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G-BUNDLES OVER ELLIPTIC CURVES
FOR NON-SIMPLY LACED LIE GROUPS AND

CONFIGURATIONS OF LINES IN RATIONAL SURFACES

MANG XU AND JIAJIN ZHANG

We study the relation between the moduli space of flat G-bundles over a
fixed elliptic curve 6 and the moduli space of rational surfaces with G-
configurations containing 6 as a fixed anticanonical curve, where G is a
non-simply laced, compact, simple and simply connected Lie group. Our
method is to reduce G to a simply laced maximal subgroup G′.

1. Introduction

This paper is a continuation of our earlier study, briefly recapitulated below, on the
identification between the moduli space of flat G-bundles over a fixed elliptic curve
6 and the moduli space of rational surfaces with G-configurations containing 6 as
an anticanonical curve. For the case of G = En , the rational surfaces are exactly del
Pezzo surfaces, and the identification was predicted by a duality argument in physics
and proved in [Looijenga 1976; Donagi 1997; 1998; Friedman et al. 1997]. The
essential reason for this identification in this case is the existence of an En-structure
on del Pezzo surfaces [Demazure et al. 1980; Manin 1974], which turns out to be
related to Gosset polytopes [Lee 2010; 2012].

This structure on rational surfaces was extended to the cases An and Dn in
[Leung 2000]. Starting from Leung’s result, we obtained in [Leung and Zhang
2009a] an analogous identification for all simply laced Lie groups G. In [Leung
et al. 2012; Leung and Zhang 2009b], we extended this identification further to
the non-simply laced cases and the affine Kac–Moody Ẽn case. The method in
that last paper consists in reducing non-simply laced cases to simply laced cases,
by considering a non-simply laced Lie group G as the fixed subgroup of a bigger
simply laced group G ′, under the action of the outer automorphism group of G ′.

In this paper, we consider another reduction. From Lie theory (see [Bourbaki
2005], for example), a non-simply laced Lie group G is uniquely determined by
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a simply laced maximal subgroup G ′ determined by the long roots of G. Hence
it is natural to apply our earlier results for the simply laced cases in [Leung and
Zhang 2009a] to the current situation. In this way, we establish the identification
between flat G-bundles over a fixed elliptic curve 6 and rational surfaces with
6 as an anticanonical curve for non-simply laced Lie groups G (G 6= F4), by
considering the maximal simply laced subgroup G ′ determined by the long roots
of G. Unfortunately, this method is not very effective for the case G = F4. In the
following, we assume that G 6= F4. Similar to the simply laced cases, we define
G-surfaces and rational surfaces with G-configurations (see Definitions 5, 12,
and 16). Let Out(G ′) be the finite group defined in Proposition 2. Our result is this:

Theorem 1 (Propositions 10, 14 and 19). Let 6 be an elliptic curve with identity
element 0 ∈6, and let G be any simple, compact, simply connected Lie group of
Bn,Cn or G2 type. Denote by SG

6 the moduli space of the pairs (S, 6), where S is a
G-surface such that 6 ∈ |− KS|. Denote by MG

6 the moduli space of flat G-bundles
over 6.

(i) SG
6 can be embedded into MG

6 as an open dense subset.

(ii) This embedding can extend to an isomorphism from SG
6 onto MG

6 by including
all rational surfaces with G-configurations, and this gives us a natural and
explicit compactification SG

6 of SG
6 .

This study is motivated by a certain duality in physics. When G = En is
considered as a simple subgroup of E8 × E8, these G-bundles are related to the
duality between F-theory and string theory. Among other things, this duality
predicts the identification between the moduli of flat En-bundles over a fixed elliptic
curve 6 and the moduli of del Pezzo surfaces with the fixed anticanonical curve
6. For more details, one can see [Donagi 1997; 1998; Friedman et al. 1997]. Our
result can be considered as a test of this duality for other Lie groups.

As an application, this identification provides us with an intuitive explanation for
MG
6 . We also provide an interesting geometric realization of root system theory, and

we can see very clearly how the Weyl group acts on the moduli space of (marked)
flat G-bundles over 6.

