negatives of each other at the
gluing points, then the restrictions of αi ’s to the punctured surfaces can also be
glued together to form an orientation-preserving self-diffeomorphism ζ :6g→6g

with q fixed points, where

q =−2(v− 1)+
v∑

i=1

qi .

We will say that ζ is an equivariant sum of α1, . . . , αv , and write ζ = α1 # · · · #αv .
In case when α1 = · · · = αv, we will write ζ = vα1 for short.

Example 5. For each odd integer p ≥ 3, there exists a semifree Z/p action on
6(p−1)/2 as follows. Consider 6(p−1)/2 as the quotient of a regular 2p-gon by
identifying the opposite sides. The rotation of the 2p-gon by angle 2π/p gives an
orientation-preserving self-diffeomorphism τp :6(p−1)/2→6(p−1)/2 with 3 fixed
points. The fixed points of τp are the center of the 2p-gon and the 2 points coming
from the vertices. The center of the 2p-gon has rotational number 1, and the other
2 fixed points both have rotational number −2.

We can find a basis of H1(6(p−1)/2;Z) such that the induced homomorphism
(τp)∗ : H1(6(p−1)/2;Z)→ H1(6(p−1)/2;Z) is represented by the (p−1)× (p−1)
matrix

(6)


0 · · · 0 −1

−1

Ip−2
...

−1

 ,
where Ip−2 is the identity (p− 2)× (p− 2) matrix. It is easy to check that this
matrix satisfies (1).

For each positive integer v, let ζ = vτp be the equivariant sum of v copies
of τp. (We glue along fixed points with rotational number −2, and we alternate
the orientations of the punctured 6(p−1)/2’s so that the rotational numbers are +2
and −2 at each gluing.) Then ζ : 6v(p−1)/2 → 6v(p−1)/2 generates a semifree
Z/p action on 6v(p−1)/2 with v + 2 fixed points. The induced homomorphism
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ζ∗ : H1(6v(p−1)/2;Z)→ H1(6v(p−1)/2;Z) satisfies (1) since it can be represented
by a block diagonal matrix each of whose blocks is conjugate to (6).

From the branched covering construction in Section 2, we obtain a family of
symplectic 4-manifolds W p,v

u1,u2 = Xvτp
v(p−1)/2,p,v+2(u1, u2), where p ≥ 3 is an odd

integer and v, u1, u2 are positive integers, satisfying

e(W p,v
u1,u2

)= pu1u2[(v
2
+ v)p2

− 2(v2
+ 3v+ 1)p+ v2

+ 6v+ 8],

σ (W p,v
u1,u2

)= 1
3 pu1u2(vp2

− 4v− 6),

χh(W p,v
u1,u2

)= 1
12 pu1u2[(3v2

+ 4v)p2
− 6(v2

+ 3v+ 1)p+ 3v2
+ 14v+ 18],

c2
1(W

p,v
u1,u2

)= pu1u2[(2v2
+ 3v)p2

− 4(v2
+ 3v+ 1)p+ 2v2

+ 8v+ 10].

Moreover, for each quadruple of positive integers p, v, u1, u2 with odd p ≥ 3,
we have a relatively minimal Lefschetz fibration fu1,u2 : W

p,v
u1,u2 → 6k1 such that

the genus of a regular fiber is equal to 1+ 1
2 pu2[(v + 1)p− v − 3] and there is

a section whose image is a surface of genus k1 = 1+ u1[−1+ v(p− 1)/2] and
self-intersection −u1v.

Note that c2
1(W

p,v
u1,u2)≤ 9χh(W

p,v
u1,u2), with equality if and only if p= 5 and v= 1.

If we view the quotient c2
1(W

p,v
u1,u2)/χh(W

p,v
u1,u2) as a function of p and v, then its

gradient vector is
−

24
(
(v3
+3v2

+v)p2
− (5v3

+16v2
+14v)p+4v3

+18v2
+22v+6

)(
(3v2+4v)p2−6(v2+3v+1)p+3v2+14v+18

)2

−
12
(
(p2
−4)(p−1)2v2

−12(p−1)2v+2p3
−14p2

+28p−4
)(

(3v2+4v)p2−6(v2+3v+1)p+3v2+14v+18
)2


When p ≥ 7 and v ≥ 1, both components of this gradient vector are negative and
hence c2

1(W
p,v

u1,u2)/χh(W
p,v

u1,u2) is decreasing as p and v increase. We observe that
limv→∞ c2

1(W
p,v

u1,u2)/χh(W
p,v

u1,u2)= 8, and

lim
p→∞

c2
1(W

p,v
u1,u2)

χh(W
p,v

u1,u2)
=

12(2v+ 3)
3v+ 4

≤
60
7
,

where the rational function 12(2v+ 3)/(3v+ 4) is decreasing for v ≥ 1. Therefore
most W p,v

u1,u2’s lie well below the Bogomolov–Miyaoka–Yau (BMY) line, c2
1 = 9χh .

Remark 6. According to Section 4.5 of [Luo 2000], there is a unique Z/3 action
on 6g with g+ 2 fixed points. It follows that W 3,2

u1,u2
is exactly equal to X2

u1,u2
in

Example 3. More generally, for each odd integer p≥ 5, we conjecture that W p,2
u1,u2 is

diffeomorphic to X p−1
u1,u2 in Example 3. We also conjecture that the 4-manifolds Zg,

Zg(n) and Z̃g(n2) in Section 3 of [Akhmedov and Park 2008] are diffeomorphic
to W 2g+1,1

1,1 , W 2g+1,1
n,1 and W 2g+1,1

n,n , respectively. In particular, we conjecture that
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W 5,1
1,1 , W 5,1

n,1 and W 5,1
n,n , lying on the BMY line c2

1 = 9χh , are diffeomorphic to
complex surfaces H = H(1), H(n) and H(n2) in [Chen 1991; Stipsicz 1998; 1999],
respectively.

