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This paper is one of a series in which we generalize our earlier results on
the equivalence of existence of Calabi extremal metrics to the geodesic sta-
bility for any type I compact complex almost homogeneous manifolds of
cohomogeneity one. In this paper, we actually carry all the earlier results
to the type I cases. As requested by earlier referees of this series of pa-
pers, in this third part, we shall first give an updated description of the
geodesic principles and the classification of compact almost homogeneous
Kähler manifolds of cohomogeneity one. Then, we shall give a proof of the
equivalence of the geodesic stability and the negativity of the integral in
the first part. Finally, we shall address the relation of our result to Ross–
Thomas version of Donaldson’s K-stability. One should easily see that their
result is a partial generalization of our integral condition in the first part.
And we shall give some further comments on the Fano manifolds with the
Ricci classes. In Theorem 14, we give a result of Nadel type. We define
the strict slope stability. In our case, it is stronger than Ross–Thomas slope
stability. We strengthen two Ross–Thomas results in Theorems 15 and 16.
The similar proofs of the results other than the existence for the type II cases
are more complicated and will be done elsewhere.

1. Introduction

This paper is one of a series of papers in which we finished the project of studying
the existence (or not) of extremal metrics in any Kähler class on any compact almost
homogeneous manifolds of cohomogeneity one.

In [Guan 2011a; 2011b] we proved that for the type I compact almost homoge-
neous Kähler manifolds of cohomogeneity one, the existence of Calabi extremal
metrics is the same as the negativity of a topological integral. We also proved in
[Guan 2011b] that for any two Kähler metrics in the Mabuchi moduli space of
Kähler metrics there is a smooth geodesic connecting them. That is, the geodesic
principle I is true for these manifolds.
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As in [Guan 2003], the major tool is from [Guan 1999]. Although the problem of
existence of the extremal metrics can be reduced to an ordinary differential equation
for our manifolds, the problem of the existence of the geodesics has two variables.
Thanks to the Legendre transformation, we can carry it out for the type I manifolds.
But for a general type II manifolds, this method does not work any more. And we
need a new method, which will be carried out in [Guan ≥ 2013a].

Even for the Kähler–Einstein equation, our method in [Guan 2011a] is different
from [Guan and Chen 2000]. We used a semisimple method in [Guan 2011a]. One
notices that our exponential map there is not the one for the geodesics. No geodesic
in that situation could have infinite length. It was well known for many years that
there were many nonsmooth solutions for even a real homogeneous Monge–Ampère
equations. In [Chen and Tian 2008] Professor Chen gave an example which looks
like a nonsmooth solution for the one-dimensional toric case, that is, CP1. He also
mentioned it earlier to me in 1999 at Princeton. Mabuchi also mentioned it to me
in Pisa, Italy in 2004. However, we already solved the smoothness question for
the toric manifolds in [Guan 1999]. In this simple case, the method of X. X. Chen
should also produce the smooth solution; see [Guan and Phong 2012]. The content
of this note was presented in the AMS meeting in Pomona California May 2008.
Recently, L. Lempert and L. Vivas claimed (also mentioned by the referee) that
they found a counterexample to our geodesic principle I on the torus. However,
their examples are not very explicit and not published yet. We are not able to
check their examples in this paper. As we know, there is no much equivariant
geometry on the torus. The geodesic problem was trivial on the torus. However,
see also [Feng 2012]. We checked that all the geodesic principles hold on compact
cohomogeneity-one Kähler manifolds. We conjecture that the geodesic principles
hold for all the spherical manifolds. We take them as working principles in our
research. For our safety, we just require that everything is analytic. For example,
for any analytic initial value in the tangent space of the equivariant Mabuchi moduli
space at a given metric, there is a geodesic ray. That is, the geodesic principle I
is not really needed for the geodesic stability. In [Guan and Chen 2000], some
possible obstructions emerged that I eventually treated in [Guan 2002], which led to
the strict slope stability. After a long run, we are able to overcome all the difficulties.
To solve the extremal metrics cases, we have to deal with a fourth-order ordinary
differential equation, which in our cases is fortunately reduced to a second-order
nonlinear equation and is successfully treated.

All the solutions we find in the cohomogeneity-one cases are not explicit except
those in [Guan 1995a; Guan 2007].

In this paper, we shall prove that the negativity of the integral is actually the
same as the geodesic stability.
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A classification which we refer to in this paper can be found in [Guan 2003,
Section 12].

Here we shall describe our updated geodesic stability principles. We conclude
these principles by following the cumulation of other people’s observations and
the evidence from our examples. See [Guan 2003]. We do not assume that these
principles are due to us completely, in particular the first principle.

Motivated by the Donaldson’s functional in the vector bundle case, Mabuchi
[1986] defined a functional on the Mabuchi moduli space of the Kähler metrics (see
also a conjecture therein). It was later modified independently by several people to
fit the situation of Calabi extremal metrics (see [Guan 1999; Guan and Chen 2000],
etc.) on the equivariant Mabuchi moduli space of Kähler metrics, which we call the
modified Mabuchi functional.

Principle I. For any two Kähler metrics in a given Kähler class, there is a unique
(smooth) geodesic in the Mabuchi moduli space of Kähler metrics connecting them.

