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Brink and Howlett [Math. Ann. 296:1 (1993), 179–190] have introduced a
partial ordering, called dominance, on the root systems of Coxeter groups in
their proof that all finitely generated Coxeter groups are automatic. Edgar
(Ph.D. thesis, 2009), in an investigation of various regularity properties of
Coxeter groups, studied a function on the reflections of such groups, called
1-height. Here we show that these two concepts are closely related to each
other. We also give applications of dominance to the study of imaginary
cones of Coxeter groups.

1. Introduction

In this paper we attempt to extend the understanding of a partial ordering (called
dominance) defined on the root system of an arbitrary Coxeter group. The dominance
ordering was introduced in [Brink and Howlett 1993] (where it was used to prove
the automaticity of all finitely generated Coxeter groups). Dominance ordering
was further studied in [Brink 1998; Krammer 1994; 2009], and it has only been
recently examined again, in [Dyer 2012] (in connection with the representation
theory of Coxeter groups) and in [Edgar 2009; Fu 2012]. The present paper is a
short addition to the last two references, and it could serve as a building block in the
general knowledge of dominance ordering and of the combinatorics and geometry
of Coxeter groups in general.

More specifically, this paper has the following two objectives: (1) investigating
the connection between the dominance ordering on the root system of an arbitrary
Coxeter groups W and a specific function (called1-height) defined on the set of
reflections of W ; and (2) exploring the applications of the dominance ordering to
the imaginary cone of W (as defined by Kac).

The paper is organized into three sections. The first introduces background
material: root bases, Coxeter data, and root systems are defined in the context of the
paper, and some basic properties of Coxeter groups are recalled for later use in the
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paper (most of them can be found in [Howlett 1996]). Here we follow the definition
used in [Krammer 1994], which gives a slight variant of the classical notion of
root systems, particularly adapted when working with arbitrary (not necessarily
crystallographic) Coxeter groups. Furthermore, this framework allows easy passing
to reflection subgroups. Indeed, we recall the fundamental property [Dyer 1987,
Theorem 1.8] that the reflection subgroups of a Coxeter group are themselves
Coxeter groups, and this particular framework allows us to apply all the definitions
and properties to the reflection subgroups and not only to the overgroup.

In the second section, the first main theorem (giving the connection between
1-height and dominance order) is stated and proved. All results are related to an
arbitrary Coxeter datum, implying the data of a root systemˆ, its associated Coxeter
group W , and the set T of all reflections of W (consisting of all the W -conjugates
of the Coxeter generators). The main objects of study are:

� The dominance order on ˆ (Definition 3.1). Given x, y 2 ˆ, we say x
dominates y if whenever w 2W such that wx 2ˆ� then wy 2ˆ� too (where
ˆ� denotes the set of negative roots).

� The1-height function on T . This is a variant of the usual (standard) height
function of a reflection t 2 T , namely, the minimal length of an element of
W that maps ˛t (the unique positive root associated to t ) to an element of the
root basis. Adhering to the general framework of this paper, our definition
of the height function applies to all reflection subgroups of W . It is easy to
check (Lemma 3.13) that the height of t is equal to the sum of the heights of t
relative to each maximal (with respect to inclusion) dihedral reflection subgroup
containing t . The1-height of t is then defined as a subsum of this sum, taking
into account only those subgroups which are infinite (Definition 3.8).

We then show that these two concepts are closely related in the following way. The
canonical bijection t $ ˛t , between T and ˆC (the set of positive roots), restricts
to a bijection between (for any n 2 N)

� the set Tn of all reflections whose1-height is n, and

� the set Dn of all positive roots which strictly dominate exactly n other positive
roots.

The proof of this fact (Theorem 3.15) relies on a study of dihedral reflection
subgroups. We have previously studied the partition .Dn/n2N of ˆC in [Fu 2012];
in particular, we showed there that each Dn is finite and we gave an upper bound
for its cardinality. Together with Theorem 3.15, this allows us to deduce here some
further information on the combinatorics of the Tn’s (Corollary 3.23).

The final section explores the relation between the dominance order and the
imaginary cone of a Coxeter group. The concept of imaginary cone was introduced
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in [Kac 1990] to study the imaginary roots of Kac–Moody Lie algebras, and was
later generalized to Coxeter groups by Hée [1990; 1993] and Dyer [2012]. It is
defined as the subset of the dual of the Tits cone (denoted by U � here) consisting
of elements v 2 U � such that .v; ˛/ > 0 for only finitely many ˛ 2 ˆC (where
. ; / denotes the bilinear form associated to the Coxeter datum). The main results
(Theorem 4.13 and Corollary 4.15) of this section state the following property:
whenever x, y 2ˆ, then x dominates y if and only if x�y lies in the imaginary
cone. One direction of this property was first suggested to us by Howlett [private
communication], and it is a special case of a result obtained independently (but
earlier) by Dyer. We are deeply indebted to both of them for helpful discussions
inspiring us to study the imaginary cone. We would also like to thank the referee of
this paper for many valuable suggestions, especially those resulting in Corollary 4.15.
To close this section, we include an alternative definition for the imaginary cone in
the case where W is finitely generated.

2. Background material

Definition 2.1 [Krammer 1994]. Suppose that V is a vector space over R. Let . ; /
be a bilinear form on V and let � be a subset of V . Then � is called a root basis if
the following conditions are satisfied:

(C1) .a; a/D 1 for all a 2�, and for distinct elements a, b 2�, either .a; b/D
�cos.�=mab/ for some integermabDmba� 2, or else .a; b/��1 (in which
case we define mab Dmba D1).

(C2) 0 … PLC.…/, where the the positive linear cone of a set A is defined by

PLC.A/D
�X
a2A

�aa
ˇ̌̌
�a � 0 for all a 2 A and �a0 > 0 for some a0 2 A

�
:

If � is a root basis, then we call the triple C D .V;�; . ; // a Coxeter datum.
Throughout this paper we fix a particular Coxeter datum C. We stress that our
definition of a root basis is not the most classical one of [Bourbaki 1968] or even
[Humphreys 1990]: the root system (see Definition 2.5) arising from our definition
of a root basis is not necessarily crystallographic (indeed, the bilinear form can take
values less than �1), and the root basis is not assumed to be linearly independent
(this allows us to transmit easily the definitions and properties of a Coxeter group to
its reflection subgroups; indeed, the requirements in our definition of a root basis of a
Coxeter group are identical to those in the characterization of the equivalent of a root
basis in any reflection subgroup). Observe that (C1) implies that a … PLC.� n fag/
if a 2�, and (C1) and (C2) together imply that fa; b; cg is linearly independent for
all distinct a, b, c 2 �. Note also that (C2) is equivalent to the requirement that
zero does not lie in the convex hull of �.
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For each a 2�, define �a 2GL.V / by the rule �axD x�2.x; a/a for all x 2 V .
Observe that �a is a reflection, and �aaD�a. We summarize a few useful results:

Proposition 2.2 [Howlett 1996, Lecture 1, propositions on pp. 2–3]. (i) Suppose
that a, b 2� are distinct such that mab ¤1. Set � D �=mab . Then

.�a�b/
iaD

sin.2i C 1/�
sin �

aC
sin 2i�
sin �

b

for each integer i , and in particular, �a�b has order mab in GL.V /.