Notation. Let G be a compact, simple and simply connected Lie group. We
preserve the notation of in [Leung and Zhang 2009a], which is as follows.

r(G) the rank of G 3(G) the root lattice
R(G) the root system 3c(G) the coroot lattice
Rc(G) the coroot system 3w(G) the weight lattice
W (G) the Weyl group ad(G) the adjoint group of G (= G/C(G))
T (G) a maximal torus 1(G) the set of simple roots of G
C(G) the center of G Out(G) the outer automorphism group of G
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Recall that the outer automorphism group of G is defined as the quotient of the
automorphism group of G by its inner automorphism group. As is well-known, it
is isomorphic to the diagram automorphism group of the Dynkin diagram of G.

When there is no danger of confusion, we can omit the letter G.

2. Reductions to the simply laced cases

Let G be a simple, compact and simply connected Lie group. Then G is classified
into the following 7 types according to its Lie algebra.

(1) An-type, G = SU(n+ 1);

(2) Bn-type, G = Spin(2n+ 1);

(3) Cn-type, G = Sp(n);

(4) Dn-type, G = Spin(2n);

(5) En-type, n = 6, 7, 8;

(6) F4-type;

(7) G2-type.

Among these, An, Dn and En are called of simply laced type, while Bn,Cn, F4 and
G2 are called of non-simply laced type. An, Bn,Cn, Dn are called classical Lie
groups, while En, F4 and G2 are called exceptional Lie groups.

From now on, we always assume that G is a compact, simple, simply connected
Lie group of non-simply laced type, that is, of type Bn,Cn, F4,G2. There are two
natural approaches to reduce these situations to the simply laced cases. One is
embedding G into a simply laced Lie group G ′′ such that G is the subgroup fixed by
the outer automorphism group of G ′′. Another is taking the simply laced subgroup
G ′ of maximal rank.

In [Leung and Zhang 2009b] we explained the first reduction. In this paper we
concentrate on the second.

Proposition 2 [Bourbaki 2005]. There exists canonically a simply laced Lie sub-
group G ′ of maximal rank of G determined by the long roots of G, such that G ′ and
G share a common maximal torus. There is a short exact sequence

1→W (G ′)→W (G)→ Out(G ′)→ 1.

This exact sequence is split, that is,

W (G)∼=W (G ′)nOut(G ′).

We write the moduli space of flat G-bundles on 6 as MG
6 .

Corollary 3. MG
6
∼=MG ′

6 /Out(G ′).
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Proof. Let T be the common maximal torus of G and G ′. Then

MG
6
∼= Hom(π1(6),G)/ad(G)∼= Hom(π1(6), T )/W (G)∼= T × T/W (G).

Similarly, MG ′
6
∼= T × T/W (G ′). Therefore

MG
6
∼= T × T/W (G)∼= (T × T/W (G ′))/(W (G)/W (G ′))∼=MG ′

6 /Out(G ′). �

We defined in [Leung and Zhang 2009a] (rational) G ′-surfaces and rational
surfaces with G ′-configurations. Let SG ′

6 be the moduli space of G ′-surfaces
containing 6 as a fixed anticanonical curve. As shows in the same paper, we have
the following identification of moduli spaces

SG ′
6
∼=MG ′

6 .

Let Out(G ′) act on SG ′
6 via the above isomorphism. In the next section, we shall

see explicitly how Out(G ′) acts on SG ′
6 .

Thus we have a natural question: How can we define G-configurations on rational
surfaces when G is non-simply laced, in such a way that SG

6
∼= SG ′

6 /Out(G ′)? We
answer this question in the next section.

Remark 4 [Bourbaki 2005; Humphreys 1978]. We give the construction, the root
system, and the finite group Out(G ′) of G ′ for non-simply laced Lie group G in
each case. We also give the Dynkin diagrams of G and G ′.

(1) For G = Spin(2n+ 1), we take G ′ = Spin(2n).
1(G ′)= {αi , i = 1, . . . , n}.
1(G)= {βi , i = 1, . . . , n}, where β1 = 1

2(α2−α1), β2 = α1, βi = αi , i = 3, . . . , n.
Out(G ′) is the group Z2 that exchanges the two spin representations of Spin(2n). In
fact, Out(G ′)={1, ρ}, where ρ(αi )=αi , i = 3, . . . , n, ρ(α1)=α2, and ρ(α2)=α1.

