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ON THE SECOND K -GROUP OF
A RATIONAL FUNCTION FIELD

KARIM JOHANNES BECHER AND MÉLANIE RACZEK

We give an optimal bound on the minimal length of a sum of symbols in the
second Milnor K -group of a rational function field in terms of the degree of
the ramification.

1. Introduction

Let E be an arbitrary field and F the function field of the projective line P1
E over

E . For m ∈ N, there is a well-known exact sequence

(1.1) 0−→ K (m)
2 E −→ K (m)

2 F
∂
−→

⊕
x∈P

1(1)
E

K (m)
1 E(x)−→K (m)

1 E −→ 0 ,

due to Milnor and Tate; see [Milnor 1970, (2.3)]. Here, K (m)
1 and K (m)

2 are the
functors that associate to a field its first and second K -groups modulo m, respectively,
and P

1(1)
E is the set of closed points of P1

E . The map ∂ is called the ramification
map. By [Gille and Szamuely 2006, (7.5.4)], for m prime to the characteristic of E ,
the sequence (1.1) translates into a sequence in Galois cohomology, and the proof
of its exactness essentially goes back to [Faddeev 1951].

In this article we study how for a given element ρ in the image of ∂ one finds
a good ξ ∈ K (m)

2 F with ∂(ξ)= ρ. Our main result Theorem 3.10 states that there
is such a ξ that is a sum of r symbols (canonical generators of K (m)

2 F) where r
is bounded by half the degree of the support of ρ. This generalizes results from
[Kunyavskiı̆ et al. 2006; Rowen et al. 2005; Sivatski 2007], where the problem has
been studied in terms of Brauer groups in the presence of a primitive m-th root of
unity in E for m > 0. Developing further an idea in [Sivatski 2007, Proposition 2],
we provide examples (Example 4.3) where the bound on r cannot be improved.
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2. Milnor K -theory of a rational function field

We recall the basic terminology of K -theory for fields as introduced in [Milnor 1970],
with slightly different notation. Let F be a field. For m, n ∈ N, let K (m)

n F denote
the abelian group generated by elements called symbols, which are of the form
{a1, . . . , an} with a1, . . . , an ∈ F×, subject to the defining relations that { · , . . . , · } :
(F×)n→ K (m)

n F is a multilinear map, that {a1, . . . , an} = 0 whenever ai+ai+1= 1
in F for some i < n, and that m · {a1, . . . , an} = 0. For a, b ∈ F× we have {ab} =
{a}+{b} in K (m)

1 F . The second relation above is void when n= 1, hence K (m)
1 F is

the same as F×/F×m , only with different notation for the elements and the group
operation. As shown in [Milnor 1970, (1.1) and (1.3)], it follows from the defining
relations that, for a1, . . . , an ∈ F×, we have {aσ(1), . . . , aσ(n)} = ε{a1, . . . , an} for
any permutation σ of the numbers 1, . . . , n with signature ε=±1, and furthermore
{a1, . . . , an} = 0 whenever ai + ai+1 = 0 for some i < n.

With this notation, K (0)
n F is the full Milnor K -group Kn F introduced in [Milnor

1970], and K (m)
n F is its quotient modulo m for m ≥ 1.

By a Z-valuation we mean a valuation with value group Z. Given a Z-valuation
v on F we denote by Ov its valuation ring and by κv its residue field. For a ∈ Ov let
a denote the natural image of a in κv . By [ibid., (2.1)], for n ≥ 2 and a Z-valuation
v on F , there is a unique homomorphism ∂v : K

(m)
n F→ K (m)

n−1κv such that

∂v({ f, g2, . . . , gn})= v( f ) · {g2, . . . , gn} for f ∈ F× and g2, . . . , gn ∈ O×v .

When n = 2, for f, g ∈ F× we have f −v(g)gv( f )
∈ O×v and

∂v({ f, g})= {(−1)v( f )v(g) f −v(g)gv( f )} in K (m)
1 κv .

We turn to the situation where F is the function field of P1 over E . By the choice
of a generator, we identify F with the rational function field E(t) in the variable t
over E . Let P denote the set of monic irreducible polynomials in E[t]. Any p ∈P

determines a Z-valuation vp on E(t) that is trivial on E and such that vp(p)= 1.
There is further a unique Z-valuation v∞ on E(t) such that v∞( f )=− deg( f ) for
any f ∈ E[t] \ {0}. We set P′ = P ∪ {∞}. For p ∈ P′ we write ∂p for ∂vp and
we denote by E p the residue field of vp. Note that E p is naturally isomorphic to
E[t]/(p) for p ∈ P, and E∞ is naturally isomorphic to E .

