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CERTIFYING INCOMPRESSIBILITY
OF NONINJECTIVE SURFACES WITH SCL

DANNY CALEGARI

Cooper and Manning (2011) and Louder (2011) gave examples of maps of
surface groups to PSL(2, C) which are not injective, but are incompressible
(i.e., no simple loop is in the kernel). We construct more examples with
very simple certificates for their incompressibility arising from the theory of
stable commutator length.

The purpose of this note is to give examples of maps of closed surface groups
to PSL(2,C) which are not π1-injective, but are geometrically incompressible, in
the sense that no simple loop in the surface is in the kernel (in the sequel we use
the word “incompressible” as shorthand for “geometrically incompressible”). The
examples are very explicit, and the images can be taken to be all loxodromic. The
significance of such examples is that they shed light on the simple loop conjecture,
which says that any noninjective map from a closed oriented surface to a 3-manifold
should be compressible.

Examples of such maps were first shown to exist in [Cooper and Manning 2011],
by a representation variety argument, thereby answering a question of Minsky
[2000] (also see [Bowditch 1998]). More sophisticated examples were then found
by Louder [2011]; he even found examples with the property that the minimal
self-crossing number of a loop in the kernel can be taken to be arbitrarily large.
Louder’s strategy is to exhibit an explicit finitely presented group (a limit group)
which admits noninjective incompressible surface maps, and then to observe that
such a group can be embedded as an all-loxodromic subgroup of PSL(2,C).

It is easy to produce examples of noninjective surface groups. What is hard is to
certify that they are incompressible. The main point of our construction, and the
main novelty and interest of this paper, is to show that stable commutator length
(and its cousin Gromov–Thurston norm) can be used to certify incompressibility.

Our examples are closely related to Louder’s examples, although our certificates
are quite different. So another purpose of this note is to advertise the use of stable

Danny Calegari was partly supported by NSF grant DMS 1005246.
MSC2010: 20F12, 57M60.
Keywords: simple loop conjecture, stable commutator length, compressible, PSL(2,C).
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commutator length as a tool to get at the kind of information that is relevant in
certain contexts in the theory of limit groups.

We move back and forward between (fundamental) groups and spaces in the
usual way. We assume the reader is familiar with stable commutator length, and
Gromov–Thurston norms in dimension 2. Standard references are [Calegari 2009;
Gromov 1982; Thurston 1986]. Computations are done with the program scallop,
available from [Calegari and Walker 2011].

Recall that if X is a K (π, 1), the Gromov–Thurston norm of a class α ∈ H2(X;Z)
(denoted ‖α‖) is the infimum of −χ(T )/n over all closed, oriented surfaces T
without spherical components mapping to X and representing nα. Our certificates
for incompressibility are guaranteed by the following proposition.

Proposition 1 (certificate). Let X be a K (π, 1), and let α ∈ H2(X;Z) be repre-
sented by a closed oriented surface S with no torus or spherical components. If
there is a strict inequality ‖α‖>−χ(S)− 2 (where ‖ · ‖ denotes Gromov–Thurston
norm) then S is (geometrically) incompressible.

Proof. If S is compressible, then α is represented by the result of compressing S,
which is a surface S′ with no spherical components, and −χ(S′) < ‖α‖. But this
contradicts the definition of ‖α‖. �

On the other hand, a closed surface S without torus or spherical components
representing α and with−χ(S)=‖α‖ is π1-injective, so to apply our proposition to
obtain examples, we must find examples of spaces X and integral homology classes
α for which ‖α‖ is not equal to −χ(S) for any closed orientable surface S; i.e.,
for which ‖α‖ is not in 2Z. Such spaces can never be 3-manifolds, by combined
results of [Gabai 1983; Thurston 1986], so our methods will never directly find a
counterexample to the simple loop conjecture.

The groups we consider are all obtained by amalgamating two simpler groups
over a cyclic subgroup. The generator of the cyclic group is homologically trivial
in either factor, giving rise to a class in H2 in the big group. The Gromov–Thurston
norm of this class is related to the stable commutator length of the loop in the two
factors as follows:

Proposition 2 (amalgamation). Let G be an amalgamated product G = J ∗〈w〉 K
along a cyclic group 〈w〉 which is generated by a loop w which is homologically
trivial on either side. Let φ : H2(G;Z)→ H1(〈w〉;Z) be the connecting map in the
Mayer–Vietoris sequence, and let Hw ⊂ H2(G;Z) be the affine subspace mapping
to the generator. If w has infinite order in J and K , then

inf
α∈Hw
‖α‖ = 2(sclJ (w)+ sclK (w)).

Proof. This is not difficult to see directly from the definition, and it is very similar
to the proof of Theorem 3.4 in [Calegari 2008]. However, for the sake of clarity
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we give an argument. Note by the way that the hypothesis that w is homologi-
cally trivial on either side is equivalent to the statement that the inclusion map
H1(〈w〉;Z)→ H1(J ;Z)⊕ H1(K ;Z) is the zero map, so φ as above is certainly
surjective. Moreover, if H2(J ;Z) and H2(K ;Z) are trivial (as will often be the
case below), then φ is an isomorphism, and Hw consists of a single class α.

It is convenient to geometrize this algebraic picture, so let X J and X K be
Eilenberg–MacLane spaces for J and K , and let XG be obtained from X J and
X K by attaching the two ends of a cylinder C to loops representing the conjugacy
classes corresponding to the images of w in either side. Let γ be the core of C . If S
is a closed, oriented surface with no sphere components, and f : S→ XG represents
some nα with α ∈ Hw, then we can homotope f so that it meets γ transversely
and efficiently — i.e., so that f −1(γ ) consists of pairwise disjoint essential simple
curves in S. If one of these curves maps to γ with degree zero we can compress S
and reduce its complexity, so without loss of generality every component maps with
nonzero degree. Hence we can cut S into SJ and SK each mapping to X J and X K

respectively and with boundary representing some finite cover of w. By definition
this shows infα∈Hw ‖α‖ ≥ 2(sclJ (w)+ sclK (w)).

Conversely, given surfaces SJ and SK mapping to X J and X K with boundary
representing finite covers ofw (or rather its image in each side), we need to construct
a suitable S as above. First, we can pass to a cover of each SJ and SK in such a
way that the boundary of each maps to w with positive degree; see, for example,
Proposition 2.13 of [Calegari 2009]. Then we can pass to a further finite cover of
each so that the set of degrees with which components of ∂SJ and of ∂SK map over
w are the same (with multiplicity); again, see the argument of the proposition just
cited. Once this is done we can glue up SJ to SK with the opposite orientation to
build a surface S mapping to XG which, by construction, represents a multiple of
some α in Hw. We therefore obtain infα∈Hw ‖α‖ ≤ 2(sclJ (w)+ sclK (w)) and we
are done. �

We now show how to use these propositions to produce examples.

Example 1. Start with a free group; for concreteness, let F = 〈a, b, c〉. Consider a
word w ∈ F of the form w= [a, b][c, v] for some v ∈ F . Associated to this expres-
sion of w as a product of two commutators is a genus 2 surface S with one boundary
component mapping to a K (F, 1) in such a way that its boundary representsw. This
surface is not injective, since the image of its fundamental group is F which has
rank 3. Let G=〈a, b, c, x, y |w=[x, y]〉; i.e., geometrically a K (G, 1) is obtained
from a K (F, 1) by attaching the boundary of a once-punctured torus T to w. The
surface R := S ∪ T has genus 3, and represents the generator of H2(G;Z). On the
other hand, by the Amalgamation Proposition, the Gromov–Thurston norm of this
homology class is equal to 2 ·scl〈x,y〉([x, y])+2 ·sclF (w). Since scl〈x,y〉([x, y])= 1

2
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(see [Calegari 2009, Example 2.100], for instance), providing 1
2 < scl(w) the result

is noninjective but incompressible.
The group G can be embedded in PSL(2,C) by first embedding F as a discrete

subgroup, then embedding 〈x, y〉 in such a way that [x, y] = w. By conjugating
〈x, y〉 by a generic loxodromic element with the same axis as w, we can ensure this
example is injective, and it can even be taken to be all loxodromic. This follows
in the usual way by a Bass–Serre type argument; a similar argument appears in
[Calegari and Dunfield 2006, Lemma 1.5].

Almost any word v will give rise to w with scl(w) > 1
2 ; for example,

scl([a, b][c, aa])= 1,

as can be computed using scallop. Experimentally, it appears that if v is chosen
to be random of length n, then scl(w)→ 3

2 as n→∞. For example,

scl([a, b][c, bcAB BcABCbbcACbcBcbb])= 7
5 .

The closer scl(w) is to 3
2 , the bigger the index of a cover in which some simple

loop compresses. This gives a practical method to produce examples for any given
k in which no loop with fewer than k self-crossings is in the kernel.

Example 2. Note that the groups G produced in Example 1 are 1-relator groups,
which are very similar to 3-manifold groups in some important ways. A modified
construction shows they can in fact be taken to be 1-relator fundamental groups
of hyperbolic 4-manifolds. To see this, we consider examples of the form G =
〈a, b, c, x1, y1, . . . , xg, yg | w =

∏g
i=1[xi , yi ]〉 i.e., we attach a once-punctured

surface Tg of genus g, giving rise to a noninjective incompressible surface R= S∪Tg

of genus g+ 2.
Let 〈a, b, c〉 act discretely and faithfully, stabilizing a totally geodesic H3 in H4.

We can arrange for the axis ` of w to be disjoint from its translates. Thinking of
〈x1, y1, . . . , xg, yg〉 as the fundamental group of a once-punctured surface Tg, we
choose a hyperbolic structure on this surface for which ∂Tg is isometric to `/〈w〉,
and make this group act by stabilizing a totally geodesic H2 in H4 in such a way that
the axis of ∂Tg intersects the H3 perpendicularly along `. Providing the shortest
essential arc in Tg from ∂Tg to itself is sufficiently long (depending on the minimal
distance from ` to its translates by 〈a, b, c〉) the resulting group is discrete and
faithful. This follows by applying the Klein–Maskit combination theorem, once
we ensure that the limit sets of the conjugates of 〈a, b, c〉 are contained in regions
satisfying the ping-pong hypothesis for the action of π1(Tg). This condition can
be ensured by taking g big enough and choosing the hyperbolic structure on Tg

accordingly; the details are entirely straightforward.
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Example 3. Let H be any nonelementary hyperbolic 2-generator group which is
torsion free but not free. Let a, b be the generators. Then the once-punctured torus
with boundary [a, b] is not injective. As before, let G = 〈H, x, y | [a, b] = [x, y]〉.
Then G contains a genus 2 surface representing the amalgamated class in H2(G;Z),
and the norm of this class is 1+2 · sclH ([a, b]) > 0, so this example is noninjective
but incompressible.

As an example, we could take H to be the fundamental group of a closed
hyperbolic 3-manifold of Heegaard genus 2, or a 2-bridge knot complement. Such
examples have discrete faithful representations into PSL(2,C).

Example 4. It is easy to produce examples of 2-generator 1-relator groups H =
〈a, b | v〉 in which 1

2 − ε < scl([a, b]) < 1
2 for any ε. Such groups are torsion-free

if v is not a proper power. Just fix some big integer N and take

v = ([a, b]±N )g1([a, b]±N )g2 · · · ([a, b]±N )gm

to be any product of conjugates for which there are as many +N ’s as −N ’s. Such
an H maps to the Seifert-fibered 3-manifold group

〈a, b, z | [a, b]N = zN−1, [a, z] = [b, z] = 1〉,

in which scl([a, b])= (N − 1)/2N . The only subtle part of this last equality is the
lower bound, which is certified by Bavard duality (see [Calegari 2009, Theorem
2.70]) and the existence of a rotation quasimorphism associated to a realization
of the fundamental group of the Seifert manifold as a central extension of the
fundamental group of a hyperbolic torus orbifold with one orbifold point of order
N . Since scl is monotone nonincreasing under homomorphisms, the claim follows.
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GLOBAL WELL-POSEDNESS FOR THE
3D ROTATING NAVIER–STOKES EQUATIONS
WITH HIGHLY OSCILLATING INITIAL DATA

QIONGLEI CHEN, CHANGXING MIAO AND ZHIFEI ZHANG

We prove the global well-posedness for the 3D rotating Navier–Stokes equa-
tions in the critical functional framework. This result allows us to construct
global solutions for a class of highly oscillating initial data.

1. Introduction

In this paper, we study the 3D rotating Navier–Stokes equations

(1-1)

8<:
ut � ��uC�e3 �uCu � ruCrp D 0;

div uD 0;

u.0;x/D u0.x/;

where � denotes the viscosity coefficient of the fluid, � the speed of rotation, e3

the unit vector in the x3 direction and �e3 � u the Coriolis force. We refer to
[Chemin et al. 2006; Majda 2003; Pedlosky 1987] for its background in geophysical
fluid dynamics. If the Coriolis force is neglected, the equations (1-1) become the
classical 3D incompressible Navier–Stokes equations

(1-2)

8<:
ut � ��uCu � ruCrp D 0;

div uD 0;

u.0;x/D u0.x/:

The global existence of a weak solution of (1-1) can be proved by the classical
compactness method, since we still have the energy estimate

ku.t/k2
L2 C 2

Z t

0

kru.s/k2
L2 ds � ku0k

2
L2 :

As in 3D Navier–Stokes equations, the uniqueness and regularity of weak solutions
are also open problems. Recently, Giga et al. [2006; 2007; 2008] studied the local

Chen is supported by NSF of China (NSFC) grants 10701012 and 10931001. Miao is supported by
NSFC grants 11171033 and 11231006. Zhang is supported by NSFC grant 10990013.
MSC2000: primary 35Q30; secondary 35D10.
Keywords: rotating Navier–Stokes equations, global well-posedness, Besov space, highly oscillating.
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existence of a mild solution for a class of nondecaying initial data which includes a
class of almost periodic functions, as well as global existence for small data. On
the other hand, when the speed � of rotation is fast enough, the global existence of
smooth solution was proved in [Babin et al. 1997; 1999; Chemin et al. 2000; 2006].

For the 3D Navier–Stokes equations, Fujita and Kato [1964; Kato 1984] proved
the local well-posedness for large initial data and the global well-posedness for
small initial data in the homogeneous Sobolev space PH

1
2 and the Lebesgue space L3,

respectively. These spaces are all the critical ones, which are relevant to the scaling
of the Navier–Stokes equations: if .u;p/ solves (1-2), then

(1-3)
�
u�.t;x/;p�.t;x/

�
WD
�
�u.�2t; �x/; �2p.�2t; �x/

�
is also a solution of (1-2). The so-called critical space is the one such that the
associated norm is invariant under the scaling of (1-3). Recently, Cannone [1997]
(see also [Cannone 1995; 2004; Cannone et al. 1994]) generalized it to Besov spaces
with negative index of regularity. More precisely, he showed that if the initial data
satisfies

ku0k
PB
�1C 3

p
p;1

� c; p > 3

for some small constant c, then the Navier–Stokes equations (1-2) are globally
well-posed. Let us emphasize that this result allows us to construct global solutions
for highly oscillating initial data which may have a large norm in PH

1
2 or L3. A

typical example is

u0.x/D sin
x3

"

�
�@2�.x/; @1�.x/; 0

�
where � 2 S.R3/ and " > 0 is small enough. We refer to [Chemin and Gallagher
2006; Chemin and Zhang 2007; Chen et al. 2010a] for some relevant results. A
natural question is then to prove a theorem of this type for the rotating Navier–Stokes
equations.

We know that Kato’s method heavily relies on the uniform boundedness of the
Stokes semigroup in Lp and global Lp �Lq estimates, but the Stokes–Coriolis
semigroup is not uniformly bounded in Lp for p 6D 2; see Theorems 5 and 6 in
[Dragičević et al. 2006]. Standard techniques allow us to prove these estimates only
locally for the Stokes–Coriolis semigroup, hence one can obtain the local existence
of mild solution in L3 by Kato’s method. Whether one can extend this solution to
a global one for small data in L3 is a very interesting problem.

Very recently, based on the global Lp � Lq estimates with q � 2 � p and
Lq �H

1
2 estimates with q > 3 for the Stokes–Coriolis semigroup, Hieber and

Shibata [2010] proved the following global result for small data in H
1
2 .
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Theorem 1.1. Let q > 3. Then there exists c > 0 independent of � such that for
any u0 2H

1
2
� with ku0k

H
1
2
� c, the equations (1-1) admit a unique mild solution

u 2 C
�
Œ0;1/;H

1
2
�

�
satisfying

(1-4) u 2 C..0;1/;Lq/ and lim
t!0C

sup
0<s<t

s
1
2
� 3

2q ku.s; � /kLq D 0;

ru 2 C..0;1/;L2/ and lim
t!0C

sup
0<s<t

s
1
4 kru.s; � /kL2 D 0:

Here H
1
2
� denotes the closure of the set fu 2 C1c .R3/3; div uD 0g in the norm of

k � k
H

1
2

.

The goal of this paper is to prove the global existence of a solution of (1-1) for a
class of highly oscillating initial velocity. Thus we need to solve the system (1-1) for
the initial data in a critical functional framework whose regularity index is negative,
for example, PB�1C 3

p
p;q for p > 3. However, Cannone’s proof [1997] doesn’t work

for our case, since it also relies on the global Lp �Lq estimates for the Stokes
semigroup. Indeed, for the Stokes–Coriolis semigroup G.t/, one has

kG.t/u0kLp � Cp;�t2
ku0kLp ; if p ¤ 2I

see Proposition 2.2 in [Hieber and Shibata 2010]. Then we can infer from the
definition of the Besov space that

kG.t/u0k
PB
�1C 3

p
p;q

� C t2
ku0k

PB
�1C 3

p
p;q

:

This means that even if the initial data u0 is small in PB�1C 3
p

p;q , the linear part of the
solution, kG.t/u0k

PB
�1C 3

p
p;q

, may become large after some time t0 > 0.

Fortunately, we have the following important observation: if u is an element of
Lp with supp Ou 2 f� W j�j& �g, then

kG.t/ukLp � Cp;�e�t�2

kukLp

for any p 2 Œ1;1� and t 2 Œ0;1�, while for any u 2L2,

kG.t/ukL2 � kukL2 :

This motivates us to introduce the hybrid-Besov spaces PB
1
2
; 3

p
�1

2;p
(see Definition 2.2).

Roughly speaking, if u 2 PB
1
2
; 3

p
�1

2;p
, the low frequency part of u belongs to PH

1
2 and

the high frequency part belongs to PB�1C 3
p

p;1 . So, PB
1
2
; 3

p
�1

2;p
is still a critical space. A

remarkable property of PB
1
2
; 3

p
�1

2;p
is that if p > 3, then

ku0.x/k
PB

1
2
; 3

p�1

2;p

� C "1� 3
p ;
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for u0.x/D sin.x1="/�.x/, with �.x/ 2 S.R3/; see Proposition 2.4. That is, the

highly oscillating function is still small in the norm of PB
1
2
; 3

p
�1

2;p
.

Definition 1.2. Let 1� p �1, we denote by Ep the space of functions such that

Ep D
˚
u W div uD 0; kukEp

<C1
	
;

where
kukEp

WD kuk
zL1
�

RCI PB
1
2
; 3

p�1

2;p

�Ckuk
zL1
�

RCI PB
5
2
; 3

pC1

2;p

�:
Definition 1.3. We denote by C�

�
Œ0;1/I PB

1
2
; 3

p
�1

2;p

�
the set of functions u such

that u is continuous from .0;1/ to PB
1
2
; 3

p
�1

2;p
, but weakly continuous at t D 0; i.e.,

lim
t!0C

sup
0<s<t

˝
u.s; � /; g. � /

˛
D 0 for all g 2 S with kgk

PB
� 1

2
;1� 3

p

2;p

� 1:

Our main results are stated as follows.

Theorem 1.4. Let p 2 Œ2; 4�. There exists a positive constant c independent of �
such that if ku0k

PB
1
2
; 3

p�1

2;p

� c, then there exists a unique solution u 2 Ep of (1-1)
such that

u 2 C�
�
Œ0;1/I PB

1
2
; 3

p
�1

2;p

�
:

Remark 1.5. Due to the inclusion map

H
1
2 � PB

1
2
; 3

p
�1

2;p
for p � 2;

Theorem 1.4 is an improvement on Theorem 1.1. The importance of this is that
it allows us to construct global solutions of (1-1) for a class of highly oscillating
initial velocity u0, for example,

(1-5) u0.x/D sin
�x3

"

�
.�@2�.x/; @1�.x/; 0/

where � 2 S.R3/ and " > 0 is small enough. This type of data is large in the
Sobolev norm; however, it is small in the norms of Besov spaces with negative
regularity index.

Remark 1.6. As shown in Section 4.2 of [Cannone 2004], for the classical Navier–
Stokes equations (1-2), there exists the following “highly oscillating” initial data:
u0.x/ 2 S0.R3/ is such that Ou0.�/D 0 if j�j � 1=". Then

(1-6) ku0k PH 1=2 � "
1=2
ku0k PH 1 :

We point out that examples like (1-5) are not included in such initial data. In fact, if
supp O�.�/� fj�j � 1=2"g, then the above estimate is satisfied, while if O�.�/ has no
support, it is not sure that (1-6) holds, which implies the norm of ku0k PH 1=2 may
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not be small enough.

Remark 1.7. The inhomogeneous part of the solution has more regularity:

u�G.t/u0 2 C
�
RCI PB

1
2

2;1

�
;

which can be proved by following the proof of Proposition 4.1.

If u0 lies in PH
1
2 , we can obtain the following global well-posedness result.

Theorem 1.8. Let p 2 Œ2; 4�. There exists a positive constant c independent of �
such that, if u0 belongs to PH

1
2 with ku0k

PB
1
2
; 3

p�1

2;p

� c, then there exists a unique
global solution of (1-1) in C.RC; PH

1
2 /.

Remark 1.9. Since we only impose the smallness condition of the initial data in
the norm of PB

1
2
; 3

p
�1

2;p
, this allows us to obtain the global well-posedness of (1-1) for

a class of highly oscillating initial velocity u0. Moreover, the uniqueness holds in
the class C.RC; PH

1
2 /; i.e., it is unconditional.

The structure of this paper is as follows. In Section 2, we recall some basic
facts about Littlewood–Paley theory and the functional spaces. In Section 3, we
recall some results concerning the Stokes–Coriolis semigroup’s regularizing effect.
Section 4 is devoted to the important bilinear estimates. In Section 5, we prove
Theorem 1.4 and Theorem 1.8.

2. Littlewood–Paley theory and the function spaces

First of all, we introduce the Littlewood–Paley decomposition. Choose two radial
functions ', �2S.R3/ supported in CDf�2R3; 3

4
�j�j� 8

3
g, BDf�2R3; j�j� 4

3
g,

respectively, such that X
j2Z

'.2�j�/D 1 for all � ¤ 0:

For f 2S0.R3/, the frequency localization operators �j and Sj .j 2 Z/ are defined
by

�jf D '.2
�j D/f; Sjf D �.2

�j D/f; D D
rx

i
:

Moreover, we have

Sjf D

j�1X
kD�1

�kf in Z0.R3/:

Here we denote by Z0.R3/ the dual space of

Z.R3/D ff 2 S.R3/ WD˛ Of .0/D 0 for all multiindices ˛ 2 .N[ 0/3g:
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With our choice of ', it is easy to verify that

(2-1) �j�kf D 0 if jj �kj � 2 and �j .Sk�1f�kf /D 0 if jj �kj � 5:

In the sequel, we will constantly use Bony’s decomposition [1981]:

(2-2) fg D Tf gCTgf CR.f;g/;

with

Tf g D
X
j2Z

Sj�1f�j g; R.f;g/D
X
j2Z

�jf z�j g; z�j g D
X

jj 0�j j�1

�j 0g:

Definition 2.1 (homogeneous Besov space). Let s 2 R, 1 � p; q � C1. The
homogeneous Besov space PBs

p;q is defined by

PBs
p;q WD

˚
f 2 Z0.R3/ W kf k PBs

p;q
<C1

	
;

where
kf k PBs

p;q
WD


2ks
k�kf kLp




lq :

If p D q D 2, PBs
2;2

is equivalent to the homogeneous Sobolev space PH s .

Definition 2.2 (hybrid-Besov space). Let s, � 2R, 1�p�C1. The hybrid-Besov
space PBs;�

2;p
is defined by

PBs;�
2;p
WD
˚
f 2 Z0.R3/ W kf k PBs;�

2;p
<C1

	
;

where
kf k PBs;�

2;p
WD sup

2k��

2ks
k�kf kL2 C sup

2k>�

2k�
k�kf kLp :

The norm of the space zLr
T
. PBs;�

2;p
/ is defined by

kf k zLr
T
. PB

s;�

2;p
/
WD sup

2k��

2ks
k�kf kLr

T
L2 C sup

2k>�

2k�
k�kf kLr

T
Lp :

It is easy to check that Lr
T
. PBs;�

2;p
/� zLr

T
. PBs;�

2;p
/, where the norm of Lr

T
. PBs;�

2;p
/ is

defined by
kf kLr

T
. PB

s;�

2;p
/ WD



kf .t/k PBs;�

2;p




Lr

T

:

Bernstein’s lemma will be repeatedly used throughout this paper:

Lemma 2.3 [Chemin 1995]. Let 1�p� q �C1. Then for any ˇ, 
 2 .N[f0g/3,
there exists a constant C independent of f , j such that, for any f 2Lp,

supp Of � fj�j �A02j
g) k@
f kLq � C 2j j
 jCjn. 1

p
� 1

q
/
kf kLp ;

supp Of � fA12j
� j�j �A22j

g) kf kLp � C 2�j j
 j sup
jˇjDj
 j

k@ˇf kLp :
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Proposition 2.4. Let � 2 S.R3/ and p > 3. If �".x/ WD ei
x1
" �.x/, then, for any

0< "���1,

k�"k
PB

1
2
; 3

p�1

2;p

� C "1� 3
p ;

where C is a constant independent of ".

Proof. Let j0 2 N be such that �� 2j0 � "�1. By Lemma 2.3, we have

sup
j�j0

2.
3
p
�1/j
k�j�"kLp � C 2.

3
p
�1/j0 � C "1� 3

p :

Noting that ei
x1
" D .�i"@1/

N ei
x1
" for any N 2 N, we get, by integration by parts,

�j�".x/D .i"/
N 23j

Z
R3

ei
y1
" @N

y1

�
h.2j .x�y//�.y/

�
dy; h.x/ WD .F�1'/.x/:

By the Leibnitz formula, we have

j�j�".x/j � C "N 23j
NX

kD0

2kj

Z
R3

ˇ̌
.@k

y1
h/.2j .x�y//

ˇ̌ˇ̌
@N�k

y1
�.y/

ˇ̌
dy;

from which, along with Young’s inequality, we infer that, for j � 0,

k�j�"kLq � C "N
NX

kD0

2kj 23j


.@k

y1
h/.2j y/




L1



@N�k
y1

�.y/




Lq � C "N 2jN ;

and for j � 0,

k�j�"kLq �C "N
NX

kD0

2kj 23j


.@k

y1
h/.2j y/




Lq



@N�k
y1

�.y/




L1 �C "N 2.1�
1
q
/3j :

Thus we have

sup
�<2j<2j0

2.
3
p
�1/j
k�j�"kLp � C "N 2.N�1C 3

p
/j0 � C "1� 3

p ;

sup
2j��

2
j
2 k�j�"kL2 � C�

1
2 "N
� C "N� 1

2 :

Summing up the above estimates yields that

k�"k
PB

1
2
; 3

p�1

2;p

� C "1� 3
p :

The proof of Proposition 2.4 is completed. �
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3. Regularizing effect of the Stokes–Coriolis semigroup

We consider the linear system

(3-1)

8<:
ut � ��uC�e3 �uCrp D 0;

div uD 0;

u.0;x/D u0.x/:

From [Giga et al. 2005; Hieber and Shibata 2010, Proposition 2.1], we know that

(3-2) Ou.t; �/D cos
�
�
�3

j�j
t

�
e��j�j

2tI bu0.�/C sin
�
�
�3

j�j
t

�
e��j�j

2tR.�/bu0.�/;

for t � 0 and � 2 R3, where I is the identity matrix and

R.�/D

0@ 0 �3=j�j ��2=j�j

��3=j�j 0 �1=j�j

�2=j�j ��1=j�j 0

1A :
The Stokes–Coriolis semigroup is explicitly represented by

(3-3) G.t/f D
�
cos.�R3t/I C sin.�R3t/R

�
e�t�f; for t � 0; f 2Lp

� ;

where bR3f .�/ WD .�3=j�j/ Of .�/ for � ¤ 0.

Proposition 3.1 (smoothing effect of the Stokes–Coriolis semigroup). Let C be a
ring centered at 0 in R3. Then there exist positive constants c and C depending
only on � such that if supp Ou� �C, then we have:

(i) for any � > 0,

(3-4) kG.t/ukL2 � Ce�c�2t
kukL2 I

(ii) if �&�, then, for any 1� p �1,

(3-5) kG.t/ukLp � Ce�c�2t
kukLp :

Proof. (i) Thanks to (3-2) and the Plancherel theorem, we get

kG.t/ukL2 D


yG.t; �/ Ou.�/



L2 � C


e��j�j

2t
Ou.�/




2
� Ce���

2t
kuk2;

where we have used the support property of Ou.�/.

(ii) Let � 2 D.R3 n f0g/, which equals 1 near the ring C. Set

g.t;x/ WD .2�/�3

Z
R3

eix���.��1�/yG.t; �/ d�:

To prove (3-5), it suffices to show

(3-6) kg.x; t/kL1 � Ce�c�2t :
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Thanks to (3-3), we infer that

(3-7)
Z
jxj���1

jg.x; t/jdx�C

Z
jxj���1

Z
R3

ˇ̌
�.��1�/

ˇ̌ˇ̌
yG.t; �/

ˇ̌
d� dx�Ce�c�2t :

Set L WD x � r�=.i jxj
2/. Noting that L.eix��/D eix�� , we get, using integration by

parts,

g.x; t/D

Z
R3

LN .eix��/�.��1�/yG.t; �/ d�D

Z
R3

eix��.L�/N
�
�.��1�/yG.t; �/

�
d�;

where N 2 N is chosen later. Using the Leibnitz formula, it is easy to verify thatˇ̌
@
 .e˙i�

�3
j�j

t /
ˇ̌
� C j�j�j
 j.1C�t/j
 j;

ˇ̌
@
 .e��j�j

2t /
ˇ̌
� C j�j�j
 je�

�
2
j�j2t :

Thus we obtainˇ̌
.L�/N

�
�.��1�/yG.t; �/

�ˇ̌
�C jxj�N

X
j˛1jCj˛2j

Cj˛3jDj˛j

j˛j�N

��NC˛
ˇ̌
.rN�˛�/.��1�/@˛1

�
e˙i�

�3
j�j

t
�
@˛2
�
e��j�j

2t
�
@˛3.ICR.�//̌̌

�C j�xj�N
X

j˛1jCj˛2j

Cj˛3jDj˛j

j˛j�N

�˛
ˇ̌�
r

N�˛�
�
.��1�/

ˇ̌
j�j�j˛1j�j˛2j�j˛3je�

�
2
j�j2t .1C�t/j˛1j:

Taking N D 4, for any � 2 f� W A�1� � j�j � A�g and for some constant A

depending on the ring C and �&�,ˇ̌
.L�/4

�
�.��1�/yG.t; �/

�ˇ̌
� C j�xj�4e�

�
4
j�j2t ;

which implies thatZ
jxj� 1

�

jg.x; t/j dx � Ce�c�2t�3

Z
jxj� 1

�

j�xj�4 dx � Ce�c�2t ;

which, together with (3-7), gives (3-6). Then the inequality (3-5) is proved. �

The following proposition is a direct consequence of Proposition 3.1.

Proposition 3.2. Let s, � 2 R, and .p; q/ 2 Œ1;1�. Then, for any u 2 PB
s� 2

q
;�� 2

q

2;p
,

we have

(3-8) kG.t/uk zLq

T
. PB

s;�

2;p
/
� Ckuk

PB
s� 2

q ;��
2
q

2;p

;

and for any f 2 zL1
T

Bs;�
2;p

, we have

(3-9)




Z t

0

G.t � �/f .�/ d�






zL

q

T

�
PB

sC 2
q ;�C

2
q

2;p

� � Ckf .t/k zL1
T
. PB

s;�

2;p
/
:
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Proof. Here we only prove (3-9). For any 2j ��, we get by Proposition 3.1 that



�j

Z t

0

G.t � �/f .�/ d�






Lp

� C

Z t

0

e�c.t��/22j

k�jf .�/kLp d�;

from which, along with Young’s inequality, it follows that

(3-10)




�j

Z t

0

G.t � �/f .�/ d�






L

q

T
Lp

� C


e�ct22j 



L
q

T

k�jf .�/kL1
T

Lp

� C 2�
2
q

j
k�jf .�/kL1

T
Lp :

Similarly, we also have



�j

Z t

0

G.t � �/f .�/ d�






L

q

T
L2

� C


e�ct22j 



L
q

T

k�jf .�/kL1
T

L2

� C 2�
2
q

j
k�jf .�/kL1

T
L2 :

Then the inequality (3-9) follows from (3-10) and (3-11). �

4. Bilinear estimates

We study the continuity of the inhomogeneous term in the space Ep;T whose norm
is defined by

kukEp;T
WD kuk

zL1
�
0;T I PB

1
2
; 3

p�1

2;p

�Ckuk
zL1
�
0;T I PB

5
2
; 3

pC1

2;p

�:
We define

B.u; v/ WD

Z t

0

G.t � �/Pr � .u˝ v/ d�;

where P denotes the Helmholtz projection which is bounded in the Lp space for
1< p <1.

Proposition 4.1. Let p 2 Œ2; 4�. Assume that u, v 2Ep;T . There exists a constant C

independent of �, u, v such that, for any T > 0,

(4-1) kB.u; v/kEp;T
� CkukEp;T

kvkEp;T
:

Proof. Thanks to Proposition 3.2, it suffices to show that

(4-2) kuvk
zL1

T
PB

3
2
; 3

p
2;p

� CkukEp;T
kvkEp;T

:

From Bony’s decomposition (2-2) and (2-1), we have

�j .uv/D
X
jk�j j�4

�j .Sk�1u�kv/C
X
jk�j j�4

�j .Sk�1v�ku/C
X

k�j�2

�j .�kuz�kv/

DW Ij C IIj C IIIj :



GLOBAL WELL-POSEDNESS FOR THE 3D ROTATING NAVIER–STOKES EQUATIONS 273

Set Jj WD f.k
0; k/ W jk � j j � 4; k 0 � k � 2g. Then for 2j >�,

kIjkL1
T

Lp �

X
Jj

k�j .�k0u�kv/kL1
T

Lp

�

�X
Jj ;l l

C

X
J;lh

C

X
Jj ;hh

�
k�j .�k0u�kv/kL1

T
Lp WD Ij ;1C Ij ;2C Ij ;3;

where

Jj ;l l D f.k
0; k/ 2 Jj W 2

k0
��; 2k

��g;

Jj ;lh D f.k
0; k/ 2 Jj W 2

k0
��; 2k >�g;

Jj ;hh D f.k
0; k/ 2 Jj W 2

k0 >�; 2k >�g:

We get by using Lemma 2.3 that

Ij ;1 � C
X

.k0;k/2Jj ;l l

k�k0ukL1
T

L12k. 3
2
� 3

p
/
k�kvkL1

T
L2

� C
X

.k0;k/2Jj ;l l

2
k0

2 k�k0ukL1
T

L22k0
k�kvkL1

T
L22k. 3

2
� 3

p
/

� Ckuk
zL1

T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

X
.k0;k/2Jj ;l l

2.k
0�k/2�

3
p

k

� C 2�
3
p

j
kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

;

where we used in the last inequality the fact that

X
.k0;k/2Jj ;l l

2.k
0�k/2�

3
p

k
�

X
k0�k�2

2.k
0�k/

X
jk�j j�4

2�
3
p

k
� C 2�

3
p

j ;

with C independent of j . Similarly, we have

Ij ;2 �
X

.k0;k/2Jj ;lh

k�k0ukL1
T

L1k�kvkL1
T

Lp

� C
X

.k0;k/2Jj ;lh

2
k0

2 k�k0ukL1
T

L22k0
k�kvkL1

T
Lp

� C 2�
3
p

j
kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p
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and
Ij ;3 �

X
.k0;k/2Jj ;hh

k�k0ukL1
T

L1k�kvkL1
T

Lp

� C
X

.k0;k/2Jj ;hh

2k0. 3
p
�1/
k�k0ukL1

T
Lp 2k0

k�kvkL1
T

Lp

� C 2�
3
p

j
kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

:

On the other hand, for 2j ��, we have

kIjkL1
T

L2 �

X
Jj

k�j .�k0u�kv/kL1
T

L2

�

�X
Jj ;l l

C

X
Jj ;lh

C

X
Jj ;hh

�
k�j .�k0u�kv/kL1

T
L2 WD Ij ;4C Ij ;5C Ij ;6:

We get by using Lemma 2.3 that

Ij ;4 � C
X

.k;k0/2Jj ;l l

2
k0

2 k�k0ukL1
T

L22k0
k�kvkL1

T
L2

� C 2�
3j
2 kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

;

and, noting that p � 4,

Ij ;5 � C
X

.k;k0/2Jj ;lh

k�k0uk
L1

T
L

2p
p�2
k�kvkL1

T
Lp

� C
X

.k;k0/2Jj ;lh

2
k0

2 k�k0ukL1
T

L22k0. 3
p
� 1

2
/
k�kvkL1

T
Lp

� C 2�
3j
2 kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

;

and

Ij ;6 � C
X

.k;k0/2Jj ;hh

k�k0uk
L1

T
L

2p
p�2
k�kvkL1

T
Lp

� C
X

.k;k0/2Jj ;hh

2k0. 3
p
�1/
k�k0ukL1

T
Lp 2k0. 3

p
� 1

2
/
k�kvkL1

T
Lp

� C 2�
3j
2 kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

:

Summing up the estimates for Ij ;1 through Ij ;6 yields that

(4-3) sup
2j>1

2j 3
p kIjkL1

T
Lp C sup

2j�1

2
3j
2 kIjkL1

T
L2 � CkukEp;T

kvkEp;T
:
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By the same procedure as the one used to derive (4-3), we have

(4-4) sup
2j>1

2j 3
p kIIjkL1

T
Lp C sup

2j�1

2
3j
2 kIIjkL1

T
L2 � CkukEp;T

kvkEp;T
:

Set Kj WD f.k; k
0/ W k � j � 3; jk 0� kj � 1g. Then we have

IIIj D
�X

Kj ;l l

C

X
Kj ;lh

C

X
Kj ;hl

C

X
Kj ;hh

�
�j .�ku�k0v/ WD IIIj ;1CIIIj ;2CIIIj ;3CIIIj ;4;

where
Kj ;l l D f.k; k

0/ 2Kj W 2
k
��; 2k0

��g;

Kj ;lm D f.k; k
0/ 2Kj W 2

k
��; 2k0 >�g;

Kj ;hm D f.k; k
0/ 2Kj W 2

k >�; 2k0
��g;

Kj ;hh D f.k; k
0/ 2Kj W 2

k >�; 2k0 >�g:

We get by Lemma 2.3 that

kIIIj ;1kL1
T

Lp � C 23j.1� 1
p
/

X
.k;k0/2Kj ;l l

k�ku�k0vkL1
T

L1

� C 23j.1� 1
p
/

X
.k;k0/2Kj ;l l

2
k
2 k�kukL1

T
L22�

k
2 2k0 5

2 k�k0vkL1
T

L22�k0 5
2

� C 23j.1� 1
p
/
kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

X
.k;k0/2Kj ;l l

2�
k
2
� 5

2
k0

� C 2�
3
p

j
kuk

zL1
T
PB

1
2
; 3

p�1

2;p

kvk
zL1

T
PB

5
2
; 3

pC1

2;p

X
k�j�3

2�3.k�j/

� C 2�
3
p

j
kukEp;T

kvkEp;T
;

and

kIIIj ;1kL1
T

L2 � C 2
3j
2

X
.k;k0/2Kj ;l l

k�ku�k0vkL1
T

L1 � C 2�
3j
2 kukEp;T

kvkEp;T
:

Similarly, we obtain

kIIIj ;2C IIIj ;3kL1
T

Lp

� C 2
3j
2

X
.k;k0/2Kj ;lh[Kj ;hl

k�ku�k0vk
L1

T
L

2p
2Cp

� C 2
3j
2

�X
Kj ;lh

k�kukL1
T

L2k�k0vkL1
T

Lp C

X
Kj ;hl

k�kukL1
T

Lpk�k0vkL1
T

L2

�
� C 2�

3
p

j
kukE;T kvkEp;T
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and

kIIIj ;2C IIIj ;3kL1
T

L2 � C 2
3
p

j
X

.k;k0/2Kj ;lh[Kj ;hl

k�ku�k0vk
L1

T
L

2p
2Cp

� C 2�
3j
2 kukEp;T

kvkEp;T
:

Finally, due to 2� p � 4, we have

kIIIj ;4kL1
T

Lp�C 2
3
p

j
X

.k;k0/2Kj ;hh

k�ku�k0vkL1
T

L
p
2

�C 2
3
p

j
X

.k;k0/2Kj ;hh

k�kukL1
T

Lpk�k0vkL1
T

Lp

�C 2�
3
p

j
kukEp;T

kvkEp;T
;

and

kIIIj ;4kL1
T

L2�C 23j. 2
p
� 1

2
/

X
.k;k0/2Kj ;hh

k�ku�k0vkL1
T

L
p
2
�C 2�

3j
2 kukEp;T

kvkEp;T
:

Summing up the estimates of IIIj ;1–IIIj ;4, we obtain

(4-5) sup
2j>1

2
3
p

j
kIIIjkL1

T
Lp C sup

2j�1

2
3j
2 kIIIjkL1

T
L2 � CkukEp;T

kvkEp;T
:

Then the inequality (4-2) can be deduced from (4-3)–(4-5). �

In order to prove the uniqueness of the solution in C.RCI PH
1
2 /, we establish the

following new bilinear estimate in the weighted time-space Besov space introduced
in [Chen et al. 2008; 2010b].

Proposition 4.2. Assume that u, v 2L1
T
. PB

1
2

2;1
/. Then, for any T > 0, we have

kB.u; v/k
L1

T
PB

1
2
2;1

� Ckuk
L1

T
PB

1
2
2;1



!j ;T 2
j
2 k�jvkL1

T
L2




l1
;

where

!j ;T WD sup
k�j

ek;T 2
1
2
.j�k/; ej ;T WD 1� e�c22jT :

Remark 4.3. The inequality ej ;T � !j ;T (top of page 277) is important to the
following estimates. On the other hand, due to the fact limT!0 !j ;T D 0, it can be
proved that if u 2 C.Œ0;T �I PH

1
2 /, then, for any " > 0, one has

!j ;T 2

j
2 k�jvkL1

T
L2




l1
< " if T is small enough:

This point is important in the proof of uniqueness.
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Proof. First we note that ej ;T � !j ;T for any j 2 Z and that

(4-6) !j ;T � 2
1
2
.j�j 0/!j 0;T if j 0 � j ; !j ;T � 2!j 0;T if j � j 0:

We get by Proposition 3.1 that

(4-7) kB.u; v/k
PB

1
2
2;1

� sup
j2Z

2
j
2

Z t

0



G.t � �/�j Pr � .u˝ v/




L2 d�

� sup
j2Z

2
3j
2



e�c22j t




L1
T

k�j .u˝ v/kL1
T

L2

� C sup
j2Z

2�
j
2 ej ;T k�j .uv/kL1

T
L2 :

We use Bony’s decomposition to estimate k�j .uv/kL1
T

L2 . Since ej ;T � !j ;T and
thanks to (4-6), we have

(4-8)
X
jk�j j�4

k�j .Sk�1u�kv/kL1
T

L2

� Ckuk
L1

T
PB

1
2
2;1

X
jk�j j�4

2k
k�kvkL1

T
L2

� C!�1
j ;T 2

j
2 kuk

L1
T
PB

1
2
2;1



!k;T 2
k
2 k�kvkL1

T
L2




l1
;

and, again by the same properties of !j ;T ,

kSk�1vkL1�
X

k0�k�2

k�k0vkL22
3
2

k0
�


!k0;T 2

k0

2 k�k0vkL1
T

L2




l1

X
k0�k�2

2k0!�1
k0;T

�2k!�1
k;T



!k0;T 2
k0

2 k�k0vkL1
T

L2




l1
;

which implies that

(4-9)
X
jk�j j�4

k�j .Sk�1v�ku/kL1
T

L2

� 2
k
2!�1

k;T kuk
L1

T
PB

1
2
2;1



!k0;T 2
k0

2 k�k0vkL1
T

L2




l1
;

and for the remainder term,

(4-10)
X

k�j�2



�j .�kuz�kv/




L1
T

L2

�

X
k�j�2

2
3
2

j


�j .�kuz�kv/




L1

T
L1

� C
X

k�j�2

2
3
2

j
k�kukL1

T
L2



z�kv




L1
T

L2

� C!�1
j ;T 2

j
2 kuk

L1
T
PB

1
2
2;1



!k;T 2
k
2 k�kvkL1

T
L2




l1
:

Substituting (4-8)–(4-10) into (4-7) concludes the proof. �
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5. Proofs of Theorem 1.4 and Theorem 1.8

The proof of Theorem 1.4 is based on the following classical lemma.

Lemma 5.1 [Cannone 1995]. Let X be an abstract Banach space and B WX�X!X

a bilinear operator, k � k being the X -norm, such that for any x1 2X and x2 2X ,
we have

kB.x1;x2/k � �kx1kkx2k:

Then for any y 2X such that
4�kyk< 1;

the equation
x D yCB.x;x/

has a solution x in X . Moreover, this solution x is the only one such that

kxk �
1�

p
1� 4�kyk

2�
:

Proof of Theorem 1.4. Using the Stokes–Coriolis semigroup, we rewrite the sys-
tem (1-1) as the integral form

(5-1) u.x; t/D G.t/u0�

Z t

0

G.t � �/Pr � .u˝u/ d� WD G.t/u0CB.u;u/:

Thanks to Proposition 3.2, we have

kG.t/u0kEp
� Cku0k

PB
1
2
; 3

p�1

2;p

� Cc:

Obviously, B.u; v/ is bilinear, and we get by Proposition 4.1 that

kB.u; v/kEp
� CkukEp

kvkEp
:

Taking c such that 4C 2c < 3
4

, Lemma 5.1 ensures that the equation

uD G.t/u0CB.u;u/

has a unique solution in the ball fu 2Ep W kukEp
�

1
4C
g. �

Now we prove Theorem 1.8.

Proof of Theorem 1.8. We introduce a Banach space Fp whose norm is defined by

kukFp
WD kuk

zL1.RCI PH
1
2 /
CkukEp

:

Step 1: existence in Fp. We define the map

Tu WD G.t/u0CB.u;u/:
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Next we prove that, if c is small enough, the map T has a unique fixed point in the
ball

BA WD
˚
u 2 Fp W kukEp

�Ac; kukFp
�Aku0k PH

1
2

	
;

for some A> 0 to be determined later. From Proposition 3.2 and Proposition 4.1,
we infer that

(5-2) kTukEp
� Cku0k

B
1
2
; 3

p�1

2;p

CCkuk2Ep
:

On the other hand, we get by Proposition 3.1 that

(5-3) kB.u;u/k
zL1.RCI PH

1
2 /

�





Z t

0

G.t � �/Pr � .u˝u/.�/ d�






zL1.RCI PH

1
2 /

� C

�X
j2Z

2j

�
sup

t2RC

Z t

0

kG.t � �/�j Pr � .u˝u/.�/kL2 d�

�2� 1
2

� C





2
3
2

j sup
t2RC

Z t

0

e�Qc22j t
k�j .u˝u/kL2 d�






l2

:

In the following, we denote by fcj gj2Z a sequence in l2 with norm kfcj gkl2.Z/ � 1.
We get by Lemma 2.3 that

(5-4) sup
t2RC

Z t

0

e�Qc22j t
k�j .Tuu/kL2 d�

� ke�Qc22j t
kL1.RC/

X
jk�j j�4

k�j .Sk�1u�ku/kL1.RCIL2/

� C 2�2j
kSk�1ukL1.RCIL1/

X
jk�j j�4

k�kukL1.RCIL2/

� Ckuk
zL1
�

RCI PB
1
2
; 3

p�1

2;p

�2k2�2j
X
jk�j j�4

k�kukL1.RCIL2/

� C 2�
3
2

j
kukEp

X
jk�j j�4

2
.k�j/

2 2
k
2 k�kukL1.RCIL2/

� C 2�
3
2

j cjkukEp
kuk

zL1.RCI PH
1
2 /
:
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The remainder term of uv is estimated by

(5-5) sup
t2RC

Z t

0

e�Qc22j t
k�j R.u;u/kL2 d�

�


e�Qc22j t




L1.RC/

X
k�j�2



�j .�kuz�ku/




L1.RCIL2/

� C
X

k�j�2



z�ku




L1.RCIL1/
k�kukL1.RCIL2/

� Ckuk
zL1 PB

5
2
; 3

pC1

2;p

X
k�j�2

2�k
k�kukL1.RCIL2/

� CkukEp

X
k�j�2

2�
3
2

k2
1
2

k
k�kukL1.RCIL2/

� C 2�
3
2

j cjkukEp
kuk

zL1.RCI PH
1
2 /
:

Combining (5-4)–(5-5) with (5-3) yields that

kB.u;u/k
zL1.RCI PH

1
2 /
� CkukEp

kuk
zL1.RCI PH

1
2 /
:

It is easy to verify that

kG.t/u0k zL1
T
PH

1
2
� Cku0k PH

1
2
:

Consequently by (5-2) and the estimate

ku0k
PB

1
2
; 3

p�1

2;p

� Cku0k PH
1
2

(which follows from Lemma 2.3 and the definition of the Besov space), we obtain

(5-6) kTukFp
� Cku0k PH

1
2
CCkukEp

kukFp
:

Taking AD 2C and c > 0 such that 2C 2c � 1
2

, it follows from (5-2) and (5-6) that
the map T is a map from BA to BA. Similarly, it can be proved that T is also a
contraction in BA. Thus, the Banach fixed point theorem ensures that the map T

has a unique fixed point in BA.

Step 2: uniqueness in C.RCI PH
1
2 /. Let u1 and u2 be two solutions of (1-1) in

C.RCI PH
1
2 / with the same initial data u0. We consider

u1�u2 D B
�
u1�G.t/u0;u1�u2

�
CB

�
G.t/u0;u1�u2

�
CB

�
u1�u2;u2�G.t/u0

�
CB

�
u1�u2;G.t/u0

�
:
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Then we get by Proposition 4.2 that

(5-7) sup
t2Œ0;T �

k.u1�u2/.t/k
PB

1
2
2;1

� C sup
t2Œ0;T �

k.u1�u2/.t/k
PB

1
2
2;1

�

!j ;T 2
j
2 k�j u0k2




l1

C sup
t2Œ0;T �

ku1.t/�G.t/u0k PH
1
2
C sup

t2Œ0;T �

ku2.t/�G.t/u0k PH
1
2

�
;

where we used the fact !j ;T � 1 so that

!j ;T 2
j
2 k�j ukL1

T
L2




l1
� sup

t2Œ0;T �

ku.t/k
PH

1
2
:

Noticing that !j ;0 D 0 and u0 2
PH

1
2 , we have

!j ;T 2

j
2 k�j u0k2




l1
�

1

3C
;

for T small enough. On the other hand, since u1, u2 2 C.RCI PH
1
2 /, we also have

sup
t2Œ0;T �

ku1�G.t/u0k PH
1
2
C sup

t2Œ0;T �

ku2�G.t/u0k PH
1
2
�

1

3C
;

for T small enough. Then (5-7) ensures that u1.t/ D u2.t/ for T small enough.
Then, by a standard continuity argument, we conclude that u1 D u2 on Œ0;1/. �
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PRESENTING SCHUR SUPERALGEBRAS

HOUSSEIN EL TURKEY AND JONATHAN R. KUJAWA

We provide a presentation of the Schur superalgebra and its quantum ana-
logue which generalizes the work of Doty and Giaquinto for Schur alge-
bras. Our results include a basis for these algebras and a presentation using
weight idempotents in the spirit of Lusztig’s modified quantum groups.

1. Introduction

1.1. The Schur algebra. The Schur algebra plays a central role in the represen-
tation theory of GL.n/ (e.g., see [Deng et al. 2008]). It is also the prototypical
example of a quasihereditary algebra [Cline et al. 1988]. And, of course, it is at
center stage in Schur–Weyl duality. If V denotes an n-dimensional vector space
and V ˝d denotes the d -fold tensor product of V with itself (all vector spaces and
tensor products are over the rational numbers), then there is action of the symmetric
group on d letters, †d , on V ˝d by permuting the tensor factors. With this notation
we can define the Schur algebra by

S.n; d/D End†d

�
V ˝d

�
:

On the other hand the enveloping algebra of the Lie algebra gl.n/, U.gl.n//, has
a natural action on V and, hence, on V ˝d . We could instead define S.n; d/ as
the image of the resulting representation U.gl.n//! EndQ.V

˝d /. Schur–Weyl
duality implies these two definitions coincide. Thus the Schur algebra acts as a
bridge between representations of gl.n/ and the symmetric group. The above story
generalizes to the quantum setting if we replace the rational numbers with the
rational functions in the indeterminate q, the symmetric group by its Iwahori–Hecke
algebra, and the enveloping algebra by the quantum group associated to gl.n/. The
resulting algebra is called the q-Schur algebra.

Because of the fundamental importance of the Schur and q-Schur algebras it
is desirable to study them from as many perspectives as possible. Building on
[Green 1996], Doty and Giaquinto [2002] provided a presentation of the Schur
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H98230-11-1-0127.
MSC2010: 16S99, 20G05.
Keywords: Schur superalgebra, Lie superalgebra, Schur–Weyl duality, quantum supergroup.

285

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.262-2
http://dx.doi.org/10.2140/pjm.2013.262.285


286 HOUSSEIN EL TURKEY AND JONATHAN R. KUJAWA

algebras by generators and relations. Since the enveloping algebra surjects onto the
Schur algebra, the known generators and relations for U.gl.n// yield generators
and relations for the Schur algebra. But as U.gl.n// is infinite dimensional and
S.n; d/ is finite dimensional, there must be additional relations. Remarkably, Doty
and Giaquinto prove that only two more, easy to state, relations are required. As
an outcome of their calculations they obtain a basis and a presentation via weight
idempotents reminiscent of Lusztig’s modified quantum group, PU. They also prove
quantum analogues of all these results.

One notable application of the Doty–Giaquinto presentation, in [Li 2010], is a
geometric realization of Schur algebras as a certain ring of constructible functions
on generalized Steinberg varieties. We also see that their presentation of the q-Schur
algebra is closely related to the geometric construction of the q-Schur algebras and
quantum group Uq.gl.n// given by Beilinson, Lusztig, and MacPherson ([Beilinson
et al. 1990]; see also [Deng et al. 2008, Part 5]).

1.2. The Schur superalgebra. There is a Z2-graded (i.e., “super”) analogue of the
above setup. Namely, now let V D V N0˚V N1 denote a Z2-graded vector space with
the dimension of V N0 equal to m and the dimension of V N1 equal to n. We define
V ˝d as the d-fold tensor product of V with itself. The symmetric group †d acts
on V ˝d by signed permutation of the tensor factors. The Schur superalgebra is
then defined to be

S.mjn; d/D End†d

�
V ˝d

�
:

On the other hand the enveloping superalgebra of the Lie superalgebra gl.mjn/,
U.gl.mjn//, has a natural action on V and, hence, on V ˝d . We could instead define
S.mjn; d/ as the image of the resulting representation U.gl.mjn//! EndQ.V

˝d /.
The super version of Schur–Weyl duality implies these two definitions coincide
[Berele and Regev 1987; Sergeev 1984]. Thus the Schur superalgebra acts as
a bridge between representations of gl.mjn/ and the symmetric group. In posi-
tive characteristic this connection can be used to prove the Mullineux conjecture
[Brundan and Kujawa 2003].

There is also a quantum version of this story. We again replace the rational
numbers with the rational functions in the indeterminate q and the symmetric
group by its Iwahori–Hecke algebra, and now replace the enveloping algebra by
the quantum group associated to gl.mjn/. Schur–Weyl duality in this setting was
established by Moon [2003] and Mitsuhashi [2006]. The resulting algebra is called
the q-Schur superalgebra. Du and Rui [2011] have studied the representation theory
and combinatorics of the q-Schur superalgebras.

1.3. Results. In this paper we generalize the results of Doty and Giaquinto to
the Schur and q-Schur superalgebras. It should be noted that after obtaining the
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appropriate analogues of the ingredients used in [Doty and Giaquinto 2002], the
final results are proved using the same arguments as in the nonsuper case. The main
challenge is to correctly formulate and prove these analogues.

In Theorem 2.3.1 we obtain a presentation for the Schur superalgebra from
the standard presentation of the enveloping algebra for gl.mjn/. We prove we
only need to add two additional relations just as in the case of the Schur algebra.
We then give an explicit basis for the Schur superalgebra and its integral form in
Theorem 2.14.3. Finally, in Theorem 2.15.1 we prove that the Schur superalgebra
admits a presentation using weight idempotents in a form reminiscent of Lusztig’s
modified quantum group.

We also prove the analogous results in the quantum setting. We use the quantum
group UD Uq.gl.mjn// as presented by Zhang [1993] and prove in Theorem 3.3.1
that we need to add only two additional relations to the standard presentation of U
to obtain the q-Schur superalgebra. We also provide a basis for the q-Schur superal-
gebra and an ADZŒq; q�1�-form in Theorem 3.12.1. Finally, in Theorem 3.13.1 we
prove that the q-Schur superalgebra admits a presentation via weight idempotents
which is reminiscent of Lusztig’s modified quantum group for gl.n/.

1.4. Future directions. The results of this paper open the door to a number of
interesting avenues of research. Sergeev [1984] and Olshanski [1992], in the
nonquantum and quantum cases, respectively, give a Schur–Weyl duality for the
type Q Lie superalgebras. It would be interesting to obtain a presentation for
the corresponding type Q Schur superalgebras. In a different direction, our pre-
sentation of the Schur and q-Schur superalgebras à la Doty–Giaquinto suggests
the possibility of geometric constructions for gl.mjn/ in the spirit of [Beilinson
et al. 1990; Li 2010]. In a third direction, in proving the quantum case we obtain
the commutator formulas for the divided powers of root vectors and establish
the existence of an AD ZŒq; q�1�-form for the quantum group Uq.gl.mjn//. Al-
though perhaps not surprising to experts, to our knowledge this has not appeared
elsewhere in the literature. The existence of such a form allows one to consider
representations at a root of unity and a super analogue of Lusztig’s small quantum
group as in [Lusztig 1990]. Finally, the existence of a presentation of the q-
Schur superalgebra using weight idempotents suggests that Lusztig’s modified
quantum groups should have a super analogue. Lusztig’s modified quantum
group is a key ingredient to the categorification of the quantum group associ-
ated to sl.n/ (for example, as explained in [Lauda 2012]). Also see [Mackaay
et al. 2010] and references therein for a discussion of categorifications of the
q-Schur algebras. The categorification of quantum supergroups is currently an
open problem and a super analogue of Lusztig’s modified quantum group may be
useful.
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2. Nonquantum case

In this section all vector spaces will be over the rational numbers, Q.

2.1. The Lie superalgebra gl.mjn/. Given a Z2-graded vector space V DV N0˚V N1
we write v 2 Z2 for the degree of a homogeneous element v 2 V . For short we
call v even (resp. odd) if v D N0 (resp. v D N1). Let us also introduce the following
convenient notation. For fixed nonnegative integers m and n and 1� i �mCn we
define

(1) i D

�
N0; if i �mI

N1; if i �mC 1.

Let g D g N0˚ g N1 denote the Lie superalgebra gl.mjn/. As a vector space g is
the set of mC n by mC n matrices. For 1 � i; j � mC n we set Ei;j to be the
matrix unit with a 1 in i-th row and j -th column. Then the set of matrix units
forms a homogeneous basis for g. The Z2-grading on g is defined by setting g N0 to
be the span of Ei;j where 1� i; j �m or mC 1� i; j �mC n and g N1 to be the
span of the Ei;j such that mC 1 � i � mC n and 1 � j � n or 1 � i � m and
mC 1� j �mC n. That is, the degree of Ei;j is i C j .

The Lie bracket on g is given by the supercommutator:

(2) ŒEij ;Ekl �D ıjkEil � .�1/EijEkl ıilEkj :

By definition it is bilinear and so it suffices to define it on the basis of matrix units.
We fix h to be the Cartan subalgebra of g consisting of all diagonal matrices and

let h� be its dual. Let "i W h!Q be the linear map that takes an element of h to its
i -th diagonal entry. The set f"i j 1� i �mCng forms a basis of h� and we define
a bilinear form, . ; /, on h� by setting

(3) ."i ; "j /D .�1/iıij :

With our choice of Cartan subalgebra the root system of g is

ˆD f"i � "j j 1� i ¤ j �mC ng

and the matrix unit Ei;j spans the "i � "j root space. In particular there is a natural
Z2-grading on ˆ given by declaring that the root "i � "j has degree Ei;j D i C j .
We fix the Borel subalgebra of g given by taking all upper triangular matrices.
Corresponding to this choice of Borel the positive roots are

ˆC D f"i � "j j 1� i < j �mC ng
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and if we set ˛i D "i � "iC1, then f˛1; : : : ; ˛mCn�1g are the simple roots. The
simple roots have degree

˛i D

�
N0; if i ¤mI

N1; if i Dm.

2.2. The Schur superalgebra. A g-(super)module is a Z2-graded vector space
M DM N0˚M N1 which admits an action by g. The action respects the Z2-grading
in that for any r; s 2 Z2, if x 2 gr and m 2Ms , then x:m 2MrCs . The action also
respects the Lie bracket in that for any homogeneous x;y 2 g and m 2M , we have

Œx;y�:mD x:.y:m/� .�1/x�yy:.x:m/:

Note that here and elsewhere we give the condition only on homogeneous elements.
The general case is obtained by linearity. As all modules will be Z2-graded, we
choose to omit the prefix “super”.

The natural g-module, V , is the vector space of column vectors of height mC n.
For 1 � i � mC n, let vi denote the element of V with a 1 in the i-th row and
zeros elsewhere. Then the set fvi j 1 � i �mC ng defines a homogeneous basis
for V with vi D i for i D 1; : : : ;mC n. The action of g on V is given by left
multiplication.

We denote universal enveloping superalgebra of g by U . It inherits a Z2-grading
from g and natural basis given by the PBW theorem for Lie superalgebras [Kac
1977, Section 1.1.3]. As for Lie algebras, a g-module can naturally be thought of
as a U -module and vice versa. In particular, U admits a coproduct and so if M

and N are g-modules, then M ˝N is again a g-module.
As it will be important in the calculations which follow, let us make this explicit.

The coproduct U ! U ˝U is given on elements of g by x 7! x˝ 1C 1˝x. We
use the convention that in any formula in which two homogenous elements have
their order reversed, a sign is introduced which is �1 raised to the product of their
degrees. Given a homogeneous element x 2 g and homogeneous m2M and n2N ,
then the coproduct along with the sign convention implies that we have

x:.m˝ n/D .x:m/˝ nC .�1/x�mm˝ .x:n/:

In particular, for d � 1 we may define the d-fold tensor product of the natural
module:

V ˝d
WD V ˝V ˝ � � �˝V:

Let
�d W U ! EndQ

�
V ˝d

�
denote the corresponding superalgebra homomorphism. We define the Schur super-
algebra S.mjn; d/ to be the image of �d . In particular, we can and will think of
S.mjn; d/ as a quotient of U .
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Note that the Schur superalgebra can also be defined as follows. There is a
signed permutation action of the symmetric group on d letters, †d , on V ˝d . The
super analogue of Schur–Weyl duality [Berele and Regev 1987; Sergeev 1984] then
shows that

S.mjn; d/D End†d

�
V ˝d

�
:

2.3. A presentation of the Schur superalgebra. Our first main result gives the
Schur superalgebra by generators and relations. Here and throughout, if A is an
associative superalgebra and x;y 2A are homogeneous elements, then we write

Œx;y�D xy � .�1/x�yyx:

For an element x 2A the map ad x WA!A is defined by ad x.y/D Œx;y�. Note
that the bilinear form used in the following relations is the one introduced in (3).

Theorem 2.3.1. The Schur superalgebra S.mjn; d/ is generated by homogeneous
elements

e1; : : : ; emCn�1; f1; : : : ; fmCn�1; H1; : : : ;HmCn;

where the Z2-grading is given by setting em D f m D
N1, ei D f i D

N0 for i ¤ m,
and H i D

N0.
The following is a complete set of relations:

(R1) ŒHi ;Hj � D 0; where 1 � i; j � mC n;

(R2) Œei ; fj � D ıij
�
Hi � .�1/ei �f jHjC1

�
; 1 � i; j � mC n� 1;

(R3) ŒHi ; ej � D .�1/i."i ; j̨ /ej and ŒHi ; fj � D �.�1/i."i ; j̨ /fj ;

where 1 � i � mC n; 1 � j � mC n� 1;

(R4) Œem; em�D 0; .ad ei/
1Cj.˛i ; j̨ /jej D 0; if 1� i ¤ j �mCn�1 and i ¤m,

Œem; Œem�1; Œem; emC1��� D 0; if m; n � 2;

(R5) Œfm; fm�D0; .adfi/
1Cj.˛i ; j̨ /jfj D0; if 1� i¤ j �mCn�1 and i¤m,

Œfm; Œfm�1; Œfm; fmC1��� D 0; if m; n � 2;

(R6) H1CH2C � � �CHmCn D d ;

(R7) Hi.Hi � 1/ � � � .Hi � d/ D 0, where 1 � i � mC n.

2.4. Strategy and simplifications. The basic strategy of the proof of Theorem 2.3.1
is as in [Doty and Giaquinto 2002] and as follows. For short, let us write S for
S.mjn; d/. Let T be the superalgebra given by the generators and relations in
the theorem. The goal is to prove T is isomorphic to S as superalgebras. We
first show that relations (R1)–(R7) hold in S . This implies we have a surjective
homomorphism T ! S . We then prove that the dimension of T is no larger than
the dimension of S by exhibiting a spanning set of T with cardinality equal to the
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dimension of S . See Section 2.14. This immediately implies that the map is an
isomorphism and the spanning set is a basis.

Note that the universal enveloping superalgebra U is the superalgebra on the same
generators but subject only to the relations (R1)–(R5) (see [Leites and Serganova
1992] or [Zhang 2011]). As S.mjn; d/ is a quotient of U via �d it has the same
generators but possibly additional relations. The content of Theorem 2.3.1 is that
we only need to add relations (R6) and (R7) to obtain a presentation of S.mjn; d/.

As it will be helpful in later calculations, let us briefly pause to make explicit
the connection between this presentation of U via generators and relations and the
one obtained from the matrix realization of g given in Section 2.1. If we write
Ei;j for the ij -matrix unit as in Section 2.1, then the isomorphism between these
superalgebras is given on generators by ei 7!Ei;iC1, fi 7!EiC1;i , and Hi 7!Ei;i .
We identify these two realizations of U via this map. In particular, there is a
canonical embedding g ,! U and we will identify g with its image under this map.

As both S and T are quotients of U they are both generated by the images of
generators of U . To lighten notation, we choose to use the same notation for algebra
elements which can be viewed in more than one of these algebras. In particular, we
write ei , fi , and Hi for the generators of U and their images in S and T . We will
endeavor to always be clear in which algebra we are working. If the algebra is not
explicitly stated, then the calculation holds for all three algebras U , S , and T .

We will also frequently make use of the fact that the inclusion

gl.m/˚ gl.n/Š g N0 � gl.mjn/

induces an inclusion

U.gl.m/˚ gl.n// ,! U.gl.mjn//:

Thus any computation involving purely even elements will carry over from [Doty
and Giaquinto 2002]. More generally, when calculations are essentially identical to
those in that paper we will usually leave them to the reader.

2.5. The new relations. We now observe that (R6) and (R7) hold in S .

Lemma 2.5.1. Under the representation �d WU!End.V ˝d / the elements H1; : : : ,
HmCn in S satisfy the relations (R6) and (R7). Moreover, the relation (R7) is the
minimal polynomial of Hi in EndQ.V

˝d /.

Proof. Since the elements H1; : : : ;HmCn are purely even, this follows from [Doty
and Giaquinto 2002, Lemma 4.1]. �

As explained above, this implies the surjection �d W U ! S factors through T

and we obtain a surjective superalgebra homomorphism, T ! S . To prove that
this map is an isomorphism it suffices to show that their dimensions are equal by
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obtaining an explicit basis for T and, hence, for S.mjn; d/. In fact it turns out to
be no harder to work over the integers and so we obtain a basis for an integral form,
S.mjn; d/Z, of the Schur superalgebra.