(ii) Suppose that a, b2� are distinct such thatmabD1. Set �Dcosh�1.�.a; b//.
Then

.�a�b/
iaD

8<:
sinh.2i C 1/�

sinh �
aC

sinh 2i�
sinh �

b if � ¤ 0,

.2i C 1/aC 2ib if � D 0;

for each integer i , and in particular, �a�b has infinite order in GL.V /. �
Let GC be the subgroup of GL.V / generated by f�a j a 2 �g. Suppose that

.W; S/ is a Coxeter system in the sense of [Hiller 1982] or [Humphreys 1990] with
SDfra ja2�g being a set of involutions generatingW subject only to the condition
that the order of rarb is mab for all a, b 2� with mab ¤1. Then Proposition 2.2
yields that there exists a group homomorphism �CWW !GC satisfying �C.ra/D�a
for all a 2�. This homomorphism, together with the GC-action on V , gives rise to
a W -action on V : for each w 2W and x 2 V , define wx 2 V by wxD �C.w/x. It
can be easily checked that this W -action preserves . ; /. Denote the length function
of W with respect to S by `, and call an expression w D r1r2 � � � rn (where w 2W
and ri 2 S ) reduced if `.w/D n. The following is a useful result:

Proposition 2.3 [Howlett 1996, Lecture 1, theorem, p. 4]. Let GC, W , S and ` be
as above, and let w 2W and a 2�. If `.wra/� `.w/, then wa 2 PLC.�/. �

An immediate consequence of the proposition is the following important fact:

Corollary 2.4 [Howlett 1996, Lecture 1, corollary, p. 5]. Let GC, W , S and �C be
as above. Then �CWW !GC is an isomorphism. �

In particular, the corollary yields that .GC; f�a j a 2 �g/ is a Coxeter system
isomorphic to .W; S/. We call .W; S/ the abstract Coxeter system associated to
the Coxeter datum C, and we call W a Coxeter group of rank #S (where # denotes
cardinality).

Definition 2.5. The root system of W in V is the set

ˆD fwa j w 2W and a 2�g:

The setˆCDˆ\PLC.�/ is called the set of positive roots, and the setˆ�D�ˆC

is called the set of negative roots.
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From Proposition 2.3 we may readily deduce that:

Proposition 2.6 [Howlett 1996, Lecture 3, corollary on p. 11, proposition on p. 10
and lemma on p. 4]. (i) Let w 2W and a 2�. Then

`.wra/D

�
`.w/� 1 if wa 2ˆ�;
`.w/C 1 if wa 2ˆC:

(ii) ˆDˆC]ˆ�, where ] denotes disjoint union.

(iii) W is finite if and only if ˆ is finite. �

Define T D
S
w2W wSw�1. We call T the set of reflections in W . For each x 2

ˆ, let �x 2GL.V / be defined by the rule �x.v/D v�2.v; x/x for all v 2 V . Since
x 2ˆ, it follows that xDwa for some w 2W and a 2�. Direct calculations yield
that �x D .�C.w//�a.�C.w//

�1 2GC. Now let rx 2W be such that �C.rx/D �x .
Then rx D wraw�1 2 T , and we call rx the reflection corresponding to x. It is
readily checked that rx D r�x for all x 2ˆ and T D frx j x 2ˆg. For each t 2 T
we let ˛t be the unique positive root with the property that r˛t D t . It is also easily
checked that there is a bijection  WT !ˆC given by  .t/D ˛t , and we call  
the canonical bijection.

For each x 2 ˆC, as in [Brink and Howlett 1993], we define the depth of x
relative to S to be minf`.w/ j w 2W and wx 2ˆ�g, and we denote it by dp.x/.
The following lemma gives some basic properties of depth:

Lemma 2.7 [Brink and Howlett 1993; Brink 1994; Saunders 1991]. (i) Let
˛ 2ˆC. Then dp.˛/D 1

2
.`.r˛/C 1/.

(ii) Let r 2 S and ˛ 2ˆC n f˛rg. Then

dp.r˛/D

8<:
dp.˛/� 1 if .˛; ˛r/ > 0;
dp.˛/ if .˛; ˛r/D 0;
dp.˛/C 1 if .˛; ˛r/ < 0:

Proof. (i) See [Brink 1994, Corollary 2.7]. This is also a special case of [Fu 2010,
Lemma 1.3.19].

(ii) See [Brink and Howlett 1993, Lemma 1.7]. �

Remark 2.8. Part (i) of Lemma 2.7 is equivalent to the property that any reflection
in a Coxeter group has a palindromic expression which is reduced, and this was
indeed noted in [Saunders 1991, Proposition 4.3].

Define functions N WW ! P.ˆC/ and N WW ! P.T / (where P denotes the
power set) by setting

N.w/D fx 2ˆC j wx 2ˆ�g;

N .w/D ft 2 T j `.wt/ < `.w/g;
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for all w 2 W . We call N the reflection cocycle of W (sometimes N.w/ is also
called the right descent set of w). Standard arguments such as those in [Humphreys
1990, Section 5.6] yield that, for each w 2W ,

`.w/D #N.w/(2-1)

and

N.w/D frx j x 2N.w/g:(2-2)

In particular, N.ra/D fag for a 2�. Moreover, `.wv�1/C `.v/D `.w/ for some
w, v 2W if and only if N.v/�N.w/.

A subgroup W 0 of W is a reflection subgroup of W if it is generated by the
reflections contained in it: W 0 D hW 0\T i. For any reflection subgroup W 0 of W ,
let

S.W 0/D ft 2 T jN.t/\W 0 D ftgg and �.W 0/D fx 2ˆC j rx 2 S.W
0/g:

It was shown by Dyer [1990] and Deodhar [1982] that .W 0; S.W 0// forms a Coxeter
system:

Theorem 2.9 (Dyer). (i) Suppose that W 0 is an arbitrary reflection subgroup
of W . Then .W 0; S.W 0// forms a Coxeter system. Moreover, W 0 \ T DS
w2W 0 wS.W

0/w�1.

(ii) Suppose thatW 0 is a reflection subgroup ofW , and suppose that a, b 2�.W 0/
are distinct. Then

.a; b/ 2 f� cos.�=n/ j n 2 N and n� 2g[ .�1;�1�:

Conversely, if �0 is a subset of ˆC satisfying the condition that

.a; b/ 2 f� cos.�=n/ j n 2 N and n� 2g[ .�1;�1�

for all a, b 2�0 with a ¤ b, then �0 D�.W 0/ for some reflection subgroup
W 0 of W . In fact, W 0 D hfra j a 2�0gi.

Proof. (i) See [Dyer 1990, Theorem 3.3].

(ii) See [Dyer 1990, Theorem 4.4]. �

Let . ; /0 be the restriction of . ; / to the subspace span.�.W 0//. Then C0 D

.span.�.W 0//;�.W 0/; . ; /0/ is a Coxeter datum with .W 0; S.W 0// being the as-
sociated abstract Coxeter system. Thus the notion of a root system applies to C0.
We let ˆ.W 0/, ˆC.W 0/ and ˆ�.W 0/ be, respectively, the set of roots, posi-
tive roots and negative roots for the datum C0. Then ˆ.W 0/ D W 0�.W 0/, and
Theorem 2.9(i) yields that ˆ.W 0/ D fx 2 ˆ j rx 2 W 0g. Furthermore, we have
ˆC.W 0/Dˆ.W 0/\PLC.�.W 0// and ˆ�.W 0/D�ˆC.W 0/. We call S.W 0/ the
set of canonical generators of W 0, and we call �.W 0/ the set of canonical roots
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of ˆ.W 0/. In this paper a reflection subgroup W 0 is called a dihedral reflection
subgroup if #S.W 0/D 2.

A subset ˆ0 of ˆ is called a root subsystem if ryx 2ˆ0 whenever x, y are both
in ˆ0. It is easily seen that there is a bijective correspondence between the set of
reflection subgroups W 0 of W and the set of root subsystems ˆ0 of ˆ: W 0 uniquely
determines the root subsystem ˆ.W 0/, and ˆ0 uniquely determines the reflection
subgroup hfrx j x 2ˆ0gi.