It follows from [ibid., Section 2] that the sequence

(2.1) 0−→ K (m)
n E −→ K (m)

n E(t)
⊕
∂p

−−−→

⊕
p∈P

K (m)
n−1 E p −→ 0

is split exact. We are going to reformulate this fact for n = 2 and to relate the
sequences (2.1) and (1.1). We set



ON THE SECOND K -GROUP OF A RATIONAL FUNCTION FIELD 3

R′m(E)=
⊕
p∈P′

K (m)
1 E p .

For p ∈ P′, the norm map of the finite extension E p/E yields a group homo-
morphism K (m)

1 E p→ K (m)
1 E . Summation over these maps for all p ∈ P′ yields

a homomorphism N :R′m(E)→ K (m)
1 E . Let Rm(E) denote the kernel of N. We

set ∂ =
⊕

p∈P′ ∂p. By [Gille and Szamuely 2006, (7.2.4) and (7.2.5)] we obtain an
exact sequence

(2.2) 0−→ K (m)
2 E −→ K (m)

2 E(t)
∂
−→R′m(E)

N
−→ K (m)

1 E −→ 0 .

In particular, Rm(E) is equal to the image of ∂ : K (m)
2 E(t)→R′m(E).

The choice of the generator of F over E fixes a bijection φ : P1(1)
E → P′ and

for any x ∈ P
1(1)
E a natural isomorphism between E(x) and Eφ(x). This identifies⊕

x∈P
1(1)
E

K (m)
1 E(x) with R′m(E), and further the sequence (1.1) with (2.2). We will

work with (2.2) in the sequel.
For ρ = (ρp)p∈P′ ∈ R′m(E) we denote Supp(ρ) = {p ∈ P′ | ρp 6= 0} and

deg(ρ) =
∑

p∈Supp(ρ)[E p : E], and call this the support and the degree of ρ. The
degree of an element of R′m(E) is invariant under automorphisms of E(t)/E .

3. Bound for representation by symbols in terms of the degree

In this section we study the relation between the degree of ρ ∈ Rm(E) and the
properties of elements ξ ∈ K (m)

2 E(t) with ∂(ξ)= ρ. In Theorem 3.10 we will show
that there always exists such ξ that is a sum of r symbols where r is the integral part
of deg(ρ)/2. In particular, any ramification of degree at most three is realized by a
symbol. This settles a question in [Kunyavskiı̆ et al. 2006, (2.5)]. In some of the
following statements, we consider elements of R′m(E), rather than only of Rm(E).

Proposition 3.1. If ρ ∈Rm(E) then deg(ρ) 6= 1.

Proof. Consider an element ρ ∈R′m(E) with deg(ρ)= 1. The support of ρ consists
of one rational point p ∈P′. Hence N(ρ)= ρp 6= 0 in K (m)

1 E , whereby ρ /∈Rm(E).
�

We say that p ∈P′ is rational if [E p : E] = 1. We call a subset of P′ rational if
all its elements are rational. We give two examples showing how to realize a given
ramification of small degree and with rational support by one symbol.

Examples 3.2. (1) Let a, c ∈ E× and c /∈ E×m . The symbol σ = {t − a, c} in
K (m)

2 E(t) satisfies Supp(σ )= {t − a,∞}, ∂t−a(σ )= {c} and ∂∞(σ )= {c−1
}.

(2) For a1, a2, c1, c2 ∈ E× with a1 6= a2, we compute the ramification of the symbol

σ =
{ t − a1

c2(a2− a1)
,

c1(t − a2)

a1− a2

}
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in K (m)
2 E(t). It has Supp(σ ) ⊆ {t − a1, t − a2,∞}, ∂t−ai (σ ) = {ci } for i = 1, 2,

and ∂∞(σ )= {(c1c2)
−1
}.

A ramification of degree two can, under some extra conditions, be realized by a
symbol one of whose entries is a constant:

Proposition 3.3. Let ρ ∈Rm(E) be such that deg(ρ) = 2. If Supp(ρ) is rational
or char(E) 6= m = 2, there exist e ∈ E× and f ∈ E(t)× such that ρ = ∂({e, f }).

Proof. Suppose first that the support of ρ is rational. We choose a, e ∈ E× such
that t − a ∈ Supp(ρ) and ρt−a = {e} in K (m)

1 E . Then Supp(ρ)= {t − a, p} where
p ∈ P′ is rational. As N (ρ)= 0 we obtain that ρp = {e−1

} in K (m)
1 E p. If p =∞,

we set f = 1/(t − a). Otherwise p = t − b for some for b ∈ E , and we set
f = (t − b)/(t − a). In either case we obtain ρ = ∂({e, f }).