2.6. Divided powers. Let A denote any of U , S , or T . Recall from Section 2.4
that we identify gl.mjn/ as a subspace of U . For each ˛ D "i � "j 2 ˆ

C we use
this identification and write x˛ for the image in A of the matrix unit Ei;j . We call
x˛ a root vector. For x 2A and k 2 Z�0, define the k-th divided power of x to be

x.k/ D
xk

k!
:

In particular, we have the divided powers of the root vectors, x
.r/
˛ , for all ˛ 2 ˆ

and r � 0.
We define

ƒ.mjn/D
˚
�D .�1; : : : ; �mCn/ j �i 2 Z; �i � 0 for 1� i �mC n

	
:

Given any tuple of integers � (e.g., � 2ƒ.mjn/), let j�j denote the sum of those
integers. Using this we define

ƒ.mjn; d/D
˚
� 2ƒ.mjn/ j j�j D d

	
:

For i D 1; : : : ;mC n and k � 0 define an element of A by�
Hi

k

�
D

Hi.Hi � 1/ � � � .Hi � kC 1/

k!
;

where, by definition, �
Hi

0

�
D 1:

2.7. The Kostant Z-form. We now define analogues of the Kostant Z-form. We
also take this opportunity to introduce certain subalgebras which will be needed in
what follows. Let A denote U , S , or T . Let A0 denote the subsuperalgebra of A

generated by H1; : : : ;HmCn. In particular, if A is S or T , then it is clear that A0

is the image of U 0 respectively, under the quotient map.
The Kostant Z-form for A is denoted by AZ and it is defined to be the subring

of A generated by˚
e
.k/
i ; f

.k/
i j i D 1; : : : ;mC n� 1; k � 0

	
[

��
Hi

k

�
j i D 1; : : : ;mC n; k � 0

�
:

Moreover, we set A0
Z to be the intersection of A0 with AZ. For A equal to S or T ,

it is clear that AZ and A0
Z are nothing but the image of UZ and U 0

Z , respectively,
under the quotient map.
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2.8. The weight idempotents. We begin by investigating the structure of T 0 and
T 0

Z . For �D .�i/ 2ƒ.mjn/ we define

H� D

mCnY
iD1

�
Hi

�i

�
:

Note that as H1; : : : ;HmCn commute the product can be taken in any order. When
� 2ƒ.mjn; d/ it is convenient to set the notation

1� DH�:

Because of part (b) of the following proposition we refer to these elements as weight
idempotents.

Proposition 2.8.1. Let I0 be the ideal of U 0 generated by the elements

H1CH2C � � �CHmCn� d and Hi.Hi � 1/ � � � .Hi � d/

for i D 1; : : : ;mC n. Then

(a) we have a superalgebra isomorphism U 0=I0 Š T 0;

(b) the set f1� j � 2ƒ.mjn; d/g is a Q-basis for T 0 and a Z-basis for T 0
Z . More-

over, they give a set of pairwise orthogonal idempotents which sum to the
identity;

(c) in T 0 we have H� D 0 for any � 2ƒ.mjn/ such that j�j> d .

Proof. Since the elements H1; : : : ;HmCn are purely even, this follows from [Doty
and Giaquinto 2002, Proposition 4.2]. �

Proposition 2.8.2. Let 1� i �mC n, k 2 Z�0, � 2ƒ.mjn; d/, and � 2ƒ.mjn/.
We have the following identities in the superalgebra T 0:

(1) Hi1� D �i1�;

�
Hi

k

�
1� D

�
�i

k

�
1�;

(2) H�1� D ��1�, where �� D
Y

i

�
�i

�i

�
;

(3) H� D

X
�2ƒ.mjn;d/

��1�.

Proof. They follow from [Doty and Giaquinto 2002, Proposition 4.3]. �
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2.9. The root vectors. We continue to let A denote any of U;S , or T . Recall from
Section 2.6 that for each ˛ 2ˆ we have the root vector x˛ 2A. In particular, note
that x˛ is homogeneous and x˛ D ˛, where the grading on roots is as given in
Section 2.1. Given ˛ D "i � "j 2ˆ, we set

H˛ DHi � .�1/x˛Hj :

Given ˛ D "i � "j ; ˇ D "k � "l 2ˆ such that ˛Cˇ 2ˆ, we define

(4) c˛;ˇ D

�
1; if j D kI

�.�1/x˛xˇ ; if i D l :

Using this notation, (2) implies the following commutator formula for root vectors
in A.

Lemma 2.9.1. Let ˛; ˇ 2ˆ and say ˛ D "i � "j and ˇ D "k � "l . We have

Œx˛;xˇ �D

8<:
H˛; if ˛Cˇ D 0I

c˛;ˇx˛Cˇ; if ˛Cˇ 2ˆI
0; otherwise:

We also note that an easy induction proves that for all a; b � 0 and ˛ 2 ˆ we
have

(5) x.a/˛ x.b/˛ D

�
aC b

a

�
x.aCb/
˛ :

2.10. Commutation relations between root vectors and weight idempotents. We
now compute the commutation relations between root vectors and weight idempo-
tents.

Proposition 2.10.1. For any ˛ 2 ˆ, � 2 ƒ.mjn; d/ we have the commutation
formulas

x˛1� D

�
1�C˛x˛; if �C˛ 2ƒ.mjn; d/;
0; otherwise,

and

1�x˛ D

�
x˛1��˛; if ��˛ 2ƒ.mjn; d/;
0; otherwise.

Proof. Although analogous to [Doty and Giaquinto 2002, Proposition 4.5], the
proof involves keeping track of signs so we include it. We first note that (2) implies
for all l D 1; : : : ;mC n and ˛ 2ˆ we can use the parity function given in (1) and
the bilinear form given in (3) to write

(6) ŒHl ;x˛ �D .�1/l."l ; ˛/x˛:
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Now say ˛ D "i � "j . Using (6) we obtain

x˛1� D

� Y
l¤i;j

�
Hl

�l

���
Hi � .�1/i."i ; ˛/

�i

��
Hj � .�1/j ."j ; ˛/

�j

�
x˛

D

� Y
l¤i;j

�
Hl

�l

���
Hi � .�1/i.�1/i

�i

��
Hj � .�1/j .�.�1/j /

�j

�
x˛

D

� Y
l¤i;j

�
Hl

�l

���
Hi � 1

�i

��
Hj C 1

�j

�
x˛:

Multiplying on the left by Hi

�iC1
and using the fact that Hix˛ D x˛.Hi C 1/, we

get

x˛
Hi C 1

�i C 1
1� D

Hi

�i C 1

�
Hi � 1

�i

��
Hj C 1

�j

�� Y
l¤i;j

�
Hl

�l

��
x˛;

which, using Proposition 2.8.2, simplifies to

(7) x˛1� D

��
Hi

�i C 1

��
Hj C 1

�j

� Y
l¤i;j

�
Hl

�l

��
x˛:

If �j > 0, then this can be rewritten as

x˛1� D

�
Hi

�i C 1

���
Hj

�j

�
C

�
Hj

�j � 1

�� Y
l¤i;j

�
Hl

�l

�
x˛:

The first summand on the right-hand side of the preceding equality vanishes by
Proposition 2.8.1. This proves the first part of the proposition in the case �j > 0. If
�j D 0, then (7) can be written as

x˛1� D

��
Hi

�i C 1

� Y
l¤i;j

�
Hl

�l

��
x˛ DH�x˛;

where �D .�1; : : : ; �i C 1; : : : ; �j�1; 0; : : : ; �mCn/. But then j�j D j�j C 1 > d

and hence the right-hand side is zero by Proposition 2.8.1. This proves the first
statement. The proof of the second is similar. �

2.11. Commutation relations between divided powers of root vectors. We now
compute the commutation formulas between divided powers of root vectors, but
first we make a simplifying observation. If the root vector x˛ is odd (i.e., if ˛ is an
odd root), then in g we have Œx˛;x˛ �D 0. But in U and, hence, in S and T , we
have Œx˛;x˛ �D 2x2

˛. Taken together, this implies

x2
˛ D 0
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in U , S , and T for all odd ˛ 2ˆ. That is, for odd roots we only need to consider
root vectors of divided power one.

Lemma 2.11.1. Let ˛; ˇ 2ˆ and r; s 2 Z�0.

(1) If x˛ D 0 and xˇ D 0, then
(8)

x.r/˛ x
.s/

ˇ
D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

x
.s/

ˇ
x
.r/
˛ C

min.r;s/X
jD1

x
.s�j/

ˇ

�
H˛ � r � sC 2j

j

�
x.r�j/
˛ ; if ˛Cˇ D 0I

x
.s/

ˇ
x
.r/
˛ C

min.r;s/X
jD1

c
j

˛;ˇ
x
.s�j/

ˇ
x
.j/

˛Cˇ
x.r�j/
˛ ; if ˛Cˇ 2ˆI

x
.s/

ˇ
x
.r/
˛ ; otherwise:

(2) If x˛ D 0 and xˇ D 1, then

(9) x.r/˛ x
.1/

ˇ
D

(
x
.1/

ˇ
x
.r/
˛ C c˛;ˇx˛Cˇx

.r�1/
˛ ; if ˛Cˇ 2ˆI

x
.1/

ˇ
x
.r/
˛ ; if ˛Cˇ …ˆ:

(3) If x˛ D 1 and xˇ D 0, then

(10) x.1/˛ x
.r/

ˇ
D

(
x
.r/

ˇ
x
.1/
˛ C c˛;ˇx˛Cˇx

.r�1/

ˇ
; if ˛Cˇ 2ˆI

x
.r/

ˇ
x
.1/
˛ ; if ˛Cˇ …ˆ:

(4) If x˛ D 1 and xˇ D 1, then

(11) x.1/˛ x
.1/

ˇ
D

8̂̂<̂
:̂
�x

.1/

ˇ
x
.1/
˛ CH˛; if ˛Cˇ D 0I

�x
.1/

ˇ
x
.1/
˛ Cx˛Cˇ; if ˛Cˇ 2ˆI

�x
.1/

ˇ
x
.1/
˛ ; otherwise:

Proof. As (8) involves purely even root vectors, it follows from the classical case
(see [Doty and Giaquinto 2002, Equations (5.11a)–(5.11c)]). Equations (9) and (10)
are verified by a straightforward induction on r . Equation (11) follows directly
from Lemma 2.9.1. �

2.12. Kostant monomials and content functions. Any product in A of nonzero
elements of the form

(12) x.r/˛ ;

�
Hi

s

�
;

taken in any order and for any r; s 2 Z�0, ˛ 2 ˆ, 1 � i � mC n, will be called
a Kostant monomial. Note that by [Kujawa 2006, Lemma 2.1] the set of Kostant
monomials span UZ and, hence, TZ and SZ. The goal is to find a subset of Kostant
monomials which will provide a basis for TZ.
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We now introduce the content function on Kostant monomials. They will be
used as a bookkeeping device in the proof of Proposition 2.14.1. It is defined just
as in the classical case [Doty and Giaquinto 2002, Section 2].

The content function

(13) � W fKostant monomialsg !
mCnM
iD1

Z"i

is defined as follows. We first define it on the elements in (12). If ˛ D "i � "j 2ˆ

and r � 1, then
�.x.r/˛ /D r"max.i;j/:

If i D 1; : : : ;mC n and r � 1, then

�

��
Hi

r

��
D 0:

We then extend this definition by declaring �.XY /D�.X /C�.Y / whenever X; Y

are Kostant monomials.
We also define a left content function, �L, and right content function, �R , on the

elements given in (12) by

�L.x
.r/
˛ /D r"i ; �R.x

.r/
˛ /D r"j ; �L

��
Hi

s

��
D �R

��
Hi

s

��
D 0:

They are defined on general Kostant monomials using the rules �L.XY /D�L.X /C

�L.Y / and �R.XY /D �R.X /C�R.Y / for any Kostant monomials X and Y .
In what follows we view elements in the image of the content functions as

elements of ƒ.mjn/ via the map

(14)
mCnX
iD1

ai"i 7! .a1; : : : ; amCn/:

2.13. A lemma on content functions. To label the elements of our basis for the
Schur superalgebra, we need to define the following set of tuples of nonnegative
integers indexed by the positive roots of g:
(15)
P .mjn/D

˚
AD .A.˛//˛2ˆC jA.˛/ 2 Z�0 if ˛ D N0 and A.˛/ 2 f0; 1g if ˛ D N1

	
:

Fix an order on ˆC. For AD .A.˛// 2 P .mjn/ we define

eA D

Y
˛2ˆC

x.A.˛//˛ ; fA D

Y
˛2ˆC

x.A.˛//�˛ ;

where the products defining eA and fA are taken according to the fixed order onˆC.
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The last ingredient we need is the following partial order onƒ.mjn/. It is defined
by declaring for �D .�i/, �D .�i/ in ƒ.mjn/ that

(16) �� �

if and only if �i � �i for i D 1; : : : ;mC n.

Lemma 2.13.1. For AD .A.˛//; C D .C.˛// 2 P .mjn/; � 2ƒ.mjn/ we have

�.eA1�fC /� � if and only if �L.1�0eAfC /� �
0

if and only if �R.eAfC 1�00/� �
00;

where
�0 WD �C

X
˛2ˆC

A.˛/˛; �00 WD �C
X
˛2ˆC

C.˛/˛:

Proof. As our content functions are defined just as in [Doty and Giaquinto 2002],
the proof of Lemma 5.1 there applies verbatim. �

2.14. A basis for the Schur superalgebra. Let us define the set

Y D
[

�2ƒ.mjn;d/
A;C2P.mjn/

feA1�fC j �.eAfC /� �g:

Note that we have the following alternate descriptions of Y . Following from
Proposition 2.10.1 we have

eA1�fC D 1�0eAfC D eAfC 1�00 ;

where �0 and �00 are as above. Using this and Lemma 2.13.1 we can characterize Y

as

Y D
[

�02ƒ.mjn;d/
A;C2P.mjn/

f1�0eAfC j�L.eAfC /��
0
gD

[
�002ƒ.mjn;d/
A;C2P.mjn/

feAfC 1�00 j�R.eAfC /��
00
g:

Finally we are prepared to give a basis for T .

Proposition 2.14.1. The set Y spans the Z-superalgebra TZ.

Proof. The proof is exactly parallel to the proof of [Doty and Giaquinto 2002,
Proposition 5.2]. Namely, as discussed in Section 2.12, the Kostant monomials
span TZ. From Proposition 2.8.1 we in fact know that TZ is spanned by Kostant
monomials consisting of products of divided powers of root vectors and weight
idempotents. Given such a Kostant monomial, we may use Proposition 2.10.1
to move all weight idempotents to the right-hand side of the Kostant monomial.
Thus it suffices to show that Kostant monomials consisting of products of divided
powers of root vectors can be written as an integral linear combination of elements
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in Y . This is done by inducting on the degree and content of the monomial using
the commutation formulas. As our content formula and commutation formulas
are of the same form as in [Doty and Giaquinto 2002], the inductive argument
used there applies here without change. The only difference appears when we
use the commutation formulas given in Lemma 2.11.1. Extra signs appear but all
coefficients remain integral and this is all that is needed for the proof.

We also need that for all s; t 2 Z�0, the term
�
H˛�t

s

�
in (8) belongs to T 0

Z . As
these elements are purely even this follows from the remark after [ibid., (5.11)]. It
can also be verified directly by an inductive argument using the identity�

H˛ � 1

s

�
D

�
H˛

s

�
�

�
H˛ � 1

s� 1

�
: �

Lemma 2.14.2. The cardinality of the set Y is equal to the dimension of the Schur
superalgebra.

Proof. By [Donkin 2001, Section 2.3] the dimension of the Schur superalgebra is
equal to the number of monomials of total degree d in the free supercommutative
superalgebra in m2C n2 even variables and 2mn odd variables. Equivalently, the
dimension of S is the same as the number of monomials in m2 C n2 � 1 even
variables and 2mn odd variables of total degree not exceeding d . From this it is
immediate that the dimension of S is the same as the cardinality of the set

PD
˚
eAHBfC jBD.Bi/2ƒ.mjn/I B1D0I A;C 2P .mjn/; jAjCjBjCjC j�d

	
:

Thus to prove the lemma it suffices to give a bijection between P and Y . Define
the map P ! Y by

eAHBfC 7! eA1�fC ;

where �D .d � jAj � jBj � jC j/"1CBC�.eAfC /. The inverse map is given by

eA1�fC 7! eAHBfC ;

where B D ���.eAfC /��1"1. This completes the proof of the lemma. �

As T surjects onto S.mjn; d/, it immediately follows from the previous two
results that Y is a basis for the Schur superalgebra and its integral form and that T

and S are isomorphic. Therefore we have proven Theorem 2.3.1 and the following
result.

Theorem 2.14.3. The set

Y D
[

�2ƒ.mjn;d/

˚
eA1�fC jA;C 2 P .mjn/; �.eAfC /� �

	
is a Q-basis for S.mjn; d/ and a Z-basis for S.mjn; d/Z.
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Finally, we note that there is another basis similar to Y in which the e and f
monomials are interchanged (see [Doty and Giaquinto 2002, Theorem 2.3] where
the analogous basis is denoted Y�).

2.15. A weight idempotent presentation. We also have an alternate presentation
of the Schur superalgebra using weight idempotents.

Theorem 2.15.1. The Schur superalgebra S.mjn; d/ is generated by the homoge-
neous elements

e1; : : : ; emCn�1; f1; : : : ; fmCn�1; 1�;

where � runs over the set ƒ.mjn; d/ and the Z2-grading is given by setting Nem D

Nfm D
N1, ei D f i D

N0 for i ¤m, and 1� D N0 for all � 2ƒ.mjn; d/.
The following is a complete set of relations:

(R10) 1�1� D ı�;�1�,
X

�2ƒ.mjn;d/

1� D 1;

(R20) ei1� D

�
1�C˛i

ei ; if �C˛i 2ƒ.mjn; d/I

0; otherwiseI

(R200) fi1� D

�
1��˛i

fi ; if ��˛i 2ƒ.mjn; d/I

0; otherwiseI

(R2000) 1�ei D

�
ei1��˛i

; if ��˛i 2ƒ.mjn; d/I

0; otherwiseI

(R20000) 1�fi D

�
fi1�C˛i

; if �C˛i 2ƒ.mjn; d/I

0; otherwiseI

(R30) Œei ; fj �D ıi;j
X

�2ƒ.mjn;d/

�
�j � .�1/ei �f j �jC1

�
1�;

and relations (R4) and (R5) given in Theorem 2.3.1.

The proof of Theorem 2.15.1 is identical to the analogous [Doty and Giaquinto
2002, Theorem 2.4] so we omit it.

3. Quantum case

The ground field is now the field of rational functions in the indeterminate q, Q.q/.
In this section all vector spaces will be defined over Q.q/.

3.1. The quantum supergroup for gl.mjn/. We have analogous results in the
quantum setting. The enveloping superalgebra U is replaced by the quantized
enveloping superalgebra UDUq.gl.mjn// defined in [Zhang 1993; De Wit 2003]1.

1There are errors in [Zhang 1993] which are corrected in [De Wit 2003].
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By definition U is given by generators and relations as follows. The generators are

E1; : : : ;EmCn�1; F1; : : : ; FmCn�1; K˙1
1 ; : : : ;K˙1

mCn:

The Z2-grading on U is given by setting Em D Fm D
N1, Ea D Fa D

N0 for a¤m,
and K˙1

a D
N0. These generators are subject to relations (Q1)–(Q5) in Theorem 3.3.1.

3.2. The q-Schur superalgebra. To define the q-Schur superalgebra, Sq.mjn; d/,
we need to introduce the analogue of the natural representation for U. Set V to be
the .mCn/-dimensional vector space with fixed basis v1; : : : ; vmCn. A Z2-grading
on V is given by setting vaD a, where we use the notation introduced in (1). Before
proceeding we set a convenient notation. For aD 1; : : : ;mC n we define

(17) qa D q.�1/a :

The analogue of the natural representation, � W U! EndQ.q/.V/, is defined by

�.Ka/vb D q."a;"b/vb D q
ıa;b

a vb;

�.Ea/vb D ıaC1;bva;(18)

�.Fa/vb D ıa;bvaC1:

The bilinear form used above is as in (3). It is a direct calculation to verify that this
defines a representation of U.

We define a comultiplication on U given on generators by

�.Ea/DEa˝K�1
a KaC1C 1˝Ea;

�.Fa/D Fa˝ 1CKaK�1
aC1˝Fa;(19)

�.Ka/DKa˝Ka:

Using this comultiplication and the sign convention discussed in Section 2.2 we
then have an action of U for any d � 1 on the d -fold tensor product of the natural
module,

V˝d
WD V˝V˝ � � �˝V:

That is, we obtain a superalgebra homomorphism

(20) �d W U! EndQ.q/

�
V˝d

�
:

We define the q-Schur superalgebra Sq.mjn; d/ to be the image of �d . In
particular, we can and will view it as a quotient of the superalgebra U and so a set
of generators of U gives a set of generators for Sq.mjn; d/ which are subject to
possibly additional relations.
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3.3. A presentation of the q-Schur superalgebra. We first introduce the quantum
analogue of root vectors so as to more easily state the relations for the q-Schur
superalgebra. For 1� a¤ b �mCn we define the root vector Ea;b recursively as
follows. For aD 1; : : : ;mC n� 1 we set

Ea;aC1 WDEa and EaC1;a WD Fa:

If ja� bj> 1, then Ea;b is defined by setting

(21) Ea;b D

�
Ea;cEc;b � qcEc;bEa;c ; if a> bI

Ea;cEc;b � q�1
c Ec;bEa;c ; if a< b:

where c can be taken to be an arbitrary index strictly between a and b. It is
straightforward to see that Ea;b is independent of the choice of c. It is also
straightforward to see that Ea;b is homogeneous and of degree "a� "b .

We can now give a presentation for Sq.mjn; d/. Note that the bilinear form used
in the following relations is defined in (3) and the notation qa is as defined in (17).

Theorem 3.3.1. The q-Schur superalgebra Sq.mjn; d/ is generated by the homo-
geneous elements

E1; : : : ;EmCn�1; F1; : : : ; FmCn�1; K˙1
1 ; : : : ;K˙1

mCn:

The Z2-grading is given by setting Em D Fm D
N1, Ea D Fa D

N0 for a¤m, and
K˙1

a D N0. These elements are subject to the following relations:

(Q1) for M; N 2 f˙1g and 1� a; b �mC n,

KM
a KN

b DKN
b KM

a and KaK�1
a DK�1

a Ka D 1I

(Q2) for 1� a�mC n and 1� b �mC n� 1,

KaEb;bC1 D q."aI˛b/Eb;bC1Ka D q
.ıa;b�ıa;bC1/
a Eb;bC1Ka;

KaEbC1;b D q."a;�˛b/EbC1;bKa D q
.ıa;bC1�ıa;b/
a EbC1;bKaI

(Q3) for 1� a; b �mC n� 1,

ŒEa;aC1;EbC1;b �D ıa;b
KaK�1

aC1
�K�1

a KaC1

qa� q�1
a

;

and for ja� bj> 1, we have the commutations

EaC1;aEbC1;b DEbC1;bEaC1;a and Ea;aC1Eb;bC1 DEb;bC1Ea;aC1I

(Q4) E2
m;mC1

DE2
mC1;m

D 0;

(Q5) if neither m nor n is 1, we have the following Uq.gl.mjn// Serre relations.
For a¤m, we have
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(a) EaC1;aEaC2;a D qaEaC2;aEaC1;a, 1� a�mC n� 2,
(b) Ea;aC1Ea;aC2 D qaEa;aC2Ea;aC1, 1� a�mC n� 2,
(c) EaC1;a�1EaC1;a D qaEaC1;aEaC1;a�1, 2� a�mC n,
(d) Ea�1;aC1Ea;aC1 D qaEa;aC1Ea�1;aC1, 2� a�mC n.

For aDm, we have

ŒEmC1;m;EmC2;m�1�D ŒEm;mC1;Em�1;mC2�D 0:

If either mD 1 or nD 1, then these relations are omitted;

(Q6) K1K2 � � �KmK�1
mC1

K�1
mC2
� � �K�1

mCn D qd ;

(Q7) .Ka� 1/.Ka� qa/.Ka� q2
a/ � � � .Ka� qd

a /D 0, for all 1� a�mC n.

3.4. Strategy and simplifications. As in the nonquantum case, the approach of
[Doty and Giaquinto 2002] applies in our setting once the correct definitions and
calculations are established. Namely, let T be the algebra defined by the generators
and relations of Theorem 3.3.1. The basic line of argument is the same as before:
we prove that relations (Q1) through (Q7) hold in SD Sq.mjn; d/ and so we have
a surjective map T! S induced by the map �d given in (20). We then show this
map is an isomorphism by showing via a series of calculations that the dimension
of T is no more than the dimension of S. As it is no more difficult, we actually
prove a slightly stronger result by working with a ZŒq; q�1�-form.

As before we lighten the reading by using the same notation for elements of U
and their images in the quotients T and S. We will make it clear in which algebra
we are working whenever it is important to do so. Furthermore, we can again make
use of the fact that the quantum group associated to g N0 is a subalgebra of U (as the
subalgebra generated by Ea;Fa (a¤m) and K˙1

1
; : : : ;K˙1

mCn) and so calculations
on purely even elements follow from the analogous results in the nonsuper setting.

3.5. The new relations. We first prove that relations (Q6) and (Q7) hold in SD
Sq.mjn; d/ and, hence, the surjection �d W U! S factors through T.

Lemma 3.5.1. Under the representation �d W U! End.V˝d /, the images of the
Ka satisfy the relations (Q6) and (Q7). Moreover, the relation (Q7) is the minimal
polynomial of the image of Ka in End.V˝d /.

Proof. Using the action of U on V given in (18) and on V˝d via the comultiplica-
tion (19) and the sign convention discussed in Section 2.2, the argument is as in the
nonquantum case except that the calculations are done multiplicatively. We point
out that there is one subtlety (and it is the reason why our relations differ slightly
from the analogous ones from [Doty and Giaquinto 2002, Lemma 8.1]). Namely,
the action of Ka when a>m is the inverse of what might be expected. �
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3.6. Divided powers and weight idempotents. Let A denote U, T, or S. We now
define various elements of A which are analogous to those defined in the nonquantum
setting.

We first introduce notation for the quantum integers. Given n 2 Z�0, let

Œn�D
qn� q�n

q� q�1
and Œn�!D Œn� � Œn� 1� � � � Œ2� � Œ1�:

It is helpful for calculations to note that Œn� is unchanged by the substitution q 7! q�1

and, in particular, under the substitution q 7! qa.
Given x 2 A and k 2 Z�0, we define the k-th divided power of x by

x.k/ D
xk

Œk�!
:

In particular, the root vectors introduced in Section 3.3 have divided powers, E
.r/

a;b
,

for all 1� a¤ b �mC n and r � 0.
If 1� a; b �mC n, then we set

Ka;b DKaK�1
b :

For t 2 Z�0 and c 2 Z, we use the qa notation given in (17) and set�
KaI c

t

�
D

tY
sD1

Kaqc�sC1
a �K�1

a q�cCs�1
a

qs
a� q�s

a

;

�
Ka;bI c

t

�
D

tY
sD1

Ka;bqc�sC1
a �K�1

a;b
q�cCs�1

a

qs
a� q�s

a

:

For short, we write �
Ka

t

�
D

�
KaI 0

t

�
:

For �D .�a/ 2ƒ.mjn/, we write

K� D

mCnY
aD1

�
Ka

�a

�
:

As the Ka commute, the product can be taken in any order. For � 2ƒ.mjn; d/ we
introduce the shorthand

1� WDK�

and because of Proposition 3.6.1(b) we call these weight idempotents.
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We define A0 as the subalgebra of A generated by

K˙1
a and

�
Ka

t

�
for all aD 1; : : : ;mCn, t 2Z�0. We define A0

A to be the ADZŒq; q�1�-subalgebra
of A0 generated by

K˙1
a and

�
Ka

t

�
for all aD 1; : : : ;mC n, t � 0. If A equals T or S, then it is clear that A0 and A0

A

is the image of U0 and U0
A, respectively, under the quotient map.

Now we investigate the structure of T0 and T0
A. In the following proposition we

continue our use of the notation qa introduced in (17).

Proposition 3.6.1. Define I0 to be the ideal of U0 generated by

K1K2 � � �KmK�1
mC1 � � �K

�1
mCn� qd and .Ka� 1/.Ka� qa/ � � � .Ka� qd

a /

for aD 1; : : : ;mC n. Then:

(a) We have a superalgebra isomorphism U0=I0 Š T0.

(b) The set f1� j � 2ƒ.mjn; d/g is a Q.q/-basis for T0 and a ZŒq; q�1�-basis for
T0

A. Moreover, they give a set of pairwise orthogonal idempotents which sum
to the identity.

(c) K� D 0 for any � 2ƒ.mjn/ such that j�j> d .

Proof. As these elements are purely even, the proof of [Doty and Giaquinto 2002,
Proposition 8.2] applies if we keep in mind the slight difference in Ka when a>m

and that we should replace each v in their argument by qa. �

To state the next result we need to introduce the Gaussian binomial coefficient.
For z 2 Z, and t 2 Z�0, define

(22)
�
z

t

�
D

tY
sD1

qz�sC1� q�zCs�1

qs � q�s
:

In the equations which follow one might expect qa to appear in the binomial
coefficients. However, the binomial coefficient is invariant under the map q 7! q�1

so this dependency is avoided.

Proposition 3.6.2. Let 1 � a � m C n, t 2 Z�0, c 2 Z, � 2 ƒ.mjn; d/, and
� 2ƒ.mjn/. We have the following identities in the superalgebra T 0:

(a) K˙1
a 1� D q

˙�a
a 1�;

�
KaI c

t

�
1� D

�
�aC c

t

�
1�;
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(b) K�1� D ��1�, where �� D
Y

a

�
�a

�a

�
;

(c) K� D

X
�2ƒ.mjn;d/

��1�.

Proof. As the elements are purely even, the argument from the proof of [Doty and
Giaquinto 2002, Proposition 8.3] carries over if we replace v by qa. �

3.7. Commutation relations between root vectors and weight idempotents. Re-
call that in Section 3.3 we defined root vectors Ea;b 2U for every 1�a¤b�mCn.
As is our convention, we also write Ea;b for their image in T and S. We now compute
the commutation relations between root vectors and weight idempotents.

Proposition 3.7.1. For any � 2 ƒ.mjn; d/, and ˛ D "b � "c 2 ˆ, we have the
commutation formulas

Eb;c1� D

�
1�C˛Eb;c ; if �C˛ 2ƒ.mjn; d/I
0; otherwise;

1�Eb;c D

�
Eb;c1��˛; if ��˛ 2ƒ.mjn; d/I
0; otherwise.

Proof. The following identities are derived by direct computation:�
KaI 0

1

� �
KaI �1

�a

�
D

�
�aC 1

1

� �
KaI 0

�aC 1

�
;(23) �

KaI 1

�a

�
D q�a

a

�
Ka

�a

�
C q�a�1

a K�1
a

�
Ka

�a� 1

�
:(24)

From the defining relation (Q2), we can see that Ka and Eb;c commute if a¤ b

and a¤ c. Moreover,
KbEb;c D qbEb;cKb:

This implies

(25) Eb;c

�
Kb

�b

�
D

�
KbI �1

�b

�
Eb;c :

We also have
KcEb;c D q�1

c Eb;cKc ;

which implies

(26) Eb;c

�
Kc

�c

�
D

�
Kc I 1

�c

�
Eb;c :
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Then, for � 2ƒ.mjn; d/, and b ¤ c, we have

Eb;c1� D

�
KbI �1

�b

� �
Kc I 1

�c

� Y
l¤b;c

�
Kl

�l

�
Eb;c :

Multiply both sides of the preceding equality by
�Kb

�b

�
and use (23) to simplify the

right-hand side and (25), (26) to simplify the left-hand side. The result is

Eb;c

�
KbI 1

�b

�
1� D

�
�bC 1

1

� �
Kb

�bC 1

� �
Kc I 1

�c

� Y
l¤b;c

�
Kl

�l

�
Eb;c :

Assuming �c � 1 and using (24), we get

Eb;c1�D

�
�bC 1

1

��
Kb

�bC 1

��
q�c

c

�
Kc

�c

�
Cq�c�1

c K�1
c

�
Kc

�c � 1

�� Y
l¤b;c

�
Kl

�l

�
Eb;c :

Thus, when �c � 1 we can multiply through in the above expression and apply
Proposition 3.6.1(c) to see that the first summand must be zero. The above equality
simplifies to

Eb;c1� D q�c�1
c K�1

c 1�C˛Eb;c :

Now, by Proposition 3.6.2(a), K�1
c acts on 1�C˛ as q

�.�c�1/
c . Thus we obtain the

equality in the first part of the proposition in the case �c � 1.
If �c D 0, then the right-hand side is zero by Proposition 3.6.1(c). This proves

the first part of the proposition. The proof of the second part is similar. �

3.8. Commutation formulas between divided powers of root vectors. We will
need to know how divided powers of root vectors commute with each other. To
obtain this we use the PBW-commutator lemma presented in [De Wit 2003]. We
first consider the case when both root vectors correspond to positive roots2:

(27) Ea;bEc;d D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.�1/Ea;bEc;d Ec;dEa;b; (b < c or c < a< b < d )I

.�1/Ea;bEc;d qbEc;dEa;b; (a< c < b D d )I

.�1/Ea;bEc;d qaEc;dEa;b; (aD c < b < d )I

Ea;d C q�1
c Ec;dEa;b; (b D c)I

.�1/Ea;bEc;d Ec;dEa;bC .qb � q�1
b
/Ea;dEc;b;

(a< c < b < d ).

Before stating the result, we first observe that we can make the following assump-
tions. First, since the case when both root vectors have divided power one is handled
by (27), we may assume that at least one of the powers is greater than one. Second,

2Note that there is a typographic error in [De Wit 2003, 20(b)] and that we have chosen to write
signs in an equivalent but more symmetric fashion.
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if "a � "b is an odd root, then by [De Wit 2003, Section IV] we have E2
a;b
D 0.

That is, just as in the nonquantum case we may assume the odd root vectors have
divided power at most one. Therefore, in what follows if the power of a root vector
is one, then it may be even or odd; but if the power is greater than one, then we
are implicitly assuming the root vector is even. In particular, the combination of
these two assumptions means that in each formula below at least one root vector
is even and, hence, our formulas do not involve extra signs due to the Z2-grading.

Under the above assumptions lengthy but elementary inductive arguments us-
ing (27) imply the following commutator formulas for the divided powers of root
vectors associated to positive roots. In these relations and the ones that follow we
use the qa notation introduced in (17) and the Gaussian binomials introduced in
(22). The relations given here are analogous to those obtained in [Xi 1999] for the
quantum groups of simple Lie algebras.

Proposition 3.8.1. Let Ea;b and Ec;d be two root vectors with a<b and c<d , and
let M;N � 1 satisfying the assumptions given above. We then have the following
commutation formulas.

(1) If b < c or c < a< b < d , then

E
.M /

a;b
E
.N /

c;d
DE

.N /

c;d
E
.M /

a;b
:

(2) If aD c < b < d or a< c < b D d , then

E
.M /

a;b
E
.N /

c;d
D qMN

b E
.N /

c;d
E
.M /

a;b
:

(3) If a< b D c < d , then

E
.M /

a;b
E
.N /

c;d
D

min.M;N /X
tD0

q
�.N�t/.M�t/

b
E
.N�t/

c;d
E
.t/

a;d
E
.M�t/

a;b
:

(4) If a< c < b < d , then

E
.M /

a;b
E
.N /

c;d
D

min.M;N /X
tD0

q
t.t�1/

2

b
.qb � q�1

b /t Œt �!E
.t/

c;b
E
.N�t/

c;d
E
.M�t/

a;b
E
.t/

a;d
:

We note that from these commutator formulas we can derive a second set by
solving for E

.N /

c;d
E
.M /

a;b
and then interchanging .a; b/ and .c; d/. Taken together

with the formulas given in the proposition these give a complete set of commutator
formulas for divided powers of positive root vectors. That this is a complete set of
formulas can easily be seen by considering the various possibilities for the subscripts
(cf. [Doty and Giaquinto 2002, Section 9]).

There is a similar set of commutator formulas for divided powers of negative
root vectors. They can be derived directly using the analogous results from [De Wit
2003]. Alternatively, U admits an antiautomorphism given by Ea 7!Fa, Fa 7!Ea,



PRESENTING SCHUR SUPERALGEBRAS 309

and Ka 7!K�1
a . Applying this map to the commutator relations for positive root

vectors yields the commutator relations among negative root vectors.

3.9. More commutation formulas. Finally we give the commutation formulas
between a positive and a negative root vector. Let us assume a< b and c < d . Then
from [De Wit 2003] we have the following:

(28) Ea;bEd;c

D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.�1/
NEa;b

NEd;c Ed;cEa;b; (b � c or c < a< b < d )I

.�1/
NEa;b

NEd;c Ed;cEa;bCKc;bEa;c ; (a< c < b D d )I

.�1/
NEa;b

NEd;c Ed;cEa;b � .�1/
NEa;b

NEd;c Ka;bEd;b; (aD c < b < d )I

.�1/
NEa;b

NEd;c Ed;cEa;bC .qa� q�1
a /�1.Ka;b �K�1

a;b
/; (aD c and b D d )I

.�1/
NEa;b

NEd;c Ed;cEa;b � .qb � q�1
b
/Kc;bEa;cEd;b; (a< c < b < d ):

With elementary inductive arguments, this yields the next result. The assumptions
on divided powers of root vectors stated before Proposition 3.8.1 apply here as well.

Proposition 3.9.1. Let Ea;b and Ed;c be two root vectors with a < b and c < d ,
and let M;N � 1. We then have the following commutation formulas.

(1) If b � c or c < a< b < d , then

E
.M /

a;b
E
.N /

d;c
DE

.N /

d;c
E
.M /

a;b
:

(2) If a< c < b D d , then

E
.M /

a;b
E
.N /

d;c
D

min.M;N /X
tD0

q
�t.N�t/

b
E
.N�t/

d;c
Kt

c;dE
.M�t/

a;b
E.t/

a;c :

(3) If aD c < b < d , then

E
.M /

a;b
E
.N /

d;c
D

min.M;N /X
tD0

.�1/tq
�t.M�1�t/

b
E
.t/

d;b
E
.N�t/

d;c
Kt

a;bE
.M�t/

a;b
:

(4) If a< b, then

E
.M /

a;b
E
.N /

b;a
D

min.M;N /X
tD0

E
.N�t/

b;a

�
Ka;bI 2t �M �N

t

�
E
.M�t/

a;b
:

(5) If a< c < b < d , then

E
.M /

a;b
E
.N /

d;c

D

min.M;N /X
tD0

.�1/tq
�t.2N�3t�1/=2

b
.qb � q�1

b /t Œt �!E
.N�t/

d;c
E
.t/

d;b
Kt

c;bE
.M�t/

a;b
E.t/

a;c :
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We can use the antiautomorphism on U defined in the previous section along with
simple calculations to derive additional identities (compare [Doty and Giaquinto
2002, Section 9]). In this way we obtain a complete set of commutation relations
involving a positive root vector to the left of a negative root vector. There are similar
commutation formulas for the case of a negative root vector followed by a positive
root vector. These can be obtained from the above formulas by solving for the term
E
.N /

d;c
E
.M /

a;b
. The new formulas will be of a similar form.

Taking all possible formulas we obtain the commutation formulas for divided
powers of root vectors. The interested reader can derive the complete set.

3.10. An A-form for U. Recall that Lusztig defined an A D ZŒq; q�1�-form for
Uq.g/ whenever g is a semisimple Lie algebra. We define an analogous A-form
for U. Let UA denote the A-subsuperalgebra of U generated by�

E
.M /

a;b
;K˙1

a ;

�
Ka

t

� ˇ̌̌
1� a¤ b �mC n;M; t 2 Z�0

�
:

Fix an order on the root system ˆC and let P .mjn/ be as in (15). For A D

.A.˛// 2 P .mjn/, we define

EA D

Y
˛D"a�"b2ˆC

E
.A.˛//

a;b
; FA D

Y
˛D"a�"b2ˆC

E
.A.˛//

b;a
;

where the product is taken according to the fixed order on ˆC.
There is a known basis for the analogously defined A-form for Uq.g N0/ following

from Lusztig’s basis for Uq.sl.n// [Lusztig 1990, Theorem 4.5] (see also [Xi 1999]).
Using this basis and the quantum commutator formulas given in the previous section
it follows that UA has an A-basis given by the set
(29)�

EA

mCnY
aD1

�
K�a

a

�
Ka

�a

��
FC

ˇ̌̌
A;C 2P .mjn/; �1; : : : ; �mCn2f0; 1g; �2ƒ.mjn/

�
:

In particular this gives a basis for U after extending scalars (compare with [Zhang
1993, Proposition 1]).

If A is S or T, then we define AA to be the image of UA under the quotient
map. In particular AA is a ZŒq; q�1�-subsuperalgebra of A and (the image under
the quotient map of) the set given in (29) spans AA. For short we call Sq.mjn; d/A
the integral q-Schur superalgebra.

3.11. Quantum Kostant monomials and content functions. We now define the
quantum analogue of the Kostant monomials. Any finite product of nonzero elements
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of the form

E
.M /

a;b
; K˙1

a ;

�
Ka

t

�
;

where 1� a¤ b �mC n and M; t 2 Z�0, will be called a Kostant monomial.
We also define content functions as before. Namely, the content function

(30) � W fKostant monomialsg !
mCnM
iD1

Z"i

is given on generators by declaring for ˛ D "a� "b 2ˆ, M;N 2 N, and t 2 Z�0

that

�.E
.M /

a;b
/DM "max.a;b/; �.Ka/D �.K

�1
a /D �

��
Ka

t

��
D 0:

For general monomials we again use the formula �.XY /D�.X /C�.Y / whenever
X;Y are Kostant monomials.

We also define the left content, �L, and right content, �R, by declaring on
generators that

�L.E
.M /

a;b
/DM "a; �L.Ka/D �L.K

�1
a /D �L

��
Ka

t

��
D 0;

�R.E
.M /

a;b
/DM "b; �R.Ka/D �R.K

�1
a /D �R

��
Ka

t

��
D 0;

and again using the rule �L.XY /D �L.X /C�R.Y / (similarly for �R) whenever
X and Y are Kostant monomials. We again use (14) to view outputs of the content
functions as elements of ƒ.mjn/.

3.12. A basis for the q-Schur superalgebra. We can now state the quantum ana-
logue of Theorem 2.14.3.

Theorem 3.12.1. The integral q-Schur superalgebra is the A-subalgebra of

Sq.mjn; d/

generated by

E.M /
a ; F .M /

a ;

�
Kb

t

�
;

where 1� a�mC n� 1, 1� b �mC n, and M 2 Z�0. Moreover, the set

YD
[

�2ƒ.mjn;d/

fEA1�FC jA;C 2 P .mjn/; �.EAFC /� �g

forms a Q.q/-basis of Sq.mjn; d/ and an A-basis of Sq.mjn; d/A.
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We remark that, as in Section 2.14, the set Y has alternate descriptions using
the left and right content functions. Applying the antiautomorphism of U yields a
similar basis in which the positions of the E and F terms are swapped; that is, the
analogue of Y� in [Doty and Giaquinto 2002].

Proposition 3.12.2. The set Y spans the superalgebra T.

Proof. The proof is exactly analogous to the proof of Proposition 2.14.1 and
the proof of [Doty and Giaquinto 2002, Proposition 9.1]. One again argues by
induction on degree and content using the above commutation formulas to write
an arbitrary Kostant monomial as a ZŒq; q�1�-linear combination of elements of Y.
The coefficients in our commutation formulas are slightly different, but they are still
elements of ZŒq; q�1� and so this does not affect the substance of the argument. �

Lemma 3.12.3. The cardinality of the set Y is equal to the dimension of S D
Sq.mjn; d/.

Proof. It is known that the dimension of Sq.mjn; d/ over Q.q/ equals the dimension
of S.mjn; d/ over Q. This is established, for example, in the proof of [Mitsuhashi
2006, Proposition 4.3]. This can also be seen as an outcome of [Du and Rui 2011,
Theorem 9.7]. The result then follows by the proof of Lemma 2.14.2. �

Theorems 3.3.1 and 3.12.1 now follow as in the nonquantum case.

3.13. A weight idempotent presentation. We also have a quantum analogue of
Theorem 2.15.1 which gives the q-Schur superalgebra by generators and relations
using the weight idempotents.

Theorem 3.13.1. The q-Schur superalgebra Sq.mjn; d/ is generated by the homo-
geneous elements

E1; : : : ;EmCn�1; F1; : : : ; FmCn�1; 1�;

where � runs over the set ƒ.mjn; d/. The Z2-grading is given by setting Em D

Fm D
N1, Ea D Fa D

N0 for a¤m, and 1� D N0 for all � 2ƒ.mjn; d/.
These generators are subject only to the relations:

(Q10) 1�1� D ı�;�1�,
X

�2ƒ.mjn;d/

1� D 1;

(Q20) Ea1� D

(
1�C˛a

Ea; if �C˛a 2ƒ.mjn; d/I

0; otherwiseI

(Q200) Fa1� D

(
1��˛a

Fa; if ��˛a 2ƒ.mjn; d/I

0; otherwiseI
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(Q2000) 1�Ea D

(
Ea1��˛a

; if ��˛a 2ƒ.mjn; d/I

0; otherwiseI

(Q20000) 1�Fa D

(
Fa1�C˛a

; if �C˛a 2ƒ.mjn; d/I

0; otherwiseI

(Q30) ŒEa;Fb �D ıa;b
X

�2ƒ.mjn;d/

�
�b � .�1/EaF b�bC1

�
1�;

and relations (Q4) and (Q5) given in Theorem 3.3.1.

Theorem 3.13.1 is proven just as in the nonquantum case and as in the proof of
[Doty and Giaquinto 2002, Theorem 3.4].

4. The q-Schur superalgebra as an endomorphism superalgebra

4.1. Quantum Schur–Weyl duality. There is a natural signed action of the Iwahori–
Hecke algebra associated to the symmetric group on d letters, Hq D Hq.†d /,
on V˝d . Mitsuhashi [2006] defines the q-Schur superalgebra as the superalgebra

zS WD zS.mjn; d/D EndHq

�
V˝d

�
:

The main result of [Mitsuhashi 2006] is to establish a Schur–Weyl duality between
this endomorphism algebra and the Iwahori–Hecke algebra. However, it is not
immediately obvious the q-Schur superalgebra defined in this paper as a quotient
of U coincides with the one used there. We now reconcile this difference.

Recall that we have a fixed homogeneous basis v1; : : : ; vmCn for V and this
defines a homogeneous basis fvi1

˝ � � � ˝ vid
j 1 � i1; : : : ; id �mC ng for V˝d .

Define a map �d W V˝d ! V˝d by

�d .vi1
˝ � � �˝ vid

/D .�1/ Nvi1
C���CNvid vi1

˝ � � �˝ vid
:

It is easily seen that �d commutes with the action of Hq on V˝d defined in
[Mitsuhashi 2006].

Let U� denote the quantum group associated to gl.mjn/ in [Benkart et al.
2000; Mitsuhashi 2006]. This algebra is generated by elements e1; : : : ; emCn�1,
f1; : : : ; fmCn�1, and qh (where h ranges over the elements of the dual weight
lattice), along with an element denoted by � . For each d � 1, denote by

Q�d W U� ! EndQ.q/

�
V˝d

�
the homomorphism given in Equation (3.2) of [Mitsuhashi 2006]. Theorem 4.4 of
the same reference states that zSD Q�d .U� /. For short we write S for the q-Schur
superalgebra defined in Section 3.2 as a quotient of U. We claim that zSD S. When
d D 1, it is straightforward to see that the action of the generators ea, fa, qh,
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coincide with the action of our Ea, Fa, and K˙1
a . More generally, this remains true

for d � 1 once we take into account the fact that the difference in the coproducts is
exactly explained by the fact that we use the sign convention whereas Mitsuhashi
does not but instead introduces the element � (which acts on V˝d by �d ).

Thus S� zS. It only remains to account for the extra generator � in U� . That is,
since � acts on V˝d by the map �d , we need to show that �d lies in S. The next
lemma shows that it lies in the image of �d and, hence, in S.

Lemma 4.1.1. For each d � 1, there exists xd 2 U so that �d .xd /D �d .

Proof. It suffices to construct an element of U whose action on our basis for V˝d

coincides with the action of �d . We build this element up in several steps. First, for
0� s � d and 1� a�mC n we use the notation given in (17) and (1) to define
!s;a 2 U by

(31) !s;aD

.Ka� 1/.Ka� qa/ � � � .Ka� qs�1
a /

� .Ka� qs
aC .�1/s�a/.Ka� qsC1

a / � � � .Ka� qd
a /

.qs
a� 1/.qs

a� qa/ � � � .qs
a� qs�1

a /.qs
a� qsC1

a / � � � .qs
a� qd

a /
:

Given 1� a�mC n we define a function,

ra W fvi1
˝ � � �˝ vid

j 1� i1; : : : ; id �mC ng ! f0; 1; : : : ; dg;

which counts the occurrences of va in vi1
˝ � � �˝ vid

. That is, it is defined by

ra D ra.vi1
˝ � � �˝ vid

/D jft D 1; : : : ; d j it D agj:

Then by a direct calculation (cf. the calculation used to prove relation (Q7) in
Lemma 3.5.1),

!s;a.vi1
˝ vi2

˝ � � �˝ vid
/D

�
.�1/ra�a.vi1

˝ vi2
˝ � � �˝ vid

/; if s D raI

0; if s ¤ ra:

Now, for 1� a�mC n define �a 2 U by �a D

dP
sD0

!s;a. It then follows that
for any basis vector vi1

˝ � � �˝ vid
we have

�a.vi1
˝ � � �˝ vid

/D .�1/ra�a.vi1
˝ � � �˝ vid

/:

Finally we define � 2 U to be the element �D
mCnQ
aD1

�a. It follows that

�.vi1
˝ � � �˝ vid

/D

�mCnY
aD1

.�1/ra�a

�
.vi1
˝ � � �˝ vid

/

D .�1/r1�1C���CrmCn�mCn.vi1
˝ � � �˝ vid

/

D .�1/vi1
C���CvmCn.vi1

˝ � � �˝ vid
/
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for every basis element vi1
˝ � � � ˝ vid

. That is, as desired, � 2 U acts as �d

on V˝d . �
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CLASSIFYING ZEROS OF
TWO-SIDED QUATERNIONIC POLYNOMIALS

AND COMPUTING ZEROS OF TWO-SIDED POLYNOMIALS
WITH COMPLEX COEFFICIENTS

FENG LIANGGUI AND ZHAO KAIMING

We improve the method of Janovská and Opfer for computing the zeros on
the surface of a given sphere for a quaternionic two-sided polynomial. We
classify the zeros of quaternionic two-sided polynomials into three types —
isolated, spherical and circular — and characterize each type. We provide a
method to find all quaternion zeros for two-sided polynomials with complex
coefficients. We also establish standard formulae for roots of a quadratic
two-sided polynomial with complex coefficients, which yields a simpler and
more efficient algorithm to produce all zeros in the quadratic case.

1. Introduction

In this paper we will treat two-sided quaternionic polynomials, those of the form

(1) p(x) :=
n∑

j=0

a j x j b j , x, a j , b j ∈ H, anbn 6= 0,

where H is the skew field of quaternions. These polynomials include also all one-
sided polynomials, where all coefficients are located on the left side or the right
side of the powers. For a long time, it has been known that one-sided quaternionic
polynomials may have two classes of zeros: isolated zeros and spherical zeros
(see for instance [Pogorui and Shapiro 2004; Topuridze 2003]), while a method
to compute all zeros of such polynomials was developed in [Janovská and Opfer
2010b] and a more efficient means was found in [Feng and Zhao 2011].

A general quaternionic polynomial is a finite sum of terms of the form

(2) t j (x) := a0 j · x · a1 j · · · a j−1, j · x · a j j , x, a0 j , a1 j , . . . , a j j ∈ H, j ≥ 0.
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Such a term is called a monomial of degree j . The polynomial p(z) in (1) is only a
very special type of a general quaternionic polynomial. There are relatively few
results on two-sided quaternionic polynomials; we list some that are relevant to our
study.

In [De Leo et al. 2006], the authors gave an example of a two-sided polynomial
and Opfer [2009] obtained that a general quaternionic polynomial of degree n has at
least one zero provided the polynomial has only one monomial of degree n. More
recently, for a quaternionic two-sided polynomial of type (1), Janovská and Opfer
[2010a] showed that there may be five classes of zeros according to the five possible
ranks of a certain real (4× 4) matrix, and they provided a method to find the zeros
in a given equivalence class.

This paper is organized as follows. In Section 2, by improving the method
of [Janovská and Opfer 2010a], we classify the zeros of quaternionic two-sided
polynomials into three types — isolated zeros, spherical zeros and circular zeros —
and characterize each type of zero. In Section 3, we provide a method to compute all
quaternion zeros of a two-sided polynomial with complex coefficients. In Section 4,
for a quadratic two-sided polynomial with complex coefficients, we further establish
the standard formulae for roots, so that a simpler and more efficient algorithm is
given to produce all zeros for a quadratic two-sided polynomial with complex
coefficients.

We will now give a short introduction to the quaternionic algebra. By R, C we
denote the fields of real and complex numbers, respectively, and by N the set of
natural numbers. In the skew field H of quaternions, any element has the form

(3) q = a0+ a1 i + a2 j + a3k = (a0+ a1 i)+ (a2+ a3 i) j ,

where i, j , k satisfy

i2
= j2

= k2
=−1, i j =− j i = k, j k =−k j = i, ki =−i k = j;

the product is extended to H by R-bilinearity. We call a0 the real part of the
quaternion q in (3), also written <q , while q −<q = a1 i + a2 j + a3k is called the
imaginary part and denoted by =q . The modulus |q| of q is

|q| =
√

a2
0 + a2

1 + a2
2 + a2

3 .

The conjugate of q, denoted by q, is defined by q = a0− a1 i − a2 j − a3k.
Two quaternions q1, q2 are called equivalent, denoted by q1 ∼ q2, if there is

an h ∈ H\{0} such that q1 = hq2h−1. The set [q] = {hqh−1
: h ∈ H\{0}} will be

called the equivalence class of q or, for short, the class of q. Indeed “∼” defines
an equivalence relation on H. So each quaternion is located in one and only one
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equivalence class. It is well known that

q1 ∼ q2 ⇐⇒ <q1 =<q2 and |q1| = |q2|,

that is, [q] = {u ∈H : <u =<q, |u| = |q|}, which can be regarded as the surface of
a ball in R3

= Ri +R j +Rk if q is not real. It is easy to see that [q] = {q} if q
is real and [q] contains infinitely many elements if q is not real. In the case that
q is not real, the only two complex numbers contained in [q] are ξ and ξ , where
ξ =<q +

√
|q|2− (<q)2 i . Here we are calling a quaternion complex if it is of the

form a0+ ai i , with a0, ai ∈ R.
There is a very useful tool to study the quaternion algebra, which is the so-called

derived matrix (appeared in [Feng 2010])
The derived mapping σ : Hn×n

→ C2n×2n from the set of n × n quaternionic
matrices into the set of 2n× 2n complex matrices is defined by

(4) A = A1+ A2 j 7→ σ(A)=

(
A1 A2

−A2 A1

)
,

where A1, A2 ∈ Cn×n . This mapping is injective, and obviously preserves addition
and multiplication of matrices. We call σ(A) the derived matrix of A (or, following
[Zhang 1997], the complex adjoint matrix of A). We will be interested in the case
where n = 1.

To conclude this introduction, we mention that it was Niven [1941; 1942] who
made first steps in generalizing the fundamental theorem of algebra to the quater-
nionic situation. Since then many attempts have been made to compute roots of a
quaternionic polynomial [Serôdio et al. 2001; Serôdio and Siu 2001; Pumplün and
Walcher 2002; De Leo et al. 2006; Gentili and Stoppato 2008; Gentili and Struppa
2008; Gentili et al. 2008], most of which have focused on one-sided polynomials. In
[Lam 2001, Section 16] and [Wang et al. 2009b] there are several general results on
polynomials (of the one-sided type) over division rings. There are also a lot of recent
studies on quaternionic matrices, for example [Farid et al. 2011; Wang et al. 2009a].
A large bibliography on quaternions can be found in [Gsponer and Hurni 2008].

2. Classifying zeros of two-sided quaternionic polynomials

To investigate the zeros of the polynomial in (1), we can assume (by left and right
division, respectively) that an = 1 and bn = 1, that is, the polynomial is monic:

(5) p(x) := xn
+ an−1xn−1bn−1+ · · ·+ a1xb1+ a0, x, ai , b j ∈ H.

Let ξ be a fixed complex number. In this section, we shall give a classification
of the zeros of p(x), which improves the results in [Janovská and Opfer 2010a].
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Furthermore, we give a clear description of the structure of each class of zeros for
a polynomial p(x) whose coefficients are complex.

From [Pogorui and Shapiro 2004], we know that all powers xk , k ∈ N, of a
quaternion x have the form xk

= αk x+βk , where αk , βk are real numbers. In order
to determine the numbers αk , βk , Janovská and Opfer [2010b] gave two approaches.
One is via the iteration

(6)


α0 = 0, β0 = 1,
α j+1 = 2<x α j +β j ,

β j+1 =−|x |2α j , j = 0, 1, . . . .

The other one relies on the formula

(7)
{
α j = =(u

j
1)/
√
|x |2− (<x)2,

β0 = 1, β j+1 =−|x |2α j , j = 0, 1, . . . ,

where u1 is the complex solution of u2
−2(<x)u+|x |2= 0 with positive imaginary

part. Formula (7) for α j is of course easier to program than the iteration (6).
However, since a power is involved, an economic use of (7) would also require
an iteration.

For convenience of later use, we will first give a self-closed formula for αk and
βk to improve the above formulas, that is, we give the following lemma, by which
we can determine the real numbers αk , βk directly.

Lemma 2.1. Suppose z is a quaternion, k is a natural number. Let

ξ =<z+
√
|z|2− (<z)2 i .

Then zk
= αkz+βk , where

αk =
ξ k
− ξ k

ξ − ξ
∈ R, βk = |ξ |

2
·
ξ k−1
− ξ k−1

ξ − ξ
∈ R.

Remark 2.2. In this lemma, we set

ξ k
− ξ k

ξ − ξ
= 1 and

ξ k−1
− ξ k−1

ξ − ξ
= 0

for k = 1, while

ξ k
− ξ k

ξ − ξ
=ξ k−1

+ξ k−2ξ+· · ·+ξ k−1,
ξ k−1
− ξ k−1

ξ − ξ
=−(ξ k−2

+ξ k−3ξ+· · ·+ξ k−2)

for k > 1 if ξ is real. Actually ξ is a complex number contained in [z].

Proof. Since <z =<ξ and |z| = |ξ |, we see that z ∈ [ξ ]. Let

g(t)= t2
− (ξ + ξ)t + |ξ |2.
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Then g(t) is a polynomial with real coefficients, that annihilates each element of [ξ ].
Note that the polynomial tk can be expressed as tk

= h(t)g(t)+αk t + βk , where
αk and βk are real constants, h(t) ∈ R[t]. Consequently, we have

(8)
{
αkξ +βk = ξ

k,

αkξ +βk = ξ
k .

If ξ − ξ = 0, then ξ is a real number and z = ξ . A straightforward verification
shows the statement of the lemma for this case. Now suppose ξ − ξ 6= 0. By (8),

αk =
ξ k
− ξ k

ξ − ξ
, βk =

ξξ k
− ξξ k

ξ − ξ
= |ξ |2 ·

ξ k−1
− ξ k−1

ξ − ξ
.

Since qk
= h(q)g(q)+αkq+βk =αkq+βk for all q ∈ [ξ ], the proof is complete. �

With Lemma 2.1 in hand, we now introduce the method to find all zeros in the
sphere [ξ ] for p(x) where ξ is a fixed complex (so <ξ is fixed).

Now for the fixed complex number ξ , and for any z ∈ [ξ ], p(z) can be repre-
sented by

p(z)= (αnz+βn)+ an−1(αn−1z+βn−1)bn−1+ · · ·+ a1(α1z+β1)b1+ a0

= (αnz+ an−1αn−1zbn−1+ · · ·+ a1α1zb1)+ (βn + · · ·+ a1β1b1+ a0)

= A(z)+ B,

where
A(z)= αnz+αn−1an−1zbn−1+ · · ·+α1a1zb1,

B = βn +βn−1an−1bn−1+ · · ·+ a1β1b1+ a0 ∈ H.

It is clear that the coefficients α j , β j ( j = 1, . . . , n) are given in Lemma 2.1. So,
solving the equation p(z) = 0 in [ξ ] is equivalent to finding the solutions in the
sphere surface [ξ ] of the following equation:

(9) A(z)=−B.

Let z =<ξ + x1 i + x2 j + x3k, x1, x2, x3 ∈ R. Regard z as the vector<ξx1
x2
x3


and regard the surface of the sphere [ξ ] as

6 =

{(x1
x2
x3

)
: x2

1 + x2
2 + x2

3 = |ξ |
2
− (<ξ)2, x1, x2, x3 ∈ R

}
.
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Unfolding the left side of (9) leads to the following linear system consisting of four
equations in three variables,

(10) M

(
x1
x2
x3

)
=

e0
e1
e2
e3

 ,
where M is a known real 4× 3 matrix, e0, e1, e2, and e3 are known real numbers.
Suppose S is the solution set of the linear system (10). Then the set of zeros of
p(x) contained in [ξ ] is {(

<ξ
s

)
: s ∈ S ∩6

}
.

If (10) has no solution, that is, S =∅, then [ξ ] contains no zero of p(x).
When (10) has a solution, its solution set can be represented by N+ X0, where

N is the solution space of the system of homogeneous linear equations M X = 0,
while X0 is a particular solution of (10). Now we analyze the set N+ X0 as follows.

If dim N = 0, then (10) has only one solution X0, so [ξ ] contains at most one
zero of p(x).

If dim N= 1, then S becomes a straight line in the three-dimensional {x1, x2, x3}-
space. So [ξ ] contains no zero of p(x) when S is separated from the sphere [ξ ], [ξ ]
contains only one zero when S is tangent to the sphere [ξ ], and [ξ ] contains two
zeros if the straight line S pierces the sphere [ξ ].

If dim N= 2, S is a plane in the three-dimensional {x1, x2, x3}-space, there are
three possible position relationships between the plane and the sphere: separated,
tangent and intersected. Then [ξ ] contains no zero of p(x) for the separated situation,
contains only one zeros for the tangent situation. With respect to the intersected
situation, the intersection of the plane and the sphere is a circular curve, so the zeros
of p(x) contained in [ξ ] form a circle in the three-dimensional {x1, x2, x3}-space.

Finally, if dim N= 3, then S = R3, and each point in [ξ ] is a zero of p(x).
To sum up the above arguments, we have obtained:

Theorem 2.3. Let p(x) be as in (5), and let ξ be a complex number. If Z[ξ ](p) is
the set of zeros of p(x) contained in [ξ ] and |Z[ξ ](p)| is its cardinality, we have the
following possibilities:

• |Z[ξ ](p)| ≤ 2.

• Z[ξ ](p) is a circle on the surface of the sphere [ξ ].

• Z[ξ ](p)= [ξ ].

Definition 2.4. Let p(x) be as in (5), and let z0 be a zero of p(x). If z0 is not real
and Z[z0](p)= [z0], we say that z0 generates a spherical zero, or simply that it is a
spherical zero. If z0 is real or |Z[z0](p)| ≤ 2, it is called an isolated zero. If z0 is
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not real and has the property that Z[z0](p) is a circle on the sphere [z0], we say that
z0 generates a circular zero, or is a circular zero.

Thus Theorem 2.3 classifies the zeros of quaternionic two-sided polynomials
into three types: isolated zeros, spherical zeros and circular zeros.

Now we apply Theorem 2.3 to two-sided polynomials with complex coefficients.

Theorem 2.5. Let p(x) := xn
+ an−1xn−1bn−1 + · · · + a1xb1 + a0, where all the

ai , bi (i = 0, 1, . . . , n− 1) are complex numbers. Let ξ be a complex number with
Z[ξ ](p) 6=∅. We have the following possibilities:

• Z[ξ ](p)⊆ {ξ, ξ}.

• Z[ξ ](p)=
{
z1+ z2 j : z1 ∈ C fixed, z2 ∈ C, |z2|

2
= |ξ |2− |z1|

2 > 0
}
.

• Z[ξ ](p)= [ξ ].

Proof. If all ai , bi are complex, in (9) we set

pn = αn, pn−1 = αn−1an−1, . . . , p1 = α1a1,

qn = 1, qn−1 = bn−1, . . . , q1 = b1, q0 =−B.

Then all pi , qi are known complex numbers. Writing the point z in [ξ ] as

z = z1+ z2 j , z1, z2 ∈ C,

and using the derived mapping, we can write (9) as(
pn

pn

)(
z1 z2

−z2 z1

)(
qn

qn

)
+· · ·+

(
p1

p1

)(
z1 z2

−z2 z1

)(
q1

q1

)
=

(
q0

q0

)
,

which is equivalent to

(11)
( n∑

i=1
pi qi

)
z1 = q0,

( n∑
i=1

pi q i

)
z2 = 0.

Since Z[ξ ](p) 6=∅, (11) is consistent.
If
∑n

i=1 pi q i = 0 and
∑n

i=1 pi qi 6= 0, then

z1 =
q0∑n

i=1 pi qi
, and |z2|

2
= |ξ |2−

∣∣∣∣ q0∑n
i=1 pi qi

∣∣∣∣2.
When

|ξ |2−

∣∣∣∣ q0∑n
i=1 pi qi

∣∣∣∣2 > 0,

the zeros of p(x) contained in [ξ ] are circular zeros, and

Z[ξ ](p)=
{

q0∑n
i=1 pi qi

+ z2 j : z2 ∈ C, |z2|
2
= |ξ |2−

∣∣∣∣ q0∑n
i=1 pi qi

∣∣∣∣2}.
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Otherwise,

Z[ξ ](p)=
{

q0∑n
i=1 pi qi

}
⊆ {ξ, ξ}.

If
∑n

i=1 pi q i = 0 and
∑n

i=1 pi qi = 0, then q0 = 0 and each point in [ξ ] is a zero
of p(x). So it is a spherical zero, that is, Z[ξ ](p)= [ξ ].

Finally, if
∑n

i=1 pi q i 6= 0, then z2 = 0 and z = z1+ z2 j = z1, which has at most
two values in [ξ ]: ξ and ξ . �

Janovská and Opfer [2010a] classified the zeros of quaternionic two-sided poly-
nomials p(x) into five classes according to the five possible ranks of a real (4× 4)
matrix obtained from the coefficients of p(x). In their notation, type 0 and type 1
solutions are isolated solutions, a type 2 solution can be an isolated solution or
a circular solution, a type 3 solution is a circular solution or a spherical solution,
while a type 4 solution is a spherical solution.

We can understand Theorem 2.3 from the view of point of geometry as follows.
The set of isolated zeros in [ξ ] is of dimension 0, the set of circular zeros in [ξ ] is
of dimension 1 because they form a circular line, and the set of spherical zeros in
[ξ ] is of dimension 2 because these zeros form a surface of a ball.

Remark 2.6. (a) Since one-sided polynomials, as in (5), belong to the class we
are considering, isolated zeros and spherical zeros in fact occur (actually these two
types are the only solutions; see [Feng and Zhao 2011; Janovská and Opfer 2010b]).
From the study of the quadratic case in Section 4 of this paper, we shall see that
the polynomial p(x)= x2

+ ix i + 2 has circular zeros and two conjugate isolated
zeros.

(b) From Theorem 2.5 we see that, for a two-sided polynomial p(x) with complex
coefficients, an isolated zero (if exists) of p(x) should be a complex number, and
the equivalence class [z] for an arbitrary circular zero z (if it exists) should contain
no complex roots of p(x). These facts will be used in the sequel.

3. Finding all zeros of quaternionic two-sided polynomials
with complex coefficients

Consider a quaternionic two-sided polynomial with complex coefficients:

(12) p(x) := xn
+ an−1xn−1bn−1+ · · ·+ a1xb1+ a0, x ∈ H, ai , b j ∈ C.

We will find a method to compute all the zeros of p(x). We introduce the notation

p̃(x) := xn
+ an−1bn−1xn−1

+ · · ·+ a1b1x + a0,

p̃(x) := xn
+ ān−1b̄n−1xn−1

+ · · ·+ ā1b̄1x + ā0,

←−p (x) := xn
+ an−1b̄n−1xn−1

+ · · ·+ a1b̄1x + a0.
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Theorem 3.1 (characterization of spherical zeros). Let ξ be a complex number.
Then each point of [ξ ] is a zero of p(x) if and only if

p̃(ξ)= p̃(ξ)= 0 and ←−p (ξ)=←−p (ξ).

Proof. For any z ∈ [ξ ], we can write z as z = qξq−1 for some q = z1+ z2 j with
z1, z2 ∈ C, and |z1|

2
+ |z2|

2
= 1. Then p(z)= 0 is equivalent to

qξ nq−1
+ an−1qξ n−1q−1bn−1+ · · ·+ a1qξq−1b1+ a0 = 0.

By the derived mapping, we get(
z1 z2

−z̄2 z̄1

)(
ξ n

ξ̄ n

)(
z̄1 −z2

z̄2 z1

)
+

(
an−1

ān−1

)(
z1 z2

−z̄2 z̄1

)(
ξ n−1

ξ̄ n−1

)(
z̄1 −z2

z̄2 z1

)(
bn−1

b̄n−1

)
+ · · ·

+

(
a1

ā1

)(
z1 z2

−z̄2 z̄1

)(
ξ

ξ̄

)(
z̄1 −z2

z̄2 z1

)(
b1

b̄1

)
+

(
a0

ā0

)
= 0,

which is equivalent to the system of the following two equations:

|z1|
2( p̃(ξ)− a0)+ |z2|

2( p̃(ξ)− a0)+ a0 = 0,(13)

z1z2(
←−p (ξ)−←−p (ξ))= 0.(14)

The above argument will be also used in later proofs.

⇒) Suppose each point of [ξ ] is a zero of p(x). Then (13) and (14) hold for any
z1, z2 ∈ C with |z1|

2
+ |z2

2| = 1. Note that (13) can also be written as

(15) |z1|
2( p̃(ξ)− p̃(ξ))+ p̃(ξ)= 0.

The equalities (15) and (14) hold for arbitrary complex z1, z2 with |z1|
2
+|z2|

2
= 1,

yielding that p̃(ξ)− p̃(ξ)= 0, p̃(ξ)= 0, and←−p (ξ)−←−p (ξ)= 0. The rest follow
easily for this direction.

⇐) Obvious. �

Theorem 3.2 (characterization of isolated zeros). Let T be the set of nonreal,
isolated zeros of p(x). Then

T = {ξ ∈ C : p̃(ξ)= 0,←−p (ξ) 6=←−p (ξ)} ∪ {ξ ∈ C : p̃(ξ)= 0, p̃(ξ) 6= 0};

the set of all isolated zeros of p(x) is {the real roots of p̃(x)} ∪ T .

