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PRESENTING SCHUR SUPERALGEBRAS

HOUSSEIN EL TURKEY AND JONATHAN R. KUJAWA

We provide a presentation of the Schur superalgebra and its quantum ana-
logue which generalizes the work of Doty and Giaquinto for Schur alge-
bras. Our results include a basis for these algebras and a presentation using
weight idempotents in the spirit of Lusztig’s modified quantum groups.

1. Introduction

1.1. The Schur algebra. The Schur algebra plays a central role in the represen-
tation theory of GL(n) (e.g., see [Deng et al. 2008]). It is also the prototypical
example of a quasihereditary algebra [Cline et al. 1988]. And, of course, it is at
center stage in Schur—Weyl duality. If V' denotes an n-dimensional vector space
and V®4 denotes the d-fold tensor product of V' with itself (all vector spaces and
tensor products are over the rational numbers), then there is action of the symmetric
group on d letters, X, on yed by permuting the tensor factors. With this notation
we can define the Schur algebra by

S(n,d) = Ends, (V®9).

On the other hand the enveloping algebra of the Lie algebra gl(n), U(gl(n)), has
a natural action on V and, hence, on V®4. We could instead define S(n, d) as
the image of the resulting representation U(gl(n)) — Endg(V ®%). Schur—Weyl
duality implies these two definitions coincide. Thus the Schur algebra acts as a
bridge between representations of gl(n) and the symmetric group. The above story
generalizes to the quantum setting if we replace the rational numbers with the
rational functions in the indeterminate ¢, the symmetric group by its Iwahori—-Hecke
algebra, and the enveloping algebra by the quantum group associated to gl(n). The
resulting algebra is called the g-Schur algebra.

Because of the fundamental importance of the Schur and g-Schur algebras it
is desirable to study them from as many perspectives as possible. Building on
[Green 1996], Doty and Giaquinto [2002] provided a presentation of the Schur
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algebras by generators and relations. Since the enveloping algebra surjects onto the
Schur algebra, the known generators and relations for U(gl(n)) yield generators
and relations for the Schur algebra. But as U(gl(n)) is infinite dimensional and
S(n, d) is finite dimensional, there must be additional relations. Remarkably, Doty
and Giaquinto prove that only two more, easy to state, relations are required. As
an outcome of their calculations they obtain a basis and a presentation via weight
idempotents reminiscent of Lusztig’s modified quantum group, U. They also prove
quantum analogues of all these results.

One notable application of the Doty—Giaquinto presentation, in [Li 2010], is a
geometric realization of Schur algebras as a certain ring of constructible functions
on generalized Steinberg varieties. We also see that their presentation of the g-Schur
algebra is closely related to the geometric construction of the g-Schur algebras and
quantum group U, (gl(n)) given by Beilinson, Lusztig, and MacPherson ([Beilinson
et al. 1990]; see also [Deng et al. 2008, Part 5]).

1.2. The Schur superalgebra. There is a Z,-graded (i.e., “super”) analogue of the
above setup. Namely, now let V' = V5 & V; denote a Z,-graded vector space with
the dimension of Vj; equal to m and the dimension of V7 equal to n. We define
V'®4 a5 the d-fold tensor product of V with itself. The symmetric group 4 acts
on V®4 by signed permutation of the tensor factors. The Schur superalgebra is
then defined to be

S(m|n,d) = Endgd(V‘X’d).

On the other hand the enveloping superalgebra of the Lie superalgebra gl(m|n),
U(gl(m|n)), has a natural action on V and, hence, on V ®¢. We could instead define
S(m|n, d) as the image of the resulting representation U (gl(11|n)) — Endg(V ®%).
The super version of Schur—Weyl duality implies these two definitions coincide
[Berele and Regev 1987; Sergeev 1984]. Thus the Schur superalgebra acts as
a bridge between representations of gl(m|n) and the symmetric group. In posi-
tive characteristic this connection can be used to prove the Mullineux conjecture
[Brundan and Kujawa 2003].

There is also a quantum version of this story. We again replace the rational
numbers with the rational functions in the indeterminate ¢ and the symmetric
group by its Iwahori—-Hecke algebra, and now replace the enveloping algebra by
the quantum group associated to gl(m|n). Schur—Weyl duality in this setting was
established by Moon [2003] and Mitsuhashi [2006]. The resulting algebra is called
the g-Schur superalgebra. Du and Rui [2011] have studied the representation theory
and combinatorics of the g-Schur superalgebras.

1.3. Results. In this paper we generalize the results of Doty and Giaquinto to
the Schur and ¢-Schur superalgebras. It should be noted that after obtaining the
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appropriate analogues of the ingredients used in [Doty and Giaquinto 2002], the
final results are proved using the same arguments as in the nonsuper case. The main
challenge is to correctly formulate and prove these analogues.

In Theorem 2.3.1 we obtain a presentation for the Schur superalgebra from
the standard presentation of the enveloping algebra for gl(m|n). We prove we
only need to add two additional relations just as in the case of the Schur algebra.
We then give an explicit basis for the Schur superalgebra and its integral form in
Theorem 2.14.3. Finally, in Theorem 2.15.1 we prove that the Schur superalgebra
admits a presentation using weight idempotents in a form reminiscent of Lusztig’s
modified quantum group.

We also prove the analogous results in the quantum setting. We use the quantum
group U = U, (gl(m|n)) as presented by Zhang [1993] and prove in Theorem 3.3.1
that we need to add only two additional relations to the standard presentation of U
to obtain the g-Schur superalgebra. We also provide a basis for the g-Schur superal-
gebra and an o = Z[g, g~ ']-form in Theorem 3.12.1. Finally, in Theorem 3.13.1 we
prove that the g-Schur superalgebra admits a presentation via weight idempotents
which is reminiscent of Lusztig’s modified quantum group for gl(n).

1.4. Future directions. The results of this paper open the door to a number of
interesting avenues of research. Sergeev [1984] and Olshanski [1992], in the
nonquantum and quantum cases, respectively, give a Schur—Weyl duality for the
type Q Lie superalgebras. It would be interesting to obtain a presentation for
the corresponding type Q Schur superalgebras. In a different direction, our pre-
sentation of the Schur and g-Schur superalgebras a la Doty—Giaquinto suggests
the possibility of geometric constructions for gl(m|n) in the spirit of [Beilinson
et al. 1990; Li 2010]. In a third direction, in proving the quantum case we obtain
the commutator formulas for the divided powers of root vectors and establish
the existence of an s = Z[q, ¢~ !]-form for the quantum group Uy, (gl(m|n)). Al-
though perhaps not surprising to experts, to our knowledge this has not appeared
elsewhere in the literature. The existence of such a form allows one to consider
representations at a root of unity and a super analogue of Lusztig’s small quantum
group as in [Lusztig 1990]. Finally, the existence of a presentation of the g-
Schur superalgebra using weight idempotents suggests that Lusztig’s modified
quantum groups should have a super analogue. Lusztig’s modified quantum
group is a key ingredient to the categorification of the quantum group associ-
ated to sl(n) (for example, as explained in [Lauda 2012]). Also see [Mackaay
et al. 2010] and references therein for a discussion of categorifications of the
q-Schur algebras. The categorification of quantum supergroups is currently an
open problem and a super analogue of Lusztig’s modified quantum group may be
useful.
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2. Nonquantum case

In this section all vector spaces will be over the rational numbers, Q.

2.1. The Lie superalgebra gl(m|n). Given a Z,-graded vector space V = V;® V;
we write v € Z, for the degree of a homogeneous element v € V. For short we
call v even (resp. odd) if v = 0 (resp. v = 1). Let us also introduce the following
convenient notation. For fixed nonnegative integers m and n and 1 <i <m +n we
define

1 -
M 1, ifizm+1.