It remains to consider the case where char(E) 6= m = 2 and Supp(ρ) = {p}
for a quadratic polynomial p ∈ P. Then E p/E is a separable quadratic extension.
Let x ∈ E×p be such that ρp = {x}. As Supp(ρ) = {p} and N(ρ) = 0, we obtain
that the norm of x with respect to the extension E p/E lies in E×2, and therefore
x E×2

p = eE×2
p for some e ∈ E×; see [Lam 2005, Chapter VII, (3.9)]. Hence,

ρp = {x} = {e} in K (2)
1 E p, and we obtain ρ = ∂({e, p}). �

In Proposition 3.3 the rationality of the support when m 6= 2 is not a superfluous
condition; the following example was pointed out to us by J.-P. Tignol.

Example 3.4. Let k be a field. We consider the rational function field in two
variables u and v over k. Let τ denote the k-automorphism of k(u, v) satis-
fying τ(u) = v and τ(v) = u. Then τ 2 is the identity map on k(u, v), and
E = {x ∈ k(u, v) | τ(x) = x} is a subfield of k(u, v) such that [k(u, v) : E] = 2.
Consider the element y = v/u ∈ k(u, v). Since y /∈ E , the quadratic polynomial

p = (t − y)(t − τ(y))= t2
−

u2
+v2

uv
t + 1

is irreducible over E .
Let m be an odd positive integer. We consider the symbol σ ={p, t} in K (m)

2 E(t).
Note that the support of ∂(σ ) is contained in {p} and ∂p(σ )= {t}. Moreover, map-
ping t to y induces an E-isomorphism E p→ k(u, v). Since y is not an m-th power
in k(u, v), it follows that ∂p(σ ) 6= 0. Hence, Supp(∂(σ ))= {p} and deg(∂(σ ))= 2.

We claim that ∂p(σ ) 6= ∂p({e, f }) for any e ∈ E× and f ∈ E(t)×. Suppose on
the contrary that there exist e ∈ E× and f ∈ E(t)× such that ∂p(σ )= ∂p({e, f }).
Then we obtain that evp( f )y is an m-th power in k(u, v), and taking norms with
respect to the extension k(u, v)/E yields that e2vp( f )

∈ E×m . Since m is odd, it
follows that evp( f )

∈ E×m , and thus ∂p({e, f })= 0, a contradiction.

The remainder of this section builds up to our main result, Theorem 3.10.
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Lemma 3.5. Let ρ ∈R′m(E) with deg(ρ)≥ 2. There exists a symbol σ in K (m)
2 E(t)

such that deg(ρ−∂(σ ))≤ deg(ρ)−1 and where this inequality is strict if deg(ρ)≥
3 and ρ∞ 6= 0. More precisely, one may choose σ = { f h, g} where f is the
product of the polynomials in Supp(ρ) and where g, h ∈ E[t] \ {0} are such that
deg(g) < deg( f ) and, either deg(h) < deg(g), or gh ∈ E×.

Proof. Let f be the product of the polynomials in Supp(ρ). By the Chinese
Remainder Theorem, we may choose g ∈ E[t] prime to f with deg(g) < deg( f )
such that ∂p({ f, g})= ρp for all monic irreducible polynomials p ∈ Supp(ρ). If g
is constant, let h = 1. If g is not square-free, let h be the product of the different
monic irreducible factors of g. If g is square-free and not constant, then using the
Chinese remainder theorem we choose h ∈ E[t] prime to g with deg(h) < deg(g)
such that

∂p({ f, g})− ρp = {h}

in K (m)
1 E p for every monic irreducible factor p of g. For σ = { f h, g} we obtain

that Supp(ρ− ∂(σ )) \ {∞} is contained in the set of monic irreducible factors of h,
whereby g, h, and σ have the desired properties. �

Lemma 3.6. Let d ∈ N \ {0} and f ∈ E[t] nonconstant and square-free such that
deg(p)≥ d for every irreducible factor p of f . Let F = E[t]/( f ) and let ϑ denote
the class of t in F. For any a ∈ F× there exist nonzero polynomials g, h ∈ E[t]
with deg(h)≤ d − 1 and deg(g)≤ deg( f )− d such that a = g(ϑ)/h(ϑ).