The notion of a length function also applies to the Coxeter system .W 0; S.W 0//,
and we let `.W 0;S.W 0//WW 0! N be the length function for .W 0; S.W 0//. If w 2
W 0 and a 2 �.W 0/ then applying Proposition 2.6 to the Coxeter datum C0 D

.span.�.W 0//;�.W 0/; . ; // yields

(2-3) `.W 0;S.W 0//.wra/D

�
`.W 0;S.W 0//.w/� 1 if wa 2ˆ�.W 0/;
`.W 0;S.W 0//.w/C 1 if wa 2ˆC.W 0/:

Similarly, the notion of a reflection cocycle also applies to the Coxeter system
.W 0; S.W 0//. Let N .W 0;S.W 0//WW ! P.W 0\T / denote the reflection cocycle for
.W 0; S.W 0//. Then, for each w 2W 0,

N .W 0;S.W 0//.w/D
˚
t 2W 0\T j `.W 0;S.W 0//.wt/ < `.W 0;S.W 0//.w/

	
;

and we define N.W 0;S.W 0//.w/D fx 2ˆC.W 0/ jwx 2ˆ�.W 0/g for each w 2W 0.
It is shown in [Dyer 1987] that N .W 0;S.W 0//.w/ D N.w/\W

0 for an arbitrary
reflection subgroup W 0 of W . Furthermore, it is readily seen that the canonical
bijection  restricts to a bijection  0WT \W 0!ˆC.W 0/ given by  0.t/D ˛t . For
w 2 W 0, applying (2-1) to the Coxeter datum C0 D .span.�.W 0/;�.W 0/; . ; /0/
yields that

(2-4) `.W 0;S.W 0//.w/D #N.W 0;S.W 0//.w/:

Furthermore, `.W 0;S.W 0//.wv�1/C `.W 0;S.W 0//.v/D `.W 0;S.W 0//.w/ for some w,
v 2W 0 precisely when N.W 0;S.W 0//.v/�N.W 0;S.W 0//.w/.

For a Coxeter datum CD .V;�; . ; //, since � may be linearly dependent, the
expression of a root in ˆ as a linear combination of elements of � may not be
unique. Thus the concept of the coefficient of an element of � in any given root
in ˆ is potentially ambiguous. We close this section by specifying a canonical
way of expressing a root in ˆ as a linear combination of elements from �. This
canonical expression follows from a standard construction similar to that considered
in [Howlett et al. 1997, Proposition 2.9].

Given a Coxeter datum CD .V;�; . ; //, let E be a vector space over R with
basis �E D fea j a 2�g in bijective correspondence with �, and let . ; /E be the
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unique bilinear form on E satisfying

.ea; eb/E D .a; b/ for all a; b 2�:

Then CE D .E;�E ; . ; /E / is a Coxeter datum. Moreover, CE and C are associated
to the same abstract Coxeter system .W; S/; indeed, Corollary 2.4 yields that
the abstract Coxeter group W is isomorphic to both GC D hf�a j a 2 �gi and
GCE D hf�ea j a 2�gi. Furthermore, W acts faithfully on E via ray D �eay for
all a 2� and y 2E.

Let f WE! V be the unique linear map satisfying f .ea/D a for all a 2�. It is
readily checked that .f .x/; f .y//D .x; y/E for all x, y 2E. Now, for all a 2�
and y 2E,

ra.f .y//D �a.f .y//D f .y/� 2.f .y/; a/aD f .y/� 2.f .y/; f .ea//f .ea/

D f .y � 2.y; ea/Eea/D f .ray/:

Then it follows that w.f .y// D f .wy/ for all w 2 W and all y 2 E, since W
is generated by fra j a 2 �g. Let ˆE denote the root system associated to the
datum CE . Standard arguments yield that:

Proposition 2.10 [Fu 2012, Proposition 2.1]. The restriction of f defines a W -
equivariant bijection ˆE $ˆ. �

Since �E is linearly independent, it follows that each root y 2 ˆE can be
written uniquely as y D

P
ea2�E

�aea; we write �a D coeffea.y/ and call it the
coefficient of ea in y. We use this uniqueness together with the W -equivariant
bijection f WˆE $ˆ to give a canonical expression of a root in ˆ in terms of �:

Definition 2.11. Suppose that x 2ˆ. For each a 2�, define the canonical coeffi-
cient of a in x, written coeffa.x/, by requiring that coeffa.x/D coeffea.f

�1.x//.
The support, written supp.x/, is the set of a 2� with coeffa.x/¤ 0.

3. Dominance, maximal dihedral reflection subgroups and infinity height

Throughout this section, let W be the abstract Coxeter group associated to the
Coxeter datum CD .V;�; . ; //, and let ˆ and T be the corresponding root system
and the set of reflections, respectively. Recently, in [Edgar 2009], a uniquely
determined nonnegative integer, called1-height, was assigned to each reflection
inW . (Edgar attributes the concept to Dyer.) Naturally, the set T is then the disjoint
union of the sets T0, T1, T2; : : : , where the set Tn consists of all the reflections
with1-height equal to n.

These Tn were used in [Edgar 2009, Chapter 5] to demonstrate nice regularity
properties of W . They gave rise to a family of modules in the generic Iwahori–
Hecke algebra associated to W , and in turn, these modules were used by Dyer
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(unpublished) to prove a weak form of Lusztig’s conjecture on the boundedness of
the a-function. Dyer also showed that if W is of finite rank, then there are finitely
many reflections in Tn for each n.

In this section we prove that for an arbitrary reflection t 2 T whose1-height
equals n, the corresponding positive root ˛t dominates precisely n other positive
roots. This observation will then establish a bijection between the set of all reflec-
tions in W with1-height equal to n and the set of all positive roots that dominate
precisely n other positive roots. Recent results on dominance obtained in [Fu 2012]
may then be immediately applied to the Tn’s, answering a number of basic questions
about these Tn’s.

Following [Howlett et al. 1997] and [Björner and Brenti 2005, Section 4.7], we
generalize the definition of dominance to the whole of ˆ (whereas in [Brink and
Howlett 1993] and [Brink 1998], dominance was only defined on ˆC), and we
stress that all the notations are the same as in the previous section.

Definition 3.1. (i) Let W 0 be a reflection subgroup of W , and let x, y 2ˆ.W 0/.
Then we say that x dominates y with respect to W 0 if

fw 2W 0 j wx 2ˆ�.W 0/g � fw 2W 0 j wy 2ˆ�.W 0/g:

If x dominates y with respect to W 0 then we write x domW 0 y.

(ii) Let W 0 be a reflection subgroup of W and let x 2ˆC.W 0/. Define

DW 0.x/D fy 2ˆ
C.W 0/ j y ¤ x and x domW 0 yg:

IfDW 0.x/D∅ we call x elementary with respect toW 0. For each nonnegative
integer n, define

DW 0;n D fx 2ˆ
C.W 0/ j #DW 0.x/D ng:

If W 0DW , we write D.x/ for DW 0.x/ and Dn for DW 0;n. If D.x/D∅ then
we call x elementary.

It is readily checked that dominance with respect to any reflection subgroup W 0

of a Coxeter group W is a partial ordering on ˆ.W 0/. The following lemma
summarizes some basic properties of dominance:

Lemma 3.2 [Fu 2012, Lemma 3.2]. (i) Let x, y 2 ˆC be arbitrary. Then
x domW y if and only if .x; y/� 1 and dp.x/� dp.y/.

(ii) Dominance is W -invariant, that is, if x domW y then wx domW wy for all
w 2W .

(iii) Let x, y 2ˆ be such that x domW y. Then �y domW �x.