F_ {6, if i <m;

Let g = g @ g7 denote the Lie superalgebra gl(m|n). As a vector space g is
the set of m 4+ n by m + n matrices. For 1 <i, j <m +n we set E; ; to be the
matrix unit with a 1 in i-th row and j-th column. Then the set of matrix units
forms a homogeneous basis for g. The Z,-grading on g is defined by setting g5 to
be the span of Ej j where 1 <i,j <morm+1=<i,j <m+n and gj to be the
span of the E; j suchthatm+1<i<m+nandl1<j<norl <i <mand
m+1 =< j <m+ n. That is, the degree of Ej ; is i+ .

The Lie bracket on g is given by the supercommutator:

2 [Eij, Exi] = 8jk Ei — (=) Fii Ekig, Ey ;.

By definition it is bilinear and so it suffices to define it on the basis of matrix units.

We fix h to be the Cartan subalgebra of g consisting of all diagonal matrices and
let b* be its dual. Let ; : h — Q be the linear map that takes an element of b to its
i-th diagonal entry. The set {&; | | <i <m + n} forms a basis of h* and we define
a bilinear form, ( , ), on h* by setting

3) (sir85) = (=1)'5;;.

With our choice of Cartan subalgebra the root system of g is
S={ei—¢j|1<i#j<m+n}

and the matrix unit E; ; spans the &; —&; root space. In particular there is a natural

Z5-grading on ® given by declaring that the root &; — ¢; has degree E ij = i+

We fix the Borel subalgebra of g given by taking all upper triangular matrices.

Corresponding to this choice of Borel the positive roots are

Ot ={e;—gj |1 <i<j<m+n}
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and if we set «; = &; — €41, then {&q,...,d,+s—1} are the simple roots. The
simple roots have degree _
0, ifi ;
o =9 1 l 7 m:
1, ifi =m.
2.2. The Schur superalgebra. A g-(super)module is a Z,-graded vector space
M = My @& Mj which admits an action by g. The action respects the Z,-grading
in that for any r, s € Z,, if x € g, and m € My, then x.m € M, 4. The action also
respects the Lie bracket in that for any homogeneous x, y € g and m € M, we have

[x, y].m = x.(y.m) — (=1)* 7 y.(x.m).

Note that here and elsewhere we give the condition only on homogeneous elements.
The general case is obtained by linearity. As all modules will be Z,-graded, we
choose to omit the prefix “super”.

The natural g-module, V, is the vector space of column vectors of height m + n.
For 1 <i <m + n, let v; denote the element of V' with a 1 in the i-th row and
zeros elsewhere. Then the set {v; | | <i < m + n} defines a homogeneous basis
for V with v; =i fori = 1,...,m + n. The action of g on V is given by left
multiplication.

We denote universal enveloping superalgebra of g by U. It inherits a Z;-grading
from g and natural basis given by the PBW theorem for Lie superalgebras [Kac
1977, Section 1.1.3]. As for Lie algebras, a g-module can naturally be thought of
as a U-module and vice versa. In particular, U admits a coproduct and so if M
and N are g-modules, then M ® N is again a g-module.

As it will be important in the calculations which follow, let us make this explicit.
The coproduct U — U ® U is given on elements of gby x — x® 1 +1® x. We
use the convention that in any formula in which two homogenous elements have
their order reversed, a sign is introduced which is —1 raised to the product of their
degrees. Given a homogeneous element x € g and homogeneous m € M andn € N,
then the coproduct along with the sign convention implies that we have

x.m®n) = (x.m)®n~+ (—=1)*"m Q (x.n).

In particular, for d > 1 we may define the d-fold tensor product of the natural
module:
Vel — Y RVe---QV.

Let
pd U — End@(V®d)

denote the corresponding superalgebra homomorphism. We define the Schur super-
algebra S(m|n, d) to be the image of p;. In particular, we can and will think of
S(m|n, d) as a quotient of U.
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Note that the Schur superalgebra can also be defined as follows. There is a
signed permutation action of the symmetric group on d letters, X4, on V®d The
super analogue of Schur—Weyl duality [Berele and Regev 1987; Sergeev 1984] then
shows that

S(m|n,d) = Ends, (V®9).

2.3. A presentation of the Schur superalgebra. Our first main result gives the
Schur superalgebra by generators and relations. Here and throughout, if 4 is an
associative superalgebra and x, y € 4 are homogeneous elements, then we write

[x, ] =xpy = (=1D)*Vyx.
For an element x € 4 the map ad x : A — A is defined by ad x(y) = [x, y]. Note
that the bilinear form used in the following relations is the one introduced in (3).
Theorem 2.3.1. The Schur superalgebra S(m|n, d) is generated by homogeneous

elements

€1y vy lmin—ts S1seeos fmtn—1, Hi, ..., Hyyin,

i=fi=0fori #m,

where the 7 5-grading is given by setting ey = fm = 1,
and H; = 0.
The following is a complete set of relations:
(R1) [H;, Hi] =0, where 1 <i, j <m+mn;
(R2) [er, fi]= 8 (Hy = (=D& Ti Hyy), 1<iij<m+n—1;
(R3) [Hiej] = (1) (es.)ej and [Hy, fi] = —(=D(er.e)) /.
wherel <i <m+n, 1=<j<m+4+n-—1;
(R4) [em. em] =0, (ade;)' T1@®Dle; =0, if1<i#j<m4n—1andi#m,
[em»[em—l,[em’em—}—l]” =0, ifmmn=2;
RS) [fm, fm]=0, (adfi)lﬂ(“"’“f)‘fj =0, fl1<i#j<m+n—1landi#m,
[fm: Um=1.fm: fmall =0, ifm.n = 2;
(R6) H1 +H2+"'+Hm+n = d;
R7) Hi(Hi—1)---(H;j—d) =0, wherel <i <m+n.

N

2.4. Strategy and simplifications. The basic strategy of the proof of Theorem 2.3.1
is as in [Doty and Giaquinto 2002] and as follows. For short, let us write S for
S(m|n,d). Let T be the superalgebra given by the generators and relations in
the theorem. The goal is to prove T is isomorphic to S as superalgebras. We
first show that relations (R1)—(R7) hold in S. This implies we have a surjective
homomorphism 7" — S. We then prove that the dimension of 7" is no larger than
the dimension of .S’ by exhibiting a spanning set of 7" with cardinality equal to the
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dimension of S. See Section 2.14. This immediately implies that the map is an
isomorphism and the spanning set is a basis.

Note that the universal enveloping superalgebra U is the superalgebra on the same
generators but subject only to the relations (R1)—(R5) (see [Leites and Serganova
1992] or [Zhang 2011]). As S(m|n,d) is a quotient of U via p, it has the same
generators but possibly additional relations. The content of Theorem 2.3.1 is that
we only need to add relations (R6) and (R7) to obtain a presentation of S(m|n, d).

As it will be helpful in later calculations, let us briefly pause to make explicit
the connection between this presentation of U via generators and relations and the
one obtained from the matrix realization of g given in Section 2.1. If we write
Ej; j for the i j-matrix unit as in Section 2.1, then the isomorphism between these
superalgebras is given on generators by e; = E; ;11, fi + E;y1;, and H; — Ej ;.
We identify these two realizations of U via this map. In particular, there is a
canonical embedding g < U and we will identify g with its image under this map.

As both S and T are quotients of U they are both generated by the images of
generators of U. To lighten notation, we choose to use the same notation for algebra
elements which can be viewed in more than one of these algebras. In particular, we
write e;, fi, and H; for the generators of U and their images in S and 7'. We will
endeavor to always be clear in which algebra we are working. If the algebra is not
explicitly stated, then the calculation holds for all three algebras U, S, and T'.