Proof. Let

V =
d−1⊕
i=0

Eϑ i and W =
e−d⊕
i=0

Eϑ i ,

where e=deg( f ). By the choice of d and the Chinese Remainder Theorem, we have
V \{0}⊆ F×, where F× denotes the group of invertible elements of F . As a∈ F× we
have dimE(V a)=dimE(V )=d and dimE(V a)+dimE(W )=e+1>e=[F : E], so
V a∩W 6=0. Therefore h(ϑ)a=g(ϑ) for certain h, g∈ E[t]\{0}with deg(h)≤d−1
and deg(g)≤ e− d . Thus h(ϑ) ∈ V \ {0} ⊆ F× and a = g(ϑ)/h(ϑ). �

Lemma 3.7. Let ρ ∈ R′m(E) and q ∈ Supp(ρ) such that deg(q) = 2n + 1 with
n ≥ 1. There exists a symbol σ in K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2.
More precisely, one may choose σ = {qh f −2g−2, g−1 f } with f, g, h ∈ E[t] \ {0}
such that deg( f ), deg(g)≤ n and deg(h)≤ 2n− 1.

Proof. Applying Lemma 3.6 for d = n + 1 we find f, g ∈ E[t] \ {0} with
deg( f ), deg(g) ≤ n such that ∂q({q, g−1 f }) = ρq . Then q is prime to f g. If
f g is constant, let h = 1. If f g is not square-free, let h be the product of
the different monic irreducible factors of f g. If f g is square-free and not con-
stant, we choose h ∈ E[t] prime to f g and with deg(h) < deg( f g) such that
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∂p({h, g−1 f })= ∂p({q−1 f 2g2, g−1 f }) for every monic irreducible factor p of f g.
In any case deg(h)≤ 2n− 1= deg(q)− 2.

Let σ = {qh f −2g−2, g−1 f }. Then we have ∂q(σ ) = ρq and ∂p(σ ) = 0 for
every monic irreducible polynomial p ∈ E[t] prime to h and not contained in
Supp(ρ). It follows that q ∈ Supp(ρ) \Supp(ρ− ∂(σ )) and that every polynomial
in Supp(ρ − ∂(σ )) \ Supp(ρ) divides h. Furthermore, if deg(h) = 2n − 1, then
deg( f )= deg(g)= n, so that deg(qh)= 4n = 2 deg( f g) and thus ∂∞(σ )= 0. We
conclude that deg(ρ− ∂(σ ))≤ deg(ρ)− 2 in any case. �

Proposition 3.8. Let ρ ∈ R′m(E) with deg(ρ) ≥ 2. There exists a symbol σ
in K (m)

2 E(t) such that deg(ρ − ∂(σ )) ≤ deg(ρ) − 1. Moreover, if deg(ρ) ≥ 3
and Supp(ρ) contains an element of odd degree, then there exists a symbol σ in
K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2.

Proof. In view of Lemma 3.5 only the second part of the statement remains to be
proven. If Supp(ρ) contains a nonrational point of odd degree, the statement follows
from Lemma 3.7. Suppose now that Supp(ρ) contains a rational point. Note that
the statement is invariant under E-automorphisms of E(t). Hence, we may assume
that∞∈ Supp(ρ), in which case the statement follows from Lemma 3.5. �

Question 3.9. Given ρ ∈Rm(E) with deg(ρ)≥ 3, does there always exist a symbol
σ in K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2?

For x ∈ R, the unique z ∈ Z such that z ≤ x < z+ 1 is denoted by bxc.

Theorem 3.10. For ρ ∈Rm(E) and n=bdeg(ρ)/2c, there exist symbols σ1, . . . , σn

in K (m)
2 E(t) such that ρ = ∂(σ1+ · · ·+ σn).

Proof. We proceed by induction on n. If n = 0 then ρ = 0 by Proposition 3.1
and the statement is trivial. Assume that n > 0. We have either deg(ρ)= 2n+ 1,
in which case ρ contains a point of odd degree, or deg(ρ) = 2n. Hence, by
Proposition 3.8 there exists a symbol σ in K (m)

2 E(t) with deg(ρ− ∂(σ ))≤ 2n− 1.
By the induction hypothesis there exist symbols σ1, . . . , σn−1 in K (m)

2 E(t) with
ρ− ∂(σ )= ∂(σ1+ · · ·+ σn−1). Then ρ = ∂(σ1+ · · ·+ σn−1+ σ). �

If we knew that for m ≥ 1 every element of Rm(E) had a lift to R0(E) of the
same degree, it would be sufficient to formulate and prove Theorem 3.10 for m = 0.