4. Generalized fiber sums

Let 6b denote a closed Riemann surface of genus b > 0. Suppose f : X→6b is a
Lefschetz fibration with generic fiber F diffeomorphic to a closed Riemann surface
6a with genus a> 0. Assume that f is a relatively minimal Lefschetz fibration (i.e.,
no fiber contains a sphere of self-intersection −1) so that X is a minimal symplectic
4-manifold (Theorem 1.4 of [Stipsicz 2000]). Also assume that f has a section
whose image S in X has self-intersection d . From Theorem 10.2.18 in [Gompf and
Stipsicz 1999], X can be equipped with a symplectic structure such that both F
and S are symplectic submanifolds. From Proposition 8.1.9 in [Gompf and Stipsicz
1999], we have an exact sequence

(7) π1(F)−→ π1(X)
f∗
−→ π1(6b)−→ 1.

Let t > 0 be an integer. By symplectically resolving the intersection points, we
can find a symplectic genus ta+ b surface 6 ⊂ X representing the homology class
t[F] + [S] ∈ H2(X;Z) with self-intersection 2t + d . By taking t large enough, we
can assume that 2t + d ≥ 0. Let X̃ = X # (2t + d)CP2, where each of the 2t + d
symplectic blowups take place at points on 6 ⊂ X . The proper transform 6̃ ⊂ X̃ is
a symplectic submanifold with genus ta+ b and self-intersection 0. Note that we
have

e(X̃)= e(X)+ 2t + d,

σ (X̃)= σ(X)− 2t − d.

Lemma 7. Let ĩ : 6̃‖ ↪→ X̃ \ ν6̃ be the inclusion map of a parallel copy of 6̃ into
the complement of a tubular neighborhood ν6̃ in X̃ = X # (2t + d)CP2. Then we
have

(8)
π1(X̃ \ ν6̃)〈
ĩ∗(π1(6̃‖))

〉 = 1,

where 〈ĩ∗(π1(6̃
‖))〉 is the normal subgroup of π1(X̃ \ ν6̃) generated by the image

ĩ∗(π1(6̃
‖)).

Proof. Let i : 6‖ ↪→ X \ ν6 be the inclusion map of a parallel copy of 6. From
exact sequence (7), we deduce that π1(X)/〈i∗(π1(6

‖))〉 = 1. Since the blowups do
not effect the fundamental groups, we conclude that π1(X̃)/〈ĩ∗(π1(6̃

‖))〉 = 1. If
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2t + d > 0, then any meridian µ(6̃) of 6̃ in π1(X̃ \ ν6̃) bounds a disk that comes
from a punctured exceptional sphere. Hence π1(X̃ \ ν6̃)= π1(X̃) and (8) follows
from our last conclusion.

If 2t + d = 0, then X̃ = X , 6̃ =6, 6̃‖ =6‖, and ĩ = i . Any meridian µ(6) in
π1(X\ν6) is conjugate to a meridian of S. Since [F]·[S]=1, µ(6) is in the normal
subgroup generated by the generators of π1(F), which in turn lies in 〈i∗(π1(6

‖))〉.
This implies that π1(X \ ν6)/〈i∗(π1(6

‖))〉 = π1(X)/〈i∗(π1(6
‖))〉 = 1. �

For each pair of integers m ≥ 1 and n ≥ 2, let Yn(m) denote the irreducible
4-manifold constructed in Section 2 of [Akhmedov and Park 2010a] that has the
same cohomology ring as the connected sum (2n− 3)(S2

× S2). Recall that Yn(m)
is obtained by performing 2n+ 4 surgeries along Lagrangian tori in the product
4-manifold 62×6n . Thus Yn(m) contains a pair of submanifolds 62 =62×{pt}
and 6n = {pt′}×6n , both of self-intersection 0. When m = 1, Yn(1) is a minimal
symplectic 4-manifold. Moreover, 62 and6n are symplectic submanifolds of Yn(1).
When n ≥ 3, there exist 2n− 4 pairs of geometrically dual Lagrangian tori which,
together with 62 and 6n , form a basis for H2(Yn(1);Z)∼= Z4n−6.

Theorem 8. Let f : X→6b be a relatively minimal Lefschetz fibration as above
having at least one nonseparating vanishing cycle. Suppose that n= ta+b≥ 2. For
a suitable choice of the gluing diffeomorphism ϕ : ∂(ν6̃)→ ∂(ν6n), the generalized
fiber sum

(9) Pm
n (X)= X̃ #ϕYn(m)= (X̃ \ ν6̃)∪ϕ(Yn(m) \ ν6n)

along 6̃ and 6n is simply connected, and satisfies

e(Pm
n (X))= e(X)+ d + (8a+ 2)t + 8b− 8,

σ (Pm
n (X))= σ(X)− 2t − d,

χh(Pm
n (X))= χh(X)+ 2at + 2b− 2,

c2
1(P

m
n (X))= c2

1(X)− d + (16a− 2)t + 16b− 16,

b+2 (P
m
n (X))= b+2 (X)− b1(X)+ 4at + 4b− 4≥ 3,

b−2 (P
m
n (X))= b−2 (X)− b1(X)+ d + (4a+ 2)t + 4b− 4.

If σ(Pm
n (X)) is not divisible by 16 or if 2t + d > 0, then Pm

n (X) is nonspin and
the set {Pm

n (X) | m ≥ 1} contains infinitely many homeomorphic but pairwise
nondiffeomorphic irreducible 4-manifolds. When m = 1, P1

n (X) is symplectic and
irreducible. If n = ta+ b ≥ 3, then P1

n (X) contains disjoint symplectic tori T1 and
T2 of self-intersection 0 satisfying π1(P1

n (X) \ (T1 ∪ T2))= 1.
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Proof. Recall from [Akhmedov and Park 2010a] that e(Yn(m)) = 4n − 4 and
σ(Yn(m))= 0 since torus surgeries change neither e nor σ . Hence we have

e(Pm
n (X))= e(X̃)+ e(Yn(m))− 2e(6n)

= e(X)+ 2t + d + 4n− 4− 2(2− 2n)

= e(X)+ 2t + d + 8n− 8

= e(X)+ 2t + d + 8ta+ 8b− 8,

σ (Pm
n (X))= σ(X̃)+ σ(Yn(m))= σ(X)− 2t − d.

The other characteristic numbers can be computed from the formulas χh =
1
4(e+σ),

c2
1 = 2e+ 3σ , b+2 = b1− 1+ 1

2(e+ σ), and b−2 = b1− 1+ 1
2(e− σ).