>Bn Dn
βn βn−1 β2 β1 αn αn−1 α3

α2

α1

(2) For G = Sp(n), we take G ′ = SU(2)n .
1(G ′)= {αi , i = 1, . . . , n}.
1(G)= {βi , i = 1, . . . , n}, where βi = 1

2(αi −αi+1), i = 1, . . . , n− 1, βn = αn .
Out(G ′) is the symmetry group Sn of the n copies of SU(2) in G ′.

<Cn An
1

β1 β2 βn−1 βn α1 α2 αn−1 αn

(3) For G = F4, we take G ′ = Spin(8).
1(G ′)= {αi , i = 1, . . . , 4}.
1(G)={βi , i=1, . . . , 4}, where β1=α2, β2=α3, β3= 1

2(α4−α3), β4= 1
2(α1−α4).
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Out(G ′) is the triality group S3 that permutes the three 8-dimensional representations
of Spin(8).

>F4 D4
β1 β2 β3 β4 α1 α2 α3

α4

(4) For G = G2, we take G ′ = SU(3).
1(G ′)= {αi , i = 1, 2}.
1(G)= {βi , i = 1, 2}, where β1 = α1, β2 =−1/3(α1+α2).
Out(G ′) is the group Z2 that exchanges the 3-dimensional representation of SU(3)
with its dual. In fact, Out(G ′) is generated by −1 ∈ Aut(3(G ′)).

>G2 A2
β1 β2 α1 α2

In the following we let 6 be a fixed elliptic curve with the identity element 0,
and we fix a primitive d-th root of Jac(6) ∼= 6 (equivalently, a level d structure
on 6), where d = 2 for G = Dn, Bn , d = 9− n for G = En , and d = n + 1 for
G = An,Cn,G2, respectively; see [Leung and Zhang 2009a] for the ADE cases.
Recall from the same reference (for instance) that for any compact, simple and
simply connected Lie group H , we have

MH
6
∼= (3c(H)⊗6)/W (H),

where MH
6 is the moduli space of flat H -bundles over 6.

3. Flat G-bundles over elliptic curves and rational surfaces: the non-simply
laced cases

In this section, we study case by case the G-bundles over elliptic curves and
corresponding rational surfaces for a non-simply laced Lie group G (G 6= F4).

3.1. Bn-bundles (n ≥ 2). According to the last section, for G = Spin(2n+ 1) we
take G ′ = Spin(2n)⊆ G.

Let S be a Dn surface containing 6 as a smooth anticanonical curve. Recall
from [Leung and Zhang 2009a] that S is a blow-up of F1 at n points x1, . . . , xn on
6 that are in general position,1 with corresponding exceptional classes l1, . . . , ln .
Let f and s be the classes of fibers and the section in F1. The Picard group of S is
isomorphic to H 2(S,Z), which is a lattice with basis s, f, l1, . . . , ln . The canonical
class is K =−(2s+ 3 f −∑n

i=1 li
)
.

We know from [ibid.] that the set

{x ∈ H 2(S,Z) | x · K = x · f = 0}
1This means that the xi are all distinct and that xi + x j 6= 0 for all i, j .
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is a root lattice of Dn type. We take a simple root system of G ′ = Dn as

1(Dn)= {α1 = l1− l2, α2 = f − l1− l2, α3 = l2− l3, . . . , αn = ln−1− ln}.
Let ρ be the generator of Out(G ′) ∼= Z2, such that ρ(α1) = α2, ρ(α2) = α1 and
ρ(αi )= αi for i = 3, . . . , n.

Recall that a Dn-configuration on S is an n-tuple ζ = (e1, . . . , en)where ei = lσ(i)
or f − lσ(i) such that

∑
ei · s ≡ 0 (mod 2). Equivalently, a Dn-configuration on S

is an n-tuple ζ = (e1, . . . , en) such that after blowing down en, . . . , e1 successively,
we obtain F1 with a fibration F1→ P1 defined by the fiber f .