(iv) Let x, y 2ˆ. Then there is dominance between x and y if and only if .x; y/�1.
�
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Corollary 3.3. Let x, y 2 ˆ, and let W 0 be an arbitrary reflection subgroup
containing both rx and ry .

(i) There is dominance with respect to W 0 between x and y if and only if
.x; y/0 � 1, where . ; /0 is the restriction of . ; / to the subspace span.�.W 0//.

(ii) x domW y if and only if x domW 0 y.

Proof. (i) This follows from Lemma 3.2(iv) applied to the Coxeter group W 0 and
the datum C0 D .span.�.W 0//;�.W 0/; . ; /0/.

(ii) The desired result is trivially true if x D y, so we may assume that x ¤ y. It is
clear that x domW y implies that x domW 0 y. Conversely, suppose that x domW 0 y.
Then (i) yields that .x; y/ D .x; y/0 � 1. Thus Lemma 3.2(iv) yields that either
x domW y, or else y domW x. If the latter is the case, then by the first part of the
current proof, y domW 0 x, and hence it follows that x D y (since dominance with
respect to W 0 is a partial ordering), contradicting our choice of x and y. �

Next is a well-known result whose proof can be found in the remarks immediately
before Lemma 2.3 of [Brink and Howlett 1993]:

Lemma 3.4. There is no nontrivial dominance between positive roots in the root
system of a finite Coxeter group. �

Next we have a technical result which is going to be used repeatedly in the rest
of this paper.

Proposition 3.5. Let ˛, ˇ 2 ˆC with .˛; ˇ/ � �1, and let W 0 be the dihedral
reflection subgroup generated by r˛ and rˇ . Further, we set � D cosh�1.�.˛; ˇ//,
and for each i 2 Z adopt the notation

(3-1) ci D

8<:
sinh i�
sinh �

if � ¤ 0,

i if � D 0:

(i) W 0 is infinite, and ˆ.W 0/D fci˙1˛C ciˇ j i 2 Zg.

(ii) Suppose that x, y 2ˆ.W 0/. Then .x; y/ 2 .�1;�1�[ Œ1;1/, and in particu-
lar, if x ¤˙y then hfrx; rygi is an infinite dihedral reflection subgroup. More
specifically,

(a) If x D cnC1˛C cnˇ and y D cmC1˛C cmˇ, then

.x; y/D

�
cosh..n�m/�/� 1 if � ¤ 0;
1 if � D 0:

(b) If x D cnC1˛C cnˇ and y D cm�1˛C cmˇ, then

.x; y/D

�
�cosh..nCm/�/� �1 if � ¤ 0;
�1 if � D 0:
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(c) If x D cn�1˛C cnˇ and y D cmC1˛C cmˇ, then

.x; y/D

�
�cosh..nCm/�/� �1 if � ¤ 0;
�1 if � D 0:

(d) If x D cn�1˛C cnˇ and y D cm�1˛C cmˇ, then

.x; y/D

�
cosh..n�m/�/� 1 if � ¤ 0;
1 if � D 0:

(iii) If x 2ˆC.W 0/ n f˛; ˇg, then DW 0.x/¤∅.

Proof. (i) Proposition 4.5.4(ii) of [Björner and Brenti 2005] implies that W 0 is
infinite, and the rest of statement follows from direct calculations similar to those
in Proposition 2.2.

(ii) This follows from (i) and a direct calculation.

(iii) If x 2ˆC.W 0/ n f˛; ˇg, part (i) yields that either x D cnC1˛C cnˇ (for some
n¤0), or else xD cn�1˛Ccnˇ (for some n¤1). Then part (ii) and Corollary 3.3(i)
imply that we can find some y 2ˆC.W 0/ n fxg such that x domW 0 y. �

The other key object to be studied in this section is the numeric function1-height
on T . As mentioned in the introduction, this function is defined in terms of infinite
dihedral reflection subgroups of W , and in order to make a precise definition of this
function we need a few technical results on infinite dihedral reflection subgroups.
We begin with a well-known one, whose proof we include for completeness.

Proposition 3.6 [Dyer 1991]. Suppose that ˛, ˇ 2ˆC are distinct. Let

W 0 D hfr j  2 .R˛CRˇ/\ˆCgi:

Then W 0 is a dihedral reflection subgroup of W .

Proof. Suppose for a contradiction that W 0 is not dihedral. Then #S.W 0/� 3, and
let x1, x2, x3 2 �.W 0/ be distinct. Theorem 2.9(ii) then yields that .xi ; xj / � 0
whenever i , j 2 f1; 2; 3g are different. Clearly x1, x2, x3 are all in the two-
dimensional subspace R˛CRˇ, and thus a contradiction would arise if we could
show that x1, x2, x3 are linearly independent. Let c1, c2, c3 2 R be such that
c1x1C c2x2C c3x3 D 0. Since x1, x2, x3 2ˆC, and 0 … PLC.�/, it follows that
c1, c2, c3 cannot be all positive or all negative. Renaming x1, x2, x3 if necessary,
we have the following three possibilities:

c1; c2 � 0 and c3 < 0; or(3-2)

c1; c2 � 0 and c3 > 0; or(3-3)

c1; c2; c3 D 0:(3-4)
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If (3-2) is the case then 0D .c1x1C c2x2C c3x3; x3/ < 0, and if (3-3) is the case
then 0D .c1x1C c2x2C c3x3; x3/ > 0; both are clearly absurd. Hence (3-4) must
be the case and x1, x2, x3 are linearly independent, a contradiction, as required. �

Let ˛, ˇ 2ˆC be distinct. Let W 00 be an arbitrary dihedral reflection subgroup
of W containing the dihedral reflection subgroup hfr˛; rˇ gi. Let x, y be the
canonical roots for W 00. It can be readily checked that RxCRy D R˛CRˇ, and
hence x, y2 .R˛CRˇ/\ˆC. It then follows thatW 00�hfr j 2 .R˛CRˇ/\ˆCgi.
This observation, together with Proposition 3.6, readily yields the following well-
known result:

Proposition 3.7. Every dihedral reflection subgroup hfr˛; rˇ gi of W (where the
elements ˛ and ˇ of ˆC are distinct), is contained in a unique maximal dihedral
reflection subgroup, namely hfr j  2ˆC\ .R˛CRˇ/gi. �

Definition 3.8. (i) Define M to be the set of all maximal dihedral reflection
subgroups of W .

(ii) Define M1 to be the set fW 0 2M j #W 0 D1g.

(iii) For each t 2 T , define Mt to be the set fW 0 2M j t 2W 0g.

(iv) Let W 0 be a reflection subgroup of W , and let t 2W 0\T . Define the standard
height, h.W 0;S.W 0/.t/, of t with respect to the Coxeter system .W 0; S.W 0// to
be

min
˚
`.W 0;S.W 0//.w/ j w 2W

0, w˛t 2�.W 0/
	
:

For the standard height of t with respect to the Coxeter system .W; S/, we
simply write h.t/ in place of h.W;S/.t/.