To compute π1(Pm
n (X)), we first choose a standard presentation

π1(6n)=
〈
c1, d1, . . . , cn, dn

∣∣∣ n∏
j=1

[c j , d j ] = 1
〉
.

From the presentation of π1(Yn(m)) in [Akhmedov and Park 2010a], we know
that π1(Yn(m))/〈z〉 = 1, where 〈z〉 is the normal subgroup generated by the image
z of any one of the four generators c1, d1, c2, d2 of π1(6n) under the inclusion
induced homomorphism π1(6n)→ π1(Yn(m)). We also know that any meridian
of 6n is conjugate to the image of [a1, b1][a2, b2] in π1(Yn(m) \ ν6n), where ai ,
bi (i = 1, 2) are the images of standard generators of π1(62×{pt}). All relations
of π1(Yn(m)) listed in [Akhmedov and Park 2010a], except [a1, b1][a2, b2] = 1,
continue to hold in π1(Yn(m)\ν6n) since these relations come from torus surgeries
that occur away from ν6n . Since z = 1 still implies ai = bi = 1 (i = 1, 2) in
π1(Yn(m) \ ν6n), we deduce that π1(Yn(m) \ ν6n)/〈z〉 = 1.

When forming the generalized fiber sum Pm
n (X), we choose the gluing diffeo-

morphism ϕ such that the induced homomorphism ϕ∗ maps the element of π1(6̃
‖)

represented by a nonseparating vanishing cycle of the Lefschetz fibration X to z,
viewed as an element of π1(6

‖
n). Thus z = 1 in π1(Pm

n (X)), which then implies
that the inclusion induced homomorphism

(10) π1(Yn(m) \ ν6n)−→ π1(Pm
n (X))

is trivial. Note that the inclusion induced homomorphism π1(6̃
‖)→ π1(Pm

n (X)) is
also trivial since it can be factored through homomorphism (10) after 6̃‖ is identified
with 6‖n via ϕ. It follows from Lemma 7 that the inclusion induced homomorphism
π1(X̃ \ ν6̃)→ π1(Pm

n (X)) is trivial as well. By the Seifert – van Kampen theorem,
we conclude that π1(Pm

n (X))= 1.
If 2t+d > 0, then Pm

n (X) contains a genus 2 surface of self-intersection −1 that
is the internal sum of a punctured exceptional sphere in X̃ \ ν6̃ and a punctured
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62 in Yn(m)\ν6n . In this case, the intersection form of Pm
n (X) is odd and Pm

n (X)
is nonspin. Also recall that the signature of a spin 4-manifold is divisible by 16
according to Rohlin’s theorem [1952].

Note that e(Pm
n (X)) and σ(Pm

n (X)) are independent of m. If σ(Pm
n (X)) is not

divisible by 16 or if 2t+d > 0, then for fixed n, the set {Pm
n (X) |m ≥ 1} consists of

homeomorphic simply connected nonspin 4-manifolds by Freedman’s classification
theorem (cf. [Freedman 1982]).

Since Yn(1) is symplectic, the corresponding fiber sum P1
n (X) is symplectic as

well (cf. [Gompf 1995; McCarthy and Wolfson 1994]). Since (X̃ , 6̃) is a relatively
minimal pair (i.e., every sphere of self-intersection −1 intersects 6̃) by Corollary 3
in [Li 1999], P1

n (X) is minimal by Usher’s theorem [2006]. Recall from [Hamilton
and Kotschick 2006; Kotschick 1997] that a simply connected minimal symplectic
4-manifold is irreducible, and thus P1

n (X) is irreducible.
Any Lefschetz fibration X with fiber genus a and base genus b satisfies b1(X)≤

2a+ 2b. Since X has at least one nonseparating vanishing cycle, we have b1(X) <
2a+ 2b ≤ 2at + 2b. Thus we deduce that b+2 (P

m
n (X)) > b+2 (X)≥ 1. Since P1

n (X)
is symplectic and simply connected, b+2 (P

1
n (X))= b+2 (P

m
n (X)) is odd. It follows

that b+2 (P
m
n (X))≥ 3 and the Seiberg–Witten invariant of Pm

n (X) is well defined.
Let Y0 denote the symplectic 4-manifold that is obtained by performing the same

torus surgeries on 62 ×6n as for Yn(m), except (a′′1 × d ′2, d ′2,+m) surgery (cf.
[Akhmedov and Park 2010a]). Let P0 = X̃ #ϕY0 be the generalized fiber sum of X̃
and Y0 along 6̃ and 6n using the same gluing diffeomorphism ϕ that was used in
the construction of Pm

n (X). Note that P0 is symplectic and minimal for the same
reasons as P1

n (X). We have b2(P0)= b2(Pm
n (X))+ 2, and there is an orthogonal

decomposition H 2(P0;Z) = H ⊕ H⊥, where H is the 2-dimensional hyperbolic
summand generated by the Poincaré duals of [a1 × d2] and [b1 × c2]. Using the
adjunction inequality, we can easily see that every Seiberg–Witten basic class of P0

lies in H⊥.
Since Pm

n (X) can be obtained from P1
n (X) by performing a 1/(m− 1) surgery

on a null-homologous torus, we can apply the product formula in [Morgan et al.
1997] as in [Akhmedov et al. 2008; Fintushel et al. 2007; Szabó 1998] and deduce
that there exist surjective homomorphisms