On the other hand, the exceptional system ζ ′ = (e′1, . . . , e′n) where e′i = lσ(i)
or f − lσ(i) such that

∑
e′i · s ≡ 1 (mod 2) also determines 3(Dn). The condition∑

e′i · s ≡ 1 (mod 2) is equivalent to the fact that after blowing down e′n, . . . , e′1
successively, we obtain P1×P1 with a fibration P1×P1→ P1 defined by f . It is
easy to see that the map which interchanges l1 and f − l1, and preserves all other li

and f − li , plays the role of the generator of Out(Dn)∼= Z2. Therefore we have the
following natural definition of Bn-configurations.

Let S be a rational surface with a ruling f : S→P1 [ibid.], and 6 ∈ |−KS|, such
that f |6 :6→ P1 is a double covering with 0 ∈6 as a ramification point. Recall
that an exceptional system of length n on S is an n-tuple ζ = (e1, e2, . . . , en) where
the ei ’s are exceptional divisors such that ei · e j =−δi j , ei · KS =−1, 1≤ i, j ≤ n.
A divisor defining the ruling f : S→ P1 is still denoted by f , which is effective of
arithmetic genus 0.

Definition 5. A Bn-configuration on S is an exceptional system of length n (if
exists) ζ = (e1, e2, . . . , en) with ei · f = 0 for all i , such that we can consider S as
a blow-up of F1 or P1 ×P1 at n points x1, x2, . . . , xn on 6, with corresponding
exceptional divisors e1, e2, . . . , en . When such a ζ exists, we call S a (rational)
surface with a Bn-configuration. Let ρ ∈ Out(Dn) be the diagram automorphism.
Define ρ(ζ ) := ( f − e1, e2, . . . , en).

Lemma 6. Let ζ = (e1, e2, . . . , en) be a Bn-configuration. Then

ρ(ζ )= ( f − e1, e2, . . . , en)

is also a Bn-configuration.

Proof. By [Leung and Zhang 2009a], if after blowing down en, . . . , e1 successively
we obtain F1, then after blowing down en, . . . , e2, f − e1 we shall obtain P1×P1.
Conversely, if after blowing down en, . . . , e1 successively we obtain P1×P1, then
after blowing down en, . . . , e2, f − e1 we shall obtain F1. The result follows. �

When x1, . . . , xn ∈ 6 are in general position (footnote 1), the surface S in
Definition 5 is called a Bn-surface.
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Lemma 7. Let S be a Bn-surface.

(i) Any Bn-configuration on S consists of exceptional curves.

(ii) The Weyl group W (Dn) acts on all Bn-configurations with two orbits and acts
on each orbit simply transitively.

(iii) These two orbits are exchanged by Out(Dn).

(iv) The group W (Dn)nOut(Dn) acts on all Bn-exceptional systems simply tran-
sitively

Proof. Let S be a Bn-surface with a ruling f : S→ P1. Then by definition, S is
a blow-up of F1 or P1 ×P1 at n points x1, x2, . . . , xn ∈ 6. Let l1, . . . , ln be the
corresponding exceptional divisors. Then we have

{ x ∈ Pic(S) | x2 = x K =−1, x f = 0 }
= { l1, . . . , ln, f − l1, . . . , f − ln }.

Thus a Bn-configuration must be of the form: ζ = (e1, . . . , en) where ei = lσ(i)
or ei = f − lσ(i) and σ is a permutation of 1, . . . , n. Obviously, x1, . . . , xn are in
general position if and only if all the li and f − li are exceptional curves. Therefore,
(i) is true.

(iii) This follows from Definition 5.

(iv) This is a consequence of (ii) and (iii).