Proof. By Remark 2.6, we see that the set of isolated zeros of p(x) is contained in
{ξ ∈ C : p̃(ξ) = 0}. Let ξ be a nonreal complex root of p̃. If←−p (ξ) =←−p (ξ) and
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p̃(ξ)= 0, then ξ becomes a spherical zero from Theorem 3.1. Hence,

T = {ξ ∈ C : p̃(ξ)= 0,←−p (ξ) 6=←−p (ξ)} ∪ {ξ ∈ C : p̃(ξ)= 0, p̃(ξ) 6= 0},

and the set of all isolated zeros of p(x) is {the real roots of p̃} ∪ T . �

Theorem 3.3 (characterization of circular zeros). Let ξ be a given complex number.
Then [ξ ] contains a circular zero of p(x) if and only if

(16) p̃(ξ) p̃(ξ) < 0 and ←−p (ξ)=←−p (ξ).

Moreover, if [ξ ] contains a circular zero of p(x), then

(=ξ)2
(

1−
p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)

)2

> 0

and the set of circular zeros in [ξ ] is{
<ξ +

p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)
=ξ i + z2 j : z2 ∈ C, |z2|

2
= (=ξ)2

(
1−

p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)

)2}
.

Proof. ⇒) Suppose [ξ ] contains a circular zero of p(x). By Theorem 2.5, the
circular zeros in [ξ ] contain no complex zeros of p. Using the first part of the
proof in Theorem 3.1, we know that there exist z1, z2 ∈ C with z1z2 6= 0 and
|z1|

2
+ |z2|

2
= 1, such that z = (z1+ z2 j)ξ(z1+ z2 j)−1 is a zero of p(x). So (13)

and (14) hold for this z, which yield |z1|
2 p̃(ξ)+|z2|

2 p̃(ξ)= 0 and←−p (ξ)=←−p (ξ).
From |z1|

2 p̃(ξ)+ |z2|
2 p̃(ξ)= 0, we have

|z1|
2 p̃(ξ) p̃(ξ)=−|z2|

2 p̃(ξ) p̃(ξ)=−|z2|
2
| p̃(ξ)|2 < 0,

that is p̃(ξ) p̃(ξ) < 0, as desired.

⇐) Note that p̃(ξ) p̃(ξ) < 0 implies =ξ 6= 0 and | p̃(ξ)|2 − p̃(ξ) p̃(ξ) > 0. Let
z1, z2 ∈ C be given by

(17) |z1|
2
=

| p̃(ξ)|2

| p̃(ξ)|2− p̃(ξ) p̃(ξ)
, |z2|

2
= 1− |z1|

2.

Then z1z2 6= 0, |z1|
2
+ |z2|

2
= 1 and it is easy to verify that (13) and (14) hold

simultaneously. So (z1+ z2 j)ξ(z1+ z2 j)−1 is a zero of p(x). From

(18)
(z1+ z2 j)ξ(z1+ z2 j)−1

= |z1|
2ξ + |z2|

2ξ − 2z1z2=ξ j

=<ξ + (2|z1|
2
− 1)(=ξ)i − 2z1z2=ξ j ,

we see that [ξ ] contains a noncomplex zero of p(x). The inequality p̃(ξ) p̃(ξ) < 0
also implies p̃(ξ) 6= 0, so from Theorem 3.1 we know [ξ ] contains no spherical
zeros of p(x). Now combining with Theorem 2.5 we see [ξ ] contains a circular
zero of p(x). The proof of this direction is completed.
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Finally, if [ξ ] contains a circular zero, let z1 and z2 be defined by (17). Then

(2|z1|
2
− 1)=ξ =

p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)
=ξ,

p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)
− 1=

2 p̃(ξ)

p̃(ξ)− p̃(ξ)
=

2 p̃(ξ) p̃(ξ)

( p̃(ξ)− p̃(ξ)) p̃(ξ)
< 0.

Therefore,

r := (=ξ)2
(

1−
p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)

)2

> 0

and by Theorem 2.5 and (18), the set of circular zeros in [ξ ] is{
<ξ +

p̃(ξ)+ p̃(ξ)

p̃(ξ)− p̃(ξ)
=ξ i + z j : z ∈ C, |z|2 = r

}
. �

From Theorems 3.1 and 3.2 we have actually given a method to find all isolated
zeros and spherical zeros:

Let the complex solution set of p̃(x)= 0 be

{ξ1, . . . , ξs, η1, . . . , ηk, ζ1, ζ̄1, . . . , ζl, ζ̄l, ζl+1, ζ̄l+1, . . . , ζt , ζ̄t },

where ξ1, . . . , ξs are distinct real numbers, η1, . . . , ηk, ζ1, . . . , ζt are distinct nonreal
complex numbers (each η̄i is no longer a root of p̃(x)),←−p (ζi ) 6=

←−p (ζ̄i ) for i =
1, . . . , l and←−p (ζi )=

←−p (ζ̄i ) for i = l+1, . . . , t . Then the set of all spherical zeros
of p(x) is

[ζl+1] ∪ · · · ∪ [ζt ],

and the set of all isolated zeros of p(x) is

{ξ1, . . . , ξs, η1, . . . , ηk, ζ1, ζ̄1, . . . , ζl, ζ̄l}.

Next we consider how to find all circular zeros of p(x). From Theorem 3.3 we
need only to find all complex numbers ξ with [ξ ] containing a circular zero of p(x).
First we give a necessary condition for p(x) to have a circular zero.

Proposition 3.4. Let p(x) be a two-sided polynomial of the form of (12). If p(x)
has a circular zero, then

1
an−1bn−1

...

a1b1

 6=


1
an−1b̄n−1

...

a1b̄1

 6=


1
ān−1b̄n−1

...

ā1b̄1

 ;
that is, p(x) cannot be essentially written as a one-sided polynomial.
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Proof. Suppose contrarily
1

an−1bn−1
...

a1b1

=


1
an−1b̄n−1

...

a1b̄1

 .
Then p̃(x)=←−p (x). Let ξ be a complex number and [ξ ] contain a circular zero of
p(x). Then by Theorem 3.3 we have

p̃(ξ)=←−p (ξ)=←−p (ξ)= p̃(ξ) and p̃(ξ) p̃(ξ)= p̃(ξ) p̃(ξ)= | p̃(ξ)|2 ≥ 0,

a contradiction to p̃(ξ) p̃(ξ) < 0. The proof for the other inequality is similar. �

Lemma 3.5 [Zhang 1998, Theorem 3.16]. Let f = an(x)yn
+· · ·+a1(x)y+a0(x)

and g = bm(x)ym
+ · · · + b1(x)y + b0(x) ∈ C[x, y], where ai (x), b j (x) ∈ C[x]

(i=0, . . . , n, j=0, 1, . . . ,m) with an(x)bm(x) 6=0. Let R( f, g; x) be the resultant
of f and g of order m+ n, given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an(x) an−1(x) . . . . . . . . . a0(x)
an(x) an−1(x) . . . . . . . . . a0(x)

. . .
. . .

an(x) an−1(x) . . . . . . . . . a0(x)
bm(x) bm−1(x) . . . . . . b0(x)

bm(x) bm−1(x) . . . . . . b0(x)
. . .

. . .
. . .

. . .

bm(x) bm−1(x) . . . . . . b0(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where an(x), . . . , a1(x), a0(x) are located in the first m rows, and the coefficients
bm(x), . . . , b1(x), b0(x) are located in the lower n rows. Then a complex x0 is a
zero of R( f, g; x) if and only if the system{

f (x0, y)= 0
g(x0, y)= 0

has a solution y0 ∈ C or the system{
an(x0)= 0
bm(x0)= 0

holds.

Now suppose [ξ ] contains a circular zero of p(x), where ξ is a given complex
number. Then by Theorem 3.3 we have←−p (ξ) =←−p (ξ) and p̃(ξ) p̃(ξ) < 0. The
later inequality implies the imaginary part of p̃(ξ) p̃(ξ) is 0.
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Set a0 = c0 + d0 i , where c0, d0 are the real part and imaginary part of a0,
respectively. Also set (ξ n, ξ n−1, · · · , ξ 2, ξ)= α+β i and

1
an−1bn−1

...

a1b1

=U + V i,

where α, β are both real row vectors (real 1× n matrices), U and V are both real
column vectors (real n× 1 matrices). It is easy to see the first component of U is 1
while the first component of V is 0. From←−p (ξ)=←−p (ξ) we get

(19) β


1

an−1b̄n−1
...

a1b̄1

= 0.

And note that the imaginary part of p̃(ξ) p̃(ξ) is 0, so we get

(20) βUαU +βVαV + c0βU + d0βV = 0.

Let ξ = u+ y i with u, y ∈ R. Remark 2.6(b) ensures that y 6= 0. Then

ξ n
= un
+C1

nun−1(y i)+ · · ·+Cn−1
n u(y i)n−1

+ (y i)n.

When n is even, we have{
<ξ n
= un
−C2

nun−2 y2
+ · · ·+ yn(−1)

n
2 ,

=ξ n
= C1

nun−1 y+ · · ·+Cn−1
n uyn−1(−1)

n−2
2 ,

and when n is odd we have{
<ξ n
= un
−C2

nun−2 y2
+ · · ·+Cn−1

n uyn−1(−1)
n−1

2 ,

=ξ n
= C1

nun−1 y+ · · ·+Cn−2
n u2 yn−2(−1)

n−3
2 + yn(−1)

n−1
2 .

For convenience we take n to be an odd number, n = 2k+ 1 since it is similar for
the case that n is even. In this case (19) becomes

(21)
(
C1

nun−1 y+ · · ·+Cn−2
n u2 yn−2(−1)

n−3
2 + yn(−1)

n−1
2 , . . . , y

)
·


1

an−1b̄n−1
...

a1b̄1

= 0.
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Since y 6= 0, we can write this as

(22)
(
C1

nun−1
+ · · ·+Cn−2

n u2 yn−3(−1)
n−3

2 + yn−1(−1)
n−1

2 , . . . , 1
)

·


1

an−1b̄n−1
...

a1b̄1

= 0.

It is easy to see that (22) can be rewritten as

(23) zk
+ d1(u)zk−1

+ · · ·+ dk−1(u)z+ dk(u)= 0,

where z := y2, k = n−1
2 , d1(u), . . . , dk(u) ∈ C[u], deg dk(u) = 2k (implying

that dk(u) 6= 0).
We treat (20) in a similar manner. Note that y 6= 0, the first component of U is 1

and the first component of V is 0, then we obtain from (20) the following equation:

(24) h1(u)z2k
+ h2(u)z2k−1

+ · · ·+ hn(u)= 0,

where z := y2, k = n−1
2 , h1(u), . . . , hn(u) ∈ C[u], deg hn(u)= 2n− 1.

Up to now, we have shown that, if [ξ ] contains a circular zero of p(x), then the
real part and imaginary part of ξ must satisfy (23) and (24). Let

f := zk
+ d1(u)zk−1

+ · · ·+ dk−1(u)z+ dk(u),

g := h1(u)z2k
+ h2(u)z2k−1

+ · · ·+ hn(u).

We denote by Rp the resultant of f and g. Then

Rp =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 d1(u) . . . . . . . . . dk(u)
1 d1(u) . . . . . . . . . dk(u)

. . .
. . .

1 d1(u) . . . . . . . . . dk(u)
h1(u) h2(u) . . . . . . hn(u)

h1(u) h2(u) . . . . . . hn(u)
. . .

. . .
. . .

. . .

h1(u) h2(u) . . . . . . hn(u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is a polynomial in the variable u with complex coefficients. Let x1, . . . , xs

be the real roots of Rp (if Rp has no real root, then p(x) has no circular zero, by
Lemma 3.5). Then substitute xl for u in (23) to get corresponding nonzero solutions
for y. In this way we get at most finitely many complex numbers xl + yl j i , where
yl j is the real solution of
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(y2)k + d1(xl)(y2)k−1
+ · · ·+ dk−1(xl)y2

+ dk(xl)= 0,

l = 1, . . . , s, j = 1, . . . , nl . (If such a yl j does not exist, this also shows p(x) has
no circular zeros.) Now if [ξ ] contains a circular zero, then from Lemma 3.5 we
know ξ must be equal to some xl + yl j i . Therefore, for the finitely many complex
numbers xl + yl j i (l = 1, . . . , s, j = 1, . . . , nl), using Theorem 3.3 we can find all
circular zeros of p(x).

This method for finding circular zeros will be valid so long as the resultant Rp

is not the zero polynomial. Since we have excluded the cases
1

an−1bn−1
...

a1b1

=


1
an−1b̄n−1

...

a1b̄1

 and


1

an−1b̄n−1
...

a1b̄1

=


1
ān−1b̄n−1

...

ā1b̄1


(Proposition 3.4 ensures that p(x) has no circular zeros under such circumstances),
generally speaking the resultant Rp obtained at the moment cannot vanish. We
have done a lot of tests, and have never discovered a two-sided polynomial p(x) of
form (12) with the conditions in Proposition 3.4 such that Rp = 0.

Example 3.6. Find all zeros of p(z)= z3
− iz2 i − iz i + 1 in H.

Solution. p̃(z) = z3
+ z2
+ z+ 1,←−p (z) = z3

− z2
− z+ 1. The complex roots of

p̃(z) are −1, i,−i . ←−p (i)= 2− 2i ,←−p (i)= 2+ 2i . Thus, p has no spherical zero,
and the set of isolated zeros is {−1, i,−i}.

Now we seek the circular zeros. We have

U =

1
1
1

 , V = 0, c0 = 1, d0 = 0,

α = (x3
− 3xy2, x2

− y2, x), β = (3x2 y− y3, 2xy, y),

In this case, (24) and (23) become

(3x+1)t2
−(10x3

+10x2
+6x+2)t+(3x5

+5x4
+6x3

+6x2
+3x+1)= 0,(25)

t + (−3x2
+ 2x + 1)= 0,(26)

where t := y2. The resultant Rp is

Rp =

∣∣∣∣∣∣
1 −3x2

+ 2x + 1 0
0 1 −3x2

+ 2x + 1
3x + 1 −(10x3

+ 10x2
+ 6x + 2) 3x5

+ 5x4
+ 6x3

+ 6x2
+ 3x + 1

∣∣∣∣∣∣
=−32x4

+ 32x2
+ 20x + 4.

The real roots of Rp are (from MATLAB)
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x1 =−0.500000000000000, x2 = 1.255773570847266,

and from (26) we get the positive roots

yx1 = 0.866025403784440, yx2 = 1.104243923243840

and their opposites We investigate the complex numbers

ξ1 = x1+ yx1 i, ξ2 = ξ̄1, ξ3 = x2+ yx2 i, ξ4 = ξ̄3.

For ξ1, we have p̃(ξ1) = 1, p̃(ξ1) p̃(ξ1) = 1 > 0. So, [ξ1] (= [ξ2]) contains no
circular zeros of p.

Since p̃(ξ3)= 7.7552i , p̃(ξ3) p̃(ξ3) < 0, and←−p (ξ3)=
←−p (ξ̄3), then [ξ3] (= [ξ4])

contains a circular zero of p, and the set of circular zeros of p is

ϒ = {1.255773570847266+ z j : z ∈ C, |z|2 = (1.104243923243840)2}.

Hence the zero set of p is {−1, i,−i} ∪ϒ .

4. Formulae of zeros for quadratic two-sided polynomials
with complex coefficients

In this section we concentrate on the case where p is quadratic with complex
coefficients. We establish formulae for finding its spherical, circular and isolated
zeros, and spell out a simple and efficient algorithm to find all zeros. So let

(27) p(x) := x2
+ (a+ bi)x(c+ d i)+ (e+ f i),

where a, b, c, d , e, f are real numbers. In the notation introduced at the beginning
of Section 3, we then have

p̃(x) := x2
+ (a+ bi)(c+ d i)x + (e+ f i),

←−p (x) := x2
+ (a+ bi)(c− d i)x + (e+ f i),

Recall that a complex ξ is said to be a spherical zero of p(x) if ξ is nonreal and
each point of [ξ ] is a zero of p(x).

Theorem 4.1 (existence of spherical zeros). The polynomial p(x) in (27) has a
spherical zero if and only if one of the following conditions is met:

• b = d = f = 0 and (ac)2 < 4e.

• a = b = f = 0 and e > 0.

• c = d = f = 0 and e > 0.

Furthermore, in this case the set of all zeros of p(x) is

(28)

[
−ac+

√
4e− (ac)2 i
2

]
.
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Proof.⇐) When one of the conditions is met, p(x) becomes x2
+ axc+ e, which

is a real polynomial. So each nonreal zero of p(x) is a spherical zero. In this case
the complex roots of p̃ are

−ac+
√

4e− (ac)2 i
2

,
−ac−

√
4e− (ac)2 i
2

.

By the method provided in Section 3 to find all spherical zeros and isolated zeros,
we conclude that the set of all zeros of p(x) is given by (28).

⇒) Suppose the complex ξ is a spherical zero of p(x). Then by Theorem 3.1 we
have p̃(ξ)= p̃(ξ)= 0 and←−p (ξ)=←−p (ξ). Consequently, p̃ should be a polynomial
with real coefficients, from which we get

(29) f = 0, ad =−bc,

and p̃(x)= x2
+ (ac− bd)x + e. This forces ξ to equal one of the two conjugate

numbers
(bd − ac)±

√
4e− (ac− bd)2 i
2

,

where (ac− bd)2 < 4e. We may assume that

(30) ξ =
(bd − ac)+

√
4e− (ac− bd)2 i
2

.

Since←−p (ξ)=←−p (ξ), we have

ξ 2
+
(
(ac+ bd)+ (bc− ad)i

)
ξ = ξ 2

+
(
(ac+ bd)+ (bc− ad)i

)
ξ .

Substituting (30), simplifying and comparing real and imaginary parts, we obtain

((bd−ac)+(ac+bd))
√

4e− (ac− bd)2= 0, (bc−ad)
√

4e− (ac− bd)2= 0,

which yields

(31) bd = 0, bc = ad.

From (29) and (31) it is easy to see a=b= f =0, or c=d= f =0, or b=d= f =0.
If a = b = f = 0 or c = d = f = 0, then from (ac− bd)2 < 4e we find e > 0. If
b = d = f = 0, then by (ac− bd)2 < 4e we get (ac)2 < 4e. �

Corollary 4.2. Let p(x) be a polynomial of the form in (27). Then p(x) has a
spherical zero if and only if p(x) can be written as p(x)= x2

+ r x + s, where r , s
are real numbers with r2

−4s < 0. Moreover, in this case, the set of zeros of p(x) is[
−r +

√
4s− r2 i
2

]
.
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Theorem 4.3 (existence of circular zeros). The polynomial p(x) in (27) has a
circular zero if and only if bd 6= 0, ad = bc, and

(32) 3
4

(
(ac)2+ 2(bc)2+ (bd)2

)
+ e−

a
b

f >
(

f − (ac+ bd)bc
2bd

)2

.

Moreover, in this case the set of all circular zeros of p(x) is
(33){
−

ac+bd
2
+

f −(ac+bd)bc
2bd

i+z j : z ∈ C, |z|2 =1−
(

f −(ac+bd)bc
2bd

)2}
,

where
1 := 3

4((ac)2+ 2(bc)2+ (bd)2)+ e− a
b f.

Proof. ⇒) Let [ξ ] contain a circular zero of p(x), where ξ is a complex number.
Then [ξ ] contains no complex zeros of p(x) (see Remark 2.6), and ξ satisfies (17).
From Proposition 3.4 we see that bd 6= 0.

Let ξ = u+ y i where u, y ∈ R with y 6= 0. From the second equation in (17) we
deduce that u =−(ac+ bd)/2 and ad = bc.

Now from Theorem 3.3 we may assume p(x) has a solution x = u+wi + v j
with u, w, v ∈ R and v 6= 0. Substitute x in p(x) with u+wi + v j . Then we get

u2
−w2

− v2
+ acu− bcw− bdu− adw+ e = 0,(34)

2uw+ bcu+ acw+ adu− bdw+ f = 0.(35)

From (34) it follows that u2
+ (ac− bd)u−w2

− 2bcw+ e = v2 > 0. So,

(36) u2
+ (ac− bd)u− 2bcw+ e >w2.

From (35) we have w = ( f − (ac+ bd)bc)/2bd. Substituting this value in (36)
yields (32). And in this case it’s easy to see by Theorem 2.5 that the set of circular
zeros in [ξ ] is as given in (33), since

u =−ac+bd
2

, w =
f − (ac+ bd)bc

2bd
,

v2
= u2
+ (ac− bd)u−w2

− 2bcw+ e =1−
(

f − (ac+ bd)bc
2bd

)2

,

and x = u+wi + v j is a circular zero of p.

⇐) When the conditions bd 6= 0, ad = bc, and (32) are satisfied, we can verify
directly that each element of the set in (33) is a zero of p(x). Note that (33) has
infinitely many elements, and Theorem 4.1 implies that p(x) has no spherical zeros,
since bd 6= 0. Again by Theorem 2.5 we know that p(x) has a circular zero. �

Next we give a consequence of Theorems 4.1 and 4.3.
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Corollary 4.4. (1) The polynomial x2
+ r(t + i)x(t + i)+ e, where r, t, e ∈ R,

has a circular zero if and only if r 6= 0 and 4e/r2
+ t4
+ 5t2

+ 3− t6 > 0.

(2) No quadratic polynomial with two-sided complex coefficients can have a spher-
ical zero and a circular zero simultaneously.

From Theorem 2.5 we know that the set of isolated zeros of p(x) is contained
in the nonempty set {z : z ∈ C, p̃(z) = 0} in this case. Using Theorem 4.1 and
Theorem 4.3 we have:

Theorem 4.5. The polynomial p(x) in (27) has an isolated zero if and only if it
either has a circular zero, or has no circular zero or spherical zero. In either case,
the set of isolated zeros of p(x) is {z : z ∈ C, p̃(z)= 0}, where p̃ is regarded as a
complex polynomial (so the classical formula can be used).

Corollary 4.6. The zeros of p(x) are distributed in at most 3 equivalence classes,
and p(x) has finitely many zeros if and only if p(x) has neither circular zeros nor
spherical zeros.

Summary of the algorithm to find all zeros of a quadratic two-sided quaternionic
polynomial with complex coefficients. Given a polynomial a2x2b2+ a1xb1+ a0,
with x ∈ H, ai , bi ∈ C, a2b2 6= 0, first divide it by a2 and b2, so as to reduce it to
the form

p(x) := x2
+ (a+ bi)x(c+ d i)+ e+ f i .

Step 1. Test the three conditions of Theorem 4.1. If any of them is met, the set of
zeros of p is [

−ac+
√

4e− (ac)2 i
2

]
.

Otherwise, go to the next step.

Step 2. Compute the (real and complex) zeros of the polynomial

p̃(x) := x2
+ (a+ bi)(c+ d i)x + e+ f i .

Denote them by z1 and z2. Test the three conditions of Theorem 4.3. If they are
all met, the set of zeros of q is the union of {z1, z2} with the set (33) of the same
theorem. Otherwise, the set of zeros of q(x) is {z1, z2}.

Example 4.7. For the polynomial p(x) := x2
+ ix i + 2, none of the conditions in

Theorem 4.1 is met, so there are no spherical zeros. In Step 2 we get two (conjugate)
isolated zeros and a circular zero. The complete set of zeros is{

1+
√

7i
2

,
1−
√

7i
2

}
∪
{
−

1
2 + z j : z ∈ C, |z|2 = 11

4

}
.

The zeros fall into two equivalence classes.
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Example 4.8. For p(x) := x2
+ (1+ i)x(1+ i)+ 1, again there are no spherical

zeros. The algorithm (or Corollary 4.4) gives a circular zero, and two (nonconjugate)
isolated zeros, so the set of zeros is{(√

2− 1
)
i,−

(√
2+ 1

)
i
}
∪
{
−1− i + z j : z ∈ C, |z|2 = 3

}
.

The zeros fall into three equivalence classes.

Example 4.9. The polynomial x2
+ 1 has a spherical zero; hence (by Step 1 or

Corollary 4.2) its set of zeros is [i] = {a1 i+a2 j+a3k : a2
1+a2

2+a2
3 = 1}, forming

a single equivalence class.
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COXETER GROUPS, IMAGINARY CONES AND DOMINANCE

XIANG FU

Brink and Howlett [Math. Ann. 296:1 (1993), 179–190] have introduced a
partial ordering, called dominance, on the root systems of Coxeter groups in
their proof that all finitely generated Coxeter groups are automatic. Edgar
(Ph.D. thesis, 2009), in an investigation of various regularity properties of
Coxeter groups, studied a function on the reflections of such groups, called
1-height. Here we show that these two concepts are closely related to each
other. We also give applications of dominance to the study of imaginary
cones of Coxeter groups.

1. Introduction

In this paper we attempt to extend the understanding of a partial ordering (called
dominance) defined on the root system of an arbitrary Coxeter group. The dominance
ordering was introduced in [Brink and Howlett 1993] (where it was used to prove
the automaticity of all finitely generated Coxeter groups). Dominance ordering
was further studied in [Brink 1998; Krammer 1994; 2009], and it has only been
recently examined again, in [Dyer 2012] (in connection with the representation
theory of Coxeter groups) and in [Edgar 2009; Fu 2012]. The present paper is a
short addition to the last two references, and it could serve as a building block in the
general knowledge of dominance ordering and of the combinatorics and geometry
of Coxeter groups in general.

More specifically, this paper has the following two objectives: (1) investigating
the connection between the dominance ordering on the root system of an arbitrary
Coxeter groups W and a specific function (called1-height) defined on the set of
reflections of W ; and (2) exploring the applications of the dominance ordering to
the imaginary cone of W (as defined by Kac).

The paper is organized into three sections. The first introduces background
material: root bases, Coxeter data, and root systems are defined in the context of the
paper, and some basic properties of Coxeter groups are recalled for later use in the

The work presented in this paper was completed when the author was supported by the Australian
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paper (most of them can be found in [Howlett 1996]). Here we follow the definition
used in [Krammer 1994], which gives a slight variant of the classical notion of
root systems, particularly adapted when working with arbitrary (not necessarily
crystallographic) Coxeter groups. Furthermore, this framework allows easy passing
to reflection subgroups. Indeed, we recall the fundamental property [Dyer 1987,
Theorem 1.8] that the reflection subgroups of a Coxeter group are themselves
Coxeter groups, and this particular framework allows us to apply all the definitions
and properties to the reflection subgroups and not only to the overgroup.

In the second section, the first main theorem (giving the connection between
1-height and dominance order) is stated and proved. All results are related to an
arbitrary Coxeter datum, implying the data of a root systemˆ, its associated Coxeter
group W , and the set T of all reflections of W (consisting of all the W -conjugates
of the Coxeter generators). The main objects of study are:

� The dominance order on ˆ (Definition 3.1). Given x, y 2 ˆ, we say x
dominates y if whenever w 2W such that wx 2ˆ� then wy 2ˆ� too (where
ˆ� denotes the set of negative roots).

� The1-height function on T . This is a variant of the usual (standard) height
function of a reflection t 2 T , namely, the minimal length of an element of
W that maps ˛t (the unique positive root associated to t ) to an element of the
root basis. Adhering to the general framework of this paper, our definition
of the height function applies to all reflection subgroups of W . It is easy to
check (Lemma 3.13) that the height of t is equal to the sum of the heights of t
relative to each maximal (with respect to inclusion) dihedral reflection subgroup
containing t . The1-height of t is then defined as a subsum of this sum, taking
into account only those subgroups which are infinite (Definition 3.8).

We then show that these two concepts are closely related in the following way. The
canonical bijection t $ ˛t , between T and ˆC (the set of positive roots), restricts
to a bijection between (for any n 2 N)

� the set Tn of all reflections whose1-height is n, and

� the set Dn of all positive roots which strictly dominate exactly n other positive
roots.

The proof of this fact (Theorem 3.15) relies on a study of dihedral reflection
subgroups. We have previously studied the partition .Dn/n2N of ˆC in [Fu 2012];
in particular, we showed there that each Dn is finite and we gave an upper bound
for its cardinality. Together with Theorem 3.15, this allows us to deduce here some
further information on the combinatorics of the Tn’s (Corollary 3.23).

The final section explores the relation between the dominance order and the
imaginary cone of a Coxeter group. The concept of imaginary cone was introduced



COXETER GROUPS, IMAGINARY CONES AND DOMINANCE 341

in [Kac 1990] to study the imaginary roots of Kac–Moody Lie algebras, and was
later generalized to Coxeter groups by Hée [1990; 1993] and Dyer [2012]. It is
defined as the subset of the dual of the Tits cone (denoted by U � here) consisting
of elements v 2 U � such that .v; ˛/ > 0 for only finitely many ˛ 2 ˆC (where
. ; / denotes the bilinear form associated to the Coxeter datum). The main results
(Theorem 4.13 and Corollary 4.15) of this section state the following property:
whenever x, y 2ˆ, then x dominates y if and only if x�y lies in the imaginary
cone. One direction of this property was first suggested to us by Howlett [private
communication], and it is a special case of a result obtained independently (but
earlier) by Dyer. We are deeply indebted to both of them for helpful discussions
inspiring us to study the imaginary cone. We would also like to thank the referee of
this paper for many valuable suggestions, especially those resulting in Corollary 4.15.
To close this section, we include an alternative definition for the imaginary cone in
the case where W is finitely generated.

2. Background material

Definition 2.1 [Krammer 1994]. Suppose that V is a vector space over R. Let . ; /
be a bilinear form on V and let � be a subset of V . Then � is called a root basis if
the following conditions are satisfied:

(C1) .a; a/D 1 for all a 2�, and for distinct elements a, b 2�, either .a; b/D
�cos.�=mab/ for some integermabDmba� 2, or else .a; b/��1 (in which
case we define mab Dmba D1).

(C2) 0 … PLC.…/, where the the positive linear cone of a set A is defined by

PLC.A/D
�X
a2A

�aa
ˇ̌̌
�a � 0 for all a 2 A and �a0 > 0 for some a0 2 A

�
:

If � is a root basis, then we call the triple C D .V;�; . ; // a Coxeter datum.
Throughout this paper we fix a particular Coxeter datum C. We stress that our
definition of a root basis is not the most classical one of [Bourbaki 1968] or even
[Humphreys 1990]: the root system (see Definition 2.5) arising from our definition
of a root basis is not necessarily crystallographic (indeed, the bilinear form can take
values less than �1), and the root basis is not assumed to be linearly independent
(this allows us to transmit easily the definitions and properties of a Coxeter group to
its reflection subgroups; indeed, the requirements in our definition of a root basis of a
Coxeter group are identical to those in the characterization of the equivalent of a root
basis in any reflection subgroup). Observe that (C1) implies that a … PLC.� n fag/
if a 2�, and (C1) and (C2) together imply that fa; b; cg is linearly independent for
all distinct a, b, c 2 �. Note also that (C2) is equivalent to the requirement that
zero does not lie in the convex hull of �.
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For each a 2�, define �a 2GL.V / by the rule �axD x�2.x; a/a for all x 2 V .
Observe that �a is a reflection, and �aaD�a. We summarize a few useful results:

Proposition 2.2 [Howlett 1996, Lecture 1, propositions on pp. 2–3]. (i) Suppose
that a, b 2� are distinct such that mab ¤1. Set � D �=mab . Then

.�a�b/
iaD

sin.2i C 1/�
sin �

aC
sin 2i�
sin �

b

for each integer i , and in particular, �a�b has order mab in GL.V /.

(ii) Suppose that a, b2� are distinct such thatmabD1. Set �Dcosh�1.�.a; b//.
Then

.�a�b/
iaD

8<:
sinh.2i C 1/�

sinh �
aC

sinh 2i�
sinh �

b if � ¤ 0,

.2i C 1/aC 2ib if � D 0;

for each integer i , and in particular, �a�b has infinite order in GL.V /. �
Let GC be the subgroup of GL.V / generated by f�a j a 2 �g. Suppose that

.W; S/ is a Coxeter system in the sense of [Hiller 1982] or [Humphreys 1990] with
SDfra ja2�g being a set of involutions generatingW subject only to the condition
that the order of rarb is mab for all a, b 2� with mab ¤1. Then Proposition 2.2
yields that there exists a group homomorphism �CWW !GC satisfying �C.ra/D�a
for all a 2�. This homomorphism, together with the GC-action on V , gives rise to
a W -action on V : for each w 2W and x 2 V , define wx 2 V by wxD �C.w/x. It
can be easily checked that this W -action preserves . ; /. Denote the length function
of W with respect to S by `, and call an expression w D r1r2 � � � rn (where w 2W
and ri 2 S ) reduced if `.w/D n. The following is a useful result:

Proposition 2.3 [Howlett 1996, Lecture 1, theorem, p. 4]. Let GC, W , S and ` be
as above, and let w 2W and a 2�. If `.wra/� `.w/, then wa 2 PLC.�/. �

An immediate consequence of the proposition is the following important fact:

Corollary 2.4 [Howlett 1996, Lecture 1, corollary, p. 5]. Let GC, W , S and �C be
as above. Then �CWW !GC is an isomorphism. �

In particular, the corollary yields that .GC; f�a j a 2 �g/ is a Coxeter system
isomorphic to .W; S/. We call .W; S/ the abstract Coxeter system associated to
the Coxeter datum C, and we call W a Coxeter group of rank #S (where # denotes
cardinality).

Definition 2.5. The root system of W in V is the set

ˆD fwa j w 2W and a 2�g:

The setˆCDˆ\PLC.�/ is called the set of positive roots, and the setˆ�D�ˆC

is called the set of negative roots.
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From Proposition 2.3 we may readily deduce that:

Proposition 2.6 [Howlett 1996, Lecture 3, corollary on p. 11, proposition on p. 10
and lemma on p. 4]. (i) Let w 2W and a 2�. Then

`.wra/D

�
`.w/� 1 if wa 2ˆ�;
`.w/C 1 if wa 2ˆC:

(ii) ˆDˆC]ˆ�, where ] denotes disjoint union.

(iii) W is finite if and only if ˆ is finite. �

Define T D
S
w2W wSw�1. We call T the set of reflections in W . For each x 2

ˆ, let �x 2GL.V / be defined by the rule �x.v/D v�2.v; x/x for all v 2 V . Since
x 2ˆ, it follows that xDwa for some w 2W and a 2�. Direct calculations yield
that �x D .�C.w//�a.�C.w//

�1 2GC. Now let rx 2W be such that �C.rx/D �x .
Then rx D wraw�1 2 T , and we call rx the reflection corresponding to x. It is
readily checked that rx D r�x for all x 2ˆ and T D frx j x 2ˆg. For each t 2 T
we let ˛t be the unique positive root with the property that r˛t D t . It is also easily
checked that there is a bijection  WT !ˆC given by  .t/D ˛t , and we call  
the canonical bijection.

For each x 2 ˆC, as in [Brink and Howlett 1993], we define the depth of x
relative to S to be minf`.w/ j w 2W and wx 2ˆ�g, and we denote it by dp.x/.
The following lemma gives some basic properties of depth:

Lemma 2.7 [Brink and Howlett 1993; Brink 1994; Saunders 1991]. (i) Let
˛ 2ˆC. Then dp.˛/D 1

2
.`.r˛/C 1/.

(ii) Let r 2 S and ˛ 2ˆC n f˛rg. Then

dp.r˛/D

8<:
dp.˛/� 1 if .˛; ˛r/ > 0;
dp.˛/ if .˛; ˛r/D 0;
dp.˛/C 1 if .˛; ˛r/ < 0:

Proof. (i) See [Brink 1994, Corollary 2.7]. This is also a special case of [Fu 2010,
Lemma 1.3.19].

(ii) See [Brink and Howlett 1993, Lemma 1.7]. �

Remark 2.8. Part (i) of Lemma 2.7 is equivalent to the property that any reflection
in a Coxeter group has a palindromic expression which is reduced, and this was
indeed noted in [Saunders 1991, Proposition 4.3].

Define functions N WW ! P.ˆC/ and N WW ! P.T / (where P denotes the
power set) by setting

N.w/D fx 2ˆC j wx 2ˆ�g;

N .w/D ft 2 T j `.wt/ < `.w/g;
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for all w 2 W . We call N the reflection cocycle of W (sometimes N.w/ is also
called the right descent set of w). Standard arguments such as those in [Humphreys
1990, Section 5.6] yield that, for each w 2W ,

`.w/D #N.w/(2-1)

and

N.w/D frx j x 2N.w/g:(2-2)

In particular, N.ra/D fag for a 2�. Moreover, `.wv�1/C `.v/D `.w/ for some
w, v 2W if and only if N.v/�N.w/.

A subgroup W 0 of W is a reflection subgroup of W if it is generated by the
reflections contained in it: W 0 D hW 0\T i. For any reflection subgroup W 0 of W ,
let

S.W 0/D ft 2 T jN.t/\W 0 D ftgg and �.W 0/D fx 2ˆC j rx 2 S.W
0/g:

It was shown by Dyer [1990] and Deodhar [1982] that .W 0; S.W 0// forms a Coxeter
system:

Theorem 2.9 (Dyer). (i) Suppose that W 0 is an arbitrary reflection subgroup
of W . Then .W 0; S.W 0// forms a Coxeter system. Moreover, W 0 \ T DS
w2W 0 wS.W

0/w�1.

(ii) Suppose thatW 0 is a reflection subgroup ofW , and suppose that a, b 2�.W 0/
are distinct. Then

.a; b/ 2 f� cos.�=n/ j n 2 N and n� 2g[ .�1;�1�:

Conversely, if �0 is a subset of ˆC satisfying the condition that

.a; b/ 2 f� cos.�=n/ j n 2 N and n� 2g[ .�1;�1�

for all a, b 2�0 with a ¤ b, then �0 D�.W 0/ for some reflection subgroup
W 0 of W . In fact, W 0 D hfra j a 2�0gi.

Proof. (i) See [Dyer 1990, Theorem 3.3].

(ii) See [Dyer 1990, Theorem 4.4]. �

Let . ; /0 be the restriction of . ; / to the subspace span.�.W 0//. Then C0 D

.span.�.W 0//;�.W 0/; . ; /0/ is a Coxeter datum with .W 0; S.W 0// being the as-
sociated abstract Coxeter system. Thus the notion of a root system applies to C0.
We let ˆ.W 0/, ˆC.W 0/ and ˆ�.W 0/ be, respectively, the set of roots, posi-
tive roots and negative roots for the datum C0. Then ˆ.W 0/ D W 0�.W 0/, and
Theorem 2.9(i) yields that ˆ.W 0/ D fx 2 ˆ j rx 2 W 0g. Furthermore, we have
ˆC.W 0/Dˆ.W 0/\PLC.�.W 0// and ˆ�.W 0/D�ˆC.W 0/. We call S.W 0/ the
set of canonical generators of W 0, and we call �.W 0/ the set of canonical roots
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of ˆ.W 0/. In this paper a reflection subgroup W 0 is called a dihedral reflection
subgroup if #S.W 0/D 2.

A subset ˆ0 of ˆ is called a root subsystem if ryx 2ˆ0 whenever x, y are both
in ˆ0. It is easily seen that there is a bijective correspondence between the set of
reflection subgroups W 0 of W and the set of root subsystems ˆ0 of ˆ: W 0 uniquely
determines the root subsystem ˆ.W 0/, and ˆ0 uniquely determines the reflection
subgroup hfrx j x 2ˆ0gi.

The notion of a length function also applies to the Coxeter system .W 0; S.W 0//,
and we let `.W 0;S.W 0//WW 0! N be the length function for .W 0; S.W 0//. If w 2
W 0 and a 2 �.W 0/ then applying Proposition 2.6 to the Coxeter datum C0 D

.span.�.W 0//;�.W 0/; . ; // yields

(2-3) `.W 0;S.W 0//.wra/D

�
`.W 0;S.W 0//.w/� 1 if wa 2ˆ�.W 0/;
`.W 0;S.W 0//.w/C 1 if wa 2ˆC.W 0/:

Similarly, the notion of a reflection cocycle also applies to the Coxeter system
.W 0; S.W 0//. Let N .W 0;S.W 0//WW ! P.W 0\T / denote the reflection cocycle for
.W 0; S.W 0//. Then, for each w 2W 0,

N .W 0;S.W 0//.w/D
˚
t 2W 0\T j `.W 0;S.W 0//.wt/ < `.W 0;S.W 0//.w/

	
;

and we define N.W 0;S.W 0//.w/D fx 2ˆC.W 0/ jwx 2ˆ�.W 0/g for each w 2W 0.
It is shown in [Dyer 1987] that N .W 0;S.W 0//.w/ D N.w/\W

0 for an arbitrary
reflection subgroup W 0 of W . Furthermore, it is readily seen that the canonical
bijection  restricts to a bijection  0WT \W 0!ˆC.W 0/ given by  0.t/D ˛t . For
w 2 W 0, applying (2-1) to the Coxeter datum C0 D .span.�.W 0/;�.W 0/; . ; /0/
yields that

(2-4) `.W 0;S.W 0//.w/D #N.W 0;S.W 0//.w/:

Furthermore, `.W 0;S.W 0//.wv�1/C `.W 0;S.W 0//.v/D `.W 0;S.W 0//.w/ for some w,
v 2W 0 precisely when N.W 0;S.W 0//.v/�N.W 0;S.W 0//.w/.

For a Coxeter datum CD .V;�; . ; //, since � may be linearly dependent, the
expression of a root in ˆ as a linear combination of elements of � may not be
unique. Thus the concept of the coefficient of an element of � in any given root
in ˆ is potentially ambiguous. We close this section by specifying a canonical
way of expressing a root in ˆ as a linear combination of elements from �. This
canonical expression follows from a standard construction similar to that considered
in [Howlett et al. 1997, Proposition 2.9].

Given a Coxeter datum CD .V;�; . ; //, let E be a vector space over R with
basis �E D fea j a 2�g in bijective correspondence with �, and let . ; /E be the
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unique bilinear form on E satisfying

.ea; eb/E D .a; b/ for all a; b 2�:

Then CE D .E;�E ; . ; /E / is a Coxeter datum. Moreover, CE and C are associated
to the same abstract Coxeter system .W; S/; indeed, Corollary 2.4 yields that
the abstract Coxeter group W is isomorphic to both GC D hf�a j a 2 �gi and
GCE D hf�ea j a 2�gi. Furthermore, W acts faithfully on E via ray D �eay for
all a 2� and y 2E.

Let f WE! V be the unique linear map satisfying f .ea/D a for all a 2�. It is
readily checked that .f .x/; f .y//D .x; y/E for all x, y 2E. Now, for all a 2�
and y 2E,

ra.f .y//D �a.f .y//D f .y/� 2.f .y/; a/aD f .y/� 2.f .y/; f .ea//f .ea/

D f .y � 2.y; ea/Eea/D f .ray/:

Then it follows that w.f .y// D f .wy/ for all w 2 W and all y 2 E, since W
is generated by fra j a 2 �g. Let ˆE denote the root system associated to the
datum CE . Standard arguments yield that:

Proposition 2.10 [Fu 2012, Proposition 2.1]. The restriction of f defines a W -
equivariant bijection ˆE $ˆ. �

Since �E is linearly independent, it follows that each root y 2 ˆE can be
written uniquely as y D

P
ea2�E

�aea; we write �a D coeffea.y/ and call it the
coefficient of ea in y. We use this uniqueness together with the W -equivariant
bijection f WˆE $ˆ to give a canonical expression of a root in ˆ in terms of �:

Definition 2.11. Suppose that x 2ˆ. For each a 2�, define the canonical coeffi-
cient of a in x, written coeffa.x/, by requiring that coeffa.x/D coeffea.f

�1.x//.
The support, written supp.x/, is the set of a 2� with coeffa.x/¤ 0.

3. Dominance, maximal dihedral reflection subgroups and infinity height

Throughout this section, let W be the abstract Coxeter group associated to the
Coxeter datum CD .V;�; . ; //, and let ˆ and T be the corresponding root system
and the set of reflections, respectively. Recently, in [Edgar 2009], a uniquely
determined nonnegative integer, called1-height, was assigned to each reflection
inW . (Edgar attributes the concept to Dyer.) Naturally, the set T is then the disjoint
union of the sets T0, T1, T2; : : : , where the set Tn consists of all the reflections
with1-height equal to n.

These Tn were used in [Edgar 2009, Chapter 5] to demonstrate nice regularity
properties of W . They gave rise to a family of modules in the generic Iwahori–
Hecke algebra associated to W , and in turn, these modules were used by Dyer
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(unpublished) to prove a weak form of Lusztig’s conjecture on the boundedness of
the a-function. Dyer also showed that if W is of finite rank, then there are finitely
many reflections in Tn for each n.

In this section we prove that for an arbitrary reflection t 2 T whose1-height
equals n, the corresponding positive root ˛t dominates precisely n other positive
roots. This observation will then establish a bijection between the set of all reflec-
tions in W with1-height equal to n and the set of all positive roots that dominate
precisely n other positive roots. Recent results on dominance obtained in [Fu 2012]
may then be immediately applied to the Tn’s, answering a number of basic questions
about these Tn’s.

Following [Howlett et al. 1997] and [Björner and Brenti 2005, Section 4.7], we
generalize the definition of dominance to the whole of ˆ (whereas in [Brink and
Howlett 1993] and [Brink 1998], dominance was only defined on ˆC), and we
stress that all the notations are the same as in the previous section.

Definition 3.1. (i) Let W 0 be a reflection subgroup of W , and let x, y 2ˆ.W 0/.
Then we say that x dominates y with respect to W 0 if

fw 2W 0 j wx 2ˆ�.W 0/g � fw 2W 0 j wy 2ˆ�.W 0/g:

If x dominates y with respect to W 0 then we write x domW 0 y.

(ii) Let W 0 be a reflection subgroup of W and let x 2ˆC.W 0/. Define

DW 0.x/D fy 2ˆ
C.W 0/ j y ¤ x and x domW 0 yg:

IfDW 0.x/D∅ we call x elementary with respect toW 0. For each nonnegative
integer n, define

DW 0;n D fx 2ˆ
C.W 0/ j #DW 0.x/D ng:

If W 0DW , we write D.x/ for DW 0.x/ and Dn for DW 0;n. If D.x/D∅ then
we call x elementary.

It is readily checked that dominance with respect to any reflection subgroup W 0

of a Coxeter group W is a partial ordering on ˆ.W 0/. The following lemma
summarizes some basic properties of dominance:

Lemma 3.2 [Fu 2012, Lemma 3.2]. (i) Let x, y 2 ˆC be arbitrary. Then
x domW y if and only if .x; y/� 1 and dp.x/� dp.y/.

(ii) Dominance is W -invariant, that is, if x domW y then wx domW wy for all
w 2W .

(iii) Let x, y 2ˆ be such that x domW y. Then �y domW �x.

(iv) Let x, y 2ˆ. Then there is dominance between x and y if and only if .x; y/�1.
�
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Corollary 3.3. Let x, y 2 ˆ, and let W 0 be an arbitrary reflection subgroup
containing both rx and ry .

(i) There is dominance with respect to W 0 between x and y if and only if
.x; y/0 � 1, where . ; /0 is the restriction of . ; / to the subspace span.�.W 0//.

(ii) x domW y if and only if x domW 0 y.

Proof. (i) This follows from Lemma 3.2(iv) applied to the Coxeter group W 0 and
the datum C0 D .span.�.W 0//;�.W 0/; . ; /0/.

(ii) The desired result is trivially true if x D y, so we may assume that x ¤ y. It is
clear that x domW y implies that x domW 0 y. Conversely, suppose that x domW 0 y.
Then (i) yields that .x; y/ D .x; y/0 � 1. Thus Lemma 3.2(iv) yields that either
x domW y, or else y domW x. If the latter is the case, then by the first part of the
current proof, y domW 0 x, and hence it follows that x D y (since dominance with
respect to W 0 is a partial ordering), contradicting our choice of x and y. �

Next is a well-known result whose proof can be found in the remarks immediately
before Lemma 2.3 of [Brink and Howlett 1993]:

Lemma 3.4. There is no nontrivial dominance between positive roots in the root
system of a finite Coxeter group. �

Next we have a technical result which is going to be used repeatedly in the rest
of this paper.

Proposition 3.5. Let ˛, ˇ 2 ˆC with .˛; ˇ/ � �1, and let W 0 be the dihedral
reflection subgroup generated by r˛ and rˇ . Further, we set � D cosh�1.�.˛; ˇ//,
and for each i 2 Z adopt the notation

(3-1) ci D

8<:
sinh i�
sinh �

if � ¤ 0,

i if � D 0:

(i) W 0 is infinite, and ˆ.W 0/D fci˙1˛C ciˇ j i 2 Zg.

(ii) Suppose that x, y 2ˆ.W 0/. Then .x; y/ 2 .�1;�1�[ Œ1;1/, and in particu-
lar, if x ¤˙y then hfrx; rygi is an infinite dihedral reflection subgroup. More
specifically,

(a) If x D cnC1˛C cnˇ and y D cmC1˛C cmˇ, then

.x; y/D

�
cosh..n�m/�/� 1 if � ¤ 0;
1 if � D 0:

(b) If x D cnC1˛C cnˇ and y D cm�1˛C cmˇ, then

.x; y/D

�
�cosh..nCm/�/� �1 if � ¤ 0;
�1 if � D 0:



COXETER GROUPS, IMAGINARY CONES AND DOMINANCE 349

(c) If x D cn�1˛C cnˇ and y D cmC1˛C cmˇ, then

.x; y/D

�
�cosh..nCm/�/� �1 if � ¤ 0;
�1 if � D 0:

(d) If x D cn�1˛C cnˇ and y D cm�1˛C cmˇ, then

.x; y/D

�
cosh..n�m/�/� 1 if � ¤ 0;
1 if � D 0:

(iii) If x 2ˆC.W 0/ n f˛; ˇg, then DW 0.x/¤∅.

Proof. (i) Proposition 4.5.4(ii) of [Björner and Brenti 2005] implies that W 0 is
infinite, and the rest of statement follows from direct calculations similar to those
in Proposition 2.2.

(ii) This follows from (i) and a direct calculation.

(iii) If x 2ˆC.W 0/ n f˛; ˇg, part (i) yields that either x D cnC1˛C cnˇ (for some
n¤0), or else xD cn�1˛Ccnˇ (for some n¤1). Then part (ii) and Corollary 3.3(i)
imply that we can find some y 2ˆC.W 0/ n fxg such that x domW 0 y. �

The other key object to be studied in this section is the numeric function1-height
on T . As mentioned in the introduction, this function is defined in terms of infinite
dihedral reflection subgroups of W , and in order to make a precise definition of this
function we need a few technical results on infinite dihedral reflection subgroups.
We begin with a well-known one, whose proof we include for completeness.

Proposition 3.6 [Dyer 1991]. Suppose that ˛, ˇ 2ˆC are distinct. Let

W 0 D hfr
 j 
 2 .R˛CRˇ/\ˆCgi:

Then W 0 is a dihedral reflection subgroup of W .

Proof. Suppose for a contradiction that W 0 is not dihedral. Then #S.W 0/� 3, and
let x1, x2, x3 2 �.W 0/ be distinct. Theorem 2.9(ii) then yields that .xi ; xj / � 0
whenever i , j 2 f1; 2; 3g are different. Clearly x1, x2, x3 are all in the two-
dimensional subspace R˛CRˇ, and thus a contradiction would arise if we could
show that x1, x2, x3 are linearly independent. Let c1, c2, c3 2 R be such that
c1x1C c2x2C c3x3 D 0. Since x1, x2, x3 2ˆC, and 0 … PLC.�/, it follows that
c1, c2, c3 cannot be all positive or all negative. Renaming x1, x2, x3 if necessary,
we have the following three possibilities:

c1; c2 � 0 and c3 < 0; or(3-2)

c1; c2 � 0 and c3 > 0; or(3-3)

c1; c2; c3 D 0:(3-4)
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If (3-2) is the case then 0D .c1x1C c2x2C c3x3; x3/ < 0, and if (3-3) is the case
then 0D .c1x1C c2x2C c3x3; x3/ > 0; both are clearly absurd. Hence (3-4) must
be the case and x1, x2, x3 are linearly independent, a contradiction, as required. �

Let ˛, ˇ 2ˆC be distinct. Let W 00 be an arbitrary dihedral reflection subgroup
of W containing the dihedral reflection subgroup hfr˛; rˇ gi. Let x, y be the
canonical roots for W 00. It can be readily checked that RxCRy D R˛CRˇ, and
hence x, y2 .R˛CRˇ/\ˆC. It then follows thatW 00�hfr
 j
 2 .R˛CRˇ/\ˆCgi.
This observation, together with Proposition 3.6, readily yields the following well-
known result:

Proposition 3.7. Every dihedral reflection subgroup hfr˛; rˇ gi of W (where the
elements ˛ and ˇ of ˆC are distinct), is contained in a unique maximal dihedral
reflection subgroup, namely hfr
 j 
 2ˆC\ .R˛CRˇ/gi. �

Definition 3.8. (i) Define M to be the set of all maximal dihedral reflection
subgroups of W .

(ii) Define M1 to be the set fW 0 2M j #W 0 D1g.

(iii) For each t 2 T , define Mt to be the set fW 0 2M j t 2W 0g.

(iv) Let W 0 be a reflection subgroup of W , and let t 2W 0\T . Define the standard
height, h.W 0;S.W 0/.t/, of t with respect to the Coxeter system .W 0; S.W 0// to
be

min
˚
`.W 0;S.W 0//.w/ j w 2W

0, w˛t 2�.W 0/
	
:

For the standard height of t with respect to the Coxeter system .W; S/, we
simply write h.t/ in place of h.W;S/.t/.

Remark 3.9. For arbitrary reflection subgroup W 0 of W , the depth function nat-
urally applies to ˆC.W 0/: if x 2ˆC.W 0/, then the depth of x relative to S.W 0/
(written dp.W 0;S.W 0//.x/) is defined to be

min
˚
`.W 0;S.W 0//.w/ j w 2W

0 and wx 2ˆ�.W 0/
	
:

Now, for each t 2W 0\T , it is easily checked that

dp.W 0;S.W 0//.˛t /D h.W 0;S.W 0//.t/C 1;

and hence applying Lemma 2.7(i) to the Coxeter system .W 0; S.W 0// yields that

(3-5) h.W 0;S.W 0//.t/D
`.W 0;S.W 0//.t/� 1

2
:

We include a proof of the next result for completeness:

Lemma 3.10 [Edgar 2009]. For each t 2 T , we have

T n ftg D
U

W 02Mt

..W 0\T / n ftg/:
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Proof. It is readily checked that T n ftg D
S
W 02Mt

..W 0\T / n ftg/, and hence we
only need to check that this union is indeed disjoint. Suppose for a contradiction
that there are distinct W1, W2 2Mt with r 2W1\W2 for some r 2 T n ftg. Then
clearly hfr; tgi �W1 and hfr; tgi �W2, contradicting Proposition 3.7. �

From this and the canonical bijection  WT $ˆC we immediately get:

Corollary 3.11. ˆC n f˛g D
]

W 02Mr˛

.ˆC.W 0/ n f˛g/, for each ˛ 2ˆC. �

Remark 3.12. In particular, the corollary implies that for t 2 T , if W1, W2 2Mt

are distinct, then ˆC.W1/\ˆC.W2/D f˛tg.

Lemma 3.13 [Edgar 2009]. Let t 2 T be arbitrary. Then

h.t/D
X
W 02Mt

h.W 0;S.W 0//.t/:

Proof. For any reflection t 2 T , Corollary 3.11 yields that

(3-6) f˛ 2ˆC j t˛ 2ˆ�g D f˛tg[
� ]
W 02Mt

˚
˛ 2ˆC.W 0/ n f˛tg j t˛ 2ˆ

�
	�
:

Since h.t/D 1
2
.`.t/� 1/D 1

2
.#N.t/� 1/, it follows from (3-6) that

h.t/D
1

2

� X
W 02Mt

#
˚
˛ 2ˆC.W 0/ n f˛tg j t˛ 2ˆ

�.W 0/
	�

D

X
W 02Mt

1
2

�
`.W 0;S.W 0//.t/� 1

�
(by (2-4))

D

X
W 02Mt

h.W 0;S.W 0//.t/ (by (3-5)): �

Definition 3.14 [Edgar 2009]. For t 2 T , define the1-height of t to be

h1.t/D
X

W 02Mt\M1

h.W 0;S.W 0//.t/;

and for each nonnegative integer n, we define

Tn D ft 2 T j h
1.t/D ng:

From this definition it is not clear whether, for a specific nonnegative integer n,
there is a reflection t 2 T with h1.t/ D n. It turns out that a number of basic
questions like this can be solved with the aid of the results obtained in [Fu 2012]
once we prove the following:

Theorem 3.15. For each nonnegative integer n, there is a bijection Tn$Dn given
by t $ ˛t .
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The proof of the theorem will be deferred until we have all the necessary tools.

Proposition 3.16. Suppose that t 2 T , and let W 0 be an infinite dihedral reflection
subgroup containing t . If h.W 0;S.W 0//.t/� 1, then there exists some x 2ˆC.W 0/
distinct from ˛t and satisfying ˛t domW x.

Proof. Observe that the condition h.W 0;S.W 0//.t/� 1 is equivalent to ˛t …�.W 0/,
and hence the required result follows immediately from Proposition 3.5(iii). �

The following proposition will be a key step to prove Theorem 3.15:

Proposition 3.17. Let W 0 be an infinite dihedral reflection subgroup, and let
�.W 0/D f˛; ˇg.

(i) There are two disjoint dominance chains in ˆ.W 0/, namely:

(3-7) � � � domW r˛rˇ r˛.ˇ/ domW r˛rˇ .˛/ domW r˛.ˇ/ domW ˛

domW .�ˇ/ domW rˇ .�˛/ domW rˇ r˛.�ˇ/ domW � � �

and

(3-8) � � � domW rˇ r˛rˇ .˛/ domW rˇ r˛.ˇ/ domW rˇ .˛/ domW ˇ

domW .�˛/ domW r˛.�ˇ/ domW r˛rˇ .�˛/ domW � � � :

In particular, each root in ˆ.W 0/ lies in exactly one of these two chains, and
the negative of any element of one chain lies in the other. The roots in ˆ.W 0/
dominated by either ˛ or ˇ are all negative.

(ii) If x 2ˆ.W 0/ then #DW 0.x/D h.W 0;S.W 0//.rx/.

Proof. (i) Theorem 2.9(ii) and [Björner and Brenti 2005, Proposition 4.5.4 (ii)]
yield that .˛; ˇ/� �1. Hence it follows from Lemma 3.2(iv) that ˛ domW �ˇ and
ˇ domW �˛. Then we can immediately verify the existence of the two dominance
chains (3-7) and (3-8), and from these two chains the remaining statements in (i)
follow readily.

(ii) The required result follows immediately from the definition of h.W 0;S.W 0//.rx/
and the two dominance chains (3-7) and (3-8). �

Proposition 3.18. Suppose that x, y 2ˆC are distinct with x domW y, and let W 0

be a dihedral reflection subgroup containing rx and ry . Then h.W 0;S.W 0//.rx/� 1.

Proof. It follows from Corollary 3.3(ii) that x domW 0 y, so Lemma 3.4 above yields
that W 0 is an infinite dihedral reflection subgroup. Let f˛; ˇg D�.W 0/. We know
from Proposition 3.17(i) that the roots in ˆ.W 0/ dominated by either ˛ or ˇ are all
negative, and since x domW y 2ˆC, it follows that x … f˛; ˇg. Hence by definition
h.W 0;S.W 0//.rx/� 1. �
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From the last two propositions we may deduce the following special case of
Theorem 3.15:

Lemma 3.19. There is a bijection T0$D0 given by t $ ˛t .

Proof. Let t 2 T0, and suppose for a contradiction that ˛t …D0. Then there exists
s 2T nftg such that ˛t domW ˛s . LetW 0 be the unique maximal dihedral reflection
subgroup of W containing hfs; tgi. Proposition 3.18 yields that h.W 0;S.W 0//.t/� 1.
Since ˛t domW 0 ˛s , it follows from Lemma 3.4 that W 0 2M1, and consequently
h1.t/� 1, contradicting the assumption that t 2 T0.

Conversely, suppose that ˛t 2D0, and suppose for a contradiction that t … T0.
Then there exists some W 0 2 Mt \ M1 with h.W 0;S.W 0//.t/ � 1. But then
Proposition 3.16 yields that ˛t …D0, producing a contradiction as required. �

Observe that Proposition 3.17(ii) can be equivalently stated as:

Proposition 3.20. Suppose that t 2 T , and suppose that W 0 is an infinite dihedral
reflection subgroup containing t . Then

#DW 0.˛t /D h.W 0;S.W 0//.t/: �

Proposition 3.21. Suppose that t 2 T is arbitrary. Then]
W 02Mt\M1

DW 0.˛t /DD.˛t /:

Proof. First we observe that Remark 3.12 yields that the union of the sets DW 0.˛t /
over all W 0 in Mt \M1 is indeed disjoint.

It is clear that
U
W 02Mt\M1

DW 0.˛t /�D.˛t /.
Conversely, suppose that x 2D.˛t /. Let W 0 be the unique maximal dihedral

reflection subgroup of W containing hft; rxgi. Then Corollary 3.3(ii) yields that
˛t domW 0 x. Finally since there is no nontrivial dominance in any finite Coxeter
group, it follows that W 0 2M1, as required. �

Now we prove that for any reflection t 2 W , its 1-height h1.t/ equals the
number of positive roots strictly dominated by ˛t :

Theorem 3.22. Let t 2 T be arbitrary. Then h1.t/D #D.˛t /.

Proof. It follows from Proposition 3.20 and Proposition 3.21 that

h1.t/D
X

W 02Mt\M1

h.W 0;S.W 0//.t/D
X

W 02Mt\M1

#DW 0.˛t /D #D.˛t /: �

Proof of Theorem 3.15. The theorem follows immediately from Theorem 3.22. �

Combining [Fu 2012, Theorem 3.8, Corollary 3.9, and Corollary 3.21] with
Theorem 3.15 we may deduce:
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Corollary 3.23. (i) For each positive integer n,

Tn � ft t
0t j t 2 T0 and t 0 2 Tm for some m� n� 1g:

(ii) Suppose that W is an infinite Coxeter group with #S <1. Then

0 < #Tn � .#T0/nC1� .#T0/n

for each positive integer n. �
Remark 3.24. An upper bound for #T0.D #D0/ is given in [Brink and Howlett
1993]; furthermore, for any fixed finitely generated Coxeter group, this number can
be explicitly calculated following the methods presented in [Brink 1998].

4. Dominance and imaginary cone

Kac introduced the concept of an imaginary cone in the study of the imaginary
roots of Kac–Moody Lie algebras. In [Kac 1990, Chapter 5] the imaginary cone
of a Kac–Moody Lie algebra was defined to be the positive cone on the positive
imaginary roots. The generalization of imaginary cones to arbitrary Coxeter groups
was first introduced in [Hée 1990], and subsequently reproduced in [Hée 1993].
This generalization has also been studied in [Dyer 2012] and [Edgar 2009]. In this
section we investigate the connections between this generalized imaginary cone and
dominance in Coxeter groups; in particular, we show that whenever x and y are
roots of a Coxeter group, then x domW y if and only if x�y lies in the imaginary
cone of that Coxeter group.

Let .W; S/ be the abstract Coxeter system associated to the Coxeter datum
CD .V;�; . ; //, and let ˆ be the corresponding root system. Let X be a vector
subspace of V . In this paper, a cone is assumed to be a convex cone. For any cone
C in X , we define C � D ff 2 Hom.X;R/ j f .v/ � 0 for all v 2 C g and call C �

the dual of C ; and for any cone F 2Hom.X;R/, we define F �D fv 2X j f .v/�
0 for all f 2 F g and call F � the dual of F . If W acts on X , then Hom.X;R/
bears the contragredient representation of W in the following way: if w 2W and
f 2 Hom.X;R/ then wf 2 Hom.X;R/ is given by the rule .wf /.v/D f .w�1v/
for all v 2X . It is readily checked that for a cone C in X , we have C � C ��, and
also for any w 2W , we have .wC/� D wC �.

The following is a well-known result whose proof can be found in [Howlett 1996,
Lecture 1, Note (c)]:

Lemma 4.1. Suppose that X is a real vector space of finite dimension, and let C
be a cone in X . Then .C �/� D C , where C is the topological closure of C in X
(with respect to the standard topology on X ). �

Set P D PLC.�/[f0g. It is clear that P is a cone in V . We define the Tits cone
of W in the same way as in Section 5.13 of [Humphreys 1990]:
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Definition 4.2. The Tits cone of the Coxeter group W is the W -invariant set

U D
[
w2W

wP �:

It is not obvious from this definition that the Tits cone is indeed a cone; however,
this is made clear by the following result:

Proposition 4.3.

(4-1) U D
˚
f 2Hom.span.�/;R/ j f .x/� 0 for all but finitely many x 2ˆC

	
:

Proof. Denote the set on the right-hand side of (4-1) by Y , and for each f 2
Hom.span.�/;R/ define Neg.f / by Neg.f /D fx 2ˆC j f .x/ < 0g.

If f 2 U then f D wg for some w 2W and g 2 P �, and it is readily checked
that Neg.f /�N.w�1/. Since N.w�1/ is a finite set, it follows that f 2 Y , and
hence U � Y . Conversely, suppose that f 2 Y . If Neg.f /D∅ then f 2 P � � U .
Thus we may assume that # Neg.f / > 0, and proceed by induction. Observe that
then there exists some ˛ 2 � such that f .˛/ < 0. It is then readily checked that
# Neg.r˛f /D # Neg.f /� 1, and hence it follows from the inductive hypothesis
that r˛f 2U . Since U is W -invariant, it follows that f 2U , and hence Y �U . �

Lemma 4.4. U � D
T
w2W

w.P �/�. Furthermore, U � D
T
w2W

wP whenever � is a
finite set.

Proof. Write U � D
˚
v 2 V j f .v/� 0, for all f 2 U

	
D
˚
v 2 V j .w�/.v/� 0 for all � 2 P � and all w 2W

	
D
˚
v 2 V j �.w�1v/� 0; for all � 2 P � and all w 2W

	
D

T
w2W

˚
v 2 V j �.w�1v/� 0 for all � 2 P �

	
D

T
w2W

˚
wv 2 V j �.v/� 0 for all � 2 P �

	
:

Thus

(4-2) U � D
\
w2W

˚
wv 2 V j v 2 .P �/�

	
:

Let X D span.�/. If #� is finite then it follows from Lemma 4.1 that .P �/� D P .
It is clear that P is topologically closed; hence (4-2) yields that U � D

T
w2W wP

when � is a finite set. �

Lemma 4.5. Suppose that v 2 V has the property that .a; v/ � 0 for all a 2 �.
Then wv� v 2 P for all w 2W . Moreover, if v 2 P then v 2 U �.

Proof. Use induction on `.w/. If `.w/D0 then there is nothing to prove. If `.w/�1
then we may write w D w0ra where w0 2 W and a 2 � with `.w/ D `.w0/C 1.



356 XIANG FU

Then Proposition 2.3 yields that w0a 2ˆC � P , and we have

wv� v D .w0ra/v� v D w
0.v� 2.v; a/a/� v D .w0v� v/� 2.a; v/w0a:

By the inductive hypothesis, w0v � v 2 P . Since .a; v/ � 0, it follows from the
above that wv� v 2 P .

If v 2 P then wv D .wv� v/C v 2 P for all w 2W , and hence

v 2
T
w2W

w�1P � U �: �

Proposition 4.6 [Fu 2012, Proposition 3.4]. Suppose that x, y 2 ˆ are distinct
with x domW y. Let W 0 be the dihedral reflection subgroup generated by rx and ry ,
and let �.W 0/D f˛; ˇg. Then there exists some w 2W 0 such that�

wxD ˛;

wyD�ˇ;
or

�
wxD ˇ;

wyD�˛:

In particular, .x; y/D�.a; b/. �

Proposition 4.7. Suppose that x, y 2 ˆ such that x domW y. Then w.x � y/ 2
PLC.�/ for all w 2W , that is, x�y 2 U �.

Proof. The assertion is trivially true if x D y, so we may assume that x ¤ y. Since
x domW y, Lemma 3.2(iv) yields that .x; y/� 1. Let W 0 be the (infinite) dihedral
subgroup of W generated by rx and ry . Let S.W 0/D fs; tg and4.W 0/D f˛s; ˛tg.
Proposition 4.6 yields that .˛s; ˛t /D�.x; y/ � �1. Set ci as in Proposition 3.5
for each i 2 Z. Since x domW y, it follows that .x; y/� 1, and Proposition 3.5(ii)
then yields that there exist integers m and n such that�

xD cnC1˛sC cn˛t ;

yD cmC1˛sC cm˛t ;
or

�
xD cn�1˛sC cn˛t ;

yD cm�1˛sC cm˛t :

Next we shall show that n>m. Suppose for a contradiction that m� n. Then either
xDy (when nDm) or else there will be a w 2W 0 such that wx 2ˆ.W 0/\ˆ� and
yet wy 2ˆ.W 0/\ˆC (when n < m), both contradicting the fact that x domW y.
Since cn > cm whenever n > m, it follows that x � y 2 PLC.�/. Given the W -
invariance of dominance, for any w 2W , repeat the argument with x replaced by
wx and y replaced by wy, we may conclude that w.x�y/ 2 PLC.�/� .P �/�. It
then follows from Lemma 4.4 that x�y 2 U �. �

When #� is finite, it can be checked that Lemma 4.4 yields that whenever x,
y 2ˆ such that x�y 2 U �, then x domW y. In fact we can remove this finiteness
condition and still prove the same result, and to do so we need some special notations
and a few extra elementary results. We thank the referee of this paper for prompting
us to look in this direction.
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Notations 4.8. For a subset I of S we set �I D fx 2� j rx 2 I g; VI D span.�I /;
WI D hI i; and PI D PLC.�I /[f0g. Furthermore, we set

P �I D
˚
f 2 Hom.VI ;R/ j f .x/� 0 for all x 2 PI

	
I

P ��I D
˚
x 2 VI j f .x/� 0 for all f 2 P �I

	
:

Then CI D .VI ; �I ; . ; /I / (where . ; /I is the restriction of . ; / on VI ) is a Coxeter
datum with corresponding Coxeter system .WI ; I /, and we call WI the standard
parabolic subgroup of W corresponding to I . Clearly WI preserves VI .