ξm : H⊥ −→ H 2(Pm
n (X);Z)

that preserve the cup product pairing and satisfy

(11) SWPm
n (X)(ξm(L0))= SWP1

n (X)(ξ1(L0))+ (m− 1)SWP0(L0),

for every characteristic element L0 ∈ H⊥ ⊂ H 2(P0;Z). We note that the right
side of (11) contains only one SWP0 term for the reasons given in the proof of
Corollary 2 in [Fintushel et al. 2007]. By a theorem of Taubes [1994], we have
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SWP0(c1(P0))=±1. By setting L0 = c1(P0) in (11) and observing that there are
infinitely many values for the Seiberg–Witten invariants of Pm

n (X), we conclude that
{Pm

n (X) | m ≥ 1} contains infinitely many pairwise nondiffeomorphic 4-manifolds.
Next we prove that Pm

n (X) is irreducible for all m large enough, or more specifi-
cally when SWPm

n (X)(ξm(c1(P0))) 6= 0. We will argue the same way as in the proof
of Theorem 5.4 in [Kotschick 1997]. Suppose Pm

n (X)= M # N is a connected sum
of two smooth 4-manifolds M and N . Both M and N are simply connected since
Pm

n (X) is. If b+2 (M) and b+2 (N ) are both positive, then the Seiberg–Witten invariant
of Pm

n (X) is trivial (cf. [Witten 1994]), a contradiction. Without loss of generality,
assume b+2 (N )= 0. If b2(N )= 0, then the simply connected 4-manifold N must be
homeomorphic to S4 by Freedman’s theorem in [Freedman 1982]. Thus it remains
to rule out the case when b2(N )= b−2 (N ) > 0. In this case, the intersection form of
N is a nontrivial negative definite form, so by Donaldson’s theorem in [Donaldson
1983], it is equivalent to the standard diagonal form. Let e1, . . . , eb2(N ) be a basis
for H 2(N ;Z) such that e2

i =−1 for each i = 1, . . . , b2(N ), and ei · e j = 0 when
i 6= j . Using the neck pinching argument as in [Donaldson 1996; Kotschick 1997],
we deduce that M has nontrivial Seiberg–Witten invariant. Moreover, if L is any
Seiberg–Witten basic class of M , then the cohomology classes

(12) L +
b2(N )∑
i=1

ai ei ,

where ai =±1 for each i = 1, . . . , b2(N ), are all Seiberg–Witten basic classes of
Pm

n (X)= M # N . Furthermore, every Seiberg–Witten basic class of Pm
n (X) can be

written as (12).
Let Lm=ξm(c1(P0)) be a Seiberg–Witten basic class of Pm

n (X). By changing any
basis element ei to −ei if necessary, we can assume that Lm = L−e1−· · ·−eb2(N )

for some L . Thus Lm+2e1= L+e1−e2−· · ·−eb2(N ) is also a Seiberg–Witten basic
class of Pm

n (X). By the adjunction inequality, we can assume that ξ1(c1(P0)) =

c1(P1
n (X)). It now follows from (11) that there exists ē1 ∈ ξ

−1
m (e1) ⊂ H⊥ such

that c1(P1
n (X))+2ξ1(ē1) or c1(P0)+2ē1 is a Seiberg–Witten basic class of P1

n (X)
or P0, respectively. By a theorem of Taubes [1996], we can then deduce that the
Poincaré dual of ξ1(ē1) or ē1 is represented by an embedded symplectic sphere of
self-intersection −1 in P1

n (X) or P0, respectively (cf. Remark 10.1.16(b) in [Gompf
and Stipsicz 1999]). This implies that P1

n (X) or P0 is not minimal, a contradiction.
Finally, if n≥3, then Yn(1) contains 2n−4 pairs of geometrically dual Lagrangian

tori that are all disjoint from 6n . The images of these 4n− 8 tori in the fiber sum
P1

n (X) are again Lagrangian submanifolds (cf. [Gompf 1995]). Let T1 and T2 be
two of these 4n− 8 Lagrangian tori in P1

n (X) that are not geometrically dual to
each other. By perturbing the symplectic form on P1

n (X), we can turn both T1 and
T2 into symplectic submanifolds of P1

n (X) (cf. [Gompf 1995, Lemma 1.6]).
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To show π1(P1
n (X) \ (T1 ∪ T2))= 1, it will be convenient to fix T1 and T2, say

T1 = a′1× c′′3 and T2 = a′2× d ′′3 . Here, a′1, a′2, c′′3 and d ′′3 are parallel copies of a1,
a2, c3 and d3 as defined in [Fintushel et al. 2007]. Then π1(P1

n (X) \ (T1 ∪ T2))

is normally generated by meridians of T1 and T2, which are all conjugate to the
commutators [b−1

1 , d3] or [b−1
2 , c3]. Note that the generators b1, b2, c3 and d3

are still trivial in π1(P1
n (X) \ (T1 ∪ T2)) since the Luttinger surgery relations in

Section 2 of [Akhmedov and Park 2010a] still hold true in π1(P1
n (X)\(T1∪T2)). It

follows that meridians of T1 and T2 are all trivial and hence π1(P1
n (X)\(T1∪T2))=

π1(P1
n (X))= 1. �

Instead of using Yn(m) summand in generalized fiber sum (9), we may use
Yn−2(m) # 2CP2 when n ≥ 4. Specifically, we resolve the intersection between
62 and 6n−2 in Yn−2(m) to obtain a genus n submanifold of Yn−2(m) with self-
intersection 2. Next we blow up two points on this submanifold to obtain a genus
n submanifold 6′n of self-intersection 0 in Yn−2(m) # 2CP2. When m = 1, the
resolution and the blowups can be performed symplectically, and hence (Yn−2(1) #
2CP2, 6′n) is a relatively minimal pair of symplectic manifolds. The advantage
of using Yn−2(m) # 2CP2 summand is that the resulting generalized fiber sum has
slightly smaller characteristic numbers than Pm

n (X).

Theorem 9. Let f : X→6b be a relatively minimal Lefschetz fibration as above
having at least one nonseparating vanishing cycle. Suppose that n = ta+ b ≥ 4.
For a suitable choice of the gluing diffeomorphism ψ : ∂(ν6̃) → ∂(ν6′n), the
generalized fiber sum

Qm
n (X)= X̃ #ψ (Yn−2(m) # 2CP2)

= (X̃ \ ν6̃)∪ψ
(
(Yn−2(m) # 2CP2) \ ν6′n

)
along 6̃ and 6′n is simply connected, nonspin, and satisfies

e(Qm
n (X))= e(X)+ d + (8a+ 2)t + 8b− 14,

σ (Qm
n (X))= σ(X)− 2t − d − 2,

χh(Qm
n (X))= χh(X)+ 2at + 2b− 4,

c2
1(Q

m
n (X))= c2

1(X)− d + (16a− 2)t + 16b− 34,

b+2 (Q
m
n (X))= b+2 (X)− b1(X)+ 4at + 4b− 8≥ 3,

b−2 (Q
m
n (X))= b−2 (X)− b1(X)+ d + (4a+ 2)t + 4b− 6.