(ii) Let (e1, e2, . . . , en) be a Bn-configuration on S. Then ei = lσ(i) or f − lσ(i) for
1≤ i ≤ n, where σ is a permutation of {1, . . . , n}. The Weyl group W (Dn) acts as
the group generated by permutations of the n pairs {(li , f − li ) | i = 1, . . . , n} and
interchanges of li and f − li simultaneously in two pairs in {(li , f − li ) | 1≤ i ≤ n}.
Therefore W (Dn) acts on the set

{
(e1, . . . , en) |

∑
ei · s ≡ 0 (mod 2)

}
simply

transitively. Similarly the condition
∑

ei · s ≡ 1 (mod 2) determines another orbit
on which W (Dn) acts simply transitively. �

Remark 8. Although we know the Bn-configurations on S, unfortunately, we can
not single out the Bn-root system within the Picard lattice Pic(S) ∼= H 2(S,Z).
However, according to Section 2, we have a root system of Bn type consisting of
Q-divisors on S:

R(Bn),
{±( 1

2 f − li
)
,±(li − l j ),±( f − li − l j )

∣∣ i 6= j, 1≤ i, j ≤ n
}
.

It is easy to see that the corresponding root lattice is

3(Bn),
{

x ∈ Z
( 1

2 f
)⊕ n⊕

i=1
Z(li )

∣∣ x f = x K = 0
}

and
R(Bn)= {x ∈3(Bn) | x2 =−2 or x2 =−1}.
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The set of simple roots of Bn is

1(Bn)=
{
β1 = 1

2 f − l1, βi = li−1− li , i = 2, . . . , n
}
.

Recall that the Weyl group W (Bn) is the subgroup of Aut(3(Bn)) generated by
the reflections σα with α ∈ R(Bn).

Corollary 9. Let R(Bn) be defined as above. Then W (Bn) acts on the set of all
Bn-configurations simply transitively.

Let SBn
6 be the moduli space of pairs (S, 6) where S is a Bn-surface (so the

blown-up points x1, x2, . . . , xn are in general position), and 6 ∈ |−KS|, where
two pairs (S, 6) and (S′, 6) are said to be isomorphic to each other if there is
an isomorphism f : S −→∼ S′ such that f |6 = id6 . Denote MBn

6 the moduli space
of flat Bn-bundles over 6. Let SBn

6 be the (marked) moduli space of the triples
(S, 6, ζ = (l1, . . . , ln)). By Lemma 7, we have

SBn
6
∼= SBn

6 /W (Bn)∼= SBn
6 /(W (Dn)nOut(Dn)).

Let (S, 6, ζ = (l1, . . . , ln)) ∈ SBn
6 be as above. For all α = a0

2 f +∑ ai li ∈
3(Bn) ⊆ Pic(S)Q = Pic(S)⊗Q with ai ∈ Z, i = 0, . . . , n, the invertible sheaf
induced by restriction to 6

O6(α) := O6(a0(0))⊗O
(∑

ai li
)|6

is well-defined. Moreover, deg(O6(α))= α · (−KS)= 0. Then

O6(α) ∈ Jac(6)∼=6.
Thus there is a morphism

φ : SBn
6 → Hom(3(Bn),6),

which is induced by the restriction: for all α ∈3(Bn)⊆ Pic(S)Q,

φ((S, 6, ζ ))(α) := O6(α) ∈ Jac(6)∼=6.

Proposition 10. (i) SBn
6 is embedded into MBn

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SBn
6
∼=MBn

6 ,

by including all rational surfaces with Bn-configurations.

Proof. Similarly as in [Leung and Zhang 2009a], we have

MBn
6
∼= Hom(3(Bn),6)/W (Bn).
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Then by Lemma 7 or Corollary 9, since two different sets of simple roots differ by
a W (Bn)-action, we just need to show that the map

φ : SBn
6 ↪→ Hom(3(Bn),6)

is an open dense embedding and that φ can be extended to an isomorphism φ from

the natural compactification SBn
6 of SBn

6 to Hom(3(Bn),6):

φ : SBn
6 −→∼ Hom(3(Bn),6).

The map φ is injective. For this, we take a simple root system of Dn as

β1 = 1
2 f − l1, βi = li−1− li for 2≤ i ≤ n.

Then the restriction induces an element u ∈ Hom(3(Bn),6). For

β = a0
(1

2 f
)+∑ ai li ∈3(Bn),

let xi = li ∩6 and p = u(β) ∈6. Then we have an equation∑
ai xi = p,

where + is the addition on the elliptic curve 6. Taking β = βi , i = 1, . . . , n
respectively, and setting pi = u(βi ) accordingly, we obtain the following system of
linear equations {−x1 = p1,

xi−1− xi = pi , i = 2, . . . , n.