This principle has been tested for toric bundles in [Guan 1999]. We also found
that the same method applies to Kähler metrics on type-I and type-III compact
almost homogeneous Kähler manifolds of cohomogeneity one in [Guan 2003;
2011b]; see also [Guan 2007]. It seems to us that there is not any complete geodesic
except the ones induced by the holomorphic vector fields. X. X. Chen [2000] proved
the existence of an unique C1,1 solution in general.

We shall concentrate on the maximal geodesic rays. It turns out that the majority
of the maximal geodesic rays are of finite length (this is different from holomorphic
vector bundle theory on vector bundles; cf. [Kobayashi 1987, p. 197] and also the
picture shown in [Semmes 1992, p. 544]). The maximal geodesic rays with infinite
length are very special with some strong convex property, which we call “effective”
maximal geodesic rays. The direction of the effective geodesic rays at each metric
might form a convex cone C.

Principle II. The limit metrics of the maximal geodesics are concentrations:

A. Finite ray: cone concentration — partial concentration.

B. Infinite ray: blow up caused by some subvarieties outside a compact set —
complete concentration outside the compact set, the metric on this compact set
does not change.

We call the limit of the ratio of the modified Mabuchi functional the generalized
Futaki invariants of the maximal geodesic rays. The generalized Futaki invariant
is positive infinite for finite rays, that is, the only interesting generalized Futaki
invariants come from the effective maximal geodesic rays.

The second principle is based on our work on toric manifolds and cohomogeneity-
one manifolds; see [Guan 2003; 2007] for examples.
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For all the examples we consider in this paper, the Mabuchi equivariant moduli
space is flat (see [Guan 1999]); this is similar to the vector bundle case and is not true
in general (see [Mabuchi 1987]). For two maximal geodesic rays, the generalized
Futaki invariants might be the same if there is a curve connecting the beginning
points such that there is a parallel vector field along this curve which connects the
two tangent vectors at these two points. This observation makes the definition of
the generalized Futaki invariants independent of the initial Kähler metrics.

The generalized Futaki invariants define a function of the effective geodesic cone
which is probably a linear function FM,ω, which is continuous on a certain given
Banach space. Therefore, F can be defined on the closure C̄ of the effective cone
C in the Banach space. We call F |C̄ the generalized Futaki invariant functional
or simply the generalized Futaki invariant. There is a seminorm ‖·‖∗, which is
locally equivalent to the given norm except on some subvarieties and is zero on the
functions induced by the holomorphic vector fields.

Principle III. There is a unique extremal metric in a given Kähler class up to the
automorphism group if and only if the Kähler class is geodesic stable, that is, with
positive generalized Futaki invariant which is bounded below by the given seminorm.

(Note: in many of our papers, this is called the fourth principle and the next
principle is called the third, reflecting the order in which they were formulated.)

In general, the Mabuchi moduli space might not be flat. We might have some
way to relate the Futaki invariants for two infinite maximal geodesic rays starting
from different points. Let γi (t), i = 1, 2 be two maximal geodesic rays. We say
that they have the same infinite points if

d(γ1, γ2)= sup
t∈[0,+∞)

d(γ1(t), γ2(t))

is finite. Then we have (see also [Guan 2007, Remark 4]):

Principle IV. The Futaki invariants of two maximal geodesic rays with the same
infinite point are the same.

In the last section, we shall see that our stability in this case is the same as a
version of the slope stability which is stronger than that in [Ross and Thomas 2006].

2. Preliminaries

Here we summarize some known results about the compact complex almost ho-
mogeneous manifolds of cohomogeneity one. In this paper, we only consider
manifolds with a Kähler structure. For earlier results one might check [Ahiezer
1983; Huckleberry and Snow 1982].

We call a compact complex manifold an almost homogeneous manifold if its
complex automorphism group has an open orbit. We say that a manifold is of
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cohomogeneity one if the maximal compact subgroup has a (real) hypersurface
orbit. In [Guan and Chen 2000; Guan 2003], we reduced the compact complex
almost homogeneous manifolds of cohomogeneity one into three types of manifolds.

We denote the manifold by M and let G be a complex subgroup of its automor-
phism group which has an open orbit on M .

Let us assume first that M is simply connected. Let the open orbit be G/H ,
K be the maximal connected compact subgroup of G, L be the generic isotropic
subgroup of K , that is, K/L be a generic K -orbit. We have [Guan and Chen 2000,
Theorem 1]:

Proposition 1. If G is not semisimple, then M is a completion of a C∗-bundle over
a projective rational homogeneous space.

If a compact almost homogeneous Kähler manifold is a completion of a C∗-bundle
over a product of a torus and a projective rational homogeneous space, we call it a
manifold of type III. We dealt with this kind of manifold in our dissertation [Guan
1995a; 1995b]. There always exists an extremal metric in any Kähler class. In
[Guan 2007], we generalized this existence result to a family of metrics connecting
the extremal metric of [Guan 1995a] and the generalized quasi-Einstein metric of
[Guan 1995b]; we called this family the extremal-soliton metrics. The existence of
the extremal-soliton is the same as geodesic stability with respect to a generalized
Mabuchi functional.