Lemma 4.9. Suppose that I is a subset of S . Then P ��\VI � P ��I .

Proof. Write V D VI ˚V 0I , where V 0I is a vector space complement of VI . Then
every v 2 V is uniquely written as vD vI Cv0I , where vI 2 VI and v0I 2 V

0
I . Every

g 2P �I gives rise to a g0 2P � as follows: for any v 2 V , simply set g0.v/D g.vI /.
Now let x 2 P �� \ VI and f 2 P �I be arbitrary. Then f .x/D f 0.x/ � 0, since
f 0 2 P � and x 2 P ��. Hence x 2 P ��I , and so P ��\VI � P ��I . �

Proposition 4.10. Let x, y 2ˆ. Then x�y 2 U � if and only if x domW y.

Proof. By Proposition 4.7 we only need to prove that when x and y are both roots
then x � y 2 U � implies that x domW y. The assertion certainly holds if x D y,
thus we only need to check the case when x ¤ y.

Since dominance and U � are both W -invariant, it follows that we only need to
prove the following statement: if x 2ˆ� then y 2ˆ� too.

Take I D fr˛ j ˛ 2 supp.x/[ supp.y/g, and note that in particular, I is a finite
set. Now in view of Lemma 4.4, Lemma 4.9 and the fact that WI preserves VI we
have

x�y 2
� T
w2W

wP ��
�
\VI �

� T
w2WI

wP ��
�
\VI �

T
w2WI

w.P ��\VI /

�
T

w2WI

wP ��I D
T

w2WI

wPI ;

where the equality follows from Lemma 4.1, since I is a finite set. Thus x�y 2PI ,
and this implies, precisely, that y 2ˆ� whenever x 2ˆ�. �

Next we have a technical result which is a key component of the main theorem
of this section.

Proposition 4.11. Suppose that x, y 2ˆ are distinct with x domW y. Then there
exists some w 2 W such that wx 2 ˆC, wy 2 ˆ� and .w.x � y/; z/ � 0 for all
z 2ˆC.

Proof. Clearly it is enough to show that under such assumptions there exists some
w 2W with wx 2ˆC, wy 2ˆ� and .w.x�y/; z/� 0 for all z 2�.



358 XIANG FU

LetW 0 be the (infinite) dihedral reflection subgroup ofW generated by rx and ry ,
and let 4.W 0/D fa0; b0g. Clearly a0, b0 2 ˆC, and Proposition 4.6 yields that
.a0; b0/D�.x; y/� �1; furthermore, there is some u 2 hfrx; rygi such that

(4-3)
�
u.x/D a0;

u.y/D�b0;
or

�
u.x/D b0;

u.y/D�a0:

At any rate, u.x � y/ D a0C b0. Since the W -action preserves . ; /, it follows
that .a0; a0/ D 1 D .b0; b0/, and hence .a0C b0; a0/ � 0 and .a0C b0; b0/ � 0.
However there may exist some c1 2� with .a0C b0; c1/ > 0. If this is the case,
set a1 D rc1a0 and b1 D rc1b0. Recall that .d; c1/ � 0 for all d 2� n fc1g, so it
follows that

(4-4) c1 2 supp.a0/[ supp.b0/:

Since .a0 C b0; c1/ > 0, whereas .a0 C b0; a0/ � 0 and .a0 C b0; b0/ � 0, it
follows that a0 ¤ c1 and b0 ¤ c1. Therefore we see that a1, b1 2 ˆC, and
.a1; b1/ D .a0; b0/ � �1. Consequently Theorem 2.9(ii) yields that a1, b1 are
the canonical roots for the root subsystem ˆ.hfra1 ; rb1gi/. Since rc1.a0C b0/D
a0C b0� 2.a0C b0; c1/c1 and .a0C b0; c1/ > 0, it follows that

supp.a1/[ supp.b1/� supp.a0/[ supp.b0/

and X
a2�

coeffa.a1/C
X
a2�

coeffa.b1/ <
X
a2�

coeffa.a0/C
X
a2�

coeffa.b0/:

Moreover, since .a0Cb0; c1/ > 0, it follows that at least one of .a0; c1/ or .b0; c1/
must be strictly positive. Hence Lemma 2.7 yields that

dp.a1/C dp.b1/� dp.a0/C dp.b0/:

Repeating this process, we can obtain new pairs of positive roots fa2; b2g; : : : ,
fam�1; bm�1g, fam; bmg with

supp.am/[ supp.bm/� supp.am�1/[ supp.bm�1/� � � � � supp.a0/[ supp.b0/

and dp.am/C dp.bm/ � dp.am�1/C dp.bm�1/ � � � � � dp.a0/C dp.b0/, so long
as we can find a cm 2 � such that .am�1 C bm�1; cm/ > 0. This process only
terminates at a pair fan; bng for some n if .anCbn; z/� 0 for all z 2�. Now if we
could show that this process terminates at some such fan; bng after a finite number
of iterations, then we have in fact found a w 2W given by

(4-5) w D rcnrcn�1 � � � rc1u; where u is as in (4-3);
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satisfying

.w.x�y/; z/D .rcn � � � rc1.a0C b0/; z/D .anC bn; z/� 0

for all z 2�.
Observe that the set of positive roots having depth less than or equal to the specific

bound dp.a0/C dp.b0/ and support in the fixed finite subset supp.a0/[ supp.b0/
of � is finite; indeed, Lemma 2.7(ii) implies that there are at most

#.supp.a0/[ supp.b0//dp.a0/Cdp.b0/

such positive roots. Hence it follows that the possible pairs of positive roots fai ; big
obtainable in the process above must be finite too. SinceX

a2�

coeffa.aj /C
X
a2�

coeffa.bj / <
X
a2�

coeffa.ai /C
X
a2�

coeffa.bi /

for all j > i , it follows that the sequence fa0; b0g, fa1; b1g; : : : must terminate at
fan; bng for some finite n, as required.

Finally, keeping w as in (4-5), we see from the construction above that either
wx D an 2ˆ

C and wy D�bn 2ˆ�, or wx D bn 2ˆC and wy D�an 2ˆ�. �

Definition 4.12. We define the imaginary cone Q of W by

QD
˚
v 2 U � j .v; a/� 0 for all but finitely many a 2ˆC

	
:

The following result was obtained independently by Dyer as a consequence of
[Dyer 2012, Theorem 6.3], stating that the imaginary cone of a reflection subgroup
is contained in that of the overgroup.

Theorem 4.13. Suppose that x, y 2ˆ such that x domW y. Then x�y 2Q.

Proof. By Proposition 4.7 we know that x � y 2 U �, thus to prove the desired
result, we only need to show that .x�y; z/� 0 for all but finitely many z 2ˆC.
Suppose that z 2ˆC such that .x�y; z/ > 0. Let w 2W be as in Proposition 4.11.
Then .w.x�y/; wz/ > 0, and by Proposition 4.11 this is possible only if z 2N.w/.
Since #N.w/ is clearly finite (equal to `.w/), it follows that indeed .x�y; z/� 0
for all but finitely many z 2ˆC. �

Remark 4.14. The above theorem is a special case of Dyer’s result when the
subgroup is dihedral. In fact, Dyer’s result, when applied to dihedral reflection
subgroups, implies that if x and y are roots with x domW y, then x�cy 2Q for an
explicit range of c 2 R depending on the value of .x; y/. Our formulation was first
suggested to us by Howlett and Dyer, and we gratefully acknowledge their help.

Theorem 4.13, combined with Proposition 4.10, immediately implies this:

Corollary 4.15. Let x, y 2ˆ. Then x�y 2Q if and only if x domW y. �
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Remark 4.16. By Proposition 4.10 and Corollary 4.15, when x, y 2 ˆ, it is
impossible for x�y to be in U � nQ.

Corollary 4.17. Suppose that x, y 2ˆ are distinct. The following are equivalent:

(i) Whenever x domW z domW y for some z 2ˆ, then either zD x or zD y (thus
forming a cover of dominance);

(ii) There exists a w 2W such that wx 2D0 and wy 2 �D0.

Proof. Suppose that (i) is the case. Let w be as in Proposition 4.11 above. First
we show that then wx 2D0. Suppose for a contradiction that wx …D0, and let
z 2D.wx/. Then Proposition 4.11 yields that wy 2ˆ� and .wy; z/� .wx; z/� 1.
Hence it is clear that z domW wy. But this implies that x domW w�1z domW y

with x¤w�1z¤y, contradicting (i). Thereforewx 2D0, as required. Exchanging
the roles of x and �y we may deduce that wy 2 �D0.

Suppose that (ii) is the case and suppose for a contradiction that there exists
some z 2ˆ n fx; yg such that x domW z domW y. Let w 2W with wx 2D0 and
wy 2�D0. Ifwz 2ˆC then Lemma 3.2(ii) yields thatwx domW wz, contradicting
the fact that wx 2D0. On the other hand, if wz 2ˆ�, then parts (ii) and (iii) of
Lemma 3.2 yield that�wy domW �wz2ˆ

C, contradicting the fact that�wy 2D0.
�

Observe that applying Corollary 4.17 to arbitrary reflection subgroup W 0 of W
yields the following:

Corollary 4.18. Suppose that W 0 is a reflection subgroup of W with x and y 2
ˆ.W 0/ being distinct. The following are equivalent:

(i) Whenever x domW 0 z domW 0 y for some z 2 ˆ.W 0/, then either z D x or
z D y;

(ii) There exists a w 2W 0 such that wx 2DW 0;0 and wy 2 �DW 0;0. �
Definition 4.19. Suppose that W 0 is a reflection subgroup of W and x, y 2ˆ.W 0/
satisfy both (i) and (ii) of Corollary 4.18. Then we say that the dominance between
x and y is minimal with respect to W 0.

Proposition 4.20. Suppose that x, y 2ˆ are distinct with x domW y, and let W 0

be the dihedral reflection subgroup generated by rx and ry . Then the dominance
between x and y with respect to W 0 is minimal.

Proof. It follows from Corollary 3.3(ii) that x domW 0 y, and hence Lemma 3.4
yields that W 0 is infinite dihedral. Let �.W 0/D f˛; ˇg. Then Proposition 3.17(i)
yields that DW 0;0 D f˛; ˇg.

On the other hand, it follows from Proposition 4.6 that there is some w 2W 0

such that �
wxD a;

wyD�b;
or

�
wxD b;

wyD�aI
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consequently Corollary 4.18 yields that the dominance between x and y with respect
to hfrx; rygi is minimal. �

From this proposition we may deduce:

Proposition 4.21. Suppose that x 2ˆC with D.x/D fx1; x2: : : : ; xmg. For each
i 2 f1; 2; : : : ; mg, set Wi D hfrx; rxi gi. Then Wi ¤Wj whenever i ¤ j .

Proof. For each i 2 f1; 2; : : : ; mg, set fsi ; tig D S.Wi /. Suppose for a contradiction
that W 0DWi DWj for some i ¤ j . Then we may write fs; tg D fsi ; tig D fsj ; tj g.
Corollary 3.3(ii) yields that x domWk xk for all k 2 f1; 2; : : : ; mg, and since there is
no nontrivial dominance in finite Coxeter groups, it follows that W1, W2; : : : , Wm
are all infinite dihedral reflection subgroups. Hence it follows from Proposition 4.5.4
of [Björner and Brenti 2005] that .˛s; ˛t / � �1. Set cn as in Proposition 3.5 for
each n 2 Z. Since x domW xi and x domW xj , Proposition 3.5(ii) yields that either8<:

x D cm˛sC cmC1˛t ;

xiD cm0˛sC cm0C1˛t ;

xjD cm00˛sC cm00C1˛t ;

or

8<:
x D cm˛sC cm�1˛t ;

xiD cm0˛sC cm0�1˛t ;

xjD cm00˛sC cm00�1˛t ;

for some distinct integers m, m0 and m00. Observe that in either case .xi ; xj /� 1,
and therefore there will be (nontrivial) dominance between xi and xj . Without loss
of any generality, we may assume that x domW xi domW xj . Then

x domW 0 xi domW 0 xj

by Corollary 3.3(ii), contradicting Proposition 4.20. �

We close this paper with an alternative characterization for the imaginary coneQ
when #�<1.

Proposition 4.22. If #�<1 then

(4-6) QD
˚
wv j w 2W and v 2 P such that .v; a/� 0 for all a 2ˆC

	
:

Proof. First we denote the set on the right-hand side of (4-6) by Z, and for each
b 2 P , define Pos.b/D fc 2 ˆC j .b; c/ > 0g. Recall that, under the assumption
that #�<1, Lemma 4.4 yields that

QD

�
v 2

\
w2W

wP
ˇ̌̌
.v; a/� 0 for all but finitely many a 2ˆC

�
:

Let u 2Q be arbitrary. Since #�<1, it follows from Lemma 4.4 that u 2 P .
If Pos.u/D∅, then trivially u 2 Z. Therefore we may assume that Pos.u/¤∅,
and proceed by induction on # Pos.u/ (this is only possible because u 2Q, and so
# Pos.u/ <1). Let a 2� be chosen such that .u; a/ > 0. Then it can be readily
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checked that Pos.rau/ D ra.Pos.u/ n fag/. Thus the inductive hypothesis yields
that rau 2Z. Clearly Z is W -invariant, and so u 2Z, and hence Q �Z.

Conversely, if x 2 Z, then x D wv for some w 2 W and v 2 P such that
.v; a/ � 0 for all a 2 �. Lemma 4.5 yields that v 2 U �, and since U � is clearly
W -invariant, it follows that x 2 U �. Suppose that y 2ˆC with .x; y/ > 0. Since
.x; y/D .wv; y/D .v; w�1y/, and since .v; a/� 0 for all a 2ˆC, it follows that
w�1y 2ˆ� and thus y 2N.w�1/. The finiteness of the set N.w�1/ then implies
that x 2Q, and hence Z �Q. �
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We study the semicontinuity of automorphism groups for perturbations of
domains in complex space or in complex manifolds. We provide a new ap-
proach to the study of such results for domains having minimal boundary
smoothness. The emphasis in this study is on the low differentiability as-
sumption and the new methodology developed accordingly.
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1. Introduction

It is a familiar perception of everyday life that symmetry is hard to create, but
easy to destroy. To make the crooked straight requires some definite effort, but
the slightest change can suffice to make the straight a little crooked and hence not
straight at all. This perception is easily substantiated in precise form for geometric
objects in Euclidean space. It is natural to ask if something similar might apply for
automorphism groups in complex analysis, that is, for the group of biholomorphic
self-maps of, say, a bounded domain in complex Euclidean space.

In one complex variable, this idea does not yield much, at least in the topologically
trivial case. Since all bounded domains that are topologically equivalent to the unit
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disc are biholomorphic to the unit disc (Riemann mapping theorem, of course),
there is not much interest in discussing how the automorphism group varies with
the domain: it does not vary at all.

But, in higher dimensions, the idea comes into its own. Domains near the unit
ball can have no automorphisms whatever except the identity, and indeed domains
with trivial automorphism group are dense in the set of C1 strongly pseudoconvex
domains in the C1 topology (see [Greene and Krantz 1982a] for detailed references
to the literature): the proof of this result in fact goes back really to Poincaré, in
effect, since it depends essentially only on counting parameters rather than on the
details of local invariant theory, at least once one knows that biholomorphic maps
extend smoothly to the boundary [Fefferman 1974]. It is also the case that domains
near the unit ball have automorphism groups which are isomorphic to a subgroup
of the automorphism group of the ball. Indeed, if a domain is C1 close enough to
the ball, then the domain is either biholomorphic to the ball or its automorphism
group is isomorphic to a (closed) subgroup of the unitary group [Greene and Krantz
1982a].

This kind of semicontinuity holds in greater generality [ibid.]. If a C1 strongly
pseudoconvex domain is not biholomorphic to the ball, then there is a neighborhood
of the domain in the C1 topology on the set of all C1 bounded domains with
the property that the automorphism group of every domain in the neighborhood
is isomorphic to a subgroup of the automorphism group of the original domain.
(The case of the fixed domain being biholomorphic to the ball is as in the previous
paragraph.)

The goal of this paper is to explore the possibility of reducing the level of
differentiability required for this type of semicontinuity result, both for the fixed
domain itself and for the perturbed domains and the topology upon them. We shall
show in fact that C1 can be reduced to C 2. This is optimal in the sense that C 2 is
the natural setting for the discussion of strong pseudoconvexity and is the lowest
level of regularity for which the definition is naturally given. (One can, of course,
construct somewhat more intricate and to some extent artificial ideas of strong
pseudoconvexity wherein the boundary need not have that much regularity, but
these will not be explored here.)

It will turn out that the complex analysis results just discussed can in fact best
be treated by changing the whole context to manifolds and general group actions.
The role of complex analysis becomes simply to guarantee a kind of uniform
compactness discussed in Section 2 in detail.

To put this matter in perspective, it is desirable to recall in outline how the
semicontinuity results in [Greene and Krantz 1982a] were obtained. The starting
point is the use of normal family arguments. In this context, the setup is as follows.
Fix a bounded domain �0. Then a sequence of bounded domains �j is considered
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to converge to �0 if there is a sequence of maps ĵ W�0!�j which converges
to the identity in some appropriate topology. Now, in this situation, a sequence of
automorphisms fj W�j !�j always has a subsequence fjk

such that the maps
ˆ�1

jk
ıfjk
ı ĵk

converge to some map of�0 to the closure of�0. Here convergence
means uniform convergence on compact subsets of �0.

However, it is relatively easy to show, and it is in fact a classical result that, if
the limit mapping is in fact interior, i.e., if its image lies in �0 itself, then that limit
is an automorphism of �0. (A detailed proof is given in [Krantz 2001].) Thus, in
trying to relate the automorphisms of the �j ’s to those of �0, one is interested in
situations where it is guaranteed that the family of maps of the sort described always
has “nondegenerate” limits; that is, the limits are necessarily the maps into �0

itself, with no boundary points in the image.
As it happens, every strongly pseudoconvex bounded domain that is not biholo-

morphic to the ball has a compact automorphism group. This was proved in [Wong
1977] and has been much generalized since, to the point where the result is not only
valid for C 2 domains but is localized completely: if a sequence of automorphisms
has the property that, for some interior point the sequence of the images of the
point converge to a C 2 strongly pseudoconvex boundary point of a domain in a
general complex manifold, then the domain is biholomorphic to the ball [Efimov
1995; Gaussier et al. 2002]. This line of thought makes it natural to consider the
whole normal families situation for bounded strongly pseudoconvex domains that
are not biholomorphic to the ball, which will indeed be the main topic in this paper.
However, certain aspects of the situation can be treated with no pseudoconvexity
invoked at all. If one simply assumes the relevant kind of nondegeneracy of normal
families as a hypothesis, then a semicontinuity result already follows. This matter
is treated in Section 2.

It is natural to ask when that nondegeneracy hypothesis is satisfied, that is, under
what conditions of a more familiar sort the nondegeneracy condition (stably interior)
that is required in Section 2 is sure to hold. As we shall see, it in fact always holds
under the hypothesis of C 2 strong pseudoconvexity of the boundary of �0 (�0 not
biholomorphic to the ball) and the assumption that the �j converge to �0 in the
C 2 topology. How this arises requires some explanation.

The semicontinuity of automorphism groups in the C 2 case will be obtained in
this paper again by using curvature invariants to bound the distance of orbits from
the boundary stably. But the stability of the asymptotic constancy of holomorphic
curvature of the Bergman metric will be obtained without using the Fefferman
expansion, thus avoiding the need for a large number of derivatives. Instead, the
behavior of the holomorphic sectional curvature of the Bergman metric will be
analyzed using the “scaling method,” as explained in Section 3. The possibility
of using the scaling method depends on noting that the holomorphic sectional
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curvature can be expressed in terms of a special basis for the Hilbert space of square
integrable holomorphic functions (see [Greene and Wu 1979] and [Epstein 1965]
for the special basis concept in generality). This means that one can detour around
the rather awkward formulas from Riemannian geometry that express the curvature
tensor as a whole in terms of the metric and operate instead with more directly
accessible aspects of the fundamental Bergman construction.

In the last section of the present paper, a more refined kind of semicontinuity
result involving not just isomorphism to a subgroup but isomorphism to a subgroup
via diffeomorphism conjugacy will be obtained for strongly pseudoconvex domains
with low boundary regularity. For technical reasons, the regularity cannot be
quite reduced to the C 2 level which would be all that is needed for the subgroup
semicontinuity. This is related to the present Theorem 4.3, a uniform version of
Lempert’s extension theorem for biholomorphic mappings of bounded domains with
C k;˛ smooth boundaries for every k�2. For the conjugacy arguments, the necessary
regularity here turns out to be C 4;˛. It may be possible that diffeomorphism
conjugacy also applies in the C 2 case, but this result cannot be proved by the
methods used here.

It is worth noting that in [Greene and Krantz 1985] we established a version of the
semicontinuity theorem for automorphism groups in the context of C 2 convergence.
That paper was an important first step in the program we are developing here. The
role of holomorphic curvature of the Bergman metric was replaced by the quotient
invariant, that is the Carathéodory volume divided by the Kobayashi–Eisenmann
volume. But the curvature methods here are of independent interest, and the needed
stable uniformity of C k extension of automorphisms, for low k, is checked here in
Theorem 4.3.

2. Normal families and general semicontinuity of groups of mappings

In this section, some very general results will be discussed about groups of diffeo-
morphisms of open sets in Euclidean spaces. The fundamental idea is that, as far as
semicontinuity of the groups is concerned, the noncompact case can be converted to
the compact case. This is, more precisely, true as far as semicontinuity in the sense of
isomorphism to a subgroup is concerned. We begin with a definition of an appropri-
ate idea of convergence of the open sets. For convenience, and without any particular
loss of generality, we restrict our attention to connected open sets, i.e., domains.

Definition 2.1. A sequence �j of connected open sets, or domains, in a Euclidean
space Rn, is said to containment-converge to a limit domain�0 if, for every compact
subset K of �0, K is contained in �j for all sufficiently large j .

Definition 2.2. If the sequence f�j g of domains containment-converges to a do-
main �0, then a sequence of C1 mappings fj W�j ! Rn is said to converge C1
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normally if, for each compact subset K of�0, the mappings fj and their derivatives
of all orders converge uniformly on K.

Note here that the fj are defined in a neighborhood of K, any compact set K,
for all j sufficiently large, so that the desired uniform convergence indeed makes
sense.

For our next definition, we recall that there is a metric, to be denoted 
K , on the
set of all C1 mappings of a neighborhood of a compact subset K to Rn such that
convergence in this metric is equivalent to convergence of the mappings and their
derivatives of all orders uniformly on the compact set K (see [Greene and Krantz
1982b], for example).

Definition 2.3. Suppose that f�j g is a sequence of domains which containment-
converges to a domain �0 and also suppose that, for each j , Gj is a group of
diffeomorphisms of �j , and that G0 is a group of diffeomorphisms of �0. We
say that the sequence of groups Gj converges normally to G0 if, for each compact
subset K of �0 and for each � > 0, there is a j�;K such that, for each j > j�;K and
each �j 2Gj , the mapping �j jK lies within 
K -distance � of some element of G0.

In case one has not domains, but compact manifolds and compact groups, then
the situation is as follows:

Lemma 2.4 (from [Ebin 1968]; cf. [Kim 1987] and [Greene et al. 2011]). If
M is a compact manifold and if Gj is a sequence of compact subgroups of the
diffeomorphism group of M [in the topology determined by the metric 
M ] such
that Gj converges to the compact subgroup G0 then, for all j sufficiently large, Gj

is isomorphic to a subgroup of G0. Moreover, the isomorphism can be obtained by
conjugation by a diffeomorphism �j and the �j can be chosen to converge to the
identity [again in the topology determined by the metric 
M ].

This follows from the original result of [Ebin 1968] as follows. Averaging
on arbitrary Riemannian metric on M with respect to the action of G gives a
Riemannian metric g on M which is G-invariant; i.e., G� Isom.g/, where Isom.g/
is the isometry group of g. Averaging g with respect to the action of Gj for each j

yields Riemannian metric gj with Gj � Isom.gj / for each j . Since the elements
of Gj are close to the elements of G by hypothesis, when j is large, it follows easily
that the sequence fgj g of metrics converges C1 to g. By Ebin’s original result,
there are, for all j sufficiently large, diffeomorphisms �j WM !M such that �j

conjugates Isom.gj / to a subgroup �j ıˇ ı�
�1
j 2 Isom.g/ for all ˇ 2 Isom.gj / of

Isom.g/; moreover, the sequence f�j g can be taken to converge C1 to the identity.
Then each �j conjugates Gj (for j large) to a subgroup yGj of Isom.g/, with yGj

C1-close to G. By a classical theorem of [Montgomery and Samelson 1943], it
follows that yGj is isomorphic to a subgroup of G via conjugation by an element �j

of Isom.g/, with the �j converging to the identity.
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This point will arise again in a slightly different form in Section 5, q.v.
Our goal here is to show how to reduce the domain case to the compact manifold

situation described in Lemma 2.4. Specifically, we want to prove the following
proposition:

Proposition 2.5. Suppose that f�j g is a sequence of bounded domains in RN

which containment-converges to �0 in the sense of Definition 2.1 and that, for
each j , Gj is a compact group of diffeomorphisms of cl.�j / and that the sequence
fGj g converges C1 normally to a compact group G0 of diffeomorphisms of cl.�0/

[convergence in the sense of Definition 2.3]. Here, of course, cl denotes the closure
of the indicated set. Then, for all sufficiently large j , the group Gj is isomorphic to
a subgroup of G0.

Proof. The essential tool is to use group-invariant exhaustion functions to find
a smoothly bounded subdomain of �0 that is taken to itself by each element of
the group G0 and then to pass to the “double” of these subdomains to form a
compact manifold. Then one does a similar construction to nearby Gj -invariant
subdomains of�j and thus attains the situation of Ebin’s theorem. We now describe
this situation in more detail, following the arguments developed in [Greene and
Krantz 1982b]:

Definition 2.6. A real-valued function � W�! R on a domain � is said
to be an exhaustion function if, for every ˛ 2 R, the set ��1..�1; ˛�/ is
compact — that is, the sublevel sets of � are compact.

Exhaustion functions of course always exist on domains and indeed on manifolds
in general. One for (not necessarily bounded) domains that frequently occurs
in complex analysis is max.kzk2;� log dist.z; the complement of the domain//.
Exhaustion functions with special properties play an important role, for instance, in
the study of Stein manifolds; these are of course more difficult to construct.

Now suppose that G is a compact group of diffeomorphisms on a domain � and
suppose that � is an exhaustion function on �. Then the function y� defined by

O�.z/ WD

Z
G

�.g.z// d�.g/;

where d� is the normalized Haar measure on G, is also an exhaustion function,
as one easily sees. This function is G-invariant in the sense that O�.g.z//D O�.z/.
Thus its sublevel sets are invariant under the action of G: a given sublevel set is
mapped to itself by each element of G.

If � is C1, then O� is also C1. In this case, for all sufficiently large ˛, except
for a set of measure 0, the sublevel set O��1.�1; ˛� is a compact C1 manifold-
with-boundary. This follows from Sard’s theorem: one need only take ˛ so large
that the sublevel set is nonempty and such that ˛ is a regular value for O�.



SEMICONTINUITY OF AUTOMORPHISM GROUPS 371

Now we return to the situation of a sequence of compact groups Gj converging
in our previous sense to a compact group G0. As in the general setting above, we
choose a C1 exhaustion function �0 and average it over G0 to get a G0-invariant,
C1exhaustion function O�0.

Because Gj is defined on �j while O�0 is defined on �0, we cannot average
O�0 to make it Gj -invariant. We can, however, perform the averaging on arbitrary
compact subsets.

Specifically, choose ˛ as above, so that O��1
0
.�1; ˛� is nonempty and of course

is a compact subset of �0. Let L be a compact subset of �0 which contains
O��1
0
.�1; ˛� in its interior and let L1 be a compact subset of �0 that contains L in

its interior.
Because the sequence Gj converges to G0, it follows easily that, for j sufficiently

large, the images under Gj of points of L lie in L1. It then follows in addition
that one can average the function �0 over the action of Gj , as in the process of
averaging to construct O�. Denote this new function on L by O�j . Note that, because
the elements of Gj are, for j large, close to those of G0, the function O�j is C1-close
(i.e., 
L-close) to O�0 on L. In particular, the sublevel set L1\ O�

�1
j .�1; ˛� will be,

for j sufficiently large, a smooth manifold-with-boundary which is C1 close to
O��1
0
.�1; ˛�.

In particular, if we choose a regular value ˛ for O�0 with the sublevel set M0 WD

O��1
0
.�1; ˛� nonempty then, for all j sufficiently large, the sublevel set Mj WD

O��1
j .�1; ˛� will be a nonempty C1 manifold-with-boundary. Moreover it will be

close to O��1
0
.�1; ˛� in the C1 sense. Namely, there will be a sequence of diffeo-

morphisms �j WM0!Mj which converges in the C1 sense to the identity on M0.
More precisely, these diffeomorphisms can be obtained as follows: for j large, O�j

has derivative bounded away from 0 along integral curves of the gradient of O�
(gradient relative to an arbitrary Riemannian metric, indeed) near O��1.f˛g/. Motion
along the integral curves gives a diffeomorphism of the ˛-level of O� onto the ˛-level
of O�j . Standard Morse theory then establishes a diffeomorphism of O��1.Œˇ; ˛�/

onto O��1
j .Œˇ; ˛�/ for some ˇ < ˛ but with ˇ close to ˛. This diffeomorphism is

C1 close to the identity and can hence be patched via a partition of unity to the
identity diffeomorphism on Q��1.Œ1

2
.˛Cˇ/; ˛�/ to give the desired diffeomorphism

of Q��1..�1; ˛�/ to Q��1
j ..�1; ˛�/, C1 close to the identity.

The next step of the proof is to form the doubles of the invariant subdomains
with smooth boundary and extend the compact group actions to them. This will
make it possible to apply the lemma above to the present situation.

For this, suppose that � is a domain, M a compact subset that is a (nonempty)
smooth manifold with boundary and H a compact group of diffeomorphisms of �
that map M to itself. By the usual averaging process, similar to the construction of
the invariant exhaustion functions as already discussed, there is a Riemannian metric
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g on� for which the elements of H act as isometries; i.e., H is contained in Isom.g/.
Now the metric g restricted to M can be modified so as to remain invariant under H

while being a product metric at and near the boundary of M (see [Greene and Krantz
1982a] for an early instance of this construction). This modification is obtained by
first noting that, if N is the inward unit normal (relative to g) along the boundary
@M , then there is an � > 0 such that the g-exponential map E W @M � Œ0; �/!M

defined by E.p; s/D expp.sN.p// is a diffeomorphism for jsj< � and moreover
E.p; s/, p 2 @M , 0� s<�, is a diffeomorphism of manifolds with boundary onto a
neighborhood V of @M in M . This is the usual tubular neighborhood construction.

Then one obtains a product metric h on the neighborhood of the boundary as

hD ds2
C dp2;

where dp2 is the metric on @M and we push this metric over via E to the neigh-
borhood V of @M in M . This is clearly invariant under H . Then one can extend
this metric to all of M in an H -invariant way, by taking a function � on V that
depends on s alone and hence is invariant under the H -action. This function is to
be 1 in a neighborhood of s D 0, and hence as a function on M , is equal to 1 in
a neighborhood of @M . It is to be equal to 0 when s > �=2. Then �hC .1��/g

will be a metric on M as desired: it is smooth on all of M , is invariant under H ,
and is a product metric near @M .

This metric now extends smoothly to be a metric yh on the double yM of M in
an obvious way. The group H acts on yM as a subgroup of the isometry group of
yh. This subgroup of the isometry group of yh will be denoted by yH .

Our construction can clearly be taken to be stable with respect to the original
H -invariant metric g on M in the sense that, if g1 is another H -invariant metric
on M which is C1 close to g, then the corresponding metric yh1 on the double yM
of M will be C1 close to yh.

With these ideas in mind, we return to the convergence situation as before.
Namely, we continue to denote by yMj the doubles of the Gj -invariant sublevel
sets, and let yGj denote the extension of the Gj . Now, when j is large, there are
diffeomorphisms ǰ W

yM0!
yMj which have the property that the pullback to yM0

of the Gj -action on Mj via ǰ converges in the sense of Lemma 2.4 above.
In particular, Gj is then isomorphic to a subgroup of G0, for all sufficiently large

j . Note that, as such, these isomorphisms apply not to Gj itself but to the restriction
of Gj to Mj . But, since Mj has nonempty interior, the restriction of Gj to be
an action on the (Gj -invariant) set Mj is injective: two isometries of a connected
manifold which are equal on a nonempty open set are equal. (This follows easily by
a standard continuation argument.) Hence the original Gj are indeed isomorphic to a
subgroup of G0 when j is sufficiently large. Thus the proposition is established. �
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3. Bergman metric and curvature with C 2 stability near the strongly
pseudoconvex boundary

Let n> 1 throughout this section. Denote by Dn the collection of bounded domains
in Cn with C 2 smooth, strongly pseudoconvex boundary, equipped with the C 2

topology via the C 2 topology on defining functions. The goal of this section is to
establish the following result, which is Klembeck’s theorem [1978] for domains
in Dn, with C 2 stability. In the statement below the notation S�.pI �/ denotes the
holomorphic sectional curvature of the Bergman metric of the domain � at p along
the holomorphic section generated by the tangent vector �.

Theorem 3.1. Let y� 2 Dn. Then, for every � > 0, there exist ı > 0 and an open
neighborhood U of y� in Dn such that, whenever � 2U,

sup
nˇ̌̌

S�.pI �/�
�
�

4

nC1

�ˇ̌̌
W � 2U; � 2 Cn

n f0g
o
< �

for any p 2� satisfying dis.p;Cn n�/ < ı.

We remark, before giving the proof, that this result is crucial in establishing
the semicontinuity theorem (Theorem 5.2): if y� is not biholomorphic to the unit
open ball, there exists . Op; O�/ 2 T�0 D�0�Cn such that Sy�. Op;

O�/ 6D �4=.nC 1/

due to Lu Qi-Keng’s theorem [Lu 1966; Greene et al. 2011, Theorem 4.2.2]. Now
Theorem 3.1 implies that, choosing U smaller if necessary, this curvature difference
continues to hold for every domain � 2U. Consequently, one sees that there exist
a constant ı > 0 depending only on . Op; O�/ and a neighborhood U of y� in the space
of domains such that

dis.�. Op/;Cn
n�/ > ı for all � 2 Aut.�/

for every � 2U, a crucial point in the proof of Theorem 5.2.

Proof. It suffices to show that the following cannot hold:

(|) there exist �0 > 0 and f��g � Dn such that �� ! y� in the C 2 topology as
�!1 and there exists a sequence fp� 2��g with lim�!1 dis.p� ; @��/D 0

such that ˇ̌̌
S�� .p� ; ��/C

4

nC1

ˇ̌̌
� �0

for every �.

Since the goal is to show that

lim
�!1

ˇ̌̌
S�� .p� ; ��/C

4

nC1

ˇ̌̌
D 0;

we may assume without loss of generality that lim�!1 p� exists. Denote this limit
by yp. Notice that yp 2 @ y�.
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Let q� 2 @�� be the closest boundary point of �� to p� for every � D 1; 2; : : : .
Then consider a sequence R� W C

n! Cn of complex rigid motions (i.e., unitary
maps followed by translations) in Cn and another rigid motion yR satisfying

(1) yR. yp/D 0 and R�.q�/D 0 for every �;

(2) R�.@��/ for every �, and yR.@ y�/ are tangent at 0 to the hyperplane defined
by Re z1 D 0;

(3) lim�!1 kR� �
yRkC 2 D 0, where the norm here is the C 2-norm of mappings

on an open neighborhood of the closure of y� in Cn.

Notice that R�.��/ converges to yR. y�/ in the C 2 topology on bounded domains
with smooth boundaries. Therefore, without loss of generality, we may also assume
the following:

(10) 0 2 @ y�\
�T1

�D1 @��
�
;

(20) @ y� and @�� (for every � D 1; 2; : : : ) share the same outward normal vector
nD .�1; 0; : : : ; 0/ at the origin;

(30) p� D .r� ; 0; : : : ; 0/ with r� > 0 for every �.

Now we need the following three lemmas for the proof. The first is:

Lemma 3.2 ([Kim and Yu 1996]; cf. [Greene et al. 2011, Chapter 10]). There exists
an open neighborhood U of the origin in Cn such that

lim
�!1

sup
0¤�2Cn

ˇ̌̌̌
2�S��\U .p� I �/

2�S�� .p� I �/
� 1

ˇ̌̌̌
D 0:

The proof of this lemma is a normal families argument.
Notice that this lemma implies: if lim�!1 S��\U .p� I �/ exists, it will coincide

with lim�!1 S�� .p� I �/.
The next two lemmas convert the problem of understanding the boundary as-

ymptotic behavior of the Bergman curvature to that of the stability of the Bergman
kernel function in the interior under perturbation of the boundary:

Lemma 3.3 ([Kim and Yu 1996]; cf. [Greene et al. 2011, Chapter 10]). Let the
sequence f.p� I ��/ 2�� � .Cn n f0g/g be chosen as above. Let Bn denote the open
unit ball in Cn. Then there exists a sequence of injective holomorphic mappings
�� W�� \U ! Cn with the following properties:

(i) ��.p�/D 0 (the origin of Cn);

(ii) for every r with 0< r < 1, there exists N > 0 such that, for every � >N ,

.1� r/Bn
� ��.�� \U /� .1C r/Bn:

The third and last lemma toward the proof of Theorem 3.1 is as follows:
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Lemma 3.4 ([Ramadanov 1967; Kim and Yu 1996]; cf. [Greene et al. 2011,
Chapter 10]). Let D be a bounded domain in Cn containing the origin 0. Let
fD�g denote a sequence of bounded domains in Cn that satisfies the following
convergence condition:

given � > 0, there exists N > 0 such that .1� �/D �D� � .1C �/D for
every � >N .

Then, for every compact subset F of D, the sequence of Bergman kernel functions
KD� of D� converges uniformly to the Bergman kernel function KD of D on F �F .

This is a result of Ramadanov [1967]. Now we return to the proof of Theorem 3.1.

Let q� , �� , y�, �� be as above. Let U be an open neighborhood of the origin
as in Lemma 3.2. Taking a subsequence, we may assume that q� 2 �� \U for
every �. Select �� as in Lemma 3.3.

Apply Lemma 3.4 to our setting, with D� D ��.�� \U / and D D Bn. The
conclusion of Lemma 3.4 states that the sequence KD� .z; �/ converges uniformly to
KD.z; �/ on F �F . This of course implies that the sequence KD� .z;

N�/ converges
to KD.z; N�/. Notice that the functions now involved are holomorphic functions in
the z and � variables together. Therefore Cauchy estimates imply that KD� .z; �/

converges uniformly to KD.z; �/ on F � F in the C k sense for any positive
integer k. Since the holomorphic sectional curvature of the Bergman metric involves
derivatives of the Bergman kernel function up to fourth order, we may conclude that
S��.��\U /.0I � / converges uniformly to SBn.0I � / on f� 2 Cn W k�k D 1g. Notice
that the latter is the constant function with value �4=.nC 1/.

Combining this result with the localization lemma (Lemma 3.2), the conversion
lemma (Lemma 3.3), and the fact that every biholomorphism is an isometry for the
Bergman metric, we see that

�
4

nC1
D lim
�!1

S��.��\U /.0I d�� jq� .��//D lim
�!1

S��.��\U /.��.q�/I d�� jq� .��//

D lim
�!1

S��\U .q� I ��/D lim
�!1

S�� .q� I ��/:

This completes the proof of Theorem 3.1. �

Remark 3.5 (completeness of the Bergman metric). The Bergman metric of a
bounded strongly pseudoconvex domain is known to be complete ([Diederich
1973]; for the more general case see [Ohsawa 1981]). Since the scaled limit shown
in the proof of Lemma 3.3 is the unit ball, a variation of that proof argument also
yields the same conclusion as [Diederich 1973] regarding completeness also (see
[Greene et al. 2011, Section 10.1.7]).
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4. Stable C k-extension of automorphisms

The purpose of this section is to establish the stability of the extension theorem
for the automorphisms of a bounded strongly pseudoconvex domain under C k

perturbation for finite k.
The result and the techniques involved in the proofs are new. More importantly,

the contents of this section (especially Theorem 4.3 on page Theorem 4.3) are
essential in creating the necessary “metric double” in the proof of Theorem 5.2.

Convergence of Lempert’s representative map. Let X , Y be complex Banach
spaces. Let � WU ! Y be a map from an open subset U of X into Y . The map � is
said to be differentiable at x 2X , if there exists a bounded linear map Dx� WX!Y

such that 

�.xC h/��.x/� .Dx�/.h/




Y
D o.khkX /

as khkX ! 0. Let L.X;Y / denote the set of bounded linear maps from X into Y .
It is naturally equipped with the operator norm and hence becomes a Banach space.
Then � is said to be C 1 on U if Dx� exists for all x 2 U and

D� W x 2 U 7!Dx� 2L.X;Y /

is continuous.
It is also well established what it means for � to belong to the class C k ; see,

[Mujica 1986], for example. To understand this point, consider the space L.X�� � ��

X;Y / of bounded k-linear maps with values in Y . For an S 2L.X � � � � �X;Y /,
define its norm as follows:

kSkk D sup
˚
kS.h1; : : : ; hk/kY W kh1kX � 1; : : : ; khkkX � 1

	
:

One more piece of notation is necessary: for a k-linear map S , a .k � 1/-linear
map ŒS �.h/ is defined by

ŒS �.h/.h1; : : : ; hk�1/ WD S.h; h1; : : : ; hk�1/:

Now the idea of a map belonging to the class C k can be defined inductively: the
map � is said to be C k at x 2X , for k D 1; 2; : : : , if there exits a bounded k-linear
map Dk

x� WX � � � � �X„ ƒ‚ …
k

! Y such that



Dk�1
xCh� �Dk�1

x � � ŒDk
x��.h/




k�1
D o.khkX /

as h! 0 and

Dk� W x 2 U 7!Dk
x� 2L.X � � � � �X„ ƒ‚ …

k

;Y /
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is continuous. It is also known that such a Dk
x� is symmetric k-linear.

Similarly, we may define the concept of Hölder class. For an ˛ with 0< ˛ � 1,
a map � is said to belong to the class C k;˛ if � is C k and

sup
x;y2U

x¤y

kDk
x� �Dk

y�kk

kx�yk˛
X

<1:

Throughout this section, we denote by � the open unit disc fz 2 C W jzj < 1g.
We shall follow the terminology of [Lempert 1986] closely. Let s be such that
0< s < ˛ and set

XnDff W@�!Cn
jf 2C 0;s

g;

YnDff 2Xn Wf admits a holomorphic continuation to cl.�/g;

Y ?n Dff 2Xn Wf admits an antiholomorphic continuation to cl.�/withf .0/D0g:

Notice that Xn D Yn˚Y ?n .
Let�D�� be a bounded strictly convex domain defined by the C kC1;˛ defining

function �. Then there exists a convex open neighborhood V of cl.�/ such that
�D�� D fz 2 V W �.z/ < 0g, where the defining function � W U ! R, defined on
a convex open set U with cl.V /� U , is of class C kC1;˛ .k � 1; 0< ˛ < 1/ with
d�¤ 0 at any point of @�. We may further assume without loss of generality that

(1) � W U ! R is compactly supported, and

(2) the real Hessian of � is strictly positive at every point of @�.

Let N be a C kC1;˛ neighborhood of � chosen so small that every element of N

has its real Hessian strictly positive at every point of V . We may require further
that there exists a constant R0 > 0 such that, if �, � 2N, then k���kC kC1;˛.U / < 1

and k�kC kC1;˛.U / <R0.
Let p be a point in � and let W a neighborhood of p in � such that W ���

for all � 2 N. Define ‚ W N˚ .Cn n f0g/˚W ! Yn by ‚.�; �; q/D e�;�;q , where
e�;�;q is the stationary map (i.e., extremal map) from cl.�/ to cl.��/ satisfying
e�;�;q.0/D q and e�;�;q

0.0/D �� for some � > 0.

Proposition 4.1. The map ‚ is locally C k;˛�s for any 0< s < ˛.

Proof. Let .�; v; q/ 2 N˚Cn n f0g ˚W. We shall prove that ‚ is C k;˛�s near
.�; v; q/. Let e D e�;v;q D .e1; : : : ; en/ W cl.�/! cl.��/ and Qe D . Qe1; : : : ; Qen/ be
the dual map of e. (See [Lempert 1981] for the definition of the dual map and its
basic properties.) Since Qe has no zeros, there exist two components which do not
vanish simultaneously by a generic linear change of coordinates. Hence we may
assume without loss of generality that Qe1 and Qe2 do not vanish simultaneously on
cl.�/. It is also shown in [Lempert 1981] that Qe extends to a C k;˛ map up to the
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boundary, and that there exist functions G1;G2 2C k;˛.cl.�// that are holomorphic
in � and satisfy Qe1G1C Qe2G2 � 1. Define the holomorphic matrix H on � by

H D

0BBBBB@
e0

1
�Qe2 �G1 Qe3 � � � �G1 Qen

e0
2
Qe2 �G2 Qe3 � � � �G2 Qen

e0
3

0 1 � � � 0
:::

:::
:::

: : :
:::

e0n 0 0 � � � 1

1CCCCCA :

Notice that H 2 C 0;s.cl.�// and det.H /¤ 0 on cl.�/. Set

Y R;U
n D

˚
f 2 Yn W kf kC 1.cl.�// <R; f .@�/� U

	
and define the map

ˆ W N˚Cn
n f0g˚W˚Y R;U

n ˚R! T ˚Y ?n�1˚Cn
˚Cn

by

ˆ.r; v; q; f; �/D

�
r ıf; �

�
hH t rz ıf i

.H t rz ıf /1

�
; f .0/� q; f 0.0/��v

�
;

where

(i) T D fg W @�! R W g 2 C 0;sg,

(ii) � W Yn�1! Y ?
n�1

is defined by �
�P1
�1 akzk

�
D
P�1
�1 akzk , and

(iii) .H t rz ı f /j denotes the j -th component of H t rz ı f and hH t rz ı f i D

..H t rz ıf /2; : : : ; .H
t rz ıf /n/.

Then f W cl.�/! cl.�r / is an extremal map satisfying f .0/D q; f 0.0/D �v if
and only if ˆ.r; v; q; f; �/D 0. So, according to [Lempert 1986], we only need to
prove that ˆ is C k;˛�s . For this purpose define the map ‰ W N˚ Y

R;U
n ! T by

‰.r; f /D r ıf . Then we pose the following:

Claim. ‰ is C k;˛�s .

We shall prove this claim by induction on k. We need some notation. For a
domain �, k 2 ZC, and 0< ˛ � 1, define

kgkC k;˛.cl.�// D sup
x2cl.�/

j
 jD0;1;:::;k

jD
g.x/jC sup
x;y2cl.�/

x¤y;j
 jDk

jD
g.x/�D
g.y/j

jx�yj˛
:

Moreover, A . B will mean that A � CB for some constant C . In turn, A / B

will mean that A! 0 whenever B! 0.
Let j 2 f0; : : : ; kg. Let Nj D fr 2 C jC1;˛.U / W krkC jC1;˛.U / < R0g. Define

‰j W Nj ˚ Y
R;U
n ! T by ‰j .r; f / D r ı f . Suppose that, for all r , � 2 Nj , we

have kr � �kC j ;˛.U / < 1.
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In case j D 0, it suffices to show that

k‰0.r; f /�‰0.�;g/kC 0;s.@�/ .
�
kr � �kC 0;˛.U /Ckf �gkC 0;s.@�/

�˛�s
:

For x 2 @�,

jr ıf .x/� � ıg.x/j � jr ıf .x/� r ıg.x/jC jr ıg.x/� � ıg.x/j

. jf .x/�g.x/j˛�s
Cj.r � �/ ıg.x/j

.
�
kf �gkC 0;s.@�/Ckr � �kC 0;˛.U /

�˛�s
:

For x, y 2 @�, let ı.x;y/D r ıf .x/� � ıg.x/� r ıf .y/C � ıg.y/. Then

jı.x;y/j � jr ıf .x/� r ıg.x/jC jr ıg.x/� � ıg.x/j

C jr ıf .y/� r ıg.y/jC jr ıg.y/� � ıg.y/j

� 2.R0/˛jf .x/�g.x/j˛C 2kr � �kC 0;˛.U /

� 2.RR0/˛kf �gk˛
C 0;s.@�/

C 2kr � �kC 0;˛.U /

and

jı.x;y/j � jr ıf .x/� r ıf .y/jC j� ıg.x/� � ıg.y/j

�R0jf .x/�f .y/j˛CR0jg.x/�g.y/j˛ � 2RR0jx�yj˛:

This implies that

jı.x;y/j.
�
kf �gkC 0;s.@�/Ckr � �kC 0;˛.U /

�˛�s
jx�yjs;

which proves the case j D 0.
Let j > 0. Suppose that ‰j W Nj ˚Y

R;U
n ! T is of class C j ;˛�s.U /. Then,

since

D.r;f /‰jC1.�;g/D .r
0
ıf /gC � ıf D‰j .r

0; f /gC‰j .�; f /;

it follows that ‰jC1 is of C jC1;˛�s.U /. This proves the claim.

Since � is a bounded linear map, the second component of ˆ is also of class
C k;˛�s.U /. The proof of the proposition is now complete. �

Next, for r 2 N, q 2 W , consider Lempert’s representation map at q for the
domain�r . We have Lr;q W cl.Bn/! cl.�r / defined by Lr;q.�/D‚.r; �; q/.j�j/D

er;�;q.j�j/. The following proposition discusses the convergence of these represen-
tation maps.

Proposition 4.2. Let �j , �2N and pj , p 2W be such that k�j��kC kC1;˛.U /! 0,
jpj � pj ! 0 as j !1. Set the notation Lj WD L�j ;pj , L WD L�;p and Bn

ı
WD

Bnnfz 2Cn W jzj< ıg. Then, for 0<ˇ <˛ and 0< ı < 1, Lempert’s representation
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maps Lj for ��j converge to Lempert’s representation map L for �� on Bn
ı

in the
C k;ˇ norm, as j !1.

Proof. Let ev WYn!Cn be defined by ev.g/Dg.1/ (here “ev” stands for “evaluation”
map). Since L.�/ D ‚.�; �;p/.1/ D ev ı‚.�; �;p/ for � 2 @Bn, ev is bounded
linear. Write D` D @m1C���Cmn=@x

m1

1
� � � @x

mn
n , where j`j Dm1C � � �Cmn. Then

D`L.�/D
�
D
j`j

.�;�;p/
‚
��
Ex1; : : : ; Ex1„ ƒ‚ …

m1

I : : : I Exn; : : : ; Exn„ ƒ‚ …
mn

�
.1/:

So kLj �LkC k;ˇ.@Bn/! 0 as j !1.
Given v 2Cn, jvj D 1, � 2�, denote by e the extremal map satisfying e.0/D p,

e0.0/D�v for some �> 0. Then L.�v/D e.�jvj/D e.�/. This implies that L.�v/

is holomorphic with respect to �. Now the Poisson integral formula for � yields
the desired conclusion. �

A simultaneous extension theorem for automorphisms. The next goal is to es-
tablish the following theorem, which treats the C k;ˇ convergence of sequences
of automorphisms. This result is new, and the proof technique is new. It has
independent interest.

Theorem 4.3 (uniform extension). Let �j , � be bounded, strongly pseudoconvex
domains in Cn with C kC1;˛ (k 2 Z, k � 2, 0 < ˛ � 1) boundaries such that �j

converges to� as j!1 in the C kC1;˛ topology, and with� not biholomorphic to
the ball. Let a sequence ffj 2Aut.�j / Wj D1; 2; : : : g be given. Then, for any ˇ with
0< ˇ < ˛, the sequence fj (every one of which extends to a C k;ˇ diffeomorphism
of the closure cl.�j / by the “sharp extension theorem” of [Lempert 1986]) admits
a subsequence �j` and fj` 2Aut.�f`/ that converges to the C k;ˇ-diffeomorphism,
the extension of f 2 Aut.�/, in the C k;ˇ topology.

This indeed is a normal family theorem together with Hölder convergence up to
the boundary. Of course precise definitions and terminology are in order, which
will be presented here as the exposition progresses.

Definition 4.4. Let �j and � be bounded strongly pseudoconvex domains in Cn

with C k;˛ (k 2 Z, k � 2, 0 < ˛ � 1) boundaries. As j !1, the sequence of
domains �j is said to converge to � in the C k;˛ topology, if there exist an open
neighborhood U of cl.�/, C k;˛ diffeomorphisms Fj W U ! U , and a positive
integer N such that

� cl.�/b U ;

� cl.�j /b U for all j >N ;

� each Fj maps cl.�/ onto cl.�j / as a C k;˛ diffeomorphism; for every j >N ;

� kFj � id kC k;˛.U /! 0 and kF�1
j � id kC k;˛.U /! 0, as j !1.
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In a similar manner, we say that the sequence of maps fj 2 C k;˛.�j ;C
m/

converges to f 2 C k;˛.�;Cm/ in the C k;˛ sense, if

lim
j!1

kfj ıFj �f kC k;˛.�/ D 0:

We now present several technical lemmas.

Lemma 4.5. Let �j be a domain in Rnj for each j D 1, 2, 3. If

(i) g, h W�1!�2 are C k0;˛0

maps that are injective,

(ii) f W�2!�3 is a C k00;˛00

map, and

(iii) .k; ˛/ is the pair of the positive integer k and the real number ˛ satisfying
kC˛ Dminfk 0C˛0; k 00C˛00g and 0< ˛ � 1,

then

(1) f ıg 2 C k;˛.�1; �3/ and

(2) kf ıg�f ı hkC k;ˇ.�1/
/ kg� hkC k;˛.�1/

for any ˇ with 0< ˇ < ˛.

Proof. We present the verification of (1) only, as our arguments are mostly straight-
forward computations and the proof of (2) is similar. The chain rule implies that

D`.f ıg/.x/D
X

.Dmf /.g.x//.Dm1g.x//m
0
1.Dm2g.x//m

0
2 � � � .Dmng.x//m

0
n ;

where ` and m are multiindices and mj nonnegative integers satisfying jmj � j`j
and

P
m0j � j`j. (We use the usual multiindex notation here; we omit detailed

expressions as they are standard.) Note that

kf ıgkC k;˛ D sup
x2�1

0�j
 j�k

jD
 .f ıg/.x/jC sup
x;y2�1

x¤y; j
 jDk

jD
 .f ıg/.x/�D
 .f ıg/.y/j

jx�yj˛
:

First, one sees immediately that

sup
x2�1

j
 jD0;1;:::;k

jD
 .f ıg/.x/j. kf kC k;˛.�2/

X
kgk

m0
1
C���Cm0

n

C k;˛.�1/
<1:

On the other hand,

jD
 .f ıg/.x/�D
 .f ıg/.y/j

D

ˇ̌̌X˚
Dmf .g.x// � .Dm1g.x//m

0
1 � � � � � .Dmng.x//m

0
n

�Dmf .g.y// � .Dm1g.y//m
0
1 � � � � � .Dmng.y//m

0
n
	ˇ̌̌
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�

Xnˇ̌�
Dmf .g.x//�Dmf .g.y//

�
� .Dm1g.x//m

0
1 � � � � � .Dmng.x//m

0
n

ˇ̌
C
ˇ̌�

Dmf .g.y//
�
�
�
.Dm1g.x//m

0
1 �Dm1g.y//m

0
1

�
� .Dm2g.x//m

0
2 � � � � � .Dmng.x//m

0
n

ˇ̌
C � � �

C
ˇ̌�

Dmf .g.y//
�
�
�
Dm1g.y//m

0
1

�
� � � � �

�
.Dmng.x//m

0
n�.Dm1g.y//m

0
1

�ˇ̌o
. kf kC k;˛.�2/

.1Ckgk˛
C 0.�1/

/P .kgkC k;˛.�1/
/jx�yj˛;

where P is an appropriate polynomial with P .0; : : : ; 0/ D 0. Hence (1) follows.
We omit the proof of (2). �

Lemma 4.6. Let k � 1. Assume that�1, �2 are bounded domains in Rn admitting
C k;˛ diffeomorphisms fj , f W cl.�1/! cl.�2/ satisfying kfj�f kC k;˛.cl.�1//

!0

as j !1. If limj!1 supx2cl.�2/
jf �1

j .x/�f �1.x/j D 0, then

lim
j!1

kf �1
j �f �1

kC k;ˇ.cl.�2//
D 0

for any 0< ˇ < ˛.

Proof. The inverse function theorem implies that df �1
j jfj .y/ D .dfj jy/

�1 and
df �1jf .y/ D .df jy/

�1. Since cl.�1/ and cl.�2/ are compact, there exist a constant
C > 0 and a positive integer N such that jdet.df jy/j> C and jdet.dfj jy/j> C for
any point y 2�1 and any integer j >N . Lemma 4.5 and its proof argument now
yield the desired conclusion. �

Lemma 4.7. Let k be an integer with k�2 and ˛ a real number satisfying 0<˛�1.
If � is a bounded, strongly pseudoconvex domain in Cn, not biholomorphic to the
unit open ball, with C kC1;˛ boundary then, for any ˇ with 0< ˇ < ˛, there exist
an open neighborhood U of � and a constant C such that kf kC k;ˇ.cl.�0// < C for
any �0 2U and any f 2 Aut.�0/.

Proof. Assume the contrary. Then there exists a sequence of strongly pseudoconvex
domains �j with C kC1;˛ boundary converging to � in the C kC1;˛ topology and
a sequence fj 2 Aut.�j / such that

lim
j!1

kfjkC k;ˇ.cl.�j // D1:

Then either

(1) there exists a sequence fxj 2�j W j D 1; 2; : : : g such that jD
fj .xj /j !1

as j !1 for some multiindex 
 satisfying 0� j
 j � k; or

(2) there exist xj , yj 2�j such that
ˇ̌
D
fj .xj /�D
fj .yj /

ˇ̌
=jxj �yj j

ˇ goes to
infinity with j for some multiindex 
 with j
 j D k.
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Suppose that (1) holds. Then, since the sequence fj converges to f in the C1.K/

topology on every compact subset K of �, it must be the case that limj!1 xj D

p 2 @� (taking a subsequence if necessary).
We shall arrive at the desired contradiction to (1) by means of the following

three steps:

Step 1. Adjustments. Let Fj denote the same diffeomorphism of cl.�/ onto cl.�j /

as in Definition 4.4. Set Fj .p/D pj , fj .pj /D qj , f .p/D q. Take the invertible
affine C-linear transformations T , Tj , t , tj W C

n! Cn such that

� Tj .pj /D T .p/D tj .qj /D t.q/D .0; : : : ; 0/;

� the outward normal vectors to the boundaries of Tj .�j /, T .�/, tj .�j / and
t.�/ at .0; : : : ; 0/ are equal to .1; 0; : : : ; 0/; and

� limj!1 Tj D T and limj!1 tj D t .

Then Tj .�j / converges to T .�/ in the C kC1;˛ topology, and also tj .�j / con-
verges to t.�/. Replacing therefore f and fj , respectively, by t ı f ı T �1 and
tj ıfj ıT �1

j , we may assume that:

� �, �j , y�, y�j are bounded strongly pseudoconvex domains with C kC1;˛

boundaries such that �j (and y�j , respectively) converges to � (and to y�,
respectively) in the C kC1;˛ topology. More precisely, there exist a neigh-
borhood U (and yU , respectively) of cl.�/ (and of cl. y�/, respectively) and
diffeomorphisms Fj W cl.�/ ! cl.�j / and yFj W cl. y�/ ! cl. y�j / such that
Fj .0/ D yFj .0/ D 0 and the maps Fj , F�1

j , yFj and yFj
�1

converge to the
identity map in the C kC1;˛ sense.

� �, �j D � ıF�1
j , y�, y�j D y� ı yF

�1
j are defining functions of �, �j , y�, y�j ,

respectively, such that k���jkC kC1;ˇ.U /! 0 and ky�� y�jkC kC1;ˇ. yU /
! 0 as

j !1 and

.1; 0; : : : ; 0/D

�
@�

@z1

.0/; : : : ;
@�

@zn
.0/

�
D

�
@�j

@z1

.0/; : : : ;
@�j

@zn
.0/

�
D

�
@y�

@z1

.0/; : : : ;
@y�

@zn
.0/

�
D

�
@y�j

@z1

.0/; : : : ;
@y�j

@zn
.0/

�
:

� There exist biholomorphisms fj W�j!
y�j , f W�! y� and a sequence xj 2�j

converging to 0 2 @� as j !1 such that fj converges to f uniformly on
every compact subset K of � while jD`fj .xj /j ! 1 as j !1 for some
multiindex ` with 1� j`j � k.
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Step 2. Simultaneous convexification. This step is directly from [Fornaess 1976].
To the expansion of � at 0,

�.z/D 2 Re z1CRe
X @2�

@zizj
.0/zizj C

1

2

X
i;j

@2�

@zi Nzj
.0/zi Nzj C o.jzj2/;

apply the local biholomorphic change ‡ D .w1; w2; : : : ; wn/ of holomorphic coor-
dinate system at the origin 0 defined by

wi.z/D

8̂<̂
:2z1C

X @2�

@zizj
.0/zizj ; i D 1;

zi ; i D 2; : : : ; n:

The new defining function (we continue to use �, as there is little danger of confu-
sion) takes the form

�D Rew1C
1

2

X
i;j

@2�

@wiwj
.0/wiwj C ".w/;

where ".w/D o.jwj2/. Note that ‡.�/ is strictly convex in a small neighborhood
of 0. Furthermore, there exists a positive integer N such that ‡.U 0\�j / is strictly
convex for any j >N . Let �j denote Q�j ı‡ , where Q�j is strictly convex on V 0\�j

for all j >N . Set

Q�.z/D Re z1C
1

2

X
i;j

@2�

@zi Nzj
.0/zi Nzj C �.z/:

There exists a positive constant R sufficiently large so that the real Hessian forms
of Q�.z/� jzj2=.2R/�Re z1 and Q�j .z/� jzj

2=.2R/�Re z1 are positive definite at
every z 2 V 0. Choose h 2 C1.R/ such that

h.x/D 0 if x � 1;

0� h.x/� 1 if 0� x � 1;

h.x/D 1 if x � 0:

Taking a larger value for N if necessary, we may have that the real Hessian forms of

Re z1C
jzj2

2R
C

1

N
h

�
jzj � �

�

��
Q�.z/�

jzj2

2R
�Re z1

�
;

Re z1C
jzj2

2R
C

1

N
h

�
jzj � �

�

��
Q�j .z/�

jzj2

2R
�Re z1

�
are both positive definite real Hessian at every point of Vı WD fz 2Cn W jzj<ıgbV 0

whenever � satisfies 0< � < ı
3

. Take � > 0 such that 22NC2� < ı
3

and set
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�.z/D Re z1C
jzj2

2R
C

1

N

NX
mD1

h

�
jzj � 22m�

22m�

��
Q�.z/�

jzj2

2R
�Re z1

�
;

�j .z/D Re z1C
jzj2

2R
C

1

N

NX
mD1

h

�
jzj � 22m�

22m�

��
Q�j .z/�

jzj2

2R
�Re z1

�
:

We further let C D fz 2 Cn W �.z/ < 0g, Cj D fz 2 Cn W �j .z/ < 0g and U 00 D

W �1.Vı=3/. Then C , Cj are bounded strictly convex domains such that the re-
stricted mappings

‡ jU 00\� W U
00
\�! Vı=3\C and ‡ jU 00\�j W U

00
\�j ! Vı=3\Cj

are biholomorphisms, and �j converges to � in the C kC1;ˇ norm, for every ˇ,
0< ˇ < ˛.

Apply the same process to y� and to y�j at 0. Denote by yC ; yCj the respective
strictly convex domains with defining functions y�; y�j and yW W yU ! yV produced by
the same procedures.

Step 3. Estimates. Let ! 2 C \V 0\
�T1

jD1 Cj

�
be a point that admits an extremal

map e W cl.�/! cl.C / satisfying

e.0/D !; e.1/D 0; and e.cl.�//� cl.C /\V 0:

Let e0.0/ D �v where jvj D 1. Let L W cl.Bn/! cl.C / (Lj W cl.Bn/! cl.Cj /,
respectively) be the Lempert representative map of C (Cj , respectively) at !. By
Proposition 4.2, there exists a � > 0 such that limj!1 kLj �LkC k;ˇ.cl.Bn

" //
D 0

for any ˇ with 0 < ˇ < ˛. Let � be a closed cone containing v in cl.Bn/ so that
L.�/� cl.C /\Vı=3 and Lj .�/� cl.Cj /\Vı=3 for all j >N . Let

‡�1.!/D �; f .�/D y�; fj .�/D y�j ; y‡.y�/D y!; y‡.y�j /D y!j

and let yL W cl.Bn/! cl. yC / and yLj W cl.Bn/! cl. yCj /, respectively, denote the
Lempert representative map of yC at the point y! and the Lempert representative
map of yCj at the point y!j .

Consider now the composite maps yL�1 ı y‡ ı f ı ‡�1 ı L W � ! Bn and
yLj
�1
ı y‡ ı fj ı‡

�1 ıLj W � ! Bn. Denote by h W cl.D/! cl.C / the extremal
map satisfying h.0/D!, h0.0/D ��, for some �> 0, and by yhD y‡ ıf ı‡�1 ıh W

cl.D/! cl. yC / the extremal map satisfying

yh.0/D y!; yh0.0/D y�j�j
d. y‡ ıf ı‡�1/j!.�/ˇ̌
d. y‡ ıf ı‡�1j!.�/

ˇ̌
for some y�. Since yC is strictly convex and f extends to cl.�/ as a C k;
 diffeo-
morphism for all 
 < ˛, we have
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yW �1
ı yL

�
j�jd. yW ıf ıW �1/j!.�/ˇ̌

d. yW ıf ıW �1j!.�/
ˇ̌ �D f ıW �1

ıL.�/:

By the same reasoning we also have

yW �1
j ı yL

�
j�jd. yW ıfj ıW �1/j!.�/ˇ̌

d. yW ıfj ıW �1j!.�/
ˇ̌ �D fj ıW �1

ıLj .�/:

Considering the left-hand sides of the preceding identities, for any ˇ, 0< ˇ < ˛,
we obtain

lim
j!1

kf ıW �1
ıL�fj ıW �1

ıLjkC k;ˇ.�"/
D 0;

where �" D � n fz 2 � W jzj< "g. Therefore

lim
j!1

kf ı‡�1
ıL�f ıF�1

j ı‡�1
ıLjkC k;ˇ.�"/

D lim
j!1

kf ıF�1
j ı‡�1

ıLj �fj ı‡
�1
ıLjkC k;ˇ.�"/

:

Hence

kf ı‡�1
ıL�f ıF�1

j ı‡�1
ıLjkC k;ˇ.�"/

/ k‡�1
ıL�F�1

j ı‡�1
ıLjkC k;ˇ.�"/

. k‡�1
ıL�‡�1

ıLjkC k;ˇ.�"/
Ck‡�1

ıLj �F�1
j ı‡�1

ıLjkC k;ˇ.�"/

. kL�LjkC k;ˇ.�"/
Ck.id�F�1

j /‡�1
ıLjkC k;ˇ.�"/

! 0 as j !1:

On the other hand, by the proof argument of Lemma 4.5, we have

kf ıF�1
j ı‡�1

ıLj �fj ı‡
�1
ıLjkC k;ˇ.�"/

D k.f �fj ıFj / ıF�1
j ı‡�1

ıLjkC k;ˇ.�"/
' k.f �fj ıFj /kC k;ˇ.�/

on a sufficiently small neighborhood � of p. This contradicts (1).
To complete the proof let us now suppose that (2) holds. If jxj � yj j > � for

some positive constant �, then

jD
fj .xj /�D
fj .yj /j

jxj �yj j
ˇ

<
2C

�ˇ

holds for some constant C . Without loss of generality, we may assume that xj !

p 2 @� and jxj � yj j< �. Suppose that there exist sequences xj , yj 2�j and a
positive constant � such that xj ! 0 2 @� as j !1 and jxj �yj j< � so that

jD`fj .xj /�D`fj .yj /j

jxj �yj j
ˇ

!1
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as j !1 for some multiindex ` where j`j D k. Repeating Steps 1, 2 and 3 above,
we again arrive at a contradiction. Hence the proof of Lemma 4.7 is complete. �

Proof of Theorem 4.3. Throughout the proof, we shall take subsequences from the
ffj g several times. But we denote them by the same notation fj , since there is little
danger of any confusion.

