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CONNECTED SUMS OF CLOSED RIEMANNIAN MANIFOLDS
AND FOURTH-ORDER CONFORMAL INVARIANTS

DAVID RASKE

In this note we take some initial steps in the investigation of a fourth-order
analogue of the Yamabe problem in conformal geometry. The Paneitz con-
stants and the Paneitz invariants considered are believed to be very helpful
to understand the topology of the underlying manifolds. We calculate how
those quantities change, analogous to how the Yamabe constants and the
Yamabe invariants do, under the connected sum operations.

1. Introduction

Let .M; g/ be a connected compact Riemannian manifold without boundary of
dimension n� 5. Let
(1-1)

QŒg�D�
n� 4

4.n� 1/
�RC

.n� 4/.n3� 4n2C 16n� 16/

16.n� 1/2.n� 2/2
R2�

2.n� 4/

.n� 2/2
jRicj2

be the so-called Q-curvature, where R is the scalar curvature, Ric is the Ricci
curvature. And let

(1-2) P Œg�D .��/2� divg

��
.n� 2/2C 4

2.n� 1/.n� 2/
Rg�

4

n� 2
Ricg

�
d

�
CQŒg�

be the so-called the Paneitz–Branson operator. It is known that

(1-3) P Œg�uDQŒgu�u
nC4
n�4

which is called the Paneitz–Branson equation, where guDu
4
n�4g (see [Paneitz 1983;

Branson 1987; Xu and Yang 2001; Djadli et al. 2000]). We consider the equation
(1-3) as a fourth-order analogue of the well-known scalar curvature equation

(1-4) LŒg�v DRŒgv�v
nC2
n�2 ;

where

(1-5) LŒg�D�
4.n� 1/

n� 2
�CR
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is the so-called conformal Laplacian and gv D v
4
n�2g. The well-known Yamabe

problem in conformal geometry is to find a metric, in a given class of conformal
metrics, which is of constant scalar curvature, i.e., to solve

LŒg�v D Yv
nC2
n�2

on a given manifold .M; g/ for some positive function v and a constant Y . The
affirmative resolution to the Yamabe problem was given in [Schoen 1984] after
other notable works [Yamabe 1960; Trudinger 1968; Aubin 1976]. In fact, it was
proven that there exists a so-called Yamabe metric gv in the class Œg� which is a
minimizer for the so-called Yamabe functional

Y.v/D

R
M .vLŒg�v/ dvg�R
M v

2n
n�2dvg

�n�2
n

:

In this paper we investigate a fourth-order analogue of the Yamabe problem. Let
CC
1.M/ be the space of smooth positive functions on M . Similar to the Yamabe

problem, we define the Paneitz functional

(1-6) }g.u/D

R
M .uP Œg�u/ dvg�R
M u

2n
n�4dvg

�n�4
n

for u 2 CC1.M/ and the Paneitz constant associated with .M; Œg�/

(1-7) �.M; Œg�/D inf
u2CC

1.M/
}g.u/:

It is clear that �.M; Œg�/ is a conformal invariant of the conformal class Œg� because
of the conformally covariant property of the Paneitz–Branson operator:

(1-8) P Œgw �uD w
�
nC4
n�4P Œg�.w �u/

where gw D w
4
n�4g 2 Œg�. To describe the differential structure of M , we define

(1-9) �.M/D sup
Œg�

�.M; Œg�/:

We will refer to �.M/ as the Paneitz invariant of the manifold M as the counterpart
of Yamabe invariant. In [1986], Gil-Medrano studied the Yamabe constant for a
connected sum of two closed manifolds. One interesting consequence of connected
sum results in [Gil-Medrano 1986] is that every compact manifold without boundary
admits a conformal class of metrics whose Yamabe constant is very negative. In
Section 3 we calculate as Gil-Medrano did in [1986] to verify that

Theorem 1.1. Let .M1; g1/ and .M2; g2/ be two compact Riemannian manifolds
of dimension n� 5. Then, for each � > 0, there is a conformal class Œg� of metrics
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on M1 #M2 such that

(1-10) �.M1 #M2; Œg�/ <min
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
C �

and there exists a conformal class Œh� of metrics on M1 #M2 such that

(1-11) �.M1 #M2; Œh�/ < 2
�n�4

n

�
�.M1; Œg1�/C�.M2; Œg2�/

�
C �:

Due to the works of Schoen and Yau [1979] (see also [Gromov and Lawson
1980]), one knows that there is some topological constraint for a manifold to possess
a metric of positive Yamabe constant. Therefore it is interesting to see how the
Yamabe invariant is effected by connected sum. It was proven in [Kobayashi 1987],
[Schoen and Yau 1979], and [Gromov and Lawson 1980] that the Yamabe invariant
of connected sum of two manifolds with positive Yamabe invariants is still positive.
More precisely, Kobayashi in [1987] showed that the Yamabe invariant of connected
sum of two manifolds is greater than or equal to the smaller of the Yamabe invariants
of the two. In Section 4 we obtain an analogue for the Paneitz invariant.