More recently in [Guan 2012], we even generalized the extremal-solitons to the
generalized extremal solitons, which also include Nakagawa’s [2011] generalized
Kähler–Ricci solitons as a special case. We proved the existence of both generalized
extremal solitons and the generalized Kähler–Ricci solitons on these manifolds.
In a forthcoming paper [Guan ≥ 2013b], we proved the existence of the so called
m-extremal metrics on these manifolds.

In general, if M is a compact almost homogeneous Kähler manifold and O is
the open orbit, then D = M − O is a proper closed submanifold. Moreover, D
has at most two components. We call each component of D an end. If D has two
components or one component, we say M is an almost homogeneous manifold
with two ends or one end, respectively. We have [Huckleberry and Snow 1982,
Theorem 3.2]:

Proposition 2. If M is a compact almost homogeneous Kähler manifold with two
ends, then M is a manifold of type III.

Therefore, we only need to deal with the case with one end. In [Guan and Chen
2000], we treated the first example, that is, the blowup of the diagonal of the product
of two copies of CPn . We treated another series in [Guan 2003]. We treated many
more of them in [Guan 2009; 2011b; 2011c], etc. Again, in the case of M being
simply connected, we only need to take care of the case in which G is semisimple.
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If G is semisimple and M has two G orbits, one open and one closed, and moreover
if the closed orbit is a complex hypersurface, there are two possibilities. Let K,L

be the Lie algebras of K , L . Then the centralizer of L in K is a direct sum of
the center of L and a Lie subalgebra A with A being either one-dimensional or a
3-dimensional Lie algebra su(2). If A is one-dimensional, we call M a manifold of
type I. If A is su(2), we call M a manifold of type II.

In general, if the closed orbit has a higher codimension, we can always blow
up the closed orbit to obtain a manifold M̃ with a hypersurface end. We call the
manifold M a manifold of type I or II if M̃ is of type I or II, respectively.

There is a special case of the type II manifolds. If the open orbit is a Ck-bundle
over a projective rational homogeneous manifold, we call M an affine type manifold
(not to be confused with the closed complex submanifolds of Cm).

Then we have (see [Guan 2003, Section 12]):

Proposition 3. Any compact almost homogeneous Kähler manifold M of cohomo-
geneity one is an Aut0(M) equivariant fibration over a product of a rational projec-
tive homogeneous manifold Q and a complex torus T with a fiber F. Therefore, M
can be regarded as a fiber bundle over T with a simply connected fiber M1. One of
following holds:

(i) M is a manifold of type III.

(ii) M1 is of type II but not affine.

(iii) M1 is affine.

(iv) M1 is of type I.

We say that M is a manifold of type I, or type II, affine, if M1 is, respectively, a
manifold of type I or type II, affine.

We actually can also obtain the structure of an M1-bundle over T from [Huckle-
berry and Snow 1982]. We only need to understand the bundle structure for the open
orbit. By [ibid., Corollary 4.4] we have that the bundle structure is a product unless,
when we apply Proposition 3 to M̃ , F=Qk . In the latter case, there is an unbranched
double covering M̄ of M such that the bundle structure of M̄ is a product.

Proposition 4. The M1-bundle over T is a product except in the case where the
open orbit is an F0-bundle over Q × T such that F0 is in the second, sixth and
eighth cases in [Ahiezer 1983, p. 67]. In the latter cases, the M1-bundle has an
unbranched double covering which is a product of M1 and T .

In [Guan 2011a; 2011b], we dealt with the type I cases.
One updated remark is that since we are dealing with the Kähler metrics it is

more convenient to separate the type II case into two cases in [Guan 2009] and
[Guan 2011c]. We call the cases in [Guan 2009] (and the papers between [ibid.]
and [Guan 2003]) the type IV cases. They are the affine cases such that the group
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π(G F ), the restriction of the subgroup G F of G fixing a given fiber F , is not of
type A. Therefore, one might also call them the non-type-A type II cases. All of
them are Fano.

One might call the rest (in [Guan 2011c]) of the type II cases the new type II
cases (or simply the type II cases). They are those type II cases such that π(G F ) is
of type A. Therefore, one might also call them the type A type II cases.

This note is a continuation of the first part and the second part of this paper
[Guan 2011a; 2011b]. We shall retain all the notation from those papers here.

3. The complex structures of the type I almost homogeneous manifolds

In this section, we shall deal with the complex structure of the type I almost
homogeneous manifolds. We retain the notation in [Guan 2011a; 2011b]. Let us
recall some basic notation of the Lie algebras.

Let G be the complex Lie group action and S be the connected complex Lie
subgroup acting on a given fiber. According to [Guan 2003, p. 283, Theorem
12.1(ii)], a compact complex almost homogeneous manifold of cohomogeneity one
is type I if and only if the fiber F is one of (1) the second and third case with n ≥ 3,
(2) the fourth case, (3) the eight and ninth cases, (4) the fifth case in [Ahiezer 1983,
p. 67].

The fiber F in (4) has S = π(G F ) = F4, so G = F4 = S, that is, M = F is
homogeneous. Therefore, every Kähler class of M has a metric with constant scalar
curvature. So, we do not need to do anything with (4).

