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BOUND STATES OF ASYMPTOTICALLY
LINEAR SCHRÖDINGER EQUATIONS

WITH COMPACTLY SUPPORTED POTENTIALS

MINGWEN FEI AND HUICHENG YIN

We study the existence and concentration of bound states to N-dimensional
nonlinear Schrödinger equation −ε24uε + V (x)uε = K (x) f (uε), where
N ≥ 3, ε > 0 is sufficiently small, and the function f (s) is nonnegative and
asymptotically linear at infinity. More concretely, when f (s) ∼ O(s) as
s → +∞, the potential function V (x) lies in C1

0(RN) with V (x) ≥ 0 and
V (x) 6≡ 0, and K (x) ≥ 0 is permitted to be unbounded under some other
necessary restrictions, we can show that a positive H1(RN)-solution uε(x)

exists and concentrates around the local maximum point of the correspond-
ing ground energy function.

1. Introduction and statements of main results

This paper deals with the problem on the existence and concentration of bound
states for the nonlinear Schrödinger equation

(1-1)

{
−ε2
4uε + V (x)uε = K (x) f (uε), x ∈ RN ,

uε ∈ H 1(RN ), uε(x) > 0,

where N ≥ 3, ε > 0 is small, K (x) ≥ 0, V (x) ≥ 0 with V (x) 6≡ 0, f (s) ≥ 0 and
f (s) ∼ O(s) as s→+∞, which is asymptotically linear. Such a solution uε is
called as a bound state for uε ∈ H 1(RN ) and uε(x) > 0.

Consider in particular the superlinear problem given by the equation

(1-2)

{
−ε2
4uε + V (x)uε = K (x)|uε|p−1uε, x ∈ RN ,

uε ∈ H 1(RN ), uε > 0,

for N ≥ 3 and 1< p < N+2
N−2 . Under various assumptions on the potential function

V (x) ≥ C0 > 0 for large |x | or lim|x |→∞ V (x) = 0 or even V (x) is compactly
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supported with V (x)≥ 0 and V (x) 6≡ 0, the existence of H 1-positive solutions has
been established, and the concentration properties of uε can be obtained at a global
or local minimum point of the ground energy function G(ξ)≡ V θ (ξ)K−2/(p−2)(ξ)

with θ = p
p−2 −

N
2 (one can see [Ambrosetti et al. 2005; Ambrosetti and Malchiodi

2007; Ambrosetti and Wang 2005; Berestycki and Lions 1983; Bonheure and
Van Schaftingen 2008; Byeon and Wang 2006; Dávila et al. 2007; del Pino and
Felmer 1996; del Pino et al. 2007; Fei and Yin 2010; Gui 1996; Rabinowitz 1992;
Wang and Zeng 1997; Yin and Zhang 2009]).

For the asymptotically linear problem (1-1) with ε= 1, there are many papers on
the existence of solution in recent years. For examples, in the case of V (x)≥C0> 0
for large |x |, one can see [Costa and Tehrani 2001; Jeanjean and Tanaka 2002; Liu
et al. 2006; Liu and Wang 2004; Stuart and Zhou 1999]; in the special case that
V (x) vanishes at infinity like a/(1+ |x |σ ) ≤ V (x) ≤ A (the constants σ ∈ (0, 2),
a > 0 and A > 0) and some other restrictions, the authors in [Liu et al. 2008]
established the existence of bound states.

We now consider the following interesting problems indicated in [Ambrosetti
and Malchiodi 2007]: if the potential function V (x) decays faster than 1/(1+|x |σ )
with σ ∈ (0, 2) at infinity or is compactly supported with V (x)≥ 0 and V (x) 6≡ 0,
does the bound state of (1-1) still exist? If it exists, what is the concentration
profile of uε(x) as ε→ 0? In this paper, we will treat these two problems. We
only focus on the case that V (x) is compactly supported, since the other cases of
V (x) = O(1/(1+ |x |σ )) with σ ∈ R can be treated analogously and even more
simply.

To proceed, we define the ground energy function G(ξ). The constant coefficient
asymptotically linear equation is as follows:

(1-3)

{
−4u(x)+ V (ξ)u(x)= K (ξ) f (u), x ∈ RN ,

u ∈ H 1(RN ), u(x) > 0,

where V (ξ), K (ξ)>0 with ξ ∈ 3̄, and the meaning of3 is given in assumption (H4)
below.

The associated Euler functional is defined as

(1-4) I ξ (u)= 1
2

∫
RN
|∇u|2 dx + V (ξ)

2

∫
RN
|u|2 dx − K (ξ)

∫
RN

F(u) dx,

where F(u)=
∫ u

0 f (x, τ ) dτ .
In the terminology in [Wang and Zeng 1997], the function G(ξ)= infu∈Mξ I ξ (u)

is the ground energy function of (1-3) and ω(x) is a ground state of the functional
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I ξ if G(ξ)= I ξ (ω), where Mξ is the Nehari manifold, defined as

(1-5) Mξ
={

u∈H 1(RN )\{0} :
∫

RN
|∇u|2 dx+V (ξ)

∫
RN
|u|2 dx=K (ξ)

∫
RN

f (u)u dx
}
.

Under certain assumptions, we will solve the constant coefficient asymptotically
linear problem (1-3) and prove that the ground state exists and G(ξ) is a continuous
function in 3̄ in Section 3 below. The assumptions are as follows:

(H1) V (x) ∈ C1
0(R

N ), V (x)≥ 0; K (x) ∈ C1(RN ), K (x)≥ 0.

(H2) f ∈C(R,R+)∩C1,γ
loc (R) with some constant γ satisfying 0<γ ≤ 1; f (s)= 0

for s ≤ 0; f (s)= O(sα) with some α > 1 near s = 0.

(H3) f (s)/s is a nondecreasing function for s > 0 and

(1-6) f (s)
s
→ l ∈ (0,+∞) as s→+∞.

(H4) There exists a smooth bounded domain3 of RN such that V (x)> 0, K (x)> 0
on 3̄ and

µ∗ ≡max
ξ∈3̄

V (ξ)
K (ξ)

< l,(1-7)

0< c0 ≡ inf
ξ∈3

G(ξ) < inf
ξ∈∂3

G(ξ).(1-8)

(H5) Let N ≥ 5. There exist some constants k > 0 and β < (α− 1)(N − 2)− 2
such that

(1-9) 0≤ K (x)≤ k(1+ |x |)β in RN .

Our main results in this paper can be stated as follows:

Theorem 1.1 (existence and concentration). Let assumptions (H1)–(H5) hold.

(i) Equation (1-1) has at least one bound state uε provided that ε is small.

(ii) uε has exactly one maximum point xε ∈3, which satisfies

(1-10) C1 ≤ uε(xε)≤ C2

and

(1-11) dist(xε,M)→ 0 as ε→ 0,

where C1,C2 are positive constants independent of ε, and the set M is defined
by M = {x ∈3 : G(x)= c0}. Moreover, if M only contains a single point x0,
then uε is a single peak solution; more precisely,

(1-12) uε(x)= v
( x−xε

ε

)
+wε(x),



338 MINGWEN FEI AND HUICHENG YIN

wherewε(x)→ 0 in C2
loc(R

N )∩L∞(RN ) as ε→ 0 and v ∈C2(RN )∩H 1(RN )

is the positive solution of the equation

(1-13) −4v+ V (x0)v = K (x0) f (v), x ∈ RN .

Remark 1.1. In the assumption (H5), N ≥ 5 can not be removed to obtain uε ∈
L2(RN ) in Theorem 1.1 since this is also necessary even for the N -dimensional
linear Laplacian equation. For more details, one can see Remark 1.2 of [Yin and
Zhang 2009]. On the other hand, if we do not require uε ∈ L2(RN ) in Theorem 1.1,
for example, only uε ∈ Lq(RN ) is permitted for some q > 1, then Theorem 1.1 still
holds for all N ≥ 2 by our proof procedure since N ≥ 5 is only used in (4-52) of
Section 4 to derive uε ∈ L2(RN ) through the whole paper.

Remark 1.2. In the assumption (H2), due to f ∈ C1,γ
loc (R), f (s)= 0 for s ≤ 0 and

f (s)= O(sα) near s = 0 with α > 1, then we actually have 0< γ ≤min{1, α−1}.

Remark 1.3. With respect to the assumption (1-7) in (H4), if V (x)∼ l∗/(1+|x |β1)

with β1 > 0 and K (x)∼ 1/(1+ |x |β2) with 0< β2 < β1 or V (x)∼ l∗e−|x |
β1 with

β1> 0 and K (x)∼ e−|x |
β2 with 0<β2<β1, then for 0< l∗< l, we have µ∗≤ l∗< l,

namely, (1-7) holds true. However, assumption (1-7) does not satisfy the condition
(K1) in [Liu et al. 2008], to the effect that sup

{ f (s)
s : s > 0

}
< inf

{ V (x)
K (x) : |x | ≥ R0

}
for some R0 > 0, which seems to be crucial to the proof there. On the other hand,
the main assumptions (K1) and (1.8) in Theorem 1.1 of [Liu et al. 2008] are rather
restricted. If we use instead of (K1) the more natural assumption sup

{ f (s)
s : s>0

}
<

inf
{ V (x)

K (x) : x ∈ Rn
}
, one can easily derive l < inf

{ V (x)
K (x) : x ∈ Rn

}
and

µ∗ = inf f
∫

RN

(
|∇u|2+ V (x)u2) dx

∫
RN

K (x)u2 dx

≥ inf

∫
RN (|∇u|2+ l K (x)u2) dx∫

RN K (x)u2 dx
≥ l,

which yields an obvious contradiction between the main assumption l >µ∗ of (1.8)
and (K1) in Theorem 1.1 of [Liu et al. 2008].