We will also frequently make use of the fact that the inclusion

gl(m) @ gl(n) = g5 < gl(m|n)

induces an inclusion
U(gl(m) @ gl(n)) <= U(gl(m|n)).

Thus any computation involving purely even elements will carry over from [Doty
and Giaquinto 2002]. More generally, when calculations are essentially identical to
those in that paper we will usually leave them to the reader.

2.5. The new relations. We now observe that (R6) and (R7) hold in S.

Lemma 2.5.1. Under the representation pg : U — End(V®d) the elements H, . . .,
Hy, 45 in S satisfy the relations (R6) and (R7). Moreover, the relation (R7) is the
minimal polynomial of H; in Endg(V ®9).

Proof. Since the elements Hy, ..., Hpy4y, are purely even, this follows from [Doty

and Giaquinto 2002, Lemma 4.1]. O

As explained above, this implies the surjection p; : U — S factors through 7'
and we obtain a surjective superalgebra homomorphism, 7" — S. To prove that
this map is an isomorphism it suffices to show that their dimensions are equal by
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obtaining an explicit basis for T and, hence, for S(m|n, d). In fact it turns out to
be no harder to work over the integers and so we obtain a basis for an integral form,
S(m|n, d)z, of the Schur superalgebra.

2.6. Divided powers. Let A denote any of U, S, or T'. Recall from Section 2.4
that we identify gl(m|n) as a subspace of U. For each o = ¢; —¢j € ®+ we use
this identification and write x4 for the image in A of the matrix unit £; ;. We call
Xq a root vector. For x € A and k € 7>, define the k-th divided power of x to be

k
w2
k!

In particular, we have the divided powers of the root vectors, xg) ,forall € ®

and » > 0.
We define

A(m|n) = {kz(kl,...,km+n)|ki €eZ, i>0forl <i §m+n}.

Given any tuple of integers A (e.g., A € A(m|n)), let |A| denote the sum of those
integers. Using this we define

A(m|n,d) = {A e A(m|n) | |A] = d}.
Fori =1,...,m+n and k > 0 define an element of 4 by

H\ _ Hi(Hi—1)---(Hi—k +1)
(k)_ k! ’

(4)-s

2.7. The Kostant 7Z-form. We now define analogues of the Kostant Z-form. We
also take this opportunity to introduce certain subalgebras which will be needed in
what follows. Let A denote U, S, or T. Let A° denote the subsuperalgebra of A
generated by Hj, ..., Hy1p,. In particular, if 4 is S or T, then it is clear that A°
is the image of U respectively, under the quotient map.

The Kostant Z-form for A is denoted by Az and it is defined to be the subring
of A generated by

where, by definition,

H.
@?lﬁ“Hi=1V”Jn+n—Lkzo}u{(g)|i=1“”Jn+mkzo}

Moreover, we set A% to be the intersection of A® with A7. For 4 equal to S or 7,
it is clear that Az and A% are nothing but the image of Uz and UZO, respectively,
under the quotient map.
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2.8. The weight idempotents. We begin by investigating the structure of 7° and
TZO. For A = (A;) € A(m|n) we define

Note that as Hy, ..., Hy+, commute the product can be taken in any order. When
A € A(m|n, d) it is convenient to set the notation

1, = H,.

Because of part (b) of the following proposition we refer to these elements as weight
idempotents.

Proposition 2.8.1. Let 1° be the ideal of U° generated by the elements
H1 +H2+"'+Hm+n—d and I‘Il(lf,—l)(fll—d)
fori=1,...,m+n. Then

(a) we have a superalgebra isomorphism U®/1° = T?;

(b) the set {15 |, € A(m|n,d)} is a Q-basis for T® and a Z-basis for TZO. More-
over, they give a set of pairwise orthogonal idempotents which sum to the
identity;

(c) in T® we have H, = 0 for any A € A(m|n) such that |\| > d.

Proof. Since the elements Hy, ..., Hy 4+, are purely even, this follows from [Doty
and Giaquinto 2002, Proposition 4.2]. O

Proposition 2.8.2. Let 1 <i <m+n,k € Z>¢, A € A(m|n,d), and n € A(m|n).
We have the following identities in the superalgebra T°:

(1) Hily = Al CA TR CAT
iy = AiL), k A= k A>

Ai
) Hyly, =Ay,ly, where A, = ( );
wix wix u U L

B Ho= Y My
AeA(m|n,d)

Proof. They follow from [Doty and Giaquinto 2002, Proposition 4.3]. O
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2.9. The root vectors. We continue to let A denote any of U, S, or T'. Recall from
Section 2.6 that for each & € ® we have the root vector x, € 4. In particular, note
that x, is homogeneous and X, = &, where the grading on roots is as given in
Section 2.1. Given o = ¢; —¢j € ®, we set

Hy = H; — (- > Hj.

Given o = ¢; —¢j, B = e —&; € ® such that @ 4 B € ®, we define

1, if j =k;
(4) Ca,p = {_(_l)xax/g, ifi =1.

Using this notation, (2) implies the following commutator formula for root vectors
in 4.

Lemma 2.9.1. Let o, B € ® and say a = ¢; — ¢ and B = e} — ;. We have

Hy, ifa+p=0;
[Xa, Xg] = | Ca.pXa+p. o+ pED;
0, otherwise.

We also note that an easy induction proves that for all ¢, > 0 and @ € ® we
have

b
) @) B) _ (az )xéa—i-b)'

2.10. Commutation relations between root vectors and weight idempotents. We
now compute the commutation relations between root vectors and weight idempo-
tents.

Proposition 2.10.1. For any o € ®, A € A(m|n,d) we have the commutation
formulas
Ip+aXa, fA+aecA(min,d);
Xolp = .
0, otherwise,

and

Xelp—a, fA—a€A(m|n,d);
Iyxeq = .
0, otherwise.

Proof. Although analogous to [Doty and Giaquinto 2002, Proposition 4.5], the
proof involves keeping track of signs so we include it. We first note that (2) implies
forall/ =1,...,m+n and o € ® we can use the parity function given in (1) and
the bilinear form given in (3) to write

©6) [Hy, xa] = (=) (61, @) xa.
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Now say a = ¢; — €. Using (6) we obtain

B HP\\ (Hi = (=) (e, 0)\ ( Hj — (1) (5. )
= (TG (75 ) () e

l#i,j
_ ( 1l (Hz)) (Hi - (—1)"(—1)") (Hj —(=1/ <—<—1)f))Xa
1%i Al Aj Aj
=1 GO
1% Al Aj Aj
Mllltiplying on the left by )\ﬁ I and using the fact that H;xy = xo (H; + 1), we
ge
i ()0 )

which, using Proposition 2.8.2, simplifies to

o e (GO TG

1#i,j

If A; > 0, then this can be rewritten as

e () ) 1 ()

I#i,j
The first summand on the right-hand side of the preceding equality vanishes by

Proposition 2.8.1. This proves the first part of the proposition in the case A; > 0. If
Aj = 0, then (7) can be written as

Yaln = ((fi 1) L1 (le))x“ e

1#i,j
where pt = (Aq, ..., A; +1,...,4j—1,0,..., Amyn). Butthen || = [A|+1>d

and hence the right-hand side is zero by Proposition 2.8.1. This proves the first
statement. The proof of the second is similar. O

2.11. Commutation relations between divided powers of root vectors. We now
compute the commutation formulas between divided powers of root vectors, but
first we make a simplifying observation. If the root vector x, is odd (i.e., if & is an
odd root), then in g we have [xy, X¢] = 0. Butin U and, hence, in S and T, we
have [xg, Xo] = 2x2. Taken together, this implies

2 _
x,=0
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inU, S,and T for all odd o € ®. That is, for odd roots we only need to consider
root vectors of divided power one.

