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VARIATIONAL CHARACTERIZATIONS
OF THE TOTAL SCALAR CURVATURE

AND EIGENVALUES OF THE LAPLACIAN

SEUNGSU HWANG, JEONGWOOK CHANG AND GABJIN YUN

For the dual operator s0�g of the linearization s0g of the scalar curvature
function, it is well-known that if ker s0�g ¤ 0, then sg is a nonnegative con-
stant. Moreover, if the Ricci curvature does not vanish, then sg=.n� 1/ is
an eigenvalue of the Laplacian of the metric g. In this work, we give some
variational characterizations for the space ker s0�g . To accomplish this, we
introduce a fourth-order elliptic differential operator A and a related geo-
metric invariant �. We prove that � vanishes if and only if ker s0�g ¤ 0, and
if the first eigenvalue of the Laplace operator is large compared to its scalar
curvature, then � is positive and ker s0�g D 0. We calculate a lower bound
for � in the case of ker s0�g D 0. We also show that if there exists a function
which is A-superharmonic and the Ricci curvature has a lower bound, then
the first nonzero eigenvalue of the Laplace operator has an upper bound.

1. Introduction

Let M be a compact smooth n-manifold (without a boundary). The space of all
Riemannian metrics, M, on M is then open in the space of symmetric 2-tensors,
S2.M/, for the compact-open topology or theW k;p-topology, whereW k;p denotes
the Sobolev space. For a Riemannian metric g and a symmetric 2-tensor h, the
differential s0g.h/ of the scalar curvature at g in the direction h is given by

(1-1) s0g.h/D��g tr.h/C ıg.ıgh/�g.rg ; h/;

where �g is the negative Laplacian of g, and rg and ıg denote the Ricci curvature
and divergence operator of g, respectively [Besse 1987]. In addition, the L2-adjoint
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operator s0�g of s0g is given by

(1-2) s0�g .f /DDdf � .�gf /g�f rg ;

where Ddf denotes the Hessian of f with respect to the metric g. Note that both
s0g and s0�g are linear second-order differential operators.

In this paper, we consider the fourth-order elliptic differential operator A D

s0g ıs
0�
g WC

1.M/!C1.M/. The existence of homogeneous or nonhomogeneous
solutions to A is closely related to the kernel space of s0�g . For example, Bourguignon
[1975] and Fischer and Marsden [1974] proved that if ker s0�g ¤0, then either .M; g/
is Ricci-flat and ker s0�g D R � 1, or the scalar curvature is a strictly positive constant
and sg=.n� 1/ is an eigenvalue of the Laplacian. In particular, combined with
the Lichnerowicz–Obata theorem [Lichnerowicz 1958; Obata 1962; Berger et al.
1971], it follows that if g is an Einstein metric with positive scalar curvature, then
ker s0�g D 0 or g is the standard round metric on the sphere.

On the other hand, if ker s0�g D 0, then for any function � 2 C1.M/ there exists
a unique function u 2 C1.M/ such that A.u/ D � (Theorem 2.2). In fact, the
condition ker s0�g D 0 implies the injectivity of s0�g and the surjectivity of s0g . In order
to perform variational characterizations of the condition ker s0�g ¤ 0, we introduce
a geometric invariant � which is defined by

� D inf
�Z
M

'A' dvg

�
;

where the infimum is taken over all functions ' 2 H 2.M/ D W 2;2.M/ withR
M '2 D 1. Here H 2.M/DW 2;2.M/ denotes the Sobolev space which is L2 up

to the second (weak) derivatives.
A basic result related to the invariant � is the following.

Theorem A. The invariant � vanishes if and only if ker s0�g D 0.

For the case ker s0�g D 0, we give a lower bound on � and its relationship to the
first nonzero eigenvalue of the Laplacian. We also show that if the first eigenvalue
is large compared to the scalar curvature, then � is positive and ker s0�g D 0. In
addition, if M is the product of two standard spheres of the same dimension, then �
is exactly equal to the dimension of the spheres.

Theorem B. Let M D Sm �Sm .m� 2/ with the standard product metric. Then

� DmD
dim.M/

2
:

We also obtain upper bounds for the first nonzero eigenvalue of the Laplace
operator when A satisfies a condition on evaluating functions. We say that a
Riemannian manifold .M; g/ satisfies the A-superharmonic condition if there exists
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a smooth function ' such that MC' ¤∅ and A' � 0 on MC' , and �' D 0 on the
boundary @MC' of MC' . Here MC' D fx 2M W '.x/ > 0g. For example, if M is
the standard sphere, then the first eigenfunction of the Laplacian satisfies these
conditions. In general, any compact Riemannian manifold .M; g/ with positive
scalar curvature and ker s0�g ¤ 0 satisfies the A-superharmonic condition.

One of our main results is the following.

Theorem C. Let .M n; g/ be a compact n-dimensional Riemannian manifold with
a positive constant scalar curvature sg . Suppose that .M; g/ satisfies the A-
superharmonic condition. If Ricg � k � 0, then the first nonzero eigenvalue
�1 of the Laplacian satisfies

(1-3) �1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

Inequality (1-3) is sharp since the equality holds for the standard sphere. In
performing analysis with the operator A, the main difficulty is that we cannot apply
the theory of second-order elliptic partial differential equations directly since A is
a fourth-order differential operator.