Remark 1.4. The function K (x) in (1-1) can be permitted to be unbounded if
α > N

N−2 in view of the assumption (1-9). Moreover, as in Remark 1.2 of [Yin and
Zhang 2009], we can illustrate that the restriction on β < (α− 1)(N − 2)− 2 in
(1-9) is optimal in order to obtain the existence of H 1-positive solution to (1-1).

Remark 1.5. The assumption in (H3) that f (s)/s is a nondecreasing function for
s > 0 can be removed by more careful analysis than that employed in this paper.
This will be done in a forthcoming paper.

Next let’s make some comments on the proof of Theorem 1.1. First, we modify
the nonlinear term K (x) f (uε) of (1-1) outside3 to gε(x, uε), as in [Yin and Zhang
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2009], with the expression

gε(x, u)=min
{

K (x) f (u), ε3/(1+ |x |θ0)u+, ε/(1+ |x |N )
}

for x ∈ RN and u ∈ R, for a positive constant θ0 to be chosen suitably. Then we
study the modified equation

(1-14) −ε21uε + V (x)uε = χ3(x)K (x) f (uε)+ (1−χ3(x))gε(x, uε)

instead of −ε2
4uε + V (x)uε = K (x) f (uε) in (1-1). It can be shown that the

corresponding Euler functional Iε of the modified equation is well-defined and has
a mountain pass geometry in the weighted Sobolev space

Eε ≡
{

u ∈ D1,2(RN ) :

∫
RN
(ε2
|∇u|2+ V (x)|u|2) dx <∞

}
,

with D1,2(RN )= {u ∈ L2N/(N−2)(RN ) : ∇u ∈ L2(RN )}. Motivated by techniques in
Chapter IV of [Ekeland 1990] or [Jeanjean and Tanaka 2002], we can use a variant
of the mountain pass theorem to find a so-called Cerami sequence, and further show
by contradiction that such a Cerami sequence is bounded and prove the existence
of a positive solution uε to the modified equation.

In order to show such a solution uε is just the solution of the original problem
(1-1), we require to derive the decay property of solution uε and further show
gε(x, uε)= K (x) f (uε) outside the domain 3. To this end, we establish a compact-
ness estimate of integral type to prove that uε is small away from their extreme
points (see Lemma 4.6 below). Based on such an integral estimate together with
the Harnack inequality, we obtain the pointwise decay property of uε at infinity and
then complete the proof of Theorem 1.1.

Here we point out that some phenomena arising from the asymptotically linear
case are quite different from those in superlinear cases, since the exponent p > 1
of f (u) ∼ u p plays a crucial role in showing the concentration-compactness of
uε and deriving the decay property of uε at infinity. (Especially important is the
property F(s)≡

∫ s
0 f (τ ) dτ ≤ k0 f (s)s, with a positive constant k0 <

1
2 and s > 0

in superlinear cases; one can see details in [Yin and Zhang 2009; Fei and Yin
2010] and the illustrations before Lemma 4.3 in this paper.) This means that some
methods used in [Yin and Zhang 2009] cannot be employed directly here.

Our paper is organized as follows. In Section 2, we replace the nonlinearity
K (x) f (uε) outside 3 by a suitably truncated function gε(x, uε) and give a detailed
analysis of the modified equation (1-14), so that the existence of nontrivial positive
solution uε can be established. In Section 3, we give some preliminary results
regarding the properties of the nonlinear Schrödinger equation −4u+ V (ξ)u =
K (ξ) f (u). In Section 4, we derive an integral decay estimate and use the Harnack
inequality to derive the pointwise decay estimate of uε at infinity, inspired by
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Lemma 17 of [Ambrosetti et al. 2005] and Lemmas 4.3 and 4.4 of [Yin and Zhang
2009]. From these, together with some involved analysis, we can complete the
proof of Theorem 1.1.

We will use the following notations:

Br denotes the ball centered at the origin with the radius r .

For a set A ⊂ RN , we put Aε = {ε−1x : x ∈ A}.

2. Existence of critical points for a modified nonlinear equation

We define a class of weighted Sobolev spaces as follows:

Eε :
{

u ∈ D1,2(RN ) :

∫
RN
(ε2
|∇u|2+ V (x)|u|2) dx <∞

}
with D1,2(RN )= {u ∈ L2N/(N−2)(RN ) : ∇u ∈ L2(RN )}.

The norm of the space Eε is denoted by

‖u‖ε =
(∫

RN
(ε2
|∇u|2+ V (x)|u|2) dx

)1/2

for u ∈ Eε.

Towards proving Theorem 1.1, it is necessary to modify (1-1) and further discuss
the existence of solution to the modified equation.

To this end, we define a function gε(x, ξ) by

gε(x, ξ)=min
{

K (x) f (ξ), ε3

1+|x |θ0
ξ+,

ε

1+|x |N

}
, x ∈ RN , ξ ∈ R,

where ξ+ =max{ξ, 0}, and θ0 > 2 will be suitably chosen in (4-51).
Set

hε(x, ξ)= χ3(x)K (x) f (ξ)+ (1−χ3(x))gε(x, ξ),

where χ3(x) represents the characteristic function of the set 3.
We now consider the modified nonlinear equation

(2-1) −ε21u+ V (x)u = hε(x, u), x ∈ RN .

The functional corresponding to (2-1) is

(2-2) Iε(u)= 1
2‖u‖

2
ε −

∫
3

K (x)F(u) dx −
∫

RN \3

Gε(x, u) dx,

where F(s)=
∫ s

0 f (τ ) dτ and Gε(x, s)=
∫ s

0 gε(x, τ ) dτ .
By (H2) and (H3), for any δ>0, there exists Cδ>0 such that f (s)≤δs+Cδ|s|2

∗
−1
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and further

(2-3)
∫
3

K (x)F(u) dx ≤ Cδ‖u‖2ε +Cε−2∗
‖u‖2

∗

ε .

On the other hand, a direct computation yields for u ∈ Eε

(2-4)
∫

RN \3

Gε(x, u) dx ≤
∫

RN \3

gε(x, u)u dx ≤ Cε‖u‖2ε.

It follows from (2-3) and (2-4) that Iε(u) is well-defined on Eε. That Iε lies in
C1(Eε,R) is obvious.

Next we show that Iε has a mountain pass geometry. Given small ε > 0, by (2-3)
and (2-4), there are two small numbers δ and r > 0 such that

(2-5) Iε(u)≥ 1
2‖u‖

2
ε−Cδ‖u‖2ε−Cε−2∗

‖u‖2
∗

ε −Cε‖u‖2ε ≥
1
4‖u‖

2
ε for ‖u‖ε ≤ r.

We now claim that

(2-6) inf
ψ∈H1(RN )\{0}

∫
RN |∇ψ |

2 dx∫
RN ψ2 dx

= 0.

Indeed, ifψ0(x) 6=0∈ H 1(RN ), then for any fixed λ∈R, one hasψ0(λx)∈ H 1(RN ).
A direct computation yields that∫

RN
|∇
(
ψ0(λx)

)
|
2 dx = λ2−N

∫
RN
|∇ψ0(x)|2 dx

and ∫
RN
|ψ0(λx)|2 dx = λ−N

∫
RN
|ψ0(x)|2 dx .

Therefore, we arrive at

(2-7)

∫
RN |∇

(
ψ0(λx)

)
|
2 dx∫

RN |ψ0(λx)|2 dx
= λ2

∫
RN |∇ψ0(x)|2 dx∫

RN |ψ0(x)|2 dx
→ 0 as λ→ 0,

proving (2-6).
From (2-6), we obtain for any fixed ξ ∈3,

(2-8) inf
ψ∈H1(RN )\{0}

∫
RN (|∇ψ |

2
+ V (ξ)|ψ |2) dx∫

RN K (ξ)ψ2 dx
=

V (ξ)
K (ξ)

.

This, together with (1-7), yields that for fixed ξ ∈ 3 there exists a function
ϕ ∈ C∞0 (R

N ) such that

(2-9)

∫
RN (|∇ϕ|

2
+ V (ξ)|ϕ|2) dx∫

RN K (ξ)ϕ2 dx
< l.

Choose R > 0 such that BR(ξ) ⊂ 3. We define a smooth cut-off function
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η : R+→ R+ satisfying η(t)= 1 if 0≤ t ≤ R
4 , η(t)= 0 if t ≥ R

2 and |η′(t)| ≤ 8
R .

Set
ϕε(x)= η(|x − ξ |)ϕ

( x−ξ
ε

)
∈ C∞0 (3).

Then

(2-10) Iε(tϕε)

= εN
( t2

2

∫
RN

(
|∇ϕ|2+ V (ξ)|ϕ|2

)
dx − 1

2

∫
RN

K (ξ)F(tϕ) dx + oε(1)
)
;

here and below the notation oε(1) stands for a quantity which satisfies oε(1)→ 0
as ε→ 0.

Thus we have, for ε ≤ 1,

(2-11) lim inf
t→+∞

Iε(tϕε)
t2 ≤

1
2

∫
R2

(
|∇ϕ|2+ V (ξ)|ϕ|2

)
dx − l

2

∫
RN

K (ξ)ϕ2 dx < 0.