By Cauchy estimates and the standard normal family theorem, for any compact
subset K of � we have

lim
j!1

kfj �f kC k;ˇ.K / D 0:

Denote by K� D fz 2� j dist.@�; z/� �g. Then there exist N > 0 and � > 0 such
that Fj .K/bK� b� for all j >N . So

kfj ıFj �f kC k;ˇ.K / � kfj ıFj �fjkC k;ˇ.K /Ckfj �f kC k;ˇ.K /! 0

as j !1 for all ˇ < ˛ by the proof of Lemma 4.6.
Let � > 0. For x 2 cl.�/�K�, there exists y 2K� such that jx � yj < �. By

Lemma 4.7, we haveˇ̌
Dl.fj ıFj /.x/�Dlf .x/

ˇ̌
�
ˇ̌
Dl.fj ıFj /.x/�Dl.fj ıFj /.y/

ˇ̌
C
ˇ̌
Dl.fj ıFj /.y/�Dlf .y/

ˇ̌
C
ˇ̌
Dlf .y/�Dlf .x/

ˇ̌
. 2jx�yjˇC� . 2�ˇC�:

Since

sup
x2cl.�/
0�j`j�k

jD`.fj ıFj /.x/�D`f .x/j

�max
�

sup
x2K�

0�j`j�k

jD`.fj ıFj /.x/�D`f .x/j; sup
x2cl.�/nK�

0�j`j�k

jD`.fj ıFj /.x/�D`f .x/j

�
;

there exist N > 0 and � such that, for all j >N ,

sup
x2cl.�/
0�j`j�k

jD`.fj ıFj /.x/�D`f .x/j< �:

Let ı`.x;y/ WD
jD`.fj ıFj /.x/�D`f .x/�D`.fj ıFj /.y/CD`f .y/j

jx�yjˇ
. Then

(1) sup
x;y2cl.�/
j`jDk

ı`.x;y/�max
�

sup
x2cl.�/

y2K�;j`jDk

ı`.x;y/; sup
x;y2cl.�/nK�

j`jDk

ı`.x;y/

�
:
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Consider the first supremum in the right-hand side of (1). For x 2 cl.�/, y 2K� ,
there exists z 2K� such that dist.K�;x/D jx� zj. Therefore we see that

ı`.x;y/�
jD`.fj ıFj /.x/�D`f .x/�D`.fj ıFj /.z/CD`f .z/j

jx�yjˇ

C
jD`.fj ıFj /.z/�D`f .z/�D`.fj ıFj /.y/CD`f .y/j

jx�yjˇ

. ı`.x; z/C ı`.z;y/;

because jx�yj � jx� zj and jy � zj � jy �xjC jx� zj � 2jx�yj. Notice now
that, for � satisfying ˇC� < ˛, we have that ı`.x; z/. jx� zj� < ��. So

sup
x2cl.�/;y2K�
j`jDk

ı`.x;y/ < �

for any j >N . (For this last, one may need to adjust the sizes of N and �.)
Consider now the second supremum in the right-hand side of (1). Let x, y 2

cl.�/�K� . If jx�yj<�, then for � satisfying ˇC�<˛; ı`.x;y/. jx�yj�<��.
If jx � yj � �, let z be a point in K� satisfying jx � zj D dist.K�;x/. Then
ı`.x;y/. ı`.x; z/C ı`.z;y/, since jx � zj< � < jx � yj and jy � zj< 2jx � yj.
So

sup
x;y2cl.�/nK�
j`jDk

ıl.x;y/ < �:

Since � > 0 is arbitrary, we see that

lim
j!1

sup
x;y2cl.�/
j`jDk

ı`.x;y/D 0

for any ˇ < ˛. This completes the proof of Theorem 4.3. �

5. Conjugation by diffeomorphism

For isometries of compact Riemannian manifolds, semicontinuity involves not just
that nearby metrics have isometry groups which are isomorphic to subgroups of
the unperturbed metric, but that the isomorphisms are obtainable via conjugation
by diffeomorphism (cf. [Ebin 1968; Guillemin et al. 2002]). This conjugation by
diffeomorphism actually applies in the case of bounded C1 strongly pseudoconvex
domains as well; see, e.g., [Greene and Krantz 1982b; Greene et al. 2011]. Naturally,
the C1 hypothesis used in these references is, as usually happens, replaceable by
a finite differentiability hypotheses simply by tracing through the arguments and
checking how many derivatives are needed.
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In this section, the subject will be investigated of the finite differentiability version
of the conjugation by diffeomorphism results already shown in the references
indicated in the C1 case. These results are of active interest because, by this
time, quite precise results are known about extension to the boundary with finite
smoothness of automorphisms of bounded strongly pseudoconvex domains with
boundaries of finite smoothness. In particular, the results of the previous sections
give motivation to study the issues discussed in the present section.

In the C1 version presented in [Greene and Krantz 1982a] and [Greene et al.
2011], the basic technique was to pass to the double in the topologist’s sense of
the domain, thus creating a situation to which the compact manifold results could
be applied. This technique can still be applied in the present case. The difference
is that we need now to keep track of how many derivatives are lost in the passage
to the double. For the manifold with boundary itself, no derivatives are lost. It
is shown in [Munkres 1963] that a C k manifold with boundary, k � 1, has a C k

double that is unique up to C k diffeomorphism.
In our case Theorem 4.3 allows us to have the C k;˛ metric double for every

k � 2 and any 0 < ˛ < 1. But, the need to make the group act on the double
requires that the doubling construction be invariant under the group, which actually
needs k � 4. And this will turn out to reduce the guaranteed differentiability of the
conjugating diffeomorphism.

To facilitate the discussion, we introduce a definition (similar to one given in
Section 2) of the sense in which a sequence of groups of diffeomorphisms might
converge to a limit group:

Suppose that M is a compact C k manifold with boundary, k a positive integer.
Suppose that G0 is a compact Lie group of C k diffeomorphisms of M and that
moreover Gj , j D 1; 2; : : : are a sequence of compact Lie groups of C k diffeo-
morphisms. Then we say that the sequence Gj converges to G0 in the C k sense
if for each � > 0 there is a number j0 such that, if j > j0 and g 2Gj , then there
is an element g0 2G0 such that the distance from g to g0 is less than �. Here the
distance means relative to any metric on the set of C k mappings which gives the
usual C k topology on C k maps from M to M .

In these terms, we can now formulate the general real-differentiable result we
shall use in the complex case:

Theorem 5.1. Suppose that M is a compact C r manifold with boundary and that
r > 2 is an integer, that G0 is a compact Lie group of C r diffeomorphisms of M ,
and that Gj , j D 1; 2; : : : , is a sequence of compact groups of C r diffeomorphisms
which converge in the C r sense to G0. Then, for all j sufficiently large, there is
a C r�2 diffeomorphism Fj of M to itself such that Fj ıGj ıF�1

j is a subgroup
of G0, i.e., Fj conjugates the elements of Gj into elements of G0.
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The proof of this theorem follows almost precisely the pattern of the proof of
Theorem 0.1 in [Greene and Krantz 1982a] (cf. [Greene et al. 2011, Theorem 4.4.1]).
The only difference is that we must here keep some track of the number of derivatives
involved: Ebin’s theorem concerned the C1 case so that loss of a derivative or two
or indeed of any finite number was irrelevant. This is why we need the results of
Section 4.

Discussion of the proof of Theorem 5.1. As in Section 2, the essential method is to
pass to the double of M and extend the action of the groups to the double. Then
one can use Ebin’s result in the form presented in [Guillemin et al. 2002], where
only C 1 is required for the closeness of the group actions. But here we have to keep
track of degrees of differentiability as opposed to the C1 situation of Section 2.

The most natural way to form the equivariant double is via metric construction
as already explained in Section 2 (cf. [Greene and Krantz 1982a]). As before one
takes a metric g on the manifold with boundary that is invariant under the group G.
Then one defines charts in neighborhoods of boundary points p using the normal
field to the boundary. Specifically, let N.q/ be the g-metric normal to the tangent
space to the boundary @M at the point q in @M . Then one defines charts in a
neighborhood of points p in the boundary as follows: map @M � .��; �/!M by
.q; t/ 7!expq.tN.q//, where exp is the geodesic exponential map of the Riemannian
metric g and N.q/ is the inward pointing normal at q. Choosing a chart around p

in @M then gives a chart in a neighborhood of p in the double of M if we interpret
expq.tN.q// to be in the second copy of M when t < 0.

In terms of derivative loss, the choice of the normal vector N loses one derivative,
since it is an algebraic process using g and the tangent space of the boundary and
the latter is not C r but C r�1. But an additional loss of derivative, so that two
derivatives are lost, occurs because the exponential map is defined by the geodesic
equation and that equation involves the Christoffel symbols, which involve the first
derivative of the metric g. And the metric g has already lost one derivative in the
averaging over the action of the group G.

Thus one obtains a G-equivariant construction of the double zM of M and by
construction the action of G on M extends to be an action of G on zM . This
extended group action is C r�2. Associate to the group G a group zG defined to
be G˚Z2. Then zG acts on zM in a natural way. Namely, we label the elements
of zM by .m; a/ where m 2M and a 2 f0; 1g with 0 corresponding to the original
of M and 1 corresponding to the second copy of M . Then we let .g; b/ acting on
.m; a/ be

.g.m/; aC b/;

where the addition aC b is in Z2. For example .idG ; 1/ acts on zM as the “flip”
map that interchanges the two copies of M .
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Note that the fixed point set of .idG ; 1/ is exactly @M . And, for any element
g 2 G, the fixed point set of .g; 1/ is contained in @M , though it need not be all
of it, and can indeed be empty if the action of g on @M has no fixed point. These
observations will be important later.

Now we turn to the explicit situation of Theorem 5.1. We choose a sequence of
Gj -invariant C r�1 metrics on M , which can clearly be taken to converge in the
C r�1 sense to a G0-invariant C r�1 metric on M . Passing to the double zM gives
a sequence of zGj group actions on zM . We can form a sequence of zGj invariant
metrics by combining, via a partition of unity, a product metric structure near the
boundary with the Gj -invariant metric on the interior of M . Namely, as similar
to before, let Ej be the exponential map of the metric gj , j D 0; 1; 2; : : : , acting
on the normal bundle of the boundary @M of M in M to give maps also to be
denoted by Ej W @M � .�a; a/! zM of the boundary @M of M producted with
an open interval .�a; a/ into zM . The size of a can, by the C r�2 convergence of
the Ej to E0, be chosen uniformly so that these Ej are diffeomorphisms onto their
images in @M , which themselves converge in the C r�2 sense to the limit C r�2

diffeomorphism E0.
Via this diffeomorphism, we transfer the product metrics on @M � Œ0; �/, namely

Hj � dt2, to the associated tubular neighborhoods of @M in M . This transfer
gives a zGj -invariant metric for each j and these metrics converge C r�2 to the
limit zG0-invariant metric. Now we can combine, using a zGj -equivariant partition
of unity, these product metrics with the Gj -invariant metric gj on M to obtain a
zGj -invariant metric on zM , to be denoted zgj . This metric is C r�2. And it converges
in the C r�2 topology to the corresponding zG0-invariant metric zg0 on zM . (The
Gj -equivariant partition of unity is obtained by taking the partition of unity function
to depend on t alone, t as above).

Now we can apply Ebin’s theorem, in the form given in [Guillemin et al. 2002]
and [Kim 1987], for the C r�2 case to get C r�2 diffeomorphisms Fj W

zM ! zM

which conjugate zGj into a subgroup of zG0. (Here we are reasoning as follows: there
is a diffeomorphism that conjugates Isom.zgj / into a subgroup of Isom.zg0/ and
hence conjugates zGj into a subgroup of Isom.zg0/ and these diffeomorphisms can
be taken to converge to the identity map. So the image of zGj under this conjugation
is close to zG0 for large j in the sense of C r�2 convergence. By the classical
theorem of [Montgomery and Samelson 1943], this conjugation image is in fact
itself conjugate in Isom.zg0/ to a subgroup of G0 by an element close to the identity.
(See, e.g., [Greene et al. 2011, Chapter 4], for more detail.)

Now we need to know that in fact the conjugation image of Gj lies in G0, not
just in zG0. For this, we need only show that the diffeomorphism that is conjugating
takes @M to itself. This can be deduced as follows: let us denote by Fix. / the
fixed point set of  . Then conjugation takes fixed points to fixed points in the
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sense that Fix.f ı ı f �1/D f .Fix. //. Now consider the case of  equal to
the flip map which interchanges the two copies of M in zM . When f is close to the
identity, f ı ıf �1 has to belong to the part of the group that interchanges the
two components. So its fixed point set cannot be larger than @M . Thus f .@M / lies
in @M and hence equals @M (since f is a diffeomorphism of @M onto its image).

This completes the proof of the theorem. �
Note that these considerations of fixed points of the interchange map did not

arise in Section 2, since we were concerned there only with isomorphism, not with
the existence of a conjugating diffeomorphism of the manifolds with boundary.

The application to the strongly pseudoconvex case now follows:

Theorem 5.2. Let �0 be a bounded strongly pseudoconvex domain with a C k;˛

boundary in Cn, not biholomorphic to the unit ball. Then there is a C k;˛ neighbor-
hood N of�0 such that, for any�2N, there is a C k�3 diffeomorphism f W�!�0

with the property that f ıAut.�/ ıf �1 � Aut.�0/.

Theorem 5.2 is derived from Theorem 5.1 by exactly the arguments of [Greene
and Krantz 1982a].

In outline, these arguments are as follows: first, the stable estimation of Bergman
metric curvature (Theorem 3.1) in Section 3 guarantees that, if f�j g is a sequence
of domains converging in C k;˛ to �0 (k � 4) with �0 not biholomorphic to
the ball, and if p0 2 �0, then there is a ıp > 0 such that the distance �j .p0/ to
Cn��j is at least ıp for all �j 2 Aut.�j / for all j sufficiently large. This in turn
makes possible the application of normal families arguments to show that for every
sequence �j 2 Aut.�j /, there is a subsequence f�jk

g which converges uniformly
on compact subsets (of �0). The uniformity of boundary behavior established
in Section 4 then implies that this subsequence converges uniformly in the C k�3

topology on the closure of the domains, where comparison over different domains
is via fixed diffeomorphisms of �j !�j for each j , these converging in the C k

topology to the identity. Thus one passes to the situation of Theorem 5.1. For
further details, the reader can consult [Greene and Krantz 1982a].

6. Concluding remarks

Semicontinuity of symmetry in the general sense is an idea with deep roots in
intuition to the point that it arguably predates formal mathematical thought altogether.
In precise form, when all the symmetry groups belong to one fixed (compact) Lie
group, it was given definitive formulation in the result of [Montgomery and Samelson
1943]. The situation for isometry groups and automorphism groups is made more
delicate because a priori not all the groups are even isomorphic to subgroups of
any fixed Lie group. In [Greene and Krantz 1985], ways of dealing with this issue
in the automorphism group case were introduced. The results obtained turned
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out to have some interesting applications, e.g., they played a role in [Bedford and
Dadok 1987]. One of the main points of the first part of this paper was that, on
account of normal families considerations, in fact this difficulty of the groups not
belonging a priori to a fixed larger group is obviated in very general situations.
All that is needed is that the groups keep some fixed compact set in the domain
(or manifold) within another fixed compact set: this is in effect the stably interior
property introduced in Section 2. The remainder of the paper describes how this
condition can be guaranteed in the case of C 2 strongly pseudoconvex domains.
In view of the great generality of the stably interior property, it is natural to ask
whether some similar guarantee of the property might be available for other classes
of domains, for example, those of finite type in the sense of D’Angelo. This would
seem to be a potentially fruitful topic for further investigation.
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KLEIN FOUR-SUBGROUPS OF
LIE ALGEBRA AUTOMORPHISMS

JING-SONG HUANG AND JUN YU

We classify the Klein four-subgroups 0 of Aut(u0) for each compact simple
Lie algebra u0 up to conjugation, by calculating the symmetric subgroups
Aut(u0)

θ and their involution classes. This leads to a new approach to the
classification of semisimple symmetric pairs and Z2 × Z2-symmetric spaces.
We also determine the fixed point subgroups Aut(u0)

0 .

1. Introduction

Riemannian symmetric pairs were classified by Élie Cartan (see [Carter 1993],
for example) and the more general semisimple symmetric pairs were classified by
Marcel Berger [1957]. The algebraic structure of semisimple symmetric spaces
is even more interesting for geometric and analytic reasons. Some of the recent
works are Ōshima and Sekiguchi’s classification [1984] of reduced root systems
and Helminck’s classification [1988] for algebraic groups. Most recently some new
approaches to the classification and the parametrization of semisimple symmetric
pairs were given in [Huang 2002] by using admissible quadruplets and in [Chuah
and Huang 2010] by using double Vogan diagrams.

In this paper we study semisimple symmetric spaces from a different point of
view — by determining the Klein four-subgroups in Lie algebra automorphisms.
Let u0 be a compact simple Lie algebra and g be its complexification. Denote
by Aut(u0) the automorphism group of u0. For any involution θ in Aut(u0), we
first determine the centralizer Aut(u0)

θ of θ , which is a symmetric subgroup. By
understanding the conjugacy classes of involutions in Aut(u0)

θ , we proceed to
classify Klein four-subgroups 0 of Aut(u0) up to conjugation. This gives a new
approach to the classification of commuting pairs of involutive automorphisms
of u0 or g. We note that the ordered commuting pairs of involutions correspond to

The research work described in this paper was partially supported by a Research Grant from Research
Grant Council of HKSAR, China; the second author’s current work is supported by a grant from SNF
(Schweizerischer Nationalfonds). Finally, we would like to thank the anonymous referee for his/her
careful reading and helpful comments.
MSC2010: primary 20E45; secondary 53C35.
Keywords: automorphism group, involution, symmetric subgroup, Klein four-group, involution type.
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Berger’s classification of semisimple symmetric pairs.
If 0 is a finite abelian subgroup of the automorphism group of a Lie group G,

then the homogeneous space G/H is called a 0-symmetric space provided that
(G0)0 ⊆ H ⊆G0; see [Lutz 1981]. In the case of 0 = Z2 this is a symmetric space
and in the case of 0 = Zk it is the k-symmetric space studied in [Wolf and Gray
1968]. In the case of 0 = Z2×Z2 it is the Klein four-group; Z2×Z2-symmetric
spaces were studied in [Bahturin and Goze 2008; Kollross 2009]. This paper
contains a complete list of all Z2 × Z2-symmetric pairs and our method is very
different from theirs. Finally, we determine the fixed point subgroups Aut(u0)

0.

2. Preliminaries

2A. Complex semisimple Lie algebras and Dynkin diagrams. Let g be a com-
plex semisimple Lie algebra and h a Cartan subalgebra. Then g has a root-space
decomposition

g= h⊕
( ⊕
α∈1

gα

)
,

where1=1(g, h) is the root system of g and gα is the root space of the root α ∈1.
Let B be the Killing form on g. It is a nondegenerate symmetric form. The restriction
of B to h is also nondegenerate. For any λ ∈ h∗, let Hλ ∈ h be determined by

B(Hλ, H)= λ(H) for all H ∈ h.

For any λ,µ ∈ h∗, define 〈λ,µ〉 := B(Hλ, Hµ).
For any root α, we have

(1) Hα ∈ h.

Define

(2) H ′α =
2

α(Hα)
Hα,

which is called a coroot; let

(3) 0 6= Xα ∈ gα

be any nonzero vector (recall that dim gα = 1), which is called a root vector of the
root α. The notation Hα, H ′α, Xα will be used frequently in this paper.

Note that, for any α, β ∈1,

〈α, β〉 = B(Hα, Hβ)= β(Hα)= α(Hβ) ∈ R,

〈α, α〉 = B(Hα, Hα)= α(Hα) 6= 0,

and 2〈α, β〉/〈β, β〉 ∈ Z. We also note that spanR{α | α ∈1} ⊂ h∗ is a real vector
space of dimension equal to r = rank g= dimC h; see [Knapp 2002, pp. 140–162].
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We set Aα,β = 2〈α, β〉/〈β, β〉 = α(H ′β). Then

[H ′α, Xβ] = β(H ′α)Xβ =
2〈α, β〉
〈α, α〉

Xβ = Aβ,αXβ .

Choose a lexicography order of spanR{α | α ∈1} to get a positive system 1+

and a simple system 5. Let

(4) 5= {α1, α2, . . . , αr }.

For brevity, we write

(5) Hi , H ′i

instead of Hαi , H ′αi
for a simple root αi .

Draw Aα,β Aβ,α edges to connect any two distinct simple roots α and β, and
draw an arrow from α to β if 〈α, α〉> 〈β, β〉; this gives us a graph. This graph is
connected if and only if g is a simple Lie algebra; in this case it is called the Dynkin
diagram of g. In this paper, we always follow Bourbaki numbering to order the
simple roots; see [Bourbaki 2002, pp. 265–300]. The following are all the possible
(connected) Dynkin diagrams.1

An #
α1

#
α2

· · · #
αn−1

#
αn

Bn #
α1

#
α2

#
α3

· · · #
αn−1

+3#
αn

Cn #
α1

#
α2

#
α3

· · · #
αn−1

ks #
αn

Dn

#
αn−1

#
α1

#
α2

#
α3

· · · #
αn−3

#
αn−2

#
αn

E6

#
α1

#
α3

#
α4

#
α5

#
α6

# α2

E7

#
α1

#
α3

#
α4

#
α5

#
α6

#
α7

# α2

E8

#
α1

#
α3

#
α4

#
α5

#
α6

#
α7

#
α8

# α2

F4 #
α1

#
α2

+3#
α3

#
α4

G2 #
α1

*4#
α2

1These diagrams are drawn by using a Latex package of Professor Jiu-Kang Yu. We are grateful to
him for the kind permission to use this package.
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Let Aut(g) be the group of all complex linear automorphisms of g and Int(g) be
the subgroup of inner automorphisms. We define

Out(g) := Aut(g)/ Int(g).

The exponential map exp : g→ Aut(g) is given by

exp(X)= exp(ad(X)) for all X ∈ g= Lie(Aut(g)).

2B. A compact real form. One can normalize the root vectors {Xα, X−α} so that
B(Xα, X−α) = 2/α(Hα). Then [Xα, X−α] = H ′α. Moreover, one can normalize
{Xα} appropriately, such that

(6) u0 = spanR{Xα − X−α, i(Xα + X−α), i Hα : α ∈1+}

is a compact real form of g [Knapp 2002, pp. 348–354]. Define

θ(X + iY ) := X − iY for all X, Y ∈ u0.

Then θ is a Cartan involution of g (as a real semisimple Lie algebra) and u0 = gθ is
a maximal compact subalgebra of g. Any other compact real form of g is conjugate
to u0. Below, whenever we discuss a compact real form of g, we always use this
compact real form u0 in (6).

Let Aut(u0) be the group of automorphisms of u0 and Int(u0) be the subgroup of
inner automorphisms. Any automorphism of u0 extends uniquely to a holomorphic
automorphism of g, so Aut(u0)⊂ Aut(g). Similarly, Int(u0)⊂ Int(g). Define

2( f ) := θ f θ−1 for all f ∈ Aut(g).

Then it is a Cartan involution of Aut(g) with differential θ . It follows that Aut(u0)=

Aut(g)2 and Int(u0)= Int(g)2 are maximal compact subgroups of Aut(g) and Int(g),
respectively. We also have

Out(u0) := Aut(u0)/ Int(u0)∼= Out(g)∼= Aut(5),

where Aut(5) is the symmetry group of the graph 5 consisting of permutations of
vertices preserving the multiples of edges and directions of arrows.

2C. Notation. We denote by e6 the compact simple Lie algebra of type E6. Let
E6 be the connected and simply connected Lie group with Lie algebra e6. Let
e6(C) and E6(C) denote their complexifications. Similar notation will be used for
other types.

Let Z(G) and z(g) denote the center of a group G and a Lie algebra g, respectively,
and G0 denote the connected component of G containing identity element. For Lie
groups H ⊂ G, let ZG(H) denote the centralizer of H in G, and for Lie algebras
h⊂ g, let Zg(h) denote the centralizer of h in g. Let NG(H) denote the normalizer
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of H in G. For any two elements x, y ∈ G, we write x ∼ y to mean x, y are
conjugate in G, that is, y = gxg−1 for some g ∈ G and x ∼H y to mean y = gxg−1

for some g ∈ H .
In the case of G = E6 or E7, let c denote a nontrivial element in Z(G).
In the case of u0 = e7, let

H ′0 =
H ′2+ H ′5+ H ′7

2
∈ ie7 ⊂ e7(C).

Let Pin(n) (Spin(n)) be the Pin (Spin) group in degree n. Write

c = e1e2 · · · en ∈ Pin(n).

Then c is in Spin(n) if and only if n is even; in this case c ∈ Z(Spin(n)). If n is
odd, then Spin(n) has a spinor module M of dimension 2(n−1)/2. If n is even, then
Spin(n) has two spinor modules M+, M− of dimension 2(n−2)/2. We distinguish
M+ and M− by requiring that c acts on M+ as the identity when 4 | n and as
multiplication by −i when 4 | n− 2 (and thus c acts on M− as multiplication by
−1 and i , respectively, in the same two cases).

We define the matrices

Jm =

(
0 Im

−Im 0

)
, Ip,q =

(
−Ip 0

0 Iq

)
,

I ′p,q =


−Ip 0 0 0

0 Iq 0 0
0 0 −Ip 0
0 0 0 Iq

 , Jp,q =


0 Ip 0 0
−Ip 0 0 0

0 0 0 Iq

0 0 −Iq 0

 ,

K p =


0 0 0 Ip

0 0 −Ip 0
0 Ip 0 0
−Ip 0 0 0

 .
and the groups

Zm = {λIm | λ
m
= 1},

Z ′ = {(ε1, ε2, ε3, ε4) | εi =±1, ε1ε2ε3ε4 = 1},

0p,q,r,s =

〈
−Ip 0 0 0

0 −Iq 0 0
0 0 Ir 0
0 0 0 Is

 ,

−Ip 0 0 0

0 Iq 0 0
0 0 −Ir 0
0 0 0 Is


〉
.
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3. Involutions

The classical compact simple Lie algebras are as follows. For F = R,C,H, let
Mn(F) be the set of n× n matrices with entries in F , and

so(n)= {X ∈ Mn(R) | X + X t
= 0},

su(n)= {X ∈ Mn(C) | X + X∗ = 0, tr X = 0},

sp(n)= {X ∈ Mn(H) | X + X∗ = 0}.

Then {su(n) : n≥ 3}, {so(2n+1) : n≥ 1}, {sp(n) : n≥ 3}, {so(2n) : n≥ 4} represent
all isomorphism classes of compact classical simple Lie algebras.

Let u0 be a compact simple Lie algebra and g= (u0)⊗R C be its complexification.
Note that the conjugacy classes of involutions in Aut(u0) are in one-to-one corre-
spondence with isomorphism classes of noncompact real forms of g, and are also
in one-to-one correspondence with isomorphism classes of irreducible Riemannian
symmetric pairs (u0, k0) of compact type or (g0, k0) of noncompact type; see [Huang
2002; Helminck 1988] and references therein. One direction of this correspondence
is as follows: let θ be an involutive automorphism of a compact real simple Lie
algebra u0, and extend it to a holomorphic automorphism of g. Let k0 ⊂ u0 and
ip0 ⊂ u0 (so p0 ⊂ iu0) be the +1, −1 eigenspaces of θ on u0, respectively. Let

g0 = k0⊕ p0

(this is also the Cartan decomposition of g0). Then g0 is a real simple Lie algebra
(that is, a real form of g), (u0, k0) is a Riemannian symmetric pair of compact
type and (g0, k0) is a Riemannian symmetric pair of noncompact type. The other
direction of this correspondence needs a sophisticated argument.

These objects were classified by Élie Cartan in 1926. We list this classification
here. Our presentation below is mainly from [Knapp 2002, pp. 408–426; Helgason
2001, pp. 515–518]. In each case, we also define a specific involution in each
conjugacy class of involutions in Aut(u0), which corresponds to a real simple Lie
algebra or symmetric space. In the exceptional simple Lie algebras case, these
involutions are labeled as σ1, σ2, σ3, σ4, σ and τ = σ3 (this is used only in the E6

case). We will use this notation for involutions frequently in the rest of this paper.
The notation AI–G is Cartan notation and the notation e6,−2, etc., is Helgason

notation (with a little difference). For a real simple Lie algebra g0 with a Cartan
decomposition g0 = k0⊕p0 and whose complexified Lie algebra g is an exceptional
simple Lie algebra, Helgason [2001, pp. 517–518] made an interesting observation:
the isomorphism type of g0 is distinguished by the type of g (or its compact real
form u0) and the integer dim k0−dim p0. For example, the notation e6,−2 (written by
Helgason as e6(2), as he used the integer dim p0−dim k0 instead) means the compact
real form of the complexified Lie algebra has type e6 and dim k0− dim p0 = −2.
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The elements (coroots) H ′i are defined in (2) and (5).
i) Type A. For u0 = su(n), n ≥ 3, {Ad(Ip,n−p) | 1 ≤ p ≤ n/2} (type AIII),
{τ = complex conjugation} (type AI), {τ ◦ Ad(Jn/2)}} (type AII) represent all
conjugacy classes of involutions in Aut(u0). The corresponding real forms are
su(p, n− p), sl(n,R), sl( n

2 ,H).
ii) Type B. For u0 = so(2n+ 1), n ≥ 1, {Ad(Ip,2n+1−p) | 1 ≤ p ≤ n} (type BI)

represent all conjugacy classes of involutions in Aut(u0). The corresponding real
forms are so(p, 2n+ 1− p).

iii) Type C. For u0 = sp(n), n ≥ 3, {Ad(Ip,n−p) | 1≤ p ≤ n/2} (type CII) and
{Ad(iI )} (type CI) represent all conjugacy classes of involutions in Aut(u0). The
corresponding real forms are sp(p, n− p), sp(n,R).

iv) Type D. For u0 = so(2n), n ≥ 4, {Ad(Ip,2n−p) | 1 ≤ p ≤ n} (type DI) and
{Ad(Jn)} (type DIII) represent all conjugacy classes of involutions in Aut(u0). The
corresponding real forms are so(p, 2n− p), so∗(2n,R).2

v) Type E6. For u0 = e6, let τ be a specific diagram involution defined by

τ(Hα1)= Hα6, τ (Hα6)= Hα1, τ (Hα3)= Hα5,

τ (Hα5)= Hα3, τ (Hα2)= Hα2, τ (Hα4)= Hα4,

τ (X±α1)= X±α6, τ (X±α6)= X±α1, τ (X±α3)= X±α5,

τ (X±α5)= X±α3, τ (X±α2)= X±α2, τ (X±α4)= X±α4 .

Let σ1 = exp(π i H ′2), σ2 = exp(π i(H ′1 + H ′6)), σ3 = τ , σ4 = τ exp(π i H ′2). Then
σ1, σ2, σ3, σ4 represent all conjugacy classes of involutions in Aut(u0), which
correspond to Riemannian symmetric pairs of type EII, EIII, EIV, EI and the
corresponding real forms are e6,−2, e6,14, e6,26, e6,−6. Also, σ1, σ2 are inner auto-
morphisms and σ3, σ4 are outer automorphisms.

vi) Type E7. For u0 = e7, let

σ1 = exp(π i H ′2),

σ2 = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
,

σ3 = exp
(
π i

H ′2+ H ′5+ H ′7+ 2H ′1
2

)
.

Then σ1, σ2, σ3 represent all conjugacy classes of involutions in Aut(u0), which
correspond to Riemannian symmetric pairs of type EVI, EVII, EV and the corre-
sponding real forms are e7,5, e7,25, e7,−7.

vii) Type E8. For u0 = e8, let

σ1 = exp(π i H ′2), σ2 = exp(π i(H ′2+ H ′1)).

2When n = 4, we have Ad(I2,6)∼ Ad(J4), and so(2, 6)∼= so∗(8).
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Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which corre-
spond to Riemannian symmetric pairs of type EIX, EVIII and the corresponding
real forms are e8,24, e8,−8.

viii) Type F4. For u0 = f4, let

σ1 = exp(π i H ′1), σ2 = exp(π i H ′4).

Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which corre-
spond to Riemannian symmetric pairs of type FI, FII and the corresponding real
forms are f4,−4, f4,20.

ix) Type G2. For u0 = g2, let σ = exp(πH ′1), which represents the unique conju-
gacy class of involutions in Aut(u0) and corresponds to a Riemannian symmetric
pair of type G and the corresponding real form is g2,−2.

4. Centralizer of an automorphism

In this section we prove a property of the centralizer Gx of an element x in a
complex or compact Lie group G. First, we recall a theorem of Steinberg [Carter
1993, pp. 93–95].

Proposition 4.1 (Steinberg). Let G be a connected and simply connected semisim-
ple complex (or compact) Lie group. Then the centralizer Gx for any x ∈ G
is connected.

For an element x in a group, we write o(x) for the order of x . The notation

(7) Int(g)θ0

in this paper always means (Int(g)θ )0, not (Int(g)0)θ . Similarly for

(8) Int(u0)
θ
0, Aut(u0)

θ
0, Aut(g)θ0.

Proposition 4.2. Let g be a complex simple Lie algebra. Suppose that the order
of an element θ ∈ Aut(g) is equal to the order of the coset element θ Int(g) in
Out(g)= Aut(g)/ Int(g), that is, o(θ)= o(θ Int(g)). Then ZInt(g)(Int(g)θ0)= 1.

Proof. By the assumption, θ is a diagram automorphism; this means there exists
a Cartan subalgebra t which is stable under θ and θ maps 1+ to itself, where
1 = 1(g, t) and 1+ is a positive system. For any α ∈ 1, let θ(Xα) = aαXθα
with aα 6= 0.

Let k = o(θ)= o(θ Int(g)). Then, for any α ∈1,

Xα = θ k(Xα)=
( ∏

0≤ j≤k−1

aθ jα

)
Xθ kα.

It follows that ∏
0≤ j≤k−1

aθ jα = 1.
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Let L = Int(g)θ0 , s= tθ , T = exp(ad t) and S = exp(ad s). It is clear that S ⊂ L .
We first show that ZInt(g)(S) = T . It is clear that t ⊂ Zg(s). Suppose that

Xα ∈ Zg(s) for some α ∈ 1+. Since θ k
= 1, we have

∑
0≤ j≤k−1 θ

j (H) ∈ tθ = s

for any H ∈ t. Then
[∑

0≤ j≤k−1 θ
j (H), Xα

]
= 0.

For any j , we have

[θ j H, Xα] = θ j ([H, θ k− j Xα])= θ j
(( ∏

0≤i≤k− j−1

aθ iα

)
· ((θ k− jα)H) · Xθ k− jα

)

=

( ∏
0≤i≤k− j−1

aθ iα

)
· ((θ k− jα)H) ·

( ∏
0≤i≤ j−1

aθk− j+iα

)
Xα

=

( ∏
0≤i≤k−1

aθ iα

)
· ((θ k− jα)H) · Xα = ((θ k− jα)H) · Xα.

Hence 0=
[∑

0≤ j≤k−1 θ
j (H), Xα

]
=
((∑

0≤ j≤k−1 θ
k− jα

)
H
)
· Xα. This implies∑

0≤ j≤k−1

θ jα = 0,

which contradicts that all θ jα are positive roots. So Zg(s) = t. Since ZInt(g)(S)
is connected (by Corollary 4.51 of [Knapp 2002, p. 260], which also applies to
complex semisimple groups), ZInt(g)(S)= T .

Now we show that ZInt(g)(L)= 1. Suppose that 1 6= τ ∈ ZInt(g)(L). By the above,
we have ZInt(g)(L)⊂ ZInt(g)(S)= T , then τ = exp(ad H) for some H ∈ t. For any
α ∈1,

∑
0≤ j≤k−1 θ

j (Xα) ∈ gθ (since θ k
= 1), so∑

0≤ j≤k−1

θ j (Xα)=τ
( ∑

0≤ j≤k−1

θ j (Xα)
)
=

∑
0≤ j≤k−1

τ(θ j (Xα))=
∑

0≤ j≤k−1

e(θ
jα)Hθ j (Xα).

Since each θ j (Xα) is of the form θ j (Xα) = b j Xθ jα for some b j 6= 1, the last
equality implies τ(Xα)= Xα if {θ jα, 0≤ j ≤ k− 1} are distinct.

Claim 4.3. Those α ∈ 1 with roots in {θ jα, 0 ≤ j ≤ k − 1} pairwise different
generate 1 (as a root system).

Since τ(Xα) = Xα when the elements θ jα are distinct for 0 ≤ j ≤ k − 1, by
Claim 4.3, we have τ(Xα) = Xα for any α ∈ 1. Hence τ = 1, which is to say,
ZInt(g)(Int(g)θ0)= 1. �

Proof of Claim 4.3. Note that θ maps 1+ to itself, so it maps the simple system
5= {α1, . . . , αr } to itself. We have four cases to consider, that is, 1=An (n ≥ 2),
Dn (n ≥ 4), E6 and θ is an automorphism of order 2, or 1 = D4 and θ is an
automorphism of order 3. We give the proof when 1= A2n (n ≥ 1) and o(θ)= 2.
The proof for other cases is similar.
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When1=A2n (n≥ 1) and o(θ)= 2, we have θ(αi )=α2n+1−i and θ(α2n+1−i )=

αi for any i , 1≤ i ≤ n. For 1≤ i ≤ n, let

βi =
∑

1≤ j≤i

α j and β ′i =
∑

1≤ j≤i

α2n+1− j .

Then θ(±βi ) 6= ±βi , θ(±β ′i ) 6= ±β
′

i and {±βi ,±β
′

i : 1≤ i ≤ n} generate 1. �

Corollary 4.4. Let u0 be a compact simple Lie algebra. If θ ∈ Aut(u0) satisfies the
condition o(θ)= o(θ Int(u0)), then ZInt(u0)(Int(u0)

θ
0)= 1.

Corollary 4.4 indicates that if G is a compact (simple) Lie group of adjoint type
and x is of minimal possible order among all elements in the connected component
containing it, then (Gx)0 is also of adjoint type and the conjugation action of any
element y ∈ Gx

− (Gx)0 on (Gx)0 is an outer automorphism.

5. Symmetric subgroups of Aut(u0)

Let u0 be a compact simple Lie algebra. For each conjugacy class of involutions in
Aut(u0), we choose a representative θ as in Section 3 and determine the symmetric
subgroup Aut(u0)

θ .
When u0 is a classical simple Lie algebra nonisomorphic to so(8) or u0 = so(8)

but θ 6∼ Ad(I4,4), we can use matrices to represent involutions θ and calculate
the corresponding Aut(u0)

θ . In the case of θ = Ad(I4,4) ∈ Aut(so(8)), we have
θ ∼ exp(π i H ′2). Then

Int(so(8))θ = (Sp(1)4/Z ′)o D,

where Z ′ = {(ε1, ε2, ε3, ε4) | εi = ±1, ε1ε2ε3ε4 = 1}, and D ⊂ S4 is the (unique)
normal order four subgroup of S4 with conjugation action on (Sp(1)4)/Z ′ by per-
mutations. Then we observe that there exists a subgroup of Aut(so(8)) that projects
isomorphically to Aut(so(8))/ Int(so(8))∼= S3 and is contained in Aut(so(8))θ . A
little more argument shows

Aut(so(8))θ = (Sp(1)4/Z ′)o S4.

When u0 is an exceptional simple Lie algebra, we first determine the symmetric
subalgebra k0 = uθ0 and the highest weights of the isotropic space p0 = u−θ0 as a
k0-module. The results are summarized in Table 1. The coroots H ′i are defined in
(2) and (5) and the involutions are defined in Section 3.

Since any element of Aut(u0)
θ which acts trivially on both k0 and p0 must be

trivial, the isomorphism type of k0 and its isotropic module p determine Aut(u0)
θ
0

completely. We may get Aut(u0)
θ
0 in the following way. Start with a compact

connected Lie group H of the form H = A×Hs with A= Z(Aut(u0)
θ
0)0 a connected

torus (A ∼= U(1)s with s = dim z(k0)) and Hs a connected and simply connected
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θ k0 p

EI σ4 = τ exp(π i H ′2) sp(4) Vω4

EII σ1 = exp(π i H ′2) su(6)⊕ sp(1)
∧3

C6
⊗C2

EIII σ2 = exp(π i(H ′1+ H ′6)) so(10)⊕ iR (M+⊗ 1)⊕ (M−⊗ 1)
EIV σ3 = τ f4 Vω4

EV σ3 = exp(π i(H ′1+ H ′0)) su(8)
∧4

C8

EVI σ1 = exp(π i H ′2) so(12)⊕ sp(1) M+⊗C2

EVII σ2 = exp(π i H ′0) e6⊕ iR (Vω1 ⊗ 1)⊕ (Vω6 ⊗ 1)
EVIII σ2 = exp(π i(H ′1+ H ′2)) so(16) M+
EIX σ1 = exp(π i H ′1) e7⊕ sp(1) Vω7 ⊗C2

FI σ1 = exp(π i H ′1) sp(3)⊕ sp(1) Vω3 ⊗C2

FII σ2 = exp(π i H ′4) so(9) M
G σ = exp(π i H ′1) sp(1)⊕ sp(1) Sym3 C2

⊗C2

Table 1. Symmetric pairs and isotropic modules (exceptional Lie
algebras case).

compact Lie group with Lie Hs = [k0, k0] (then Lie H = k0 = uθ0). Then we have a
surjective homomorphism

π : H → Aut(u0)

determined by g as a k0-module. With this construction, it is clear that Im(π) =
Aut(u0)

θ
0 and kerπ is determined by k0 and its module p (as described in Table 1). By

Proposition 4.1 and Corollary 4.4, we can also determine the number of connected
components of Aut(u0)

θ . Then we could find elements outside Aut(u0)
θ
0 to generate

Aut(u0)
θ together with Aut(u0)

θ
0. We show the detailed argument in most cases

below. The results about the symmetric subgroups Aut(u0)
θ are given in the last

column of Table 2. The information about the first three columns of Table 2 is
contained in [Knapp 2002, pp. 408–426]. The fourth column is from Section 3.

5A. Type E6. Now u0 = e6. Consider an outer automorphism θ = σ3 or σ4. By
Corollary 4.4, any element in Int(u0)

θ
− Aut(u0)

θ
0 acts on uθ0 as an outer auto-

morphism. Note that uθ0 ∼= sp(4) or f4, so it has no outer automorphisms. By
Corollary 4.4, it follows that Int(u0)

θ
= Aut(u0)

θ
0 and Aut(u0)

θ
= Aut(u0)

θ
0 ×〈θ〉.

Moreover, Aut(u0)
θ
0 is of adjoint type by Corollary 4.4.

Consider an inner automorphism θ = σ1 or σ2. Let θ ′ ∈ E6 be an involution
which maps to θ under the covering π : E6→ Int(e6). We have

Int(e6)
θ
= {g ∈ E6 | θ

′gθ ′−1g−1
∈ Z(E6)}/Z(E6),

Int(e6)
θ
0 = {g ∈ E6 | θ

′gθ ′−1g−1
= 1}/Z(E6),
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Type (u0,k0) rank θ symmetric subgroup Aut(u0)
θ

AI (su(n),so(n)) n−1 X (O(n)/〈−I 〉)×〈θ〉

AII (su(2n),sp(n)) n−1 Jn X J−1
n (Sp(n)/〈−I 〉)×〈θ〉

AIII (su(p+q),s(u(p)+u(q))) p Ip,q X Ip,q (S(U (p)×U (q))/Z p+q)o〈τ 〉
p < q Ad(τ )= complex conjugation
AIII (su(2p),s(u(p)+u(p))) p Ip,p X Ip,p (S(U (p)×U (p))/Z2p)o〈τ, Jp〉

p = q Ad(Jp)(X,Y )= (Y,X)

BDI
p < q

(so(p+q),so(p)+so(q)) p Ip,q X Ip,q (O(p)×O(q))/〈(−Ip,−Iq)〉

DI (so(2p),so(p)+so(p)) p Ip,p X Ip,p ((O(p)×O(p))/〈(−Ip,−Ip)〉)o〈Jp〉

p > 4 Ad(Jp)(X,Y )= (Y,X)

DI (so(8),so(4)+so(4)) 4 I4,4 X I4,4 ((Sp(1)4)/Z ′)oS4
p = 4 S4 acts by permutations
DIII (so(2n),u(n)) n Jn X J−1

n (U (n)/{±I })o〈In,n〉

Ad(In,n)= complex conjugation
CI (sp(n),u(n)) n (iI )X (iI )−1 (U (n)/{±I })o〈jI 〉

Ad(jI )= complex conjugation

CII
p < q

(sp(p+q),sp(p)+sp(q)) p Ip,q X Ip,q (Sp(p)×Sp(q))/〈(−Ip,−Iq)〉

CII (sp(2p),sp(p)+sp(p)) p Ip,p X Ip,p ((Sp(p)×Sp(p)/〈(−Ip,−Ip)〉)o〈Jp〉

p = q Ad(Jp)(X,Y )= (Y,X)

EI (e6, sp(4)) 6 σ4 (Sp(4)/〈−1〉)×〈θ〉

EII (e6, su(6)+sp(1)) 4 σ1 (SU (6)×Sp(1)/〈(e
2π i

3 I,1),(−I,−1)〉)o〈τ 〉
kτ0 = sp(3)⊕sp(1)

EIII (e6, so(10)+iR) 2 σ2 (Spin(10)×U (1)/〈(c,i)〉)o〈τ 〉
kτ0 = so(9)

EIV (e6, f4) 2 σ3 F4×〈θ〉

EV (e7, su(8)) 7 σ3 (SU (8)/〈i I 〉)o〈ω〉
kω0 = sp(4)

EVI (e7, so(12)+sp(1)) 4 σ1 (Spin(12)×Sp(1))/〈(c,1),(−1,−1)〉

EVII (e7, e6+iR) 3 σ2 ((E6×U (1))/〈(c,e
2π i

3 )〉)o〈ω〉
kω0 = f4

EVIII (e8, so(16)) 8 σ2 Spin(16)/〈c〉
EIX (e8, e7+sp(1)) 4 σ1 E7×Sp(1)/〈(c,−1)〉
FI (f4, sp(3)+sp(1)) 4 σ1 (Sp(3)×Sp(1))/〈(−I,−1)〉
FII (f4, so(9)) 1 σ2 Spin(9)
G (g2, sp(1)+sp(1)) 2 σ (Sp(1)×Sp(1))/〈(−1,−1)〉

Table 2. Symmetric pairs and symmetric subgroups. (When n= 4,
DIII is identical to BDI when p = 2 and q = 6.)
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(use Proposition 4.1 here). If {g ∈ E6 | θ
′gθ ′−1g−1

∈ Z(E6)} 6= Eθ6, then there
exists g ∈ E6 such that θ ′gθ ′−1g−1

= c ∈ Z(E6). Then gθ ′g−1
= θ ′c−1. But

o(θ ′)=2 6=6=o(θ ′c−1). So gθ ′g−1
6=θ ′c−1. Then {g∈E6 |θ(g)g−1

∈ Z(E6)}=Eθ6
and so Int(e6)

θ
= Int(e6)

θ
0. Since σ1, σ2 commutes with τ ,

Aut(e6)
θ
= Int(e6)

θ
0 o 〈τ 〉.

The conjugation action of τ on Int(e6)
θ
0 is determined by its action on k0 = uθ0 , and

(eσ1
6 )

τ
= sp(3)⊕ sp(1), (eσ2

6 )
τ
= so(9).

5B. Type E7. Now u0=e7 and Aut(e7)= Int(e7) is connected. Let π :E7→Aut(e7)

be the adjoint homomorphism, which is a 2-fold covering. Let

σ ′1 = exp(π i H ′2) ∈ E7,

σ ′2 = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
∈ E7,

σ ′3 = exp
(
π i

2H ′1+ H ′2+ H ′5+ H ′7
2

)
∈ E7 .

Then π(σ ′i )= σi , o(σ ′1)= 2, o(σ ′2)= 4 and o(σ ′3)= 4. One has

Aut(e7)
σi ∼= {g ∈ E7 | gσ ′i g−1σ ′−1

i ∈ Z(E7)}/Z(E7),

Aut(e7)
σi
0
∼= {g ∈ E7 | gσ ′i g−1σ ′−1

i = 1}/Z(E7)

(use Proposition 4.1 here), where Z(E7) = 〈exp(π i(H ′2+ H ′5+ H ′7))〉 ∼= Z/2Z is
the center of E7.

For θ = σ1, suppose that there exists g ∈ E7 such that

gσ ′1g−1(σ ′1)
−1
= exp(π i(H ′2+ H ′5+ H ′7)).

Then g exp(π i H ′2)g
−1
= exp(π i(H ′5 + H ′7)). Then there exists w ∈ W such

that w(exp(π i H ′2))= exp(π i(H ′5+ H ′7)). Since w(exp(π i H ′α2
))= exp(π i H ′w(α2)

),
we get exp(π i H ′w(α2)

)= exp(π i(H ′5+ H ′7)). Then

w(α2) ∈ (α5+α7)+ 2 spanZ{α1, α2, α3, α4, α5, α6, α7}.

There are no roots in (α5+ α7)+ 2 spanZ{α1, α2, α3, α4, α5, α6, α7}, so there are
no g ∈ E7 such that (gσ ′1g−1)σ ′−1

1 = exp(π i(H ′2+ H ′5+ H ′7)). Then

{g ∈ E7 | (gσ ′1g−1)σ ′−1
1 ∈ Z(E7)} = E

σ ′1
7 .

So Aut(e7)
σ1 = Aut(e7)

σ1
0 .

For θ = σ2 or σ3, let

ω = exp
(
π(Xα2 − X−α2)

2

)
exp

(
π(Xα5 − X−α5)

2

)
exp

(
π(Xα7 − X−α7)

2

)
.
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Then
ωσ ′2ω

−1
= σ ′−1

2 = σ ′2 exp(π i(H ′2+ H ′5+ H ′7)),

ωσ ′3ω
−1
= σ ′−1

3 = σ ′3 exp(π i(H ′2+ H ′5+ H ′7)),

and ω2
= 1. Then Aut(e7)

θ
= Aut(e7)

θ
0 o 〈ω〉. The conjugation action of ω on

Aut(e7)
θ
0 is determined by its action on k0 = uθ0, and we have

(eσ2
7 )

ω
= f4, (eσ3

7 )
ω
= sp(4).

Further, ω acts on h as sα2sα5sα7 , where sα in the Weyl group is the reflection
corresponding to the root α.

5C. Types E8, F4, G2. If u0 = e8, f4, g2, then Aut(u0) is connected and simply
connected. By Proposition 4.1, Aut(u0)

θ is connected. Then they are determined
by uθ0 and p= g−θ .

6. Klein four-subgroups of Aut(u0)

In this section, we classify Klein four-subgroups 0 (called simply Klein subgroups)
in Aut(u0) up to conjugation. We also determine the fixed-point subgroups Aut(u0)

0 .
Note that such a 0 is equal to {1, θ, σ, θσ } for two commuting involutions θ 6= σ .
Fix an involution θ ; the conjugacy class of 0 is determined by the conjugacy classes
of the involution σ ( 6= θ ) in Aut(u0)

θ .

6A. Ordered commuting pairs of involutions and semisimple symmetric pairs.
For a compact simple Lie algebra u0 and its complexification g, the isomorphism
classes of semisimple symmetric pairs (g0, h0) with g0 a real form of g and h0(6=g0)

noncompact are in one-to-one correspondence with the conjugacy classes of ordered
commuting pairs of involutions (θ, σ ) in Aut(u0) with θ 6= σ . One direction of
this correspondence is as follows: let ui, j (i , j = 0 or 1) be the joint eigenspace
of θ and σ where θ acts on it as (−1)i and σ acts on it as (−1) j . Then we have
a decomposition

u0 = u0,0⊕ u0,1⊕ u1,0⊕ u1,1.

Then k0= uθ0 = u0,0⊕u0,1 and ip0= u−θ0 = u1,0⊕u1,1. Extend θ , σ to holomorphic
automorphisms of g and let

g0 = k0+ p0 = u0,0+ u0,1+ i(u1,0+ u1,1) and h0 = gσ0 = u0,0+ iu1,0.

Then g0 is a real form of g and (g0, h0) is a semisimple symmetric pair with
h0 6= g0 and noncompact. The other direction of this correspondence needs a more
sophisticated argument.

When θ is fixed, the conjugacy classes of the pairs (θ, σ ) in Aut(u0) are in
one-to-one correspondence with the Aut(u0)

θ -conjugacy classes of involutions in
Aut(u0)

θ
−{θ}.
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u0 0i l0=u
0i
0 Type

su(p+q) 0p,q=〈τ,Ip,q〉 so(p)+so(q) AI-AI-AIII, S
su(2p) 0p=〈τ,Jp〉 u(p) AI-AII-AIII, N

su(2p+2q) 0′p,q=〈τ Jp+q ,I ′p,q〉 sp(p)+sp(q) AII-AII-AIII, S
su(p+q+r+s) 0p,q,r,s s(u(p)+u(q)+u(r)+u(s)) AIII-AIII-AIII, NSV

su(2p) 0p=〈Ip,p,Jp〉 su(p) AIII-AIII-AIII, V
so(p+q+r+s) 0p,q,r,s so(p)+so(q)+so(r)+so(s)) BDI-BDI-BDI, NSV

so(2p) 0p=〈Jp,Ip,p〉 so(p) DI-DI-DIII, S
so(2p+2q) 0p,q=〈Jp+q ,I ′p,q〉 u(p)+u(q) DI-DIII-DIII, S
so(4p) 0′p=〈J2p,K p〉 sp(p) DIII-DIII-DIII, V
sp(p) 0p=〈iI,jI 〉 so(p) CI-CI-CI, V

sp(p+q) 0p,q=〈iI,Ip,q〉 u(p)+u(q) CI-CI-CII, S
sp(2p) 0′p=〈iI,jJp〉 sp(p) CI-CII-CII, S

sp(p+q+r+s) 0p,q,r,s sp(p)+sp(q)+sp(r)+sp(s) CII-CII-CII, NSV

Table 3. Klein subgroups in Aut(u0) for the classical cases. (When
p=1, q=3, 01,3 is very special since Ad(I2,6)∼Ad(J4).)

For an exceptional compact simple Lie algebra u0 and any representative θ of
involution classes in Section 3, we give the representatives of classes of involutions
in Aut(u0)

θ
−{θ} and identify their classes in Aut(u0). For any classical compact

simple Lie algebra u0 and a representative θ of an involution class, we have a similar
classification of involutions in Aut(u0)

θ
−{θ}; we omit it here but remark that the

representatives can be constructed from Table 3. This gives a new proof to Berger’s
classification of semisimple symmetric pairs.

In most cases the symmetric subgroup Aut(u0)
θ is a product of classical groups

with some twisting, for which we can classify their involution classes by matrix
calculations. In the remaining cases, uθ0 = s0 ⊕ z for an exceptional simple Lie
algebra s0 and an algebra z= 0, iR or sp(1). We have a homomorphism

p : Aut(u0)
θ
→ Aut(s0).

Then what we need to do is to classify involutions in p−1(σ ) for σ ∈ Aut(s0) an
involution or the identity element, which is not hard in general.

For an exceptional compact simple Lie algebra u0, the conjugacy class of an
involution σ ∈Aut(u0) is determined by dim gσ . (This is an accidental phenomenon
observed by Helgason [2001, pp. 517–518].) For any involution σ ∈Aut(u0)

θ
−{θ},

the class of σ in Aut(u0) is determined by dim gσ = dim kσ + dim pσ and the
dimensions dim kσ , dim pσ can be calculated from the class of σ in Aut(u0)

θ . The
coroots H ′i are defined in (2) and (5) and the involutions σi , σ , τ are defined in
Section 3.
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Type E6. Now u0 = e6. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 = (SU(6)×Sp(1)/〈(e2π i/3 I, 1), (−I,−1)〉)o 〈τ 〉,

σ1 = (I,−1)= (−I, 1), where Ad(τ )(X, Y )= (J3 X J−1
3 , Y ). Then, in Aut(u0),((

−I4 0
0 I2

)
, 1
)
∼ σ2,

((
−I2 0

0 I4

)
, 1
)
∼ σ1,((

i I5 0
0 −i I1

)
, i
)
∼ σ2,

((
i I3 0
0 −i I3

)
, i
)
∼ σ1,

τ ∼ σ3, τσ1 ∼ σ4, τ (J3, i)∼ σ4.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ2 = exp(π i(H ′1+ H ′6)), one has

Aut(u0)
σ2 =

(
(Spin(10)×U(1))/〈(c, i)〉

)
o 〈τ 〉, σ2 = (−1, 1)= (1,−1),

where c= e1e2 · · · e10 and Ad(τ )(x, z)= ((e1e2 · · · e9)x(e1e2 · · · e9)
−1, z−1). Then,

in Aut(u0),

(e1e2e3e4, 1)∼ σ1, (e1e2 · · · e8, 1)∼ σ2,(
δ,

1+ i
√

2

)
∼ σ2,

(
−δ,

1+ i
√

2

)
∼ σ1,

τ ∼ σ3, τ (e1e2e3e4, 1)∼ σ4,

where

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e9e10
√

2
.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ =σ3= τ , one has Aut(u0)
σ3 =F4×〈τ 〉. Let τ1, τ2 be involutions in F4 with

fτ1
4
∼= sp(3)⊕ sp(1), fτ2

4
∼= so(9).

Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ2,

σ3τ1 ∼ σ4, σ3τ2 ∼ σ3,

these elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ4 = τ exp(π i H ′2), one has Aut(u0)
σ4 = (Sp(4)/〈−I 〉)×〈σ4〉. Let

τ1 = iI, τ2 =

(
−I2 0

0 I2

)
, τ3 =

(
−1 0
0 I3

)
.
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Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1,

σ4τ1 ∼ σ4, σ4τ2 ∼ σ4, σ4τ3 ∼ σ3.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type E7. Now u0 = e7. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 = (Spin(12)×Sp(1))/〈(c, 1), (−1,−1)〉,

where σ1 = (−1, 1)= (1,−1), c = e1e2 · · · e12. Let

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e11e12
√

2
.

Then, in Aut(u0),

(e1e2e3e4, 1)∼ σ1, (e1e2, i)∼ σ2, (e1e2 · · · e6, i)∼ σ3,

(δ, 1)∼ σ2, (−δ, 1)∼ σ3, (e1δe1, i)∼ σ1.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
− {θ}.

Moreover,
〈σ1, (e1e2e3e4, 1)〉 ∼ F2, 〈σ1, (e1δe1, i)〉 ∼ F1.

For θ = σ2 = τ = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
, one has

Aut(u0)
σ2
0 = ((E6×U(1))/〈(c, e

2π i
3 )〉)o 〈ω〉,

where c is a nontrivial central element of E6 with o(c) = 3, σ2 = (1,−1) and
(e6⊕ iR)ω = f4⊕ 0. Let τ1, τ2 be involutions in E6 with

eτ1
6
∼= su(6)⊕ sp(1), eτ2

6
∼= so(10)⊕ iR.

Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ1,

τ1σ2 ∼ σ3, τ2σ2 ∼ σ2,

ω ∼ σ2, ωη ∼ σ3,

where η ∈ F4 = Eω6 is an involution with (f4)η ∼= sp(3)⊕ sp(1). These elements
represent all the conjugacy classes of involutions in Aut(u0)

θ
−{θ}.

For

θ = σ3 = exp
(
π i

H ′2+ H ′5+ H ′7+ 2H ′1
2

)
,

one has
Aut(u0)

σ3
0 = (SU(8)/〈i I 〉)o 〈ω〉, σ3 =

1+ i
√

2
I,
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where Ad(ω)X = J4 X J−1
4 . Let τ1 =

(
−I2

I6

)
, τ2 =

(
−I4

I4

)
. Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ1, τ1σ3 ∼ σ2, τ2σ3 ∼ σ3,

ω ∼ σ2, ωσ3 ∼ σ3, ωJ4 ∼ σ3.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type E8. Now u0 = e8. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 ∼= (E7×Sp(1))/〈(c,−1)〉,

where σ1 = (1,−1)= (c, 1). Let τ1, τ2 denote the elements in E7 with τ 2
1 = τ

2
2 = c

and eτ1
7
∼= e6⊕ iR, eτ2

7
∼= su(8). Let τ3, τ4 be involutions in E7 such that there exist

Klein subgroups 0,0′ ⊂ E7 with three nonidentity elements in 0 all conjugate to
τ3, three nonidentity elements in 0′ all conjugate to τ4, and e07

∼= su(6)⊕ (iR)2,
e0
′

7
∼= so(8)⊕ (sp(1))3. Then, in Aut(u0),

(τ1, i)∼ σ1, (τ2, i)∼ σ2, (τ3, 1)∼ σ1, (τ4, 1)∼ σ2.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ2 = exp(π i(H ′2 + H ′1)), one has Aut(u0)
σ2 ∼= Spin(16)/〈c〉, where

σ2 =−1, c = e1e2 · · · e16. Let

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e15e16
√

2
,

τ1 = e1e2e3e4, τ2 = e1e2e3 · · · e8, τ3 = δ, τ4 =−δ.

Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1, τ4 ∼ σ2.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type F4. When u0 = f4, for θ = σ1 = exp(π i H ′1),

Aut(u0)
σ1 ∼= Sp(3)×Sp(1)/〈(−I,−1)〉,

where σ1 = (−I, 1)= (I,−1). Let

τ1 =

−1 0 0
0 1 0
0 0 1

 , 1

 , τ2 =

−1 0 0
0 −1 0
0 0 1

 , 1

 , τ3 = (iI, i).

Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.
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For θ = σ2 = exp(π i H ′4), one has Aut(u0)
σ2 ∼= Spin(9), σ2 = −1. Let τ1 =

e1e2e3e4, τ2 = e1e2e3 · · · e8. Then, in Aut(u0), we have τ1 ∼ σ1 and τ2 ∼ σ2. These
elements represent all conjugacy classes of involutions in Aut(u0)

θ
−{θ}.

Type G2. When u0 = g2 and θ = σ = exp(π i H ′1), one has

Aut(u0)
σ1 ∼= Sp(1)×Sp(1)/〈(−1,−1)〉,

where σ1 = (−1, 1)= (1,−1). Denote τ = (i, i). Then, in Aut(u0), we have τ ∼ σ ,
and τ represents the unique conjugacy class of involutions in Aut(u0)

θ
−{θ}.

By the above, we have reproved Berger’s classification of semisimple symmetric
pairs. The next proposition is an immediate consequence of this classification.

Proposition 6.1. There are 23, 19, 8, 5, and 1 isomorphism classes of nontrivial
(that is, h0 6= g0) semisimple symmetric pairs (g0, h0) with g0 noncompact and
g = g0 ⊗R C a complex simple Lie algebra of types E6, E7, E8, F4, and G2,
respectively.

6B. Klein subgroups, speciality, regularity and centralizers. For a Klein group
0⊂Aut(u0), we call the conjugacy classes of the involutions in 0 the involution type
of0, and the classes of Riemannian symmetric pairs corresponding to the involutions
in 0 the symmetric space type of 0. Since there is a one-to-one correspondence
between these two types, we simply say type of 0 for either involution type or
symmetric space type.

For a compact simple Lie algebra u0, a Klein subgroup 0 of Aut(u0) is called
regular if any two distinct conjugate (in Aut(u0)) elements σ, θ ∈ 0 are conjugate
by an element g ∈ Aut(u0) commuting with θσ (that is, g ∈ Aut(u0)

θσ ).
A Klein subgroup 0⊂Aut(u0) is called special if there are two (distinct) elements

of 0 which are conjugate in Aut(u0). It is called very special if three involutions
of 0 are pairwise conjugate in Aut(u0). Otherwise it is called nonspecial. The
definition of special is due to [Ōshima and Sekiguchi 1984].

In Tables 3 and 4, we list some Klein subgroups 0i ⊂ Aut(u0) for each compact
simple Lie algebra u0 together with their symmetric space types (when u0 is classical)
or involution types (when u0 is exceptional). These subgroups are not conjugate to
each other since their fixed point subalgebras u0i

0 are nonisomorphic. In the last
column we also indicate whether they are special or not. For brevity, we write N to
mean nonspecial, S to mean special but not very special, V to mean very special.
The speciality of the subgroups 0p,q,r,s depends on the parameters. In general they
can be nonspecial, special or very special; in this case we use NSV to denote their
speciality. The reader can determine for which parameters they are nonspecial,
special or very special. The notation Ip,q , Jp, etc. is defined in Section 2C.

Theorem 6.2. For a compact simple Lie algebra u0, any Klein subgroup0⊂Aut(u0)

is conjugate to one in Table 3 or Table 4 and they are all regular.
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u0 0i l0 = u
0i
0 Type

e6 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 (su(3))2⊕(iR)2 (σ1, σ1, σ1), V
e6 02 = 〈exp(π i H ′4), exp(π i(H ′3+H ′4+H ′5))〉 su(4)⊕(sp(1))2⊕iR (σ1, σ1, σ2), S
e6 03 = 〈exp(π i(H ′2+H ′1)), exp(π i(H ′4+H ′1))〉 su(5)⊕(iR)2 (σ1, σ2, σ2), S
e6 04 = 〈exp(π i(H ′1+H ′6)), exp(π i(H ′3+H ′5))〉 so(8)⊕(iR)2 (σ2, σ2, σ2), V
e6 05 = 〈exp(π i H ′2), τ 〉 sp(3)⊕sp(1) (σ1, σ3, σ4), N
e6 06 = 〈exp(π i H ′2), τ exp(π i H ′4)〉 so(6)⊕iR (σ1, σ4, σ4), S
e6 07 = 〈exp(π i(H ′1+H ′6))), τ 〉 so(9) (σ2, σ3, σ3), S
e6 08 = 〈exp(π i(H ′1+H ′6)), τ exp(π i H ′2)〉 so(5)⊕so(5) (σ2, σ4, σ4), S
e7 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 su(6)⊕(iR)2 (σ1, σ1, σ1), V
e7 02 = 〈exp(π i H ′2), exp(π i H ′3)〉 so(8)⊕(sp(1))3 (σ1, σ1, σ1), V
e7 03 = 〈exp(π i H ′2), τ 〉 so(10)⊕(iR)2 (σ1, σ2, σ2), S
e7 04 = 〈exp(π i H ′1), τ 〉 su(6)⊕sp(1)⊕iR (σ1, σ2, σ3), N
e7 05 = 〈exp(π i H ′2), τ exp(π i H ′1)〉 su(4)⊕su(4)⊕iR (σ1, σ3, σ3), S
e7 06 = 〈τ, ω〉 f4 (σ2, σ2, σ2), V
e7 07 = 〈τ, ω exp(π i H ′1)〉 sp(4) (σ2, σ3, σ3), S
e7 08 = 〈τ exp(π i H ′1), ω exp(π i H ′3)〉 so(8) (σ3, σ3, σ3), V
e8 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 e6⊕(iR)2 (σ1, σ1, σ1), V
e8 02 = 〈exp(π i H ′2), exp(π i H ′1)〉 so(12)⊕(sp(1))2 (σ1, σ1, σ2), S
e8 03 = 〈exp(π i H ′2), exp(π i(H ′1+H ′4))〉 su(8)⊕iR (σ1, σ2, σ2), S
e8 04 = 〈exp(π i(H ′2+H ′1)), exp(π i(H ′5+H ′1))〉 so(8)⊕so(8) (σ2, σ2, σ2), V
f4 01 = 〈exp(π i H ′2), exp(π i H ′1)〉 su(3)⊕(iR)2 (σ1, σ1, σ1), V
f4 02 = 〈exp(π i H ′3), exp(π i H ′2)〉 so(5)⊕(sp(1))2 (σ1, σ1, σ2), S
f4 03 = 〈exp(π i H ′4), exp(π i H ′3)〉 so(8) (σ2, σ2, σ2), V
g2 0 = 〈exp(π i H ′1), exp(π i H ′2)〉 (iR)2 (σ, σ, σ ), V

Table 4. Klein four-subgroups in Aut(u0) for the exceptional cases.

Proof. When u0 is a classical compact simple Lie algebra, we can do matrix calcula-
tion to show Table 3 is complete and any Klein subgroup is regular. When u0 is an
exceptional compact simple Lie algebra, from Klein subgroups we get nonconjugate
commuting pairs of involutions (θ1, θ2) distinguished by the isomorphism type of
u
〈θ1,θ2〉
0 or the distribution of the classes of the (ordered) tuples (θ1, θ2, θ3). When

u0 is of type E6, E7, E8, F4, or G2, we get (at least) 23, 19, 8, 5, or 1 nonconjugate
commuting pairs, respectively. By Proposition 6.1, they represent all conjugacy
classes of commuting pairs of involutions. So Table 4 is complete.

For an exceptional simple Lie algebra u0, suppose that some Klein subgroup
fails to be regular. Then we can construct nonconjugate commuting pairs (θ1, θ2)

and (θ ′1, θ
′

2) (= (θ2, θ1)) with 〈θ1, θ2〉 = 〈θ
′

1, θ
′

2〉, θ1∼ θ
′

1, θ2∼ θ
′

2, θ1θ2∼ θ
′

1θ
′

2. Then
there should exist more isomorphism classes of semisimple symmetric pairs. But it
is not the case, and it follows that any Klein subgroup is regular. �
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Another way of proving all Klein subgroups of Aut(u0) are regular is as follows.
First we just need to check for any commuting pair of involutions θ1, θ2 ∈ Aut(u0)

with θ1 ∼ θ2 (in Aut(u0)), θ1, θ2 are conjugate in Aut(u0)
θ , where θ = θ1θ2. Fix θ

as a representative in Section 3, when u0 is an exceptional simple Lie algebra. This
was already checked in the last subsection; when u0 is a classical simple Lie algebra,
we can check this from the data in Table 3 (list of Klein groups with symmetric
space type) and Table 2 (symmetric subgroups).

A statement equivalent to the regularity of all Klein subgroups (Theorem 6.2) is
that two commuting pairs of involutions (θ, σ ) and (θ ′, σ ′) are conjugate in Aut(u0)

if and only if

θ ∼ θ ′, σ ∼ σ ′, θσ ∼ θ ′σ ′

and the Klein subgroups 〈θ, σ 〉, 〈θ ′, σ ′〉 are conjugate. This statement clearly implies
the second statement in Theorem 6.2. To derive this statement from Theorem 6.2,
give two pairs (θ, σ ) and (θ ′, σ ′)with θ∼θ ′, σ ∼σ ′, θσ ∼θ ′σ ′ and 〈θ, σ 〉∼〈θ ′, σ ′〉.
After replacing (θ ′, σ ′) by a pair conjugate to it, we may assume 〈θ, σ 〉 = 〈θ ′, σ ′〉,
that is, (θ, σ ) and (θ ′, σ ′) generate the same Klein subgroup. By Theorem 6.2,
〈θ, σ 〉 is regular, so (θ, σ ) and (θ ′, σ ′) are conjugate. Since any Klein subgroup of
Aut(u0) is regular, a conjugacy class of Klein subgroups gives 6, 3, or 1 isomorphism
types of semisimple symmetric pairs when it is nonspecial, special but not very
special, or very special, respectively.

The fact that all Klein subgroups in Aut(u0) are regular is an interesting phenom-
enon. The property of regularity can be generalized to closed subgroups of any Lie
group; a vast array of examples of nonregular subgroups is given in [Larsen 1994].

From Tables 1 and 4, we can abstract the following facts.

Proposition 6.3. When u0 is an exceptional compact simple Lie algebra, any
two classes of involutions have commuting representatives; for any Klein group
0 ⊂ Aut(u0) the centralizer Aut(u0)

0 intersects of Aut(u0).