The set {Qm
n (X) | m ≥ 1} contains infinitely many homeomorphic but pairwise

nondiffeomorphic irreducible 4-manifolds. When m = 1, Q1
n(X) is symplectic and

irreducible. If n = ta+ b ≥ 5, then Q1
n(X) contains disjoint symplectic tori T ′1 and

T ′2 of self-intersection 0 satisfying π1(Q1
n(X) \ (T

′

1 ∪ T ′2))= 1.
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Proof. We compute that

e(Qm
n (X))= e(X̃)+ e(Yn−2(m) # 2CP2)− 2e(6′n)

= e(X)+ 2t + d + 4(n− 2)− 4+ 2− 2(2− 2n)

= e(X)+ 2t + d + 8n− 14

= e(X)+ 2t + d + 8ta+ 8b− 14,

σ (Qm
n (X))= σ(X̃)+ σ(Yn−2(m) # 2CP2)= σ(X)− 2t − d − 2.

The other characteristic numbers can be computed from these as before.
Since the exceptional sphere of a blowup intersects 6′n once transversely, any

meridian of 6′n is null-homotopic in the complement of a tubular neighborhood
ν6′n . Hence we conclude that

π1
(
(Yn−2(m) # 2CP2) \ ν6′n

)
= π1

(
Yn−2(m) # 2CP2)

= π1(Yn−2(m)).

From [Akhmedov and Park 2010a], we know that π1(Yn−2(m))/〈z〉 = 1, where
z is the image of any one of the generators c1, d1, c2, d2 of π1(6n−2) under the
inclusion induced homomorphism.

Let 6̃‖ and 6′‖n denote parallel copies of 6̃ and 6′n in the boundaries ∂(ν6̃)
and ∂(ν6′n), respectively. When forming the generalized fiber sum Qm

n (X), we
choose the gluing diffeomorphism ψ such that ψ∗ maps the element of π1(6̃

‖)

represented by a nonseparating vanishing cycle of X to z, viewed as an element of
π1(6

′‖
n ). Thus z = 1 in π1(Qm

n (X)), which then implies that the inclusion induced
homomorphism

(13) π1
(
(Yn−2(m) # 2CP2) \ ν6′n

)
−→ π1(Qm

n (X))

is trivial. Note that the inclusion induced homomorphism π1(6̃
‖)→ π1(Qm

n (X)) is
also trivial since it can be factored through homomorphism (13) after 6̃‖ is identified
with 6′‖n . It follows from Lemma 7 that the inclusion induced homomorphism
π1(X̃ \ ν6̃)→ π1(Qm

n (X)) is trivial as well. By Seifert–van Kampen theorem, we
conclude that π1(Qm

n (X))= 1.
Qm

n (X) is nonspin since it contains a surface of self-intersection −1 and genus
a> 0, namely the internal sum of the image of a punctured fiber of X in X̃ \ν6̃ and
a punctured exceptional sphere in (Yn−2(m) # 2CP2) \ ν6′n . Since Yn−2(1) # 2CP2

is symplectic, the corresponding fiber sum Q1
n(X) is symplectic as well. The

irreducibility of Q1
n(X) and the fact that {Qm

n (X) | m ≥ 1} contains infinitely
many homeomorphic but pairwise nondiffeomorphic irreducible 4-manifolds can
be proved exactly the same way as in the proof of Theorem 8.

Finally, if n ≥ 5, then Yn−2(1) contains 2n − 8 pairs of geometrically dual
Lagrangian tori. The images of these 4n−16 tori in the blowup Yn−2(1)#2CP2 are
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disjoint from 6′n , and hence their images in Q1
n(X) are Lagrangian submanifolds of

Q1
n(X). Let T ′1 and T ′2 denote two of these 4n−16 Lagrangian tori, say T ′1= a′1×c′′3

and T ′2 = a′2 × d ′′3 . By perturbing the symplectic form on Q1
n(X), we can turn

both T ′1 and T ′2 into symplectic submanifolds of Q1
n(X). We can deduce that

π1(Q1
n(X)\(T

′

1∪T ′2))= 1 in exactly the same way as in the proof of Theorem 8. �

For comparison, we note that

(14)

e(Qm
n (X))= e(Pm

n (X))− 6, σ (Qm
n (X))= σ(P

m
n (X))− 2,

χh(Qm
n (X))= χh(Pm

n (X))− 2, c2
1(Q

m
n (X))= c2

1(P
m
n (X))− 18,

b+2 (Q
m
n (X))= b+2 (P

m
n (X))− 4, b−2 (Q

m
n (X))= b−2 (P

m
n (X))− 2.

Remark 10. The irreducible symplectic 4-manifolds M and N (homeomorphic to
47CP2 # 45CP2 and 51CP2 # 47CP2, respectively) in Section 4 of [Akhmedov and
Park 2008] are respectively equal to Q1

n(X) and P1
n (X) with a = 7, b = 2, t = 1,

d =−2, n = 9, e(X)= 36, and σ(X)= 4.

5. Simply connected 4-manifolds with positive signature

We now apply Theorems 8 and 9 to Lefschetz fibrations in Sections 2 and 3 to obtain
new families of simply connected irreducible 4-manifolds with positive signature.

Example 11. For each triple of positive integers g, u1, u2, recall from Example 3
that there is a Lefschetz fibration fu1,u2 : X g

u1,u2 → 6b such that the genus of a
regular fiber is a = 1+ 1

2 u2(g+ 1)(3g− 2) and there is a section whose image is a
surface of genus b= u1(g−1)+1 and self-intersection d =−2u1. Since 2t+d ≥ 0,
we require t ≥ u1. Let

n = t + 1
2 tu2(g+ 1)(3g− 2)+ u1(g− 1)+ 1.