In [Guan 2011a], we look at three special possible fiber cases [Ahiezer 1983,
p. 67] first:

(1) F = F(OPn): The third case in [Ahiezer 1983, p. 67] with n ≥ 3. We have
F = CPn and

S = π(G F )= SO(n,C),

regarding CPn as a completion of Cn . The corresponding compact rank-one
symmetric space is the real n-dimensional real projective space. It has an
equivariant branched double covering Qn of the second case. We denote the
latter case by F(OQn).

(2) F = F(Grk): The fourth case with a standard S = Sp(k,C)-action on the
manifold F = Gr(2k, 2). The corresponding compact rank one symmetric
space is the quaternionic projective space.

(3) F = F(Spp
7 ): The ninth case with an S= Spin(7,C)-action on F =CP7. This

is the restriction of (1) with n+1= 8 to the complex Lie subgroup Spin(7,C).
It has an equivariant branched double covering Q7 of the eighth case. In [Guan
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2011a], we also denote the latter case by F(Spq
7) and denote both of them by

F(Sp7) whenever there is no confusion.

In [ibid.], we defined a certain basis of the Lie algebra α, Fα and Gα for positive
roots α. And, we considered a fixed point p0 and its orbit ps generated by a
semisimple element −i H in the Lie algebra. Let T be the tangent vector of ps and
p∞ be the limit point in the closed orbit.

In the case (1), we obtained:

Proposition 5. For F(OPn) and F(OQn), along ps we have
J (Fe1+ei ± Fe1−ei )=−(tanh s)∓1(Ge1+ei ±Ge1−ei )

(and J Fe1 = −(tanh s)Ge1). We also have that Fei±ek = Gei±ek = 0 (and Fei =

Gei = 0) for i > 1. In particular, at p∞, J Fα = −Gα for α 6= ei ± ek (and ei ),
1< i < k.

In the case of (2), we obtained:

Proposition 6. For F(Grk), we have

J Fα1 =−(tanh 2s)Gα1,

J (F2e1 ± F2e2)=−(tanh 2s)∓1(G2e1 ∓G2e2),

J (Fe1−ek ±Ge2−ek )=−(tanh s)∓1(Ge1−ek ± Fe2−ek ),

J (Fe1+ek ±Ge2+ek )=−(tanh s)∓1(Ge1+ek ± Fe2+ek ).

Fα = Gα = 0 for α = e1+ e2, ei − ek, 2ei , ei + ek with i > 2.
At p∞, we have Fα = Gα = 0 if α = e1+ e2, 2ei , ei ± ek , i > 2, and J Fα = Gα

if α = 2e2, e2± ek . Otherwise J Fα =−Gα.

Before we consider the isolated case (3), we can look at the general cases in
which G 6= S=π(G F )⊂Aut(F), where G F is the subgroup that acts on the fiber F
and π : G F → Aut(F) is the induced map from G F to Aut(F). As in [Ahiezer
1983], G is semisimple, UG = H is the 1-subgroup. There is a parabolic subgroup
P = SS1 R with S, S1 semisimple and R solvable such that UG = U S1 R where
U = H ∩ S is a 1-subgroup of S. The manifold is a fibration over G/P with the
completion of P/UG = S/U as the isotropic open orbit of the almost homogeneous
fiber. In this case, the root system of S is a subsystem of the root system of G.
In the Lie algebra of G, we also have some other Fα,Gα outside S. Let K be a
maximal connected compact Lie subgroup of G and L be the isotropic subgroup
of K at a generic orbit. Let K,L be the corresponding Lie algebras. The tangent
space of G/UG along ps is decomposed into irreducible L-representations. These
Fα,Gα are in the complement representation of the Lie algebra S of S. As it is in
the tangent space of G/P , J Fα =−Gα(mod S). Therefore, we have J Fα =−Gα

for any α which is not in the root system of S.



TYPE I ALMOST HOMOGENEOUS MANIFOLDS OF COHOMOGENEITY ONE, III 377

If S is B2, G can be Bn , Cn , F4. If S is B3, G can be Bn , F4. If S is C3, G can
be Cn , F4. If S is Bn with n > 3, G can only be Bm+n . If S is Cn with n > 3, then
G can be Cn+m . The case of a B2-action that has an isotropic group of SO(4,C)

generated by roots ±e1± e2 is exactly the same as the case of an Sp(2,C)-action,
which has an isotropic subgroup of Sp(1,C)×Sp(1,C) generated by ±2e1,±2e2.

We have a few more possibilities. If S = Dk , k > 3, G can only be Dn , n > 3 or
En , n > k. If S = D3, that is an A3, G can be An , n > 2, Bn , n > 3, Cn n > 3, Dn

n > 2 and En . If S = D2, G can be any simple group or product of simple groups
other than G2.

We then treated the isolated case (3) of the Spin(7,C)-action on CP7 in [Guan
2011a]. This case is the restriction of the case (1) with an G = S= SO(8,C)-action
to the Spin(7,C)-action induced by the spinor representation.