Lemma 2.11.1. Leto, B € D andr, s € Z>y.
(D) If Xa =0and xXg = 0, then

(8)
(s) o) ) =) IS+ 2\ o-h
+ Z Xg i xo 7 ifatp=0;
x‘gr)x‘(gs) _ mm(r s)
Gyl ifa+p e o
E}S) X 3) ’ otherwise.

(2) If Xa =0and xXg =1, then

9) (r) 1 _ ,§) ()+Cot/3xoc ﬂxé 1), ifa+ B € d;
K /(Sl)xg)’ ifa+p ¢ .

(3) If Xa =1 and Xg = 0, then

(10) xOx) =

{xg) ()—i—caﬂxa /;x(r 1), ifo+ped;
B

p e, ot B
(4) If Xo =l and xg = 1, then

x4 Hy  ifa+B=0;

(11) xél)xél) = xél)x(gl) + Xgq4p, fa+ped;

f(;l ) xél ) , otherwise.

Proof. As (8) involves purely even root vectors, it follows from the classical case
(see [Doty and Giaquinto 2002, Equations (5.11a)—(5.11c)]). Equations (9) and (10)
are verified by a straightforward induction on r. Equation (11) follows directly
from Lemma 2.9.1. O

2.12. Kostant monomials and content functions. Any product in A of nonzero
elements of the form

H.
(12) x0, ( ’),
S

taken in any order and for any 7,5 € Z>¢, @ € ®, 1 <i < m + n, will be called
a Kostant monomial. Note that by [Kujawa 2006, Lemma 2.1] the set of Kostant
monomials span Uz and, hence, 77 and S7. The goal is to find a subset of Kostant
monomials which will provide a basis for 77.
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We now introduce the content function on Kostant monomials. They will be
used as a bookkeeping device in the proof of Proposition 2.14.1. It is defined just
as in the classical case [Doty and Giaquinto 2002, Section 2].

The content function

m-+n
(13) x : {Kostant monomials} — @ Zs;
i=1
is defined as follows. We first define it on the elements in (12). If « = ¢; —¢j € @
and r > 1, then
X(x(gr)) = IEmax(i,j)-

Ifi=1,...,m+nandr > 1, then

()=

We then extend this definition by declaring x(X'Y) = x(X)+ x(Y) whenever X, Y
are Kostant monomials.

We also define a left content function, xr,, and right content function, x g, on the
elements given in (12) by

H; H;
xG) =rei, xr(6Y) =rej, m((S)):XR((S)):Q

They are defined on general Kostant monomials using the rules x7 (X'Y) = xr(X)+
xp(Y) and xg(XY) = xgr(X) + xg(Y) for any Kostant monomials X and Y.

In what follows we view elements in the image of the content functions as
elements of A(m|n) via the map

m-+n

(14) Y aisi > (a1, amn).

i=1

2.13. A lemma on content functions. To label the elements of our basis for the
Schur superalgebra, we need to define the following set of tuples of nonnegative
integers indexed by the positive roots of g:

(15)

P(m|n) = {4 = (A(@))gep+ | A(@) €Z>¢ if & =0and A(x) € {0, 1} if & = 1}.

Fix an order on ®T. For A = (A(a)) € P(m|n) we define

ea= ] x4 gi= ] s@.
acdt acdt

where the products defining e4 and £ are taken according to the fixed order on ®.
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The last ingredient we need is the following partial order on A (m|n). It is defined
by declaring for A = (X;), u = (i) in A(m|n) that

(16) A=p

ifand only if A; < u; fori =1,...,m+n.
Lemma 2.13.1. For A = (A(a)), C = (C(x)) € P(m|n), A € A(m|n) we have

x(ealy fc) 2 & ifandonlyif xp(lyeqfc) <A
ifand only if  xg(ea fclyr) A",

where
Vi=h4 D A@a, MV i=i+ Y Clae
aedt aedt
Proof. As our content functions are defined just as in [Doty and Giaquinto 2002],
the proof of Lemma 5.1 there applies verbatim. O

2.14. A basis for the Schur superalgebra. Let us define the set
Y= |J fealnfclx(eafe) =i}

AeA(m|n,d)

A,CeP(m|n)
Note that we have the following alternate descriptions of Y. Following from
Proposition 2.10.1 we have

eqly fc = lyeqafc =eqfclyr,

where A" and A are as above. Using this and Lemma 2.13.1 we can characterize Y
as

Y= |J {weafclxcleafo)=ny= ] feafclirlxrleafo) <2}
MeA(m|n,d) A'eAN(m|n,d)
A,CeP(m|n) A,CeP(mn)
Finally we are prepared to give a basis for 7.
Proposition 2.14.1. The set Y spans the Z-superalgebra Ty.

Proof. The proof is exactly parallel to the proof of [Doty and Giaquinto 2002,
Proposition 5.2]. Namely, as discussed in Section 2.12, the Kostant monomials
span 77. From Proposition 2.8.1 we in fact know that 77 is spanned by Kostant
monomials consisting of products of divided powers of root vectors and weight
idempotents. Given such a Kostant monomial, we may use Proposition 2.10.1
to move all weight idempotents to the right-hand side of the Kostant monomial.
Thus it suffices to show that Kostant monomials consisting of products of divided
powers of root vectors can be written as an integral linear combination of elements
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in Y. This is done by inducting on the degree and content of the monomial using
the commutation formulas. As our content formula and commutation formulas
are of the same form as in [Doty and Giaquinto 2002], the inductive argument
used there applies here without change. The only difference appears when we
use the commutation formulas given in Lemma 2.11.1. Extra signs appear but all
coefficients remain integral and this is all that is needed for the proof.

We also need that for all s, ¢ € Z>, the term (H";_t) in (8) belongs to TZO. As
these elements are purely even this follows from the remark after [ibid., (5.11)]. It
can also be verified directly by an inductive argument using the identity

("7)=(0)-(5) :
s s s—1
Lemma 2.14.2. The cardinality of the set Y is equal to the dimension of the Schur

superalgebra.

Proof. By [Donkin 2001, Section 2.3] the dimension of the Schur superalgebra is
equal to the number of monomials of total degree d in the free supercommutative
superalgebra in m? 4 n? even variables and 2mn odd variables. Equivalently, the
dimension of S is the same as the number of monomials in m? + n? — 1 even
variables and 2mn odd variables of total degree not exceeding d. From this it is
immediate that the dimension of S is the same as the cardinality of the set

P={e4Hg fc|B=(Bi)€A(m|n); B;=0; A,C € P(m|n), |A|+|B|+|C|=d}.

Thus to prove the lemma it suffices to give a bijection between P and Y. Define
the map P — Y by

eqHp fc —eqly fc,

where A = (d — |A| — |B| —|C|)e1 + B + x(e4 fc). The inverse map is given by

eqly fc —eqHp fc,
where B = A — x(e4 fc) — A1£1. This completes the proof of the lemma. O

As T surjects onto S(m|n, d), it immediately follows from the previous two
results that Y is a basis for the Schur superalgebra and its integral form and that T’
and S are isomorphic. Therefore we have proven Theorem 2.3.1 and the following
result.

Theorem 2.14.3. The set

Y= U {eAl)»fC|A,C€P(m|n),x(eAfC)§k}
reA(mn,d)

is a Q-basis for S(m|n, d) and a Z-basis for S(m|n,d)z.
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Finally, we note that there is another basis similar to Y in which the ¢ and f
monomials are interchanged (see [Doty and Giaquinto 2002, Theorem 2.3] where
the analogous basis is denoted Y_).