Applying Theorem 8 to fu1,u2 : X
g
u1,u2→6b, we obtain a family of simply connected

4-manifolds Pm
n (X

g
u1,u2), with m ≥ 1 and n ≥ 3, satisfying

(15)

e(Pm
n (X

g
u1,u2

))= 2u1u2(g+ 1)(3g2
− 5g+ 4)

+ 4tu2(g+ 1)(3g− 2)+ 8u1g+ 10t − 10u1,

σ (Pm
n (X

g
u1,u2

))= 2
3 u1u2(g+ 1)(g2

+ 2g− 6)− 2t + 2u1,

χh(Pm
n (X

g
u1,u2

))= 1
6 u1u2(g+ 1)(10g2

− 13g+ 6)

+ tu2(g+ 1)(3g− 2)+ 2t + 2u1(g− 1),

c2
1(P

m
n (X

g
u1,u2

))= 2u1u2(g+ 1)(7g2
− 8g+ 2)

+ 8tu2(g+ 1)(3g− 2)+ 16u1g+ 14t − 14u1,
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(16)

b+2 (P
m
n (X

g
u1,u2

))= 1
3 u1u2(g+ 1)(10g2

− 13g+ 6)

+ 2tu2(g+ 1)(3g− 2)+ 4t + 4u1(g− 1)− 1,

b−2 (P
m
n (X

g
u1,u2

))= 1
3 u1u2(g+ 1)(8g2

− 17g+ 18)

+ 2tu2(g+ 1)(3g− 2)+ 4u1g+ 6t − 6u1− 1.

From Theorem 9, we obtain another family of simply connected nonspin 4-manifolds
Qm

n (X
g
u1,u2), with m ≥ 1 and n ≥ 5, whose characteristic numbers can be computed

from (14) (15), and (16). Moreover, when m = 1, both P1
n (X

g
u1,u2) and Q1

n(X
g
u1,u2)

are irreducible symplectic 4-manifolds and contain symplectic tori T j and T ′j ( j =
1, 2) of self-intersection 0 such that

π1(P1
n (X

g
u1,u2

) \ (T1 ∪ T2))= 1 and π1(Q1
n(X

g
u1,u2

) \ (T ′1 ∪ T ′2))= 1.

Example 12. For each quadruple of positive integers p, v, u1, u2 with odd p ≥ 3,
recall from Example 5 that there is a Lefschetz fibration fu1,u2 :W

p,v
u1,u2 →6b such

that the genus of a regular fiber is a = 1+ 1
2 pu2[(v + 1)p− v − 3] and there is

a section whose image is a surface of genus b = 1+ u1[−1+ v(p − 1)/2] and
self-intersection d =−u1v. Since 2t + d ≥ 0, we require

t ≥ du1v/2e,

where dxe =min{k ∈ Z | k ≥ x}. From Theorems 8 and 9, we obtain two families
of simply connected 4-manifolds Pm

n (W
p,v

u1,u2) and Qm
n (W

p,v
u1,u2) with m ≥ 1 and

n = t + 1
2 tpu2[(v+ 1)p− v− 3] + u1[−1+ v(p− 1)/2] + 1≥ 5.

We compute that

e(Pm
n (W

p,v
u1,u2

))= pu1u2
[
(v2
+ v)p2

− 2(v2
+ 3v+ 1)p+ v2

+ 6v+ 8
]

+ 4tu2(v+ 1)p2
+ 4

[
u1v− tu2(v+ 3)

]
p+ 10t − 5u1v− 8u1,

σ (Pm
n (W

p,v
u1,u2

))= 1
3 pu1u2(vp2

− 4v− 6)− 2t + u1v,

χh(Pm
n (W

p,v
u1,u2

))= 1
12 pu1u2

[
(3v2
+ 4v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 14v+ 18
]

+ tu2(v+ 1)p2
+
[
u1v− tu2(v+ 3)

]
p+ 2t − u1v− 2u1,

c2
1(P

m
n (W

p,v
u1,u2

))= pu1u2
[
(2v2
+ 3v)p2

− 4(v2
+ 3v+ 1)p+ 2v2

+ 8v+ 10
]

+ 8tu2(v+ 1)p2
+ 8

[
u1v− tu2(v+ 3)

]
p+ 14t − 7u1v− 16u1,

b+2 (P
m
n (W

p,v
u1,u2

))= 1
6 pu1u2

[
(3v2
+ 4v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 14v+ 18
]

+ 2tu2(v+ 1)p2
+ 2

[
u1v− tu2(v+ 3)

]
p+ 4t − 2u1v− 4u1− 1,

b−2 (P
m
n (W

p,v
u1,u2

))= 1
6 pu1u2

[
(3v2
+ 2v)p2

− 6(v2
+ 3v+ 1)p+ 3v2

+ 22v+ 30
]

+ 2tu2(v+ 1)p2
+ 2

[
u1v− tu2(v+ 3)

]
p+ 6t − 3u1v− 4u1− 1.
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The characteristic numbers of Qm
n (W

p,v
u1,u2) can be computed from these values via

(14). When m = 1, both P1
n (W

p,v
u1,u2) and Q1

n(W
p,v

u1,u2) are irreducible symplectic
4-manifolds and contain symplectic tori T j and T ′j ( j = 1, 2) of self-intersection 0
such that π1(P1

n (W
p,v

u1,u2) \ (T1 ∪ T2))= 1 and π1(Q1
n(W

p,v
u1,u2) \ (T

′

1 ∪ T ′2))= 1.

6. Upper bounds for the lower bound

We start this section by giving a more rigorous definition of λ(σ) from the intro-
duction.

Definition 13. Given an integer σ ≥ 0, let λ(σ) be the smallest positive integer
with the following properties.

(i) λ(σ)≥ d(σ + 1)/2e.

(ii) Every point (χh, c2
1) on the line c2

1 = 8χh +σ satisfying χh ≥ λ(σ) is realized
as (χh(Mi ), c2

1(Mi )), where {Mi | i ∈Z} is an infinite family of homeomorphic
but pairwise nondiffeomorphic closed simply connected nonspin irreducible
4-manifolds such that Mi is symplectic for each i ≥ 0 and Mi is nonsymplectic
for each i < 0.

As in the introduction, we make the following conjecture.

Conjecture 14. λ(σ)= d(σ + 1)/2e for every integer σ ≥ 0.

Our goal in this section is to calculate explicit upper bounds on λ(σ) for many
small values of σ . First we restate a result from [Akhmedov and Park 2008] (see also
[Akhmedov et al. 2010a, Theorem 23; Akhmedov and Park 2010a, Theorem 2]).