Remark 3.9. For arbitrary reflection subgroup W 0 of W , the depth function nat-
urally applies to ˆC.W 0/: if x 2ˆC.W 0/, then the depth of x relative to S.W 0/
(written dp.W 0;S.W 0//.x/) is defined to be

min
˚
`.W 0;S.W 0//.w/ j w 2W

0 and wx 2ˆ�.W 0/
	
:

Now, for each t 2W 0\T , it is easily checked that

dp.W 0;S.W 0//.˛t /D h.W 0;S.W 0//.t/C 1;

and hence applying Lemma 2.7(i) to the Coxeter system .W 0; S.W 0// yields that

(3-5) h.W 0;S.W 0//.t/D
`.W 0;S.W 0//.t/� 1

2
:

We include a proof of the next result for completeness:

Lemma 3.10 [Edgar 2009]. For each t 2 T , we have

T n ftg D
U

W 02Mt

..W 0\T / n ftg/:
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Proof. It is readily checked that T n ftg D
S
W 02Mt

..W 0\T / n ftg/, and hence we
only need to check that this union is indeed disjoint. Suppose for a contradiction
that there are distinct W1, W2 2Mt with r 2W1\W2 for some r 2 T n ftg. Then
clearly hfr; tgi �W1 and hfr; tgi �W2, contradicting Proposition 3.7. �

From this and the canonical bijection  WT $ˆC we immediately get:

Corollary 3.11. ˆC n f˛g D
]

W 02Mr˛

.ˆC.W 0/ n f˛g/, for each ˛ 2ˆC. �

Remark 3.12. In particular, the corollary implies that for t 2 T , if W1, W2 2Mt

are distinct, then ˆC.W1/\ˆC.W2/D f˛tg.

Lemma 3.13 [Edgar 2009]. Let t 2 T be arbitrary. Then

h.t/D
X
W 02Mt

h.W 0;S.W 0//.t/:

Proof. For any reflection t 2 T , Corollary 3.11 yields that

(3-6) f˛ 2ˆC j t˛ 2ˆ�g D f˛tg[
� ]
W 02Mt

˚
˛ 2ˆC.W 0/ n f˛tg j t˛ 2ˆ

�
	�
:

Since h.t/D 1
2
.`.t/� 1/D 1

2
.#N.t/� 1/, it follows from (3-6) that

h.t/D
1

2

� X
W 02Mt

#
˚
˛ 2ˆC.W 0/ n f˛tg j t˛ 2ˆ

�.W 0/
	�

D

X
W 02Mt

1
2

�
`.W 0;S.W 0//.t/� 1

�
(by (2-4))

D

X
W 02Mt

h.W 0;S.W 0//.t/ (by (3-5)): �

Definition 3.14 [Edgar 2009]. For t 2 T , define the1-height of t to be

h1.t/D
X

W 02Mt\M1

h.W 0;S.W 0//.t/;

and for each nonnegative integer n, we define

Tn D ft 2 T j h
1.t/D ng:

From this definition it is not clear whether, for a specific nonnegative integer n,
there is a reflection t 2 T with h1.t/ D n. It turns out that a number of basic
questions like this can be solved with the aid of the results obtained in [Fu 2012]
once we prove the following:

Theorem 3.15. For each nonnegative integer n, there is a bijection Tn$Dn given
by t $ ˛t .
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The proof of the theorem will be deferred until we have all the necessary tools.

Proposition 3.16. Suppose that t 2 T , and let W 0 be an infinite dihedral reflection
subgroup containing t . If h.W 0;S.W 0//.t/� 1, then there exists some x 2ˆC.W 0/
distinct from ˛t and satisfying ˛t domW x.

Proof. Observe that the condition h.W 0;S.W 0//.t/� 1 is equivalent to ˛t …�.W 0/,
and hence the required result follows immediately from Proposition 3.5(iii). �

The following proposition will be a key step to prove Theorem 3.15:

Proposition 3.17. Let W 0 be an infinite dihedral reflection subgroup, and let
�.W 0/D f˛; ˇg.

(i) There are two disjoint dominance chains in ˆ.W 0/, namely:

(3-7) � � � domW r˛rˇ r˛.ˇ/ domW r˛rˇ .˛/ domW r˛.ˇ/ domW ˛

domW .�ˇ/ domW rˇ .�˛/ domW rˇ r˛.�ˇ/ domW � � �

and

(3-8) � � � domW rˇ r˛rˇ .˛/ domW rˇ r˛.ˇ/ domW rˇ .˛/ domW ˇ

domW .�˛/ domW r˛.�ˇ/ domW r˛rˇ .�˛/ domW � � � :

In particular, each root in ˆ.W 0/ lies in exactly one of these two chains, and
the negative of any element of one chain lies in the other. The roots in ˆ.W 0/
dominated by either ˛ or ˇ are all negative.

(ii) If x 2ˆ.W 0/ then #DW 0.x/D h.W 0;S.W 0//.rx/.

Proof. (i) Theorem 2.9(ii) and [Björner and Brenti 2005, Proposition 4.5.4 (ii)]
yield that .˛; ˇ/� �1. Hence it follows from Lemma 3.2(iv) that ˛ domW �ˇ and
ˇ domW �˛. Then we can immediately verify the existence of the two dominance
chains (3-7) and (3-8), and from these two chains the remaining statements in (i)
follow readily.

(ii) The required result follows immediately from the definition of h.W 0;S.W 0//.rx/
and the two dominance chains (3-7) and (3-8). �

Proposition 3.18. Suppose that x, y 2ˆC are distinct with x domW y, and let W 0

be a dihedral reflection subgroup containing rx and ry . Then h.W 0;S.W 0//.rx/� 1.

Proof. It follows from Corollary 3.3(ii) that x domW 0 y, so Lemma 3.4 above yields
that W 0 is an infinite dihedral reflection subgroup. Let f˛; ˇg D�.W 0/. We know
from Proposition 3.17(i) that the roots in ˆ.W 0/ dominated by either ˛ or ˇ are all
negative, and since x domW y 2ˆC, it follows that x … f˛; ˇg. Hence by definition
h.W 0;S.W 0//.rx/� 1. �
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From the last two propositions we may deduce the following special case of
Theorem 3.15:

Lemma 3.19. There is a bijection T0$D0 given by t $ ˛t .

Proof. Let t 2 T0, and suppose for a contradiction that ˛t …D0. Then there exists
s 2T nftg such that ˛t domW ˛s . LetW 0 be the unique maximal dihedral reflection
subgroup of W containing hfs; tgi. Proposition 3.18 yields that h.W 0;S.W 0//.t/� 1.
Since ˛t domW 0 ˛s , it follows from Lemma 3.4 that W 0 2M1, and consequently
h1.t/� 1, contradicting the assumption that t 2 T0.

Conversely, suppose that ˛t 2D0, and suppose for a contradiction that t … T0.
Then there exists some W 0 2 Mt \ M1 with h.W 0;S.W 0//.t/ � 1. But then
Proposition 3.16 yields that ˛t …D0, producing a contradiction as required. �

Observe that Proposition 3.17(ii) can be equivalently stated as:

Proposition 3.20. Suppose that t 2 T , and suppose that W 0 is an infinite dihedral
reflection subgroup containing t . Then

#DW 0.˛t /D h.W 0;S.W 0//.t/: �

Proposition 3.21. Suppose that t 2 T is arbitrary. Then]
W 02Mt\M1

DW 0.˛t /DD.˛t /:

Proof. First we observe that Remark 3.12 yields that the union of the sets DW 0.˛t /
over all W 0 in Mt \M1 is indeed disjoint.

It is clear that
U
W 02Mt\M1

DW 0.˛t /�D.˛t /.
Conversely, suppose that x 2D.˛t /. Let W 0 be the unique maximal dihedral

reflection subgroup of W containing hft; rxgi. Then Corollary 3.3(ii) yields that
˛t domW 0 x. Finally since there is no nontrivial dominance in any finite Coxeter
group, it follows that W 0 2M1, as required. �

Now we prove that for any reflection t 2 W , its 1-height h1.t/ equals the
number of positive roots strictly dominated by ˛t :

Theorem 3.22. Let t 2 T be arbitrary. Then h1.t/D #D.˛t /.