2.15. A weight idempotent presentation. We also have an alternate presentation
of the Schur superalgebra using weight idempotents.

Theorem 2.15.1. The Schur superalgebra S(m|n, d) is generated by the homoge-
neous elements
e,y lmin—1s ooy Sman—1, 10,
where A runs over the set A(m|n, d) and the Z,-grading is given by setting e, =
fm=1,8 = fi=0fori #m,and 1) =0 forall » € A(m|n, d).
The following is a complete set of relations:

RY) Lly =8l Y. L=l

reA(mln,d)
(R2) e;1; = Dita i if)h+0{i € A(m|n,d);
0, otherwise;
lp—a; fi.» ifA—a; € A(m|n,d);
Rz// 1 — o
RZD Jila {0, otherwise;
R2") 1,¢; = eily—g;» IfA—a;€A(mln,d);
l 0, otherwise;
R2") 1, fi = filk-l—oe;s ifA+a; € A(m|n, d);
l 0, otherwise;

R3) [er, fil=6i; Y, (=D 4) s
AeA(m|n,d)
and relations (R4) and (RS) given in Theorem 2.3.1.

The proof of Theorem 2.15.1 is identical to the analogous [Doty and Giaquinto
2002, Theorem 2.4] so we omit it.

3. Quantum case

The ground field is now the field of rational functions in the indeterminate g, Q(q).
In this section all vector spaces will be defined over Q(g).

3.1. The quantum supergroup for gl(m|n). We have analogous results in the
quantum setting. The enveloping superalgebra U is replaced by the quantized
enveloping superalgebra U = U, (gl(m|n)) defined in [Zhang 1993; De Wit 2003]'.

I'There are errors in [Zhang 1993] which are corrected in [De Wit 2003].



PRESENTING SCHUR SUPERALGEBRAS 301

By definition U is given by generators and relations as follows. The generators are

+1 +1
Elm--’Em—i-n—l’ F17,Fm+n—1, Kl 7-~'7K

m+tn:

The Z,-grading on U is given by setting Em=Fn=1E;=F,=0fora#m,
and K ;tl = 0. These generators are subject to relations (Q1)—(Q5) in Theorem 3.3.1.

3.2. The q-Schur superalgebra. To define the ¢g-Schur superalgebra, S, (m|n, d),
we need to introduce the analogue of the natural representation for U. Set V to be
the (m + n)-dimensional vector space with fixed basis vy, ..., Um+n. A Z,-grading
on V is given by setting v, = a, where we use the notation introduced in (1). Before
proceeding we set a convenient notation. For a = 1,...,m + n we define

17 da :q(_l)ﬁ.

The analogue of the natural representation, o : U — Endgg)(V), is defined by

8a
p(Ka)vp = g Pvy = go" vy,
(18) p(Eq)vp = 8a+1,bvav
p(Fa)vp = Sa,bva-H-
The bilinear form used above is as in (3). It is a direct calculation to verify that this

defines a representation of U.
We define a comultiplication on U given on generators by

AE) =E;®K;'Kyy1 +1® Eg,
(19) A(F)=Fa® 1+ KoK}, ® Fg,
A(Kg) = Kq ® K.
Using this comultiplication and the sign convention discussed in Section 2.2 we

then have an action of U for any d > 1 on the d-fold tensor product of the natural
module,

VO =VeVR - ®V.
That is, we obtain a superalgebra homomorphism
(20) pa - U— Endg g (V®Y).

We define the g-Schur superalgebra Sy(m|n,d) to be the image of py. In
particular, we can and will view it as a quotient of the superalgebra U and so a set
of generators of U gives a set of generators for S, (m|n, d) which are subject to
possibly additional relations.
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3.3. A presentation of the q-Schur superalgebra. We first introduce the quantum
analogue of root vectors so as to more easily state the relations for the g-Schur
superalgebra. For 1 <a # b < m 4 n we define the root vector E, j recursively as
follows. Fora=1,...,m+n—1 we set

Ea,a+1 = Ea and Ea+1,a = Fa.
If |a—b| > 1, then E, j is defined by setting

EocEcp—qcEcpEqyc, ifa > b;

21 E,p=
@b @b {Ea,CEc,b _qc_lEc,bEa,c, ifa<b.

where ¢ can be taken to be an arbitrary index strictly between a and b. It is
straightforward to see that E,; is independent of the choice of ¢. It is also
straightforward to see that £, ; is homogeneous and of degree £, —&p.

We can now give a presentation for S, (m|n, d). Note that the bilinear form used
in the following relations is defined in (3) and the notation ¢, is as defined in (17).

Theorem 3.3.1. The q-Schur superalgebra Sq(m|n, d) is generated by the homo-

geneous elements

+1 +1
Etr...Emin-t, Fi,..., Fpyny, KU KEL

The 7,-grading is given by setting E;y = Fyy =1, Eq = Fq = 0 for a # m, and
K ;H = 0. These elements are subject to the following relations:

Q1) forM, N e{*l}and1 <a, b <m+n,
KMKYN = KN KM and K.K;'=K;'K,=1;

a

Q) forl<a<m+nandl <b<m+n-1,

KaEppi1=q D Epp 1 Ka= Qc(zsa’b_sa’b“)Eb,bﬂKa,
KaEpy1p =g Eyyy pKa =gl PP By Ky
Q3) forl <a,b<m+n-—1,
KoK L — K Koy
da—dqg"

[Ea,a+1 s Eb—l—l,b] = 8a,b

’

and for |a — b| > 1, we have the commutations

Eqv1,0aEpv10 = Epr1pEar1,a and Egap1Eppi1 = Eppr1Eaatt:
(Q4) E2 = E? =0;

m,m+1 m+1,m
(Q5) if neither m nor n is 1, we have the following Uy (gl(m|n)) Serre relations.
For a # m, we have
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(a) Ea+l,aEa+2,a = nga—l—Z,aEa—f-l,a, l=a=m+n-2,
®) Ega+1Eaa+2 =9aFEaa+2Eaa+1, 1=a=m-+n-2,
(©) Ea+1,a-1Ea+1,a =9aEat1aEa+1,a-1, 2=a=m+n,
@ Eg—1,a+1Eaa+1 =9aEaa+1Ea—14a+1, 2=a=m+n.

For a = m, we have

[Em—f—l,ma Em+2,m—1] = [Em,m—f—l: Em—l,m+2] =0.

If either m =1 or n = 1, then these relations are omitted;

(Q6) Ki Ko+ KKl Kol Ky = g%

Q7) (Kg—1)(Kg—qa)(Ka—q2) -+ (Ka—q?) =0, forall | <a <m+n.

3.4. Strategy and simplifications. As in the nonquantum case, the approach of
[Doty and Giaquinto 2002] applies in our setting once the correct definitions and
calculations are established. Namely, let T be the algebra defined by the generators
and relations of Theorem 3.3.1. The basic line of argument is the same as before:
we prove that relations (Q1) through (Q7) hold in S = S, (m|n, d) and so we have
a surjective map T — S induced by the map p; given in (20). We then show this
map is an isomorphism by showing via a series of calculations that the dimension
of T is no more than the dimension of S. As it is no more difficult, we actually
prove a slightly stronger result by working with a Z[g, ¢~ !]-form.

As before we lighten the reading by using the same notation for elements of U
and their images in the quotients T and S. We will make it clear in which algebra
we are working whenever it is important to do so. Furthermore, we can again make
use of the fact that the quantum group associated to gg is a subalgebra of U (as the
subalgebra generated by E,, F,; (a # m) and K fﬂ, ..., KE1 yand so calculations

m+n
on purely even elements follow from the analogous results in the nonsuper setting.