For classical compact simple Lie algebras, both statements of the above proposi-
tion fail in general. For example, in Aut(su(2n)) and for an odd p with 1≤ p≤n−1,
τ ◦Ad(In,n) (τ = complex conjugation) doesn’t commute with any involution con-
jugate to Ad(Ip,2n−p); in Aut(so(4n)), Aut(so(4n))0n ⊂ Int(so(4n)) (see Table 3
for the definition of 0n).

For each Klein subgroup 0 listed in Table 3 or 4 with two generators θ, σ ∈
Aut(u0), we get the centralizer Aut(u0)

0 by calculating (Aut(u0)
θ )σ . The results

about Aut(u0)
0 are listed in Table 5 for classical compact simple Lie algebras and

in Table 6 for exceptional compact simple Lie algebras.
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u0 0i L = Aut(u0)
0i

su(p+q), p 6= q 0p,q ((O(p)×O(q))/〈(−Ip,−Iq)〉)×〈τ 〉

su(2p) 0p,p ((O(p)×O(p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(Jp)(X,Y )= (Y,X), Ad(τ )= 1

su(2p) 0′p (U (p)/〈−Ip〉)o〈τ,z〉, Ad(z)= 1
su(2p+2q), p 6= q 0′p,q ((Sp(p)×Sp(q))/〈(−Ip,−Iq)〉)×〈τ Jp+q〉

su(4p) 0′p,p ((Sp(p)×Sp(p))/〈(−Ip,−Ip)〉)o〈τ J2p, Jp〉,
Ad(Jp)(X,Y )= (Y,X), Ad(τ J2p)= 1

su(p+q+r+s) 0p,q,r,s ((S(U (p)×U (q)×Ur×Us)/〈Z p+q+r+s〉)o〈τ 〉
Ad(τ )= complex conjugation

su(2p+2r),p 6= r 0p,p,r,r ((S(U (p)×U (p)×Ur×Ur )/〈Z2p+2r 〉)o〈τ, Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

su(4p) 0p,p,p,p ((S(U (p)×U (p)×U (p)×U (p))/〈Z4p〉)o〈τ, J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

su(2p) 0p P SU (p)o〈Fp,τ 〉

Ad(τ )= complex conjugation, Ad(Fp)= 1
so(p+q+r+s) 0p,q,r,s (O(p)×O(q)×O(r)×O(s))/〈−Ip+q+r+s〉

so(2p+2r),p 6= r 0p,p,r,r ((O(p)×O(p)×O(r)×O(r))/〈−I2p+2r 〉))o〈Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

so(4p), p 6= 2 0p,p,p,p ((O(p))4/〈−I4p〉)o〈J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

so(8) 02,2,2,2 (U (1)4/Z ′)o〈ε1,2,ε1,3,ε1,4,S4〉

Ad(ε1,2)(X1,X2,X3,X4)= (−X1,−X2,X3,X4),etc
S4 acts by permutations

so(2p) 0p (O(p)/〈−Ip〉)×Fp

so(2p+2q), p 6= q 0p,q ((U (p)×U (q))/〈(−Ip,−Iq)〉)o〈τ 〉
Ad(τ )= complex conjugation

so(4p) 0p,p ((U (p)×U (p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(Jp)(X,Y )= (Y,X)

so(4p) 0′p (Sp(p)/〈−Ip〉)×F ′p
sp(n) 0p (O(n)/〈−In〉)×Fp

sp(p+q), p 6= q 0p,q ((U (p)×U (q))/〈(−Ip,−Iq)〉)×〈τ 〉

sp(2p) 0p,p ((U (p)×U (p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(τ )= complex conjugation, Ad(Jp)(X,Y )= (Y,X)

sp(2p) 0′p (Sp(p)/〈−Ip〉)×F ′p
sp(p+q+r+s) 0p,q,r,s (Sp(p)×Sp(q)×Sp(r)×Sp(s))/〈−Ip+q+r+s〉

sp(2p+2r),p 6= r 0p,p,r,r ((Sp(p)×Sp(p)×Sp(r)×Sp(r))/〈−I2p+2r 〉)o〈Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

sp(4p) 0p,p,p,p ((Sp(p))4/〈−I4p〉)o〈J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

Table 5. Fixed point subgroups of Klein four-subgroups: classical cases.
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u0 0i L = Aut(u0)
0i

e6 01 ((SU (3)×SU (3)×U (1)×U (1))/〈(e
2π i

3 I, I,e
2π i

3 ,1),(I,e
2π i

3 I,e
−2π i

3 ,1)〉)o〈z,τ 〉,
Ad(τ )(X,Y,λ,µ)= (Y ,X ,λ,µ), Ad(z)(X,Y,λ,µ)= (Y,X,λ−1,µ−1)

e6 02 (SU (4)×Sp(1)×Sp(1)×U (1))/〈(i I,−1,1,i),(I,−1,−1,−1)〉)o〈τ 〉,
Ad(τ )(X,y,z,λ)= (J2 X(J2)

−1,y,z,λ−1)

e6 03 (SU (5)×U (1)×U (1))o〈τ ′〉, Ad(τ ′)(X,λ,µ)= (X ,λ−1,µ−1)

e6 04 ((Spin(8)×U (1)×U (1))/〈(−1,−1,1),(c,1,−1)〉)o〈τ 〉,
Ad(τ )(x,λ,µ)= (x,λ−1,µ−1)

e6 05 ((Sp(3)×Sp(1))/〈(−I,−1)〉)×〈τ 〉
e6 06 ((SO(6)×U (1))/〈(−I,−1)〉)o〈τ ′,z〉,

Ad(z)(X,λ)= (I3,3 X I3,3,λ
−1), Ad(τ ′)= 1

e6 07 Spin(9)×〈τ 〉
e6 08 ((Spin(5)×Spin(5))/〈(−1,−1)〉)o〈τ ′,z〉, Ad(z)(x,y)= (y,x)

e7 01 ((SU (6)×U (1)×U (1))/〈(e
2π i

3 I,e
−2π i

3 ,1),(−I,1,1)〉)o〈z〉,
Ad(z)(X,λ,µ)= (J3 X J−1

3 ,λ−1,µ−1)

e7 02 (Spin(8)×Sp(1)3)/〈(c,−1,1,1),(1,−1,−1,−1),(−1,−1,−1,1)〉
e7 03 ((Spin(10)×U (1)×U (1))/〈(c,i,1)〉)o〈z〉,

Ad(z)(x,λ,µ)= (e1xe−1
1 ,λ−1,µ−1)

e7 04 ((SU (6)×Sp(1)×U (1))/〈(e
2π i

3 I,1,e
−2π i

3 ),(−I,−1,1)〉)o〈z〉,
Ad(z)(X,y,λ)= (J3 X J−1

3 ,y,λ−1)

e7 05 ((Spin(6)×Spin(6)×U (1))/〈(c,c′,1),(1,−1,−1)〉)o〈z1,z2〉,
Ad(z1)(x,y,λ)= (y,x,λ−1), Ad(z2)(x,y,λ)= (e1xe−1

1 ,e1 ye−1
1 ,λ−1)

e7 06 F4×〈τ,ω〉

e7 07 (Sp(4)/〈−I 〉)×〈τ,ω′〉
e7 08 (SO(8)/〈−I 〉)×〈τ ′,ω′〉

e8 01 ((E6×U (1)×U (1))/〈(c,e
2π i

3 ,1)〉)o〈z〉, lz0 = f4⊕0⊕0
e8 02 (Spin(12)×Sp(1)×Sp(1))/〈(c,−1,1),(−1,−1,−1)〉
e8 03 ((SU (8)×U (1))/〈(−I,1),(i I,−1)〉)o〈z〉, lz0 = sp(4)⊕0
e8 04 ((Spin(8)×Spin(8))/〈(−1,−1),(c,c)〉)o〈z〉, Ad(z)(x,y)= (y,x)

f4 01 ((SU (3)×U (1)×U (1))/〈(e
2π i

3 I,e
−2π i

3 ,1)〉)o〈z〉, lz0 = so(3)⊕0⊕0
f4 02 ((Sp(2)×Sp(1)×Sp(1))/〈(−I,−1,−1)〉
f4 03 Spin(8)
g2 0 (U (1)×U (1))o〈z〉, Ad(z)(λ,µ)= (λ−1,µ−1)

Table 6. Fixed point subgroups of Klein four-subgroups: excep-
tional cases.
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FRACTAL ENTROPY OF NONAUTONOMOUS SYSTEMS

RUI KUANG, WEN-CHIAO CHENG AND BING LI

We define formulas of entropy dimension for a nonautonomous dynamical
system consisting of a sequence of continuous self-maps of a compact met-
ric space. This study reveals analogues of basic propositions for entropy
dimension, such as the power rule, product rule and commutativity, etc.
These properties allow us to convert to an equality an inequality found by
de Carvalho (1997) concerning the product rule for the autonomous dynam-
ical system. We also prove a subadditivity rule of entropy dimension for
one-dimensional dynamics based on our previous work.

1. Introduction

Entropies are important factors in the study of autonomous (i.e., deterministic)
dynamical systems that are induced by iterations of a single transformation. The
concept of topological entropy was originally introduced by Adler, Konheim and
McAndrew [Adler et al. 1965] as an invariant of topological conjugacy and a nu-
merical measure for the complexity of a dynamical system. Later on, Bowen [1971]
and Dinaburg [1971] gave an equivalent definition when the space is metrizable.
Other studies [Brucks and Bruin 2004; Katok and Hasselblatt 1995; Pollicott and
Yuri 1998; Walters 1982] and the references therein discuss related definitions and
properties. In the 1990s, various authors introduced several refinements of the
notion of entropy, leading to significant findings in many different directions.

The commutativity formula for topological entropy (and measure theoretic en-
tropy) was proved first in [Dana and Montrucchio 1986]. With the development
of the study of nonautonomous dynamical systems, Kolyada and Snoha [1996]
introduced and studied the notion of topological entropy for a sequence of continuous
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self-maps of a compact metric space. Many properties for such dynamical systems
were studied in [Cánovas 2011; Huang et al. 2008; Kolyada et al. 1999; 2004;
Mouron 2007] and elsewhere. Particularly, the commutativity of the topological
entropy was proved and announced in [Kolyada and Snoha 1996]. This kind of
problem for nonautonomous dynamical systems has been studied for many years by
several authors. A good discussion of these properties and applications appears in
[Balibrea et al. 1999; Cánovas and Linero 2002; 2005; Hric 1999; 2000; Kolyada
and Snoha 1996; Zhu et al. 2006].

Although systems with positive entropy are much more complicated than those
with zero entropy, zero entropy systems have various complexities; see [de Carvalho
1997; Dou et al. 2011; Ferenczi and Park 2007; Huang et al. 2007; Misiurewicz
1981; Misiurewicz and Smítal 1988; Misiurewicz and Szlenk 1980]. These studies
give some methods of classifying zero entropy dynamical systems. De Carvalho
[1997] introduced a notion of entropy dimension to distinguish zero topological
entropy systems and obtained some basic properties of entropy dimension. Cheng
and Li [2010] presented some examples to show that every number in (0, 1) can
be attained by the entropy dimensions of the dynamical systems and a dynamical
system whose entropy dimension is one and topological entropy is zero. These
findings answered the question asked in [de Carvalho 1997].

This paper analyzes a nonautonomous discrete dynamical system (X, T1,∞)

given by a compact metric space X and a sequence T1,∞ = {Ti }
∞

i=1 of continuous
self-maps of X . The trajectory of a fixed point x is defined as the sequence
x , T1(x), T2(T1(x)), . . . . Our goal is to study the properties of fractal entropy of
nonautonomous dynamical systems. The paper is organized as follows. Section 2
defines and studies the entropy dimension D(T1,∞) of a nonautonomous dynamical
system given by a sequence T1,∞= {Ti }

∞

i=1 of continuous maps of a compact metric
space X into itself. Section 3 investigates some formulas of entropy dimension
for nonautonomous dynamical systems. These include the power rule, product
rule and topological equisemiconjugacy. Applying these results shows that the
commutativity of entropy dimension is also true for nonautonomous dynamical
systems and the product rule holds for the autonomous dynamics, which was given
just as an inequality in [de Carvalho 1997]. Section 4 focuses on continuous maps on
the unit interval [0, 1]. To show the subadditivity of entropy dimension, this paper
uses the main result in [Cheng and Li 2010] to consider two continuous commuting
interval maps. Finally, we discuss the notion of the asymptotical entropy dimension.

2. Equivalent definitions

Topological entropy is one of the most fundamental dynamical invariants associated
to a continuous map. It roughly measures the orbit structure complexity of the map.



FRACTAL ENTROPY OF NONAUTONOMOUS SYSTEMS 423

For nonautonomous dynamical systems, a sequence of continuous maps {Ti }
∞

i=1 is
considered. The s-topological entropy dimension of a nonautonomous dynamical
system is introduced in this section. After that, we give different types of equivalent
definitions.

Let (X, d) be a compact metric space and {Ti }
∞

i=1 be a sequence of continuous
maps from X to itself. Denote by T1,∞ the sequence {Ti }

∞

i=1 and by (X, T1,∞) the
induced nonautonomous dynamical system.

For any i ∈ N, let T 0
i = Id, where Id is the identity map on X . Set

T n
i = Ti+(n−1) ◦ · · · ◦ Ti+1 ◦ Ti and T−n

i = T−1
i ◦ T−1

i+1 ◦ · · · ◦ T−1
i+(n−1).

For any open cover A of X , define

T−n
i (A)= {T−n

i (A) : A ∈A}

and

An
i (T1,∞)=

∨n−1
j=0 T− j

i (A)

=
{

Ai0 ∩ T−1
i (Ai1)∩ · · · ∩ T−(n−1)

i (Ain−1) : Ai j ∈A, 1≤ j ≤ n− 1
}
.

We write An
1 for simplicity instead of An

i (T1,∞) if there is no confusion. Let N(A)

be the minimal possible cardinality of a subcover chosen from A.

Definition 2.1. Let Ti : X→ X , i = 1, 2, 3, . . . , be a sequence of continuous maps
and s ≥ 0 be a real number. The s-topological entropy of T1,∞ is defined as

D(s, T1,∞)= sup
A

D(s, T1,∞,A),

where A ranges over all open covers of X and

D(s, T1,∞,A)= lim sup
n→∞

1
ns log N(An

1).

When Ti = T for all i ∈ N, D(s, T1,∞) is just the s-topological entropy of T
defined in [Cheng and Li 2010] (denoted by D(s, T )). Furthermore, if s = 1 and
Ti = T for all i ∈N, it is trivial that D(s, Ti,∞) is just the topological entropy of T
(usually denoted by h(T )).

From Definition 2.1 it follows that the s-topological entropy D(s, T1,∞) enjoys
the following properties.

Proposition 2.2. (i) The map s > 0 7→ D(s, T1,∞) is nonnegative and decreasing
with s.

(ii) There exists s0 ∈ [0,+∞] such that

D(s, T1,∞)=

{
+∞ if 0< s < s0,

0 if s > s0.



424 RUI KUANG, WEN-CHIAO CHENG AND BING LI

Proposition 2.2(ii) indicates that the value of D(s, T1,∞) jumps from infinity to 0
at both sides of some point s0, which is similar to a fractal measure. Analogously
to the fractal dimension, define the entropy dimension of T1,∞ as follows.

Definition 2.3. Let (X, T1,∞) be a nonautonomous dynamical system. Define the
entropy dimension of T1,∞ to be

D(T1,∞)= sup{s > 0 : D(s, T1,∞)=∞} = inf{s > 0 : D(s, T1,∞)= 0}.

When Ti = T for all i ∈ N, then D(T1,∞)= D(T ), where D(T ) is the entropy
dimension of T defined in [Cheng and Li 2010; Dou et al. 2011].

We now turn to definitions motivated by analogues of the topological entropy.
Let n ∈ N and define a new (Bowen) metric dn on X by

dn(x, y)= max
0≤i<n

d(T i
1 (x), T i

1 (y)),

where x , y ∈ X .

Definition 2.4. A set F ⊂ X is called an (n, ε)-spanning set of X for T1,∞ if, for
any x ∈ X , there exists y ∈ F with dn(x, y)≤ ε. A dual definition is as follows. A
set E ⊂ X is called an (n, ε)-separated set of X for T1,∞ if dn(x, y) > ε for every
pair of distinct point x , y ∈ E , x 6= y.

Define

r(T1,∞, n, ε)=min
{
#F : F ⊂ X is an (n, ε)-spanning set for T1,∞

}
,

s(T1,∞, n, ε)=max
{
#E : E ⊂ X is an (n,ε)-separated set for T1,∞

}
,

where #E is the number of elements in E . The following lemma describes the
relationship among these two quantities and the number of covering sets.

Lemma 2.5. Let Ti : X→ X be a sequence of continuous maps of a compact metric
space (X, d).

(i) For any open cover A of X with Lebesgue number δ,

(2-1) N(An
1)≤ r(T1,∞, n, δ/2)≤ s(T1,∞, n, δ/2).

(ii) For any ε > 0 and open cover A with diam(A) :=max{diam(A) : A ∈A} ≤ ε,

(2-2) r(T1,∞, n, ε)≤ s(T1,∞, n, ε)≤ N(An
1).

Proof. (i) Since any maximal (n, ε)-separated set of X for T1,∞ is (n, ε)-spanning,
the second inequality of (2-1) holds. Thus, it suffices to prove the first inequality.
Let F be a (n, δ/2)-spanning set for X of cardinality r(T1,∞, n, δ/2). Then

X =
⋃
x∈F

n−1⋂
i=0

T−i
1 B(T i

1 x, δ/2).
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Note that B(T i x, δ/2) is a subset of a member of A for any 0 ≤ i ≤ n − 1 and
x ∈ F ; thus,

N(An
1)≤ r(T1,∞, n, ε).

(ii) The first inequality of (2-2) holds, as in (i). It suffices to prove the second
inequality of (2-2). Let E be an (n, ε)-separated set of cardinality s(T1,∞, n, ε).
Then no member of the cover An

1 can contain two elements of E since diam(A)≤ ε.
This implies

s(T1,∞, n, ε)≤ N(An
1). �

Lemma 2.5 immediately implies the following property, which indicates that
the s-topological entropy for T1,∞ can be equivalently defined by the spanning and
separated sets.

Proposition 2.6. Let Ti : X → X , i = 1, 2, 3, . . . , be a sequence of continuous
maps and s ≥ 0 a real number. Then

D(s, T1,∞)= lim
ε→0

lim sup
n→∞

1
ns log r(T1,∞, n, ε)= lim

ε→0
lim sup

n→∞

1
ns log s(T1,∞, n, ε).

3. Dynamical propositions

The entropy dimension we defined for a nonautonomous dynamical system is a
topological equiconjugacy invariant. Thus, we can consider those two entropy
zero dynamical systems as being not the same or being not equivalent by different
entropy dimension. The main idea of this section is quite similar to that of Kolyada
and Snoha’s approximations. The basic proposition of entropy dimension is the
power rule. The inequality of the power rule can be shown as follows.

Lemma 3.1 [Kolyada and Snoha 1996]. Let A, B be any two open covers of X.
Then

(i) N(A∨B)≤ N(A)N(B);

(ii) N(T−n
i A)≤ N(A);

(iii) T−1(A∨B)= T−1(A)∨ T−1(B);

(iv) N(A)≥ N(B) when A is finer than B (denoted by A�B).

Proposition 3.2. Let X be a compact topological space and T1,∞ a sequence of
continuous maps from X to itself. Then

(3-1) D(s, T m
1,∞)≤ ms D(s, T1,∞)

for any s > 0 and m ∈ N, where T m
1,∞ =

{
T (i+1)m

im+1

}∞
i=0. As a consequence,

D(T m
1,∞)≤ D(T1,∞).
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Proof. Let A be any open cover of X . For any n ∈ N,

A∨ T−1
1 (A)∨ T−2

1 (A)∨ · · · ∨ T−(nm−1)
1 (A)

�A∨ T−m
1 (A)∨ T−2m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A),

so by Lemma 3.1(iv),

N
(
A∨ T−1

1 (A)∨ · · · ∨ T−(nm−1)
1 (A)

)
≥ N

(
A∨ T−m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A)

)
.

Note that

A∨ T−m
1 (A)∨ T−2m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A)

=A∨ (T m
1 )
−1(A)∨ (T m

1 )
−1
◦(T m

m+1)
−1(A)∨ · · ·

∨ (T m
1 )
−1
◦(T m

m+1)
−1
◦ · · · ◦(T m

(n−2)m+1)
−1(A),

and thus

lim sup
n→∞

1
(mn)s

log N
(
A∨ T−1

1 (A)∨ T−2
1 (A)∨ · · · ∨ T−(nm−1)

1 (A)
)

≥
1

ms D(s, T m
1,∞,A).

Therefore,

D(s, T1,∞,A)= lim sup
k→∞

1
ks log N(Ak

1)≥ lim sup
n→∞

1
(nm)s

log N(Anm
1 )

= lim sup
n→∞

1
(nm)s

log N
(
A∨T−1

1 (A)∨T−2
1 (A)∨· · ·∨T−(nm−1)

1 (A)
)

≥
1

ms D(s, T m
1,∞,A).

Thus, D(s, T m
1,∞)≤ ms D(s, T1,∞).

For the entropy dimension, assume t > D(T1,∞) is any real number. Then
D(t, T1,∞) = 0, which, combined with (3-1), implies D(t, T m

1,∞) = 0, so t ≥
D(T m

1,∞). Therefore, D(T m
1,∞)≤ D(T1,∞) by the arbitrariness of t . �

[Kolyada and Snoha 1996] gives an example showing that the inequality in (3-1)
can be sharp when s= 1. The following two propositions indicate that the inequality
in (3-1) can be an equality under some conditions.

Proposition 3.3 (power rule). Let X be a compact topological space and T1,∞ be a
sequence of continuous maps from X to itself. If T1,∞ is periodic with period m ∈N,
that is, Tim+ j = T j for any 1≤ j ≤ m and i ≥ 0, then

D(s, T m
1,∞)= ms D(s, T1,∞)

for any s > 0. As a consequence, D(T m
1,∞)= D(T1,∞).
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Proof. Assume m ≥ 2 since the case m = 1 is trivial. From Proposition 3.2, it is
only necessary to prove D(s, T m

1,∞)≥ ms D(s, T1,∞).
Let A be any open cover of X and k = nm + r , where n ≥ 1 and 1 ≤ r ≤ m.

Combining T1,∞={T1, T2, . . . , Tm, T1, T2, . . . , Tm, . . . } and T m
1,∞={T

m
1 , T m

1 , . . . }

with Lemma 3.1(iii),

T−im
1 (A)∨ T−(im+1)

1 (A)∨ · · · ∨ T−((i+1)m−1)
1 (A)

= T−im
1

(
A∨ T−1

im+1(A)∨ · · · ∨ T−(m−1)
im+1 (A)

)
= T−im

1

(
A∨ T−1

1 (A)∨ · · · ∨ T−(m−1)
1 (A)

)
= (T im

1 )−1(A∨ T−1
1 (A)∨ · · · ∨ T−(m−1)

1 (A)
)

for i = 0, 1, 2, . . . . Therefore, Ak
1(T1,∞) can be written as(

A∨T−1
1 (A)∨· · ·∨T−(m−1)

1 (A)
)
∨
(
T−m

1 (A)∨T−(m+1)
1 (A)∨· · ·∨T−(2m−1)

1 (A)
)

∨· · ·∨
(
T−(n−1)m

1 A∨T−((n−1)m+1)
1 (A)∨· · ·∨T−(nm−1)

1 (A)
)

∨
(
T−nm

1 A∨T−(nm+1)
1 (A)∨· · ·∨T−(nm+r−1)

1 (A)
)

=
(
A∨T−1

1 (A)∨· · ·∨T−(m−1)
1 (A)

)
∨(T m

1 )
−1(A∨T−1

1 (A)∨· · ·∨T−(m−1)
1 (A)

)
∨· · ·∨(T (n−1)m

1 )−1(A∨T−1
1 (A)∨· · ·∨T−(m−1)

1 (A)
)

∨(T nm
1 )−1(A∨T−1

1 (A)∨· · ·∨T−(r−1)
1 (A)

)
=Am

1 ∨(T
m

1 )
−1(Am

1 )∨· · ·∨(T
(n−1)m

1 )−1(Am
1 )∨(T

nm
1 )−1(Ar

1)

= (Am
1 (T1,∞))

n
1(T

m
1,∞)∨(T

nm
1 )−1(Ar

1(T1,∞)).

Combining parts (i) and (iii) of Lemma 3.1, we obtain

N(Anm+r
1 (T1,∞))= N

(
(Am

1 (T1,∞))
n
1(T

m
1,∞)∨ (T

nm
1 )−1(Ar

1(T1,∞))
)

≤ N
(
(Am

1 (T1,∞))
n
1(T

m
1,∞)

)
N(Ar

1(T1,∞)).

Thus,

D
(
s, T m

1,∞,Am
1 (T1,∞)

)
= lim sup

n→∞
n−s log N

(
(Am

1 (T1,∞))
n
1(T

m
1,∞)

)
≥ lim sup

n→∞
n−s(log N(Anm+r

1 (T1,∞))− log N(Ar
1(T1,∞))

)
= lim sup

n→∞
n−s log N(Anm+r

1 (T1,∞))

= ms lim sup
n→∞

(nm+ r)−s log N(Anm+r
1 (T1,∞))

= ms lim sup
k→∞

k−s log N(Ak
1(T1,∞))= ms D(s, T1,∞,A),

which implies that D(s, T m
1,∞)≥ ms D(s, T1,∞) by the arbitrariness of A. �
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Applying Proposition 3.3 to the case of one map as a sequence leads to the
following, which solves a problem in [de Carvalho 1997], where the author gave an
inequality.

Corollary 3.4. Let (X, T ) be a topological dynamical system. Then

D(s, T m)= ms D(s, T )

for any s > 0 and m ∈ N. In particular, D(T m)= D(T ).

Now let us consider the sequence of equicontinuous maps from X to itself;
that is, T1,∞ = {Ti }

∞

i=1 is equicontinuous on X . More precisely, for any x ∈ X and
ε > 0, there exists δ > 0 such that d(Ti x, Ti y) < ε for all i = 1, 2, . . . whenever
d(x, y) < δ. We know that δ can be independent of the choice of x when X is
compact.

Proposition 3.5 (power rule). Let (X, d) be a compact metric space and T1,∞ be a
sequence of equicontinuous maps from X to itself. Then

D(s, T m
1,∞)= ms D(s, T1,∞)

for any s > 0.

Proof. By Proposition 3.2, it suffices to prove D(s, T m
1,∞) ≥ ms D(s, T1,∞) for

m ≥ 2. For any ε > 0, let

δ(ε)= ε+ sup
i≥1

max
k=1,...,m−1

sup
x,y∈X

{
d(T k

i (x), T k
i (y)) : d(x, y)≤ ε

}
.

Since X is compact and T1,∞ is equicontinuous, we have:

(i) if ε→ 0, then δ(ε)→ 0;

(ii) if d(x, y)≤ε, then d(T k
i (x), T k

i (y))≤δ(ε) for any i≥1 and k=1, 2, . . . ,m−1.

Let E be any (nm, δ(ε))-separated set for T1,∞. Then, E is an (n, ε)-separated
set for T m

1,∞ and snm(T1,∞, δ(ε))≤ sn(T m
1,∞, ε).

Therefore, writing k = nm+r with 1≤ r ≤m, we have the following calculation:

D(s, T m
1,∞)= lim

ε→0
lim sup

n→∞

1
ns log sn(T m

1,∞, ε)

≥ lim
ε→0

lim sup
n→∞

1
ns log s(n−1)m+r (T1,∞, δ(ε))

= ms lim
ε→0

lim sup
n→∞

1
((n− 1)m+ r)s

log s(n−1)m+r (T1,∞, δ(ε))

≥ ms lim
δ(ε)→0

lim sup
k→∞

1
ks log sk(T1,∞, δ(ε))

= ms D(s, T1,∞). �
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Proposition 3.6 (monotonicity). Let X be a compact topological space and T1,∞ a
sequence of continuous maps from X to itself. Then

(3-2) D(s, Ti,∞)≤ D(s, T j,∞)

for any s > 0 and 1≤ i ≤ j ≤+∞.

Proof. Let A be any open cover of X . Lemma 3.1(i) implies
(3-3)

N(An
i )=N

( n−1∨
j=0

T− j
i (A)

)
=N

(
A∨

n−1∨
j=1

T− j
i (A)

)
≤N(A)N

( n−1∨
j=1

T− j
i (A)

)
.

Lemma 3.1(ii) shows that
(3-4)

N

( n−1∨
j=1

T− j
i (A)

)
= N

(
T−1

i

( n−2∨
j=0

T− j
i+1(A)

))
≤ N

( n−2∨
j=0

T− j
i+1(A)

)
= N(An−2

i+1 ).

Combining (3-3) and (3-4) leads to

N(An
i )≤ N(A)N(An−2

i+1 ).

Therefore,

D(s, Ti,∞,A)= lim sup
n→∞

1
ns log N(An

i )≤ lim sup
n→∞

1
ns log

(
N(A)N(An−2

i+1 )
)
.

Thus,

D(s, Ti,∞,A)≤ lim sup
n→∞

1
(n− 2)s

log N(An−2
i+1 )= D(s, Ti+1,∞,A),

and D(s, Ti,∞)≤ D(s, Ti+1,∞) by the arbitrariness of A. Hence, (3-2) holds. �

Applying the monotonicity shows that the s-topological entropy for the com-
position of two maps does not depend on the order, as the following theorem
indicates.

Theorem 3.7 (commutativity). Let X be a compact topological space and let T , S
be two continuous maps from X to itself. Then

D(s, T ◦ S)= D(s, S ◦ T )

for any s > 0.

Proof. From Proposition 3.6, we obtain

D(s, {S, T, S, T, . . . })≤ D(s, {T, S, T, S, . . . })≤ D(s, {S, T, S, T . . . }),

which implies

D(s, {S, T, S, T, . . . })= D(s, {T, S, T, S, . . . }).
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By Proposition 3.3,

D(s, T ◦S)=D(s, {T ◦S, T ◦S, . . . })=2s D(s, {S, T, S, T, . . . })

=2s D(s, {T, S, T, S, . . . })=D(s, {S◦T, S◦T, . . . })=D(s, S◦T ). �

Corollary 3.8. Let X be a compact topological space and Ti (i = 1, 2, . . . , n) be
the continuous self-maps on X. Then, for any 1< i ≤ n and s > 0,

D(s, Tn ◦ · · · ◦ T2 ◦ T1)= D(s, Ti−1 ◦ · · · ◦ T2 ◦ T1 ◦ Tn ◦ · · · ◦ Ti ).

Proof. By Theorem 3.7,

D(s, Tn◦· · ·◦Ti ◦Ti−1◦· · ·◦T2◦T1)= D(s, (Tn◦· · ·◦Ti )◦(Ti−1◦· · ·◦T2◦T1))

= D(s, (Ti−1◦· · ·◦T2◦T1)◦(Tn◦· · ·◦Ti ))

= D(s, Ti−1◦· · ·◦T2◦T1◦Tn◦· · ·◦Ti ). �

The following corollary was given in [Cheng and Li 2010]; however, this paper
provides a quick proof from the commutativity (Theorem 3.7).

Corollary 3.9. Let X be a compact topological spaces and T1, T2 be two continuous
maps on X. If (X, T1) is conjugate to (Y, T2), then D(s, T1) = D(s, T2) for any
s > 0.

Proof. Let φ be a conjugacy between T1 and T2. Since T2=φ◦T1◦φ
−1, Theorem 3.7

shows that
D(s, T2)= D(s, (φ ◦ T1) ◦φ

−1)= D(s, T1). �

As Corollary 3.9 shows, the s-topological entropy D(s, T ) for an autonomous
dynamical system is a conjugate invariant quantity. For the nonautonomous case,
the definition of conjugacy must be adapted to the following.

Definition 3.10. Let (X, {Ti }
∞

i=1) and (Y, {Si }
∞

i=1) be two nonautonomous dynam-
ical systems. Denote by π1,∞ = {πi }

∞

i=1 a sequence of equicontinuous surjective
maps from X to Y . If

πi+1 ◦ Ti = Si ◦πi

for every i ≥ 1, we say that π1,∞ is a topological equisemiconjugacy between T1,∞

and S1,∞, and the dynamical system (X, T1,∞) is topologically equisemiconjugate
with (Y, S1,∞). Furthermore, if π1,∞ is an equicontinuous sequence of homeomor-
phisms such that the sequence π−1

1,∞ = {π
−1
i }
∞

i=1 of inverse homeomorphisms is
also equicontinuous, we say that π1,∞ is a topological equiconjugacy between T1,∞

and S1,∞, and the dynamical system (X, T1,∞) is topologically equiconjugate with
(Y, S1,∞).
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Theorem 3.11. Let (X, d) and (Y, ρ) be compact metric spaces and T1,∞ and S1,∞

be the sequences of continuous maps from X and Y into themselves, respectively. If
the system (X, T1,∞) is equisemiconjugate with (Y, S1,∞), then

(3-5) D(s, S1,∞)≤ D(s, T1,∞)

for any s > 0.

Proof. Let π1,∞ be the equisemiconjugacy between X and Y . For any given ε > 0,
noting that π1,∞ is a sequence of equicontinuous maps from X onto Y and X is
compact, there exists δ(ε) > 0 such that if ρ(πi (x), πi (y)) > ε for some i ≥ 1,
then d(x, y) > δ(ε). Let E ⊂ Y be an (n, ε)-separated set for S1,∞ with maximal
cardinality s(S1,∞, n, ε). Choose one point from each fiber π−1

1 (y), y ∈ E and
denote by EX the set of such points. Then EX ⊂ X is an (n, δ(ε))-separated set for
T1,∞. Therefore, s(T1,∞, n, δ(ε))≥ s(S1,∞, n, ε), which implies (3-5). �

Apply Theorem 3.11, the following statement holds.

Corollary 3.12. Let (X, d) and (Y, ρ) be compact metric spaces and T1,∞ and S1,∞

be the sequences of continuous maps from X and Y into themselves, respectively. If
the system (X, T1,∞) is equiconjugate with (Y, S1,∞), then

D(s, S1,∞)= D(s, T1,∞)

for any s > 0. As a result, D(S1,∞)= D(T1,∞).

Theorem 3.13 (product rule). Let (X, d) and (Y, ρ) be compact metric spaces. Let
{Ti }
∞

i=1 and {Si }
∞

i=1 be two sequences of continuous maps on X and Y , respectively.
Define a metric d∗ on X × Y by d∗((x1, y1), (x2, y2))=max{d(x1, x2), ρ(y1, y2)}

and a sequence of transformations on X × Y by (Ti × Si )(x, y)= (Ti x, Si y). Then

D(s, T1,∞× S1,∞)≤ D(s, T1,∞)+ D(s, S1,∞)

for any s > 0, where T1,∞× S1,∞ = {Ti × Si }
∞

i=1.

Proof. We know that balls in the n-Bowen metric d∗n are products of balls on X and
Y since balls in the product metric d∗ are products of balls on X and Y . Therefore,

r(T1,∞× S1,∞, n, ε)≤ r(T1,∞, n, ε)r(S1,∞, n, ε).

Thus D(s, T1,∞× S1,∞)≤ D(s, T1,∞)+ D(s, S1,∞). �

4. Subadditivity

For S, T two continuous functions from the compact metric space X to itself, some
additional conditions are necessary to obtain some interesting results. It is natural
to assume that S and T commute, that is, S ◦ T = T ◦ S. For instance, in [Hu
1993], the subadditivity of topological entropy h(S ◦ T )≤ h(S)+ h(T ) was proved
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for diffeomorphisms on C∞ compact Riemannian manifolds. This section also
investigates the subadditivity for entropy dimension in one-dimensional dynamics.
For convenience, the following two definitions use the same concept and notation
adopted in [Cheng and Li 2010].

Definition 4.1. An interval map T : [0, 1] → [0, 1] is called piecewise monotone
continuous if there exist points 0= a0 < a1 < · · ·< aN = 1 such that T |(ai−1,ai ) is
continuous and monotone.

Definition 4.2. Let T be a piecewise monotone continuous map. If J is a maximal
interval on which T |J is continuous and monotone, then T : J → T (J ) is called a
branch or lap of T . The number of laps of T is denoted by l(T ).

Rothschild [1971] and Misiurewicz and Szlenk [1980] independently obtained
the topological entropy formula for a piecewise monotone map (see [Brucks and
Bruin 2004; Pollicott and Yuri 1998]). The following theorem gives a generalized
s-topological entropy formula.

Theorem 4.3 [Cheng and Li 2010]. Let T : [0, 1]→ [0, 1] be a piecewise monotone
continuous map and s > 0 a real number. Then

(4-1) D(s, T )= lim sup
n→∞

log l(T n)

ns .

Theorem 4.4 (subadditivity). Let T , S be piecewise monotone continuous maps
such that T ◦ S = S ◦ T and let s > 0 be a real number. Then

D(s, S ◦ T )≤ D(s, S)+ D(s, T ).

Hence, we have the inequality

(4-2) D(S ◦ T )≤max{D(S), D(T )}.

Proof. Since S ◦ T = T ◦ S, it is trivial that S p
◦ T q
= T q

◦ S p for all p, q ∈ N.
The number of intervals of monotonicity of Sn

◦ T n is smaller than or equal to
l(T n)l(Sn). Thus, we obtain that l((S ◦ T )n)≤ l(Sn)l(T n). The previous theorem
gives that

D(s, S ◦ T )= lim sup
n→∞

log l((S ◦ T )n)
ns ≤ lim sup

n→∞

log l(Sn)l(T n)

ns

≤ lim sup
n→∞

log l(Sn)

ns + lim sup
n→∞

log l(T n)

ns = D(s, S)+ D(s, T ).

For any t > max{D(S), D(T )}, it is clear that D(t, S) = D(t, T ) = 0 by the
definition of entropy dimension. Thus, D(t, S◦T )= 0, which implies D(S◦T )≤ t .
It follows that D(S ◦ T )≤max{D(S), D(T )} by the arbitrariness of t . �
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Corollary 4.5. Let T , S be piecewise monotone continuous maps such that T ◦ S =
S ◦ T . If D(S)= D(T )= 0, then D(S ◦ T )= 0.

Note that in general from D(S) > 0 or D(T ) > 0, it may not possible to deduce
that D(S ◦ T ) > 0. To find a result in this setting, calculate the left shift S and right
shift T on the symbolic space {1, 2}Z. Then S ◦ T is the identity map. It is trivial
that D(S)= 1 and D(T )= 1. However, D(S ◦T )= 0. This example also indicates
that the inequality in (4-2) can be sharp. On the other hand, it is easy to see that the
inequality can be an equality. For example, if S is the identity map, then D(S)= 0,
and D(S◦T )= D(T )=max{D(S), D(T )}. Some related properties of topological
entropy of composition, S ◦ T , can be found in [Goodwyn 1972; Raith 2004].

Consider a sequence T1,∞={Ti }
∞

i=1 of continuous functions from a compact met-
ric space X to itself. Proposition 3.6 shows a kind of monotonicity of {D(s, Ti,∞)}

on i ∈N. Here, we can introduce the notion of the asymptotical entropy dimension
of the considered system as the limit of entropy dimension in

D∗(T∞)= lim
i→∞

D(Ti,∞),

where Ti,∞ is the tail Ti , Ti+1, . . . of the sequence T1,∞.

Theorem 4.6. Let T1,∞ = {Ti }
∞

i=1 be a sequence of monotone continuous functions
from X to itself , where X is the unit interval [0, 1] or unit circle S1. Then the
entropy dimension is D(T1,∞)= 0. Consequently, D∗(T∞)= 0.

Proof. Consider the unit interval case first. Assume that E = {x1, x2, . . . , xk} is
a subset of [0, 1] with x1 ≤ x2 ≤ · · · ≤ xk . Since the functions T1, T2, T3, . . . are
monotone, for every j = 0, 1, 2, 3, . . . , we obtain either

T j
1 (x1)≤ T j

1 (x2)≤ T j
1 (x3)≤ · · · ≤ T j

1 (xk)

or
T j

1 (x1)≥ T j
1 (x2)≥ T j

1 (x3)≥ · · · ≥ T j
1 (xk).

This implies that the set E is an (n, ε)-separated set if and only if for every
i = 1, 2, . . . , k− 1, the set {xi , xi+1} is (n, ε)-separated. Denote the integer part of
a number z by [z]. Since the length of the unit interval [0, 1] is 1, at most [ 1

ε
] of

the distances |T j
1 (x1)− T j

1 (x2)|, |T
j

1 (x2)− T j
1 (x3)|, . . . , |T

j
1 (xk−1)− T j

1 (xk)| are
longer than ε. Therefore, at most n[1

ε
] sets of the form {xi , xi+1}, i = 1, 2, . . . , k−1

are (n, ε)-separated. Thus, if E is (n, ε)-separated, then k−1≤ n[1
ε
]. By definition,

D(s, T1,∞)= 0 for any s > 0, which implies D(T1,∞)= 0. Similarly, D(T j,∞)= 0
for any j > 1. Thus, D∗(T∞)= 0

Next, consider the case X = S1. The proof is similar to that of the unit interval
case when the order of the points on S1 is the angle of points on S1. Therefore,
D∗(T∞)= 0 is also obtained in this case. �
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A GJMS CONSTRUCTION FOR 2-TENSORS AND
THE SECOND VARIATION OF THE TOTAL Q-CURVATURE

YOSHIHIKO MATSUMOTO

We construct a series of conformally invariant differential operators acting
on weighted trace-free symmetric 2-tensors by a method similar to that of
Graham, Jenne, Mason, and Sparling. For compact conformal manifolds of
dimension even and greater than or equal to four with vanishing ambient
obstruction tensor, one of these operators is used to describe the second
variation of the total Q-curvature. An explicit formula for conformally
Einstein manifolds is given in terms of the Lichnerowicz Laplacian of an
Einstein representative metric.

Introduction

Let (M, [g]) be a conformal manifold of dimension n ≥ 3. The k-th GJMS operator
[Graham et al. 1992] is a conformally invariant differential operator acting on
densities E(−n/2+ k)→ E(−n/2− k), which is defined for all k ∈ Z+ if n is
odd and for integers within the range 1≤ k ≤ n/2 if n is even. This operator has
a universal expression in terms of any representative metric g ∈ [g] with leading
term the k-th power of the Laplacian. The idea for the construction is realizing
densities as functions on the metric cone G and computing the obstruction of its
formal harmonic extension to the ambient space (G̃, g̃), where g̃ is an ambient
metric of Fefferman and Graham [1985; 2012]. After the appearance of [Graham
et al. 1992], other GJMS-like conformally invariant differential operators have been
constructed in, e.g., [Branson and Gover 2005; Gover and Peterson 2006].

In this article, we establish another variant of the GJMS construction. Our
operators Pk act on weighted trace-free symmetric (covariant) 2-tensors:

Pk : S0

(
−

n
2
+ 2+ k

)
→ S0

(
−

n
2
+ 2− k

)
.

Here, the values that k takes are the same as in the density case, S0 is the space of
trace-free symmetric 2-tensors on M , and S0(w)= S0⊗E(w). The main tool of
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our construction is the Lichnerowicz Laplacian of the ambient metric g̃, which is
defined by

1̃L := 1̃+ 2R̃ic◦− 2 ˚̃R,

where 1̃= ∇̃∗∇̃ is the connection Laplacian and R̃ic◦, ˚̃R are the following tensorial
actions of the Ricci and Riemann curvature tensors of g̃:(

R̃ic◦σ̃
)
(X, Y ) := 1

2

(
〈R̃ic(X, · ), σ̃ (Y, · )〉g̃ +〈R̃ic(Y, · ), σ̃ (X, · )〉g̃

)
,( ˚̃Rσ̃

)
(X, Y ) := 〈R̃(X, · , Y, · ), σ̃ 〉g̃.

Our intention to study the GJMS construction for 2-tensors is because of its
relation to the second variation of the total Q-curvature, i.e., the integral of Branson’s
Q-curvature [1995]. Recall that, for a 4-dimensional compact conformal manifold
(M, [g]) of positive definite signature, the Chern–Gauss–Bonnet formula for the
total Q-curvature Q is

Q = 8π2χ(M)− 1
4

∫
M
|W |2g dVg,

where χ(M) is the Euler characteristic, W is the Weyl tensor, and g ∈ [g] is any
representative. One can deduce from this that Q ≤ 8π2χ(M) and the equality holds
if and only if (M, [g]) is conformally flat. It turns out that there is a partial gener-
alization of this fact to the higher dimensions. Recall that a conformal metric [g]
is identified with a weighted 2-tensor g ∈ S(2). Let K[g] be the conformal Killing
operator. Then we have the following theorem, which is due to Møller and Ørsted
[2009].

Theorem 0.1. Let Sn be the sphere of even dimension n ≥ 4. Then, for any
smooth 1-parameter family gt of conformal metrics on Sn such that g0 = gstd and
ġt |t=0 6∈ image K[gstd], the total Q-curvature Qt attains a local maximum at t = 0.

Our main theorem contains Theorem 0.1 as a special case. Consider the following
decomposition of S0(2), which is valid for any compact positive definite conformal
manifold (M, [g]) and a representative g ∈ [g] (see [Besse 1987, Section 12.21]):

(0-1) S0(2)= image K[g]⊕S
g
TT(2).

Here S
g
TT(w) is the space of TT-tensors (trace-free and divergence-free tensors)

with respect to g. This is an orthogonal decomposition with respect to the L2-inner
product, and if g is Einstein, the Lichnerowicz Laplacian 1L of g respects this
decomposition.

Theorem 0.2. Let (M, [g]) be a compact conformally Einstein manifold of positive
definite signature with even dimension n ≥ 4, and g an Einstein representative
with Schouten tensor Pi j = λgi j . Then, for any smooth 1-parameter family gt of
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conformal metrics such that g0 = g, the second derivative of the total Q-curvature
at t = 0 is

(0-2)
d2

dt2 Qt =−
1
4

∫
M

〈n/2−1∏
m=0

(1L− 4(n− 1)λ+ 4m(n− 2m− 1)λ)ϕg
TT, ϕ

g
TT

〉
g
,

where ϕg
TT is the S

g
TT(2)-component of ϕ= ġt |t=0 with respect to (0-1). In particular,

suppose there is an Einstein representative g with λ ≥ 0 such that the smallest
eigenvalue α of 1L|Sg

TT(2)
satisfies

(0-3) α > 4(n− 1)λ.

Then, for any gt for which ϕ 6∈ image K[g], the total Q-curvature attains a local
maximum at t = 0.

For (Sn, gstd), λ= 1/2 and 1L=1+2n. Therefore the assumption for the latter
half of Theorem 0.2 is satisfied, and hence Theorem 0.1 follows.

Some ideas for the proof of Theorem 0.2 are in order. Let (M, [g]) be a compact
conformal manifold of even dimension n≥4 (here we may allow arbitrary signature).
If we are given a smooth family gt of conformal metrics on M such that g0 = g,
then the derivative ϕt = ġt ∈ S(2) is trace-free with respect to gt . As shown in
[Graham and Hirachi 2005], the derivative of Qt is given by

d
dt

Qt = (−1)n/2
n− 2

2

∫
M
〈Ot , ϕt 〉gt ,

where Ot is the Fefferman–Graham ambient obstruction tensor of gt [Fefferman
and Graham 1985; 2012]. In particular, if (M, [g]) has vanishing obstruction tensor,
which is the case if (M, [g]) is conformally Einstein for instance, then Qt stabilizes
at t = 0. In this case the second derivative of Qt at t = 0 is of interest. It is given
by

(0-4)
d2

dt2 Qt

∣∣∣∣
t=0
= (−1)n/2

n− 2
2

∫
M
〈O′gϕ, ϕ〉g,

where O′g : S0(2)→ S0(2− n) is the linearization at g of the obstruction tensor
operator (O′gϕ is trace-free because g is obstruction-flat). This shows that it suffices
to compute O′g to derive the second variational formula of the total Q-curvature.
The construction of our operators Pk leads to the fact that P = Pn/2 is equal to O′g
up to a constant factor for obstruction-flat manifolds. (For n = 4 and 6, since an
explicit formula of the obstruction tensor is known, one can directly compute its
linearization. In higher dimensions our result is really new, because there is no such
concrete formula for O.) Thus our GJMS construction adds new knowledge of O′g ,
which was previously studied in [Branson 2005; Branson and Gover 2007; 2008].
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If we specialize to the case of conformally Einstein manifolds, explicit com-
putation is possible thanks to a well-known associated ambient metric. We will
derive a formula of Pk restricted to S

g
TT(−n/2+ 2+ k) with respect to an Einstein

representative g with Schouten tensor Pi j = λgi j :

(0-5) Pk |Sg
TT(−n/2+2+k)=

k−1∏
m=0

(
1L−4(n−1)λ−2

(
−

n
2
+k−2m

)(n
2
+k−2m−1

)
λ
)
.

Then Theorem 0.2 is an immediate consequence.
This article is organized as follows. Preliminaries about ambient metrics and

some preparatory lemmas are included in Section 1. In Section 2, our operators Pk

are constructed. One of the characterizations of Pk is that it gives the obstruction to
dilation-annihilating TT-harmonic extension of ϕ ∈ S0(−n/2+ 2+ k) with respect
to the ambient Lichnerowicz Laplacian 1̃L. In Section 3, we first show that the
variation of the normal-form ambient metric modified by adding a certain tensor in
the image of the Killing operator of g̃ is a best possible approximate solution to the
harmonic extension problem mentioned above. Using this fact, we prove that the
trace-free part of O′g equals P in general. In Section 4, we work on conformally
Einstein manifolds and prove Theorem 0.2.

In this article, “conformal manifolds” are of arbitrary signature unless otherwise
stated. Index notation is used throughout. On ambient spaces we use I , J , K , . . .
as indices, while on the original manifolds i , j , k, . . . are used.

1. Preliminaries

Let (M, [g]) be a conformal manifold of dimension n of signature (p, q) with
metric cone G. With a fixed representative metric g ∈ [g], G is trivialized as

G∼= R+×M, t2gx 7→ (t, x).

Let G̃ be the associated ambient space:

G̃ := G×R∼= R+×M ×R= {(t, x, ρ)}.

In our index notation, if G̃ is trivialized as above, we use the indices 0 and∞ for
the t- and ρ-components, respectively.

The space G carries a natural R+-bundle structure. The dilation δs , s ∈ R×, is by
definition the action of s2

∈ R+, and the infinitesimal dilation field is denoted by T .
The spaces of the densities, weighted 1-forms, and weighted covariant symmetric
2-tensors (all of weight w) are denoted by E(w), T(w), and S(w). By the metric
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cone G, these spaces are realized as follows:

(1-1) E(w)=
{

f ∈ C∞(G,R) | T f = w f
}
,

T(w)=
{
τ ∈ C∞(G, T ∗G)

∣∣ T τ = 0, LT τ = wτ
}
,

S(w)=
{
σ ∈ C∞(G,Sym2 T ∗G)

∣∣ T σ = 0, LTσ = wσ
}
.

The R+-action extends to G̃= G×R and so does T . In terms of the extended T ,
we define

Ẽ(w) :=
{

f̃ ∈ C∞
(
G̃,R

) ∣∣ T f̃ = w f̃
}
,

T̃(w) :=
{
τ̃ ∈ C∞

(
G̃, T ∗G̃

) ∣∣ LT τ̃ = wτ̃
}
,

S̃(w) :=
{
σ̃ ∈ C∞

(
G̃,Sym2 T ∗G̃

) ∣∣ LT σ̃ = wσ̃
}
.

When σ̃ ∈ S̃(w) satisfies (T σ̃ )|T G= 0, then σ̃ |T G makes sense as a section in S(w)

via the identification (1-1). We use the notation σ̃ |T M to express this weighted
tensor.

Let g̃ be a preambient metric. This means that g̃∈ S̃(2) is a homogeneous pseudo-
Riemannian metric of signature (p+ 1, q + 1) defined on a dilation-invariant open
neighborhood of G in G̃ such that its pullback to G is equal to g ∈ S(2). In the
sequel we only work asymptotically near G, so we may assume that all preambient
metrics are defined on the whole G̃. We next introduce the straightness condition:

(1-2) ∇̃T = id.

If this is true, the differential of the canonical defining function r = |T |2g̃ of G is

(1-3) dr = 2T g̃.

Recall that it follows immediately from (1-2) that

(1-4) T I R̃I J K L = 0, and hence T I R̃icI J = 0.

The Fefferman–Graham theorem states that there is a straight preambient metric g̃
with

R̃ic=
{

O(r∞) if n is odd,
O(rn/2−1) if n is even.

In this article, such a metric g̃ is called an ambient metric. When n is odd,
ambient metrics are unique modulo O(r∞) and the action of dilation-invariant
diffeomorphisms on G̃ leaving points on G fixed (such diffeomorphisms are called
ambient-equivalence maps in the sequel). If n is even, the situation is subtle. For a
1-form τ̃ ∈ T̃(w), we define

τ̃ = O−(rm)⇐⇒ τ̃ = O(rm−1) and (r1−m τ̃ )|T G vanishes

⇐⇒ τ̃ = O(rm) mod rm−1T g̃.
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We say that σ̃ ∈ S̃(w) is O+(rm) if

(i) σ̃ = O(rm);

(ii) T σ̃ = O−(rm+1) and hence (r−m σ̃ )|T M makes sense; and

(iii) (r−m σ̃ )|T M ∈ S(w− 2m) is trace-free with respect to g.

Then, ambient metrics are unique modulo O+(rn/2) and the action of ambient-
equivalence maps. By [Fefferman and Graham 2012, Equation (3.13)], the condition
R̃ic= O(rn/2−1) for ambient metrics actually forces

R̃ic= O+(rn/2−1).

Let g ∈ [g] and consider the induced trivialization G̃∼=R+×M×R. If a straight
preambient metric g̃ is near G of the form

(1-5) g̃ = 2ρ dt2
+ 2ρ dt dρ+ t2gρ,

where gρ is a 1-parameter family of metrics on M with g0 = g, then g̃ is said to be
in normal form relative to g. For any straight preambient metric g̃ and a choice of
g ∈ [g], it is known [ibid., Proposition 2.8] that there exists an ambient-equivalence
map 8 such that 8∗g̃ is in normal form relative to g.

Lemma 1.1. Let g̃ be a straight preambient metric. For τ̃ ∈ T̃(w) and σ̃ ∈ S̃(w),

∇̃T τ̃ = (w− 1)τ̃ , ∇̃T σ̃ = (w− 2)σ̃ .

Proof. Let ξ̃ ∈ X
(
G̃
)
. Then, since the Levi-Civita connection is torsion-free,(

∇̃T τ̃
)
(ξ̃ )= T

(
τ̃
(
ξ̃
))
− τ̃

(
∇̃T ξ̃

)
= T

(
τ̃
(
ξ̃
))
− τ̃

([
T, ξ̃

]
+∇̃ξ̃T

)
= T

(
τ̃
(
ξ̃
))
− τ̃

(
LT ξ̃

)
− τ̃

(
∇̃ξ̃T

)
= (LT τ̃ )

(
ξ̃
)
− τ̃

(
ξ̃
)
= (w− 1)τ̃

(
ξ̃
)
.

The second equality is proved similarly. �

Now let g̃ be a fixed ambient metric. Let S̃0(w) be the subspace of formally trace-
free tensors of S̃(w), and S̃TT(w) the subspace of formally TT-tensors. Moreover,
we define

S̃X (w) :=
{
σ̃ ∈ S̃(w)

∣∣ T σ̃ = O(r∞)
}
,

S̃X
0 (w) := S̃0(w)∩ S̃X (w), S̃X

TT(w) := S̃TT(w)∩ S̃X (w).

If n is odd, these spaces are invariant under O(r∞)-modifications of g̃. If n is even,
we need some technically defined tensor spaces. For 2− n ≤ w ≤ 2, we set

S̃aTT(w) :=
{
σ̃ ∈ S̃(w)

∣∣ trg̃ σ̃ = O
(
r d(n−2+w)/2e), δg̃σ̃ = O−

(
r d(n−2+w)/2e)}

(“aTT” is for “approximately TT”) and

S̃X
aTT(w) :=

{
σ̃ ∈ S̃aTT(w)

∣∣ T σ̃ = O−
(
r d(n−2+w)/2e+1)},
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where δg̃ is the divergence operator (δg̃σ̃ )I = −∇̃
J σ̃I J , and dxe is the smallest

integer not less than x . Then S̃X
aTT(w) does not depend on the O+(rn/2)-ambiguity

of g̃. To check this, let g̃′ = g̃+ A be another ambient metric with A = O+(rn/2).
Then T A = O−(rn/2+1). Since trg̃′ σ̃ = trg̃ σ̃ + O(rn/2) for any σ̃ , the trace
condition is not affected. The Christoffel symbol of g̃′ is given by

(0̃′)K
I J = 0̃

K
I J −

1
2(g̃
′−1)K L(D A)L I J = 0̃

K
I J −

1
2(D A)K

I J + O(rn/2),

where
(D A)K I J = ∇̃K AI J −∇̃I AK J −∇̃J AK I .

Hence

(δg̃′ σ̃ )I = (δg̃σ̃ )I +
1
2(D A)J K

I σ̃J K +
1
2(D A)J K

K σ̃I J + O(rn/2).

Let A = rn/2 A. Then

(D A)K I J = nrn/2−1(TK AI J − TI AK J − TJ AK I
)
+ O(rn/2)

and, because T A = O−(r),

(D A) I
K I = nrn/2−1TK A I

I + O−(rn/2).

Therefore, if σ̃ ∈ S̃X
aTT(w), δg̃′ σ̃ = δg̃σ̃ + O−(rn/2)= O−(r d(n−2+w)/2e).

Lemma 1.2. Let g̃ be an ambient metric and ϕ ∈ S0(−n/2+2+ k), where k ∈ Z+.
If n is odd, then there exists σ̃ ∈ S̃X

TT(−n/2+ 2+ k) such that σ̃ |T M = ϕ. If n is
even, there exists σ̃ ∈ S̃X

aTT(−n/2+ 2+ k) such that σ̃ |T M = ϕ as long as k ≤ n/2.
In both cases, the restriction ϕ̃ = σ̃ |G is uniquely determined.

Proof. To prove the existence part, take any σ̃(0) ∈ S̃X
0 (−n/2+ 2+ k) for which

σ̃(0)|T M=ϕ. We shall inductively construct σ̃(m)∈ S̃X
0 (−n/2+2+k) for nonnegative

integers m such that

σ̃(m) = σ̃(m−1)+ O(rm−1), δg̃σ̃(m) = O(rm).

Suppose we have σ̃(m−1) ∈ S̃X
0 (−n/2+ 2+ k) with δg̃σ̃(m−1) = O(rm−1). If σ̃(m) ∈

S̃X
0 (−n/2+ 2+ k), then T δg̃σ̃(m) = 0 is automatically guaranteed:

T I
∇̃

J(σ̃(m−1))I J =∇̃
J(T I(σ̃(m−1))I J

)
−
(
∇̃

JT I )(σ̃(m−1))I J =0+g̃ I J(σ̃(m−1))I J =0.

We seek for σ̃(m) assuming that it is of the form

(1-6) (σ̃(m))I J = (σ̃(m−1))I J + 2rm−1T(I VJ ) + rm−1 f̃ TI TJ − rm WI J ,

where V ∈ T̃(−n/2+2+k−2m) satisfies T I VI = 0, f̃ ∈ Ẽ(−n/2+k−2m), and
W ∈ S̃X (−n/2+ 2+ k− 2m) is such that the whole expression (1-6) is trace-free
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and vanishes if contracted with T (hence trg̃ W = f̃ , T J WI J = VI + f̃ TI ). Minus
of the divergences of the additional three terms on the right-hand side of (1-6) are

∇̃
J (2rm−1T(I VJ )

)
= rm−1

·
(
(n/2+ 2+ k)VI + TI ∇̃

J VJ
)
+ O(rm),

∇̃
J (rm−1 f̃ TI TJ

)
= rm−1

· (n/2+ 1+ k) f̃ TI + O(rm),

∇̃
J (−rm WI J )= rm−1

· (−2m)
(
VI + f̃ TI

)
+ O(rm).

Therefore, we first put V = (n/2+ 2+ k − 2m)−1r−m+1δg̃σ̃(m−1), and set f̃ =
−(n/2+ 1+ k− 2m)−1

∇̃
J VJ so that the O(rm−1)-term of the divergence of (1-6)

vanishes. This is possible for all m if n is odd, and until m = bn/2+ kc if n is
even. Applying Borel’s lemma, the proof of the existence for n odd is complete.
When n is even, we get σ̃ = σ̃(b(n/2+k)/2c). Furthermore, if n/2+ 1+ k is an even
number, then δg̃σ̃ can be made O−(r (n/2+1+k)/2). Anyway, δg̃σ̃ finally becomes
O−(r d(n/2+k)/2e), and the existence for n even is proved.

Let us once again take σ̃(0) as we did in the beginning of this proof. If σ̃ is as in
the statement, then since (T σ̃ )|G = 0 and σ̃ |T M = ϕ, σ̃ must be written as

σ̃ = σ̃(0)+ 2T(I VJ ) − r WI J ,

where T I VI = O(r). Moreover, in order for T σ̃ = O(r2) to be satisfied, T J WI J
should be VI + r−1TI T J VJ + O(r). Then

∇̃
J (2T(I VJ ) − r WI J

)
=

(
n
2
+ k

)
VI + TI

(
∇̃

J VJ − 2r−1T J VJ
)
+ O(r).

Therefore, VI mod O−(r) is determined by the condition δg̃σ̃ = O−(r). If we
put f̃ TI into VI , then the right-hand side will be (n+ 2k − 2) f̃ TI . Thus VI is
uniquely determined in order to satisfy δg̃σ̃ = O(r). �

We call ϕ̃ in Lemma 1.2 the ambient lift of ϕ ∈ S(−n/2+ 2+ k).

2. A GJMS construction for trace-free symmetric 2-tensors

Let (M, [g]) be a conformal manifold of dimension n ≥ 3 and g̃ an ambient metric.
We shall play with the following three operators:

x : S̃(w)→ S̃(w+ 2), σ̃ 7→ 1
4r σ̃ ,

y : S̃(w)→ S̃(w− 2), σ̃ 7→ 1̃Lσ̃ ,

h : S̃(w)→ S̃(w), σ̃ 7→
(
∇̃T +

n+2
2

)
σ̃ =

(
w+

n
2
− 1

)
σ̃ .

Just as in the case of the classical GJMS construction, one can verify the following.

Proposition 2.1. The operators x , y, h enjoy the sl(2) commutation relations:

[h, x] = 2x, [h, y] = −2y, [x, y] = h.
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The proof is left to the reader. Consequently we have the following identities:

[ym, x] = −mym−1(h−m+ 1),(2-1)

[xm, y] = mxm−1(h+m− 1),(2-2)

ym−1xm−1
= (−1)m−1(m− 1)! h(h+ 1) · · · (h+m− 2)+ x Zm,(2-3)

where Zm is some polynomial in x , y, h.
We are going to verify that x , y, and h preserve the subspaces S̃X

TT(w) when n
is odd and S̃X

aTT(w) when n is even. For this we need two lemmas.

Lemma 2.2. For f̃ ∈ Ẽ(w), τ̃ ∈ T̃(w),

f̃ = O(rm)H⇒ 1̃ f̃ = O(rm−1),(2-4)

τ̃ = O−(rm)H⇒ 1̃τ̃ = O−(rm−1).(2-5)

In (2-5), we may also replace 1̃ with the Hodge Laplacian 1̃H.

Proof. First we compute 1̃(rm):

1̃(rm)=−∇̃ I
∇̃I (r

m)=−∇̃ I (2mrm−1TI )=−2m(2m+ n)rm−1.

Hence it is clear that f̃ = O(rm) implies 1̃ f̃ = O(rm−1) and that τ̃ = O(rm)

implies 1̃τ̃ = O(rm−1). So, to prove (2-5), it remains to show that 1̃(rm−1 f̃ TI )

is O−(rm−1). This is checked directly:

∇̃J
(
rm−1 f̃ TI

)
= 2(m− 1)rm−2 f̃ TI TJ + rm−1 f̃ g̃I J + rm−1TI ∇̃J f̃

and therefore

1̃
(
rm−1 f̃ TI

)
=−2(m− 1)(2m+ n+ 2w)rm−2 f̃ TI + O(rm−1).

By Bochner’s formula 1̃Hτ̃I = 1̃τ̃I + R̃ic J
I τ̃J , 1̃Hτ̃ = O−(rm−1) is clear. �

Let
(
DR̃ic

)
◦
: S̃(w)→ T̃(w− 4) be defined by((

DR̃ic
)◦
σ̃
)

I =
(
∇̃I R̃icJ K −∇̃J R̃icI K −∇̃K R̃icI J

)
σ̃ J K .

Then it is known that, on any symmetric 2-tensor,

(2-6) δg̃ ◦ 1̃L = 1̃H ◦ δg̃ +
(
DR̃ic

)◦
.

Lemma 2.3. When n is even and 2− n ≤ w ≤ 2,

σ̃ ∈ S̃X
aTT(w)H⇒

(
DR̃ic

)◦
σ̃ = O−(rn/2−1).
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Proof. Let R̃ic= rn/2−1 S̃. Then

(2-7) ∇̃I R̃icJ K = (n− 2)rn/2−2TI S̃J K + O(rn/2−1).

Therefore (
∇̃I R̃icJ K

)
σ̃ J K
= (n− 2)rn/2−2

〈S̃, σ̃ 〉g̃TI + O(rn/2−1).

On the other hand, since T σ̃ is at least O−(r), we can write T I σ̃I J = f̃ TJ +O(r).
Hence, by (2-7) and (1-4),(

∇̃J R̃icI K
)
σ̃ J K
= (n− 2)rn/2−2 f̃ T K S̃I K + O(rn/2−1)= O(rn/2−1).

Consequently,
(
DR̃ic

)
◦σ̃ = O−(rn/2−1). �

Proposition 2.4. If n is odd, then, for any w,

x
(
S̃X

TT(w)
)
⊂ S̃X

TT(w+2), y
(
S̃X

TT(w)
)
⊂ S̃X

TT(w−2), h
(
S̃X

TT(w)
)
⊂ S̃X

TT(w).

If n is even,

x
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w+ 2), 2− n ≤ w ≤ 0,

y
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w− 2), −n ≤ w ≤ 2,

h
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w), 2− n ≤ w ≤ 2.

Proof. Since the case n odd is easier to prove, we discuss the case n even. It is
clear that h(S̃X

aTT(w))⊂ S̃X
aTT(w). For σ̃ ∈ S̃X

aTT(w), we have T (r σ̃ )= rT σ̃ =

O−(r d(n−2+w)/2e+2), trg̃(r σ̃ )= r trg̃ σ̃ = O(r d(n−2+w)/2e+1), and

δg̃(r σ̃ )=−2T σ̃ + rδg̃σ̃ = O−
(
r d(n−2+w)/2e+1).

Hence x σ̃ ∈ S̃X
aTT(w+ 2). It remains to show that yσ̃ ∈ S̃X

aTT(w− 2). The trace
of 1̃Lσ̃ is trg̃ 1̃Lσ̃ = 1̃(trg̃ σ̃ )= O(r d(n−2+w)/2e−1) by (2-4). Furthermore,

∇̃K
(
T J σ̃I J

)
= δ J

K σ̃I J + T J
∇̃K σ̃I J = σ̃I K + T J

∇̃K σ̃I J

and hence

1̃(T J σ̃I J )=−∇̃
K σ̃I K −∇̃

K (T J
∇̃K σ̃I J

)
=−2∇̃K σ̃I K − T J

∇̃
K
∇̃K σ̃I J =−2∇̃K σ̃I K + T J 1̃Lσ̃I J ;

the last equality is because of (1-4). This implies T 1̃Lσ̃ = O−(r d(n−2+w)/2e).
Finally, (2-6) and Lemma 2.3 show δg̃1̃Lσ̃ = O−(r d(n−2+w)/2e−1). �

Theorem 2.5. Let k ∈ Z+ if n is odd, and k ∈ {1, 2, . . . , n/2} if n is even. For any
ϕ ∈ S0(−n/2+ 2+ k), let σ̃ ∈ S̃(−n/2+ 2+ k) be any extension of the ambient
lift ϕ̃. Then 1̃k

Lσ̃ |G depends only on ϕ and not on the extension. Furthermore,
1̃k

Lσ̃ |T M makes sense as a section in S(−n/2+ 2− k).
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Proof. We work on the case n even only. Any two extensions of ϕ̃ differ by a tensor
of the form r τ̃ , where τ̃ ∈ S̃0(−n/2+k). Equation (2-1) shows that the commutator
[1̃k

L, r ] vanishes on S̃0(−n/2+ k) and hence 1̃k
L(r τ̃ )|G = 0. In particular, using

Lemma 1.2 one can take σ̃ ∈ S̃X
aTT(−n/2+ 2+ k) as an extension of ϕ̃. Then by

Proposition 2.4, 1̃k
Lσ̃ ∈ S̃X

aTT(−n/2+ 2− k) and 1̃k
Lσ̃ |T M is defined. �

Theorem 2.6. Let k ∈ Z+ if n is odd, and k ∈ {1, 2, . . . , n/2} if n is even. Let
ϕ ∈ S0(−n/2+ 2+ k) and let ϕ̃ be its ambient lift. Then there exists a solution
σ̃ ∈ S̃X

TT(−n/2+2+ k) if n is odd, and σ̃ ∈ S̃X
aTT(−n/2+2+ k) if n is even, to the

problem

(2-8) 1̃Lσ̃ = O(r k−1), σ̃ |G = ϕ̃,

which is unique modulo O(r k). For any such σ̃ , (r1−k1̃Lσ̃ )|G is independent of the
ambiguity that lives in σ̃ , and agrees with 1̃k

Lσ̃ |G up to a constant factor:

(2-9)
(
r1−k1̃Lσ̃

)∣∣
G
=

1
4k−1(k− 1)!2

1̃k
Lσ̃ |G.

Proof. We work on the case n even only. Let us begin with an arbitrary extension
σ̃(0)∈ S̃X

aTT(−n/2+2+k) of ϕ̃. If an extension σ̃(m−1) satisfies 1̃Lσ̃(m−1)=O(rm−1),
then it has a modification σ̃(m) = σ̃(m−1)+ rm σ̃1, σ̃1 ∈ S̃X

aTT(−n/2+ 2+ k − 2m),
which is unique modulo O(rm+1), satisfying 1̃Lσ̃(m) = O(rm). In fact, by (2-2),
we have

(2-10) 1̃L(rm σ̃1)= 4mrm−1(m− k)σ̃1+ rm1̃Lσ̃1.