Theorem 15 [Akhmedov and Park 2008, Theorem 5.3]. Let X be a closed sym-
plectic 4-manifold that contains a symplectic torus T of self-intersection 0. Let
νT be a tubular neighborhood of T and ∂(νT ) its boundary. Suppose that the
homomorphism π1(∂(νT ))→ π1(X \ νT ) induced by the inclusion is trivial. Then
for any pair of integers (χ, c) satisfying

(17) χ ≥ 1 and 0≤ c ≤ 8χ,

there exists a symplectic 4-manifold Y with π1(Y )= π1(X),

χh(Y )= χh(X)+χ and c2
1(Y )= c2

1(X)+ c.

Moreover, if X is minimal then Y is minimal as well. If c < 8χ , or if c = 8χ and
X has an odd intersection form, then the corresponding Y has an odd indefinite
intersection form. �

The next theorem gives us a means for constructing infinitely many distinct
smooth structures on some topological 4-manifolds.
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Theorem 16. Let Y be a closed simply connected minimal symplectic 4-manifold
with b+2 (Y ) > 1. Assume that Y contains a symplectic torus T of self-intersection
0 such that π1(Y \ T ) = 1. Then there exist an infinite family of pairwise nondif-
feomorphic irreducible symplectic 4-manifolds and an infinite family of pairwise
nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which are homeo-
morphic to Y .

Proof. We can perform a knot surgery on Y along T using a knot K ⊂ S3 (see
[Fintushel and Stern 2009, Lecture 3]). Let YK denote the resulting 4-manifold.
Since π1(Y \ T )= 1, YK is homeomorphic to Y . By varying the knot K , we obtain
infinitely many pairwise nondiffeomorphic 4-manifolds. If K is a fibered knot, then
YK can be viewed as a symplectic fiber sum [Fintushel and Stern 1998], is minimal
by Usher’s theorem [2006], and hence is irreducible [Hamilton and Kotschick 2006;
Kotschick 1997].

Given an integer k 6= 0, let T (k) denote the k-twist knot on page 372 of [Fintushel
and Stern 1998] with Alexander polynomial kt − (2k+ 1)+ kt−1. If k =±1, then
T (±1) is fibered, and thus YT (±1) is symplectic and irreducible. If k 6= 0,±1,
then YT (k) is nonsymplectic. It only remains to prove that YT (k) is irreducible
when k 6= 0,±1. We will argue the same way as in the proof of Theorem 8. The
computation of the Seiberg–Witten invariant of YT (k) in [Fintushel and Stern 2009]
implies that there exists an isomorphism ξT (k) : H 2(YT (1);Z) −→ H 2(YT (k);Z)

that preserves the cup product pairing and restricts to a one-to-one correspondence
between the Seiberg–Witten basic classes of YT (1) and YT (k). Suppose that YT (k) is
not irreducible. Then there will be some e1 ∈ H 2(YT (k);Z) such that e2

1 =−1 and
ξT (k)(c1(YT (1)))+2e1 is a Seiberg–Witten basic class of YT (k). This will imply that
c1(YT (1))+2ξ−1

T (k)(e1) is a Seiberg–Witten basic class of YT (1). By a result of Taubes
[1996], we can then conclude that the Poincaré dual of ξ−1

T (k)(e1) is represented by
an embedded symplectic sphere of self-intersection −1 in YT (1). Hence YT (1) is not
minimal, a contradiction. �

By combining Theorems 15 and 16, we may deduce the following.

Corollary 17. Let X be a closed simply connected nonspin minimal symplectic 4-
manifold with b+2 (X)> 1 and σ(X)≥ 0. Assume that X contains disjoint symplectic
tori T1 and T2 of self-intersection 0 such that π1(X \ (T1∪ T2))= 1. Suppose σ is a
fixed integer satisfying 0≤ σ ≤ σ(X). If dxe =min{k ∈ Z | k ≥ x} and if we define

`(σ )=

⌈
σ(X)− σ

8
− 1

⌉
,

then

λ(σ)≤ χh(X)+ `(σ )+ 1.
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In other words, if k is any odd integer satisfying k ≥ b+2 (X)+ 2`(σ )+ 2, then
there exist an infinite family of pairwise nondiffeomorphic irreducible symplec-
tic 4-manifolds and an infinite family of pairwise nondiffeomorphic irreducible
nonsymplectic 4-manifolds, all of which are homeomorphic to kCP2 # (k− σ)CP2.

Proof. We can write σ(X)−σ = 8`(σ )+r(σ ) for integers `(σ ) and r(σ ) satisfying
`(σ )≥−1 and 1≤ r(σ )≤ 8. Since π1(X \ νT1)= 1, we can apply Theorem 15 to
the pair, X and T1. Let (χ, c) and Y be as in the conclusion of Theorem 15. Since
π1(Y )= π1(X)= 1, we have b+2 (Y )= b+2 (X)+2χ and b−2 (Y )= b−2 (X)+10χ−c.
By Freedman’s classification theorem [1982], Y must be homeomorphic to

(b+2 (X)+ 2χ)CP2 # (b−2 (X)+ 10χ − c)CP2.

By setting c = 8χ +σ −σ(X) in (17), we obtain a minimal symplectic 4-manifold
Y that is homeomorphic to kCP2 # (k− σ)CP2, where k = b+2 (X)+ 2χ . Since c
is nonnegative, we must have 8χ + σ − σ(X) = 8(χ − `(σ ))− r(σ ) ≥ 0, which
implies that χ ≥ `(σ )+ 1. It follows that χh(Y ) ≥ χh(X)+ `(σ )+ 1 and k ≥
b+2 (X)+ 2`(σ )+ 2.

We recall from [Akhmedov et al. 2010a; Akhmedov and Park 2008; 2010a] that
for each pair of integers (χ, c) satisfying (17), there exist a minimal symplectic
4-manifold Z with χh(Z) = χ , c2

1(Z) = c, and a symplectic torus T ′′ ⊂ Z of
self-intersection 0 such that Y is the generalized fiber sum of X and Z along T1

and T ′′. Note that T2 ⊂ (X \νT1)⊂ Y is a symplectic torus of self-intersection 0 in
Y (cf. [Gompf and Stipsicz 1999, Theorem 10.2.1]). Since π1(X \ (νT1 ∪ T2))= 1,
we have π1(Y \ T2)= 1. We can now apply Theorem 16 to the pair, Y and T2, and
conclude that there are infinitely many distinct smooth structures on Y . �

Next we show that λ(σ) is subadditive in the following sense.