We obtained:

Proposition 7. For F(Sp7), we have

J (
√

2Fhi ± Fh j+hk )=−
(

tanh
√

3
2

s
)∓1(√

2Ghi ±Gh j+hk

)
,

J H =−T,

Fei−e j = Gei−e j = 0 for 0< i < j < 4.

At p∞, J Fhi =−Ghi , J Fh j+hk =−Gh j+hk , Fhi−hk = Ghi−hk = 0.

However, in this case S = B3, G can only be Bn or F4.

4. The Kähler structures

In [Guan 2011a], we examined the Kähler structure for the S = SO(n,C)-actions
and obtained that for any possible G and S = SO(n,C) we always have a Kähler
metric: ω([X, Y ]) = (aH + I, [X, Y ]) with the I in the C center of L and a a
nonpositive function of s.

See [Guan 2011a, Section 3].
Therefore, we have the volume formula

V =−Ma′a2(n−1)
r∏
1

(ai − a)
s∏
1

(b j + a)

(
or V = Ma′a2n−1(tanh s)

r∏
1

(ai − a)
s∏
1

(b j + a)
)
,

with some positive numbers ai and b j .
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Then in [Guan 2011a], we dealt with the Kähler metrics with Sp(k,C) and
Spin(7,C)-actions. We have the volume form

V = Ma′a4k−5(tanh 2s)
r∏
1

(ai − a)
s∏
1

(b j + a)

for the Sp(k,C)-actions.
For the S = Spin(7,C)-action, we obtained the volume form

V =−Ma′a6
r∏

i=1

(ai − a)
s∏

j=1

(b j + a).

We also observe that ai and b j come in pairs, and b j (i) = ai .
Altogether, we have:

Proposition 8. For the type I case the volume is

V =−Ma′a2m
∏
(a2

i − a2)

for the cases S = Dk or Spin(7,C) and

V = Ma′a2m+1(tanh bs)
∏
(a2

i − a2)

for the cases S= Bk (or Ck) with b= 1 (or 2), where M and ai are positive numbers,
m are nonnegative integers. We also have that 2m+1 (or 2m+2) are the dimensions
of the fiber. Moreover, the vectors in Propositions 5, 6 and 7 are orthogonal to each
other.

Let h = log V . In [Guan 2011a, Section 5, Theorem 2] we obtained:

Proposition 9. If the fiber with the S-action is of type I of complex dimension n,
then the function a for the Ricci form ρ is

aρ = 1
2

((
log
(

a′an−1
r∏
1

(a2
i − a2)

))′
− 2

n−1∑
1

Ni coth 2Ni s
)
.

Moreover, the Ni are (1) 1 for S = SO(n + 1,C) and (2) 1 except three of them
being 2 for S of type Ck , (3)

√
3/2 for the case S = Spin(7,C). Other coef-

ficients come from the Ricci curvature of G/P , which is −(qG/P , [X, Y ]) with
qG/P =

∑
α∈1+−1P

Hα with the standard inner product.

Then we calculated the scalar curvature in [Guan 2011a, Section 6, Theorem 3].
We write

V =−Ma′ Q̃(a)=−Ma′(−a)n−1 Q1(a)g(s),

with g(s)= 1 for S = Dk or Spin(7,C) and g(s)= tanh bs for S = Bk or Ck . We
write Q(a)= (−a)n−1 Q1(a) and obtained ρ ∧ωN−1

= M((−aρQ(a))′+ p0a′).
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Proposition 10. The scalar curvature is

R =
2(−aρQ)′+ pa′

−a′Q
.

Moreover, p(a) = (−a)n−1 p1(a) with p1(a) a polynomial of a and is a positive
linear sum of Q1 and product of deg Q1 − 1 factors of Q1. The contribution
of each constant factor k j (that is, the vector Fα such that the corresponding
metrics ω(Fα, J Fα)= k j is a constant along ps) is 2kρ, j/k j for the Q1 factor. The
contribution of each ai ± a is 2aρ,i Q1/qi .

Therefore, we have

R0 =

∫
−l

0 [(2uρQ)x + p] dx∫
−l

0 Q dx
=

2uρ(−l)Q(−l)+
∫
−l

0 p dx∫
−l

0 Q dx
,

where we let u =−a and l = lims→+∞ a. We also obtained in [Guan 2011a] that
aρ(0)= 0.

5. Geodesic stability and existence of the Calabi extremal metrics

In [Guan 2011b, Section 2], for any metric we obtained a function 0(s) such that
−4a = 4u = 0′ and the geodesic equation is 0̈0′′ = (0̇′)2, where ′ is the derivative
with respect to s, the parameter from the manifold, and ˙ is the derivative with
respect to t , the parameter for the geodesic. We obtain the smooth geodesics and
so the uniqueness. Therefore, we might regard U = 4u as g in [Guan 2011a].

We also have

4us(+∞)= 0ss(+∞)= 0

since u is increasing and bounded by −l (see the end of last section).
We shall apply the method in [Guan 2003] to prove the second and third geodesic

stability principles for all the type I Kähler almost homogeneous manifolds of
cohomogeneity one.

The proof is parallel to what we have in [ibid.] but even simpler (with our
advanced notation).