Thus σ̃1 can be taken so that 1̃Lσ̃(m)= O(rm) unless m= k. Hence there is a σ̃ with
the property stated in the theorem. Let 1̃Lσ̃ = r k−1 F̃ , with F̃ ∈ S̃X

aTT(−n/2+2−k).
Then, by (2-3), 1̃k

Lσ̃ = 4k−1 yk−1xk−1 F̃ = 4k−1(k−1)!2 F̃+O(r). Hence (2-9). �

Except in the case where n is even and k = n/2, (1̃k
Lσ̃ )|T M is trace-free since

trg̃ 1̃
k
Lσ̃ and T 1̃k

Lσ̃ are both O(r).

Definition 2.7. Let (M, [g]) be a conformal manifold of dimension n ≥ 3 and g̃
an ambient metric. We call

Pk : S0(−n/2+ 2+ k)→ S0(−n/2+ 2− k), Pkϕ = tfg
(
1̃k

Lσ̃ |T M
)

the GJMS operator on trace-free symmetric 2-tensors, where σ̃ ∈ S̃(−n/2+ 2+ k)
is any extension of the ambient lift of ϕ. (One can remove tfg unless n is even and
k = n/2.) In particular, when n = dim M ≥ 4 is even,

P = Pn/2 : S0(2)→ S0(2− n)

is called the critical GJMS operator on trace-free symmetric 2-tensors.
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Theorem 2.8. The GJMS operators on trace-free symmetric 2-tensors do not de-
pend on the choice of g̃, and hence are conformally invariant differential operators.

For the case where n is even and k = n/2, the direct verification of the conformal
invariance is not easy. We will see in Theorem 3.4 that, up to a constant factor, Pϕ
is equal to tfg O′gϕ, which is clearly conformally invariant. Here, we prove the
theorem in the case n odd and the case n even, k ≤ n/2− 1.

Proof of Theorem 2.8 except the case where (n, k)= (even, n/2). By Theorem 2.6,
we may work with r1−k1̃Lσ̃ instead of 1̃k

Lσ̃ . Let g̃ be an ambient metric, ϕ ∈
S0(−n/2+ 2+ k) and, let σ̃ be a solution to the problem stated in Theorem 2.6.
Then, if 8 is an ambient-equivalence map, 8∗σ̃ solves the same problem with
respect to 8∗g̃. Since (8∗r)1−k1̃L,8∗ g̃(8

∗σ̃ )=8∗(r1−k1̃Lσ), the restrictions of
(8∗r)1−k1̃L,8∗ g̃(8

∗σ̃ ) and r1−k1̃Lσ to T M coincide. Therefore we may assume
that g̃ is in normal form.

When n is odd, the assertion is now clear because g̃ is formally unique if it is in
normal form. So we assume that n is even in what follows. It suffices to show that,
if g̃, ˆ̃g are ambient metrics in normal form and σ̃ ∈ S̃X

aTT(−n/2+ 2+ k),

ˆ̃
1Lσ̃ − 1̃Lσ̃ = O(ρn/2−2) and ˆ̃

1Lσ̃i j − 1̃Lσ̃i j = O(ρn/2−1).

Let DK
I J =

ˆ̃
0K

I J − 0̃
K

I J . From [Fefferman and Graham 2012, Equation (3.16)],
one concludes that DK

I J = O(ρn/2−1) and ∇̃ I DK
I J = O(ρn/2−1). Therefore

ˆ̃
1σ̃I J − 1̃σ̃I J = ∇̃

K (2DL
K (I σ̃J )L

)
+ O(ρn/2−1)= O(ρn/2−1).

In addition, ̂̃Ric= R̃ic+O(ρn/2−1) and ˆ̃R= R̃+O(ρn/2−2) by [ibid., Equation (6.1)].

Hence ˆ̃1Lσ̃ − 1̃Lσ̃ = O(ρn/2−2). Moreover, if S̃I J K L =
ˆ̃RI J K L − R̃I J K L , then

ˆ̃
1Lσ̃i j−1̃Lσ̃i j

=−2t−4(g−1
ρ )km(g−1

ρ )lnS̃ik jl σ̃mn−4t−3(g−1
ρ )kmS̃ik j∞ σ̃m0+4t−4ρ(g−1

ρ )kmS̃ik j∞ σ̃m∞

−2t−2 S̃i∞ j∞ σ̃00+4t−3ρ S̃i∞ j∞ σ̃0∞−8t−4ρ2 S̃i∞ j∞ σ̃∞∞+O(ρn/2−1).

Again by [ibid., Equation (6.1)], we have S̃i jkl = O(ρn/2−1), S̃i jk∞ = O(ρn/2−1),

S̃i∞k∞ = O(ρn/2−2) and hence ˆ̃1Lσ̃i j − 1̃Lσ̃i j = O(ρn/2−1). �

We close this section with a lemma that is proved just like the construction of σ̃
in Theorem 2.6.

Lemma 2.9. Let k∈Z+. For any f̃1∈ Ẽ(−n/2−2+k), there exists f̃ ∈ Ẽ(−n/2+k)
such that

1̃ f̃ = f̃1+ O(r k−1).
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Likewise, for any τ̃1 ∈ T̃(−n/2−1+k), there exists τ̃ ∈ T̃(−n/2+1+k) such that

1̃τ̃ = τ̃1+ O(r k−1).

In both problems, we may arbitrarily prescribe the values along G; if we prescribe
f̃ |G, τ̃ |G, then f̃ , τ̃ are unique modulo O(r k).

3. The variations of obstruction tensor and Q-curvature

Let g̃ be an ambient metric for a conformal manifold (M, [g]) of dimension n ≥ 3.
Recall that, from general calculations on (pseudo-)Riemannian curvature tensors,
the differential of the Ricci tensor operator (which we write as Ric here) is

(3-1) Ric′g̃ σ̃ =
1
21̃Lσ̃ − δ

∗

g̃Bg̃σ̃ ,

where δ∗g̃ is the dual of the divergence (δ∗g̃ τ̃ )I J = ∇̃(I τ̃J ) and Bg̃ is defined by

Bg̃σ̃ = δg̃σ̃ +
1
2 d(trg̃ σ̃ ). Therefore, for n even, a solution σ̃ ∈ S̃X

aTT(2) to the
problem in Theorem 2.6 approximately solves Ric′g̃ σ̃ = 0, and hence it is expected
that we can read off O′gϕ from the asymptotics of σ̃ . This will finally turn out to be
true, but since the definition of O depends on the existence theorem of normal-form
ambient metrics, in order to capture O′gϕ our starting point has to be infinitesimal
modifications of ambient metrics in normal form. The differential equation that
they (approximately) satisfy is different from 1̃Lσ̃ = 0. So we shall establish a
method for translating solutions of the two equations.

Let (M, [g]) be an n-dimensional conformal manifold with n ≥ 4 even and
ϕ ∈ S0(2). Suppose that gs is a family of conformal metrics (here we use s for
the parameter, because t will denote a coordinate on G̃) with g0 = g such that
ġs |s=0 = ϕ. Let g ∈ [g] be any representative metric, and gs the corresponding
representatives of gs . By the method of [Fefferman and Graham 2012], we can
construct a family of ambient metrics

g̃s = 2ρ dt2
+ 2t dt dρ+ t2gs

ρ

such that gs
0 = gs and gs

ρ smoothly depends on the two variables ρ, s. All these
metrics satisfy R̃ics = O(rn/2−1) and T R̃ics = O−(rn/2). Differentiating these
equations, we conclude that σ̃ = σ̃norm = (d/ds)g̃s |s=0 solves

Ric′g̃ σ̃ = O(rn/2−1), T Ric′g̃ σ̃ = O−(rn/2).

Note that it satisfies T σ̃norm = 0, trg̃ σ̃norm = O(r), and hence

T I
∇̃

J (σ̃norm)I J = ∇̃
J (T I (σ̃norm)I J

)
− g̃ I J (σ̃norm)I J = O(r);



450 YOSHIHIKO MATSUMOTO

therefore it holds that

(3-2) T Bg̃σ̃norm = T δg̃σ̃norm+
1
2 T (trg̃ σ̃norm)= O(r).

Since the obstruction tensor O= Os is defined by

Os = cn
(
r1−n/2R̃ics

)
|T M , cn = (−1)n/2−1 2n−2(n/2− 1)!2

n− 2
,

we have
O′gϕ = cn

(
r1−n/2R̃ic′g̃σ̃norm

)
|T M .

Lemma 3.1. Let σ̃norm be as above. Then, there exists a dilation-invariant vector
field ξ̃ on G̃ such that ξ̃ |G = 0 and

Bg̃
(
σ̃norm+Kg̃ ξ̃

)
= O(rn/2),

where Kg̃ is the Killing operator: (Kg̃ ξ̃ )I J = 2∇̃(I ξ̃J ) . Such a ξ̃ is unique modulo
O(rn/2+1) and satisfies g̃(T, ξ̃ )= O(r2), trg̃ Kg̃ ξ̃ = O(r).

Proof. The equation to be solved is Bg̃Kg̃ ξ̃ =−Bg̃σ̃norm+ O(rn/2). By a straight-
forward calculation, (

Bg̃Kg̃ ξ̃
)

I = 1̃ξ̃I − R̃icI J ξ̃
J .

Since R̃icI J ξ̃
J
= O(rn/2) for any ξ̃ satisfying ξ̃ |G = 0, the equation simplifies to

1̃ξ̃ = −Bg̃σ̃norm + O(rn/2). By Lemma 2.9, ξ̃ is uniquely determined up to an
O(rn/2+1) ambiguity.

If we write ξ̃ = r V , then 1̃ξ̃ = −2nV + O(r). On the other hand, T 1̃ξ̃ =

−2T Bg̃σ̃norm+ O(rn/2) should be O(r) by (3-2). Consequently T V = O(r),
i.e., T ξ̃ = O(r2). Moreover, trg̃ Kg̃ ξ̃ = 2∇̃ I ξ̃I = 4T I VI + O(r)= O(r). �

Let σ̃ = σ̃norm + Kg̃ ξ̃ ∈ S̃(2). It is a consequence of the fact that the Ricci
operator commutes with diffeomorphisms that Ric′g̃ Kg̃ ξ̃ = Ric′g̃ Lξ̃ g̃ = Lξ̃ R̃ic.
Since ξ̃ |G= 0, R̃ic= O(rn/2−1), and T R̃ic= O−(rn/2), Lξ̃ R̃ic itself is O(rn/2−1)

and T Lξ̃ R̃ic= O−(rn/2). Therefore Ric′g̃ σ̃ = O(rn/2−1), T Ric′g̃ σ̃ = O−(rn/2).
Moreover, Bg̃σ̃ = O(rn/2) and hence δ∗g̃Bg̃σ̃ = O(rn/2−1), T δ∗g̃Bg̃σ̃ = O−(rn/2).
Thus we conclude

(3-3) 1̃Lσ̃ = O(rn/2−1), T 1̃Lσ̃ = O−(rn/2).

Lemma 3.2. Let σ̃norm and ξ̃ be as in Lemma 3.1. Then σ̃ = σ̃norm+Kg̃ ξ̃ ∈ S̃X
aTT(2)

and it is a solution to (3-3).

Proof. It remains to show that σ̃ ∈ S̃X
aTT(2). By taking the trace of (3-3), we obtain

1̃(trg̃ σ̃ ) = O(rn/2−1). In addition, since trg̃ Kg̃ ξ̃ = O(r), we have (trg̃ σ̃ )|G = 0.
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Hence, by Lemma 2.9, trg̃ σ̃ = O(rn/2). Then Bg̃σ̃ = O(rn/2) implies δg̃σ̃ =

O−(rn/2). Furthermore,

1̃(T J σ̃I J )= T J 1̃σ̃I J − 2∇̃ J σ̃I J = T J 1̃Lσ̃I J − 2∇̃ J σ̃I J = O−(rn/2)

and

T J σ̃I J = T J (Kg̃ ξ̃ )I J = T J
∇̃I ξ̃J + T J

∇̃J ξ̃I = ∇̃I (T
J ξ̃J )= O(r).

Since 1̃(rn/2 f̃ TI )=−2nrn/2−1 f̃ TI +O(rn/2) for f̃ ∈ Ẽ(−n), one can determine
f̃ so that 1̃(T J σ̃I J + rn/2 f̃ TI )= O(rn/2). Then T J σ̃I J + rn/2 f̃ TI is still O(r),
and hence T σ̃ = O−(rn/2+1) by Lemma 2.9. �

Lemma 3.3. Let σ̃norm and ξ̃ be as in Lemma 3.1 and set σ̃ = σ̃norm+Kg̃ ξ̃ . Then
1̃Lσ̃ − 2 Ric′g̃ σ̃norm = O(rn/2−1), and (r1−n/2(1̃Lσ̃ − 2 Ric′g̃ σ̃norm))|T G vanishes.

Proof. Recall that

1
21̃Lσ̃ −Ric′g̃ σ̃norm = Ric′g̃ Kg̃ ξ̃ − δ

∗

g̃Bg̃σ̃ = Lξ̃ R̃ic− δ∗g̃Bg̃σ̃ .

Let R̃ic= rn/2−1S and ξ̃ = r V . We proved in Lemma 3.1 that T I VI = O(r). As
in the proof of Lemma 1.1, we compute(

Lξ̃ R̃ic
)

I J = ξ̃
K
∇̃K R̃icI J + 2R̃icK (I ∇̃J ) ξ̃

K
= 4rn/2−1SK (I TJ ) V K

+ O(rn/2).

Thus (r1−n/2Lξ̃ R̃ic)|T G vanishes. On the other hand, if we write Bg̃σ̃ = rn/2τ̃ , then

(δ∗g̃Bg̃σ̃ )I = ∇̃(I (r
n/2τ̃ )J ) = nrn/2−1T(I τ̃J ) + O(rn/2),

and hence (r1−n/2δ∗g̃Bg̃σ̃ )|T G = 0. This completes the proof. �

Theorem 3.4. Let (M, [g]) be a conformal manifold of even dimension n. Then the
differential of the obstruction tensor O′g is given by

(3-4) O′gϕ =
(−1)n/2−1

2(n− 2)
Pϕ+

1
n+ 2

〈O, ϕ〉g g.

Proof. Let σ̃norm, ξ̃ as in Lemma 3.1 and σ̃ = σ̃norm+Kg̃ ξ̃ . By Lemma 3.2, Pϕ is
equal to the trace-free part of 2n−2(n/2− 1)!2(r1−n/21̃Lσ̃ )|T M . By the previous
lemma, (r1−n/21̃Lσ̃ )|T M = (2r1−n/2 Ric′g̃ σ̃norm)|T M = c−1

n O′gϕ. Therefore,

tfg O′gϕ =
(−1)n/2−1

2(n− 2)
Pϕ.

On the other hand, trg O′gϕ = 〈O, ϕ〉g , for trg O= 0 for any g. Hence (3-4). �

Combining the theorem above and (0-4), we obtain the following.
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Corollary 3.5. Let (M, [g]) be a compact conformal manifold of even dimension
n ≥ 4 with vanishing obstruction tensor. Let gt be a family of conformal structures
such that g0 = g. Then the second derivative of the total Q-curvature at t = 0 is

d2

dt2 Qt

∣∣∣∣
t=0
=−

1
4

∫
M
〈Pϕ, ϕ〉g,

where ϕ = ġt |t=0 and P : S0(2)→ S0(2− n) is the critical GJMS operator on
trace-free symmetric 2-tensors.

4. Explicit calculations for conformally Einstein manifolds

Recall that, for g ∈ [g] Einstein with Rici j = 2λ(n− 1)gi j so that Pi j = λgi j , the
following formula gives an ambient metric that is genuinely Ricci-flat:

(4-1) g̃ = 2ρ dt2
+ 2t dt dρ+ t2(1+ λρ)2g.

The inverse of g̃ is

(g̃−1)I J
=

 0 0 t−1

0 t−2(1+ λρ)−2gi j 0
t−1 0 −2t−2ρ


and the Christoffel symbol of g̃ is given by

0̃0
I J=

0 0 0
0 −λt (1+λρ)gi j 0
0 0 0

, 0̃k
I J=

 0 t−1δ k
j 0

t−1δ k
i 0k

i j λ(1+λρ)−1δ k
i

0 λ(1+λρ)−1δ k
j 0

,
0̃∞I J=

 0 0 t−1

0 −(1+λρ)(1−λρ)gi j 0
t−1 0 0

.
A direct computation shows that W̃i jkl = t2Wi jkl , where W̃ and W are the Weyl
tensors of g̃ and g, respectively (the latter is extended to G̃= R+×M ×R in the
trivial way). The other components of W̃ are zero.

Lemma 4.1. Let g̃ be as above, and suppose that σ̃ ∈ S̃(w) is of the form

σ̃i j = tw(1+ λρ)wσi j ,

where σi j is a symmetric 2-tensor on (M, g). Then

(4-2) 1̃Lσ̃ = tw−2(1+ λρ)w−2(1L− 4(n− 1)λ− 2(w− 2)(n+w− 3)λ
)
σ,

where 1L =1+ 4nλ− 2W̊ is the Lichnerowicz Laplacian of g.
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Proof. The first covariant derivative of σ̃ is as follows:

∇̃
∞
σ̃i j = ∂ρ σ̃i j − 20̃k

∞(i σ̃ j)k = tw(1+ λρ)w−1(w− 2)λσi j ,

∇̃0 σ̃i j = ∂t σ̃i j − 20̃k
0(i σ̃ j)k = tw−1(1+ λρ)w(w− 2)σi j ,

∇̃k σ̃i j = ∂xk σ̃i j − 20̃l
k(i σ̃ j)l = tw(1+ λρ)w∇kσi j ,

∇̃k σ̃i∞ =−0̃
l
k∞ σ̃il =−tw(1+ λρ)w−1λσik ,

∇̃k σ̃i0 =−0̃
l
k0 σ̃il =−tw−1(1+ λρ)wσik .

Therefore,

∇̃0 ∇̃∞ σ̃i j = ∂t ∇̃∞ σ̃i j − 0̃
∞

0∞∇̃∞ σ̃i j −20̃k
0(i |∇̃∞ σ̃| j)k

= tw−1(1+λρ)w−1(w−2)(w−3)λσi j ,

∇̃
∞
∇̃0 σ̃i j = ∇̃0 ∇̃∞ σ̃i j −2R̃ k

∞0 (i σ̃ j)k = ∇̃0 ∇̃∞ σ̃i j ,

∇̃
∞
∇̃
∞
σ̃i j = ∂ρ∇̃∞ σ̃i j −20̃k

∞(i |∇̃∞ σ̃| j)k = tw(1+λρ)w−2(w−2)(w−3)λ2σi j ,

gkl
∇̃k ∇̃l σ̃i j = ∂xk ∇̃l σ̃i j − 0̃

m
kl ∇̃m σ̃i j −20̃m

k(i |∇̃l σ̃| j)m

− 0̃∞kl ∇̃∞ σ̃i j −20̃∞k(i |∇̃l σ̃| j)∞ − 0̃
0
kl ∇̃0 σ̃i j −20̃0

k(i |∇̃l σ̃| j)0

=−tw(1+λρ)w
(
1σi j −2(n(w−2)−2)λσi j

)
and hence

1̃σ̃i j =−2t−1
∇̃0 ∇̃∞ σ̃i j + 2t−2ρ∇̃

∞
∇̃
∞
σ̃i j − t−2(1+ λρ)−2gkl

∇̃k ∇̃l σ̃i j

= tw−2(1+ λρ)w−2(1+ 4λ− 2(w− 2)(n+w− 3)λ
)
σi j .

Consequently, 1̃Lσ̃ = (1̃− 2 ˚̃W )σ̃ is given by (4-2). �

Theorem 4.2. Let (M, [g]) be a conformally Einstein manifold with dim M=n≥3,
and g ∈ [g] an Einstein representative with Schouten tensor Pi j = λgi j . Then, the
action of Pk restricted to S

g
TT(−n/2+ 2+ k) is given by (0-5).

Proof. Let ϕ= t−n/2+2+kϕ ∈S
g
TT(−n/2+2+k) and σ̃ = (1+λρ)−n/2+2+kϕ. Then

∇̃k σ̃i j = t−n/2+2+k(1+ λρ)−n/2+2+k
∇kϕi j , ∇̃∞ σ̃0i = ∇̃0 σ̃∞i = ∇̃∞ σ̃∞i = 0.

Since ϕ is a TT-tensor on (M, g), σ̃ itself is a TT-tensor with respect to g̃, and hence
is an extension of the ambient lift of ϕ. We may compute 1̃k

Lσ̃ by Lemma 4.1. By
taking the value along G and trivializing with respect to g, we obtain (0-5). �

Now we prove our main theorem.

Proof of Theorem 0.2. Let ϕ = K[g]ξ + ϕ
g
TT be the decomposition of ϕ = ġt |t=0

with respect to (0-1) and 4t the flow generated by ξ . Then g′t = 4∗−t gt satisfies
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ġ′t |t=0 = ϕ
g
TT and the total Q-curvature of g′t is equal to Qt . Therefore

d2

dt2 Qt

∣∣∣∣
t=0
=

d2

dt2 Q′t

∣∣∣∣
t=0
=−

1
4

∫
M

〈
Pϕg

TT, ϕ
g
TT

〉
,

and thus (0-2) follows from Theorem 4.2. Under the assumption of the latter half of
the theorem, any eigenvalue of 1L|Sg

TT(2)
− 4(n− 1)λ+ 4m(n− 2m− 1)λ is strictly

positive for 0≤ m ≤ n/2− 1. Therefore, if ϕg
TT 6= 0, the second derivative of Qt at

t = 0 is negative. �
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DROPLET CONDENSATION AND
ISOPERIMETRIC TOWERS

MATTEO NOVAGA, ANDREI SOBOLEVSKI AND EUGENE STEPANOV

We consider a variational problem in a planar convex domain, motivated
by the statistical mechanics of crystal growth in a saturated solution. The
minimizers are constructed explicitly and are completely characterized.

1. Introduction

In understanding the physical phenomenon of droplet condensation or crystal
growth, the central issue is to explain how a particular macroscopic shape of
the growing droplet or crystal is determined by microscopic interactions of its
constituent particles.

According to Gibbs’ formulation of statistical mechanics, the probability of a
microscopic configuration σ is proportional to exp(−βH(σ )), where β > 0 is the
inverse temperature and H( · ) is the Hamiltonian defining the energy of the system.
Therefore the most probable configurations are the ones with minimal energy. In
the “thermodynamical” limit of a large number of particles, this minimum becomes
very sharp: the overall configuration of the system settles, up to minute fluctuations,
to a well-defined deterministic structure.

It turns out that the microscopic laws of atomic interactions give rise to a certain
macroscopic quantity, the surface tension, which determines the droplet shape via
minimization of the surface energy. Phenomenology of surface tension was proposed
by Gibbs in the late 1870s. In an important contribution, G. Wulff suggested in
1900 that for a growing crystal, its equilibrium shape is that of a ball in a metric
generated by the surface tension (the Wulff shape).
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It has been furthermore observed experimentally that flat facets of a growing
crystal may carry macroscopic but monomolecular “islands”, whose shape is also
determined by the surface tension. A mathematical approach to explaining this
phenomenon has been developed by S. Shlosman and collaborators in a series of
works [Schonmann and Shlosman 1996a; Ioffe and Shlosman 2008; 2010], building
upon his earlier work with R. L. Dobrushin and R. Kotecky [Dobrushin et al. 1992].

A typical setting in this approach is represented by the following discrete model
of crystal growth, which is a variant of the Ising model: fix an open domain �⊂R2

of unit area and consider the three-dimensional lattice obtained by intersecting the
cylinder �×[−1, 1] ⊂ R3 with (1/N )

(
Z3
+
(
0, 0, 1

2

))
, where N is a large integer

parameter. At each node t of this lattice there is a variable σt (the spin) taking
values +1 (interpreted as “t belongs to the free phase”) and −1 (interpreted as “t
belongs to the condensed phase”). The collection σ = (σt) is called the microscopic
configuration of the system.

Fix now the Ising Hamiltonian H(σ )=−
∑

s,t :|s−t |=1 σsσt , which describes a
“ferromagnetic” interaction between nearest neighbors (equal values have smaller en-
ergy than opposite ones), and consider the canonical probability distribution p(σ )=
exp(−βH(σ ))/Z . Here the normalization coefficient Z =

∑
σ exp(−βH(σ )) is

defined by summation over all configurations that satisfy the so-called Dobrushin
boundary condition: spins at outermost nodes (x, y, z) of the lattice have values
+1 if z > 0 and −1 if z < 0.

It turns out that in the limit of large N the main contribution to probability
comes from configurations where the lower and upper halves of the lattice are filled,
respectively, with −1’s and +1’s. In this equilibrium state, the numbers of +1’s
and −1’s are asymptotically equal, so that SN =

∑
t σt ∼ 0, and fluctuations of the

flat surface dividing the two phases are logarithmic in N .
A more interesting situation occurs when, in addition to the Dobrushin boundary

values, the system is conditioned to have macroscopically more −1’s than +1’s:

SN =
∑

t

σt =−m N 2

with m > 0. In this case, depending on the value of m, the most probable state of
the system may feature one or more monomolecular layers on top of the surface
z = 0 in the box �×[−1, 1]. A detailed account of the observed equilibrium states
as m changes can be found in [Ioffe and Shlosman 2010].

As proved in [Schonmann and Shlosman 1996a], the behavior of this model in
the continuous limit N→∞ is closely related to the following variational problem:
given an open set �⊂ Rn and a value m ∈ [0,+∞), find

(1-1) min
{∫

�

ϕ∗(Du) : u ∈ BV (Rn), u = 0 on Rn
\�, u( · )∈N,

∫
�

u dx =m
}
,
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where ϕ∗ is some given general norm on Rn . Of course, in the application to
the Ising model we are discussing here one has n = 2, the two-dimensional case;
however the case of generic dimension n of the ambient space Rn also makes sense
from the mathematical point of view. The growth of a droplet and formation of new
layers of the solid is described by the growth of profile u as m increases.

The norm ϕ∗( · ) here is related to the surface tension as follows. The surface
tension γ 3D( · ) is a function defined over S2, the two-dimensional unit sphere in R3,
and satisfying γ 3D(ν) ≥ 0 and γ 3D(−ν) = γ 3D(ν) for all ν ∈ S2. The surface
energy of a closed surface M2

⊂ R3 is defined to be

H(M2)=

∫
M2
γ 3D(νs) ds,

where νs is the unit normal to M2 at s ∈ M2. While γ 3D defines the 3D shape of a
crystal growing in space, the shape of monolayers growing on facets is given by
the restricted 2D surface tension defined for n ∈ S1 by

γ 2D(ν)=
∂

∂ν
γ 3D

∣∣∣
νs=(0,0,1)

,

where the derivatives are taken at the “north pole” νs = (0, 0, 1) ∈ S2 along all
tangents ν ∈ S1 to S2 [Ioffe and Shlosman 2010]. The function γ 2D can then
be extended to all of R2 by homogeneity of degree one, and ϕ∗( · ) is defined as
the convex hull of the thus defined γ 2D( · ). However in the sequel ϕ∗ will be
fixed, without any assumptions of smoothness or strict convexity: indeed one of
the examples in Section 5 corresponds to a crystalline norm.

It is easy to see that the functional minimized in (1-1) is the one-dimensional
surface energy for the restricted surface tension. It turns out that minimization
of this surface energy alone is sufficient to reconstruct most of the physics of
monomolecular layer growth described in [Ioffe and Shlosman 2010]. In particular,
if ϕ∗( · ) is the Euclidean norm and � a unit square, then as m grows, the first four
monomolecular layers start as Wulff circles and then develop into “Wulff plaquettes”
while from the fifth layer on all new layers appear as Wulff plaquettes identical to
underlying layers (Section 5).

In contrast, this simple variational model does not capture the thermodynamic
fluctuations, which render Wulff circles below a certain size unstable and prevent
their formation for small m. Neither does it capture the microscopic (that is, “finite-
N”) structure of the Wulff plaquettes, whose boundaries are in fact separated with
gaps that vanish in the continuous limit. A first-principle approach that takes proper
account of these phenomena is due to R. Dobrushin, S. Shlosman and their coauthors
and is presented in [Dobrushin et al. 1992; Schonmann and Shlosman 1996a; 1996b;
Ioffe and Shlosman 2008; 2010].
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It is worth observing that a similar problem with the additional restriction that
u be a characteristic function of some set (that is, that the droplet has exactly one
layer) in the two-dimensional situation (that is when n = 2), the set � is convex,
and the norm ϕ∗ is Euclidean, has been studied in [Stredulinsky and Ziemer 1997],
and for more general anisotropic norms (but for a somewhat different functional,
namely, with penalization on the volume instead of the volume constraint), in
[Novaga and Paolini 2005]. The latter problem will play an important role also in
the present paper. Eventually, one has to mention that it is also very similar to the
well-known Cheeger problem, the solutions of the latter being so-called Cheeger
sets; see for instance [Buttazzo et al. 2007; Kawohl and Novaga 2008; Kawohl and
Lachand-Robert 2006; Caselles et al. 2010].

Our aim in this paper is to study the variational problem (1-1) in the two-
dimensional case (that is, when n = 2). This geometric optimization problem is
considered without resort to the underlying lattice model or its continuous limit,
allowing us to treat an arbitrary open domain � and an arbitrary norm ϕ∗ that
is not necessarily strictly convex. In this setting we completely characterize the
minimizers and the possible levels of u when the domain � is convex. In particular
it turns out that except some degenerate situation, which can however happen only
when � is not strictly convex, the number of nonzero levels of u is at most two.

The basic tool we use is the auxiliary problem when u is a priori required to have
a single nonzero level (that is, is requested to be a characteristic function); namely,
we show that in the two-dimensional case (n = 2) when � is convex, the nonzero
levels of solutions to the latter problem corresponding to different values of m as m
grows can be arranged as a family of sets ordered by inclusion. Thus, solutions to
problem (1-1) can be seen as “towers” with levels solving the auxiliary problem.
The assumption of convexity of � is essential, as shown by a counterexample at
the end of Section 4A. The main result of the paper is formulated as Theorem 4.10.
We conclude with an explicit example of solutions to (1-1) for the case of a square
�= [0, 1]2 with a strictly convex (Euclidean) norm and a crystalline norm.

This work was inspired by some seminar talks of Senya Shlosman. After it was
completed, we learned that a full description of the solutions to the variational
problem (1-1) when � is a square and ϕ∗ is generated by a physical Hamiltonian
(in particular, when it is the Euclidean norm) has been independently obtained
by him and Ioffe by a rigorous continuous limit of a suitable lattice model (S.
Shlosman, private communication, 2012). Their proof, together with an analysis of
the microscopic structure of the solution and its behavior under thermal perturbations,
has not yet been published.
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2. Notation and preliminary results

For a set E ⊂ Rn we denote by |E | its Lebesgue measure, by 1E its character-
istic function, by Ē its closure, by ∂E its topological boundary, and by Ec its
complement.

In the following ϕ will denote the given (not necessarily Euclidean) norm over
Rn . Given E ⊂ Rn and x ∈ Rn , we set

distϕ(x, E) := inf
y∈E

ϕ(x − y), d E
ϕ (x) := distϕ(x, E)− distϕ(x, Ec).

The value d E
ϕ (x) is the signed distance from x to ∂E and is positive outside E .

Notice that at each point where d E
ϕ is differentiable one has (see [Bellettini et al.

2001])

(2-1) ϕ∗(∇d E
ϕ )= 1, ν · ∇d E

ϕ = 1 for all ν ∈ ∂ϕ∗(∇d E
ϕ ),

where ϕ∗ denotes the dual norm of ϕ defined as

ϕ∗(ξ) := max
η:ϕ(η)≤1

ξ · η

and ∂ϕ∗ denotes the subdifferential of ϕ∗ in the sense of convex analysis. In
particular

∇d E
ϕ =

νE

ϕ∗(νE)

where νE is the exterior Euclidean unit normal to ∂E .
We define the anisotropic perimeter of a set E ⊆ Rn as

(2-2) Pϕ(E) := sup
{∫

E
div η dx : η ∈C1

0(R
n), ϕ(η)≤ 1

}
=

∫
∂∗E

ϕ∗(νE)dHn−1 ,

where ∂∗E is the reduced boundary of E according to De Giorgi. We will usually
identify a set E of finite perimeter with the set of its density points (that is, points
of density 1).

Given an open set �⊂ Rn we define the BV -seminorm of v ∈ BV (�) as∫
�

ϕ∗(Dv) := sup
{∫

�

v div η dx : η ∈ C1
0(R

n), ϕ(η)≤ 1
}
,

where C1
0(R

n) stands for the set of continuously differentiable functions with
compact support is Rn .

We let Wϕ := {x | ϕ(x) < 1}, usually called the Wulff shape, be the unit ball of
ϕ. Observe that Pϕ(Wϕ)= n|Wϕ|.

In the sequel, given x ∈ Rn and r > 0, we set Wr (x) := x + r Wϕ (a Wulff ball of
radius r with center x). In this notation the reference to a norm ϕ is not retained
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for the sake of brevity, but always silently assumed. When ϕ is the Euclidean norm,
we will use a more common notation Br (x) instead of Wr (x) and P instead of Pϕ .

Definition 2.1. Given an r > 0, we say that E satisfies the r Wϕ-condition, if for
every x ∈ ∂E there exists an y ∈ Rn such that Wr (y)⊂ E and x ∈ ∂Wr (y).

Observe that, if E is convex, then Ec satisfies the r Wϕ-condition for all r > 0.
We conclude the section by recalling the following isoperimetric inequality

[Taylor 1975].

Proposition 2.2. For all E ⊂ Rn such that |E |<+∞ there holds

(2-3) Pϕ(E)≥
|E |

n−1
n

|Wϕ|
n−1

n
Pϕ(Wϕ).

3. Existence of minimizers

Notice that, since the total variation is lower semicontinuous and the constraints
are closed under weak BV convergence, by direct method one immediately gets
existence of minimizers of (1-1).

Proposition 3.1. For any m ≥ 0 there exists a (possibly nonunique) minimizer
of (1-1).

For every u ∈ L1(Rn) and j ∈ N we set

(3-1) E j := {u ≥ j}.

It is worth observing that whenever u( · ) takes values in N,

(3-2) u =
∞∑

i=1

1Ei

and

(3-3)
∫

Rn
ϕ∗(Du)=

∞∑
i=1

Pϕ(Ei ).

Remark 3.2. If we let um be a minimizer of (1-1) for a given m > 0, then the
normalized functions vm := um/m converge, as m→∞, up to a subsequence, to a
minimizer of the problem

min
{∫

�

ϕ∗(Dv) : v ∈ BV (Rn), v = 0 on �c,

∫
�

v dx = 1
}
,

which is closely related to the Cheeger problem in � [Kawohl and Novaga 2008].

Proposition 3.3. If u is a minimizer of (1-1), then u ∈ L∞(Rn).
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Proof. Assume by contradiction that |E j |> 0 for all j ∈ N. Notice that

lim
j→∞
|E j | = 0

(since otherwise u would not be integrable). Given x0 ∈� we let

u j :=min(u, j)+ 1WR j (x0)

where the radius R j is such that∫
�

u j =

∫
�

u = m,

that is (keeping in mind (3-2)),

|Wϕ|Rn
j =

∑
i> j

|Ei |,

and choose j ∈ N big enough so that WR j (x0)⊂�.
Letting

f (t) := n|Wϕ|
1
n t

n−1
n so that Pϕ(WR j (x0))= f (|Wϕ|Rn

j ),

we have∫
�

ϕ∗(Du j )≤

∫
�

ϕ∗(D min(u, j))+ Pϕ(WR j (x0))

=

∫
�

ϕ∗(D min(u, j))+ f (|Wϕ|Rn
j )

≤

∫
�

ϕ∗(D min(u, j))+
∑
i> j

f (|Ei |) by the concavity of f

≤

∫
�

ϕ∗(D min(u, j))+
∑
i> j

Pϕ(Ei ) by (2-3)

=

∫
�

ϕ∗(Du) by (3-3),

the second inequality being strict unless |Ei | = |Ek | for all i > j , k> j , thus leading
to a contradiction. �

Proposition 3.4. Let �⊂ Rn be star-shaped. Then the problem (1-1) is equivalent
to the following relaxed problem:

(3-4) min
{∫

�

ϕ∗(Du) : u ∈ BV (Rn), u = 0 on �c, u( · ) ∈ N,

∫
�

u dx ≥ m
}
.

Namely, the minimum values and the minimizers are the same for both problems.
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Proof. It is enough to show that any minimizer u of (3-4) satisfies

(3-5)
∫
�

u dx = m.

To this aim let � be star-shaped with respect to x0 and assume by contradiction that
(3-5) is violated. Let uλ(x) := u(x0+λ(x−x0)) for any λ> 0, so that uλ ∈ BV (Rn),
uλ( · ) ∈ N, while, by star-shapedness of �, one has uλ = 0 outside of � for every
λ ≥ 1. Then there exists a λ > 1 such that (3-5) holds with u replaced by uλ.
However,∫

�

ϕ∗(Duλ)= λ1−n
∫

x0+λ(�−x0)

ϕ∗(Du)= λ1−n
∫
�

ϕ∗(Du) <
∫
�

ϕ∗(Du)

(the second equality is due to the fact that � ⊂ x0 + λ(�− x0) for λ > 1, while
u = 0 outside of �), contradicting the minimality of u. �

4. The convex two-dimensional case

In this section we shall assume that n = 2 and �⊂ R2 is a convex open set.
Given E ⊂ R2 and an r > 0 we define the set Er

⊂ E by the formula

(4-1) Er
:=

{⋃
{Wr (x) : Wr (x)⊂ E} if r > 0,

E if r = 0.

Notice that, if E is a convex set, then Er is convex and satisfies the r Wϕ-condition.
The set Er is called the Wulff plaquette of radius r relative to E .

The following assertion holds:

Lemma 4.1. Let E ⊂ R2 be a convex open set satisfying the r Wϕ-condition for
some r > 0. Then E = Er .

Proof. One has Er
⊂ E . On the other hand, ∂E ⊂ ∂Er because E satisfies the

r Wϕ-condition. Minding that E , and hence Er , is convex, we get E = Er . �

The convexity of set E is essential in Lemma 4.1. In fact, if A, B and C are the
vertices of an equilateral triangle 4ABC with side length 1, then letting

E := B1/2(A)∪ B1/2(B)∪ B1/2(C)∪4ABC

we have that E satisfies the 1
2 Wϕ-condition with respect to the Euclidean norm, but

E1/2
= B1/2(A)∪ B1/2(B)∪ B1/2(C) 6= E .
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4A. Isoperimetric sets. We consider the constrained isoperimetric problem

(4-2) min
{

Pϕ(E) : E ⊂�, |E | = m ∈ [0, |�|]
}
,

which corresponds to the problem (1-1) under the additional constraint that u is
a characteristic function. Clearly, the minimizers of this problem exist and the
assertion of Proposition 3.4 remains valid for this problem.

Let R� > 0 be the maximal radius R such that WR(x)⊆� for some x ∈�, and
let r� ∈ [0, R�] be the maximal radius r such that � satisfies the r Wϕ-condition
(we set for convenience r� = 0 if � does not satisfy any r Wϕ-condition). Observe
that in the Euclidean case one has

r� =
1

‖κ‖L∞(∂�)

where κ stands for the curvature of ∂�.

Lemma 4.2. Let m ∈ (0, |�|), and let E be a minimizer of (4-2). Then E is convex
and there exists an r > 0 (depending on m) such that E satisfies the r Wϕ-condition
and each connected component of ∂E ∩� is contained in ∂Wr (x), for some Wulff
ball Wr (x)⊂� (with x depending on the connected component of ∂E ∩�).

Remark 4.3. Recall that here and in the sequel when speaking of the properties of
a set E of finite perimeter we actually refer to the respective properties of the set of
its density points. In particular, a minimizer E of (4-2) is not necessarily convex,
but the set of its density points is (and hence, in particular, the closure Ē is convex).

Proof. STEP 1. We first show the convexity of E . As in [Ambrosio et al. 2001,
Theorem 2] we can uniquely decompose E as a union of (measure theoretic)
connected components {Ei }i∈I , where I is finite or countable, such that

|E | =
∑
i∈I

|Ei | and Pϕ(E)=
∑
i∈I

Pϕ(Ei ).

As in [Ambrosio et al. 2002, Proposition 6.12], one shows by the isoperimetric
inequality and the minimality of E that the number of connected components is
finite and the boundary of each connected component Ei is parametrized by a finite
number of pairwise disjoint Jordan curves. In particular, the boundaries of two
different connected components do not intersect. Further, using Lemma 6.9 from
[Ambrosio et al. 2002], one has that the perimeter Pϕ(Ei ) of a measure theoretic
connected component Ei that has its boundary parametrized by Jordan curves
{θ

j
i }

Ni
j=1 (all parametrized, say, over [0, 1]) is given by

Pϕ(Ei )=

Ni∑
j=1

∫ 1

0
ψ(θ̇

j
i (t)) dt,
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whereψ :R2
→R is some convex and 1-homogeneous function (in fact, ψ :=ϕ∗◦R,

R being the clockwise rotation of R2 by π/2; see Corollary 6.10 from [Ambrosio
et al. 2002]). Hence, using Jensen inequality one shows that the convex envelope
of Ei has lower (anisotropic) perimeter than Ei itself, and minding that is also has
greater volume (as well as the fact that the assertion of Proposition 3.4 is valid for
the problem (4-2)), one has that each Ei is convex.

Finally, if E is not connected, recalling that � is convex we can translate a
connected component inside� in such a way that its boundary touches the boundary
of another connected component (this changes neither the perimeter nor the volume),
and taking the convex envelope of the resulting set we obtain again a set with greater
volume and strictly lower anisotropic perimeter, hence a contradiction which shows
that E is convex.

STEP 2. Reasoning as in [Novaga and Paolini 2005, Theorem 4.5], where the
related problem

min
{

Pϕ(E)− λ|E | : E ⊂�, λ≥ 0
}

was considered instead of (4-2), one gets that each connected component of ∂E ∩�
is contained in ∂Wr (x), for some x ∈ R2 and r > 0.

Moreover, as in [Ambrosio et al. 2002, Theorem 6.19] one can show the existence
of a (possibly nonunique) Lipschitz continuous vector field n : ∂E→ R2 such that
n(x) ∈ ∂ϕ∗(ν(x)) for H1-a.e. x ∈ ∂E . In particular divτn ∈ L∞(∂E), where
divτn := ∂τ (n · τ) denotes the tangential divergence of n and corresponds to the
anisotropic curvature of ∂E ; see [Taylor 1975; Bellettini et al. 2001]. (Here and
below τ and ν denote respectively the Euclidean unit tangent and exterior normal
vectors to ∂E .)

Without loss of generality we may assume that divτn is constant along every
maximal segment contained in ∂E (if not, we can substitute n over the segment by
a convex combination of its values on the endpoints of the segment; one would then
still have n ∈ ∂ϕ∗(ν) along the segment because ν is constant there and ∂ϕ∗( · )
is convex). In particular, if a connected component 6 of ∂E ∩� is contained in
∂Wr (x), then n(y)= (y− x)/(rϕ(y− x)) for H1-a.e. y ∈6.

STEP 3. We now prove that E satisfies the r Wϕ-condition for some r > 0. Since E
is convex, it is enough to show that

(4-3) divτn ≤ 1
r

H1-a.e. on ∂E .

This follows by a local variation argument as in the proof of Lemma 4.9 below. Let
us fix x1 ∈6, where 6 is a connected component of ∂E ∩�, and x2 ∈ ∂E \ 6̄. We
know from the previous step that 6 is contained in ∂Wr (x) for some x ∈ R2 and
r > 0. We distinguish four cases.
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Case 1. There are two disjoint open sets Ui , i = 1, 2, such that xi ∈Ui and Ui ∩∂E
do not contain segments. Let ψ1, ψ2 be two nonnegative smooth functions, with
support on U1,U2 respectively, such that

(4-4)
∫

U1∩∂E
ψ1(z)ϕ∗(ν(z)) dH1(z)=

∫
U2∩∂E

ψ2(z)ϕ∗(ν(z)) dH1(z).

We consider a family of diffeomorphisms such that

9(ε, x) := x + εψ1(x)n(x)− εψ2(x)n(x)+ o(ε)

for ε > 0 small enough. By (4-4), the term o(ε) can be chosen in such a way that

(4-5) |Eε| = |E | for all ε > 0 small enough,

with Eε :=9(ε, E)⊂�. We then have

Pϕ(Eε)= Pϕ(E)+
ε

r

∫
U1∩∂E

ψ1(z)ϕ∗(ν(z)) dH1(z)

−ε

∫
U2∩∂E

ψ2(z)divτn(z)ϕ∗(ν(z)) dH1(z)+ o(ε),

where ν stands for the exterior Euclidean unit normal to ∂E . As ε → 0+, by
minimality of E , we get

1
r

∫
U1∩∂E

ψ1(z)ϕ∗(ν(z)) dH1(z)≥
∫

U2∩∂E
ψ2(z)divτn(z)ϕ∗(ν(z)) dH1(z),

which in view of (4-4) gives (4-3).

Case 2. We can find two maximal segments `1, `2 ⊂ ∂E such that xi ∈ `i , and we
define Eε by shifting `1 by c1ε parallel to itself outside E , and by shifting `2 by
c2ε inside of E , with c1, c2 so that (4-5) holds, that is

(4-6) c1|`1| = c2|`2|.

By [Novaga and Paolini 2005, Lemma 4.4] we have

Pϕ(Eε)= Pϕ(E)+ c1α1ε− c2α2ε+ o(ε),

where α1, α2 are respectively the (Euclidean) length of the face of Wϕ parallel to
`1, `2. By minimality of E , letting ε→ 0+ we obtain c1α1 ≥ c2α2. Recalling (4-6),
we finally get

1
r
=
α1

|`1|
≥
α2

|`2|
= divτn(z) for z ∈ `2.
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Case 3. There is a maximal segment `1 ⊂ ∂E and an open set U2 such that x1 ∈ `1,
x2 ∈ U2 and U2 ∩ ∂E does not contain segments. We proceed by combining the
previous strategies and we define the set Eε by shifting `1 by ε parallel to itself
outside E , and then taking the image of the resulting set through the diffeomorphism

9(ε, x) := x − εψ2(x)n(x)+ o(ε),

where ψ2 is a nonnegative smooth function supported on U2 satisfying

(4-7)
∫

U2∩∂E
ψ2(z)ϕ∗(ν(z)) dH1(z)= |`1|.

This condition guarantees that the volume change after these two operations is of
order o(ε), so that the extra term o(ε) in the definition of 9 is chosen in such a
way that (4-5) holds. Reasoning as above, we get

Pϕ(Eε)= Pϕ(E)+α1ε− ε

∫
U2∩∂E

ψ2(z)divτn(z)ϕ∗(ν(z)) dH1(z)+ o(ε),

which gives, by minimality of E ,

α1 =
|`1|

r
≥

∫
U2∩∂E

ψ2(z)divτn(z)ϕ∗(ν(z)) dH1(z),

which gives (4-3), recalling (4-7).

Case 4. There is a maximal segment `2 ⊂ ∂E and an open set U1 such that x1 ∈U1,
x2 ∈ `2 and U1 ∩ ∂E does not contain segments. This case can be dealt with
reasoning as in the previous case, by shifting `2 by ε inside E and defining

9(ε, x) := x + εψ1(x)n2(x)+ o(ε).

STEP 4. From (4-3) it follows that the radius r in Step 3 does not depend on the
connected component 6. In particular, every connected component of ∂E ∩� is
contained in ∂Wr (x), for a fixed r > 0 (while x depends in general on the connected
component). �

Consider now the function v(r) := |�r
|. It is clearly constantly equal to |�| for

r ≤ r� and to zero for r > R�, while over [r�, R�] it is continuous and monotone
decreasing. In particular, for all m ∈ [|�R� |, |�|] there exists a unique value
rm ∈ [r�, R�] such that v(rm)= m.

From the isoperimetric inequality (2-3) and Lemma 4.2, we get the following
statement.

Proposition 4.4. Let � ⊂ R2 be convex, and let E be a minimizer of (4-2) with
m ∈ [0, |�|]. Then either

(a) Ē = �̄rm , if m > |�R� |, or
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(b) Ē is the closure of some convex union of Wulff balls of radius R�, if m ∈
[R2

�|Wϕ|, |�
R� |], or

(c) Ē = W̄√m/|Wϕ |
(x) for some x ∈�, if m ≤ R2

�|Wϕ|.

Proof. We can assume m ∈ (0, |�|). By Lemma 4.2, there exists an r > 0 (depending
on m) such that Ē is the closure of a union of Wulff balls of radius r , hence Ē ⊂ �̄r

and r ≤ R�.
If m > |�R� |, then necessarily r < R� and Ē = �̄r , since otherwise we could

find a connected component of ∂E ∩� that is not contained in the boundary of a
Wulff ball, contradicting Lemma 4.2. In particular, we have r = rm .

If m ∈ [R2
�|Wϕ|, |�

R� |] then r = R�, since otherwise Ē would coincide with
the set �̄r (with r < R�), which has volume strictly greater than |�R� |.

If m ≤ R2
�|Wϕ| the result follows by the isoperimetric inequality (2-3). �

Remark 4.5. It is worth noticing that, if � is strictly convex, then there exists a
unique ball WR�(x) ⊂ �, and thus �R� = WR�(x). In other words, the case (b)
of the above Proposition 4.4 reduces to case (c). Therefore, either Ē = �̄rm , if
m ≥ |�R� |, or Ē = W̄√m/|Wϕ |

(x) for some x ∈�, if m ≤ |�R� |.

We now state an easy consequence of Proposition 4.4 showing that solutions
to the problem (4-2) with decreasing volumes may be arranged as a decreasing
sequence of sets.

Corollary 4.6. Let � be convex and let m j be a decreasing sequence such that
m j ∈ (0, |�|), for all j . There exists a sequence of sets E j such that E j+1⊂ E j ⊂�,
|E j | = m j and each E j is a minimizer of (4-2) with m := m j .

Note that the convexity assumption on the set � is essential in the above result.
In fact, reasoning as in [Kawohl and Lachand-Robert 2006, Section 6] with the
example of� a couple of circles connected by a thin tube (like a barbell considered in
[Kawohl and Lachand-Robert 2006, Section 6]), one provides a family of minimizers
of (4-2) with decreasing volumes which cannot be arranged as a decreasing sequence
of sets (see Figure 1).

4B. Isoperimetric towers. We return now to the original problem (1-1). Here and
below we let u ∈ L1(R2) be an arbitrary minimizer of this problem and E j be its
level set corresponding to a j ∈N, as defined by (3-1). The following result follows
directly from Corollary 4.6.

Proposition 4.7. If � is convex, then for all j ∈N the set E j is a minimizer of the
problem (4-2) with m := |E j | (in particular E j is convex).

Proof. If the assertion is not true, then considering a sequence of sets E ′j of
minimizers of (4-2) (with m := |E j |) such that E ′j+1 ⊂ E ′j ⊂�, |E ′j | := |E j | (the
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�
E1

�
E2

Figure 1. Example of �⊂ R2 nonconvex: two circles connected
with a thin tube. E1 and E2 (which has two connected components)
are two minimizers of (4-2) that are not included into one another.

existence of such a sequence is guaranteed by Corollary 4.6), and setting

u′ :=
∑

j

1E ′j ,

we get ∫
R2
ϕ∗(Du′)=

∑
j

Pϕ(E ′j ) <
∑

j

Pϕ(E j )=

∫
R2
ϕ∗(Du),

the strict inequality being due to the fact that one of E j is not a minimizer of (4-2)
(with m := |E j |) by assumption. On the other hand,∫

�

u′ dx =
∫
�

u dx = m,

since the level sets of u′ and u have the same volume by construction. This would
mean that u is not a solution to the problem (1-1). �

Remark 4.8. By Proposition 4.7 and Lemma 4.2, each set Ei is convex and each
connected component of ∂Ei ∩� is contained in ∂Wri (xi ) for some Wulff ball
Wri (xi )⊂�.

Lemma 4.9. Let Si , S j be connected components of ∂Ei ∩� and ∂E j ∩�, respec-
tively, with j > i , such that

(4-8) Si ⊂ ∂Wri (xi )⊂ �̄, S j ⊂ ∂Wr j (x j )⊂ �̄,
1
ri
(Si − xi )⊂

1
r j
(S j − x j ),

for some xi , x j ∈ R2, ri , r j > 0. Then ri ≥ r j .
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Proof. It is enough to consider the case j = i + 1. We can also assume Si 6= Si+1,
otherwise there is nothing to prove. As in Figure 2, there are two cases to consider.

Case 1. There are two points yi ∈ Si , yi+1 ∈ Si+1 and two disjoint open sets Ui ⊂�

and Ui+1 ⊂ � such that yi ∈ Ui , yi+1 ∈ Ui+1, and that Ui ∩ Si and Ui+1 ∩ Si+1

do not contain segments. Consider a smooth function ψi with support on Ui . It
generates a one-parameter family of diffeomorphisms of Ei defined by

9i (ε, x) := x − εψi (x)ni (x)

for all sufficiently small ε > 0, where

ni (x) :=
x − xi

riϕ(x − xi )
.

Consider now a one-parameter family {9i+1(ε, · )} of diffeomorphisms of Ei+1

such that 9i+1(0, x)= x for all x ∈ Ei+1, 9i+1(ε, · )− Id is supported in Ui+1 for
all ε > 0, while

9i+1(ε, x) := x + εψi+1(x)ni+1(x)+ o(ε)

as ε→ 0+, where ψi+1 is some smooth function (with support in Ui+1), and

ni+1(x) :=
x − xi+1

ri+1 ϕ(x − xi+1)
.

We choose 9i+1 so that the sets Eεi :=9i (ε, Ei ) and Eεi+1 :=9i+1(ε, Ei+1) satisfy

|Eεi | + |E
ε
i+1| = |Ei | + |Ei+1|

for all sufficiently small ε > 0. Denote by ν j the exterior Euclidean unit normal to
∂E j . Since

|Eεi | = |Ei | − ε

∫
∂Ei∩Ui

ψi (z)ϕ∗(νi (z)) dH1(z)+ o(ε),

|Eεi+1| = |Ei+1| + ε

∫
∂Ei+1∩Ui+1

ψi+1(z)ϕ∗(νi+1(z)) dH1(z)+ o(ε),

as ε→ 0+, we have

(4-9)
∫
∂Ei∩Ui

ψi (z)ϕ∗(νi (z)) dH1(z)=
∫
∂Ei+1∩Ui+1

ψi+1(z)ϕ∗(νi+1(z)) dH1(z).

Letting now

uε := u− 1Ei − 1Ei+1 + 1Eεi + 1Eεi+1
=

∑
k 6=i

k 6=i+1

1Ek + 1Eεi + 1Eεi+1
,
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we have
∫
�

uε dx =
∫
�

u dx for all sufficiently small ε > 0. Recall that∫
�

ϕ∗(Duε)=
∫
�

ϕ∗(Du)− ε
∫
∂Ei∩Ui

1
ri
ψi (z)ϕ∗(νi (z)) dH1(z)

+ε

∫
∂Ei+1∩Ui+1

1
ri+1

ψi+1(z)ϕ∗(νi+1(z)) dH1(z)+ o(ε).

As ε→ 0+, by minimality of u, we get

−
1
ri

∫
∂Ei∩Ui

ψi (z)ϕ∗(νi (z)) dH1(z)+ 1
ri+1

∫
∂Ei+1∩Ui+1

ψi+1(z)ϕ∗(νi+1(z)) dH1(z)

≥ 0,

which together with (4-9) implies the thesis.

Case 2. We can find two maximal line segments `i ⊂ Si and `i+1⊂ Si+1. We define
then Eεi by shifting the segment `i by ciε parallel to itself inside Ei and Eεi+1 by
shifting the segment `i+1 parallel to itself outside of Ei+1 by ci+1ε with ci and ci+1

so as to satisfy
|Eεi | + |E

ε
i+1| = |Ei | + |Ei+1|

for all ε > 0 sufficiently small. Since

|Eεi | = |Ei | − ci |`i |ε+ o(ε),

|Eεi+1| = |Ei+1| + ci+1|`i+1|ε+ o(ε),

as ε→ 0+, we have

(4-10) ci |`i | = ci+1|`i+1|.

Letting again, as in Case 1,

uε := u− 1Ei − 1Ei+1 + 1Eεi + 1Eεi+1
=

∑
k 6=i

k 6=i+1

1Ek + 1Eεi + 1Eεi+1
,

we have
∫
�

uε dx =
∫
�

u dx for all sufficiently small ε > 0. On the other hand, by
[Novaga and Paolini 2005, Lemma 4.4],∫

�

ϕ∗(Duε)=
∫
�

ϕ∗(Du)− ciαiε+ ci+1αi+1ε+ o(ε),

where αi , αi+1 are the (Euclidean) lengths of the face of Wϕ parallel to `i , `i+1,
respectively. By minimality of u, letting ε → 0+ we obtain ciαi ≤ ci+1αi+1.
Recalling (4-10), we get ri = |`i |/αi ≥ |`i+1|/αi+1 = ri+1.

Notice that in this proof we do not have to deal with the situation depicted
in Cases 3 and 4 of the proof of Lemma 4.2 due to condition (4-8). In fact, the
latter implies that if Si contains a line segment `i , then the line segment ` j :=
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x j + (li − xi )r j/ri is contained in S j . Otherwise, if there is a neighborhood
Ui of a point of Si such that Si ∩ Ui does not contain any line segment, then
U j := x j + (Ui − xi )r j/ri is a neighborhood of a point in S j such that S j ∩U j does
not contain any line segment. �

�

Ei

Ei+1 E jmax

yi+1
yi

�

Ei

Ei+1 E jmax

`i+1
`i

Figure 2. The two possible cases in the proof of Lemma 4.9.

We are now able to prove the following result giving the complete characterization
of solutions to the problem (1-1).

Theorem 4.10. Let � ⊂ R2 be convex and set jmax := ‖u‖∞. Then one of the
following cases holds.

(a) There exists an r̄ ∈ [r�, R�) such that Ē j = �̄
r̄ for all j ≤ jmax. In this case

u = jmax1�r̄

(in particular, if r̄ = r�, then u = jmax1�).

(b) There exists an r̄ ∈ (r�, R�) such that Ē jmax = W̄r̄ (x) for some x ∈� such that
Wr̄ (x)⊂�r̄ , and Ē j = �̄

r̄ for all j < jmax. In this case

u = 1Wr̄ (x)+ ( jmax− 1)1�r̄ .

(c) There exists an r̄ ∈ (0, r�] such that Ē jmax = W̄r̄ (x) for some x ∈� such that
Wr̄ (x)⊂�, and Ē j = �̄ for all j < jmax. In this case

u = 1Wr̄ (x)+ ( jmax− 1)1�

(note that this condition may hold only when r� > 0).
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(d) Every Ē j is the closure of a convex union of Wulff balls of radius R� for all
j ≤ jmax. In this case

u =
jmax∑
j=1

1E j .

Remark 4.11. Observe that Case (d) of Theorem 4.10 is the only case where the
number of nonzero level sets of the minimizer may be bigger than two.

Proof. We may assume jmax > 1, since otherwise the result follows directly from
Proposition 4.4.

By Remark 4.8, for all i≤ jmax the set Ei is convex and each connected component
of ∂Ei ∩� is contained, up to a translation, in ∂Wri (xi ) for some ri > 0, xi ∈ R2.
Moreover, if ∂Ei ∩� and ∂Ei+1 ∩� are nonempty, from the inclusion Ei+1 ⊂ Ei

it follows that we can always find two connected components Si ⊂ ∂Ei ∩� and
Si+1 ⊂ ∂Ei+1 ∩� satisfying the assumptions of Lemma 4.9. By Lemma 4.9 we
then get ri ≥ ri+1 for all i < jmax.

Recalling Propositions 4.7 and 4.4, this leaves only the following possibilities:

(i) Ēi = �̄
ri , Ēi+1= �̄

ri+1 with ri ≥ ri+1. If ri > r� (hence�ri 6=�), then minding
Ēi+1 ⊂ Ēi we have in this case ri = ri+1 hence Ēi = Ēi+1 = �̄

ri , while if
ri+1 ≤ ri ≤ r� we have Ēi = Ēi+1 = �̄, and we may just set ri = ri+1 := r�
so that still Ēi = Ēi+1 = �̄

ri (because �r� =�).

(ii) Ēi = �̄
ri , Ēi+1 = W̄ri+1(xi+1) with ri ≥ ri+1.

(iii) Ēi = W̄ri (xi ), Ēi+1 = W̄ri+1(xi+1) with ri ≥ ri+1.

(iv) Ēi is a closure of some convex union of Wulff balls of radius R� and Ei+1 =

W̄ri+1(xi+1) with R� > ri+1.

(v) Both Ēi and Ēi+1 are closures of some convex unions of Wulff balls of radius
R�.

(Note that the case when Ēi+1 is a closure of a convex union of Wulff balls
of radius R� and Ēi = W̄ri (xi ) with R� < ri is impossible.) Thus there is a
̄ ∈ {0, . . . , jmax} and an r1 ∈ [r�, R�) such that either

(A) for every i ≤ ̄ one has Ēi = �̄
r1 or

(B) for every i ≤ ̄ each Ēi is a closure of a convex union of Wulff balls of radius
R� (in particular, just a single closed Wulff ball),

while Ēi = W̄ri (xi ), ri < R� for all i > ̄ , with {ri } decreasing.
Consider now an arbitrary i > ̄ such that Ei 6=∅. Note that either ri ≤ r1 < R�

(Case A) or ri < R� (Case B).
It remains to show that E j =∅ for all j > i . Suppose the contrary, namely, that

Ei+1 6=∅. We may assume without loss of generality all level sets are open convex
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by Proposition 4.7, and, further, Ēl+1 ⊂ El for all l ∈ {̄ , . . . , jmax}) (if not, from
what has been already proven it follows that we may just shift appropriately all
the respective level sets, which would maintain both

∫
�
ϕ∗(Du) and

∫
�

u). Choose
now ε > 0 and ε′ > 0 sufficiently small so that for r ′i+1 := ri+1− ε

′ and ri := ri + ε

one would have

(4-11) r
′2
i + r

′2
i+1 = r2

i + r2
i+1

and W̄r ′i (xi )⊂ Ei−1, Ēi+2 ⊂Wr ′i+1
(xi+1). From (4-11) one gets ε′ = (ri/ri+1)ε+

o(ε), and hence

Pϕ(Wr ′i+1
(xi+1))+ Pϕ(Wr ′i (xi ))

Pϕ(Wri+1(xi+1))+ Pϕ(Wri (xi ))
=

r ′i+1+ r ′i
ri+1+ ri

= 1− ε
ri+1− ri

ri+1(ri+1+ ri )
+ o(ε),

where the error term o(ε) is negative when ri = ri+1. Therefore, representing u as
u = ũ+ 1Ei+1 + 1Ei , and letting

u′ε := ũ+ 1Wr ′i+1
(xi+1)+ 1Wr ′i

(xi ),

we get
∫
�
ϕ∗(Du′ε) <

∫
�
ϕ∗(Du) for sufficiently small ε > 0; but

∫
R2 u dx =∫

R2 u′ε dx , contrary to the optimality of u, which proves the claim.
One has therefore either ̄ = jmax−1 or ̄ = jmax, which concludes the proof. �

5. An explicit example

5A. A square with Euclidean norm. Let now � := [0, 1]2 and let ϕ be the Eu-
clidean norm on R2. From Theorem 4.10 we obtain the following characterization
for the minimizers of (1-1).

Proposition 5.1. Let �= [0, 1]2.

(1) If m ∈ (n− 1, nπ/4), with 1≤ n ≤ 4, we have jmax = n, Ē jmax = B̄r (x0)⊂ �̄

and Ē j = �̄
r for j < jmax, with

r =

√
n−m− 1

4(n− 1)− nπ
.

(2) If m ∈ [nπ/4, n], with 1≤ n ≤ 4, we have jmax = n and Ē j = �̄
r for j ≤ jmax,

with r =
√
(1−m/n)/(4−π).

(3) If m > 4 we have

(5-1) jmax ∈

{⌊
2+
√
π

2
√
π

m
⌋
,

⌊
2+
√
π

2
√
π

m
⌋
+ 1

}
and Ē j = �̄

r for j ≤ jmax, with r =
√
(1−m/ jmax)/(4−π) .
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Proof. By Theorem 4.10 for all m> 0 we have one of the following two possibilities.

Case A. Ē j = �̄
r for all j ≤ jmax with

m = jmax|�
r
| = jmax

(
1− (4−π)r2) r ∈

[
0, 1

2

]
.

It then follows that

r = rA( jmax) :=

√
jmax−m

(4−π) jmax

and
∑ jmax

j=1 P(E j )= FA( jmax), where

FA(x) := x P(�rA(x))= 4x − 2
√

4−π
√

x(x −m) .

Notice that
F ′A(x)= 4−

√
4−π 2x−m

√
x(x−m)

,

which implies that FA(x) is increasing for x > ((2+
√
π)/2
√
π)m, while it is

decreasing for m ≤ x < ((2+
√
π)/2
√
π)m. As a consequence we have

(5-2) jmax ∈ { j A, j A
+1}, where j A

:=

⌊
2+
√
π

2
√
π

m
⌋
.

Case B. Ē jmax = B̄r (x0)⊂ �̄ and Ē j = �̄
r for all j < jmax with

m = πr2
+ ( jmax− 1)|�r

|

= ( jmax− 1)
(

1−
(

4−
jmax

jmax− 1
π

)
r2
)

r ∈
(
0, 1

2

)
.

It follows

rB( jmax) :=

√
jmax− 1−m

(4−π)( jmax− 1)−π
> rA( jmax− 1)

and
∑ jmax

j=1 P(E j )= FB( jmax), where

FB(x) := (x − 1)P(�rB(x))+ 2πrB(x)

= 4(x − 1)− 2
√

4−π
√(

x − 1− π

4−π

)
(x − 1−m).

Notice that the derivative

F ′B(x)= 4−
√

4−π
2(x − 1)−m− π

4−π√(
x − 1− π

4−π

)
(x − 1−m)

.
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Assuming x > 4/(4−π), we then have that FB is increasing for

x − 1>
2+
√
π

2
√
π

m−
√
π

2(2+
√
π)

and decreasing otherwise, so that

(5-3) jmax ∈ { j B, j B
+ 1}, where j B

:=

⌊
2+
√
π

2
√
π

m+
4+
√
π

2(2+
√
π)

⌋
as soon as jmax ≥ 5.

Observe that, if m < 5π/4, we have jmax ≤ 4 and there is only one choice
for the minimizers E j . In particular, we are in Case A or Case B depending
on the value of m. On the other hand, when m > 5π/4, we have to determine
which one between Cases A and B is energetically more convenient. However,
since min{FB( j B), FB( j B

+ 1)}>min{FA( j A), FA( j A
+ 1)} for all m > 5π/4, it

follows that Case B can never occur as a minimizer, thus implying the thesis. �

It is worth remarking that 2π/(2+π) is the volume of the (unique) Cheeger set
C� of �, so that Proposition 5.1 implies that the functions um/ jmax converge to
the characteristic function of C�, according to the Remark 3.2.

5B. A square with a crystalline norm. Now we set � = [0, 1]2 as above and
ϕ(ν)=max{|ν1|, |ν2|}. Notice that ϕ is a crystalline norm with Wulff shape

Wϕ = {(x, y) ∈ R2
: |x | + |y| ≤ 1}.

As before, we are able to characterize completely the minimizers of (1-1).

Proposition 5.2. Let � and ϕ be as above.

(i) If m ∈
(
0, 1

2

]
, we have jmax = 1 and Ē1 = W̄r (x0)⊂ �̄, with r =

√
m/2.

(ii) If m ∈
[ 1

2 , 1
)
, we have jmax = 1 and Ē1 = �̄

r , with r =
√
(1−m)/2.

(iii) If m = 1, then either jmax = 1 and Ē1 = �, or jmax = 2, Ē1 = �̄
r and

Ē2 = W̄r (x0)⊂�, with r ∈
(
0, 1

2

]
.

(iv) If m > 1, we have

(5-4) jmax ∈

{⌊
1+
√

2
2

m

⌋
,

⌊
1+
√

2
2

m

⌋
+ 1

}
and Ē j = �̄

r for j ≤ jmax, with r =
√
(1−m/ jmax)/2.

Proof. The proof is similar to that of Proposition 5.1.
If m ≤ 1

2 , then jmax = 1 and Ē1 = W̄r (x0)⊂�, since the (rescaled) Wulff shape
solves the isoperimetric problem. By Theorem 4.10, for all m ≥ 1

2 we have one of
the following two possibilities.
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Case A. Ē j = �̄
r for all j ≤ jmax with

m = jmax|�
r
| = jmax(1− 2r2), r ∈

[
0, 1

2

]
,

which gives

r =
1
√

2

√
1− m

jmax
,

and
jmax∑
j=1

Pϕ(E j )= FA( jmax), where

FA(x)= x(4− 4r)= 4x − 4

√
x2
−mx
2

.

Since the function FA is increasing for x > (1 +
√

2)m/2 and decreasing for
m ≤ x < (1+

√
2)m/2, we have

jmax ∈ { j A, j A
+ 1}, where j A

:=

⌊
1+
√

2
2

m
⌋
.

Case B. Ē jmax = W̄r (x0)⊂ �̄ and Ē j = �̄
r for all j < jmax, with r ∈

(
0, 1

2

]
and

m = 2r2
+ ( jmax− 1)

(
1− 2r2) ,

and hence m ≥ 1 because jmax ≥ 2 and r ≤ 1
2 .

If m = 1 then jmax = 2 and we can take any r ∈
(
0, 1

2

]
.