Proof. It follows from Proposition 3.20 and Proposition 3.21 that

h1.t/D
X

W 02Mt\M1

h.W 0;S.W 0//.t/D
X

W 02Mt\M1

#DW 0.˛t /D #D.˛t /: �

Proof of Theorem 3.15. The theorem follows immediately from Theorem 3.22. �

Combining [Fu 2012, Theorem 3.8, Corollary 3.9, and Corollary 3.21] with
Theorem 3.15 we may deduce:
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Corollary 3.23. (i) For each positive integer n,

Tn � ft t
0t j t 2 T0 and t 0 2 Tm for some m� n� 1g:

(ii) Suppose that W is an infinite Coxeter group with #S <1. Then

0 < #Tn � .#T0/nC1� .#T0/n

for each positive integer n. �
Remark 3.24. An upper bound for #T0.D #D0/ is given in [Brink and Howlett
1993]; furthermore, for any fixed finitely generated Coxeter group, this number can
be explicitly calculated following the methods presented in [Brink 1998].

4. Dominance and imaginary cone

Kac introduced the concept of an imaginary cone in the study of the imaginary
roots of Kac–Moody Lie algebras. In [Kac 1990, Chapter 5] the imaginary cone
of a Kac–Moody Lie algebra was defined to be the positive cone on the positive
imaginary roots. The generalization of imaginary cones to arbitrary Coxeter groups
was first introduced in [Hée 1990], and subsequently reproduced in [Hée 1993].
This generalization has also been studied in [Dyer 2012] and [Edgar 2009]. In this
section we investigate the connections between this generalized imaginary cone and
dominance in Coxeter groups; in particular, we show that whenever x and y are
roots of a Coxeter group, then x domW y if and only if x�y lies in the imaginary
cone of that Coxeter group.

Let .W; S/ be the abstract Coxeter system associated to the Coxeter datum
CD .V;�; . ; //, and let ˆ be the corresponding root system. Let X be a vector
subspace of V . In this paper, a cone is assumed to be a convex cone. For any cone
C in X , we define C � D ff 2 Hom.X;R/ j f .v/ � 0 for all v 2 C g and call C �

the dual of C ; and for any cone F 2Hom.X;R/, we define F �D fv 2X j f .v/�
0 for all f 2 F g and call F � the dual of F . If W acts on X , then Hom.X;R/
bears the contragredient representation of W in the following way: if w 2W and
f 2 Hom.X;R/ then wf 2 Hom.X;R/ is given by the rule .wf /.v/D f .w�1v/
for all v 2X . It is readily checked that for a cone C in X , we have C � C ��, and
also for any w 2W , we have .wC/� D wC �.

The following is a well-known result whose proof can be found in [Howlett 1996,
Lecture 1, Note (c)]:

Lemma 4.1. Suppose that X is a real vector space of finite dimension, and let C
be a cone in X . Then .C �/� D C , where C is the topological closure of C in X
(with respect to the standard topology on X ). �

Set P D PLC.�/[f0g. It is clear that P is a cone in V . We define the Tits cone
of W in the same way as in Section 5.13 of [Humphreys 1990]:
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Definition 4.2. The Tits cone of the Coxeter group W is the W -invariant set

U D
[
w2W

wP �:

It is not obvious from this definition that the Tits cone is indeed a cone; however,
this is made clear by the following result:

Proposition 4.3.

(4-1) U D
˚
f 2Hom.span.�/;R/ j f .x/� 0 for all but finitely many x 2ˆC

	
:

Proof. Denote the set on the right-hand side of (4-1) by Y , and for each f 2
Hom.span.�/;R/ define Neg.f / by Neg.f /D fx 2ˆC j f .x/ < 0g.

If f 2 U then f D wg for some w 2W and g 2 P �, and it is readily checked
that Neg.f /� N.w�1/. Since N.w�1/ is a finite set, it follows that f 2 Y , and
hence U � Y . Conversely, suppose that f 2 Y . If Neg.f /D∅ then f 2 P � � U .
Thus we may assume that # Neg.f / > 0, and proceed by induction. Observe that
then there exists some ˛ 2 � such that f .˛/ < 0. It is then readily checked that
# Neg.r˛f /D # Neg.f /� 1, and hence it follows from the inductive hypothesis
that r˛f 2U . Since U is W -invariant, it follows that f 2U , and hence Y �U . �

Lemma 4.4. U � D
T
w2W

w.P �/�. Furthermore, U � D
T
w2W

wP whenever � is a
finite set.

Proof. Write U � D
˚
v 2 V j f .v/� 0, for all f 2 U

	
D
˚
v 2 V j .w�/.v/� 0 for all � 2 P � and all w 2W

	
D
˚
v 2 V j �.w�1v/� 0; for all � 2 P � and all w 2W

	
D

T
w2W

˚
v 2 V j �.w�1v/� 0 for all � 2 P �

	
D

T
w2W

˚
wv 2 V j �.v/� 0 for all � 2 P �

	
:

Thus

(4-2) U � D
\
w2W

˚
wv 2 V j v 2 .P �/�

	
:

Let X D span.�/. If #� is finite then it follows from Lemma 4.1 that .P �/� D P .
It is clear that P is topologically closed; hence (4-2) yields that U � D

T
w2W wP

when � is a finite set. �

Lemma 4.5. Suppose that v 2 V has the property that .a; v/ � 0 for all a 2 �.
Then wv� v 2 P for all w 2W . Moreover, if v 2 P then v 2 U �.

Proof. Use induction on `.w/. If `.w/D0 then there is nothing to prove. If `.w/�1
then we may write w D w0ra where w0 2 W and a 2 � with `.w/ D `.w0/C 1.
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Then Proposition 2.3 yields that w0a 2ˆC � P , and we have

wv� v D .w0ra/v� v D w
0.v� 2.v; a/a/� v D .w0v� v/� 2.a; v/w0a:

By the inductive hypothesis, w0v � v 2 P . Since .a; v/ � 0, it follows from the
above that wv� v 2 P .

If v 2 P then wv D .wv� v/C v 2 P for all w 2W , and hence

v 2
T
w2W

w�1P � U �: �

Proposition 4.6 [Fu 2012, Proposition 3.4]. Suppose that x, y 2 ˆ are distinct
with x domW y. Let W 0 be the dihedral reflection subgroup generated by rx and ry ,
and let �.W 0/D f˛; ˇg. Then there exists some w 2W 0 such that�

wxD ˛;

wyD�ˇ;
or

�
wxD ˇ;

wyD�˛:

In particular, .x; y/D�.a; b/. �

Proposition 4.7. Suppose that x, y 2 ˆ such that x domW y. Then w.x � y/ 2
PLC.�/ for all w 2W , that is, x�y 2 U �.

