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Cooper and Manning (2011) and Louder (2011) gave examples of maps of
surface groups to PSL(2, C) which are not injective, but are incompressible
(i.e., no simple loop is in the kernel). We construct more examples with
very simple certificates for their incompressibility arising from the theory of
stable commutator length.

The purpose of this note is to give examples of maps of closed surface groups
to PSL(2,C) which are not π1-injective, but are geometrically incompressible, in
the sense that no simple loop in the surface is in the kernel (in the sequel we use
the word “incompressible” as shorthand for “geometrically incompressible”). The
examples are very explicit, and the images can be taken to be all loxodromic. The
significance of such examples is that they shed light on the simple loop conjecture,
which says that any noninjective map from a closed oriented surface to a 3-manifold
should be compressible.

Examples of such maps were first shown to exist in [Cooper and Manning 2011],
by a representation variety argument, thereby answering a question of Minsky
[2000] (also see [Bowditch 1998]). More sophisticated examples were then found
by Louder [2011]; he even found examples with the property that the minimal
self-crossing number of a loop in the kernel can be taken to be arbitrarily large.
Louder’s strategy is to exhibit an explicit finitely presented group (a limit group)
which admits noninjective incompressible surface maps, and then to observe that
such a group can be embedded as an all-loxodromic subgroup of PSL(2,C).

It is easy to produce examples of noninjective surface groups. What is hard is to
certify that they are incompressible. The main point of our construction, and the
main novelty and interest of this paper, is to show that stable commutator length
(and its cousin Gromov–Thurston norm) can be used to certify incompressibility.

Our examples are closely related to Louder’s examples, although our certificates
are quite different. So another purpose of this note is to advertise the use of stable
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commutator length as a tool to get at the kind of information that is relevant in
certain contexts in the theory of limit groups.

We move back and forward between (fundamental) groups and spaces in the
usual way. We assume the reader is familiar with stable commutator length, and
Gromov–Thurston norms in dimension 2. Standard references are [Calegari 2009;
Gromov 1982; Thurston 1986]. Computations are done with the program scallop,
available from [Calegari and Walker 2011].

Recall that if X is a K (π, 1), the Gromov–Thurston norm of a class α ∈ H2(X;Z)
(denoted ‖α‖) is the infimum of −χ(T )/n over all closed, oriented surfaces T
without spherical components mapping to X and representing nα. Our certificates
for incompressibility are guaranteed by the following proposition.

Proposition 1 (certificate). Let X be a K (π, 1), and let α ∈ H2(X;Z) be repre-
sented by a closed oriented surface S with no torus or spherical components. If
there is a strict inequality ‖α‖>−χ(S)− 2 (where ‖ · ‖ denotes Gromov–Thurston
norm) then S is (geometrically) incompressible.

Proof. If S is compressible, then α is represented by the result of compressing S,
which is a surface S′ with no spherical components, and −χ(S′) < ‖α‖. But this
contradicts the definition of ‖α‖. �

On the other hand, a closed surface S without torus or spherical components
representing α and with−χ(S)=‖α‖ is π1-injective, so to apply our proposition to
obtain examples, we must find examples of spaces X and integral homology classes
α for which ‖α‖ is not equal to −χ(S) for any closed orientable surface S; i.e.,
for which ‖α‖ is not in 2Z. Such spaces can never be 3-manifolds, by combined
results of [Gabai 1983; Thurston 1986], so our methods will never directly find a
counterexample to the simple loop conjecture.

The groups we consider are all obtained by amalgamating two simpler groups
over a cyclic subgroup. The generator of the cyclic group is homologically trivial
in either factor, giving rise to a class in H2 in the big group. The Gromov–Thurston
norm of this class is related to the stable commutator length of the loop in the two
factors as follows:

Proposition 2 (amalgamation). Let G be an amalgamated product G = J ∗〈w〉 K
along a cyclic group 〈w〉 which is generated by a loop w which is homologically
trivial on either side. Let φ : H2(G;Z)→ H1(〈w〉;Z) be the connecting map in the
Mayer–Vietoris sequence, and let Hw ⊂ H2(G;Z) be the affine subspace mapping
to the generator. If w has infinite order in J and K , then

inf
α∈Hw
‖α‖ = 2(sclJ (w)+ sclK (w)).

