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FRACTAL ENTROPY OF NONAUTONOMOUS SYSTEMS

RUI KUANG, WEN-CHIAO CHENG AND BING LI

We define formulas of entropy dimension for a nonautonomous dynamical
system consisting of a sequence of continuous self-maps of a compact met-
ric space. This study reveals analogues of basic propositions for entropy
dimension, such as the power rule, product rule and commutativity, etc.
These properties allow us to convert to an equality an inequality found by
de Carvalho (1997) concerning the product rule for the autonomous dynam-
ical system. We also prove a subadditivity rule of entropy dimension for
one-dimensional dynamics based on our previous work.

1. Introduction

Entropies are important factors in the study of autonomous (i.e., deterministic)
dynamical systems that are induced by iterations of a single transformation. The
concept of topological entropy was originally introduced by Adler, Konheim and
McAndrew [Adler et al. 1965] as an invariant of topological conjugacy and a nu-
merical measure for the complexity of a dynamical system. Later on, Bowen [1971]
and Dinaburg [1971] gave an equivalent definition when the space is metrizable.
Other studies [Brucks and Bruin 2004; Katok and Hasselblatt 1995; Pollicott and
Yuri 1998; Walters 1982] and the references therein discuss related definitions and
properties. In the 1990s, various authors introduced several refinements of the
notion of entropy, leading to significant findings in many different directions.

The commutativity formula for topological entropy (and measure theoretic en-
tropy) was proved first in [Dana and Montrucchio 1986]. With the development
of the study of nonautonomous dynamical systems, Kolyada and Snoha [1996]
introduced and studied the notion of topological entropy for a sequence of continuous
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self-maps of a compact metric space. Many properties for such dynamical systems
were studied in [Cánovas 2011; Huang et al. 2008; Kolyada et al. 1999; 2004;
Mouron 2007] and elsewhere. Particularly, the commutativity of the topological
entropy was proved and announced in [Kolyada and Snoha 1996]. This kind of
problem for nonautonomous dynamical systems has been studied for many years by
several authors. A good discussion of these properties and applications appears in
[Balibrea et al. 1999; Cánovas and Linero 2002; 2005; Hric 1999; 2000; Kolyada
and Snoha 1996; Zhu et al. 2006].

Although systems with positive entropy are much more complicated than those
with zero entropy, zero entropy systems have various complexities; see [de Carvalho
1997; Dou et al. 2011; Ferenczi and Park 2007; Huang et al. 2007; Misiurewicz
1981; Misiurewicz and Smítal 1988; Misiurewicz and Szlenk 1980]. These studies
give some methods of classifying zero entropy dynamical systems. De Carvalho
[1997] introduced a notion of entropy dimension to distinguish zero topological
entropy systems and obtained some basic properties of entropy dimension. Cheng
and Li [2010] presented some examples to show that every number in (0, 1) can
be attained by the entropy dimensions of the dynamical systems and a dynamical
system whose entropy dimension is one and topological entropy is zero. These
findings answered the question asked in [de Carvalho 1997].

This paper analyzes a nonautonomous discrete dynamical system (X, T1,∞)

given by a compact metric space X and a sequence T1,∞ = {Ti }
∞

i=1 of continuous
self-maps of X . The trajectory of a fixed point x is defined as the sequence
x , T1(x), T2(T1(x)), . . . . Our goal is to study the properties of fractal entropy of
nonautonomous dynamical systems. The paper is organized as follows. Section 2
defines and studies the entropy dimension D(T1,∞) of a nonautonomous dynamical
system given by a sequence T1,∞= {Ti }

∞

i=1 of continuous maps of a compact metric
space X into itself. Section 3 investigates some formulas of entropy dimension
for nonautonomous dynamical systems. These include the power rule, product
rule and topological equisemiconjugacy. Applying these results shows that the
commutativity of entropy dimension is also true for nonautonomous dynamical
systems and the product rule holds for the autonomous dynamics, which was given
just as an inequality in [de Carvalho 1997]. Section 4 focuses on continuous maps on
the unit interval [0, 1]. To show the subadditivity of entropy dimension, this paper
uses the main result in [Cheng and Li 2010] to consider two continuous commuting
interval maps. Finally, we discuss the notion of the asymptotical entropy dimension.

2. Equivalent definitions

Topological entropy is one of the most fundamental dynamical invariants associated
to a continuous map. It roughly measures the orbit structure complexity of the map.
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For nonautonomous dynamical systems, a sequence of continuous maps {Ti }
∞

i=1 is
considered. The s-topological entropy dimension of a nonautonomous dynamical
system is introduced in this section. After that, we give different types of equivalent
definitions.