Theorem 1.2. If M1 and M2 are compact manifolds of dimension n� 5, then

(1-12) �.M1 #M2/�minf�.M1/; �.M2/g:

The positivity of Paneitz invariant in dimension higher than 4 should be a
topological constraint, as indicated by successful researches in [Chang and Yang
2002] (references therein) for a fourth-order analogue of how Gaussian curvature
influences the geometry of surfaces in dimension 2. Another testing ground is to
consider closed locally conformally flat manifolds. Then the recent works in [Chang
et al. 2004] and [González 2005] indicate to us that the positivity of fourth-order
curvature is indeed very informative about the topology of the underlying manifolds.
We would also like to mention the work by Xu and Yang in [2001] where they
demonstrated that positivity of the Paneitz–Branson operator is stable under the
process of taking connected sums of two closed Riemannian manifolds.

In Section 2 we discuss some preliminary facts about the Paneitz functional. In
Section 3 we calculate and verify Theorem 1.1. In Section 4 we prove Theorem 1.2.

2. Preliminaries

Recall that the Yamabe constant of any closed manifold of dimension greater than 2
is a finite number and the largest possible Yamabe constant is realized and only
realized by the Yamabe constant of the standard round sphere in each dimension.
The difficult part is to show that the round sphere is the only one that has the largest
Yamabe constant, which was the last step in the resolution of Yamabe problem
solved by Schoen in [1984] based on a positive mass theorem of Schoen and Yau.
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We observe that, by (1-3),

(2-1)
Z
M

.uP Œg�u/ dvg D

Z
M

uQŒgu�u
nC4
n�4 dvg

D

Z
M

QŒgu�u
2n
n�4dvg D

Z
M

QŒgu�dvgu ;

where gu D u
4
n�4g 2 Œg�. HenceZ

M

.uP Œg�u/ dvg

D

Z
M

��
.n� 4/.n3� 4n2C 16n� 16/

16.n� 1/2.n� 2/2
R2�

2.n� 4/

.n� 2/2
jRicj2

�
dv

�
Œgu�

� cn

Z
M

..R2/ dv/Œgu�;

where

cn D
.n� 4/.n3� 4n2C 16n� 1g/

16.n� 1/2.n� 2/2
�
2.n� 4/

n.n� 2/2
:

When we consider a Yamabe metric gu, we have

(2-2)

R
M .Rdv/Œgu�

vol.M; gu/
n�2
n

D Y vol.M; gu/
2
n � n.n� 1/ vol.Sn; g0/

2
n ;

and since Y and cn are nonnegative by hypothesis, we have

(2-3)

R
M .uP Œg�u/ dvg

vol.M; gu/
n�4
n

� cnY
2 vol.M; gu/

4
n � cn.n.n� 1//

2 vol.Sn; g0/
4
n

D

R
Sn.Qdv/Œg0�

vol.Sn; g0/
n�4
n

D �.Sn; Œg0�/:

Consequently we obtain:

Lemma 2.1. Let .M n; g/ be a closed Riemannian manifold of dimension greater
than 5 with nonnegative Yamabe constant. Then

(2-4) �.M n; Œg�/� �.Sn; Œg0�/

and the equality holds if and only if .M; g/ is conformally equivalent to the standard
round sphere .Sn; g0/.

On the other hand, by some choices of testing functions similar to the ones used
to estimate the Yamabe functional, we get:
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Lemma 2.2. Let .M n; g/ be a closed Riemannian manifold of dimension greater
than 4. Then

(2-5) �1< �.M n; Œg�/� �.Sn; Œg0�/;

where g0 is the standard round metric on the sphere Sn.