Consequently, there exists some t0 > 0 such that Iε(t0ϕε) < 0. This, together
with (2-5), means that Iε has a mountain pass geometry. Let

cε = inf
γ∈0ε

max
0≤t≤1

Iε(γ (t)),

where 0ε = {γ ∈ C([0, 1], Eε) : γ (0) = 0, Iε(γ (1)) < 0}. By the mountain pass
theorem in Chapter IV of [Ekeland 1990], as in [Liu et al. 2008], one has the
following lemma.

Lemma 2.1. Under the assumptions (H1)–(H4), for small ε > 0, there exists a
sequence {un} ⊂ Eε such that Iε(un)→ cε and ‖I ′ε(un)‖E ′ε(1+ ‖un‖ε)→ 0 as
n→∞, where E ′ε and ‖I ′ε(un)‖E ′ε denote by the dual space of Eε and the norm of
I ′ε(un) in E ′ε.

Such a sequence is called a Cerami sequence. Next we will prove the sequence
{un} is bounded in Eε. We reason by contradiction: we assume up to a subsequence
that ‖un‖ε→+∞ as n→+∞, and derive a contradiction in Lemmas 2.2 and 2.3.

So assume ‖un‖ε→∞ and set ωn = un/‖un‖ε. By the boundedness of {ωn} in
Eε there exists ω ∈ Eε satisfying, after passing to a subsequence if necessary,

ωn ⇀ω weakly in Eε,(2-12)

ωn→ ω strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

,(2-13)

ωn→ ω almost everywhere in RN .(2-14)

Lemma 2.2. Under the assumptions (H1)–(H3), if ‖un‖ε→+∞, then ω(x)≥ 0
with ω(x) 6≡ 0 and ω solves the following equation weakly in Eε:

(2-15) −ε2
4u+ V (x)u = χ3(x)l K (x)u.
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Proof. Since it follows from Lemma 2.1 that I ′ε(un)u−n = on(1), then ‖u−n ‖ε = on(1)
holds true. This means ‖ω−n ‖ε = on(1); hence ω− = 0 and ω ≥ 0.

On the other hand, by Lemma 2.1 and (2-4), we have

on(1)=
I ′ε(un)un

‖un‖
2
ε

= 1−
∫
3

K (x) f (un)

un
ω2

n dx −
∫

RN \3

gε(x, un)un
‖un‖

2
ε

dx

≥ 1−
∫
3

K (x) f (un)

un
ω2

n dx −Cε;

here and below on(1) denotes a quantity that vanishes as n→∞.
From this, for small ε and large n we obtain

(2-16) C
∫
3

ω2
n dx ≥

∫
3

K (x) f (un)

un
ω2

n dx ≥ 1− on(1)−Cε ≥ 1
2 .

Combining (2-13) with (2-16) yields
∫
3
ω2 dx ≥ C , which obviously leads to

ω 6≡ 0.
Next we prove that ω satisfies (2-15).

In fact, for any φ ∈ C∞0 (R
N ), we have

I ′ε(un)φ

‖un‖ε
= on(1), which is equivalent to

(2-17)
∫

RN
(ε2
∇ωn∇φ+ V (x)ωnφ) dx

=

∫
3

K (x) f (un)

un
ωnφ dx −

∫
RN \3

gε(x, un)

‖un‖ε
φ dx + on(1).

Due to (2-12) and (2-17), there holds

(2-18)
∫

RN
(ε2
∇ω∇φ+ V (x)ωφ) dx

= lim
n→∞

(∫
3

K (x) f (un)

un
ωnφ dx −

∫
RN \3

gε(x, un)

‖un‖ε
φ dx

)
.

Noting that ∫
3

(
K (x) f (un)

un
ωn

)2

dx ≤ C
∫
3

V (x)ω2
n dx ≤ C

and

K (x) f (un)

un
ωn→ l K (x)ω almost everywhere in 3,

we get

(2-19) lim
n→∞

∫
3

K (x) f (un)

un
ωnφ dx =

∫
3

l K (x)ωφ dx .
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In addition, one has

(2-20) lim
n→∞

∫
RN \3

g(x, un)

‖un‖ε
φ dx = 0.

Substituting (2-19) and (2-20) into (2-18) yields the conclusion of Lemma 2.2. �

Lemma 2.3. Under the assumptions (H1)–(H4), Equation (2-15) has no nontrivial
solution ω(x) with ω(x)≥ 0.

Proof. By (1-7), along the proof line of (2-9), there exists vε ∈ C∞0 (3) such that∫
3
(ε2
|∇vε|

2
+ V (x)|vε|2) dx∫

3
K (x)v2

ε dx
< l.

Let 30 be a set satisfying supp vε (30 (3 and

µ0 = inf
ϕ∈C∞0 (30)

∫
30
(ε2
|∇ϕ|2+ V (x)|ϕ|2) dx∫
30

K (x)ϕ2 dx
;

then µ0 < l.
Due to the compactness of the embedding H 1

0 (30) ↪→ L2(30), a direct argument
then shows there exists a nontrivial nonnegative function v0 ∈ H 1

0 (30) such that

(2-21) −ε2
4v0+ V (x)v0 = µ0K (x)v0, x ∈30.

In addition, by the strong maximum principle [Gilbarg and Trudinger 1983,
Lemma 3.4 and Theorem 3.5], one has

v0 > 0, x ∈30,
∂v0
∂ν

< 0, x ∈ ∂30.

Moreover, we can assert that if ω ≥ 0 is a nontrivial solution of (2-15), then
ω 6≡ 0 in 3 for small ε. Indeed, if ω ≡ 0 in 3, we get ‖ω‖2ε = 0 by (2-15), which
yields a contradiction since ω is nontrivial.

Hence, we can choose the domain 30 so that
∫
30

K (x)v0ω dx > 0. In this case,
we have

µ0

∫
30

K (x)v0ω dx =
∫
30

(−ε2
4v0+ V (x)v0)ω dx

= l
∫
30

K (x)v0ω dx −
∫
∂30

ε2 ∂v0
∂ν
ω dσ ≥ l

∫
30

K (x)v0ω dx .

This means µ0 ≥ l, which contradicts with µ0 < l. Hence we complete the proof
of Lemma 2.3. �

Combining Lemma 2.2 with Lemma 2.3, we immediately obtain the announced
result:
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Lemma 2.4. Under the assumptions (H1)–(H4), the sequence {un} in Lemma 2.1
is bounded in Eε.

Next we state the main result in this section.

Lemma 2.5. Under the assumptions (H1)–(H4), for small ε > 0, the modified
functional Iε of (2-1) has a nontrivial critical point uε ∈ Eε with the level Iε(uε)= cε.

Proof. The boundedness of {un} in Eε implies that there exists uε ∈ Eε satisfying,
after passing to a subsequence if necessary,

un ⇀ uε weakly in Eε,(2-22)

un→ uε strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

.(2-23)

Next we show ‖un‖ε→‖uε‖ε as n→∞, which together with (2-22) leads to
the strong convergence of {un} in Eε.

In fact, by I ′ε(un)uε→ 0 and (2-22), we arrive at

(2-24) on(1)=
∫

RN
(ε2
∇un · ∇uε + V (x)unuε) dx

−

∫
3

K (x) f (un)uε dx −
∫

RN \3

gε(x, un)uε dx,

which implies

(2-25) ‖uε‖2ε −
∫
3

K (x) f (un)uε dx −
∫

RN \3

gε(x, un)uε dx = on(1).

In addition, we have

(2-26) ‖un‖
2
ε−

∫
3

K (x) f (un)un dx−
∫

RN \3

gε(x, un)un dx = I ′ε(un)un = on(1).

On the other hand, by use of (2-23), we find

(2-27) lim
n→∞

∫
3

K (x) f (un)un dx = lim
n→∞

∫
3

K (x) f (un)uε dx,

and for any fixed large R > 0 (without loss of generality, 3⊂ BR is assumed),

(2-28) lim
n→∞

∫
BR\3

gε(x, un)un dx = lim
n→∞

∫
BR\3

gε(x, un)uε dx .

Thus, in order to obtain ‖un‖ε→‖u0‖ε, it follows from (2-25)–(2-28) that we
only need to prove the following statement:

For any given δ > 0, there exists R > 0 such that for all n

(2-29)
∣∣∣∣∫

RN \BR

gε(x, un)uε dx
∣∣∣∣< δ, ∣∣∣∣∫

RN \BR

gε(x, un)un dx
∣∣∣∣< δ.
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It is only enough to check the first inequality in (2-29) since the second one is
similar. By direct computations, we have∣∣∣∣∫

RN \BR

gε(x, un)uε dx
∣∣∣∣≤ Cε

R(θ0−2)/2 ‖un‖ε‖uε‖ε→ 0 as R→∞.

The last estimate follows from the choice of θ0 > 2 and the boundedness of
{un}. Thus we have shown that un → uε in Eε, which completes the proof of
Lemma 2.5. �

Remark 2.1. Since hε(x, ξ) is Lipschitzian continuous in ξ for fixed x , it follows
from second order elliptic regularity theory that uε is a classical solution of (2-1).
Furthermore, uε > 0.

3. Solving a related constant coefficient problem

In this section, toward the proof of Theorem 1.1 in Section 4, we study the asymp-
totically linear problem (1-3) with constant coefficients. Some conclusions and
techniques in this section are very similar to those in Section 2, but we give the
argument anyway, for the reader’s convenience.