Let (X, d) be a compact metric space and {Ti }
∞

i=1 be a sequence of continuous
maps from X to itself. Denote by T1,∞ the sequence {Ti }

∞

i=1 and by (X, T1,∞) the
induced nonautonomous dynamical system.

For any i ∈ N, let T 0
i = Id, where Id is the identity map on X . Set

T n
i = Ti+(n−1) ◦ · · · ◦ Ti+1 ◦ Ti and T−n

i = T−1
i ◦ T−1

i+1 ◦ · · · ◦ T−1
i+(n−1).

For any open cover A of X , define

T−n
i (A)= {T−n

i (A) : A ∈A}

and

An
i (T1,∞)=

∨n−1
j=0 T− j

i (A)

=
{

Ai0 ∩ T−1
i (Ai1)∩ · · · ∩ T−(n−1)

i (Ain−1) : Ai j ∈A, 1≤ j ≤ n− 1
}
.

We write An
1 for simplicity instead of An

i (T1,∞) if there is no confusion. Let N(A)

be the minimal possible cardinality of a subcover chosen from A.

Definition 2.1. Let Ti : X→ X , i = 1, 2, 3, . . . , be a sequence of continuous maps
and s ≥ 0 be a real number. The s-topological entropy of T1,∞ is defined as

D(s, T1,∞)= sup
A

D(s, T1,∞,A),

where A ranges over all open covers of X and

D(s, T1,∞,A)= lim sup
n→∞

1
ns log N(An

1).

When Ti = T for all i ∈ N, D(s, T1,∞) is just the s-topological entropy of T
defined in [Cheng and Li 2010] (denoted by D(s, T )). Furthermore, if s = 1 and
Ti = T for all i ∈N, it is trivial that D(s, Ti,∞) is just the topological entropy of T
(usually denoted by h(T )).

From Definition 2.1 it follows that the s-topological entropy D(s, T1,∞) enjoys
the following properties.

Proposition 2.2. (i) The map s > 0 7→ D(s, T1,∞) is nonnegative and decreasing
with s.

(ii) There exists s0 ∈ [0,+∞] such that

D(s, T1,∞)=

{
+∞ if 0< s < s0,

0 if s > s0.
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Proposition 2.2(ii) indicates that the value of D(s, T1,∞) jumps from infinity to 0
at both sides of some point s0, which is similar to a fractal measure. Analogously
to the fractal dimension, define the entropy dimension of T1,∞ as follows.

Definition 2.3. Let (X, T1,∞) be a nonautonomous dynamical system. Define the
entropy dimension of T1,∞ to be

D(T1,∞)= sup{s > 0 : D(s, T1,∞)=∞} = inf{s > 0 : D(s, T1,∞)= 0}.

When Ti = T for all i ∈ N, then D(T1,∞)= D(T ), where D(T ) is the entropy
dimension of T defined in [Cheng and Li 2010; Dou et al. 2011].

We now turn to definitions motivated by analogues of the topological entropy.
Let n ∈ N and define a new (Bowen) metric dn on X by

dn(x, y)= max
0≤i<n

d(T i
1 (x), T i

1 (y)),

where x , y ∈ X .

Definition 2.4. A set F ⊂ X is called an (n, ε)-spanning set of X for T1,∞ if, for
any x ∈ X , there exists y ∈ F with dn(x, y)≤ ε. A dual definition is as follows. A
set E ⊂ X is called an (n, ε)-separated set of X for T1,∞ if dn(x, y) > ε for every
pair of distinct point x , y ∈ E , x 6= y.

Define

r(T1,∞, n, ε)=min
{
#F : F ⊂ X is an (n, ε)-spanning set for T1,∞

}
,

s(T1,∞, n, ε)=max
{
#E : E ⊂ X is an (n,ε)-separated set for T1,∞

}
,

where #E is the number of elements in E . The following lemma describes the
relationship among these two quantities and the number of covering sets.

Lemma 2.5. Let Ti : X→ X be a sequence of continuous maps of a compact metric
space (X, d).

(i) For any open cover A of X with Lebesgue number δ,

(2-1) N(An
1)≤ r(T1,∞, n, δ/2)≤ s(T1,∞, n, δ/2).

(ii) For any ε > 0 and open cover A with diam(A) :=max{diam(A) : A ∈A} ≤ ε,

(2-2) r(T1,∞, n, ε)≤ s(T1,∞, n, ε)≤ N(An
1).