Proof. This is not difficult to see directly from the definition, and it is very similar
to the proof of Theorem 3.4 in [Calegari 2008]. However, for the sake of clarity



CERTIFYING INCOMPRESSIBILITY OF NONINJECTIVE SURFACES WITH SCL 259

we give an argument. Note by the way that the hypothesis that w is homologi-
cally trivial on either side is equivalent to the statement that the inclusion map
H1(〈w〉;Z)→ H1(J ;Z)⊕ H1(K ;Z) is the zero map, so φ as above is certainly
surjective. Moreover, if H2(J ;Z) and H2(K ;Z) are trivial (as will often be the
case below), then φ is an isomorphism, and Hw consists of a single class α.

It is convenient to geometrize this algebraic picture, so let X J and X K be
Eilenberg–MacLane spaces for J and K , and let XG be obtained from X J and
X K by attaching the two ends of a cylinder C to loops representing the conjugacy
classes corresponding to the images of w in either side. Let γ be the core of C . If S
is a closed, oriented surface with no sphere components, and f : S→ XG represents
some nα with α ∈ Hw, then we can homotope f so that it meets γ transversely
and efficiently — i.e., so that f −1(γ ) consists of pairwise disjoint essential simple
curves in S. If one of these curves maps to γ with degree zero we can compress S
and reduce its complexity, so without loss of generality every component maps with
nonzero degree. Hence we can cut S into SJ and SK each mapping to X J and X K

respectively and with boundary representing some finite cover of w. By definition
this shows infα∈Hw ‖α‖ ≥ 2(sclJ (w)+ sclK (w)).

Conversely, given surfaces SJ and SK mapping to X J and X K with boundary
representing finite covers ofw (or rather its image in each side), we need to construct
a suitable S as above. First, we can pass to a cover of each SJ and SK in such a
way that the boundary of each maps to w with positive degree; see, for example,
Proposition 2.13 of [Calegari 2009]. Then we can pass to a further finite cover of
each so that the set of degrees with which components of ∂SJ and of ∂SK map over
w are the same (with multiplicity); again, see the argument of the proposition just
cited. Once this is done we can glue up SJ to SK with the opposite orientation to
build a surface S mapping to XG which, by construction, represents a multiple of
some α in Hw. We therefore obtain infα∈Hw ‖α‖ ≤ 2(sclJ (w)+ sclK (w)) and we
are done. �

We now show how to use these propositions to produce examples.

Example 1. Start with a free group; for concreteness, let F = 〈a, b, c〉. Consider a
word w ∈ F of the form w= [a, b][c, v] for some v ∈ F . Associated to this expres-
sion of w as a product of two commutators is a genus 2 surface S with one boundary
component mapping to a K (F, 1) in such a way that its boundary representsw. This
surface is not injective, since the image of its fundamental group is F which has
rank 3. Let G=〈a, b, c, x, y |w=[x, y]〉; i.e., geometrically a K (G, 1) is obtained
from a K (F, 1) by attaching the boundary of a once-punctured torus T to w. The
surface R := S ∪ T has genus 3, and represents the generator of H2(G;Z). On the
other hand, by the Amalgamation Proposition, the Gromov–Thurston norm of this
homology class is equal to 2 ·scl〈x,y〉([x, y])+2 ·sclF (w). Since scl〈x,y〉([x, y])= 1

2
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(see [Calegari 2009, Example 2.100], for instance), providing 1
2 < scl(w) the result

is noninjective but incompressible.
The group G can be embedded in PSL(2,C) by first embedding F as a discrete

subgroup, then embedding 〈x, y〉 in such a way that [x, y] = w. By conjugating
〈x, y〉 by a generic loxodromic element with the same axis as w, we can ensure this
example is injective, and it can even be taken to be all loxodromic. This follows
in the usual way by a Bass–Serre type argument; a similar argument appears in
[Calegari and Dunfield 2006, Lemma 1.5].