Obviously, the solution of this system of linear equations exists uniquely for given
pi with 1≤ i ≤ n.

The open dense property of the image of the embedding φ is obvious.
Finally, the statement (ii) comes from the existence of the solutions to the above

system of linear equations. �

3.2. Cn-bundles. We take G ′= An
1 ⊆G =Cn , where Cn = Sp(n) and A1= SU(2).

Note that Out(An
1)
∼= Sn .

Let S be a rational surface with an An
1-configuration that contains 6 as a smooth

anticanonical curve. Recall from [Leung and Zhang 2009a] that S is a (successive)
blow-up of P2 at 2n points x1, y1, . . . , xn, yn on 6, with corresponding exceptional
classes l1, l ′1, . . . , ln, l ′n , where xi + yi = 0 ∈6. The Picard group of S is H 2(S,Z),
which is a lattice with basis h, l1, l ′1, . . . , ln, l ′n . The canonical divisor is K =
−(3h−∑n

i=1(li + l ′i )
)
.

A simple root system of An
1 can be taken as

1(A1
n)= {αi = li − l ′i | 1≤ i ≤ n}.



506 MANG XU AND JIAJIN ZHANG

When the above simple root system is chosen, the pair (S, 6) determines a
homomorphism u ∈ Hom(3(G ′),6) which is given by the restriction map

u(α) := O(α)|6.
Lemma 11. Let u ∈ Hom(3(G ′),6) be an element corresponding to a triple
(S, 6, ζ ), where S is a surface with an An

1-configuration ζ = (l1, l ′1, . . . , ln, l ′n).
Let ρ ∈ Out(G ′) ∼= Sn . Then ρ · u corresponds to the triple (S, 6, ρ(ζ )), where
ρ(ζ )= (lρ(1), l ′ρ(1), . . . , lρ(n), l ′ρ(n)).
Proof. Since u is the restriction map: αi 7→ O(αi )|6 , u(αi )= O(li − l ′i )|6 = xi − yi

for i = 1, . . . , n. Hence ρ · u(αi )= u(αρ(i))= xρ(i)− yρ(i). Therefore we have the
result, since xρ(i)+ yρ(i) = 0. �

Thus, it is natural to define a Cn-configuration on S to be the form

ζ = ((l1, l ′1), . . . , (ln, l ′n)).

More precisely, denote S the blow-up of P2 at n pairs of points (x1,−x1), . . . ,
(xn,−xn) on 6, with n pairs of corresponding exceptional divisors (l1, l ′1), . . . ,
(ln, l ′n), where li and l ′i are the exceptional divisors corresponding to the blowing
up at xi and −xi , respectively.

Definition 12. A Cn-exceptional system on S is an n-tuple of pairs

((e1, e′1), . . . , (en, e′n))

where (ei , e′i ) = (lσ(i), l ′σ(i)) or (l ′σ(i), lσ(i)), i = 1, . . . , n, and σ is a permuta-
tion of 1, . . . , n. A Cn-configuration on S is a Cn-exceptional system ζCn =
((e1, e′1), . . . , (en, e′n)) such that after blowing down successively e′n, en, . . . , e′1, e1,
we obtain the surface P2.

It can be shown that x1, x2, . . . , xn ∈6⊆P2 are in general position (in the sense
of footnote 1) if and only if any Cn-exceptional system on S consists of smooth
exceptional curves. Such a surface is called a Cn-surface.

Lemma 13. (i) Let S be a surface with a Cn-configuration. The group W (An
1)nSn

acts on all Cn-exceptional systems on S simply transitively.

(ii) Let S be a Cn-surface. The group W (An
1)n Sn acts on all Cn-configurations

on S simply transitively.