Proof. (i) Since any maximal (n, ε)-separated set of X for T1,∞ is (n, ε)-spanning,
the second inequality of (2-1) holds. Thus, it suffices to prove the first inequality.
Let F be a (n, δ/2)-spanning set for X of cardinality r(T1,∞, n, δ/2). Then

X =
⋃
x∈F

n−1⋂
i=0

T−i
1 B(T i

1 x, δ/2).
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Note that B(T i x, δ/2) is a subset of a member of A for any 0 ≤ i ≤ n − 1 and
x ∈ F ; thus,

N(An
1)≤ r(T1,∞, n, ε).

(ii) The first inequality of (2-2) holds, as in (i). It suffices to prove the second
inequality of (2-2). Let E be an (n, ε)-separated set of cardinality s(T1,∞, n, ε).
Then no member of the cover An

1 can contain two elements of E since diam(A)≤ ε.
This implies

s(T1,∞, n, ε)≤ N(An
1). �

Lemma 2.5 immediately implies the following property, which indicates that
the s-topological entropy for T1,∞ can be equivalently defined by the spanning and
separated sets.

Proposition 2.6. Let Ti : X → X , i = 1, 2, 3, . . . , be a sequence of continuous
maps and s ≥ 0 a real number. Then

D(s, T1,∞)= lim
ε→0

lim sup
n→∞

1
ns log r(T1,∞, n, ε)= lim

ε→0
lim sup

n→∞

1
ns log s(T1,∞, n, ε).

3. Dynamical propositions

The entropy dimension we defined for a nonautonomous dynamical system is a
topological equiconjugacy invariant. Thus, we can consider those two entropy
zero dynamical systems as being not the same or being not equivalent by different
entropy dimension. The main idea of this section is quite similar to that of Kolyada
and Snoha’s approximations. The basic proposition of entropy dimension is the
power rule. The inequality of the power rule can be shown as follows.

Lemma 3.1 [Kolyada and Snoha 1996]. Let A, B be any two open covers of X.
Then

(i) N(A∨B)≤ N(A)N(B);

(ii) N(T−n
i A)≤ N(A);

(iii) T−1(A∨B)= T−1(A)∨ T−1(B);

(iv) N(A)≥ N(B) when A is finer than B (denoted by A�B).

Proposition 3.2. Let X be a compact topological space and T1,∞ a sequence of
continuous maps from X to itself. Then

(3-1) D(s, T m
1,∞)≤ ms D(s, T1,∞)

for any s > 0 and m ∈ N, where T m
1,∞ =

{
T (i+1)m

im+1

}∞
i=0. As a consequence,

D(T m
1,∞)≤ D(T1,∞).
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Proof. Let A be any open cover of X . For any n ∈ N,

A∨ T−1
1 (A)∨ T−2

1 (A)∨ · · · ∨ T−(nm−1)
1 (A)

�A∨ T−m
1 (A)∨ T−2m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A),

so by Lemma 3.1(iv),

N
(
A∨ T−1

1 (A)∨ · · · ∨ T−(nm−1)
1 (A)

)
≥ N

(
A∨ T−m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A)

)
.

Note that

A∨ T−m
1 (A)∨ T−2m

1 (A)∨ · · · ∨ T−(n−1)m
1 (A)

=A∨ (T m
1 )
−1(A)∨ (T m

1 )
−1
◦(T m

m+1)
−1(A)∨ · · ·

∨ (T m
1 )
−1
◦(T m

m+1)
−1
◦ · · · ◦(T m

(n−2)m+1)
−1(A),

and thus

lim sup
n→∞

1
(mn)s

log N
(
A∨ T−1

1 (A)∨ T−2
1 (A)∨ · · · ∨ T−(nm−1)

1 (A)
)

≥
1

ms D(s, T m
1,∞,A).

Therefore,

D(s, T1,∞,A)= lim sup
k→∞

1
ks log N(Ak

1)≥ lim sup
n→∞

1
(nm)s

log N(Anm
1 )

= lim sup
n→∞

1
(nm)s

log N
(
A∨T−1

1 (A)∨T−2
1 (A)∨· · ·∨T−(nm−1)

1 (A)
)

≥
1

ms D(s, T m
1,∞,A).

Thus, D(s, T m
1,∞)≤ ms D(s, T1,∞).

For the entropy dimension, assume t > D(T1,∞) is any real number. Then
D(t, T1,∞) = 0, which, combined with (3-1), implies D(t, T m

1,∞) = 0, so t ≥
D(T m

1,∞). Therefore, D(T m
1,∞)≤ D(T1,∞) by the arbitrariness of t . �

[Kolyada and Snoha 1996] gives an example showing that the inequality in (3-1)
can be sharp when s= 1. The following two propositions indicate that the inequality
in (3-1) can be an equality under some conditions.