Proof. The Paneitz constant is easily seen to be bounded from below, because, by
(1-2),

(2-6)
Z
M

.uP Œg�u/ dv DZ
M

j�uj2dvCan

Z
M

Rjruj2dv�
4

n�4

Z
M

Ric.ru;ru/ dvC
Z
M

Qu2dv;

where

an D
.n� 2/2C 4

2.n� 1/.n� 2/
:

It suffices to estimate (2-3) for nonnegative functions such thatZ
M

u
2n
n�4dv D 1:

Hence, by Hölder’s inequality,

(2-7)
Z
M

.uP Œg�u/ dv �

Z
M

j�uj2dv�C1

Z
M

jruj2dv�C2

Z
M

u2dv

�

Z
M

j�uj2dv�C1

Z
M

.��u/udv�C2

Z
M

u2dv

�
1

2

Z
M

j�uj2dv� 1
2
C 21

Z
M

u2dv�C2

Z
M

u2dv

� �
�
1
2
C 21 CC2

��Z
M

u
2n
n�4dv

�n�4
n

vol.M; g/
4
n

� �
�
1
2
C 21 CC2

�
vol.M; g/

4
n ;

for some constants C1; C2 > 0 depending on .M n; g/.
To estimate the upper bound we choose to work in geodesic normal coordinates

in a very small geodesic ball B2� �M and transplant the rescaled round sphere
metric. Let B2�.0/�Rn and

(2-8) gij .x/D ıij CO.jxj
2/ for all x 2 B2�.0/:
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Define a smooth nonnegative function u� on M by

(2-9) u�.x/D

8̂<̂
:
�

2�3

�6Cjxj2

�n�4
2

for x 2 B�.0/;

0 for x … B2�.0/
:

It is easily calculated that

(2-10)
Z
M

.u�P Œg�u�/ dv D

Z
B�.0/

j�u�j
2dxC o.1/

D

Z
Rn

ˇ̌̌̌
�

�
2�3

�6Cjxj2

�n�4
2
ˇ̌̌̌2
dxC o.1/

D

Z
Rn

ˇ̌̌̌
�

�
2

1Cjxj2

�n�4
2
ˇ̌̌̌2
dxC o.1/

and

(2-11)
Z
M

u
2n
n�4
� dv D

Z
B�.0/

u
2n
n�4
� dxC o.1/

D

Z
Rn

�
2�3

�6Cjxj2

�n
dxC o.1/

D

Z
Rn

�
2

1Cjxj2

�n
dxC o.1/:

Therefore

(2-12) }.u�/D

R
M .u�P Œg�u�/ dv�R
M u

2n
n�4
� dv

�n�4
n

D

R
Rn j�sj

2dx�R
Rn s

2n
n�4dx

�n�4
n

C o.1/;

where s D
�

2

1Cjxj2

�n�4
2

. Thus, taking �! 0, we arrive at

(2-13) �.M; Œg�/� �.Sn; Œg0�/: �

One interesting question would be whether .M; g/ is conformally equivalent to
.Sn; g0/ when �.M; Œg�/D �.Sn; Œg0�/ without assuming the Yamabe constant of
.M; g/ is nonnegative. In other words one would be interested in searching for
some analogue of a positive mass theorem of Schoen and Yau here if it make any
sense.

3. Connected sums and the Paneitz constant

In this section we will calculate the Paneitz functional on a connected sum of two
closed manifolds and verify Theorem 1.1. Let .M; g/ be a closed manifold of
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dimension higher than 4. Fix a point p 2M and let

(3-1) fı D

�
0 for x 2 Bı.p/;
1 for x 2M nB2ı.p/;

be a family of smooth functions. We may ask that

(3-2) 0� fı � 1; jrfı j<
C0

ı
; j�fı j<

C0

ı2

for some number C0 > 0.

Lemma 3.1. Let .M; g/ be a closed manifold of dimension greater than 4. Let
u 2 CC

1.M/ be given. Then uı D fıu 2 CC1.M/ and

(3-3) }g.uı/D }g.u/C o.1/

as ı! 0.