Letting H be the Legendre transformation of 0 as in [ibid.], a path 0t represents
a geodesic in the Mabuchi moduli space of the equivariant Kähler metrics in a given
Kähler class is a geodesic if and only if Ht is linear on t . We denote h = Ḣ .

Recall that R is the scalar curvature, H R its average, Q the volume function
appeared right before Proposition 10. Applying the scalar curvature formula in
Proposition 10, we have that with a positive constant C the derivative of Mabuchi
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functional is:

−

∫
M
0̇(R− H R)ω2n

=−C
∫
−l

0
0̇(s, t)

(
2uρQ+

∫
(p− R0 Q) du

)
x

dx

= C
∫
−l

0
Ḣ(x, t)

(
2uρQ−

∫
(R0 Q− p) du

)
x

dx

= C
(

2h(−l)uρ(−l)Q(−l)− 2h(0)uρ(0)Q(0)− R0h(−l)
∫
−l

0
Q dx

+ R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx + h(−l)

∫
−l

0
p dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

∫
−l

0
Ni coth(2Ni s)h′Q dx +

∫
−l

0
h′(log(Qus))s Q dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni s)h′Q dx +

∫
−l

0
h′(Qus)x dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni s)h′Q dx −

∫
−l

0
Qush′′ dx

)

= C
(

R0

∫
−l

0
h′
(∫ x

0
Q du

)
dx −

∫
−l

0
h′
(∫ x

0
p du

)
dx

− 2
n−1∑

1

Ni

∫
−l

0
coth(2Ni Hx)h′Q dx −

∫
−l

0
Q(Hxx)

−1h′′ dx
)
.

The change of sign in the second equality comes from 0̇(s, t)=−Ḣ(x, t) for the
Legendre transformation as in [Guan 2003].

If h′′ is negative somewhere, then the geodesic is finite and the limit is a cone
metric. The point−l cannot be a singular point. At the singular points h′′ is negative.
Therefore, the last term of the right hand side is positive infinite. The second term
from the right hand side is finite if 0 is not a singular point and positive if 0 is a
singular point since in that case h′′(0) < 0 and h′(0) = s(0)− s0(0) = 0, h′ < 0
near 0.



TYPE I ALMOST HOMOGENEOUS MANIFOLDS OF COHOMOGENEITY ONE, III 381

If h′′ is nonnegative, then the geodesic ray is infinite and h′ is increasing. s
becomes infinite at each point with h′ > 0, so coth(2Ni s) is 1 at such points. It is
not difficult to see that (Hxx)

−1 is zero whenever h′′ is not zero. The limit of the
derivative is:

Theorem 11. For type I compact Kähler almost homogeneous manifolds of co-
homogeneity one, the generalized Futaki invariant of a maximal geodesic ray with
a convex function h is

C
(∫

−l

0
h′
(∫ x

0
(R0 Q− p) du− 2

n−1∑
1

Ni Q
)

dx
)

with a constant C > 0.

According to [Guan 2011a, (14)], this is proportional to the negative of∫
−l

0
h′gl dx .

We notice that all the generalized Futaki invariants of the maximal geodesic rays
do not depend on the initial metrics and they are positive if there is an extremal
metric.

Moreover, if there is a Kähler metric with a constant scalar curvature, then at
the corresponding H0 we have that the slopes of Mabuchi functionals are zeros.
Therefore, for any h,∫
−l

0

[
h′
[∫ x

0
(R0 Q− p) du−2

n−1∑
1

Ni Q coth(2Ni H0,x)

]
−Q(H0,xx)

−1h′′
]

dx = 0.

In general, the slope of the Mabuchi functional is

C
∫
−l

0
Q
(

2
n−1∑

1

Ni (coth(2Ni H0,x)−coth(2Ni Hx))h′+((H0,xx)
−1
−(Hxx)

−1)h′′
)

dx

= C
∫
−l

0
Q
(

4
n−1∑

1

Ni
e2Ni H0,x (e2Ni th′ − 1)

(e2Ni (H0,x+th′)− 1)(e2Ni H0,x − 1)
h′

+
(
(H0,xx)

−1
− (Hxx)

−1)h′′) dx .

It turns into

C
∫
−l

0
Q
( n−1∑

1

4Ni

e2Ni H0,x − 1
h′+ H−1

0,xx h′′
)

dx .
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Therefore, using this formula as a hint, we can define

‖h‖2,1
∗
=

∫
−l

0
Q
(n−1∑

1

4Ni

e2Ni H0,x − 1
|h′| + H−1

0,xx |h
′′
|

)
dx

to be the norm of W 2,1
∗

. A calculation shows that this is related to∫
−l

0
|10h|Q dx and also

∫
−l

0
sup{|∂2h(v)|0/|v|0} dV,

with dV the volume element. The generalized Futaki functional is positive on the
closure of the effective cone in W 2,1

∗
.

The generalized Futaki functional is positive if and only if it is positive for

h′ =
{

1 if x > x0,
0 if x ≤ x0,

with x0 ∈ [0,−l). These functions h′ correspond to functions of h in W 2,1
∗

which
are the extremal rays of the effective cone. As we see in the sentence right after
Theorem 11, this is the same as the partial integral∫

−l

x0

gl du =
∫ l2

x2
0

fl dx < 0

for the gl, fl in [Guan 2011a]. This is the same as the necessary and sufficient
condition in [ibid.] (see (7) and (16) there) for the existence of the Kähler metrics
with constant scalar curvatures.