Proof. It suffices to prove (i). The Weyl group W (An
1)n Sn acts as the group

generated by permutations of the n pairs {(li , l ′i ) | i = 1, . . . , n} and interchanging of
li and l ′i for each i . From this, we see that W (An

1)n Sn acts on all Cn-configurations
simply transitively. �
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Denote by SG ′
6 the moduli space of G ′ = An

1-surfaces with a fixed anticanonical
curve 6, and by SG ′

6 the natural compactification by including all rational surfaces
with An

1-configurations. From [Leung and Zhang 2009a] we know that there is an
isomorphism φ : SG ′

6 −→∼ MG ′
6 .

Denote by SCn
6 the moduli space of pairs (S, 6), where S is a Cn-surface, that

is, S is the blow-up of P2 at 2n points ±x1, . . . ,±xn ∈6 such that x1, . . . , xn are
in general position, and two pairs (S, 6) and (S′, 6) are said to be isomorphic to
each other if there is an isomorphism f : S −→∼ S′ such that f |6 = id6 . Denote by
MCn
6 the moduli space of flat Cn-bundles over 6.

Proposition 14. (i) SCn
6 is embedded into MCn

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SCn
6
∼=MCn

6 ,

by including all rational surfaces with Cn-configurations.

Proof. By Corollary 3, MCn
6
∼=M

An
1

6 /Sn ∼= S
An

1
6 /Sn . Therefore it is sufficient to show

that SCn
6
∼= S

An
1

6 /Sn . This follows from Lemma 13. �

Remark 15. Obviously, this description in Proposition 14 coincides with the well-
known description of flat Cn-bundles over elliptic curves [Friedman et al. 1997].
A flat Cn = Sp(n)-bundle over 6 corresponds to n pairs (unordered) of points
(xi ,−xi ), i = 1, . . . , n on 6, uniquely up to isomorphism. One pair (xi ,−xi ) will
determine exactly one point on CP1, since the rational map determined by the linear
system |2(0)| induces a double covering from 6 onto CP1. The moduli space of flat
SU(2)-bundles over 6 is isomorphic to P1. So the moduli space of flat Cn-bundles
over 6 is precisely isomorphic to Sn(CP1)= CPn , the ordinary projective n space.

3.3. G2-bundles. For G = G2, we take G ′ = A2 = SU(3).
Let S be a rational surface with an A2-configuration (see [Leung and Zhang

2009a]) containing 6 as a smooth anticanonical curve. Recall [ibid.] that S is
a (successive) blow-up of P2 at 3 points x1, x2, x3 on 6, with corresponding
exceptional classes l1, l2, l3, where x1+ x2+ x3 = 0 ∈6. Let h be the class of lines
in P2. The Picard group of S is Pic(S)∼= H 2(S,Z), which is a lattice with basis
h, l1, l2, l3. The canonical line bundle K =−(3h−∑3

i=1 li
)
.

Recall that
{x ∈ H 2(S,Z) | x · K = x · h = 0}

is a root lattice of A2 type. We can take a simple root system of A2 as

1(A2)= {α1 = l1− l2, α2 = l2− l3}.
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Let ρ ∈ Out(A2) ∼= Z2 be the generator of order 2 (we can take ρ = −1, that is,
ρ(αi )=−αi ).

Denote by SA2
6 the moduli space of A2-surfaces with a fixed anticanonical curve

6, and SA2
6 the natural compactification by including all rational surfaces with

A2-configurations. From [Leung and Zhang 2009a] we know that SA2
6 −→∼ MA2

6 .
Let φ be the isomorphism.

Definition 16. Let S be as immediately above. A G2-exceptional system on S is an
ordered triple (e1, e2, e3) of exceptional divisors such that ei · e j = 0= ei · h, i 6= j
and y1+y2+y3= 0 where yi = ei∩6. A G2-configuration on S is a G2-exceptional
system ζG2 = (e1, e2, e3) such that we can consider S as a blow-up of P2 at these 3
points y1, y2, y3 on 6, with corresponding exceptional divisors e1, e2, e3. When S
has a G2-configuration (of course 6 ∈ |− KS|), we call S a (rational) surface with
a G2-configuration.

When x1, x2, x3 are nonzero distinct points on 6, any G2-exceptional system on
S consists of exceptional curves. Such a surface is called a G2-surface. These 3
points x1, x2, x3 ∈6 are said to be in general position.