We consider the functional I ξ (u) defined in (1-4) for u ∈ E ≡ H 1
r (R

N )= {u ∈
H 1(RN ) : u(x)= u(|x |)}. Set

‖u‖ξ =
(∫

RN
(|∇u|2+ V (ξ)|u|2) dx

)1/2

,

which is a norm equivalent to the H 1(RN ) norm. We now verify that I ξ has a
mountain pass geometry. Similar to the proof of (2-5), there are two small numbers
δ, r > 0 such that

(3-1) I ξ (u)≥ 1
2‖u‖

2
ξ −Cδ‖u‖2ξ −C‖u‖2

∗

ξ ≥
1
4‖u‖

2
ξ for ‖u‖ξ ≤ r.

In addition, by (2-9), there exists a function ϕ ∈ H 1(RN ) \ {0} such that

(3-2)

∫
RN (|∇ϕ|

2
+ V (ξ)|ϕ|2) dx∫

RN K (ξ)ϕ2 dx
< l.

Let ϕ∗ be the symmetrization of ϕ (see [Berestycki and Lions 1983, Appen-
dix A.III]). Then ϕ∗(x) = ϕ∗(|x |) is a nonnegative function. Moreover, for any
continuous function H(s) such that H(ϕ(x)) is integrable in RN there holds

(3-3)
∫

RN
H(ϕ∗) dx =

∫
RN

H(ϕ) dx

and

(3-4)
∫

RN
|∇ϕ∗|2dx ≤

∫
RN
|∇ϕ|2dx .
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By (3-2)–(3-4), we have

(3-5)

∫
RN (|∇ϕ

∗
|
2
+ V (ξ)|ϕ∗|2) dx∫

RN K (ξ)|ϕ∗|2 dx
< l;

by the same argument as in (2-11) we can derive

(3-6) lim inf
t→+∞

I ξ (tϕ∗)
t2 < 0.

Thus there exists t0 > 0 such that I ξ (t0ϕ∗) < 0, showing that I ξ has a mountain
pass geometry. Define the mountain level

(3-7) c1 = inf
γ∈0

max
0≤t≤1

I ξ (γ (t)),

where 0 = {γ ∈ C([0, 1], E) : γ (0)= 0, I ξ (γ (1)) < 0}.
The next two lemmas are established analogously to Lemma 2.1 and Lemma 2.4,

respectively.

Lemma 3.1. There exists a sequence {un} ⊂ E such that I ξ (un)→ c1 and

‖(I ξ )′(un)‖H−1(1+‖un‖ξ )→ 0 as n→∞.

Lemma 3.2. The sequence {un} given in Lemma 3.1 is bounded in E.

Based on Lemma 3.2, we have:

Lemma 3.3. The functional I ξ has a positive critical point ω ∈ H 1
r (R

N ) with the
level I ξ (ω)= c1. That is, ω is a radially symmetric solution to the problem (1-3).

Proof. It follows from the boundedness of {un} in Lemma 3.2 that there exists
ω ∈ E satisfying, after passing to a subsequence if necessary,

un ⇀ω weakly in E,(3-8)

un→ ω strongly in L t
loc(R

N ) with 2≤ t < 2N
N−2

.(3-9)

As in Lemma 2.5, we only need to show ‖un‖ξ → ‖ω‖ξ as n →∞, which
together with (3-8) leads to the strong convergence of {un} in E .

Since (I ξ )′(un)ω→ 0 and using (3-8), we arrive at

on(1)=
∫

RN
(∇un · ∇ω+ V (ξ)unω) dx −

∫
RN

K (ξ) f (un)ω dx .

This implies

(3-10) ‖ω‖2ξ −

∫
RN

K (ξ) f (un)ω dx = on(1).
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In addition, we have

(3-11) ‖un‖
2
ξ −

∫
RN

K (ξ) f (un)un dx = on(1).

On the other hand, it follows from (3-9) and the Hölder inequality that

(3-12)
∣∣∣∣∫

RN
f (un)(un −ω) dx

∣∣∣∣≤ C
∫

RN
|un| |un −ω| dx

≤ C‖un‖L2‖un −ω‖L2 = on(1).

Hence, collecting (3-10)–(3-12) yields ‖un‖ξ→‖ω‖ξ as n→∞ and I ξ (ω)= c1.
Moreover, ω is a nontrivial critical point of I ξ to E . By the principle of symmetric
criticality (see [Willem 1996, Theorem 1.28]), ω is also a nontrivial critical point
of I ξ to H 1(RN ). In addition, ω > 0 can be shown as in Remark 2.1. Therefore,
Lemma 3.3 is proved. �

Next we assert that the radial function ω(x) = ω(V (ξ), K (ξ); x) found in
Lemma 3.3 is a ground state of the functional I ξ , that is,

(3-13) G(ξ)= I ξ (ω).

Obviously, G(ξ)≤ I ξ (ω) since ω ∈Mξ , ω being defined in (1-5). What is left
is to show I ξ (ω)≤ G(ξ) in order to get (3-13).

For any u ∈ Mξ , let u∗ be the symmetrization of u. Then u∗ ∈ H 1(RN ) and
u∗ ≥ 0. Consider the function

(3-14) J (t)= I ξ (tu∗)= t2

2

∫
RN

(
|∇u∗|2+V (ξ)|u∗|2

)
dx−K (ξ)

∫
RN

F(tu∗) dx .

A direct computation yields

lim
t→∞

J (t)
t2 =

1
2

∫
RN

(
|∇u∗|2+ V (ξ)|u∗|2

)
dx − l K (ξ)

2

∫
RN
|u∗|2 dx(3-15)

≤
K (ξ)

2

∫
RN

( f (u∗)
u∗
− l
)
|u∗|2 dx .

In addition, by the Strauss inequality [Willem 1996, Lemma 4.5], we have
u∗(x)→ 0 as |x | → +∞. On the other hand, it follows from lims→0+ f (s)/s = 0
that there exists �⊂ RN with |�|> 0 such that

(3-16)
(

f (u∗(x))
u∗(x)

− l
)
|u∗(x)|2 < 0

for x ∈�. If x ∈ RN
\�, the left-hand side of (3-16) is nonnegative, by (H3). Thus,

we have ∫
RN

(
f (u∗)

u∗
− l
)
|u∗|2 dx < 0.
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This, together with (3-15), yields that there exists t0 = t0(u∗) > 0 such that
I ξ (t0u∗) < 0. Define γ (t)= t t0u∗; then γ (t) ∈ 0. By the definition of c1, we see
that

I ξ (ω)= c1 ≤ max
0≤t≤1

I ξ (t t0u∗)≤ max
0≤t≤1

I ξ (t t0u)≤max
t≥0

I ξ (tu)= I ξ (u).

Since u is arbitrary, we have I ξ (ω)≤ G(ξ) and (3-13) is shown.

Remark 3.1. By the Gidas–Ni–Nirenberg result [Fei and Yin 2010, Theorem 2 and
following remark], 0 is the unique maximum point of ω(x) in RN . This motivates
us to establish a similar result in Lemma 4.5 in Section 4 below.

Finally, we show that the ground energy function G(ξ) is continuous for ξ ∈ 3̄.
Here we point out that the continuity of G(ξ) corresponding to the superlinear case
of f (u) in (1-3) has been proved in [Wang and Zeng 1997].

Lemma 3.4. G(ξ) is continuous with respect to ξ ∈ 3̄.

Proof. Consider a sequence {ξ j } ⊆ 3̄ such that ξ j → ξ0 ∈ 3̄ as j →+∞. Then
V (ξ j )→ V (ξ0), K (ξ j )→ K (ξ0) as j→∞. Set

I j (u)=
1
2

∫
RN
|∇u|2 dx +

V (ξ j )

2

∫
RN
|u|2 dx − K (ξ j )

∫
RN

F(u) dx,

I0(u)=
1
2

∫
RN
|∇u|2 dx +

V (ξ0)

2

∫
RN
|u|2 dx − K (ξ0)

∫
RN

F(u) dx,

and
0 j = {γ ∈ C([0, 1], E) : γ (0)= 0, I j (γ (1)) < 0},

00 = {γ ∈ C([0, 1], E) : γ (0)= 0, I0(γ (1)) < 0}.

From (3-7) and (3-13), we have

G(ξ j )= inf
γ∈0 j

max
0≤t≤1

I j (γ (t)) and G(ξ0)= inf
γ∈00

max
0≤t≤1

I0(γ (t)).

The proof of the continuity of G(ξ) now proceeds in two steps.

Step 1: lim sup j→∞ G(ξ j )≤ G(ξ0).
For any fixed path γ (t) satisfying γ (0)=0 and I0(γ (1))<0, we have I j (γ (1))<

0 for large j and

lim sup
j→∞

G(ξ j )≤ lim sup
j→∞

max
0≤t≤1

I j (γ (t))= max
0≤t≤1

I0(γ (t)).

Since the path γ (t) is arbitrary, this yields

(3-17) lim sup
j→∞

G(ξ j )≤ G(ξ0).
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Step 2: lim inf j→∞ G(ξ j )≥ G(ξ0).
We split this step into four parts.
Let ω j (x)∈ H 1

r (R
N ) satisfy G(ξ j )= I j (ω j (x)) (the existence of ω j (x) has been

shown in Lemma 3.3).

Part 1.
∫

RN |∇ω j |
2 dx is uniformly bounded with respect to j .