The kernel space of s0�g plays an important role in the critical point equation
arising from the total scalar curvature functional. Let M1 be the set of all smooth
Riemannian metrics of unit volume on M , and let C�M1 be the set of all smooth
Riemannian metrics on M with constant scalar curvature, i.e.,

CD fg 2M1 W sg D constantg:

The total scalar curvature S WM1! R is defined as

S.g/D

Z
M

sg dvg :

It is well-known that the total scalar curvature functional S restricted to C will be
critical at g if and only if there is a function f with

R
M f D 0 such that

(1-4) zg D s
0�
g .f /;

where zg is the traceless Ricci tensor defined as zg D rg � .sg=n/g. We call (1-4)
the critical point equation (CPE). Note that if f D 0, it follows from (1-4) that
zg D 0, and thus g is an Einstein metric. However, the existence of a nonzero
solution is a very strong condition. The only known case with a nonzero solution is
that of a standard sphere, and it has been conjectured that this is the only possible
case [Besse 1987]. Namely, it is believed that if there exists a nonzero function f
satisfying the CPE, then g must be an Einstein metric. We remark that a solution
.g; f / to the CPE is a nontrivial example of the A-superharmonic condition since
Af D�jzg j

2 and �gf D�.sg=.n� 1//f .
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Unless stated otherwise, we only consider Riemannian metrics on M whose
scalar curvatures are positive constants.

2. Variational properties

Let .M; g/ be a closed Riemannian n-manifold and ı be the adjoint operator of the
differential d with respect to the metric g. Unless explicitly stated, we will use r
rather than rg as the Ricci tensor of the metric g, and s rather than sg as the scalar
curvature. The following expressions are well-known definitions and identities: for
a function ' and any tensor T ,

ıDd' D�d�' � r.d'; � /; ıd' D��'; and ı.'T /D 'ıT �T .d'; � /:

Moreover, for any two functions ',  ,

(2-1)  hDd'; ri D �ı. r.d'; � //� r.d'; d /:

Lemma 2.1. Let AD s0g ı s
0�
g and assume the scalar curvature sg D s is constant.

Then, for any function ',

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2:

Proof. It follows directly from (1-2) that

s0�g .'/DDd' � .�'/g�'r

and thus
A.'/D s0g ı s

0�
g .'/D s

0
g.Dd' � .�'/g�'r/:

By (1-1), we have

s0g.Dd'/D�ı.r.d'; � //� hDd'; ri:

Similarly, since ıgD0 and ırD�1
2
dsD0, we also obtain the following from (1-1):

s0g..�'/g/D .1�n/�
2'�s�' and s0g.'r/D�s�'Cı.�r.d'; � //�'jr j

2:

Combining these two expressions, we obtain

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2: �

Note that A is a fourth-order linear partial differential operator. The following
theorem shows that A is elliptic and self-adjoint. We say that a fourth-order
differential operator is elliptic if the symbol is injective.

Theorem 2.2. The operator A is a self-adjoint, fourth-order elliptic linear operator.
Furthermore, if ker s0�g D 0, then for any  2C1.M/ there exists a unique function
u 2 C1.M/ such that  DA.u/.
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Proof. We first show that s0�g has injective symbol. Recall that for any p 2 M
and any cotangent vector t 2 T �pM , there is a linear map �t .s0�g / W TpC

1.M/!

TpC
1.S2M/ called the symbol ofDD s0�g , and the symbol ofD is called injective

if �t .D/ is injective for all nonzero t . Note that for t 2 T �M ,  2 C1.M/,

�t .s
0�
g / � D .�g.t; t/gC t ˝ t / ;

which is clearly injective for n> 1. Thus s0�g is an operator of order 2 with injective
symbol. By Lemma 4.4 of [Berger and Ebin 1969], A D s0g ı s

0�
g is an elliptic

operator of order 4. It is clear from definition that A is self-adjoint.

Secondly, we show that A is surjective. Since s0g is surjective, for any nontrivial
 2 C1.M/, there exists � 2 C1.S2M/ such that s0g.�/D  . From the fact that
sg is constant and the proof of Theorem 5.2 in the same reference, C1.S2M/D

im s0�g ˚ ker s0g . Thus, � D �1C �2 with �1 2 im s0�g and �2 2 ker s0g . Therefore, for
�1 D s

0�
g .u/, we have A.u/D  .