3.5. The new relations. We first prove that relations (Q6) and (Q7) hold in S =
Sq(mln, d) and, hence, the surjection py : U — S factors through T.

Lemma 3.5.1. Under the representation pg : U — End(V®d), the images of the
K, satisfy the relations (Q6) and (Q7). Moreover, the relation (Q7) is the minimal
polynomial of the image of K, in End(V®?).

Proof. Using the action of U on V given in (18) and on V® via the comultiplica-
tion (19) and the sign convention discussed in Section 2.2, the argument is as in the
nonquantum case except that the calculations are done multiplicatively. We point
out that there is one subtlety (and it is the reason why our relations differ slightly
from the analogous ones from [Doty and Giaquinto 2002, Lemma 8.1]). Namely,
the action of K, when a > m is the inverse of what might be expected. O
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3.6. Divided powers and weight idempotents. Let A denote U, T, or S. We now
define various elements of A which are analogous to those defined in the nonquantum
setting.

We first introduce notation for the quantum integers. Given n € Zx, let

[n] = % and [n]!=[n]-[n—1]---[2]-[1].

It is helpful for calculations to note that [#] is unchanged by the substitution g > ¢!
and, in particular, under the substitution g — ¢,.
Given x € A and k € Z>(, we define the k-th divided power of x by
k
cO =X

[k
In particular, the root vectors introduced in Section 3.3 have divided powers, E(Yg,
foralll <a#b<m+nandr >0.

If 1 <a,b <m+ n, then we set
Kap = KaKj '

Fort € Z>¢ and ¢ € Z, we use the g, notation given in (17) and set

’

t — — — —
|:Ka;ci|=1_[Kaqf1 s+1_Ka1qac+s 1
! s=1 qg—qa_s

c—s+1 _ K—lq—c-i-s—l

t
Kap:c Ka,b4q a,b9a
R

95 —45°

=1

For A = (A,) € A(m|n), we write

For short, we write

As the K, commute, the product can be taken in any order. For A € A(m|n,d) we
introduce the shorthand

1)L = KA

and because of Proposition 3.6.1(b) we call these weight idempotents.
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We define A° as the subalgebra of A generated by
K ;tl and [Ifa]

foralla=1,...,m+n,t € Z>. We define AY, to be the s = Z[g, g~ ']-subalgebra
of A generated by

K;H and [lia]

foralla=1,...,m+n,t>0.If A equals T or S, then it is clear that A% and Agg
is the image of U and Ugg, respectively, under the quotient map.

Now we investigate the structure of T and TSQ. In the following proposition we
continue our use of the notation g, introduced in (17).

Proposition 3.6.1. Define I° to be the ideal of U° generated by
KKy KKyl Kyl =4 and (Ko —=1)(Ka—qa) -+ (Ka—q5)
fora=1,...,m+n. Then:

(a) We have a superalgebra isomorphism U°/1° 2= T,

(b) The set {15 | A € A(m|n,d)} is a Q(q)-basis for T® and a Z|q, g~ ']-basis for
qu. Moreover, they give a set of pairwise orthogonal idempotents which sum
to the identity.

(c) Ky =0 forany u € A(m|n) such that ||| > d.

Proof. As these elements are purely even, the proof of [Doty and Giaquinto 2002,
Proposition 8.2] applies if we keep in mind the slight difference in K, when a > m
and that we should replace each v in their argument by ¢,. O

To state the next result we need to introduce the Gaussian binomial coefficient.
Forz € Z,and t € 7>, define

|:Zi| _ ! qz—s+1 _q—z+s—1

22
( ) t qs _q_s

s=1

In the equations which follow one might expect g, to appear in the binomial
coefficients. However, the binomial coefficient is invariant under the map g +> ¢~
so this dependency is avoided.

Proposition 3.6.2. Let | <a <m+n,t € Z>9, ¢c € Z, A € A(m|n,d), and
w € A(m|n). We have the following identities in the superalgebra T°:

K, c Ag +c
(@) KX = gitan;, [al }u:[“t ]lx;
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(b) Kuly =Auly, wherekuzn[)\a];
4 LMa

© Ku= > Auly
AeA(m|n,d)

Proof. As the elements are purely even, the argument from the proof of [Doty and
Giaquinto 2002, Proposition 8.3] carries over if we replace v by ¢,. O

3.7. Commutation relations between root vectors and weight idempotents. Re-
call that in Section 3.3 we defined root vectors E, , € Uforevery 1 <a #b <m+n.
As is our convention, we also write £, p, for theirimage in T and S. We now compute
the commutation relations between root vectors and weight idempotents.

Proposition 3.7.1. For any A € A(m|n,d), and « = ep — e, € ©, we have the
commutation formulas

LitaEpe, ifA+aeAim|n, d);
Epcly =

0, otherwise,
s B — Epcly—o, ifr—aecA(mln,d);
AEbe = 0, otherwise.

Proof. The following identities are derived by direct computation:
Kg;0| [Ka;=1| _ [Aa+1]]| Kg:0

o [P
Ka:1| _ a2, | Ka ra—1p—1| Ka

o [ e

From the defining relation (Q2), we can see that K, and E}, . commute if a # b
and a # c. Moreover,

KpEp e =qpEp,Kp.

This implies

Kb _ Kb;—l
(25) Eb,c |:)\‘b:| - |: }‘4b j| Eb,C‘

We also have

which implies

K] [Keil
(26) Eb,C |:)\'c} - |: )\c } Eb,C'
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Then, for A € A(m|n,d), and b # ¢, we have

Ky, —1] K. 1 K
=[] 1 5]

1#b,c

Multiply both sides of the preceding equality by [f: ] and use (23) to simplify the
right-hand side and (25), (26) to simplify the left-hand side. The result is

Kp;1 i Ap+1 Ky K.;1 K;
Yl L Gl Pt | B A

l#b,c

Assuming A, > 1 and using (24), we get

_ A+ 1] Kb re | Ke —1p—1| Ke K
P L [ ) 11 [

I#b,c

Thus, when A, > 1 we can multiply through in the above expression and apply
Proposition 3.6.1(c) to see that the first summand must be zero. The above equality
simplifies to

Eb,clk = qcc_l Kc_l 1k+aEb,c-

Now, by Proposition 3.6.2(a), Kc_1 acts on 1) 44 as qc_()”"_l). Thus we obtain the
equality in the first part of the proposition in the case A, > 1.

If A = 0, then the right-hand side is zero by Proposition 3.6.1(c). This proves
the first part of the proposition. The proof of the second part is similar. O

3.8. Commutation formulas between divided powers of root vectors. We will
need to know how divided powers of root vectors commute with each other. To
obtain this we use the PBW-commutator lemma presented in [De Wit 2003]. We
first consider the case when both root vectors correspond to positive roots?:

(—I)E“shEC’dEc,dEa,b, (b<corc<a<b<d);

(—1)Ea’bE""’fJbEc,dEa,b, (a<c<b=d);

Q1) EgpEeq= |0 " dabeid Eas (@a=c<b<d

c Eqd+4z " EcaEap. (b =o);
(—D)EabEcdE. 4Eqp+(qp— a5V EqaEcp.

(a<c<b<d).