Almost any word v will give rise to w with scl(w) > 1
2 ; for example,

scl([a, b][c, aa])= 1,

as can be computed using scallop. Experimentally, it appears that if v is chosen
to be random of length n, then scl(w)→ 3

2 as n→∞. For example,

scl([a, b][c, bcAB BcABCbbcACbcBcbb])= 7
5 .

The closer scl(w) is to 3
2 , the bigger the index of a cover in which some simple

loop compresses. This gives a practical method to produce examples for any given
k in which no loop with fewer than k self-crossings is in the kernel.

Example 2. Note that the groups G produced in Example 1 are 1-relator groups,
which are very similar to 3-manifold groups in some important ways. A modified
construction shows they can in fact be taken to be 1-relator fundamental groups
of hyperbolic 4-manifolds. To see this, we consider examples of the form G =
〈a, b, c, x1, y1, . . . , xg, yg | w =

∏g
i=1[xi , yi ]〉 i.e., we attach a once-punctured

surface Tg of genus g, giving rise to a noninjective incompressible surface R= S∪Tg

of genus g+ 2.
Let 〈a, b, c〉 act discretely and faithfully, stabilizing a totally geodesic H3 in H4.

We can arrange for the axis ` of w to be disjoint from its translates. Thinking of
〈x1, y1, . . . , xg, yg〉 as the fundamental group of a once-punctured surface Tg, we
choose a hyperbolic structure on this surface for which ∂Tg is isometric to `/〈w〉,
and make this group act by stabilizing a totally geodesic H2 in H4 in such a way that
the axis of ∂Tg intersects the H3 perpendicularly along `. Providing the shortest
essential arc in Tg from ∂Tg to itself is sufficiently long (depending on the minimal
distance from ` to its translates by 〈a, b, c〉) the resulting group is discrete and
faithful. This follows by applying the Klein–Maskit combination theorem, once
we ensure that the limit sets of the conjugates of 〈a, b, c〉 are contained in regions
satisfying the ping-pong hypothesis for the action of π1(Tg). This condition can
be ensured by taking g big enough and choosing the hyperbolic structure on Tg

accordingly; the details are entirely straightforward.



CERTIFYING INCOMPRESSIBILITY OF NONINJECTIVE SURFACES WITH SCL 261

Example 3. Let H be any nonelementary hyperbolic 2-generator group which is
torsion free but not free. Let a, b be the generators. Then the once-punctured torus
with boundary [a, b] is not injective. As before, let G = 〈H, x, y | [a, b] = [x, y]〉.
Then G contains a genus 2 surface representing the amalgamated class in H2(G;Z),
and the norm of this class is 1+2 · sclH ([a, b]) > 0, so this example is noninjective
but incompressible.

As an example, we could take H to be the fundamental group of a closed
hyperbolic 3-manifold of Heegaard genus 2, or a 2-bridge knot complement. Such
examples have discrete faithful representations into PSL(2,C).

Example 4. It is easy to produce examples of 2-generator 1-relator groups H =
〈a, b | v〉 in which 1

2 − ε < scl([a, b]) < 1
2 for any ε. Such groups are torsion-free

if v is not a proper power. Just fix some big integer N and take

v = ([a, b]±N )g1([a, b]±N )g2 · · · ([a, b]±N )gm

to be any product of conjugates for which there are as many +N ’s as −N ’s. Such
an H maps to the Seifert-fibered 3-manifold group

〈a, b, z | [a, b]N = zN−1, [a, z] = [b, z] = 1〉,

in which scl([a, b])= (N − 1)/2N . The only subtle part of this last equality is the
lower bound, which is certified by Bavard duality (see [Calegari 2009, Theorem
2.70]) and the existence of a rotation quasimorphism associated to a realization
of the fundamental group of the Seifert manifold as a central extension of the
fundamental group of a hyperbolic torus orbifold with one orbifold point of order
N . Since scl is monotone nonincreasing under homomorphisms, the claim follows.
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