Let S, S′ be two surfaces with G2-configurations ζ, ζ ′ respectively. We say
that (S, 6, ζ ) ∼= (S′, 6, ζ ′) if there exists an isomorphism f : S −→∼ S′ such that
f |6 :6→6 is the identity or the involution of 6.

A triple (S, 6, ζ ) determines an element u of Hom(3(A2),6) by the restriction

u(α) := O(α)|6.
Lemma 17. Let u ∈ Hom(3(A2),6) correspond to the triple (S, 6, ζ ), where S
is a surface with a G2-configuration ζ = {l1, l2, l3}. Then ρ · u corresponds to
(S′, 6, ζ ′), where S′ is another surface with a G2-configuration ζ ′= (l ′1, l ′2, l ′3) with
l ′i ∩6 =−xi . Moreover, we have (S, 6, ζ )∼= (S′, 6, ζ ′).
Proof. Since u is the restriction map: αi 7→ O(αi )|6 , u(α1)= O(l1− l2)|6 = x1−x2,
u(α2)= x2−x3. Hence ρ ·u= v⇔ v(αi )=−u(αi )⇔ x1−x2= y2− y1, x2−x3=
y3− y2 ⇔ yi =−xi .

Next we prove the second assertion. We first fix an embedding ι : 6 ↪→ P2

such that (the image of) 6 is defined by the equation zy2 = 4x3 + axz2 + bz3

and 0 = [0, 1, 0] ∈ 6, where [x, y, z] is the coordinate system of P2. Then the
automorphism of P2 defined by [x, y, z] 7→ [x,−y, z] induces an isomorphism f
of the triple (0, 6,P2), which is the involution on 6 that maps x ∈6 to −x . On
the other hand, for x1, x2, x3 ∈6, we have obviously (−x1)+ (−x2)+ (−x3)= 0.
Thus we have the isomorphism φ defined by f . �

Lemma 18. (i) Let S be a surface with a G2-configuration. The Weyl group
W (A2) acts on all G2-exceptional systems on S simply transitively.
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(ii) Let S be a G2-surface. The Weyl group W (A2) acts on all G2-configurations
on S simply transitively.

(iii) Let [(S, 6, ζ )] be the isomorphism class of (S, 6, ζ ). Then W (A2)nZ2 acts
on the set [(S, 6, ζ )] simply transitively.

Proof. Let f : (S′, 6, ζ ′)−→∼ (S, 6, ζ ). If f |6 = id6 , then S = S′ and f = idS . In
this case, W (A2) acts on the G2-configurations on S simply transitively. On the
other hand, by Lemma 17, the involution on 6 can be extended to an isomorphism
from S′ onto S. In this case the involution − id6 acts on the set [(S, 6, ζ )]. Thus
the result follows. �

Proposition 19. Let SG2
6 be the moduli space of pairs (S, 6) where S is a G2-

surface, and MG2
6 be the moduli space of flat G2-bundles over 6. Then we have

(i) SG2
6 is embedded into MG2

6 as an open dense subset.

(ii) This embedding can be extended naturally to an isomorphism

SG2
6
∼=MG2

6 ,

by including all rational surfaces with G2-configurations.

Proof. By Corollary 3 we have MG2
6
∼=MA2

6 /Out(A2)∼= SA2
6 /Z2. Thus it suffices

to show that SG2
6
∼= SA2

6 /Z2. This follows from Lemma 18. �

Remark 20 [Friedman et al. 1997]. A SU(3)-bundles over 6 is determined by a
section of H 0(O6(3(0))), which is a meromorphic function with the only pole 0 of
order at most 3. Let x, y be the local coordinates of 6 around 0, then this function
is a0+a1x+a2 y up to nonzero constant. Thus the moduli space MA2

6 is isomorphic
to P2. By the proof of Lemma 17, the function a0+a1x+ (−a2)y defines the same
G2-bundle over 6. Thus we have MG2

6
∼=WP2

1,1,2.

Remark 21. For the F4 case, unfortunately, the method used in this paper is not
very effective. We can not find a suitable definition for F4-configurations. Thus in
this case, the method used in [Leung and Zhang 2009b] is the better one.
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