Finally uniqueness comes from the assumption that ker s0�g D 0 since ker AD

ker s0�g ; clearly ker s0�g � ker s0g ı s
0�
g , and sg ı s0�g .u/D 0 implies

0D
�
u; sg ı s

0�
g .u/

�
L2 D

�
s0�g .u/; s

0�
g .u/

�
L2 ;

where .f; g/L2 D
R
M fg dvg , and so s0�g .u/D 0. �

Given a smooth compact n-dimensional Riemannian manifold .M; g/, we let
H 2.M/DW 2;2.M/ be the Sobolev space defined as the completion of the space
of smooth functions on M with respect to the norm

k'k2
H2.M/

D

Z
M

jDd'j2 dvg C

Z
M

jr'j2 dvg C

Z
M

'2 dvg :

To investigate the properties of operator A from the perspective of the calculus of
variations, we define E.'/ for any function ' 2H 2.M/ as

(2-2) E.'/D
1

2

Z
M

�
.n� 1/.�'/2� 2sjd'j2C r.d'; d'/C'2jr j2

�
:

Since 'hDd'; ri D div.'r.d'; � //� r.d'; d'/, and thusZ
M

'hDd'; ri D �

Z
M

r.d'; d'/;

the Euler–Lagrange equation for the functional E is exactly

A.'/D .n� 1/�2'C 2s�' � hDd'; riC'jr j2 D 0:



400 SEUNGSU HWANG, JEONGWOOK CHANG AND GABJIN YUN

Note that if ' D constant and A.'/D 0, then ' D 0 if the Ricci curvature r does
not identically vanish. Furthermore,

(2-3) E.'/D
1

2

Z
M

'A.'/D
1

2

Z
M

js0�g 'j
2
� 0

for any function '. In other words, E is the energy of A.
A simple direct observation is as follows.

Lemma 2.3. The kernel of s0�g vanishes if and only if ker AD 0.

Proof. The proof follows from the fact thatZ
M

.s0�g '/
2
D

Z
M

'A.'/

for any function '. In fact, assume that ker AD 0 and let s0�g uD 0. Then u realizes
the infimum of E.'/ among all smooth functions C1.M/. That is, u is a critical
point for E, and thus A.u/D 0. �

Example 2.4. Let M be a round n-sphere Sn with a standard round metric. Also,
let ' be the first nontrivial eigenfunction for the Laplacian so that

�' D�n';

Z
Sn

jd'j2 D n

Z
Sn

'2:

Since rg D .n� 1/g, it is easy to see that E.'/D 0. Thus the first eigenfunction '
realizes the infimum of the functional E and so

A.'/D 0 and ker s0�g ¤ 0:

On the other hand, consider M D Sn � SnC1 with the standard product metric.
Then

(2-4) sg D 2n
2; jrg j

2
D n.2n2�nC 1/;

and the first nonzero eigenvalue is given as

�1.M/D �1.S
n/D n:

Let ' be the first eigenfunction corresponding to �1.M/ so that

(2-5) �' D�n'; rg.d'; d'/D .n� 1/jd'j
2:

Substituting (2-4) and (2-5) into (2-2), we obtain E.'/D 0. Therefore, we have
A.'/D 0, and thus ker s0�g ¤ 0.

Recall that H 2.M/ D W 2;2.M/ is the Sobolev space consisting of functions
that are L2 up to the second (weak) derivative. Let

WD

�
' 2H 2.M/ W

Z
M

'2 D 1

�
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and define

� D inf
�Z
M

'A.'/ W ' 2W

�
:

Note that � � 0, and ker A¤ 0 implies � D 0 by (2-3). The converse is also true.

Theorem 2.5. Suppose that � D 0. Then ker A¤ 0.

Proof. Since � D 0, there exists a sequence .'k/ of functions in H 2.M/ withR
M '2

k
D 1 such that

E.'k/! 0 as k!1:

We now claim that .'k/ is bounded in H 2.M/. On the contrary, suppose that the
sequence .'k/ is unbounded in H 2.M/. Defining z'k as

z'k D
'k

k'kkH2.M/

;

where k'kkH2.M/ denotes the Sobolev norm in H 2.M/, we have

kz'kkH2.M/ D 1 and
Z
M

z'2k ! 0 as k!1:

Furthermore, E.z'k/! 0 as k!1. Thus the rescaled sequence .z'k/ is bounded
in H 2.M/ and so .z'k/ converges weakly to a function z'1 2H 2.M/. Applying
the Rellich–Kondrakov embedding theorem H 2.M/ � H 1.M/ � L2.M/, z'k
converges strongly to z'1 in L2, and thus, there exists a subsequence, say .z'k/, that
converges almost everywhere. However, since kz'kkL2.M/! 0, the limit function
z'1D0, which is contradictory to the fact that kd z'kL2.M/¤0 or kDd z'kL2.M/¤0.
Therefore, .'k/ is bounded, and so 'k converges weakly to a function ' in H 2.M/.
By the Rellich–Kondrakov embedding theorem again, it is easy to see that 'k
converges strongly to ' in L2.M/, and thus, there exists a subsequence, say .'k/,
that converges almost everywhere. Consequently, we have

E.'/� lim inf
k!1

E.'k/D 0:

Hence since E.'/D 0 and
R
M '2 D 1, ' is a nonconstant function and A.'/D 0.

�

Corollary 2.6. The invariant � vanishes if and only if ker s0�g ¤ 0 or ker A¤ 0.