4. Example showing that the bound is sharp

In this section we show that the bound in Theorem 3.10 is sharp for all m and in
all degrees. In order to obtain an example in Example 4.3 where the bound of
Theorem 3.10 is an equality, we adapt Sivatski’s argument [2007, Proposition 2].

For any a ∈ E , there is a unique homomorphism sa : K
(m)
n E(t)→ K (m)

n E such
that sa({ f1, . . . , fn})= { f1(a), . . . , fn(a)} for any f1, . . . , fn ∈ E[t] prime to t−a
and such that sa({t−a, · , . . . , · })= 0; see [Gille and Szamuely 2006, (7.1.4)].
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Lemma 4.1. The homomorphism s = s0− s1 : K
(m)
n E(t)→ K (m)

n E has the follow-
ing properties:

(a) s(K (m)
n E)= 0.

(b) s({(1− a)t + a, b2, . . . , bn})= {a, b2, . . . , bn} for any a, b2, . . . , bn ∈ E×.

(c) Any symbol in K (m)
n E(t) is mapped under s to a sum of two symbols in K (m)

n E.

Proof. Since s0 and s1 both restrict to the identity on K (m)
n E , part (a) is clear. For

a, b2, . . . , bn ∈ E× and σ = {(1− a)t + a, b2, . . . , bn}, we have s1(σ ) = 0 and
thus s(σ ) = s0(σ ) = {a, b2, . . . , bn}. This shows (b). Part (c) follows from the
observation that both s0 and s1 map symbols to symbols. �

Proposition 4.2. Let d ∈ N, a1, . . . , ad ∈ E×, and σ1, . . . , σd symbols in K (m)
n−1 E.

Assume that
∑d

i=1{ai } · σi ∈ K (m)
n E is not equal to a sum of less than d symbols

and let

ξ =

d∑
i=1

{(1− ai )t + ai } · σi ∈ K (m)
n E(t) .

Then deg(∂(ξ))= d+1, and if r ∈N is such that ∂(ξ)= ∂(τ1+· · ·+τr ) for symbols
τ1, . . . , τr in K (m)

n E(t), then r ≥ b(d + 1)/2c.

Proof. The hypothesis that
∑d

i=1{ai } · σi ∈ K (m)
n E cannot be written as a sum of

less than d symbols has a few consequences. For i = 1, . . . , d, it follows that
{ai } · σi 6= 0, so in particular ai 6= 1, and with p = t + ai/(1− ai ) we get that
∂p(ξ)= σi 6= 0 in K (m)

n−1 E . Furthermore, since

d∑
i=1

{ai } · σi 6=

d−1∑
i=1

{ai a
−1
d } · σi ,

we have ∂∞(ξ)=−
∑d

i=1 σi 6= 0 in K (m)
n−1 E . Therefore we obtain

Supp(∂(ξ))=
{

t +
ai

1− ai

∣∣∣∣ 1≤ i ≤ d
}
∪ {∞}

and thus deg(∂(ξ))= d + 1.
Assume now that r ∈ N and ∂(ξ) = ∂(τ1 + · · · + τr ) for symbols τ1, . . . , τr

in K (m)
n E(t). Then τ1 + · · · + τr − ξ is defined over E . Let s be the map from

Lemma 4.1. By Lemma 4.1 we obtain that s(τ1+ · · ·+ τr − ξ)= 0 and thus

d∑
i=1

{ai } · σi = s(ξ)= s(τ1)+ · · ·+ s(τr ) ∈ K (m)
n E ,

which is a sum of 2r symbols. Hence 2r ≥ d , by the hypothesis on d . �
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Example 4.3. Let p be a prime dividing m. Let k be a field containing a prim-
itive p-th root of unity ω and a1, . . . , ad ∈ k× such that the Kummer extension
k( p
√

a1, . . . , p
√

ad) of k has degree pd . Let b1, . . . , bd be indeterminates over k and
set E = k(b1, . . . , bd). Using [Tignol 1987, (2.10)] and [Becher and Hoffmann
2004, (2.1)], it follows that

∑d
i=1{ai , bi } is not equal to a sum of less than d symbols

in K (p)
2 E . Since p divides m, it follows immediately that

∑d
i=1{ai , bi } ∈ K (m)

2 E is
not a sum of less than d symbols in K (m)

2 E . Consider

ξ =
d∑

i=1
{(1− ai )t + ai , bi }

in K (m)
2 E(t). By Proposition 4.2, for ρ = ∂(ξ) we have that deg(ρ) = d + 1 and

ρ 6= ∂(ξ ′) for any ξ ′ ∈ K (m)
2 E(t) that is a sum of less than r = bdeg(ρ)/2c symbols.
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