Corollary 18. Let σ1 and σ2 be positive integers such that σ1+ σ2 is not divisible
by 16. For each j = 1, 2, suppose that there exists a closed simply connected
nonspin minimal symplectic 4-manifold N j containing a symplectic torus T j ⊂ N j

of self-intersection 0 such that

(i) π1(N j \ T j )= 1,

(ii) χh(N j )= λ(σ j ), and σ(N j )= σ j .

Then we have λ(σ1+ σ2)≤ λ(σ1)+ λ(σ2).

Proof. Let X be the generalized fiber sum of N1 and N2 along T1 and T2. It is easy
to check that X is a closed simply connected minimal symplectic 4-manifold. Since

σ(X)= σ(N1)+ σ(N2)= σ1+ σ2 6≡ 0 (mod 16),

X is nonspin by Rohlin’s theorem [1952]. Let T be a parallel copy of T1 (and T2)
in X . From (i), there are topological disks bounding the meridians of T1 and T2,
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and these disks can be glued together to form a topological sphere that intersects T
transversely once. It follows that π1(X \T )= 1 and thus we can apply Corollary 17
with σ = σ(X) and conclude that

λ(σ1+ σ2)≤ χh(X)= χh(N1)+χh(N2)= λ(σ1)+ λ(σ2). �

We now proceed to list the smallest upper bounds on λ(σ) currently known to the
authors. We begin by first finding parameters g, p, v, u1, u2 and t in Examples 11
and 12 that yield 4-manifolds with small χh values. By Rohlin’s theorem, these
4-manifolds are nonspin if their signatures are not divisible by 16. Unfortunately,
given an integer σ ≥ 0, there is no clear pattern as to which family or parameters

σ λ(σ)≤ X σ λ(σ)≤ X

0–1 25 Q1
9(W

3,2
1,1 ) 50 86 P1

19(W
5,1
2,1 )

2 24 Q1
9(W

3,2
1,1 ) 51 111 P1

19(W
5,1
2,1 ) #ϕQ1

9(W
3,2
1,1 )

3 27 P1
9 (W

3,2
1,1 ) 52 110 P1

19(W
5,1
2,1 ) #ϕQ1

9(W
3,2
1,1 )

4 26 P1
9 (W

3,2
1,1 ) 53 113 P1

19(W
5,1
2,1 ) #ϕP1

9 (W
3,2
1,1 )

5 47 Q1
15(W

3,2
1,2 ) 54 112 P1

19(W
5,1
2,1 ) #ϕP1

9 (W
3,2
1,1 )

6 46 Q1
15(W

3,2
1,2 ) 55 133 P1

19(W
5,1
2,1 ) #ϕQ1

15(W
3,2
1,2 )

7 49 P1
15(W

3,2
1,2 ) 56 132 P1

19(W
5,1
2,1 ) #ϕQ1

15(W
3,2
1,2 )

8 48 P1
15(W

3,2
1,2 ) 57 135 P1

19(W
5,1
2,1 ) #ϕP1

15(W
3,2
1,2 )

9–13 59 Q1
18(W

5,1
1,1 ) 58 134 P1

19(W
5,1
2,1 ) #ϕP1

15(W
3,2
1,2 )

14–21 58 Q1
18(W

5,1
1,1 ) 59–61 143 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

22 57 Q1
18(W

5,1
1,1 ) 62–69 142 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

23 60 P1
18(W

5,1
1,1 ) 70 141 Q1

19(W
5,1
2,1 ) #ϕQ1

18(W
5,1
1,1 )

24 59 P1
18(W

5,1
1,1 ) 71 144 Q1

36(W
5,1
3,1 )

25 84 P1
18(W

5,1
1,1 ) #ϕQ1

9(W
3,2
1,1 ) 72 143 Q1

36(W
5,1
3,1 )

26 83 P1
18(W

5,1
1,1 ) #ϕQ1

9(W
3,2
1,1 ) 73 146 P1

36(W
5,1
3,1 )

27 86 P1
18(W

5,1
1,1 ) #ϕP1

9 (W
3,2
1,1 ) 74 145 P1

36(W
5,1
3,1 )

28 85 P1
18(W

5,1
1,1 ) #ϕP1

9 (W
3,2
1,1 ) 75–81 167 Q1

34(W
5,1
2,2 )

29–31 87 Q1
19(W

5,1
2,1 ) 82–89 166 Q1

34(W
5,1
2,2 )

32–39 86 Q1
19(W

5,1
2,1 ) 90–97 165 Q1

34(W
5,1
2,2 )

40–47 85 Q1
19(W

5,1
2,1 ) 98 164 Q1

34(W
5,1
2,2 )

48 84 Q1
19(W

5,1
2,1 ) 99 167 P1

34(W
5,1
2,2 )

49 87 P1
19(W

5,1
2,1 ) 100 166 P1

34(W
5,1
2,2 )

Table 2. Upper bounds on λ(σ).
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will yield a simply connected nonspin 4-manifold X with σ(X) ≥ σ having the
smallest χh(X)+ `(σ )+ 1. Hence we had to resort to a computer search.

Table 2 on the previous page lists some of the smallest upper bounds on λ(σ)
that we found. For example, when σ = 10, Table 2 says that λ(10) ≤ 59, that is,
for each odd integer k ≥ 2 · 59− 1= 117, there exist an infinite family of pairwise
nondiffeomorphic irreducible symplectic 4-manifolds and an infinite family of
pairwise nondiffeomorphic irreducible nonsymplectic 4-manifolds, all of which are
homeomorphic to kCP2 # (k−10)CP2. The third column in Table 2 lists the simply
connected 4-manifold X that was used to obtain the upper bound via Corollary 17.
The #ϕ symbol denotes a generalized fiber sum along the tori T j and/or T ′j . We
have compiled upper bounds on λ(σ) for σ up to about 1,000,000 but we will only
list a small sample here.
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