Before stating the result, we first observe that we can make the following assump-
tions. First, since the case when both root vectors have divided power one is handled
by (27), we may assume that at least one of the powers is greater than one. Second,

ZNote that there is a typographic error in [De Wit 2003, 20(b)] and that we have chosen to write
signs in an equivalent but more symmetric fashion.
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if e, — &p is an odd root, then by [De Wit 2003, Section IV] we have Ej =0
That is, just as in the nonquantum case we may assume the odd root vectors have
divided power at most one. Therefore, in what follows if the power of a root vector
is one, then it may be even or odd; but if the power is greater than one, then we
are implicitly assuming the root vector is even. In particular, the combination of
these two assumptions means that in each formula below at least one root vector
is even and, hence, our formulas do not involve extra signs due to the Z,-grading.

Under the above assumptions lengthy but elementary inductive arguments us-
ing (27) imply the following commutator formulas for the divided powers of root
vectors associated to positive roots. In these relations and the ones that follow we
use the g, notation introduced in (17) and the Gaussian binomials introduced in
(22). The relations given here are analogous to those obtained in [Xi 1999] for the
quantum groups of simple Lie algebras.

Proposition 3.8.1. Let E, j and E . 4 be two root vectors witha <b and ¢ <d, and
let M, N > 1 satisfying the assumptions given above. We then have the following
commutation formulas.

(D) Ifb<corc<a<b<d,then
M) -(N) _ =(N) (M)
Ea,b Ec,d _Ec,d Ea,b :
) Ifa=c<b<dora<c<b=d,then
(M) -(N) _ MN 1(N) (M)
Eab Ec,d =dp Echab :
(B) Ifa<b=c<d,then

min(M,N)
M) ~(N) _ —~(N=t)(M—t) -(N=t) -(t) (M—t)
E pEqg = Z dp E g "Ejalap
t=0

@) Ifa<c<b<d,then
min(M,N) (-1

(M) ~(N) _
E b Ecd = Z qap *
t=0

We note that from these commutator formulas we can derive a second set by
solving for E(EZ) E[(zj’\g) and then interchanging («a, b) and (¢, d). Taken together
with the formulas given in the proposition these give a complete set of commutator
formulas for divided powers of positive root vectors. That this is a complete set of
formulas can easily be seen by considering the various possibilities for the subscripts
(cf. [Doty and Giaquinto 2002, Section 9]).

There is a similar set of commutator formulas for divided powers of negative
root vectors. They can be derived directly using the analogous results from [De Wit
2003]. Alternatively, U admits an antiautomorphism given by E, — F,, Fy— Eg,

1 (6) (N=1) (M=) ()
(@b—ap VINE, yE; g "Eqgy "Eq g
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and K, — K !. Applying this map to the commutator relations for positive root
vectors yields the commutator relations among negative root vectors.

3.9. More commutation formulas. Finally we give the commutation formulas
between a positive and a negative root vector. Let us assume a < b and ¢ < d. Then
from [De Wit 2003] we have the following:

(28) Ea,b Ed,c

(—1)E“’bE""’Ed,cEa,b, (b<corc<a<b<d);
(—)EarEacEy Eqp+ KepEapc, a<c<b=d)
= (~DEavEacEy B, p—(—1)EarEacK, yEgy, (a=c<b<dy;
(~)EarBacEy Eqp+(qa—daz") " (Kap —K7}). (a=candb=d);
(~1)EarEacEy Eup—(qp— a5 )V KepEacEap. (@<c<b<d.

With elementary inductive arguments, this yields the next result. The assumptions
on divided powers of root vectors stated before Proposition 3.8.1 apply here as well.

Proposition 3.9.1. Let E, , and E; . be two root vectors witha < b and ¢ < d,
and let M, N > 1. We then have the following commutation formulas.
() Ifb<corc<a<b<d,then

M) (N) _ »(N) (M)
Ea,b Ed,c _Edc Eab :

2) Ifa<c<b=d,then

min(M,N)
M) -(N) _ —t(N—t) o (N—t) -t M~—t) ()
E p Eqe = Z 9p Eje "Keakyp "Eae
=0
(B3) Ifa=c<b<d,then
min(M,N)
(M) ~(N) _ t —t(M—1-t) -(t) o (N—1) p-t (M—1)
Eop Eal = Z (=1’q, EgjpEge "KapEgp
t=0
@) Ifa <b, then
min(M,N)
(M) ~(N) _ WN-1t) | Kagp;2t =M — N | (M~
Ea,b Eb,a - Z Eb,a |: ¢ t Ea,b :
+=0
5) Ifa<c<b<d,then
M) -(N)
Ea,b Ed,c
min(M,N)

—t(2N—-3t—1)/2 — N— M—
= > Vg T g gy Y INES TV ED, KL LB T ED.

c
t=0
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We can use the antiautomorphism on U defined in the previous section along with
simple calculations to derive additional identities (compare [Doty and Giaquinto
2002, Section 9]). In this way we obtain a complete set of commutation relations
involving a positive root vector to the left of a negative root vector. There are similar
commutation formulas for the case of a negative root vector followed by a positive

root vector. These can be obtained from the above formulas by solving for the term
Eqo £,
Taking all possible formulas we obtain the commutation formulas for divided

powers of root vectors. The interested reader can derive the complete set.

EC(IAZ/)I). The new formulas will be of a similar form.

3.10. An si-form for U. Recall that Lusztig defined an # = Z[q, ¢~ ']-form for
U, (g) whenever g is a semisimple Lie algebra. We define an analogous s{-form
for U. Let Uy denote the sd-subsuperalgebra of U generated by

K
{ECEJ,\I/)I)’K;H’[ ta] ‘1§a¢b§m+n,M,zelzo}.

Fix an order on the root system ®* and let P(m|n) be as in (15). For 4 =
(A(a)) € P(m|n), we define

e T EAO. m= 1R

a=¢c,—epEdT a=gy,—e €Dt

where the product is taken according to the fixed order on ®*.

There is a known basis for the analogously defined sd-form for U, (gg) following
from Lusztig’s basis for Uy (sl(n)) [Lusztig 1990, Theorem 4.5] (see also [Xi 1999]).
Using this basis and the quantum commutator formulas given in the previous section
it follows that Uy has an s{-basis given by the set

(29)
m-+n
oa | Ka
{EA I1 (Ka“ [M ])FC‘A,CeP(m|n),01,...,0m+ne{0,1},,ueA(m|n)}.
a
a=1

In particular this gives a basis for U after extending scalars (compare with [Zhang
1993, Proposition 1]).

If Ais S or T, then we define Ay to be the image of Uy under the quotient
map. In particular A is a Z[g, g~ ']-subsuperalgebra of A and (the image under
the quotient map of) the set given in (29) spans A 4. For short we call S;(m|n,d)y
the integral q-Schur superalgebra.

3.11. Quantum Kostant monomials and content functions. We now define the
quantum analogue of the Kostant monomials. Any finite product of nonzero elements
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of the form

(M) +1 Ka
o 5]

where |l <a#b<m+nand M,t € Z>(, will be called a Kostant monomial.
We also define content functions as before. Namely, the content function

m-+n
(30) x : {Kostant monomials} — @ Ze;

i=1
is given on generators by declaring foro =¢; —ep € &, M, N e N, and t € Z>
that

M _
HELD) = Menniary 1Ko =xk7H = ([ ]) =0

For general monomials we again use the formula x(XY) = x(X)+ x(Y) whenever
X, Y are Kostant monomials.

We also define the left content, xr, and right content, y g, by declaring on
generators that

ALEMD) = Meq,  yu(Ka) = xo(K7h) = u([’f]) o,

XR(EL(IJ,\bl))=M€b, XR(Ka)=XR(Ka_1)=XR(|:I§ai|) =0,

and again using the rule x7.(XY) = xr(X) + xg(Y) (similarly for y g) whenever
X and Y are Kostant monomials. We again use (14) to view outputs of the content
functions as elements of A (m|n).