Proof. The assertion is trivially true if x D y, so we may assume that x ¤ y. Since
x domW y, Lemma 3.2(iv) yields that .x; y/� 1. Let W 0 be the (infinite) dihedral
subgroup of W generated by rx and ry . Let S.W 0/D fs; tg and4.W 0/D f˛s; ˛tg.
Proposition 4.6 yields that .˛s; ˛t /D�.x; y/ � �1. Set ci as in Proposition 3.5
for each i 2 Z. Since x domW y, it follows that .x; y/� 1, and Proposition 3.5(ii)
then yields that there exist integers m and n such that�

xD cnC1˛sC cn˛t ;

yD cmC1˛sC cm˛t ;
or

�
xD cn�1˛sC cn˛t ;

yD cm�1˛sC cm˛t :

Next we shall show that n>m. Suppose for a contradiction that m� n. Then either
xDy (when nDm) or else there will be a w 2W 0 such that wx 2ˆ.W 0/\ˆ� and
yet wy 2ˆ.W 0/\ˆC (when n < m), both contradicting the fact that x domW y.
Since cn > cm whenever n > m, it follows that x � y 2 PLC.�/. Given the W -
invariance of dominance, for any w 2W , repeat the argument with x replaced by
wx and y replaced by wy, we may conclude that w.x�y/ 2 PLC.�/� .P �/�. It
then follows from Lemma 4.4 that x�y 2 U �. �

When #� is finite, it can be checked that Lemma 4.4 yields that whenever x,
y 2ˆ such that x�y 2 U �, then x domW y. In fact we can remove this finiteness
condition and still prove the same result, and to do so we need some special notations
and a few extra elementary results. We thank the referee of this paper for prompting
us to look in this direction.
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Notations 4.8. For a subset I of S we set �I D fx 2� j rx 2 I g; VI D span.�I /;
WI D hI i; and PI D PLC.�I /[f0g. Furthermore, we set

P �I D
˚
f 2 Hom.VI ;R/ j f .x/� 0 for all x 2 PI

	
I

P ��I D
˚
x 2 VI j f .x/� 0 for all f 2 P �I

	
:

Then CI D .VI ; �I ; . ; /I / (where . ; /I is the restriction of . ; / on VI ) is a Coxeter
datum with corresponding Coxeter system .WI ; I /, and we call WI the standard
parabolic subgroup of W corresponding to I . Clearly WI preserves VI .

Lemma 4.9. Suppose that I is a subset of S . Then P ��\VI � P ��I .

Proof. Write V D VI ˚V 0I , where V 0I is a vector space complement of VI . Then
every v 2 V is uniquely written as vD vI Cv0I , where vI 2 VI and v0I 2 V

0
I . Every

g 2P �I gives rise to a g0 2P � as follows: for any v 2 V , simply set g0.v/D g.vI /.
Now let x 2 P �� \ VI and f 2 P �I be arbitrary. Then f .x/D f 0.x/ � 0, since
f 0 2 P � and x 2 P ��. Hence x 2 P ��I , and so P ��\VI � P ��I . �

Proposition 4.10. Let x, y 2ˆ. Then x�y 2 U � if and only if x domW y.

Proof. By Proposition 4.7 we only need to prove that when x and y are both roots
then x � y 2 U � implies that x domW y. The assertion certainly holds if x D y,
thus we only need to check the case when x ¤ y.

Since dominance and U � are both W -invariant, it follows that we only need to
prove the following statement: if x 2ˆ� then y 2ˆ� too.

Take I D fr˛ j ˛ 2 supp.x/[ supp.y/g, and note that in particular, I is a finite
set. Now in view of Lemma 4.4, Lemma 4.9 and the fact that WI preserves VI we
have

x�y 2
� T
w2W

wP ��
�
\VI �

� T
w2WI

wP ��
�
\VI �

T
w2WI

w.P ��\VI /

�
T

w2WI

wP ��I D
T

w2WI

wPI ;

where the equality follows from Lemma 4.1, since I is a finite set. Thus x�y 2PI ,
and this implies, precisely, that y 2ˆ� whenever x 2ˆ�. �

Next we have a technical result which is a key component of the main theorem
of this section.

Proposition 4.11. Suppose that x, y 2ˆ are distinct with x domW y. Then there
exists some w 2 W such that wx 2 ˆC, wy 2 ˆ� and .w.x � y/; z/ � 0 for all
z 2ˆC.

Proof. Clearly it is enough to show that under such assumptions there exists some
w 2W with wx 2ˆC, wy 2ˆ� and .w.x�y/; z/� 0 for all z 2�.
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LetW 0 be the (infinite) dihedral reflection subgroup ofW generated by rx and ry ,
and let 4.W 0/D fa0; b0g. Clearly a0, b0 2 ˆC, and Proposition 4.6 yields that
.a0; b0/D�.x; y/� �1; furthermore, there is some u 2 hfrx; rygi such that

(4-3)
�
u.x/D a0;

u.y/D�b0;
or

�
u.x/D b0;

u.y/D�a0:

At any rate, u.x � y/ D a0C b0. Since the W -action preserves . ; /, it follows
that .a0; a0/ D 1 D .b0; b0/, and hence .a0C b0; a0/ � 0 and .a0C b0; b0/ � 0.
However there may exist some c1 2� with .a0C b0; c1/ > 0. If this is the case,
set a1 D rc1a0 and b1 D rc1b0. Recall that .d; c1/ � 0 for all d 2� n fc1g, so it
follows that

(4-4) c1 2 supp.a0/[ supp.b0/:

Since .a0 C b0; c1/ > 0, whereas .a0 C b0; a0/ � 0 and .a0 C b0; b0/ � 0, it
follows that a0 ¤ c1 and b0 ¤ c1. Therefore we see that a1, b1 2 ˆC, and
.a1; b1/ D .a0; b0/ � �1. Consequently Theorem 2.9(ii) yields that a1, b1 are
the canonical roots for the root subsystem ˆ.hfra1 ; rb1gi/. Since rc1.a0C b0/D
a0C b0� 2.a0C b0; c1/c1 and .a0C b0; c1/ > 0, it follows that

supp.a1/[ supp.b1/� supp.a0/[ supp.b0/

and X
a2�

coeffa.a1/C
X
a2�

coeffa.b1/ <
X
a2�

coeffa.a0/C
X
a2�

coeffa.b0/:

Moreover, since .a0Cb0; c1/ > 0, it follows that at least one of .a0; c1/ or .b0; c1/
must be strictly positive. Hence Lemma 2.7 yields that

dp.a1/C dp.b1/� dp.a0/C dp.b0/:

Repeating this process, we can obtain new pairs of positive roots fa2; b2g; : : : ,
fam�1; bm�1g, fam; bmg with

supp.am/[ supp.bm/� supp.am�1/[ supp.bm�1/� � � � � supp.a0/[ supp.b0/

and dp.am/C dp.bm/ � dp.am�1/C dp.bm�1/ � � � � � dp.a0/C dp.b0/, so long
as we can find a cm 2 � such that .am�1 C bm�1; cm/ > 0. This process only
terminates at a pair fan; bng for some n if .anCbn; z/� 0 for all z 2�. Now if we
could show that this process terminates at some such fan; bng after a finite number
of iterations, then we have in fact found a w 2W given by

(4-5) w D rcnrcn�1 � � � rc1u; where u is as in (4-3);
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satisfying

.w.x�y/; z/D .rcn � � � rc1.a0C b0/; z/D .anC bn; z/� 0

for all z 2�.
Observe that the set of positive roots having depth less than or equal to the specific

bound dp.a0/C dp.b0/ and support in the fixed finite subset supp.a0/[ supp.b0/
of � is finite; indeed, Lemma 2.7(ii) implies that there are at most

#.supp.a0/[ supp.b0//dp.a0/Cdp.b0/

such positive roots. Hence it follows that the possible pairs of positive roots fai ; big
obtainable in the process above must be finite too. SinceX

a2�

coeffa.aj /C
X
a2�

coeffa.bj / <
X
a2�

coeffa.ai /C
X
a2�

coeffa.bi /

for all j > i , it follows that the sequence fa0; b0g, fa1; b1g; : : : must terminate at
fan; bng for some finite n, as required.

Finally, keeping w as in (4-5), we see from the construction above that either
wx D an 2ˆ

C and wy D�bn 2ˆ�, or wx D bn 2ˆC and wy D�an 2ˆ�. �

Definition 4.12. We define the imaginary cone Q of W by

QD
˚
v 2 U � j .v; a/� 0 for all but finitely many a 2ˆC

	
:

The following result was obtained independently by Dyer as a consequence of
[Dyer 2012, Theorem 6.3], stating that the imaginary cone of a reflection subgroup
is contained in that of the overgroup.