Proof. We simply calculate, for a fixed ı > 0, by (2-6) and (3-2),

(3-4)
Z
M

.uıP Œg�uı/ dv

D

Z
M

j�uı j
2dvCan

Z
M

Rjruı j
2dv�

4

n�4

Z
M

Ric.ruı ;ruı/ dvC
Z
M

Qu2ıdv

D

Z
M

.uP Œg�u/ dvCo.1/

and

(3-5)
Z
M

u
2n
n�4

ı
dv D

Z
M

u
2n
n�4dvC o.1/;

as ı! 0. �

Now let us consider the connected sum of two closed Riemannian manifolds. Let
.M1; g1/ and .M2; g2/ be two compact Riemannian manifolds without boundary of
dimension n� 5. For x1 2M1 and x2 2M2, let Bı1.x1/�M1 and Bı2.x2/�M2

be geodesic balls respectively. To make the connected sum one simply takes off
the open balls B 1

2
ı1
.x1/ and B 1

2
ı2
.x2/ from M1 and M2, identify @B 1

2
ı1
.x1/ with

@B 1
2
ı2
.x2/. Hence

(3-6)
M1 #M2 D

��
M1 nB 1

2
ı1
.x1/

�
[
�
M2 nB 1

2
ı2
.x2/

��ı˚
@B 1

2
ı1
.x1/� @B 1

2
ı2
.x2/

	
:

We may construct a metric g on the connected sumM1#M2 such that g agrees with
g1 on M1 nBı1.x1/ and g2 on M2 nBı2.x2/. Notice that topologically M1 #M2

does not depend on the value of ıi when they are sufficiently small. Now let us
calculate and estimate the Paneitz functional on the connected sum.
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Theorem 3.2. Let .M1; g1/ and .M2; g2/ be two closed Riemannian manifolds of
dimension n� 5. Then for each � >0, there is a conformal structure Œg� onM1#M2

such that

(3-7) �.M1 #M2; Œg�/ <min
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
C �:

Alternatively, we may find a conformal structure Œg� on M1 #M2 such that

(3-8) �.M; Œg�/ < �.M1; Œg1�/C�.M2; Œg2�/2
�n�4

n C �:

Proof. Let us assume that �.M1; Œg1�/ � �.M2; Œg2�/ and � > 0 fixed. By the
definition of the Paneitz constant, we know that there is a real number ı > 0 and a
smooth function uı 2 CC1.M/ such that uı vanishes on a geodesic ball Bı.x1/ of
radius ı and centered at x1 2M1 and such that

}g.uı/ < �.M1; Œg1�/C �:

Let g be a metric on M D M1 #M2 which agrees with g1, when restricted to
M1 nBı.x1/. And define the function Quı on M1 #M2 as follows:�

Quı D uı on M1 nBı.x1/;

Quı D 0 elsewhere:

We then have

}g. Quı/D

R
M

�
� Quı

2
C anRjr Quı j

2�
4
n�2

Ric.r Quı ;r Quı/CQ Qu2ı
�
dv�R

M Qu
2n
n�4

ı
dv
� n
n�4

:

Recalling that uı vanishes on Bı.x1/ we see that

}g. Quı/D }g1.uı/ < �.M1; Œg1�/C �:

Consequently,

�.M; Œg�/ < �.M1; Œg1�/C � Dmin.�.M1; Œg1�/; �.M2; Œg2�//C �:

We now proceed to prove (3-8). First, Lemma 3.1 can be used to say that for any
fixed � > 0; x1 2M1; x2 2M2, we can find two positive reals ı1; ı2 and smooth
functions uı1 ; uı2 , where uıi 2 C

1.Mi /, with the following properties:

uı1 D 0 on Bı1.x1/; }g1.uı1/ < �.M1; Œg1�/C �1;

uı2 D 0 on Bı2.x2/; }g2.uı2/ < �.M2; Œg2�/C �1;

where �1 D 2
�nC4
n �. Also, notice that we can assume without loss of generality

that the L
2n
n�4 .M/ norms of uı1 and uı2 are normalized. Using the same reasoning

as in the proof of (3-7), a metric g on M1 #M2 can be constructed such that g
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agrees with gi when restricted to Mi nBıi .xi /. Let us consider now the function Qu
on M DM1 #M2 given by

(3-9) QuD

8<:
uı1 on M1 nBı1.x1/;

uı2 on M2 nBı2.x1/;

0 elsewhere;

then

}g. Qu/D

R
M1nBı1 .x1/

�
.� Qu/2C anRjr Quj

2�
4
n�4

Ric.r Qu;r Qu/CQ Qu2
�
dv�R

M1nBı1 .x1/
Qu
2n
n�4dvC

R
M2nBı2 .x2/

Qu
2n
n�4dv

� n
n�4

C

R
M2nBı2 .x2/

�
.� Qu/2C anRjr Quj

2�
4
n�2

Ric.r Qu;r Qu/CQ Qu2
�
dv�R

M1nBı1 .x1/
Qu
2n
n�4dvC

R
M2nBı2 .x2/

Qu
2n
n�4dv

� n
n�4

:

Using (3-9) we then obtain

}g. Qu/D

R
M1nBı1 .x1/

�
.� Quı1/

2CanRjr Quı1j
2�

4
n�2

Ric.r Quı1;r Quı1/CQ Qu
2
ı1

�
dv�R

M1nBı1 .x1/
Qu
2n
n�4

ı1
dvC

R
M2nBı2 .x2/

Qu
2n
n�4

ı2
dv
� n
n�4

C

R
M2nBı2 .x2/

�
.� Quı2/

2CanRjr Quı2 j
2�

4
n�2

Ric.r Quı2 ;r Quı2/CQ Qu
2
ı2

�
dv�R

M1nBı1 .x1/
Qu
2n
n�4

ı1
dvC

R
M2nBı2 .x2/

Qu
2n
n�4

ı2
dv
� n
n�4

:

Now, recalling the above stated properties of uı1 and uı2 , we may also assumeZ
MinBıi .xi /

uıi
2n
n�4dv D 1;

and
}gi .uıi /

D

Z
MinBıi .xi /

�
� Quıi

2
C anRjr Quıi j

2
�

4

n�2
Ric.r Quıi ;r Quıi /CQ Qu

2
ıi

�
dv

< �.Mi ; Œgi �/C �1:

Thus

�.M; Œg�/� }g. Qu/ <
�
�.M1; Œg1�/C�.M2; Œg2�/C 2�1

�
2�

n�4
n

D
�
�.M1; Œg1�/C�.M2; Œg2�/

�
2�

n�4
n C �: �

4. Connected sums and the Paneitz invariants

Kobayashi in [1987] showed that the Yamabe invariant of connected sum of two
manifolds is greater than or equal to the smaller of the Yamabe invariants of the
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two. The aim of this section is to generalize this result of Kobayashi to the case
of compact manifolds of dimension n� 5, and with the Yamabe invariant Y.M/

replaced by it’s fourth-order analogue the Paneitz invariant �.M/. Namely, we
have

Theorem 4.1. LetM1 andM2 be closed manifolds of dimension n�5. If �.M1/>0

and �.M2/ > 0 then

(4-1) �.M1 #M2/�minf�.M1/; �.M2/g:

We will basically follow the approach taken in [Kobayashi 1987]. First we
consider the Paneitz invariant on the disjoint union of compact manifolds. Take
two n-manifolds with conformal structures, say .M1; Œg1�/ and .M2; Œg2�/. We
write .M; Œg�/D .M1; Œg1�/t .M2; Œg2�/ if M is the disjoint union of M1 and M2,
and gi D fgjMi Ig 2 Œg�g for i D 1; 2. Let u be a smooth nonnegative function
on M . Since M is the disjoint union of M1 and M2 it follows that we can write
u D u1C u2, where ui D 0 on Mj , where i ¤ j and where ui is a nonnegative
smooth function on Mi . If we assume that �.Mi ; Œgi �/� 0 for i D 1; 2, then it can
easily be seen that

�.M; Œg�/Dmin
˚
�.M1; Œg1�/; �.M2; Œg2�/

	
:

Due to Lemma 2.2, we can assume that �.M1/ and �.M2/ are finite; and we can
use the above equation to conclude that

�.M/Dminf�.M1/; �.M2/g:

Let M be a compact manifold of dimension n � 5, and p1 and p2 two points
of M . We take off two small balls around p1 and p2, and then attach a handle
instead, the handle being topologically the product of a line segment and Sn�1.
The new manifold obtained in this way will be denoted by M . Let M1 and M2 be
Riemannian manifolds and let M1 tM2 denote the disjoint union of M1 and M2.
If M DM1 tM2 and p1 and p2 are taken from M1 and M2 respectively, then
M DM1 #M2. Therefore we see that in order to prove Theorem 4.1 it suffices to
show

�.M/� �.M/:

Proof of Theorem 4.1. Let � be an arbitrary positive number, which will be fixed
throughout. First, we take a metric g on M such that

(4-2) �.M; Œg�/ > �.M/� �:

Due to continuity considerations we may assume that Œg� is conformally flat around
the points p1 and p2. Then there is a function  2 C1.M n fp1; p2g/ and g 2 Œg�
such that Qg D eg is a complete metric of M n fp1; p2g and that each of the two
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ends is isometric to the half-infinite cylinder Œ0;1/�Sn�1.1/. For convenience,
we write