Now we consider a special operator stemming from A that also plays a very
important role in the kernel space of s0�g . For a function ', define P' as

P' D .n� 1/�2'C 2sg�' � hDd'; rgi

and define
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�D inf
'2H2.M/
'¤0

R
'P'R
'2

:

Note that � � 0 since P' D 0 when ' is a nonzero constant. Furthermore, it is
easy to see that if �D 0, then either .M; g/ is Ricci-flat or ker AD 0. In fact, if
u 2 ker A and r ¤ 0, thenZ

M

uPuD�

Z
M

u2jrg j
2
� 0:

Since �D 0 and rg ¤ 0, u must be zero because
R
M u2jrg j

2 D 0. The following
theorem shows that if ker A¤ 0, then � must be nonpositive.

Theorem 2.7. Assume that ker A¤ 0 and s D sg is constant. Then

�max
M
jrg j

2
� �� �

s2g

n
:

Proof. Let u 2 ker A be a nonconstant function and r be the Ricci tensor of the
metric g. Since s2=n� jr j2, we have

�

Z
M

u2 �

Z
M

uPuD�

Z
M

u2jr j2 � �
s2

n

Z
M

u2:

Thus

�� �
s2

n
:

On the other hand, it follows from Lemma 2.1 thatZ
M

.s0�g '/
2
D

Z
M

'A.'/D

Z
M

˚
.n�1/.�'/2�2sjd'j2�'hDd'; riC'2jr j2

	
:

Thus,Z
M

˚
.n�1/.�'/2�2sjd'j2�'hDd'; ri

	
��

Z
M

'2jr j2 ��
�
max
M
jr j2

� Z
M

'2:

Therefore, since Z
M

'P' � �
�
max
M
jr j2

� Z
M

'2

for any function ', we conclude that

�� �max
M
jr j2: �



VARIATIONAL CHARACTERIZATIONS OF THE TOTAL SCALAR CURVATURE 403

In view of Theorem 2.7, the invariant�may designate a criteria for how close g is
to an Einstein metric. In fact, when .M; g/ is Einstein, it follows from Theorem 2.7
that, if ker A¤ 0,

�D�
s2

n
:

In view of the operators A and P , for any real number ˛, we introduce an elliptic
fourth-order partial differential operator A˛ defined by

A˛.'/D .n� 1/�
2'C 2sg�' � hDd'; rgiC .1�˛/'jrg j

2;

where rg is the Ricci tensor and sg is the scalar curvature, which is assumed to be
a positive constant. Note that A0 DA and A1 D P .

Theorem 2.8. Assume that ker AD 0 and s D sg is constant. Then there exists a
positive real number ˛0 > 0 such that ker A˛ D 0 for all ˛, 0� ˛ � ˛0.

Proof. For 0 < ˛ < 1, let u 2 ker A˛ be a nontrivial function. Then

A.u/D ˛ujrg j
2
�
�
max
M
jrg j

2
�
˛u

and so � �
�
maxM jrg j2

�
˛. Since ker AD 0, Corollary 2.6 states that � >0. Hence,

0 <
�

maxM jrg j2
� ˛: �

3. Case of � > 0

In this section, we consider the case in which � is positive, or, equivalently, ker AD0.
We will investigate some necessary and sufficient conditions for � to be positive
and derive lower bounds on �.

Lemma 3.1. Assume � > 0. Then

inf
'2W;'¤1

E.'/

k'kH2.M/

> 0:

Here k'kH2.M/ denotes the Sobolev norm in H 2.M/.

Proof. Suppose that

inf
'2W;'¤1

E.'/

k'kH2.M/

D 0:

Then there exists a sequence .'k/ in W such that k'kkL2.M/ D 1 and

E.'k/

k'kkH2.M/

! 0 as k!1:
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Since � > 0, we have k'kkH2.M/!1 as k!1. Defining z'k as

z'k D
'k

k'kkH2.M/

;

we can obtain a contradiction, as in the proof of Theorem 2.5. �

Theorem 3.2. Let .M; g/ be a compact Riemannian n-manifold with positive con-
stant scalar curvature s. If ker AD 0, then � > 0 is contained in the spectrum of A.

Proof. Recall that WD
˚
' 2H 2.M/ W

R
M '2 D 1

	
. Theorem 2.5 and Lemma 3.1

imply that

a WD inf
'2W;'¤1

E.'/

k'kH2.M/

> 0:

Then, for any function ' 2W, we have E.'/� ak'kH2.M/, and thus,

E.'/!1 as k'kH2.M/!1:

In other words, the functional E is coercive on W.
On the other hand, let .'k/ be a sequence in H 2.M/ such that 'k! ' weakly

in H 2.M/. Then, according to the Rellich–Kondrakov theorem, 'k! ' strongly
in L2.M/, and thus, a subsequence .'k/ converges almost everywhere. This shows
that the subspace W is weakly closed inH 2.M/. Furthermore, sinceM is compact,
the subsequence .'k/ uniformly converges to ', and we obtain

E.'/� lim inf
k!1

E.'k/:

The functional E is bounded below and attains its minimum in H 2.M/ [Struwe
1990]. Letting

E.u/Dmin
˚
E.'/ W ' 2W

	
;

it is easy to see from the variational principle that

A.u/D �u: �

The properties of the operator A and the lower bound on � are closely related to
the first nonzero eigenvalue of the Laplacian. Let � be the first nonzero eigenvalue
of the Laplace operator �, which is characterized by