Therefore, we obtain:

Theorem 12. For type I Kähler compact almost homogeneous manifolds of cohomo-
geneity one, there is a unique extremal metric in a Kähler class on the manifold
up to the automorphism group if and only if the Kähler class is geodesically stable.

The same method works for some of Kähler classes on type II compact Kähler
almost homogeneous manifolds of cohomogeneity one. But in general, we will use
a different method. Theorem 12 and a result similar to Theorem 11 are true for
general compact almost homogeneous manifolds of cohomogeneity one. But it will
take us some more time to publish the related results and proofs. We also expect
that Theorem 12 is true for any Kähler class on any compact Kähler manifold.

Theorem 11 also gives another proof for the stability (the necessary condition)
in [ibid.]. However, the integral itself and its partial integrals do not occur directly
as generalized Futaki invariants of any (smooth) geodesic.

A generalization of our argument is essential to prove the necessary condition
for the type II cases (and the type IV case in [Guan 2009]). However, since we
have not seen any example with a zero value of the integral for the Ricci classes,
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for all the known cases so far in [Guan 2009], etc., the corresponding result in the
next section is enough for the necessary part for the Kähler–Einstein case.

6. Geodesic stability and strict slope stability

In this section, we shall discuss our result and the strict slope stability. This is
something also similar to the holomorphic vector bundle case and can be defined
on any Kähler class of any compact Kähler manifold.

6.1. To make the things simpler, first we assume that the Kähler class is the
anticanonic class −KM , N is a smooth subvariety and M(N ) is the blow-up of M
along N . Let E be the exceptional divisor and e be the largest number such that
−KM − aE > 0 on M(N ), regarding KM as the pullback line bundle for any a
such that 0< a < e,

m(N )=
∫ e

0
(−KM − (n− dim N )E)(−KM − aE)n−1 da,

m =
∫ e

0
(−KM − aE)n da.

We say that M is strictly slope stable if for any subvariety N (not necessary smooth)
that is not a component of the fixed point set of a holomorphic vector field we have
m(N ) < m. That is∫ e

0
(a− (n− dim N ))E(−KM − aE)n−1 da < 0.

Notice that there is only one possible zero for a− (n− dim N ), we see that if
m(N )−m < 0 then∫ c

0
(a− (n− dim N ))E(−K − aE)n−1 da < 0

for any 0 < c < e. That is, when N is smooth, our stability is stronger than
Ross–Thomas’s slope stability in [Ross and Thomas 2006], which only requires the
inequality for rational c with 0< c < e, while our inequality is true for any c with
0< c ≤ e. If N is not smooth, we do not know whether the slope stability in [Ross
and Thomas 2006] implies these inequalities or not.

A smooth N destabilizes M only if −KM − (n− dim N )E is ample, therefore,
−K (E) is ample on E if E is smooth, and is kind of ample even if E is singular.
When N is smooth, we see that E is Fano. By [Futaki 1987], we see that N is Fano
also. This is quite similar to the calculation in [Guan 2003; 2011a].

Actually, when F = CPk or Gr(2k, 2), we have D(F) = 2 by [Guan 2011b,
Section 3, Theorem 15]. Therefore, for the closed orbit N , e = −2−1lρ and the
codimension can only be 1; see [ibid., Section 3]. If y = −lρ − 2a, the integral
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above is∫
−lρ

0
(−2−1(y+ lρ)− 1)E(ω+ 2−1(y+ lρ)E)n−12−1 dy

= C
∫
−K (F)

0
(−K (F)− D(F)− y)Q dy,

with a positive number C . That is exactly the same condition as in Theorem 15 just
cited.

When F = Qk , D(F)= 1. Therefore, e =−lρ . Let

y =−lρ − a =−K (F)+m− 1− a,

with m = n− dim N . The integral above is∫
−lρ

0
(−lρ − y−m)E(ω+ (y+ lρ)E)n−1 dy

= C
∫
−K (F)+m−1

(−K (F)− D(F)− y)Q dy,

with C > 0. Again, that is exactly Theorem 15 in [ibid.].

6.2. In general, for any given Kähler class ω we let

mc(N )=
∫ c

0
(−KM − (n− dim N )E)(ω− aE)n−1 da,

mc =

∫ c

0
(ω− aE)n da,

with 0< c≤ e and e the largest number such that ω−aE > 0 for 0< a < e. We let
µc(N )=mc(N )/mc. If N = M , we let m(M)= (−KM)ω