According to Pohozaev identity [Willem 1996, Appendix], we have

N−2
2N

∫
RN
|∇ω j |

2 dx =−
V (ξ j )

2

∫
RN
|ω j |

2 dx + K (ξ j )

∫
RN

F(ω j ) dx .

This implies

(3-18) G(ξ j )= I j (ω j )=
1
N

∫
RN
|∇ω j |

2 dx .

It follows from (3-17) and (3-18) that there is a positive constant C such that

(3-19)
∫

RN
|∇ω j |

2 dx ≤ C for any j.

Part 2.
∫

RN ω
2
j dx has a uniform upper bound independent of j .

Note that up to a subsequence, there exists a radial symmetric function ω(x)
such that, as j→∞,

ω j ⇀ω, weakly in D1,2(RN ),(3-20)

ω j → ω, strongly in L t
loc(R

N ), 1≤ t < 2N
N−2

,(3-21)

ω j → ω, almost everywhere in RN .(3-22)

By the Strauss inequality [Berestycki and Lions 1983, Lemma A.III, p. 340] for
the radial function in D1,2(RN ), we have

(3-23) |ω j (x)|2 ≤ C(N )|x |2−N
∫

RN
|∇ω j (x)|2 dx, for all |x | ≥ 1,

where the positive constant C(N ) only depends on N .
Since f (s)/s→ 0 as s→ 0 by the assumption (H2), we get from (3-23) and the

fact that N ≥ 5 that

f (ω j (x))
ω j (x)

→ 0 as |x | →∞ uniformly with respect to j .

This implies that there exists a large number R > 0 such that

(3-24)
∫
|x |≥R

(
V (ξ j )− K (ξ j )

f (ω j )

ω j

)
|ω j |

2 dx ≥ C
∫
|x |≥R
|ω j |

2 dx,

where C > 0 is independent of R and j .
It follows from (3-24) and the partial differential equation satisfied by ω j that
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for large R,

C
∫
|x |≥R
|ω j |

2 dx ≤
∫
|x |≥R

(
V (ξ j )− K (ξ j )

f (ω j )

ω j

)
|ω j |

2 dx(3-25)

≤ C
∫
|x |≤R
|ω j |

2 dx→ C
∫
|x |≤R
|ω|2 dx as j→∞.

Combining (3-24) with (3-25) yields that
∫

RN |ω j |
2 dx has a uniform supper

bound with respect to j . Thus ω ∈ L2(RN ) and further ω ∈ H 1(RN ). Moreover, ω
is a solution of the equation

(3-26) −4ω(x)+ V (ξ0)ω(x)= K (ξ0) f (ω), x ∈ RN .

Part 3.
∫

RN |ω j |
2 dx has a uniform positive lower bound with respect to j .

We now show that
∫

RN |ω j |
2 dx has a uniform positive lower bound with respect

to j . If so, this assertion together with (3-21) and (3-25) will yield

(3-27) ω 6≡ 0.

Note that V (ξ0)/K (ξ0) < l and V (ξ j )→ V (ξ0), K (ξ j )→ K (ξ0) as j →∞.
Thus we can choose a fixed small number η > 0 satisfying

(3-28)
V (ξ0)− η

K (ξ0)+ η
< l,

and, for large j ,

(3-29) V (ξ j ) > V (ξ0)− η, K (ξ j ) < K (ξ0)+ η.

Let m0 be the ground energy of the functional

H 1(RN )3u 7→ 1
2

∫
RN
|∇u|2 dx+

V (ξ0)− η

2

∫
RN
|u|2 dx−(K (ξ0)+η)

∫
RN

F(u) dx

in the Nehari manifold Mη, which is defined as

Mη
=

{
u ∈ H 1(RN ) \ {0} :∫

RN
|∇u|2 dx + (V (ξ0)− η)

∫
RN
|u|2 dx = (K (ξ0)+ η)

∫
RN

f (u)u dx
}
.

By (3-28) and the similar proof on Lemma 3.3, one can show that m0 is achieved
and is positive (in the arguments of Lemma 3.3, we have used the condition
V (ξ)/K (ξ) < l parallel to (3-28)).
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Consider the function

g j (t)

=

∫
RN
|∇(tω j )|

2 dx+(V (ξ0)−η)

∫
RN
|tω j |

2 dx−(K (ξ0)+η)

∫
RN

f (tω j )tω j dx .

Recalling that lims→0 F(s)/s2
= lims→0 f (s)/(2s) = 0, we get g j (t) > 0 for

0 < t � 1. In addition, by (3-29) we get g j (1) < I ′j (ω j )ω j = 0. Therefore there
exists a t j ∈ (0, 1) such that g j (t jω j )= 0, that is,

(3-30) 1
2

∫
RN
|∇(t jω j )|

2 dx

+
V (ξ0)−η

2

∫
RN
|t jω j |

2 dx − (K (ξ0)+ η)

∫
RN

F(t jω j ) dx ≥ m0.

Set

h j (t)=
1
2

∫
RN
|∇(tω j )|

2 dx +
V (ξ j )

2

∫
RN
|tω j |

2 dx − K (ξ j )

∫
RN

F(tω j ) dx .

It follows from a direct computation and the assumption (H3) that, for t ∈ (0, 1],

(3-31) h′j (t)= t
∫

RN
|∇ω j |

2 dx+tV (ξ j )

∫
RN
|ω j |

2 dx−K (ξ j )

∫
RN

f (tω j )ω j dx

≥ 0.

Combining (3-29), (3-30), and (3-31), we obtain, for large j ,

I j (ω j )≥ m0.

Together with (3-18), this yields, for large j ,

(3-32) 1
N

∫
RN
|∇ω j |

2 dx = I j (ω j )≥ m0.

In addition, since(
F(s)
s2

)′
=

f (s)s− 2F(s)
s3 ≥ 0 and lim

s→+∞

F(s)
s2 = lim

s→+∞

f (s)
2s
=

l
2
,

we have

(3-33) 0≤ F(s)
s2 ≤

l
2
, s 6= 0.

Therefore, by (3-32), (3-33), and the Pohozaev identity we find that

(3-34) 0< C ≤ N−2
2N

∫
RN
|∇ω j |

2 dx ≤ C
∫

RN
ω2

j dx,
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where C is a generic positive constant independent of j , that is,
∫

RN |ω j |
2 dx have

a uniform positive lower bound with respect to j .

Part 4. lim j→∞
∫

RN F(ω j ) dx =
∫

RN F(ω) dx .
In order to show

(3-35) lim
j→∞

∫
RN

F(ω j ) dx =
∫

RN
F(ω) dx,

then by (3-21) we only need to prove:
For any given δ > 0, there exists R > 0 such that, for large j ,

(3-36)
∣∣∣∣∫

RN \BR

F(ω j ) dx
∣∣∣∣< δ.

In fact, if we set ηR to be a smooth cut-off function such that ηR = 0 for |x | ≤ R
2 ,

ηR = 1 for |x | ≥ R and |∇η| ≤ 4
R , then multiplying by ηRω j the equation

−4ω j + V (ξ j )ω j = K (ξ j ) f (ω j ), x ∈ RN ,

yields, for large R and j ,

C
∫
|x |≥R

(
|∇ω j |

2
+ |ω j |

2) dx ≤ C
R
→ 0 as R→+∞,

which means that (3-36) and further (3-35) hold.
Finally, we show lim inf j→∞ G(ξ j ) ≥ G(ξ0). In view of (3-35), (3-26)–(3-27)

and the fact that G(ξ0) is the ground energy of the functional I0, we have

(3-37) lim inf
j→∞

G(ξ j )

= lim inf
j→∞

{
1
2

∫
RN

(
|∇ω j |

2
+ V (ξ j )|ω j |

2) dx − K (ξ j )

∫
RN

F(ω j ) dx
}
≥ G(ξ0).

Thus the continuity of G(ξ) is derived from (3-17) and (3-37), that is, Lemma 3.4
is proved. �

4. The proof of Theorem 1.1

At first, we intend to obtain an upper bound estimate of the critical value cε
corresponding to the functional Iε(u) defined in Section 2, which will play a
crucial role in establishing the concentration and decay estimates of solution uε to
Equation (2-1). From the decay estimates of uε we can show gε(x, uε)≡K (x) f (uε)
in RN

\3 and subsequently complete the proof of Theorem 1.1.

Lemma 4.1. Under the hypotheses (H1)–(H4), and with c0 as in (H4), we have, for
small ε > 0,

(4-1) cε ≤ (c0+ oε(1))εN .
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Proof. For ξ ∈ 3, choose R > 0 such that BR(ξ) ⊂ 3. Define a smooth cut-off
function η : R+ → R+ satisfying η(t) = 1 if 0 ≤ t ≤ R

4 , η(t) = 0 if t ≥ R
2 and

|η′(t)| ≤ 8
R . Set

wε(x)= η(|x − ξ |)ω
( x−ξ
ε

)
,

where ω(x)= ω(V (ξ), K (ξ); x) is the solution of (1-3).
Noting that wε is compactly supported in 3, one can get Gε(x, twε) = 0 for

all t ≥ 0 and x ∈ 3, where Gε(x, u) is the function defined in (2-2). Then as in
the argument in (2-11), there exists a sufficiently large T > 0 such that Iε(Twε) <
0. This implies that the path γε(t) = {tTwε : t ∈ [0, 1]} is an element of 0ε
satisfying cε ≤ max0≤t≤1 Iε(γε(t)). Also, similar to the proof of (2-10), we infer
that Iε(tTwε)= εN (I ξ (tTw)+ oε(1)). Hence

max
0≤t≤1

Iε(γε(t))= max
0≤t≤1

Iε(tTwε)=εN (max
0≤t≤1

I ξ (tTw)+oε(1))=εN (G(ξ)+oε(1)).