�D inf
�R

M jr'j
2R

M '2
W

Z
M

' D 0

�
:

It follows from the characterization of the first nonzero eigenvalue that, for any
function ' with

R
M ' D 0,

(3-1)
Z
M

'2 �
1

�

Z
M

jd'j2:



VARIATIONAL CHARACTERIZATIONS OF THE TOTAL SCALAR CURVATURE 405

Lemma 3.3. Let .M n; g/ be a compact Riemannian n-manifold. Then, for any
function ' 2 C1.M/,

(3-2)
Z
M

jd'j2 �
1

�

Z
M

.�'/2 �
n

�

Z
M

jDd'j2;

where � is the first nonzero eigenvalue of the Laplacian.

Proof. It follows from integration by parts and the Cauchy–Schwarz inequality thatZ
M

jd'j2 �
1

�

Z
M

.�'/2:

The second inequality in (3-2) follows from the fact that .�'/2 � njDd'j2. �

Furthermore, for a function ' with
R
M ' D 0, we haveZ

M

'2 �
1

�2

Z
M

.�'/2 and
Z
M

'2 �
n

�2

Z
M

jDd'j2:

A direct observation from the definition of A is the following theorem, which
shows that if the first nonzero eigenvalue for the Laplacian is large compared to the
sum of the scalar curvature and the norm of the Ricci tensor, then � is positive.

Theorem 3.4. Let .M n; g/ be a compact Riemannian n-manifold with positive
constant scalar curvature s. If .n�1/�� 2sCmaxM jrg j, then � � s2=n, and thus
ker AD 0, or, equivalently, ker s0�g D 0.

Proof. Note that jrg j2 � s2=n. It follows from Lemma 3.3 thatZ
M

jd'j2 �
1

�

Z
M

.�'/2

for any function '. Thus, for any function ' 2W,

E.'/D
1

2

Z
M

.n� 1/.�'/2� 2sjd'j2C rg.d'; d'/Cjrg j
2'2

�
1

2

˚
.n� 1/�� .2sCmax jrg j/

	 Z
M

jd'j2C
s2

2n

Z
M

'2:

Hence, � � s2=n. �

Remark 3.5. Assume � > 0 for a compact Riemannian n-manifold .M; g/ with a
positive constant scalar curvature. Then it follows from Theorem 3.2 that

A.u/D �u

for some function u 2W. In particular, we haveZ
M

ujr j2 D �

Z
M

u:
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Since ker s0�g D 0, by Theorem 2.2, there exists a unique function ' 2C1.M/ such
that A.'/D ujrg j

2. Therefore,

s2

n
�

Z
M

u2jrg j
2
D

Z
M

uA' D

Z
M

'AuD �

Z
M

'u� �k'kL2 :

On the other hand, by the Cauchy–Schwarz inequality,

�k'k2
L2 �

Z
M

'A' D

Z
M

'ujrg j
2
�

�Z
M

'2jrg j
2

�1
2
�Z
M

u2jrg j
2

�1
2

�
�
max
M
jrg j

�
k'kL2

p
�k'kL2 :

Therefore, we have �k'kL2 �maxM jrg j2, and so

s2

n
� �k'kL2 �max

M
jrg j

2;

where ' is the function satisfying A.'/D ujrg j
2.

Theorem 3.6. Let M D Sm �Sm .m� 2/ with the standard product metric. Then

� DmD
dim.M/

2
:

Proof. First, we will examine the case mD 2 since key ingredients of the proof are
contained in this setting. The cases of m� 3 will then be briefly explained.

For M 4 D S2 � S2 with the standard product metric g, we obviously have
sg D jrg j

2 D 4, �D 2, and rg D g. Thus, hDd'; ri D�' for any function ', and
so

A.'/D 3�2'C 7�'C 4':

Let u be a first eigenfunction of S2 so that �uD�2u, 2
R
M u2 D

R
M jduj

2, and
rg.du; du/D jduj

2. Therefore,Z
M

uA.u/D

Z
M

3.�u/2� 7jduj2C 4u2 D 2

Z
M

u2:

Hence � � 2. To show the converse inequality � � 2, it is sufficient to prove that,
for any C1 function ',

F.'/ WD

Z
M

�
3.�'/2� 7jd'j2C 2'2

�
� 0:

First, note that

F.'/D

Z
M

.�'C 2'/.3�'C'/:

It follows from Lemma 3.3 that

2

Z
M

jd'j2 �

Z
M

.�'/2:
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Thus, from the monotonicity of eigenvalues, it follows that, for any function ' that
vanishes on the smooth boundary @D of a domain D �M , we have

(3-3) 2

Z
D

jd'j2 �

Z
D

.�'/2:

Assume for a moment that 0 is a regular value of '. Let D1 be a region on M
such that

�'C 2' � 0 and �'C 1
3
' � 0;

and D2 be a region such that

�'C 2' � 0 and �'C 1
3
' � 0:

Note that ' � 0 on region D1, and ' � 0 on region D2. Thus, @D1 D @D2. On
region D1, we have