.M n fp1; p2g; Qg/D Œ0;1/�S
n�1.1/[ . zM; Qg/[ Œ0;1/�Sn�1.1/;

where zM is the complement of the two cylinders. We can glue . zM; Qg/ and Œ0; l��
Sn�1.1/, along their boundaries to get a smooth Riemannian manifold .M; gl/,
where M is as mentioned in the beginning of the section:

(4-3) .M; Ngl/D . zM; Qg/[ Œ0; l��Sn�1.1/:

We then have

�.M; Œgl �/D inf
f >0

R
M

�
.�f /2C anRjrf j

2�
4
n�2

Ric.rf;rf /CQf 2
�
dv�R

M f
2n
n�4dv

� n
n�4

;

So, take a positive function fl 2 C1.M/ such that

(4-4)
Z
M

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2

�
dv

< �.M; Œgl �/C
1

l C 1

and

(4-5)
Z
M

fl
2n
n�4dv D 1:

Lemma 4.2. There is a section, say ftlg �Sn�1, in the cylindrical part of M such
thatZ
ftlg�Sn�1

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2

�
dv <

B

l
;

where B is a constant independent of l .

Proof. Using (4-4) we haveZ
Sn�1�Œ0;l�

�
.�fl/

2
C anRjrfl j

2
�

4

n�2
Ric.rfl ;rfl/CQf

2
l

�
dv

< �.M; Œgl �/C
1

1Cl

�

Z
zM

�
.�fl/

2
C anRjrfl j

2
�

4

n�2
Ric.rfl ;rfl/CQfl

2

�
dv:

Now suppose that
R
M jrfl j

2dv goes to infinity as l !1. It would follow
that

R
M .�fl/

2!1 as l !1 and that this divergence is much faster than the
divergence of

R
M jrfl j

2dv. But this implies that
R
M flPlfldv>�.M; Œgl �/C

1
lC1

for large l , which forces a contradiction (here Pl is the Paneitz–Branson operator
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of the metric gl .) It follows that there exists a constant D independent of l such
that Z

M

anRjrfl j
2
�

4

n� 2
Ric.rfl ;rfl/ dv �D:

Note as well that there exists a constant E such that �
R
M Qf 2

l
dv � E. Putting

this together we conclude that there exists a t1 2 Œ0; l� such that

l

Z
t1�Sn�1

�
.�fl/

2
C anRjrfl j

2
�

4

n� 2
Ric.rfl ;rfl/CQf

2
l

�
dv

< �.M; Œgl �/C
1

1C l
CDCE:

The lemma follows. �

Now we cut off M on the section ft1 � Sn�1g, and attach two half-infinite
cylinders to it, so .M; nfp1; p2g; Ng/ reappears. But this time we describe it as
follows:

.M; nfp1; p2g; Ng/D Œ0;1/�S
n�1.1/[.M�ft1g�S

n�1; gl/[Œ0;1/�S
n�1.1/:

We think of the function fl as defined on M �fftlg �Sn�1g, and extend it to the
whole space M �fp1; p2g as follows: Let Fl be W 2;1 function of M �fp1; p2g
such that

Fl D fl on M �ftlg �S
n�1

and

Fl.t; x/D

�
g.t/ Qfl.x/ for .t; x/ 2 Œ0; 1��Sn�1;
0 for .t; x/ 2 Œ1;1��Sn�1;

where Qfl D fl jftlg�Sn�1 2 C
1.Sn�1/ and where g is a smooth function on Œ0; 1�

that goes from a value of 1 to a value of 0, and whose derivative vanishes at 1. Now
it easy to see from (4-4) and the above lemma thatZ
Mnfp1;p2g

�
.�Fl/

2
C anRjrFl j

2
�

4

n� 2
Ric.rFl ;rFl/CQF

2

�
dv

< �.M; Œgl �/C
B

l
;

where B is a constant independent of l . Obviously from (4-5) we getZ
Mnfp1;p2g

Fl
2n
n�4dv > 1:

Therefore, we have

inf

R
Mnfp1;p2g

�
.�F /2C anRjrF j

2�
4
n�2

Ric.rF;rF /CQF 2
�
dv�R

Mnfp1;p2g
F

2n
n�4dv

� n
n�4

� �.M/;
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where the infimum is taken over all nonnegative W 2;1 functions F with compact
support. It follows from the choice of the metric Qg that the left side of the preceding
equation is equal to �.M; Œg�/. Since � can be chosen arbitrarily in (4-2), we
conclude �.M/� �.M/, which completes the proof. �
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