Since ξ is arbitrary and the smallness of ε is independent of the choice of ξ , then
Lemma 4.1 is proved. �

The next result illustrates that the maximum of uε on 3 has a uniform positive
lower bound.

Lemma 4.2. Let xε be the maximum point of uε on 3, then there exists a positive
constant C independent of ε such that

(4-2) uε(xε)≥ C.

Proof. By (H2) and (H3), for any δ > 0, there exists Cδ > 0 such that f (s) ≤
δs+Cδ|s|2. From I ′ε(uε)uε = 0, one has, for small δ and ε,

‖uε‖2ε =
∫
3

K (x) f (x, uε)uε dx +
∫

RN \3

gε(x, uε)uε dx

≤
1
2
‖uε‖2ε +C‖uε‖2ε max

3

uε.

Obviously this means that there exists a positive number C independent of ε
such that uε(xε)≥ C holds true due to ‖uε‖ε 6= 0, then the proof of Lemma 4.2 is
completed. �

Note that since f (s) is asymptotically linear, then in the general case, there is no
number θ > 0 such that (2+θ)F(s)≤ f (s)s for any s> 0, here F(s)=

∫ s
0 f (τ ) dτ .

However, in the superlinear case, this property of (2+ θ)F(s)≤ f (s)s with θ > 0
play a crucial role in obtaining the uniform boundedness of ε−N

‖uε‖ε from (4-1),
which will be used to derive the decay estimate of uε at infinity and the concentration
of uε as ε→ 0 (one can see the details in [Fei and Yin 2010] and some references
therein). To overcome this kind of difficulty, next we will use some different
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ingredients (motivated by the proofs of Lemmas 2.2–2.3) to treat the uniform
boundedness of ε−N

‖uε‖ε.

Lemma 4.3. There exists a positive constant C independent of small ε such that

(4-3) ε−N
∫

RN

(
ε2
|∇uε|2+ V (x)|uε|2

)
dx ≤ C,

namely,

(4-4)
∫

RN

(
|∇vε|

2
+ V (εx + xε)|vε|2

)
dx ≤ C,

where vε(x)= uε(εx + xε) and the meaning of xε is given in Lemma 4.2.

Proof. For convenience we will use the notation ‖vε‖ with

‖vε‖ =

(∫
RN

(
|∇vε|

2
+ V (εx + xε)|vε|2

)
dx
)1/2

.

If (4-4) does not hold, there exists a sequence of functions vn(x)≡ uεn (εnx+ xn)

such that ‖vn‖→+∞ as n→∞ and vn(x) satisfies

(4-5) −1vn + V (εnx + xn)vn

= χ�n (x)K (εnx + xn) f (vn)+ (1−χ�n (x))gεn (εnx + xn, vn),

where �n ≡ ε
−1
n (3− xn) and xn ≡ xεn ∈3.

Set ωn = vn/‖vn‖, then ‖ωn‖ = 1 and ωn(x) satisfies

(4-6) −1ωn + V (εnx + xn)ωn

= χ�n (x)K (εnx + xn)
f (vn)

vn
ωn + (1−χ�n (x))

gεn (εnx + xn, vn)

‖vn‖
.

We rewrite (4-6) as

(4-7) −1ωn = an(x)ωn,

where

an(x)=−V (εnx+xn)+χ�n (x)K (εnx+xn)
f (vn)

vn
+(1−χ�n (x))

gεn (εnx + xn, vn)

vn
.

For any fixed and bounded smooth domain �⊂ RN and fixed α ∈ (0, 1), due to
‖an(x)‖L∞(�) ≤C(�), it follows from ‖ωn‖= 1 and the elliptic equation (4-7) that
‖ωn‖C1,α(�̄) ≤C(�, α), where the positive constants C(�) and C(�, α) depend on
� and �,α respectively. Therefore, for fixed β ∈ (0, α), there exists a subsequence
still denoted by {ωn} and a function ω such that ωn→ ω in C1,β(�̄).

In particular, for a series of closed ball sequences Bk(0), k = 1, 2, . . . , then there
exists a subsequence {ω1n} and a function ω1 such that ω1n→ ω1 in C1,β(B1(0)),
and there exists a subsequence {ω(k+1)n} ⊆ {ωkn} and a function ωk+1 such that
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ω(k+1)n→ ωk+1 in C1,β(Bk+1(0)) as n→∞ for k ≥ 1. By the diagonal process,
one knows that there exists a subsequence still denoted by {ωn} and a function ω
such that ωn → ω in C1,β

loc (R
N ) as n→+∞. Of course, limn→∞ ωn(x) = ω(x)

holds for x ∈ RN .
Let xn→ x0 ∈3. We consider two cases.

Case I: limn→∞ dist(xn, ∂3)/εn =+∞.
In this case, by taking a subsequence, we can assume xn ∈ 3. Hence 0 ∈

�n and limn→∞ dist(0, ∂�n) = limn→∞ dist(xn, ∂3)/εn = +∞, which leads to
limn→∞�n = RN .

For any fixed ϕ ∈ C∞0 (R
N ), there holds suppϕ ⊆�n for lager n. Multiplying ϕ

on two hand sides of (4-6) and integrating by parts yield, for large n,

(4-8)
∫
[∇ωn∇ϕ+ V (εnx + xn)ωnϕ]dx =

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx .

Note that

(4-9) lim
n→∞

∫
[∇ωn∇ϕ+ V (εnx + xn)ωnϕ]dx =

∫
[∇ω∇ϕ+ V (x0)ωϕ]dx .

Next we show that

(4-10) lim
n→∞

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx =

∫
K (x0)lωϕ dx .

Define the set A = {x ∈ RN
: limn→∞ vn(x) = +∞} and let Ac

= RN
\ A. If

x ∈ A, then limn→∞ f (vn(x))/vn(x) = l. If x ∈ Ac, since limn→∞ ‖vn‖ = +∞,
we have ω(x)= limn→∞ ωn(x)= lim infn→∞ vn(x)/‖vn‖ = 0.

On the other hand, since K (εnx + xn) is uniformly bounded for x ∈ suppϕ with
respect to n and f (s)/s is also bounded, we have

(4-11) lim
n→∞

∫
K (εnx + xn)

f (vn)

vn
ωnϕ dx = lim

n→∞

∫
K (εnx + xn)

f (vn)

vn
ωϕ dx .

Therefore,

(4-12) lim
n→∞

∫
suppϕ∩A

K (εnx + xn)
f (vn)

vn
ωϕ dx =

∫
suppϕ∩A

K (x0)lωϕ dx .

In addition, obviously,

(4-13) lim
n→∞

∫
suppϕ∩Ac

K (εnx + xn)
f (vn)

vn
ωϕ dx = 0=

∫
suppϕ∩Ac

K (x0)lωϕ dx .

Collecting (4-11)–(4-13) yields (4-10).
From (4-8)–(4-10), we arrive at

(4-14)
∫

RN
∇ω∇ϕ+ V (x0)ωϕ =

∫
RN

K (x0)lωϕ,
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which means that ω solves

(4-15) −1ω+ V (x0)ω = K (x0)lω.

Case II: lim infn→∞ dist(xn, ∂3)/εn ≤ C .
In this case, we can show that x0 ∈ ∂3. Thus, up to a rotation, we can obtain

limn→∞�n = {x ∈RN
: x1 < 0}. Similarly to Case I, we conclude that the function

ω(x) satisfies

(4-16) −1ω+ V (x0)ω = K (x0)lωχ{x1<0}(x).

In Case I or Case II, for any fixed bounded domain M ⊂ RN or M ⊂ {x ∈ RN
:

x1 < 0} we have∫
M

[
|∇ω|2+ V (x0)ω

2]dx = lim
n→∞

∫
M

[
|∇ωn|

2
+ V (εnx + xn)ω

2
n
]
dx

≤

∫
RN

[
|∇ωn|

2
+ V (εnx + xn)ω

2
n
]
dx = 1;

then

(4-17)
∫

RN

[
|∇ω|2+ V (x0)ω

2]dx ≤ 1,

which means ω ∈ H 1(RN ) due to V (x0) > 0.
It follows the equations (4-15)–(4-16), together with (4-17), the fact that ω ≥

0, regularity theory and the strong maximum principle for second-order elliptic
equations, that we can get ω(x) ∈ C2,γ (RN ) in Case I and ω(x) ∈ C1,α(RN ) for
any α ∈ (0, 1) in Case II, and ω(x) > 0 with ω(x)→ 0 as |x | →∞. However, this
is contradictory with the conclusion of Lemma 2.3. Thus (4-15) and (4-16) have no
nontrivial nonnegative solutions. Lemma 4.3 is proved. �

Next we assert that the maximum point of uε on 3̄ must lie in the interior of 3.

Lemma 4.4. limε→0 max∂3 uε = 0.

Proof. To prove this, we argue by contradiction assuming that there exists a sequence
εn→ 0 as n→∞ such that for each n,

(4-18) max
∂3

uεn ≥ C > 0.