(3-4) 0 < �1
3
' ��' � �2':

Multiplying (3-4) by ' and integrating over D1, we obtain

�2

Z
D1

'2 �

Z
D1

'�' � �
1

3

Z
D1

'2:

Since ' D 0 on @D1, we get

(3-5) �2

Z
D1

'2 � �

Z
D1

jd'j2 � �
1

3

Z
D1

'2:

Similarly, on region D2, we have

(3-6) �2

Z
D2

'2 �

Z
D2

'�' � �
1

3

Z
D2

'2:

Let D DD1[D2. It follows from (3-5) and (3-6) that

(3-7) 1

3

Z
D

'2 �

Z
D

jd'j2 � 2

Z
D

'2:

Note that on M �D, we have

(3-8) .�'C 2'/.3�'C'/� 0:

Furthermore, since the function ' vanishes on the boundary @D of D, we can apply
integration by parts and Green’s identity. Thus, it follows from (3-3), (3-7), and
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(3-8) that

F.'/D

Z
D

.�'C 2'/.3�'C'/C

Z
M�D

.�'C 2'/.3�'C'/

D 3

Z
D

�
.�'/2�2jd'j2

�
C

Z
D

�
2'2�jd'j2

�
C

Z
M�D

.�'C2'/.3�'C'/

� 0:

Now, assume that 0 is a critical value of '. By Sard’s theorem, for any positive
real number � > 0, there exists a real number a, �� < a < 0, such that a is a regular
value of '. Let D1;a be a region such that

(3-9) �'C 2' � 5
3
a and �'C 1

3
' � 0:

Note that ' � a< 0 on regionD1;a, and 'D a on the boundary @D1;a. Multiplying
(3-9) by ' and integrating it over D1;a, we obtain

(3-10) 5
3
a

Z
D1;a

' � a

Z
@D1;a

@'

@n1
�

Z
D1;a

�
2'2� jd'j2

�
;

where n1 is the outward-pointing unit normal vector field to @D1;a. Next, let D2;a
be a region such that

(3-11) �'C 2' � �5
3
a and �'C 1

3
' � 0:

We may assume that �a is also a regular value of '. Note that 0 < �a � ' on
region D2;a, and ' D �a on the boundary @D2;a. Multiplying (3-11) by ' and
integrating it over D2;a, we obtain

(3-12) a

Z
@D2;a

@'

@n2
�
5
3
a

Z
D2;a

' �

Z
D2;a

�
2'2� jd'j2

�
;

where n2 is a unit normal vector field on @D2;a. DecomposingM into three regions,
we can write

F.'/D 3

Z
D1;a

�
.�'/2�2jd'j2

�
C

Z
D1;a

�
2'2�jd'j2

�
C3

Z
D2;a

�
.�'/2�2jd'j2

�
C

Z
D2;a

�
2'2� jd'j2

�
C

Z
M�.D1;a[D2;a/

.�'C 2'/.3�'C'/:

Applying inequality (3-3) to ' � a, we haveZ
D1;a

�
.�'/2� 2jd'j2

�
� 0 and

Z
D2;a

�
.�'/2� 2jd'j2

�
� 0:
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Thus, from (3-10) and (3-12), we obtain

F.'/� 5
3
jaj

Z
D1;a[D2;a

j'j � a

Z
@D1;a

@'

@n1
C a

Z
@D2;a

@'

@n2

C

Z
M�.D1;a[D2;a/

.�'C 2'/.3�'C'/:

Since j@'=@n1j � jd'j and j@'=@n2j � jd'j, the first three terms on the right-hand
side tend to 0 as �! 0. Finally, let E1;a be a region such that �'C 2' > 5

3
a and

�'C 1
3
' � 0, and E2;a be a region such that �'C 2' < �5

3
a and �'C 1

3
' � 0.

Then we haveZ
M�.D1;a[D2;a/

.�'C2'/.3�'C'/� 5
3
a

Z
E1;a

.3�'C'/� 5
3
a

Z
E2;a

.3�'C'/:

The right-hand side tends to 0 as �! 0. Hence, F.'/� 0.

In the general case, M 2m D Sm �Sm when m� 2, it is easy to see that

sg D 2m.m� 1/; jrg j
2
D 2m.m� 1/2; rg D .m� 1/g; �Dm:

Thus,Z
M

'A.'/D .2m� 1/

Z
M

�
.�'/2�mjd'j2

�
� .2m2� 4mC 1/

Z
M

jd'j2C 2m.m� 1/2
Z
M

'2:

Using a first eigenfunction u of Sm, �uD�mu, we can demonstrate that � �m.
To show that � �m, it is sufficient to prove that, for any function ',

F.'/ WD

Z
M

.�'Cm'/
�
.2m� 1/�'C .2m2� 4mC 1/'

�
� 0:

Note that

m

Z
M

jd'j2 �

Z
M

.�'/2:

An argument identical to that used in the case S2 �S2 shows that F.'/� 0, and
thus, � Dm. �

Remark 3.7. For the case of M D Sm � SmCk with k � 2, the first nonzero
eigenfunction of Sm can be used to show that