n−1 and µ=m(M)/ωn .
Then the strict slope stability says that µc(N )−µ < 0 for all 0< c ≤ e. Similar
obstructions appeared in [Guan 2003]. At that time I was not able to understand
the general meaning of this obstruction and related it to the Ding–Tian generalized
Futaki invariant forcibly. But it was clear in [Guan 2003] it was not the Ding–Tian
generalized Futaki invariant. I also talked on this at Pisa, Italy in 2004. Ross and
Thomas [2006] partially generalized this obstruction but without the strict part for a
smooth N , that is, they assume that 0< c < e. Also, they assume that c is rational,
which makes their slope stability much weaker. For a nonsmooth subvariety N , I
am not sure that their stability implies these inequalities or not. For our case, our
strict slope stability is equivalent to the existence. But the Ross–Thomas slope
stability is only a necessary condition. Therefore, a Kähler class with the integral
equal to zero when c = e or c is irrational would give a counterexample for the
equivalence between the Ross–Thomas slope stability or Donaldson K-stability and
the existence. See also [Guan 2003; 2007].
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It is very easy to check that if KM is the Kähler class and we replace −KM−aE
by KM − aE , and let

mc(N )=
∫ c

0
(−KM − (n− dim N )E)(KM − aE)n−1 da,

the strict slope stability means that mc(N )+mc < 0 holds automatically. Moreover,
if KM = 0, for any Kähler metric ω we replace −KM − aE by ω− aE and let

mc(N )=
∫ c

0
(−n+ dim N )E(ω− aE)n−1 da,

the strict slope stability means that mc(N )<0 holds automatically. These strengthen
the Theorem 5.4 in [Ross and Thomas 2006], which is only concerned with when
N is smooth and 0< c < e is rational.

In the remainder of this section, we want to see that the strict slope stability is
the same as the existence for type I manifolds.

To make things simpler, let us take care of the F(OPn) fiber case first. In our
setting, we only need to deal with the case in which N is the closed orbit. In this case,
by [Guan 2011b, Section 3], we have dim N = n− 1. Let us calculate the number
e for our case. By [ibid., Section 3] we see that the curvature of the exceptional
divisor has eigenvalues D(CPn)= 2 times the coefficient of u. Therefore, ω− aE
has the first zero eigenvalues when a = (D(F))−1(−l). That is, e =−2−1l.

ωnmc(N )−m(M)mc =

∫
−l

0
Q du

[∫ c

0
(−KM)((ω− x E)n−1

−ωn−1)

−E(ω− x E)n−1
− R0((ω− x E)n −ωn) dx

]
.

This is proportional to∫ c

0

[∫ x

0

[
(n−1)KM E(ω−uE)n−2

+n R0 E(ω−uE)n−1] du−E(ω−x E)n−1
]

dx .

Letting y =−l − 2x and v =−l − 2u, d =−l − 2c, we obtain that the integral
is proportional to∫
−l

d

[∫
−l

y

[
(n− 1)KM E(ω+ 2−1(v+ l)E)n−2

+ n R0 E(ω+ 2−1(v+ l)E)n−1] dv

−2E(ω+ 2−1(y+ l)E)n−1
]

dy =
∫
−l

d
hl dy.

By taking the derivative twice we have

h′l =−(n− 1)K (E)E(ω+ 2−1(y+ l)E)n−2
− n R0 E(ω+ 2−1(y+ l)E)n−1.
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By the argument in [Guan 2011a] after (14) and in the proof of Lemma 6, we see
that h′l is proportional to g′l there. Therefore, we only need to check for a point 0,
the function hl is right. To prove our conclusion, we only need to check that

hl(0)

=

∫
−l

0

[
(n−1)KM E(ω+2−1(v+ l)E)n−2

+n R0 E(ω+2−1(v+ l)E)n−1] dv = 0,

since gl(0)= 0. Notice that nE(ω+ 2−1(v+ l)E)n−1 is related to ωn there.
The exact same argument works for the case in which the fiber F = Gr(2k, 2).
For the case in which the fiber F = Qn , we have D(F)= 1. Therefore, we could

let y =−l − x , v =−l − u, d =−l − c instead and we notice

−K (E)=−KM − (n− dim N )E .

The same proof goes through.

Theorem 13. On a type I compact almost homogeneous manifold of cohomogeneity
one there is a Kähler metric of constant scalar curvature in a given Kähler class if
and only if the Kähler class is strictly slope stable with respect to the closed orbit.

This is also true for general compact Kähler almost homogeneous manifolds of
cohomogeneity one. But it will take some time for us to publish the detailed results
and proofs.

6.3. In the case of Fano manifolds, our discussion in Section 6.1 shows:

Theorem 14. Let M be any Fano manifold. If a smooth submanifold N destabilizes
the Ricci class, then N , the blowing-up manifold M(N ) of M along N and the
exceptional divisor E are all Fano manifolds.

One could also consider the case where N is a union of smooth submanifolds.
We expect that each of them should be Fano also. Similarly, it should be easy to
obtain some results similar to those of Nadel [1990] and to check out the unstable
Fano threefolds.

For the compact Kähler manifolds with a zero or negative first Chern class we
showed at the beginning of Section 6.2 that:

Theorem 15. Let M be any compact Kähler manifold with a negative first Chern
class. Then the negative Ricci class is strictly slope stable.

Theorem 16. Let M be any compact Kähler manifold with a zero first Chern class.
Then any Kähler class is strictly slope stable.

Theorems 14, 15, 16 give a good reason why the Calabi conjecture is true for
the negative and zero case but not true in general for the positive case.
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