Let xn ∈ ∂3 such that uεn (xn)=max∂3 uεn and xn→ x0 ∈ ∂3 as n→∞. Define
vn(x)= uεn (εnx + xn), then vn(0)≥ C and vn(x) satisfies

(4-19) −1vn + V (εnx + xn)vn

= χ�n (x)K (εnx + xn) f (vn)+ (1−χ�n (x))gεn (εnx + xn, vn),

where �n ≡ ε
−1
n (3− xn).
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By (4-4), there holds ∫
RN
|∇vn|

2 dx ≤ C,

which deduces that for large n, for any fixed R > 0, there exists a positive constant
C(R) depending on R such that∫

BR(0)

(
|∇vn|

2
+ v2

n
)

dx ≤ C(R).

In terms of this and (4-19), as in the proof of Lemma 4.3, there exists some
nonnegative function v(x) such that vn→ v(x) in C2

loc(R
N ) and v(x) satisfies

(4-20) −1v+ V (x0)v = K (x0)χ{x1<0} f (v), x = (x1, x ′) ∈ RN .

Note that vn(0)≥C , then v(0)≥C and further v(x) > 0 in RN by the maximum
principle and Equation (4-20).

On the other hand, acting the test function ∂x1v on (4-20) yields∫
RN−1

F(v(0, x ′)) dx ′ = 0,

which leads to v(0, x ′) = 0. However, this is impossible due to v(x) > 0 in RN .
Thus Lemma 4.4 is proved. �

Lemma 4.5. For small ε, uε possesses at most one maximum point xε on 3 and
G(xε)→ c0 as ε→ 0.

Proof. First, we prove G(xε)→ c0 as ε→ 0.
If not, we have lim supε→0 G(xε)> c0. Let xε j→ x0∈3; then lim j→∞ G(xε j )=

lim supε→0 G(xε) > c0, which means G(x0) > c0.
Set v j (x)= uε j (ε j x + xε j ). Then v j solves

(4-21) −1v j + V (ε j x + xε j )v j

= χ� j (x)K (ε j x + xε j ) f (v j )+ (1−χ� j (x))gε j (ε j x + xε j , v j ).

As before, we can show that v j converges in C1,α
loc (R

N ) for α ∈ (0, 1) to some
function v0 that satisfies

(4-22) −1v0+ V (x0)v0 = K (x0) f (v0), x ∈ RN

or

(4-23) −1v0+ V (x0)v0 = K (x0)χ{x1<0} f (v0), x = (x1, x ′) ∈ RN .

The case of (4-23) can be excluded by the same argument as in Lemma 4.4, so we
focus on the case of (4-22).
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Set

(4-24) Jε j (v j )=
1
2

∫
RN
|∇v j |

2 dx + V (ε j x + xε j )|v j |
2 dx

−

∫
(3−xε j )/ε j

K (ε j x + xε j )F(v j ) dx −
∫

RN \(3−xε j )/ε j

G(ε j x + xε j , v j ) dx .

By invoking Lemma 2.2 in [del Pino and Felmer 1996] together with 2F(s)≤
f (s)s, we conclude that

(4-25) lim inf
j→∞

Jε j (v j )≥ I x0(v0).

This, together with (4-1), yields

c0 ≥ lim inf
j→∞

ε−N
j Iε j (uε j )= lim inf

j→∞
Jε j (v j )≥ I x0(v0)≥ G(x0) > c0,

which leads to a contradiction.
In addition, using the arguments in [del Pino and Felmer 1996, p. 133], we can

show that uε possesses at most one maximum point xε on 3. We omit the details.
This concludes the proof of Lemma 4.5. �

Next we establish a compactness result for uε which will be crucial to derive the
decay of uε(x) as |x | →∞.

Lemma 4.6. For any ν > 0, there exist ρ0(ν), ε0(ν) > 0 such that for ρ > ρ0(ν),
ε < ε0(ν), then

(4-26) dist(xε,M) < ν,

and

(4-27) ε−N
∫

RN \Bερ(xε)

(
ε2
|∇uε|2+ V (x)|uε|2

)
dx < ν,

where M = {ξ ∈3 : G(ξ)= c0}, and the meaning of c0 is given in (1-8).

Proof. Since the first conclusion can be directly derived from Lemma 4.5, then it
suffices to prove (4-27).

As a consequence of Lemma 4.5 and the assumption on G(x) in (H4), we have
d = infn dist(xn, ∂3) > 0 and 3n = (3− xn)/εn ⊃ Bd/εn ≡ Bρ̃n .

If (4-27) does not hold, then we can assume that there exist ν0 > 0, ρ̃n > ρn→

+∞, εn→ 0 as n→∞ such that

(4-28) T≡ ε−N
n

∫
RN \Bεnρn (xn)

(
ε2
|∇un|

2
+ V (x)|un|

2) dx > ν0,

where xn ≡ xεn , un ≡ uεn .
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Set vn(x)= un(εnx + xn), Vn(x)= V (εnx + xn) and vn ⇀v0, xn→ x0 ∈ M as
n→∞. Then, by (4-1) and (4-25) as n→∞,

1
2 T= ε−N

n
1
2

∫
RN

(
ε2

n|∇un|
2
+ V (x)|un|

2) dx

− ε−N
n

1
2

∫
Bεnρn (xn)

(
ε2

n|∇un|
2
+ V (x)|un|

2) dx→ 0,

which is contradictory with (4-28). We have completed the proof of Lemma 4.6. �

Before we treat the decay estimate of uε at infinity, we need to establish more
integration estimates based on Lemma 4.6.

Note that by the assumptions in (H2) and (H3), then for any fixed p > 1, there
exists a positive constant C1 = C1(p) depending on p such that

(4-29) f (s)≤ 1
16

max
ξ∈3̄

V (ξ)
K (ξ)

s+C1|s|p.

Furthermore we have a relation between ‖u‖ε and
∫
3

K (x)|u|p+1dx for any
1< p < N+2

N−2 as follows, which comes from Lemma 2.1 of [Yin and Zhang 2009].

Lemma 4.7. Under the assumptions (H1) and (H4), for each ε ∈ (0, 1], then there
exists a positive constant C2 = C2(p) depending only on p such that

(4-30)
∫
3

K (x)|u|p+1dx ≤ C2ε
−N (p−1)/2

‖u‖p+1
ε for u ∈ Eε,

where the domain 3 is defined in the assumption (H4).

For later use, we introduce two fixed positive numbers K0 > 128 and c> 0 such
that c2

≥ 128K 2
0/(d

2
0 V1), where d0=dist(∂3,M)> 0 and V1=

1
2 minx∈3 V (x)> 0.

Set ν0 =min{d0/K0, (16C1C2)
−2/(p−1)

}, where C1 and C2 are given in (4-29)–
(4-30). Take ε1 = min{ε0(ν0), d0/(K0ρ0(ν0)), (ln 2)/c}, where ε0(ν0) and ρ0(ν0)

are given in Lemma 4.6. From now on, we always assume ε < ε1 and ν < ν0 in
(4-26)–(4-27).

It follows from (4-26) that, for ε < ε1 and ν < ν0,

(4-31) dist(xε, ∂3) >
d0

2
and ερ0(ν0) <

d0

K0
.

Define �n,ε = RN
\ BRn,ε(xε) with Rn,ε = ecεn and let ñ > n̂ be integers such

that

(4-32) Rn̂−1,ε <
d0

K0
≤ Rn̂,ε, Rñ+2,ε ≤

d0

2
< Rñ+3,ε.
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By the second inequality in (4-31), one gets Rn,ε ≥ Rn̂,ε ≥ d0/K0 > ερ0(ν0) for
n ≥ n̂ and ε < ε1, and this also yields

(4-33) �n,ε ∩ Bερ0(ν0)(xε)=∅.

Let χn,ε(x) be smooth cut-off functions such that χn,ε(x) = 0 in BRn,ε(xε),
χn,ε(x)= 1 in �n+1,ε, 0≤ χn,ε ≤ 1 and |∇χn,ε| ≤ 2/(Rn+1,ε − Rn,ε).

Lemma 4.8. Under assumptions (H1) and (H2), if ε < ε1 and n̂ ≤ n ≤ ñ, we have

(4-34)
∫

RN
An,εdx ≤ 1

2

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx,

where An,ε(x)= ε2
|∇(χn,εuε)|2+ V (x)(χn,εuε)2.

Proof. For ε < ε1, it follows from a straightforward computation that

Rn+1,ε − Rn,ε ≥
cεRn+1,ε

2
.

This yields

(4-35) ε2
|∇χn,ε|

2
≤

4ε2

|Rn+1,ε−Rn,ε|
2 ≤

16
c2 R2

n+1,ε
.

From the choice of c, for ε < ε1 and n̂ ≤ n ≤ ñ, we arrive at

(4-36) 128
c2 R2

n+1,ε
≤ V (x) for x ∈ {x : Rn,ε ≤ |x − xε|< Rn+1,ε}.

Noting that ∇χn,ε is supported in {x : Rn,ε ≤ |x − xε|< Rn+1,ε}, then for ε < ε1

and n̂ ≤ n ≤ ñ, by (4-35) and (4-36), we obtain

(4-37) ε2
|∇χn,ε|

2
≤

1
8 V (x) in RN .

Multiplying (2-1) by χ2
n,εuε and integrating over RN yields∫

RN
An,εdx = I+ II+ III,

where

I =
∫
�n,ε

ε2
|∇χn,ε|

2u2
ε dx,

II =
∫
3∩�n,ε

K (x) f (uε)χ2
n,εuε

≤
1
16

∫
3∩�n,ε

V (x)u2
εdx +C1

∫
3∩�n,ε

K (x)|uε|p+1dx,

III =
∫
(RN \3)∩�n,ε

gε(x, uε)χ2
n,εuε dx .
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By (4-37), we have

(4-38) |I| ≤ 1
8

∫
�n,ε

V (x)u2
ε dx .