If m > 1 then jmax ≥ m+ 1 and we get

r =

√
jmax−m− 1
2( jmax− 2)

and
jmax∑
j=1

Pϕ(E j )= FB( jmax), where

FB(x)= 4(x − 1)− 4(x − 2)

√
x −m− 1
2(x − 2)

.

Since the function FB is increasing for x>(1+
√

2)m/2+(3−
√

2)/2 and decreasing
otherwise, we have

jmax ∈ { j B, j B
+ 1}, where j B

:=

⌊
1+
√

2
2

m+
3−
√

2
2

⌋
.

As in the proof of Proposition 5.1, when m > 1 we have to determine which of
Cases A and B is energetically more convenient. Since min{FB( j B), FB( j B

+1)}>
min{FA( j A), FA( j A

+ 1)} (by a calculation as in the example with the Euclidean
norm), it follows that Case B can never occur. �
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BRAUER’S HEIGHT ZERO CONJECTURE
FOR METACYCLIC DEFECT GROUPS

BENJAMIN SAMBALE

We prove that Brauer’s height zero conjecture holds for p-blocks of finite
groups with metacyclic defect groups. If the defect group is nonabelian
and contains a cyclic maximal subgroup, we obtain the distribution into
p-conjugate and p-rational irreducible characters. The Alperin–McKay
conjecture then follows provided p = 3. Along the way we verify a few
other conjectures. Finally we consider more closely the extraspecial defect
group of order p3 and exponent p2 for an odd prime. Here for blocks with
inertial index 2 we prove the Galois–Alperin–McKay conjecture by comput-
ing k0(B). Then for p ≤ 11 also Alperin’s weight conjecture follows. This
improves results of Gao (2012), Holloway, Koshitani, Kunugi (2010) and
Hendren (2005).

1. Introduction

An important task in representation theory is the determination of the invariants of
a block of a finite group when its defect group is given. For a p-block B of a finite
group G we are interested in the number k(B) of irreducible ordinary characters and
the number l(B) of irreducible Brauer characters of B. Let D be a defect group of B.
Then the irreducible ordinary characters split into ki (B) characters of height i ≥ 0.
Here the height h(χ) of a character χ in B is defined by χ(1)p = ph(χ)

|G : D|p.
If p = 2, the block invariants for several defect groups were obtained in the last

years. In particular the invariants are known if the defect group is metacyclic; see
[Sambale 2012]. However, for odd primes p the situation is more complicated.
Here even in the smallest interesting example of an elementary abelian defect group
of order 9, the block invariants are not determined completely; see [Kiyota 1984].
Nevertheless Brauer’s k(B)-conjecture and Olsson’s conjecture were proved for all
blocks with metacyclic defect groups in [Gao 2011; Yang 2011]. Following these
lines, we obtain in this paper that also Brauer’s height zero conjecture is fulfilled
for these blocks. The proof uses the notion of lower defect groups and inequalities
from [Héthelyi et al. 2012]. Moreover, if G is p-solvable, we obtain the algebra
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structure of B with respect to an algebraically closed field of characteristic p. If
one restricts to blocks with maximal defect, the precise invariants were determined
in [Gao 2012]. We can confirm at least some of these values. For principal blocks
there is even a perfect isometry between B and its Brauer correspondent in NG(D)
by the main theorem of [Horimoto and Watanabe 2012].

In the second part of the paper we consider the (unique) nonabelian p-group with
a cyclic subgroup of index p as a special case. Here the difference k(B)− l(B) is
known from [Gao and Zeng 2011]. We confirm this result and derive the distribution
into p-conjugate and p-rational irreducible characters. We also show that ki (B)= 0
for i ≥ 2. This implies various numerical conjectures. Moreover, it turns out that the
Alperin–McKay conjecture holds provided p= 3. This is established by computing
k0(B). Here in the case |D| ≤ 34 we even obtain the other block invariants k(B),
ki (B) and l(B), which leads to a proof of Alperin’s weight conjecture in this case.
This generalizes some results from [Holloway et al. 2010], where these blocks were
considered under additional assumptions on G.

The smallest nonabelian example for a metacyclic defect group for an odd prime
is the extraspecial defect group p1+2

− of order p3 and exponent p2. For this special
case Hendren [2005] obtained some inequalities on the invariants. In [Schulz 1980]
one can find results for these blocks under the hypothesis that G is p-solvable.
The present paper improves both of these works. In particular if the inertial index
e(B) of B is 2, we verify the Galois–Alperin–McKay conjecture (see [Isaacs and
Navarro 2002]), a refinement of the Alperin–McKay conjecture. As a consequence,
for p ≤ 11 we are able to determine the block invariants k(B), ki (B) and l(B)
completely without any restrictions on G. Then we use the opportunity to prove
several conjectures including Alperin’s weight conjecture for this special case. As
far as I know, these are the first nontrivial examples of Alperin’s conjecture for a
nonabelian defect group for an odd prime.

2. Brauer’s height zero conjecture

Let B be a p-block of a finite group G with metacyclic defect group D. Since for
p = 2 the block invariants are known and most of the conjectures are verified (see
[Sambale 2012]), we assume p> 2 for the rest of the paper. If D is abelian, Brauer’s
height zero conjecture is true by [Kessar and Malle 2011] (using the classification).
Hence, we can also assume that D is nonabelian. Then we have to distinguish
whether D splits or not. In the nonsplit case the main theorem of [Gao 2011] says
that B is nilpotent. Again, the height zero conjecture holds. Thus, let us assume that
D is a nonabelian split metacyclic group. Then D has a presentation of the form

(2-1) D = 〈x, y | x pm
= y pn

= 1, yxy−1
= x1+pl

〉
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with 0 < l < m and m − l ≤ n. Many of the results in this paper will depend on
these parameters. Assume that the map x→ xα1 generates an automorphism of 〈x〉
of order p− 1. Then by Theorem 2.5 in [Gao 2011], the map α with α(x)= xα1

and α(y)= y is an automorphism of D of order p− 1. By the Schur–Zassenhaus
theorem applied to Op(Aut(D)) E Aut(D), 〈α〉 is unique up to conjugation in
Aut(D). In particular the isomorphism type of the semidirect product D o 〈α〉
does not depend on the choice of α. We denote the inertial quotient of B by I (B);
in particular e(B) = |I (B)|. It is known that I (B) is a p′-subgroup of the outer
automorphism group Out(D). Hence, we may assume that I (B)≤ 〈α〉. Sometimes
we regard α as an element of NG(D) by a slight abuse of notation.

We fix a Brauer correspondent bD of B in CG(D). For an element u ∈ D we
have a B-subsection (u, bu) ∈ (D, bD). Here bu is a Brauer correspondent of B in
CG(u). Let F be the fusion system of B. Then by Proposition 5.4 in [Stancu 2006],
F is controlled. In particular CD(u) is a defect group of bu ; see Theorem 2.4(ii) in
[Linckelmann 2006]. In case l(bu) = 1 we denote the unique irreducible Brauer
character of bu by ϕu . Then the generalized decomposition numbers du

i j form a
vector du

:= (du
χϕu
:χ ∈ Irr(B)). More generally we have subpairs (R, bR)≤ (D, bD)

for every subgroup R ≤ D. In particular I (B)=NG(D, bD)/D CG(D). For r ∈N

we set ζr := e2π i/r .

Proposition 2.1. Let B be a p-block of a finite group with a nonabelian metacyclic
defect group for an odd prime p. Then l(B)≥ e(B).

Proof. We use the notation above. If D is nonsplit, we have e(B)= l(B)= 1. Thus,
assume that D is given by (2-1). Let m(d) be the multiplicity of d ∈N as an elemen-
tary divisor of the Cartan matrix of B. It is well-known that m(pm+n)=m(|D|)= 1.
Hence, it suffices to show m(pn)≥ e(B)− 1.

By Corollary V.10.12 in [Feit 1982], we have

m(pn)=
∑
R∈R

m(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of
G of order pn . After combining this with the formula (2S) of [Broué and Olsson
1986] we get

m(pn)=
∑

(R,bR)∈R′

m(1)
B (R, bR)

where R′ is a set of representatives for the G-conjugacy classes of B-subpairs
(R, bR) such that R has order pn .

Thus, it suffices to prove m(1)
B (〈y〉, by) ≥ e(B)− 1. By (2Q) [ibid.] we have

m(1)
B (〈y〉, by)=m(1)

By
(〈y〉) where By := bNG(〈y〉,by)

y . It is easy to see that ND(〈y〉)=
CD(y), because D/〈x〉 ∼= 〈y〉 is abelian. Since B is controlled and I (B) acts
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trivially on 〈y〉, we get NG(〈y〉, by) = CG(y) and By = by . Thus, it remains to
prove m(1)

by
(〈y〉) ≥ e(B)− 1. Let x i y j

∈ CD(y) \ 〈y〉. Then x i
∈ Z(D). Hence,

by Theorem 2.3(2)(iii) in [Gao 2011] we have CD(y)= Z(D)〈y〉 = 〈x pm−l
〉× 〈y〉.

By Proposition 2.1(b) in [An 2011], also by is a controlled block. Observe that
(CD(y), bCD(y)) is a maximal by-subpair. Since α ∈NCG(y)(CD(y), bCD(y)), we see
that e(by)= e(B).

As usual, by dominates a block of CG(y)/〈y〉 with cyclic defect group

CD(y)/〈y〉 ∼= 〈x pm−l
〉.

Hence, pn occurs as elementary divisor of the Cartan matrix of by with multi-
plicity e(by) − 1 = e(B) − 1 (see [Dade 1966; Fujii 1980]). By Corollary 3.7
in [Olsson 1980] every lower defect group of by must contain 〈y〉. This im-
plies m(1)

by
(〈y〉)= e(B)− 1. �

Since Alperin’s weight conjecture would imply that l(B)= e(B), it is reasonable
that 〈y〉 and D are the only (nontrivial) lower defect groups of D up to conjugation.
However, we do not prove this. We remark that Proposition 2.1 would be false for
abelian metacyclic defect groups; see [Kiyota 1984].

We introduce a general lemma.

Lemma 2.2. Let B be a controlled block of a finite group G with Brauer correspon-
dent bD in CG(D). If (u, bu) ∈ (D, bD) is a subsection such that

NG(D, bD)∩CG(u)⊆ CD(u)CG(CD(u)),

then e(bu)= l(bu)= 1.

Proof. By Proposition 2.1 in [An 2011], bu is a controlled block with Sylow
bu-subpair (CD(u), bCD(u)). Hence,

e(bu)= |NCG(u)(CD(u), bCD(u))/CD(u)CG(CD(u))|.

Every F-automorphism on CD(u) is a restriction from AutF(D). This gives

NCG(u)(CD(u), bCD(u))⊆ (NG(D, bD)∩CG(u))CG(CD(u))⊆ CD(u)CG(CD(u)).

Thus, we have e(bu) = 1. Since bu is controlled, it follows that bu is nilpotent
and l(bu)= 1. �

Theorem 2.3. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group for an odd prime p. Then

k(B)≥
(

pl
+ pl−1

− p2l−m−1
− 1

e(B)
+ e(B)

)
pn.
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Proof. If e(B) = 1, the block B is nilpotent. Then the claim follows from Theo-
rem 2.3(2)(iii) in [Gao 2011] and Remark 2.4 in [Héthelyi and Külshammer 2011].
So, assume e(B) > 1. The idea is to use Brauer’s formula [Nagao and Tsushima
1989, Theorem 5.9.4]. Let u ∈ D. Then bu has metacyclic defect group CD(u).
Assume first that u ∈ CD(I (B)). Since I (B) acts freely on 〈x〉, we see that u ∈ 〈y〉.
As in the proof of Proposition 2.1 (for u = y), we get e(bu) = e(B). If CD(u)
is nonabelian, Proposition 2.1 implies l(bu) ≥ e(B). Now suppose that CD(u) is
abelian. Since y ∈ CD(u), it follows that CD(u) = CD(y) = 〈x pm−l

〉 × 〈y〉. Thus,
by Theorem 1 in [Watanabe 1991] we have l(bu)= l(by)= e(B).

Now assume that u is not F-conjugate to an element of CD(I (B)) = 〈y〉. We
are going to show that e(bu) = l(bu) = 1 by using Lemma 2.2. For this let
γ ∈ (NG(D, bD) ∩ CG(u)) \ CD(u)CG(CD(u)) by way of contradiction. Since
D CG(D) ∩ CG(u) = CG(D)CD(u) ⊆ CD(u)CG(CD(u)), γ is not a p-element.
Hence, after replacing γ by a suitable power if necessary, we may assume that
γ is a nontrivial p′-element modulo CG(D). By the Schur–Zassenhaus Theorem
(in our special situation one could use more elementary theorems) applied to
D/Z(D)EAutF(D), γ is D-conjugate to a nontrivial power of α (modulo CG(D)).
But then u is D-conjugate to an element of 〈y〉. Contradiction. Hence, we have
NG(D, bD)∩CG(u)⊆ CD(u)CG(CD(u)) and e(bu)= l(bu)= 1 by Lemma 2.2.

It remains to determine a set R of representatives for the F-conjugacy classes
of D; see Lemma 2.4 in [Sambale 2011a]. Since the powers of y are pairwise
nonconjugate in F, we get pn subsections (u, bu) such that l(bu)≥ e(B) (including
the trivial subsection).

By Theorem 2.3(2)(iii) in [Gao 2011] we have |D′|= pm−l and |Z(D)|= pn−m+2l .
Hence, Remark 2.4 in [Héthelyi and Külshammer 2011] implies that D has pre-
cisely pn−m+2l−1(pm−l+1

+ pm−l
− 1) conjugacy classes. Let C be one of these

classes that do not intersect 〈y〉. Assume αi (C) = C for some i ∈ Z such that
αi
6= 1. Then there are elements u ∈ C and w ∈ D such that αi (u) = wuw−1.

Hence γ := w−1αi
∈ NG(D, bD)∩CG(u). Since γ is not a p-element, we get a

contradiction as above. This shows that no nontrivial power of α can fix C as a set.
Thus, all these conjugacy classes split in

pm−l+1
+ pm−l

− pm−2l+1
− 1

e(B)
pn−m+2l−1

orbits of length e(B) under the action of I (B). For every element u in one of these
classes we have l(bu)= 1 as above. This gives

k(B)=
∑
u∈R

l(bu)≥ e(B)pn
+

pl
+ pl−1

− p2l−m−1
− 1

e(B)
pn. �
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The results for blocks with maximal defect in [Gao 2012] show that the bound
in Theorem 2.3 is sharp (after evaluating the geometric series [ibid., Theorem 1.1]).

Theorem 2.4. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group D for an odd prime p. Then

k0(B)≤
(

pl
− 1

e(B)
+ e(B)

)
pn
≤ pn+l

= |D : D′|,

∞∑
i=0

p2i ki (B)≤
(

pl
− 1

e(B)
+ e(B)

)
pn+m−l

≤ pn+m
= |D|,

ki (B)= 0 for i >min
{

2(m− l), m+n−1
2

}
.

In particular k0(B) < k(B); that is, Brauer’s height zero conjecture holds for B.

Proof. We consider the subsection (y, by). We have already seen that l(by)= e(B)
and CD(y)/〈y〉 is cyclic of order pl . Hence, Proposition 2.5(i) in [Héthelyi et al.
2012] implies the first inequality. For the second we consider u := x pm−l

∈ Z(D).
Since u is not D-conjugate to a power of y, the proof of Theorem 2.3 gives l(bu)= 1.
Moreover, |AutF(〈u〉)|= e(B). Thus, Theorem 4.10 in the same reference shows the
second claim. Since k0(B)>0, it follows at once that ki (B)=0 for i>(n+m−1)/2.
On the other hand Corollary V.9.10 in [Feit 1982] implies ki (B)= 0 for i > 2(m−l).

Now we discuss the claim k0(B) < k(B). By Theorem 2.3 it suffices to show(
pl
− 1

e(B)
+ e(B)

)
pn <

(
pl
+ pl−1

− p2l−m−1
− 1

e(B)
+ e(B)

)
pn.

This reduces to l < m, one of our hypotheses. �

Again for blocks with maximal defect, the bound on k0(B) in Theorem 2.4 is
sharp; see [Gao 2012]. On the other hand the bound on the height of the irreducible
characters is probably not sharp in general.

Corollary 2.5. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group for an odd prime p. Then

k(B)≤
(

pl
− 1

e(B)
+ e(B)

)
(pn+m−l−2

+ pn
− pn−2).

Proof. In view of Theorem 2.4, the number k(B) is maximal if k0(B) is maximal
and k1(B)= k(B)− k0(B). Then

k1(B)≤
(

pl
− 1

e(B)
+ e(B)

)
(pn+m−l−2

− pn−2)

and the result follows. �
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Apart from a special case covered in [Schulz 1980], it seems that there are no
results about B in the literature for p-solvable groups. We take the opportunity to
give such a result, which also holds in a more general situation.

Theorem 2.6. Let B be a controlled block of a p-solvable group over an alge-
braically closed field F of characteristic p. If I (B) is cyclic, then B is Morita
equivalent to the group algebra F[D o I (B)] where D is the defect group of B. In
particular k(B)= k(D o I (B)) and l(B)= e(B).

Proof. Let P E D, H and H as in Theorem A in [Külshammer 1981]. As before
let F be the fusion system of B. Then parts (iii) and (v) of that theorem imply that
P is F-radical. Moreover, the Hall–Higman lemma gives

CD(P)Op′(H)/Op′(H)⊆ CH (Op(H))⊆ Op(H)= P Op′(H)/Op′(H).

Since P is normal in H , we have CD(P) ⊆ P . In particular P is also F-centric.
Now let g ∈ NG(P, bP). Since B is controlled, there exists a h ∈ NG(D, bD) such
that h−1g ∈ CG(P). Hence, g ∈ NG(D, bD)CG(P) and

D CG(P)/P CG(P)ENG(P, bP)/P CG(P).

Since P is F-radical, it follows that P CG(P)= D CG(P). Now CD(P)= Z(P)
implies P = D. Hence, H ∼= D o I (B). Observe at this point that I (B) can be
regarded as a subgroup of Aut(D) by the Schur–Zassenhaus Theorem. Moreover,
this subgroup is unique up to conjugation in Aut(D). Hence, the isomorphism
type of D o I (B) is uniquely determined. Since I (B) is cyclic, the 2-cocycle γ
appearing in [ibid.] is trivial. Thus, the result follows from Theorem A(iv). �

Let us consider the opposite situation where G is quasisimple. Then the main
theorem of [An 2011] tells us that B cannot have nonabelian metacyclic defect
groups. Thus, in order to settle the general case it would be sufficient to reduce the
situation to quasisimple groups.

For the convenience of the reader we collect the results about metacyclic de-
fect groups.

Theorem 2.7. Let B be a block of a finite group with metacyclic defect group. Then
Brauer’s k(B)-conjecture, Brauer’s height zero conjecture and Olsson’s conjecture
are satisfied for B.

In the next sections we make restrictions on the parameters p, m, n and l in order
to prove stronger results.

3. The group M pm+1

Let n = 1. Then m = l + 1 and D is the unique nonabelian group of order pm+1

with exponent pm . We denote this group by Mpm+1 (compare with [Holloway et al.
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2010]). It follows from Theorem 2.4 that ki (B)= 0 for i > 2. We will see that the
same holds for i = 2.

Theorem 3.1. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then ki (B)= 0 for i ≥ 2. In particular the following
conjectures are satisfied for B:

• Eaton’s conjecture [2003],

• Eaton–Moretó conjecture [2011],

• Robinson’s conjecture [1996],

• Malle–Navarro conjecture [2006].

Proof. Assume k2(B) > 0. We are going to show that the following inequality from
Theorem 2.4 is not satisfied:

(3-1) k0(B)+ p2k1(B)+ p4k2(B)≤
(

pm−1
− 1

e(B)
+ e(B)

)
p2.

In order to do so, we may assume k2(B)= 1. Moreover, taking Theorem 2.3 into
account, we assume

k0(B)=
(

pm−1
− 1

e(B)
+ e(B)

)
p, k1(B)=

pm−1
− pm−2

e(B)
− 1.

Now (3-1) gives the contradiction

p4
≤ (e(B)+ 1)p2

−
p2
− p

e(B)
− e(B)p ≤ p3.

Hence, k2(B)= 0. In particular Eaton’s conjecture is in fact equivalent to Brauer’s
k(B)-conjecture and Olsson’s conjecture. Also the Eaton–Moretó conjecture is
trivially satisfied. Robinson’s conjecture, stated in the introduction of [Robinson
1996], reads: If D is nonabelian, then ph(χ) < |D : Z(D)| for all χ ∈ Irr(B). This is
true in our case. It remains to verify the Malle–Navarro conjecture. For this, observe

k(B)
l(B)

≤

(
pm−1

− 1
e(B)2

+ 1
)
(p+ 1− p−1)≤ pm

+ pm−1
− pm−2

= k(D)

by Corollary 2.5 and Remark 2.4 in [Héthelyi and Külshammer 2011]. Now we
establish a lower bound for k0(B). From Theorem 2.4 we get

k1(B)≤
pm−1

− 1
e(B)

+ e(B)− 1.

This gives

(3-2) k0(B)= k(B)− k1(B)≥
pm
− pm−2

− p+ 1
e(B)

+ e(B)(p− 1)+ 1.
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The other inequality of the Malle–Navarro conjecture reads

k(B)≤ k0(B)k(D′)= k0(B)p.

After a calculation using (3-2) and Corollary 2.5, this boils down to

pm
+ 2pm−1

+ p2
≤ pm+1

+ 2p+ 1,

which is obviously true. �

The argument in the proof of Theorem 3.1 can also be used to improve the
general bound for the heights in Theorem 2.4 at least in some cases. However, it
does not suffice to prove ki (B)= 0 for i > m− l (which is conjectured). The next
theorem also appears in [Gao and Zeng 2011].

Theorem 3.2. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then

k(B)− l(B)=
pm
+ pm−1

− pm−2
− p

e(B)
+ e(B)(p− 1).

Proof. By the proof of Theorem 2.3, it suffices to show l(bu)= e(B) for 1 6= u ∈ 〈y〉.
Since n = 1, we have CD(u) = Z(D)〈y〉 = 〈x p

〉 × 〈y〉. Thus, by Theorem 1 in
[Watanabe 1991] we have l(bu)= e(B). �

This result leads to the distribution of the irreducible characters into p-conjugate
and p-rational characters. We need this later for the study of decomposition numbers.
We denote the Galois group of Q(ζ|G|)|Q(ζ|G|p′ ) by G. Then restriction gives an
isomorphism G∼=Gal(Q(ζ|G|p)|Q). In particular since p is odd, G is cyclic of order
|G|p(p− 1)/p. We often identify both groups.

Proposition 3.3. Let B be a block of a finite group with defect group Mpm+1 where
p is an odd prime and m ≥ 2. Then the ordinary irreducible characters of B split
into orbits of p-conjugate characters of the following lengths:

• two orbits of length pm−2(p− 1)/e(B),

• one orbit of length pi (p− 1)/e(B) for every i = 0, . . . ,m− 3,

• (p− 1)/e(B)+ e(B) orbits of length p− 1,

• (p− 1)/e(B) orbits of length pi (p− 1) for every i = 1, . . . ,m− 2,

• l(B) (≥ e(B)) p-rational characters.

Proof. By Brauer’s permutation lemma (Lemma IV.6.10 in [Feit 1982]) it suffices
to reveal the orbits of G on the columns of the generalized decomposition ma-
trix. The ordinary decomposition numbers are all integral, so the action on these
columns is trivial. This gives l(B) p-rational characters. Now we consider a set of
representatives for the B-subsections as in Theorem 2.3.
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There are (pm−1
− 1)/e(B) nontrivial major subsections (z, bz). All of them

satisfy l(bz) = 1 and AutF(〈z〉) = I (B). So these columns form m − 1 orbits of
lengths pm−2(p − 1)/e(B), pm−3(p − 1)/e(B), . . . , (p − 1)/e(B), respectively.
Now for u ∈ 〈x〉\Z(D) we have l(bu)= 1 and AutF(〈u〉)= 〈y〉× I (B). This gives
another orbit of length pm−2(p−1)/e(B). Next let 1 6= u ∈ 〈y〉. Then l(bu)= e(B)
and AutF(〈u〉)= 1. Hence, we get e(B) orbits of length p− 1 each.

Finally let u := x i y j
∈ D \ 〈x〉 such that u is not conjugate to an element of 〈y〉.

As in the proof of Theorem 2.3, pl - i holds. Since |D′| = p, we have (x i y j )p
= x i p

by Hilfssatz III.1.3 in [Huppert 1967]. In particular D′ ⊆ 〈u〉 and ND(〈u〉) = D.
Moreover, |D : Z(D)| = p2 and |AutD(〈u〉)| = p. Since I (B) acts trivially on
D/〈x〉 ∼= 〈y〉, we see that |AutF(〈u〉)| = p. The calculation above shows that u has
order pm−log i . We have exactly pm−log i−1(p−1)2 such elements of order pm−log i .
These split in pm−log i−2(p − 1)2/e(B) conjugacy classes. In particular we get
(p−1)/e(B) orbits of length pm−i−2(p−1) each for every i = 0, . . . , l−1=m−2.

�

It should be emphasized that the proof of Proposition 3.3 heavily relies on the
fact AutF(〈u〉) = 1 whenever l(bu) > 1. Since otherwise it would be not clear,
whether some Brauer characters of bu are conjugate under NG(〈u〉, bu). In other
words, generally the knowledge of k(B)− l(B) does not provide the distribution
into p-conjugate and p-rational characters.

For p = 3 the inequalities Theorem 2.3 and Corollary 2.5 almost coincide. This
allows us to prove the Alperin–McKay conjecture.

Theorem 3.4. Let B be a nonnilpotent block of a finite group with defect group
M3m+1 where m ≥ 2. Then

e(B)= 2, k0(B)=
3m
+9
2

,

k1(B) ∈
{
3m−2, 3m−2

+ 1
}
, ki (B)= 0 for i ≥ 2,

k(B) ∈
{11·3m−2

+9
2

,
11·3m−2

+11
2

}
, l(B) ∈ {2, 3}.

In particular the Alperin–McKay conjecture holds for B.

Proof. Since B is nonnilpotent, we must have e(B) = 2. From Theorem 2.3
we get k(B) ≥ (11 · 3m−2

+ 9)/2. On the other hand Corollary 2.5 implies
k(B) ≤ (11 · 3m−2

+ 11)/2. Hence, l(B) ∈ {2, 3} by Theorem 3.2. Moreover,
we have (3m

+7)/2≤ k0(B)≤ (3m
+9)/2 by Theorem 2.4 (otherwise k1(B) would

be too large). Now Corollary 1.6 in [Landrock 1981] shows that k0(B)= (3m
+9)/2.

Since we get the same number for the Brauer correspondent of B in NG(D), the
Alperin–McKay conjecture follows. �
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The next aim is to show that even Alperin’s weight conjecture holds in the
situation of Theorem 3.4 provided m ≤ 3. Moreover, we verify the ordinary weight
conjecture [Robinson 2004] in this case using the next proposition.

Proposition 3.5. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then the ordinary weight conjecture for B is equivalent
to the equalities

k0(B)=
(

pm−1
− 1

e(B)
+ e(B)

)
p, k1(B)=

p− 1
e(B)

pm−2.

Proof. We use the version in Conjecture 6.5 in [Kessar 2007]. Let Q be an
F-centric and F-radical subgroup of D. Since |D : Z(D)| = p2 and CD(Q)≤ Q,
we have |D : Q| ≤ p. Assume |D : Q| = p. Then D/Q ≤ AutF(Q). Since F

is controlled, all F-automorphisms on Q come from automorphisms on D. In
particular D/QEAutF(Q). But then Q cannot be F-radical. Hence, we have seen
that D is the only F-centric and F-radical subgroup of D. It follows that the set
ND in [Kessar 2007] only consists of the trivial chain. Since I (B) is cyclic, all
2-cocycles appearing in the same paper are trivial. Hence, we see that

w(D, d)=
∑

χ∈Irrd (D)/I (B)

|I (B)∩ I (χ)|

where Irrd(D) is the set of irreducible characters of D of defect d ≥ 0 and

I (B)∩ I (χ) := {γ ∈ I (B) : γχ = χ}.

Now the ordinary weight conjecture predicts that kd(B)= w(D, d) where kd(B)
is the number of irreducible characters of B of defect d ≥ 0. For d < m both
numbers vanish. Now consider d ∈ {m,m+1}. Let us look at a part of the character
table of D:

D x x p y

χi j ζ i
pm−1 ζ i

pm−2 ζ
j
p

ψk 0 pζ k
pm−1 0

Here i, k ∈ {0, . . . , pm−1
− 1}, j ∈ {0, . . . , p − 1} and gcd(k, p) = 1. The

characters of degree p are induced from Irr(〈x〉). It can be seen that the linear
characters of D split into (pm

−p)/e(B) orbits of length e(B) and p stable characters
under the action of I (B). This gives

w(D,m+ 1)=
(

pm−1
− 1

e(B)
+ e(B)

)
p.



492 BENJAMIN SAMBALE

Similarly, the irreducible characters of D of degree p split into pm−2(p− 1)/e(B)
orbits of length e(B). Hence,

w(D,m)=
p− 1
e(B)

pm−2.

The claim follows. �

We introduce another lemma, which will be needed at several points.

Lemma 3.6. Let q be the integral quadratic form corresponding to the Dynkin
diagram Ar , and let a ∈ Zr .

(i) If q(a)= 1, then a =±(0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0).

(ii) If q(a)= 2, then one of the following holds:

• a =±(0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0),
• a =±(0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1, 0, . . . , 0),
• a =±(0, . . . , 0, 1, 1, . . . , 1, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . , 0).

Here s, . . . , s includes the possibility of no s ∈ Z at all.

Proof. Without loss of generality, r ≥ 2. Let a = (a1, . . . , ar ). Then

(3-3) q(a)=
r∑

i=1

a2
i −

r−1∑
i=1

ai ai+1 =
1
2

(
a2

1 +

r−1∑
i=1

(ai − ai+1)
2
+ a2

r

)
.

Assume first that q(a) = 1 and ai 6= 0 for some i ∈ {1, . . . , r}. After replacing
a with −a if necessary, we have ai > 0. By the equation above we see that the
difference between two adjacent entries of a is at most 1. Going from i to the left
and to the right, we see that a has the stated form.

Now assume q(a) = 2. If one of {a1, ar } is ±2, so must be the other, since
each two adjacent entries of a must coincide. But this contradicts (3-3). Hence,
a1, ar ∈ {±1, 0}. Now let |ai | ≥ 3 for some i ∈ {2, . . . , r − 1}. Going from i to the
left we get at least two nonvanishing summands in (3-3). The same holds for the
entries on the right side of i . Thus, we end up with a configuration where a1 6= 0.
This is again a contradiction. It follows that ai ∈ {±1,±2, 0} for i = 2, . . . , r − 1.
In particular we have only finitely many solutions for a. If no ±2 is involved in
a, it is easy to see that a must be one of the given vectors in the statement of the
lemma. Thus, let us consider ai = 2 for some i ∈ {2, . . . , r − 1} (after changing
signs if necessary). Then ai−1, ai+1 ∈ {1, 2}, since otherwise (ai − ai−1)

2
≥ 4 or

(ai+1−ai )
2
≥ 4. Now we can repeat this argument with ai−1 and ai+1 until we get

the desired form for a. �
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Theorem 3.7. Let B be a nonnilpotent block of a finite group with defect group
M3m+1 where m ∈ {2, 3}. Then

k0(B)=
3m
+9
2

, k1(B)= 3m−2, k(B)= 11·3m−2
+9

2
, l(B)= e(B)= 2.

In particular Alperin’s weight conjecture and Robinson’s ordinary weight conjecture
[Robinson 2004] are satisfied for B.

Proof. Since B is nonnilpotent, we must have e(B)= 2. The case m= 2 is very easy
and will be handled in the next section together with some more information. Hence,
we assume m = 3 (that is, |D| = 81) for the rest of the proof. By Theorem 3.4
we already know k0(B) = 18. By way of contradiction we assume k(B) = 22,
k1(B)= 4 and l(B)= 3.

We consider the vector d z for z := x3
∈ Z(D). As in [Héthelyi et al. 2012] (we

will use this paper a lot) we can write d z
=
∑5

i=0 aiζ
i
9 for integral vectors ai . We

will show that (a0, ai )= 0 for i ≥ 1. By Lemma 4.7 [ibid.] this holds unless i = 3.
But in this case we have (a3, a3)= 0 and a3 = 0 by Proposition 4.4 [ibid.]. If we
follow the proof of Theorem 4.10 [ibid.] closely, it turns out that the vectors ai are
spanned by a0, a1 and a4. So we can also write

d z
= a0+ a1τ + a4σ

where τ and σ are certain linear combinations of powers of ζ9. Of course, one
could give more precise information here, but this is not necessary in this proof.
By Lemma 4.7 [ibid.] we have (a0, a0)= 27.

Let q be the quadratic form corresponding to the Dynkin diagram of type A3.
We set a(χ) := (a0(χ), a1(χ), a4(χ)) for χ ∈ Irr(B). Since the subsection (z, bz)

gives equality in Theorem 4.10 [ibid.], we have

k0(B)+ 9k1(B)=
∑

χ∈Irr(B)

q(a(χ))= 54.

This implies q(a(χ)) = 32h(χ) for χ ∈ Irr(B). Assume that there is a character
χ ∈ Irr(B) such that a0(χ)ai (χ) > 0 for some i ∈ {1, 4}. Since (a0, ai )= 0, there
must be another character χ ′ ∈ Irr(B) such that a0(χ

′)ai (χ
′) < 0. However, then

q(a(χ ′)) > 32h(χ) by Lemma 3.6. Thus, we have shown that a0(χ)ai (χ) = 0 for
all χ ∈ Irr(B) and i ∈ {1, 4}. Moreover, if a0(χ) 6= 0, then a0(χ)=±3h(χ) again
by Lemma 3.6.

In the next step we determine the number β of integral numbers d z(χ) for
characters χ of height 1. Since (a0, a0) = 27, we have β < 4. Let ψ ∈ Irr(B)
of height 1 such that d z(ψ) /∈ Z. Then we can form the orbit of d z(ψ) under the
Galois group H of Q(ζ9)|(Q(ζ9)∩R). The length of this orbit must be |H| = 3. In
particular β = 1.
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This implies that d z(χ) = a0(χ) = ±1 for all 18 characters χ ∈ Irr(B) of
height 0. In the following we derive a contradiction using the orthogonality relations
of decomposition numbers. In order to do so, we repeat the argument with the
subsection (x, bx). Again we get equality in Theorem 4.10, but this time for k0(B)
instead of k0(B)+ 9k1(B). Hence, dx(χ)= 0 for characters χ ∈ Irr(B) of height
1. Again we can write dx

=
∑17

i=0 aiζ
i
27 where ai are integral vectors. Lemma 4.7

[ibid.] implies (a0, a0) = 9. Using Lemma 3.6 we also have a0(χ) ∈ {0,±1} in
this case. This gives the final contradiction 0= (d z, dx)= (a0, a0)≡ 1 (mod 2).

Hence, we have proved that k(B) = 21, k1(B) = 3 and l(B) = 2. Since B is
controlled, Alperin’s weight conjecture asserts that l(B) = l(b) where b is the
Brauer correspondent of B in NG(D). Since e(b) = e(B), the claim follows at
once. the ordinary weight conjecture follows from Proposition 3.5. This completes
the proof. �

4. The group p1+2
−

In this section we restrict further to the case n = 1 and m = 2, that is,

D = 〈x, y | x p2
= y p

= 1, yxy−1
= x1+p

〉

is extraspecial of order p3 and exponent p2. We denote this group by p1+2
− (compare

with [Hendren 2005]). In particular we can use the results from the last section.
One advantage of this restriction is that the bounds are slightly sharper than in the
general case.

Inequalities. Our first theorem says that the block invariants fall into an interval
of length e(B).

Theorem 4.1. Let B be a block of a finite group with defect group p1+2
− for an odd

prime p. Then

p2
− 1

e(B)
+ e(B)p ≤ k(B)≤

p2
− 1

e(B)
+ e(B)p+ e(B)− 1,(

p− 1
e(B)

+ e(B)
)

p− e(B)+ 1≤ k0(B)≤
(

p− 1
e(B)

+ e(B)
)

p,

p− 1
e(B)

≤ k1(B)≤
p− 1
e(B)

+ e(B)− 1,

ki (B)= 0 for i ≥ 2,

e(B)≤ l(B)≤ 2e(B)− 1,

k(B)− l(B)=
p2
− 1

e(B)
+ (p− 1)e(B).
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Proof. The formula for k(B)− l(B) comes from Theorem 3.2. The lower bounds
for l(B) and k(B) follow from Proposition 2.1 and Theorem 2.3. The upper bound
for k0(B) comes from Theorem 2.4. The same theorem gives also

k1(B)≤
p− 1
e(B)

+ e(B)− 1.

Adding this to the upper bound for k0(B) results in the stated upper bound for k(B).
Now the upper bound for l(B) follows from k(B)− l(B). A lower bound for k0(B)
is given by

k0(B)= k(B)− k1(B)

≥
p2
− 1

e(B)
+ e(B)p−

p− 1
e(B)

− e(B)+ 1=
(

p− 1
e(B)

+ e(B)
)

p− e(B)+ 1

Moreover,

k1(B)= k(B)− k0(B)≥
p2
− 1

e(B)
+ e(B)p−

(
p− 1
e(B)

+ e(B)
)

p =
p− 1
e(B)

. �

Since we already know that the upper bound for k0(B) and the lower bound for
k(B) are sharp (for blocks with maximal defect), it follows at once that the lower
bound for k1(B) in Theorem 4.1 is also sharp (compare with Proposition 3.5).

If e(B) is as large as possible, we can prove slightly more.

Proposition 4.2. Let B be a block of a finite group with defect group p1+2
− for an

odd prime p. If e(B) = p − 1, then k(B) ≤ p2
+ p − 2, l(B) ≤ 2e(B)− 2 and

k0(B) 6= p2
− r for r ∈ {1, 2, 4, 5, 7, 10, 13}.

Proof. By way of contradiction, assume k(B)= p2
+ p− 1. By Theorem 4.1 we

have k0(B)= p2 and k1(B)= p− 1. Set z := x p
∈ Z(D). Then we have l(bz)= 1.

Since I (B) acts regularly on Z(D)\{1}, the vector d z is integral. By Lemma 4.1 in
[Héthelyi et al. 2012] we have 0 6= d z

χϕz
≡ 0 (mod p) for characters χ of height 1.

Hence, d z must consist of p2 entries ±1 and p−1 entries ±p. Similarly l(bx)= 1.
Moreover, all powers x i for (i, p) = 1 are conjugate under F. Hence, also the
vector dx is integral. Thus, the only nonvanishing entries of dx are ±1 for the
characters of height 0, because (dx , dx) = p2 (again using [ibid., Lemma 4.1]).
Now the orthogonality relations imply the contradiction 0= (d z, dx)≡ 1 (mod 2),
since p is odd. Thus, we must have k(B)≤ p2

+ p− 2 and l(B)≤ 2e(B)− 2.
We have seen that every character of height 0 corresponds to a nonvanishing

entry in dx . If we have a nonvanishing entry for a character of height 1 on the other
hand, then Theorem V.9.4 in [Feit 1982] shows that this entry is ±p. However, this
contradicts the orthogonality relation (d z, dx)= 0. Hence, the nonvanishing entries
of dx are in one-to-one correspondence to the irreducible characters of height 0.
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Thus, we see that p2 is the sum of k0(B) nontrivial integral squares. This gives the
last claim. �

Since in case e(B)= 2 the inequalities are very strong, it seems reasonable to
obtain more precise information here. In the last section we proved for arbitrary m
that the Alperin–McKay conjecture holds provided p = 3. As a complementary
result we now show the same for all p, but with the restrictions m = 2 and e(B)= 2.
We even obtain a refinement of the Alperin–McKay conjecture, which is called the
Galois–Alperin–McKay conjecture; see Conjecture D in [Isaacs and Navarro 2002].

Theorem 4.3. Let B be a block of a finite group with defect group p1+2
− for an odd

prime p and e(B)= 2. Then k0(B)= p(p+3)/2. In particular the Galois–Alperin–
McKay conjecture holds for B.

Proof. By Theorem 3.4 we may assume p > 3. For some subtle reasons we
also have to distinguish between p = 7 and p 6= 7. Let us assume first that
p 6= 7. By Theorem 4.1 we have k0(B) ∈ {p(p+ 3)/2− 1, p(p+ 3)/2}. We write
dx
=
∑p(p−1)−1

i=0 aiζ
i
p2 with integral vectors ai . As in Proposition 4.9 of [Héthelyi

et al. 2012] we see that ai = 0 if (i, p)= 1. Moreover, the arguments in the proof
of Proposition 4.8 of the same paper tell us that a p = 0 and ai p = a(p−i)p for
i = 2, . . . , (p− 1)/2. Now let τi := ζ

i
p + ζ

−i
p for i = 2, . . . , (p− 1)/2. Then we

can write

dx
= a0+

(p−1)/2∑
i=2

aiτi

for integral vectors ai . Here observe that dx is real, since (x, bx) and (x−1, bx−1) are
conjugate under I (B). By [ibid., Lemma 4.7] we have (a0, a0)=3p, (ai , a j )= p for
i 6= j and (ai , ai )= 2p for i ≥ 2. Now let a(χ)= (ai (χ) : i = 0, 2, 3, . . . , (p−1)/2)
for χ ∈ Irr(B). Moreover, let q be the integral quadratic form corresponding to the
Dynkin diagram of type A(p−1)/2. Then as in [ibid., Proposition 4.2], we get∑

χ∈Irr(B)

q(a(χ))= p
(

3+ 2
p− 3

2
−

p− 3
2

)
= p

p+ 3
2

.

Let χ ∈ Irr(B) be a character of height 1. Suppose that a(χ) 6= 0. Then we have
k0(B)= p(p+3)/2−1 and χ is the only character of height 1 such that a(χ) 6= 0.
In particular χ is p-rational and a(χ)= a0(χ) ∈ Z. Now Theorem V.9.4 in [Feit
1982] implies p | a0(χ). Since (a0, a0)= 3p, this gives p = 3, which contradicts
our hypothesis. Hence, we have shown that a(χ)= 0 for all characters χ ∈ Irr(B)
of height 1. In particular ∑

χ∈Irr(B)
h(χ)=0

q(a(χ))= p
p+ 3

2
.



BRAUER’S HEIGHT ZERO CONJECTURE FOR METACYCLIC DEFECT GROUPS 497

By way of contradiction suppose that k0(B) = p(p+ 3)/2− 1. Then there is
exactly one character χ ∈ Irr(B) such that q(a(χ)) = 2 (this already settles the
case p = 5). Now the idea is to show that there is a p-conjugate character ψ
also satisfying q(a(ψ)) > 1. In order to do so, we discuss the different cases in
Lemma 3.6. Here we can of course choose the sign of a(χ).

First assume

a(χ)= (0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1, 0, . . . , 0).

Choose an index k corresponding to one of the −1 entries in a(χ). Let k ′ ∈
{2, . . . , (p − 1)/2} such that kk ′ ≡ ±1 (mod p), and let γk′ ∈ G be the Galois
automorphism which sends ζp to ζ k′

p . Then

γk′(τk)=−1−
(p−1)/2∑

i=2

τi .

Apart from this, γk′ acts as a permutation on the remaining indices

{2, . . . , (p− 1)/2} \ {k}.

This shows that a(γk′(χ)) contains an entry 2. In particular γk′(χ) 6= χ . Moreover,
Lemma 3.6 gives q(a(γk′(χ))) > 1.

Next suppose that

a(χ)= (0, . . . , 0, 1, 1, . . . , 1, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . , 0).

Here we choose k corresponding to an entry 2 in a(χ). Then the same argument as
above implies that a(γk′(χ)) has a −2 on position k1. Contradiction.

Now let a(χ)= (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0) (ob-
serve the leading 0). We choose the index k corresponding to a 1 in a(χ). Let
γk′ be the automorphism as above. Observe that χ is not p-rational. Thus,
Proposition 3.3 implies γk′(χ) 6= χ . In particular q(a(γk′(χ))) = 1. Hence, we
must have a(γk′(χ)) = (−1,−1, . . . ,−1, 0, 0, . . . , 0) where the number of −1
entries is uniquely determined by a(χ). In particular a(γk′(χ)) is independent
of the choice of k. Now choose another index k1 corresponding to an entry 1
in a(χ) (always exists). Then we see that a(χ) and thus χ is fixed by γ−1

k′ γk′1 .
Proposition 3.3 shows that γ−1

k′ γk′1 must be (an extension of) the complex con-
jugation. This means k ′ ≡ −k ′1 (mod p) and k ≡ −k1 (mod p). However this
contradicts 2≤ k, k1 ≤ (p− 1)/2.

Finally let a(χ)= (1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0). Here a quite
similar argument shows that a(χ) only contains one entry 0, say on position k.
Now we can use the same trick where k1 ≥ 2 corresponds to an entry 1. Here
a(γk′1(χ))= (0, 0, . . . , 0,−1,−1, 0, . . . , 0). Let k2 ∈ {2, . . . , (p− 1)/2} such that
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k2 ≡±kk ′1 (mod p). Then the −1 entries of a(γk′1(χ)) lie on positions k ′1 and k2.
Since these entries lie next to each other, we get k± 1≡±k1 (mod p) where the
signs are independent. However, this shows that k and k1 are adjacent. Hence, we
proved that a(χ)= (1, 0, 1) and p = 7 ((1, 1, 0, 1) is not possible, since 9 is not a
prime). However, this case was excluded. Thus, k0(B)= p(p+ 3)/2.

It remains to deal with the case p = 7. It can be seen that there is in fact a
permissible configuration for k0(B)= 34:

dx
= (1, . . . , 1︸ ︷︷ ︸

13 times

, 1+τ2+τ3, . . . , 1+τ2+τ3︸ ︷︷ ︸
6 times

, 1+τ2, 1+τ3, τ2+τ3,

τ2, . . . , τ2︸ ︷︷ ︸
6 times

, τ3, . . . , τ3︸ ︷︷ ︸
6 times

, 0, . . . , 0).

Hence, we consider d z for z := x7. Suppose by way of contradiction that k0(B)= 34.
Then k1(B)= 4 and k(B)= 38. By Proposition 3.3 we have exactly two 7-rational
irreducible characters in Irr(B). Moreover, the orbit lengths of the 7-conjugate
characters are all divisible by 3. Hence, we have precisely one 7-rational char-
acter of height 1 and one of height 0. In the same way as above we can write
d z
= a0 + a2τ2 + a3τ3; see Proposition 4.8 in [Héthelyi et al. 2012]. Then

(a0, a0) = 3 · 72, (ai , a j ) = 72 for i 6= j and (ai , ai ) = 2 · 72 for i = 2, 3. For
a character χ ∈ Irr(B) of height 1 we have 7 | ai (χ) for i = 0, 2, 3 by [ibid.,
Lemma 4.1]. Since ∑

χ∈Irr(B)

q(a(χ))= 5p2,

it follows that q(a(χ))= 72 for every character χ ∈ Irr(B) of height 1. It is easy to
see that a(χ) /∈ {±7(0, 1, 1),±7(1, 1, 0)}. Hence, the four rows a(χ) for characters
χ of height 1 have to following form up to signs and permutations:

7


1 · ·
· 1 ·
· · 1
1 1 1

 .
Thus, for a character χi ∈ Irr(B) of height 0 (i = 1, . . . , 34) we have

d z(χi )= a0(χi ) 6= 0 and
34∑

i=1

a0(χi )
2
= 72.

Up to signs and permutations we get (a0(χi ))= (4, 1, . . . , 1) (taking into account
that only χ1 can be 7-rational). So still no contradiction.
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Now consider d y
i j . The Cartan matrix of by is 7

(
4 3
3 4

)
up to basic sets; see [Dade

1966; Rouquier 1998]. We can write

d y
χϕ1
=

5∑
i=0

ãi (χ)ζ
i
7 and d y

χϕ2
=

5∑
i=0

b̃i (χ)ζ
i
7

for χ ∈ Irr(B). It follows that (̃a0, ã0) = (̃b0, b̃0) = 8 (this is basically the same
calculation as in Proposition 4.8 in [Héthelyi et al. 2012]). By Corollary 1.15
in [Murai 2000] we have ã0(χ1) 6= 0 or b̃0(χ1) 6= 0. Without loss of generality
assume ã0(χ1) 6= 0. Then ã0(χ1) = ±1, since (a0, ã0) = (d z, ã0) = 0. On the
other hand ã0(χ) = 0 for characters χ ∈ Irr(B) of height 1, because we have
equality in Theorem 2.4 in [Héthelyi et al. 2012]. However, this gives the following
contradiction:

0= (a0, ã0)=

34∑
i=1

a0(χi )̃a0(χi )≡

34∑
i=2

ã0(χi )≡

34∑
i=2

ã0(χi )
2
≡ 7 (mod 2).

Altogether we have proved that k0(B) = p(p + 3)/2 for all odd primes p.
In order to verify the Galois–Alperin–McKay conjecture we have to consider a
p-automorphism γ ∈ G. By Lemma IV.6.10 in [Feit 1982] it suffices to compute
the orbits of 〈γ 〉 on the columns of the generalized decomposition matrix. For an
element u ∈ D of order p, γ acts trivially on 〈u〉. If u has order p2, then γ acts as
D-conjugation on 〈u〉. This shows that γ acts in fact trivially on the columns of
the generalized decomposition matrix. In particular all characters of height 0 are
fixed by γ . Hence, the Galois–Alperin–McKay conjecture holds. �

The case p ≤ 11. We already know k0(B) if e(B)= 2. For small primes it is also
possible to obtain k(B).

Theorem 4.4. Let B be a block of a finite group with defect group p1+2
− for

3≤ p ≤ 11 and e(B)= 2. Then

k(B)=
p2
+ 4p− 1

2
, k0(B)=

p+ 3
2

p, k1(B)=
p− 1

2
, l(B)= 2.

The irreducible characters split into two orbits of (p−1)/2 p-conjugate characters,
(p + 3)/2 orbits of length p − 1, and two p-rational characters. For p ≥ 5 the
p-rational characters have height 0. In particular Alperin’s weight conjecture and
Robinson’s ordinary weight conjecture [Robinson 2004] are satisfied for B.

Proof. We have k0(B)= p(p+3)/2 by Theorem 4.3. For p= 3 the block invariants
and the distribution into 3-conjugate and 3-rational characters follow at once from
Theorem 4.1 and Proposition 4.2. So we may assume p > 3 for the first part
of the proof. Suppose k(B) = (p2

+ 4p + 1)/2 and k1(B) = (p + 1)/2. Then
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Irr(B) contains exactly three p-rational characters. Moreover, the orbit lengths of
the p-conjugate characters are all divisible by (p− 1)/2. Let z := x p. Then we
can write

d z
= a0+

(p−1)/2∑
i=2

aiτi

as in Theorem 4.3 where τi := ζ
i
p+ζ

−i
p for i = 2, . . . , (p−1)/2 (see Proposition 4.8

in [Héthelyi et al. 2012]). Then (a0, a0) = 3p2, (ai , a j ) = p2 for i 6= j and
(ai , ai )= 2p2 for i ≥ 2. For a character χ ∈ Irr(B) of height 1 we have p | ai (χ)

by [ibid., Lemma 4.1]. Since∑
χ∈Irr(B)

q(a(χ))=
p+ 3

2
p2,

we have q(a(χ))= p2 for every character χ ∈ Irr(B) of height 1. If all characters
of height 1 are p-rational, we have p = 5. But then (a0, a2)= 0. Hence, exactly
one character of height 1 is p-rational. Now choose a non-p-rational character
ψ ∈ Irr(B) of height 1. Assume a(ψ)= p(0, . . . , 0, 1, 1, 1, . . . , 1, 0, . . . , 0) with
at least two entries 1 in a row and at least one entry 0 (see Lemma 3.6).

If a0(ψ) = 0, then a(γ (ψ)) = p(−1,−1, . . . ,−1, 0, 0, . . . , 0) = a(γ ′(ψ))
for two different Galois automorphisms γ, γ ′ ∈ G (see proof of Theorem 4.3).
Moreover, γ−1γ ′ is not (an extension of) the complex conjugation. In particular
(γ−1γ ′)(ψ) 6= ψ . Since (a2, a2)= 2p2, γ−1γ ′ (up to complex conjugation) is the
only nontrivial automorphism fixing d z(ψ). So, (γ−1γ ′)2 is (an extension of) the
complex conjugation. This gives 4 | p− 1 and p = 5 again. But for 5 the whole
constellation is not possible, since a(ψ) is 2-dimensional in this case.

Finally assume a(ψ)= p(1, 1, 1, . . . , 1, 0, 0, . . . , 0). Then we can find again a
Galois automorphism γ (corresponding to an entry 0 in a(ψ)) such that a(γ (ψ))=
a(ψ). So we get the same contradiction in this case too.

Hence, we have seen that a(ψ) contains either one or (p−1)/2 entries±1. Thus,
the rows a(χ) for characters χ of height 1 have to following form up to signs and
permutations:

p


1 · · · · ·

· 1
. . .

...
...
. . .

. . . ·

· · · · · 1
1 1 · · · 1

 .

In particular, for all characters χi of height 0,

d z(χi )= a0(χi ) 6= 0 (i = 1, . . . , p(p+ 3)/2).
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Moreover,
p(p+3)/2∑

i=1

a0(χi )
2
= p2.

Subtracting p(p+ 3)/2 on both sides gives

(4-1)
∞∑

i=2

ri (i2
− 1)= p

p− 3
2

for some ri ≥ 0. Choose r ′i ∈ {0, 1, . . . , (p−3)/2} such that ri ≡ r ′i (mod (p−1)/2).
Since we have only two p-rational characters of height 0, the following inequality
is satisfied:

∑
∞

i=2 r ′i ≤ 2. Using this, it turns out that (4-1) has no solution unless
p > 11. Hence, k(B)= (p2

+ 4p− 1)/2.
The orbit lengths of p-conjugate characters follow from Proposition 3.3. If

there is a p-rational character of height 1, we must have p = 5. Then of course
both characters ψ1, ψ2 of height 1 must be 5-rational. For these characters we
have d z(ψi ) = a0(ψi ) = ±5 with the notation above. Now our aim is to show
that ψ1 −ψ2 or ψ1 +ψ2 vanishes on the 5-singular elements of G. This is true
for the elements in Z(D). Now let (u, bu) be a nonmajor B-subsection. Assume
first that u ∈ 〈y〉. Since l(bu) = 2, we have equality in Theorem 2.4 in [Héthelyi
et al. 2012]. This implies du

ψi ,ϕ j
= 0 for i, j ∈ {1, 2}. Next suppose u ∈ 〈x〉. Then

du(ψi ) ∈ Z. Hence, Theorem V.9.4 in [Feit 1982] implies 5 | du(ψi ). Since the
scalar product of the integral part of du is 15 (compare with proof of Theorem 4.3),
we get du(ψi ) = 0 for i = 1, 2 again. It remains to handle the case u /∈ 〈x〉 and
l(bu)= 1. Here Lemma 4.7 in [Héthelyi et al. 2012] shows that the scalar product
of the integral part of du is 10. So by the same argument as before du(ψi )= 0 for
i = 1, 2. Hence, we have shown that ψ1−ψ2 or ψ1+ψ2 vanishes on the 5-singular
elements of G. Now, one can check that under these circumstances the number 2 is
representable by the quadratic form of the Cartan matrix C of B. However, by (the
proof of) Proposition 2.1, the elementary divisors of C are 5 and 53. In particular
every entry of C is divisible by 5. So this cannot happen. Hence, we have shown
that the two irreducible characters of height 1 are 5-conjugate.

Now let 3≤ p ≤ 11 be arbitrary. Then the two conjectures follow as usual. �

If we have p = 13 in the situation of Theorem 4.4, then (4-1) has the solution
r2 = 19, r3 = 1 and ri = 0 for i ≥ 4. For larger primes we get even more solutions.
With the help of Theorem 3.7 and Theorem 4.4 it is possible to obtain k(B)− l(B)
in the following situations:

• p = 3, D as in (2-1) with n = l = 2 (in particular |D| ≤ 36),

• 3 ≤ p ≤ 11, D as in (2-1) with n = 2 and l = 1 (in particular |D| ≤ p5),
and e(B)= 2.
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However, there is no need to do so.
In case p= 3, Theorem 4.4 applies to all nonnilpotent blocks. Here we can show

even more.

Theorem 4.5. Let B be a nonnilpotent block of a finite group with defect group 31+2
− .

Then e(B)= l(B)= 2, k(B)= 10, k0(B)= 9 and k1(B)= 1. There are three pairs
of 3-conjugate irreducible characters (of height 0) and four 3-rational irreducible
characters. The Cartan matrix of B is given by 3

(
2 1
1 5

)
up to basic sets. Moreover,

the gluing problem [Linckelmann 2004] for B has a unique solution.

Proof. Since B is nonnilpotent, we get e(B) = 2. It remains to show the last
two claims.

It is possible to determine the Cartan matrix C of B by enumerating all de-
composition numbers with the help of a computer. However, we give a more
theoretical argument which does not rely on computer calculations. By (the proof
of) Proposition 2.1, C has elementary divisors 3 and 27. Hence, C̃ := 1

3C =
(

a b
b c

)
is an integral matrix with elementary divisors 1 and 9. By changing the basic set if
necessary, we may assume that C̃ is reduced as a binary quadratic form; see [Buell
1989]. This means 0≤ 2b ≤ a ≤ c. We derive

3
4a2
≤ ac− b2

= det C̃ = 9

and a ∈ {1, 2, 3}. This gives only the following two possibilities for C̃ :
(

2 1
1 5

)
,
(

1 0
0 9

)
.

It remains to exclude the second matrix. So assume by way of contradiction that this
matrix occurs for C̃ . Let d1 be the column of decomposition numbers corresponding
to the first irreducible Brauer character in B. Then d1 consists of three entries 1
and seven entries 0.

It can be seen easily that dx
= (1, . . . , 1, 0)T up to permutations and signs. Since

(d1, dx)= 0, we have d1(χ10)= 1 where χ10 is the unique irreducible character of
height 1.

Now consider y. The Cartan matrix of by is 3
(

2 1
1 2

)
; see [Dade 1966; Rouquier

1998]. We denote the two irreducible Brauer characters of by by ϕ1 and ϕ2 and
write d y

χϕi = ai (χ)+ bi (χ)ζ3 for i = 1, 2. Then we have

6= (ai , ai )+ (bi , bi )− (ai , bi ),

0= (ai , ai )+ 2(ai , bi )ζ3+ (bi , bi )ζ3

= (ai , ai )− (bi , bi )+ (2(ai , bi )− (bi , bi ))ζ3,

3= (a1, a2)+ (b1, b2)+ (b1, a2)ζ3+ (a1, b2)ζ3

= (a1, a2)+ (b1, b2)− (a1, b2)+ ((b1, a2)− (a1, b2))ζ3,

0= (a1, a2)+ ((a1, b2)+ (b1, a2))ζ3+ (b1, b2)ζ3

= (a1, a2)− (b1, b2)+ ((a1, b2)+ (b1, a2)− (b1, b2))ζ3.
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Thus, (ai , ai ) = (bi , bi ) = 4, (ai , bi ) = (a1, a2) = (b1, b2) = 2 and (a1, b2) =

(a2, b1) = 1 for i = 1, 2. It follows that the numbers d y
χϕi can be given in the

following form (up to signs and permutations):(
1 1 1+ ζ3 1+ ζ3 ζ3 ζ3 · · · ·

1 · 1+ ζ3 · ζ3 · 1+ ζ3 1 ζ3 ·

)T

.

But now we see that d1 cannot be orthogonal to both of these columns. This
contradiction gives C up to basic sets.

Finally we investigate the gluing problem for B. For this we use the notation
of [Park 2010]. Up to conjugation there are four F-centric subgroups Q1 :=

〈x3, y〉, Q2 := 〈x〉, Q3 := 〈xy〉 and D. This gives seven chains of F-centric
subgroups. It can be shown that AutF(Q1)∼= S3, AutF(Q2)∼= C6, AutF(Q3)∼= C3

and AutF(D) ∼= C3 × S3. It follows that H2(AutF(σ ), k×) = 0 for all chains
σ of F-centric subgroups of D. Consequently, H0([S(Fc)],A2

F) = 0. Hence, by
Theorem 1.1 in [Park 2010] the gluing problem has at least one solution. (Obviously,
this should hold in a more general context.)

Now we determine H1([S(Fc)],A1
F). For a finite group A it is known that

H1(A, k×)= Hom(A, k×)= Hom(A/A′Op ′(A), k×). Using this we observe that
H1(AutF(σ ), k×)∼= C2 for all chains except σ = Q3 and σ = (Q3 < D), in which
case we have H1(AutF(σ ), k×)= 0. Since [S(Fc)] is partially ordered by taking
subchains, one can view [S(Fc)] as a category where the morphisms are given by
the pairs of ordered chains. In particular [S(Fc)] has exactly 13 morphisms. With
the notation of [Webb 2007] the functor A1

F is a representation of [S(Fc)] over Z.
Hence, we can view A1

F as a module M over the incidence algebra of [S(Fc)].
More precisely, we have

M :=
⊕

a∈Ob[S(Fc)]

A1
F(a)∼= C5

2 .

At this point we can apply Lemma 6.2(2) in [Webb 2007]. For this let

d : Hom[S(Fc)] →M

a derivation. Then by definition we have d(β)= 0 for

β ∈ {(Q3, Q3), (Q3, Q3 < D), (D, Q3 < D), (Q3 < D, Q3 < D)}.

For all identity morphisms β ∈ Hom([S(Fc)]) we have

d(β)= d(ββ)=A1
F(β)d(β)+ d(β)= 2d(β)= 0.

Since βγ for β, γ ∈ Hom([S(Fc)]) is only defined if β or γ is an identity, we see
that there are no further restrictions on d. On the four morphisms (Q1, Q1 < D),
(D, Q1 < D), (Q2, Q2 < D) and (D, Q2 < D) the value of d is arbitrary. It
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remains to show that d is an inner derivation. For this observe that the map A1
F(β)

is bijective if β is one of the four morphisms above. Now we construct a set
u = {ua ∈A1

F(a) : a ∈Ob[S(Fc)]} such that d is the inner derivation induced by u.
Here we can set uQ1<D = 0. Then the equation

d((Q1, Q1 < D))=A1
F((Q1, Q1 < D))(uQ1)

determines uQ1 . Similarly d((D, Q1 < D)) = A1
F(u D) determines u D. Then

d((D, Q2 < D))=A1
F(u D)− uQ2<D gives uQ2<D and finally

d((Q2, Q2 < D))=A1
F(uQ2)− uQ2<D

determines uQ2 . Hence, Lemma 6.2(2) in [Webb 2007] shows H1([S(Fc)],A1
F)= 0.

So the Gluing Problem has only one solution by Theorem 1.1 in [Park 2010]. �

Whenever one knows the Cartan matrix (up to basic sets) for a specific defect
group, one can apply Theorem 2.4 in [Héthelyi et al. 2012]. This gives the following
corollary.

Corollary 4.6. Let B be a 3-block of a finite group and (u, bu) be a subsection
for B such that bu has defect group Q. If Q/〈u〉 ∼= 31+2

− , then k0(B) ≤ |Q|. If in
addition (u, bu) is major, we have k(B)≤ |Q|, and Brauer’s k(B)-conjecture holds
for B.

Using [Usami 1988; Puig and Usami 1993] one can show that Corollary 4.6
remains true if we replace 31+2

− by the similar group C9×C3.
The next interesting case which comes to mind is p = 5 and e(B) = 4. Here

Proposition 4.2 gives k(B) ∈ {26, 27, 28}, k0(B) ∈ {22, 25}, k1(B) ∈ {1, 2, 3, 4}
and l(B) ∈ {4, 5, 6}. It is reasonable that one can settle this and other small cases
as well, but this will not necessarily lead to any new insights.

We remark that also for the extraspecial group of order p3 and exponent p some
results of Hendren [2007] can be improved. In particular in [Héthelyi et al. 2012]
we proved Olsson’s conjecture for these blocks provided p 6= 3. On the other hand
for p = 3, Brauer’s k(B)-conjecture was shown in [Sambale 2011b].
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Baldoni, Dror Bar-Natan, Refik İnanç Baykur, Arnaud Beauville, Jason Behrstock,
Hugo Beirão da Veiga, Bachir Bekka, Gwyn Bellamy, Driss Bennis, David Blair,
James Borger, Alberto Bressan, Kathrin Bringmann, Marco Cannone, Daomin
Cao, Huai-Dong Cao, Luca Capogna, G. Carlier, Jeffrey Case, Thierry Cazenave,
Moira Chas, Ivan Cheltsov, Dawei Chen, Jingyi Chen, Wenxiong Chen, Alain
Chenciner, Jih-Hsin Cheng, Stephen K. K. Choi, Meng-Kiat Chuah, Silvia Cingolani,
Sean Cleary, Alina C. Cojocaru, Mihnea Coltoiu, Sylvie Corteel, Justin Corvino,
Alexander Coward, Steve Curran, Marius Dadarlat, Xianzhe Dai, Matthew B. Day,
Manuel del Pino, Jean-Pierre Demailly, Fu Sheng Deng, Ivan Dimitrov, Stephen R.
Doty, Jie Du, Ed Effros, Tobias Ekholm, Fuquan Fang, Katrin Fässler, Sérgio Fenley,
Valentin Féray, Anna Fino, Stefan Friedl, Koji Fujiwara, David Futer, Alexander
Gaifullin, Wee Teck Gan, Wee Liang Gan, Yun Gao, Ronaldo Garcia, Jorge García
Melián, Eduardo García-Río, Olga Gil-Medrano, María del Mar González, Cornelius
Greither, Harald Grobner, Olivier Guichard, Darrell Haile, Alfred W. Hales, M. J.
D. Hamilton, Fei Han, Chenxu He, Florian Herzig, Michael Heusener, Haruzo Hida,
Richard Hind, Kengo Hirachi, Gerald Hoehn, Detlev Hoffmann, Chin-Yu Hsiao,
Jianxun Hu, Xiaojun Huang, Wen Huang, Kazuhiro Ichihara, Nobuhiro Innami, Jun-
ichi Inoguchi, Tetsuya Ito, Howard Jacobowitz, Huaiyu Jian, David L. Johnson, Jesse
Johnson, Mattias Jonsson, Peter Jossen, Ilya Kapovich, Michael Kapovich, Grzegorz
Karch, Akio Kawauchi, William H. Kazez, Apoorva Khare, Jun Kigami, Igor Klep,
Andrew Knightly, Peter Martin Knopf, Dexing Kong, Shigeo Koshitani, Steven
Krantz, Shintaro Kuroki, Erez Lapid, Gary Lawlor, Claude LeBrun, Christopher
J. Leininger, Mark L. Lewis, Junfang Li, Haizhong Li, Song-Ying Li, Haisheng
Li, Wei-Ping Li, Yi Li, Fang Li, Ke-Pao Lin, Xian-Gao Liu, Charles Livingston,
Martin Loebl, Peng Lu, Hing-Sun Luk, Yong Luo, Xiaonan Ma, Sylvain Maillot,
Gunter Malle, Jason Manning, Carlo Marchioro, Francisco Martin, Carlos Martinez,
John McCuan, Vikram B. Mehta, Massimiliano Mella, William W. Menasco, Luc
Menichi, Alexander Merkurjev, Changxing Miao, Francisco Milán, Steven Miller,
Andrey E Mironov, Yoshihiko Mitsumatsu, Xiaohuan Mo, Ravichandran Mohan,

509

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.262-2
http://dx.doi.org/10.2140/pjm.2013.262.509


510 ACKNOWLEDGEMENT

Anne Moreau, Michael Müger, Goran Muic, Michele Mulazzani, Sam Nelson, Ryo
Nikkuni, John Nuttall, Yasuo Ohno, Mikhail I. Ostrovskii, Ye-Lin Ou, Narutaka
Ozawa, Shengliang Pan, Matthew Papanikolas, Rita Pardini, John R. Parker, Harold
Parks, Sorin Popa, Dipendra Prasad, Alexander Prestel, Artem Pulemotov, Jessica
S. Purcell, Zhang Qiong, Mark Reeder, Duan Repov, Vivien Ripoll, Manuel Ritoré,
Roland Roeder, Patrick Ryan, Joshua M. Sabloff, Abhishek Saha, Masahico Saito,
M Sanchis, Jonathan W. Sands, Shai Sarussi, Sean Sather-Wagstaff, Reiner Schätzle,
Thomas Schick, Markus Scholz, Victor Schroeder, Sergey Sergeev, Caroline Series,
Natasa Sesum, Zhongmin Shen, Weimin Sheng, Yoshihiro Shibata, Toshiaki Shoji,
Joseph Silverman, Thomas Sinclair, Boyan Sirakov, Alexander S. Sivatski, Reyer
Sjamaar, Jian Song, Blair Spearman, Roland Speicher, Jim Stankewicz, Yucai
Su, Andrzej Szulkin, Sheng-Li Tan, Shaobin Tan, Zizhou Tang, Ulrike Tillmann,
Giuseppe Tinaglia, Maggy Tomova, Martin Traizet, Dong-Ho Tsai, Hsian-Hua
Tseng, Masaaki Ue, Peter Vamos, V. S. Varadarajan, Enric Ventura, Stefano Vidussi,
Thomas Vogel, José Felipe Voloch, Theodore Voronov, Bai-Ling Wang, Mu-Tao
Wang, Jiaping Wang, Qingwen Wang, Youde Wang, Changyou Wang, Hongyu
Wang, Micah Warren, Ben Weinkove, Henry Wente, Sarah Whitehouse, Gerald
Williams, Jonathon Williams, Bun Wong, Hao Wu, Damin Wu, William Wylie,
Yuanlong Xin, Feng Xu, Stephen S.-T. Yau, Sai Kee Yeung, Zhiwei Yun, Muhammad
Zafrullah, Kirill Zainoulline, Fyodor Zak, Qi S. Zhang, Albert Zhang, Entao Zhao,
Yiqiang Zhou.



CONTENTS

Volume 262, no. 1 and no. 2

Karim Johannes Becher and Mélanie Raczek: On the second K -group of a rational
function field 1
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