Theorem 4.13. Suppose that x, y 2ˆ such that x domW y. Then x�y 2Q.

Proof. By Proposition 4.7 we know that x � y 2 U �, thus to prove the desired
result, we only need to show that .x�y; z/� 0 for all but finitely many z 2ˆC.
Suppose that z 2ˆC such that .x�y; z/ > 0. Let w 2W be as in Proposition 4.11.
Then .w.x�y/; wz/ > 0, and by Proposition 4.11 this is possible only if z 2N.w/.
Since #N.w/ is clearly finite (equal to `.w/), it follows that indeed .x�y; z/� 0
for all but finitely many z 2ˆC. �

Remark 4.14. The above theorem is a special case of Dyer’s result when the
subgroup is dihedral. In fact, Dyer’s result, when applied to dihedral reflection
subgroups, implies that if x and y are roots with x domW y, then x�cy 2Q for an
explicit range of c 2 R depending on the value of .x; y/. Our formulation was first
suggested to us by Howlett and Dyer, and we gratefully acknowledge their help.

Theorem 4.13, combined with Proposition 4.10, immediately implies this:

Corollary 4.15. Let x, y 2ˆ. Then x�y 2Q if and only if x domW y. �
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Remark 4.16. By Proposition 4.10 and Corollary 4.15, when x, y 2 ˆ, it is
impossible for x�y to be in U � nQ.

Corollary 4.17. Suppose that x, y 2ˆ are distinct. The following are equivalent:

(i) Whenever x domW z domW y for some z 2ˆ, then either zD x or zD y (thus
forming a cover of dominance);

(ii) There exists a w 2W such that wx 2D0 and wy 2 �D0.

Proof. Suppose that (i) is the case. Let w be as in Proposition 4.11 above. First
we show that then wx 2D0. Suppose for a contradiction that wx …D0, and let
z 2D.wx/. Then Proposition 4.11 yields that wy 2ˆ� and .wy; z/� .wx; z/� 1.
Hence it is clear that z domW wy. But this implies that x domW w�1z domW y

with x¤w�1z¤y, contradicting (i). Thereforewx 2D0, as required. Exchanging
the roles of x and �y we may deduce that wy 2 �D0.

Suppose that (ii) is the case and suppose for a contradiction that there exists
some z 2ˆ n fx; yg such that x domW z domW y. Let w 2W with wx 2D0 and
wy 2�D0. Ifwz 2ˆC then Lemma 3.2(ii) yields thatwx domW wz, contradicting
the fact that wx 2D0. On the other hand, if wz 2ˆ�, then parts (ii) and (iii) of
Lemma 3.2 yield that�wy domW �wz2ˆ

C, contradicting the fact that�wy 2D0.
�

Observe that applying Corollary 4.17 to arbitrary reflection subgroup W 0 of W
yields the following:

Corollary 4.18. Suppose that W 0 is a reflection subgroup of W with x and y 2
ˆ.W 0/ being distinct. The following are equivalent:

(i) Whenever x domW 0 z domW 0 y for some z 2 ˆ.W 0/, then either z D x or
z D y;

(ii) There exists a w 2W 0 such that wx 2DW 0;0 and wy 2 �DW 0;0. �
Definition 4.19. Suppose that W 0 is a reflection subgroup of W and x, y 2ˆ.W 0/
satisfy both (i) and (ii) of Corollary 4.18. Then we say that the dominance between
x and y is minimal with respect to W 0.

Proposition 4.20. Suppose that x, y 2ˆ are distinct with x domW y, and let W 0

be the dihedral reflection subgroup generated by rx and ry . Then the dominance
between x and y with respect to W 0 is minimal.

Proof. It follows from Corollary 3.3(ii) that x domW 0 y, and hence Lemma 3.4
yields that W 0 is infinite dihedral. Let �.W 0/D f˛; ˇg. Then Proposition 3.17(i)
yields that DW 0;0 D f˛; ˇg.

On the other hand, it follows from Proposition 4.6 that there is some w 2W 0

such that �
wxD a;

wyD�b;
or

�
wxD b;

wyD�aI
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consequently Corollary 4.18 yields that the dominance between x and y with respect
to hfrx; rygi is minimal. �

From this proposition we may deduce:

Proposition 4.21. Suppose that x 2ˆC with D.x/D fx1; x2: : : : ; xmg. For each
i 2 f1; 2; : : : ; mg, set Wi D hfrx; rxi gi. Then Wi ¤Wj whenever i ¤ j .

Proof. For each i 2 f1; 2; : : : ; mg, set fsi ; tig D S.Wi /. Suppose for a contradiction
that W 0DWi DWj for some i ¤ j . Then we may write fs; tg D fsi ; tig D fsj ; tj g.
Corollary 3.3(ii) yields that x domWk xk for all k 2 f1; 2; : : : ; mg, and since there is
no nontrivial dominance in finite Coxeter groups, it follows that W1, W2; : : : , Wm
are all infinite dihedral reflection subgroups. Hence it follows from Proposition 4.5.4
of [Björner and Brenti 2005] that .˛s; ˛t / � �1. Set cn as in Proposition 3.5 for
each n 2 Z. Since x domW xi and x domW xj , Proposition 3.5(ii) yields that either8<:

x D cm˛sC cmC1˛t ;

xiD cm0˛sC cm0C1˛t ;

xjD cm00˛sC cm00C1˛t ;

or

8<:
x D cm˛sC cm�1˛t ;

xiD cm0˛sC cm0�1˛t ;

xjD cm00˛sC cm00�1˛t ;

for some distinct integers m, m0 and m00. Observe that in either case .xi ; xj /� 1,
and therefore there will be (nontrivial) dominance between xi and xj . Without loss
of any generality, we may assume that x domW xi domW xj . Then

x domW 0 xi domW 0 xj

by Corollary 3.3(ii), contradicting Proposition 4.20. �

We close this paper with an alternative characterization for the imaginary coneQ
when #�<1.

Proposition 4.22. If #�<1 then

(4-6) QD
˚
wv j w 2W and v 2 P such that .v; a/� 0 for all a 2ˆC

	
:

Proof. First we denote the set on the right-hand side of (4-6) by Z, and for each
b 2 P , define Pos.b/D fc 2 ˆC j .b; c/ > 0g. Recall that, under the assumption
that #�<1, Lemma 4.4 yields that

QD

�
v 2

\
w2W

wP
ˇ̌̌
.v; a/� 0 for all but finitely many a 2ˆC

�
:

Let u 2Q be arbitrary. Since #�<1, it follows from Lemma 4.4 that u 2 P .
If Pos.u/D∅, then trivially u 2 Z. Therefore we may assume that Pos.u/¤∅,
and proceed by induction on # Pos.u/ (this is only possible because u 2Q, and so
# Pos.u/ <1). Let a 2� be chosen such that .u; a/ > 0. Then it can be readily
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checked that Pos.rau/ D ra.Pos.u/ n fag/. Thus the inductive hypothesis yields
that rau 2Z. Clearly Z is W -invariant, and so u 2Z, and hence Q �Z.

Conversely, if x 2 Z, then x D wv for some w 2 W and v 2 P such that
.v; a/ � 0 for all a 2 �. Lemma 4.5 yields that v 2 U �, and since U � is clearly
W -invariant, it follows that x 2 U �. Suppose that y 2ˆC with .x; y/ > 0. Since
.x; y/D .wv; y/D .v; w�1y/, and since .v; a/� 0 for all a 2ˆC, it follows that
w�1y 2ˆ� and thus y 2N.w�1/. The finiteness of the set N.w�1/ then implies
that x 2Q, and hence Z �Q. �
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