Next we treat |II|.
Clearly, we only need to consider the case 3∩�n,ε 6=∅. In this situation, there

is a set 6n,ε such that 6n,ε ∩�n,ε has the uniform cone property and 3⊂6n,ε ⊂

3r0 = {x : dist(x,3)≤ r0}, where r0 > 0 is a small constant such that V (x)≥ V1

holds true for x ∈32r0 .
By (4-30), one has

(4-39)
∫
6n,ε∩�n,ε

K (x)|uε|p+1dx

≤ C2ε
−N (p−1)/2

(∫
6n,ε∩�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx
)(p+1)/2

.

In addition, by (4-33), we arrive at 6n,ε ∩�n,ε ⊂ RN
\ Bερ0(ν0)(xε) for ε < ε1

and n ≥ n̂. Thus, it follows from (4-27), (4-39) and the definition of ν0 that

(4-40) |II| ≤ 1
8

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx .

Finally, we estimate |III|.
Similar to the proof of (2-3), for ε < ε1, we have

(4-41) |III| ≤
∫
�n,ε

2ε3

1+ |x |θ0
u2
ε dx ≤ 1

8

∫
�n,ε

(
ε2
|∇uε|2+ V (x)u2

ε

)
dx .

Combining (4-38), (4-40) with (4-41) yields the conclusion of Lemma 4.8. �

From Lemma 4.8, repeating the same argument as in Lemma 3.3 of [Fei and Yin
2010] leads to the following result.

Lemma 4.9. Under the assumptions of Lemma 4.8, for small ε < ε1, one has

(4-42)
∫

RN
|∇(χñ,εuε)|2 dx ≤ CεN−22−(ln 2)/(cε).

Next, we establish an estimate of uε(x) for large |x |.

Lemma 4.10. Under the assumptions of Lemma 4.8, for x ∈RN satisfying |x−xε|≥
d0/2, where the meaning of xε is given in Lemma 4.2, we have

(4-43) uε(x)≤ C2−(ln 2)/(2cε).

Proof. First we assert that

(4-44) max
3

uε ≤ C,
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where C > 0 is independent of small ε.
In fact, for any fixed p with 1< p< N+2

N−2 , it follows from (2-1) that vε(x)=uε(εx)
satisfies

(4-45) −4vε+V (εx)vε=K (εx) f (vε)≤ 1
16 V (εx)vε+C(p)v p

ε in Bd0(ε
−1xε)),

where C(p) is a positive constant dependent of p.
Define aε(x)= 15

16 V (εx)−C(p)v p−1
ε ; then vε(x) is a weak subsolution of the

equation

(4-46) −4vε + aε(x)vε = 0 in Bd0(ε
−1xε)).

By (4-3), then we obtain, for N
2
< q = 2N

(p−1)(N−2)
and small ε,(∫

Bd0 (ε
−1xε)
|aε|q dx

)1/q

≤ C +C(ε−N/2
‖uε‖ε)2N/(q(N−2))

≤ C.

This, together with the weak Harnack inequality (see [Gilbarg and Trudinger
1983, p. 193]), yields that there is a positive constant C depending only on the
space dimension N and the Lq(Bd0(ε

−1xε)) norm of aε(x) such that

max
3

uε = uε(xε)= vε(ε−1xε)≤ C
(∫

Bd0 (ε
−1xε)

v2
ε dx

)1/2

= C
(
ε−N

∫
Bεd0 (xε)

u2
ε dx

)1/2

≤ Cε−N/2
‖uε‖ε ≤ C,

namely, (4-44) is proved.
In addition, as in (4-45)–(4-46), one knows that vε(x)= uε(εx) is also a weak

subsolution of the equation

(4-47) −4vε + bε(x)vε = 0,

where bε(x)= 15
16 V (εx)−C(p)χε(x)v

p−1
ε − (1−χε(x))ε3/(1+|εx |θ0), and χε is

a characteristic function of 3ε = {ε−1x : x ∈3}. Moreover, bε(x) has a uniform
L∞ bound independent of small ε by (4-44).

On the other hand, it is noted that for x ∈ RN with x ∈ RN
\ Bd0/2(xε), then

Bεcd0(x) ⊂ �ñ+1,ε holds true for small ε and a direct computation yields, for
2∗ = 2N/(N − 2),

(4-48)
(∫

Bcd0 (ε
−1x)
|vε|

2∗dy
)1/2∗

≤ Cε−(N−2)/2
(∫

RN
|∇(χñ,εuε)|2(z) dz

)1/2

≤ C2−(ln 2)/(2cε).
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Subsequently, with the aid of Harnack inequality [Gilbarg and Trudinger 1983,
Theorem 8.17] and (4-48), we arrive at

(4-49) uε(x)= vε(ε−1x)≤ C
(∫

Bcd0 (ε
−1x)
|vε|

2∗dy
)1/2∗

≤ C2−(ln 2)/(2cε),

where C > 0 depends only on d0, N and the uniform L∞ bound of bε(x).
Since the L∞ norm of bε(x) is uniformly bounded, the proof of Lemma 4.10 is

complete. �

Remark 4.1. By Lemma 4.10, for θ ≥ 1, there exists an ε0 such that for ε < ε0,

(4-50) |uε(x)| ≤ εθ for x ∈ RN
\ Bd0/2(xε).

Next, we show that the local maximum point xε of uε(x) in the domain 3̄ is also
a maximum point of uε(x) in the whole space.

Lemma 4.11. Under the assumptions of Lemma 4.8, xε is the maximum point of uε
in RN .

Proof. Let yε be the maximum point of uε in RN ; then uε(yε) = maxRN uε ≥
max3 uε ≥ C . According to (4-50), we have yε ⊂ Bd0/2(xε) ⊂ 3 for small ε.
Hence yε = xε for small ε by Lemma 4.5. Namely, the proof of Lemma 4.11 is
completed. �

Proof of Theorem 1.1. It follows from the assumption (H5) that there exist positive
constants σ0, θ0, θ1 and θ2 such that

(4-51) β < (α− θ1)σ0− θ0 and 4+ 2(α− θ1)≤ (θ1− 1)θ2,

where N − 9
4 < σ0 < N − 2, θ0 > 2, θ1 > 1.

We define the comparison function

U (x)=
1

|x − xε|σ0
for x ∈ RN

\ Bd0/2(xε).

It is easy to know that Z(x)=U (x)− ε2uε(x)≥ 0 on ∂(Bd0/2(xε)) for small ε.
Recalling that vε(x)= uε(εx) vanishes at infinity, this is also true for Z(x).

On the other hand, using the expression for hε(x, uε) and noting that σ0 < N−2,
we conclude from (4-50) that 1Z =1U −ε21uε ≤ 0 holds for x ∈RN

\ Bd0/2(xε)
and sufficiently small ε.

Thus, by the maximum principle, we deduce uε ≤U/ε2 in x ∈ RN
\ Bd0/2(xε).

This and the uniform boundedness of xε imply

(4-52) uε(x)≤
C

ε2(1+ |x |σ0)
in RN

\3.
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Next we verify that uε actually solves Equation (1-1). Indeed, since f (s)=O(sα)
near s = 0, together with (4-50) we have, for small ε,

(4-53) f (uε)≤ C |uε|α in RN
\3.

Combining (4-50)–(4-53), we have, for small ε,

(4-54) K (x) f (uε)≤ Ck(1+ |x |β)|uε|α ≤
ε3

1+ |x |θ0
|uε| in RN

\3.

Choose two positive numbers θ3 and θ4 such that

β < (α− θ3)σ0− N and 2+ 2(α− θ3)≤ θ3θ4.(4-55)

Collecting (4-50), (4-52), (4-53), and (4-55) yields for small ε,

(4-56) K (x) f (uε)≤ Ck(1+ |x |β)|uε|α−θ3 |uε|θ3 ≤
ε

1+ |x |N
in RN

\3.

Therefore, it follows from (4-54) and (4-56) that gε(x, uε)≡ K (x) f (uε) holds
true in RN

\3 and subsequently uε solves the original equation (1-1). In addition,
noting that N − 9

4 < σ0, then the estimate (4-52) leads to uε ∈ L2(RN ) for N ≥ 5.
Finally, combining the conclusions in Lemma 4.2, Lemma 4.5 and Lemma 4.11,

in order to finish the proof of Theorem 1.1, we only need to verify (1-12). Set
M = {x0}, due to (4-26), one has xε→ x0 as ε→ 0. Let vε(x)= uε(εx + xε), then
vε is uniformly bounded in H 1

loc(R
N ) and satisfies the equation

(4-57) −4vε + V (εx + xε)vε = K (εx + xε) f (vε), x ∈ RN .

As in the arguments of Lemma 4.3 or Lemma 4.5, we can show that vε converges
to v∈C2(RN )∩H 1(RN ) in C2

loc(R
N ) as ε→ 0. With the aid of (4-43), vε converges

to v in L∞(RN ) as ε→ 0. Therefore v is a solution of the equation

(4-58) −4v+ V (x0)v = K (x0) f (v), x ∈ RN
;

moreover, by virtue of strong maximum principle, v > 0 can be derived. On the
other hand, as a consequence of Theorem 2 [Gidas et al. 1981] and the subsequent
remark, v is radially symmetric and decays exponentially.

Thus the proof of Theorem 1.1 is completed. �
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