� �min
˚
.mC k/.k� 1/2; m.kC 1/2

	
:

However, we do not know the exact value of �.
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4. The first eigenvalue of the Laplacian

As mentioned above, the first nonzero eigenvalue � D �1.M/ of the Laplace
operator for a Riemannian manifold .M; g/ is related to the operator A. For
example, if ker A¤ 0 and g is an Einstein metric with positive scalar curvature, then
�D s=.n� 1/, from the results obtained in [Berger et al. 1971] and [Bourguignon
1975]. We shall now see that, if there is a nontrivial function on which the action
of A is nonpositive where the function is positive, then the first nonzero eigenvalue
of the Laplacian is bounded above, and vice versa. Recall that we assumed that
the scalar curvature sg D s of a Riemannian manifold .M; g/ is always a positive
constant.

For a function ' on a smooth manifold M , let us define

MC' D fx 2M W '.x/ > 0g:

We say that a Riemannian manifold .M; g/ satisfies the A-superharmonic condition
if there exists a smooth function ' such that

(i) MC' ¤∅ and A' � 0 on MC' ;

(ii) �' D 0 on the boundary @MC' of MC' .

For example, if M D Sn with the standard round metric g0, and ' is the first
nonzero eigenfunction of the Laplacian, i.e., �'D�n', then A'D 0 and .Sn; g0/
satisfies the A-superharmonic condition. Furthermore, note that any eigenfunction
of the Laplacian satisfies condition (ii). The following lemma shows that the
A-superharmonic condition is implied by ker A¤ 0.

Lemma 4.1. Let .M n; g/ be a compact n-dimensional Riemannian manifold with
a positive constant scalar curvature sg . If ker A ¤ 0, then .M; g/ satisfies the
A-superharmonic condition.

Proof. By Lemma 2.3, ker A¤ 0 is equivalent to ker s0g
� ¤ 0. Let s0g

�' D 0 and
' ¤ 0. Then

Dd' � .�'/g�'rg D 0:

In particular, taking the trace yields

�' D�
sg

n� 1
';

and so MC' ¤∅. Since A' D 0, the function ' satisfies conditions (i) and (ii) in
the definition of the A-superharmonic condition. �

Theorem 4.2. Let .M n; g/ be a compact n-dimensional Riemannian manifold
with a positive constant scalar curvature sg . Suppose that .M; g/ satisfies the
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A-superharmonic condition. If Ricg � k � 0, then the first nonzero eigenvalue �1
of the Laplacian satisfies

(4-1) �1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

Proof. Let sg D s and Ricg D rg D r . In addition, let ' be a smooth function
satisfying MC' ¤∅, A' � 0 on MC' and �' D 0 on the boundary @MC' . If ' is
a constant function, then ' is a positive constant since MC' ¤ ∅. However, we
have 0�A' D 'jr j2, which is a contradiction. Thus, we may assume that ' is a
nonconstant function. By the above hypothesis, we have

(4-2)
Z
M

C
'

'A' � 0:

By the definition of A and integration by parts, together with the fact that �' D 0
on @MC' , we obtain

(4-3)
Z
M

C
'

'A' D

Z
M

C
'

.n� 1/.�'/2�

Z
@M

C
'

�'
@'

@�

C

Z
M

C
'

�
2s'�'C'hDd'; riC jr j2'2

�
�

Z
M

C
'

h
.n� 1/.�'/2C .2s� k/'�'C

s2

n
'2
i
:

Note that

(4-4) .n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 D ..n� 1/�'C˛'/.�'Cˇ'/;

where

˛ D
2s� kC

p
k2� 4ksC 4s2=n

2
; ˇ D

2s� k�
p
k2� 4ksC 4s2=n

2.n� 1/
:

Observe that k2� 4ksC 4s2=n > 0 if and only if either

k < 2

�
1�

r
1�

1

n

�
sg or k > 2

�
1C

r
1�

1

n

�
sg ;

and the first inequality always holds.

Claim. If

(4-5) �1 >
2s� kC

p
k2� 4ksC 4s2=n

2.n� 1/
D

˛

n�1
;

then any subset � of MC' with C 1 boundary on which .n� 1/�'C ˛' � 0 and
�'Cˇ' � 0 has a measure of zero.
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Proof. Suppose that a subset � of MC' contains an open n-ball. Note that since
�' D ' D 0 on @�, we can apply the Dirichlet principle on the first nonzero
eigenvalue of the Laplacian. By monotonicity, we have

�1 D �1.M/� �1.�/:

Since .n� 1/�'C˛' � 0 and ' > 0 on �, we have

'�' � �
˛

n�1
'2:

Integrating this over �, we obtainZ
�

jd'j2 �
˛

n�1

Z
�

'2 �
˛

n�1
�

1

�1.�/

Z
�

jd'j2:

Thus,

1�
˛

n�1
�

1

�1.�/
;

and so
�1 � �1.�/�

˛

n�1
;

which contradicts (4-5). This completes the proof of the claim. �

Now, suppose that �1 >
˛

n�1
. Since ˛ > .n�1/ˇ, it follows from (4-4) and the

above claim that

.n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 � 0 a.e. on MC' ;

which implies that
R
M

C
'
'A' � 0. Consequently, from (4-2), we haveZ

M
C
'