3.12. A basis for the q-Schur superalgebra. We can now state the quantum ana-
logue of Theorem 2.14.3.

Theorem 3.12.1. The integral q-Schur superalgebra is the A-subalgebra of
Sq(m|n,d)

generated by

Kb
M M
E(z ) s Fz( ) , | s

where |l <a<m+n—1,1<b<m-+n,and M € 7>q. Moreover, the set

Y= |J {(EslxFc|A.CeP(mln). x(E4Fc) < 1}
AeA(m|n,d)

forms a Q(q)-basis of Sq(m|n, d) and an s1-basis of Sq(m|n, d)y.
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We remark that, as in Section 2.14, the set Y has alternate descriptions using
the left and right content functions. Applying the antiautomorphism of U yields a
similar basis in which the positions of the £ and F terms are swapped; that is, the
analogue of Y_ in [Doty and Giaquinto 2002].

Proposition 3.12.2. The set Y spans the superalgebra 'T.

Proof. The proof is exactly analogous to the proof of Proposition 2.14.1 and
the proof of [Doty and Giaquinto 2002, Proposition 9.1]. One again argues by
induction on degree and content using the above commutation formulas to write
an arbitrary Kostant monomial as a Z[g, ¢~ !]-linear combination of elements of Y.
The coefficients in our commutation formulas are slightly different, but they are still
elements of Z[g, ¢~ '] and so this does not affect the substance of the argument. [

Lemma 3.12.3. The cardinality of the set Y is equal to the dimension of S =
Sq(mln,d).

Proof. It is known that the dimension of S, (m|n, d) over Q(g) equals the dimension
of S(m|n, d) over Q. This is established, for example, in the proof of [Mitsuhashi
2006, Proposition 4.3]. This can also be seen as an outcome of [Du and Rui 2011,
Theorem 9.7]. The result then follows by the proof of Lemma 2.14.2. O

Theorems 3.3.1 and 3.12.1 now follow as in the nonquantum case.

3.13. A weight idempotent presentation. We also have a quantum analogue of
Theorem 2.15.1 which gives the g-Schur superalgebra by generators and relations
using the weight idempotents.

Theorem 3.13.1. The q-Schur superalgebra Sg(m|n, d) is generated by the homo-
geneous elements

Ei.....Emin-i. Fi....\ Foin-1, Ly,

where A runs over the set A(m|n, d). The Z,-grading is given by seiting Em=
Fpo=1E,=F,=0fora#m,and 1, =0forall . € A(m|n,d).
These generators are subject only to the relations:
Q1) Lily=&ulh Y, Ia=1
AeA(m|n,d)
IatayEar ifA € A(mln,d);
Q) Eal; = {Ouaa o Ifh+a € AGmn.d)

, otherwise;

lx_aaFa, lf)\.—(XQEA(Wl|I’l,d);

0, otherwise;

(Q2") Fql) = {
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(Qzl//) lkEa — Ealk—aa’ if)\'_Ola GA(WI|7’1, d)’
0, otherwise;
Q2" 1, Fy = Falytq,, ifAi+oag€A(min, d);
0, otherwise;
@) [EaFil=bp 3 [ho—(DEFoay ]
LeA(min,d)

and relations (Q4) and (Q5) given in Theorem 3.3.1.

Theorem 3.13.1 is proven just as in the nonquantum case and as in the proof of
[Doty and Giaquinto 2002, Theorem 3.4].

4. The g-Schur superalgebra as an endomorphism superalgebra

4.1. Quantum Schur—Weyl duality. There is a natural signed action of the Iwahori—
Hecke algebra associated to the symmetric group on d letters, H; = Hg(Xy),
on V&4 Mitsuhashi [2006] defines the g-Schur superalgebra as the superalgebra

S :=S(m|n, d) = Endg, (V®?).

The main result of [Mitsuhashi 2006] is to establish a Schur—Weyl duality between
this endomorphism algebra and the Iwahori—-Hecke algebra. However, it is not
immediately obvious the g-Schur superalgebra defined in this paper as a quotient
of U coincides with the one used there. We now reconcile this difference.

Recall that we have a fixed homogeneous basis vy, ..., U+, for V and this
defines a homogeneous basis {v;, ® ---®v;, | 1 <iy,...,ig <m 4+ n} for ved,
Define a map oy : ved _, yed by

Ud(vil R ® Uid) = (—1)‘_’i1+"'+‘_’id Vi, - Qj,.

It is easily seen that o; commutes with the action of H; on V®4 defined in
[Mitsuhashi 2006].

Let U% denote the quantum group associated to gl(m|n) in [Benkart et al.
2000; Mitsuhashi 2006]. This algebra is generated by elements ey, ..., €,+n—1,
Sis--oy fm+4n—1, and qh (where & ranges over the elements of the dual weight
lattice), along with an element denoted by o. For each d > 1, denote by

pa : U% — Endg(q) (V®)

the homomorphism given in Equation (3.2) of [Mitsuhashi 2006]. Theorem 4.4 of
the same reference states that S = pa(U?). For short we write S for the g-Schur
superalgebra defined in Section 3.2 as a quotient of U. We claim that S =S. When
d =1, it is straightforward to see that the action of the generators ¢4, fq, qh,



314 HOUSSEIN EL TURKEY AND JONATHAN R. KUJAWA

coincide with the action of our E,, F,, and K 3:1. More generally, this remains true
for d > 1 once we take into account the fact that the difference in the coproducts is
exactly explained by the fact that we use the sign convention whereas Mitsuhashi
does not but instead introduces the element o (which acts on V&4 by 04).

Thus S C S. It only remains to account for the extra generator ¢ in U°. That is,
since o acts on V&4 by the map o, we need to show that o4 lies in S. The next
lemma shows that it lies in the image of p; and, hence, in S.

Lemma 4.1.1. For each d > 1, there exists x4 € U so that pg(x4) = 04.

Proof. 1t suffices to construct an element of U whose action on our basis for ved
coincides with the action of o,;. We build this element up in several steps. First, for
0<s=<dand1 <a=<m+n we use the notation given in (17) and (1) to define
ws.a € U by

(Ka=1)(Ka—qa) - (Ka=gq5"")
X (Ka =gy + (D" (Ka = g5 -+ (Ka— )
(@5 — D@ —qa) (@5 a3 s~z @5 —a)

Given 1 < a <m + n we define a function,

(31) Ws.a =

Fa Vi, ® - Qui, |1 =iy,....ig <m+n}—1{0,1,....d},
which counts the occurrences of v, in v;; ® - -+ ® v;,. That is, it is defined by
ta=7q(V;; @ Qi) ={t=1,....d|i; =a}|.

Then by a direct calculation (cf. the calculation used to prove relation (Q7) in
Lemma 3.5.1),

(=D (vi; QUi ® -+ ® viy), ifs=rg
0, if s #rg.
d
Now, for 1 <a <m +n define 2, € Uby Q; = ) ws4. It then follows that

for any basis vector v;; ® - - ® v;, we have §=0

a)s,a(vil RV, - Q Uid) = {

Qa(vi; ® - ® i) = (=) (v;, ® - @ vj,).

m+n
Finally we define Q2 € U to be the element 2 = [][ 4. It follows that
m+n _ o=
Q(Uil R R vid) — ( l_[ (_l)ra'a) (vil R ® Uid)
a=1

— (_1)r1~T+"'+rm+n'm+n(vil R ® vid)

— (_1)5,-1 +F+Vm+tn (vil R ® vid)
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for every basis element v;; ® --- ® v;,. That is, as desired, 2 € U acts as oy
on V&4, O
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