'A' D 0:

Thus, on the set MC' , we have A' D 0 and

.n� 1/.�'/2C .2s� k/'�'C
s2

n
'2 D ..n� 1/�'C˛'/.�'Cˇ'/D 0

by (4-3). Since ˛ > .n� 1/ˇ, either .n� 1/�'C˛' D 0 or �'Cˇ' D 0 on the
entire set MC' . Therefore, we obtain

�1 � �1.M
C
' /�max

n
˛

n�1
; ˇ
o
D

˛

n�1
;

which contradicts the assumption �1 >
˛

n�1
. Hence,

�1 D �1.M/�
˛

n�1
:

This completes the proof of Theorem 4.2. �
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Remark 4.3. If M D Sn with the standard round metric, then taking k D n� 1,
the right-hand side in inequality (4-1) becomes

2sg � kC
q
k2� 4ksg C 4s2g=n

2.n� 1/
D n;

and so the result in Theorem 4.2 is optimal.
In fact, in the case Ricg � k and sg D nk— corresponding to the assumption

that g is Einstein — the conclusion of Theorem 4.2 is that �1 � nk
n�1

. Thus, by
the Lichnerowicz–Obata theorem [Lichnerowicz 1958; Obata 1962; Berger et al.
1971], the only Einstein metric with positive constant scalar curvature which is
A-superharmonic is the standard metric on the sphere. This fact also shows that
the assumption ker A¤ 0 cannot be removed from Lemma 4.1.

Remark 4.4. Let .M n; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k � 0, where the scalar curvature sg is a positive constant. In addition,
suppose that there exists a function ' such that M�' D fx 2M W '.x/ < 0g ¤∅ and
A' � 0 on M�' . Then, by simply applying Theorem 4.2 to the function N' D�',
we can see that the first nonzero eigenvalue �1 of the Laplacian satisfies

�1 �
2sg � kC

q
k2� 4ksg C 4s2g=n

2.n� 1/
:

In particular, if k D 0, then

�1 �
s

n�1

�
1C

1
p
n

�
:

Finally, we consider the relationship of � to the first nonzero eigenvalue of
the Laplace operator. In the case of � > 0, it follows from Theorem 3.2 that a
minimizer u for the functional E satisfies AuD �u. In particular, since ker s0�g D 0
when � > 0, we cannot, in general, expect that sg=.n � 1/ is contained in the
spectrum of the Laplace operator.

Theorem 4.5. Let .M; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k � 0 and assume that � > s2g=n, where the scalar curvature sg is a
positive constant. In addition, suppose that MCu ¤ ∅ for a function u satisfying
AuD �u. Then the first nonzero eigenvalue of the Laplacian satisfies

�1.M/�
2sg � kC

q
k2� 4ksg C 4s2g=nC 4.n� 1/�

2.n� 1/
;

unless .M; g/ is Einstein.
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Proof. We shall denote sg by s and Ricg D rg by r . From
R
M uAuD �

R
M u2,

0D

Z
M

uAu� �u2 D

Z
M

.n� 1/.�u/2C 2su�uC r.du; du/C .jr j2� �/u2

>

Z
M

.n� 1/.�u/2C .2s� k/u�uC
�
s2

n
� �

�
u2:

The third inequality is strict since .M; g/ is not Einstein. We may factor the
integrand as follows:

.n�1/.�u/2C.2s�k/u�uC
�
s2

n
��
�
u2D ..n�1/�uC˛u/

�
�uC

ˇ

n� 1
u

�
;

where

˛ D
1

2

�
2s� kC

r
k2� 4ksC

4s2

n
C 4.n� 1/�

�
;

ˇ D
1

2

�
2s� k�

r
k2� 4ksC

4s2

n
C 4.n� 1/�

�
:

Note that if � > s2=n, the radicand is positive for any k � 0.
The remainder of the proof is similar to that of Theorem 4.2. Hence, if g is not

an Einstein metric and � > ˛
n�1

, then

0�

Z
M

uAu� �u2 >

Z
M

.n� 1/.�u/2C .2s� k/u�uC
�
s2

n
� �

�
u2 � 0;

which is a contradiction. �

Theorem 4.6. Let .M; g/ be a compact n-dimensional Riemannian manifold such
that Ricg � k with

(4-6) 0� k � 2sg

�
1�

r
1�

1

n
� .n� 1/

�

s2g

�
:

Suppose that 0 < � � s2g=n. In addition, assume that MCu ¤ ∅ for a function u
satisfying AuD �u. Then the first nonzero eigenvalue �1 of the Laplacian satisfies

�1 �
2sg � kC

q
k2� 4ksg C 4s2g=nC 4.n� 1/�

2.n� 1/
;

unless .M; g/ is Einstein.

Proof. Note that if � � s2g=n and (4-6) is satisfied,

k2� 4ksg C
4s2g

n
C 4.n� 1/� � 0:

The remainder of the proof proceeds in the same manner as that of Theorem 4.5. �
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