Proposition 3.3 (power rule). Let X be a compact topological space and T1,∞ be a
sequence of continuous maps from X to itself. If T1,∞ is periodic with period m ∈N,
that is, Tim+ j = T j for any 1≤ j ≤ m and i ≥ 0, then

D(s, T m
1,∞)= ms D(s, T1,∞)

for any s > 0. As a consequence, D(T m
1,∞)= D(T1,∞).
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Proof. Assume m ≥ 2 since the case m = 1 is trivial. From Proposition 3.2, it is
only necessary to prove D(s, T m

1,∞)≥ ms D(s, T1,∞).
Let A be any open cover of X and k = nm + r , where n ≥ 1 and 1 ≤ r ≤ m.

Combining T1,∞={T1, T2, . . . , Tm, T1, T2, . . . , Tm, . . . } and T m
1,∞={T

m
1 , T m

1 , . . . }

with Lemma 3.1(iii),

T−im
1 (A)∨ T−(im+1)

1 (A)∨ · · · ∨ T−((i+1)m−1)
1 (A)

= T−im
1

(
A∨ T−1

im+1(A)∨ · · · ∨ T−(m−1)
im+1 (A)

)
= T−im

1

(
A∨ T−1

1 (A)∨ · · · ∨ T−(m−1)
1 (A)

)
= (T im

1 )−1(A∨ T−1
1 (A)∨ · · · ∨ T−(m−1)

1 (A)
)

for i = 0, 1, 2, . . . . Therefore, Ak
1(T1,∞) can be written as(

A∨T−1
1 (A)∨· · ·∨T−(m−1)

1 (A)
)
∨
(
T−m

1 (A)∨T−(m+1)
1 (A)∨· · ·∨T−(2m−1)

1 (A)
)

∨· · ·∨
(
T−(n−1)m

1 A∨T−((n−1)m+1)
1 (A)∨· · ·∨T−(nm−1)

1 (A)
)

∨
(
T−nm

1 A∨T−(nm+1)
1 (A)∨· · ·∨T−(nm+r−1)

1 (A)
)

=
(
A∨T−1

1 (A)∨· · ·∨T−(m−1)
1 (A)

)
∨(T m

1 )
−1(A∨T−1

1 (A)∨· · ·∨T−(m−1)
1 (A)

)
∨· · ·∨(T (n−1)m

1 )−1(A∨T−1
1 (A)∨· · ·∨T−(m−1)

1 (A)
)

∨(T nm
1 )−1(A∨T−1

1 (A)∨· · ·∨T−(r−1)
1 (A)

)
=Am

1 ∨(T
m

1 )
−1(Am

1 )∨· · ·∨(T
(n−1)m

1 )−1(Am
1 )∨(T

nm
1 )−1(Ar

1)

= (Am
1 (T1,∞))

n
1(T

m
1,∞)∨(T

nm
1 )−1(Ar

1(T1,∞)).

Combining parts (i) and (iii) of Lemma 3.1, we obtain

N(Anm+r
1 (T1,∞))= N

(
(Am

1 (T1,∞))
n
1(T

m
1,∞)∨ (T

nm
1 )−1(Ar

1(T1,∞))
)

≤ N
(
(Am

1 (T1,∞))
n
1(T

m
1,∞)

)
N(Ar

1(T1,∞)).

Thus,

D
(
s, T m

1,∞,Am
1 (T1,∞)

)
= lim sup

n→∞
n−s log N

(
(Am

1 (T1,∞))
n
1(T

m
1,∞)

)
≥ lim sup

n→∞
n−s(log N(Anm+r

1 (T1,∞))− log N(Ar
1(T1,∞))

)
= lim sup

n→∞
n−s log N(Anm+r

1 (T1,∞))

= ms lim sup
n→∞

(nm+ r)−s log N(Anm+r
1 (T1,∞))

= ms lim sup
k→∞

k−s log N(Ak
1(T1,∞))= ms D(s, T1,∞,A),

which implies that D(s, T m
1,∞)≥ ms D(s, T1,∞) by the arbitrariness of A. �
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Applying Proposition 3.3 to the case of one map as a sequence leads to the
following, which solves a problem in [de Carvalho 1997], where the author gave an
inequality.

Corollary 3.4. Let (X, T ) be a topological dynamical system. Then

D(s, T m)= ms D(s, T )

for any s > 0 and m ∈ N. In particular, D(T m)= D(T ).

Now let us consider the sequence of equicontinuous maps from X to itself;
that is, T1,∞ = {Ti }

∞

i=1 is equicontinuous on X . More precisely, for any x ∈ X and
ε > 0, there exists δ > 0 such that d(Ti x, Ti y) < ε for all i = 1, 2, . . . whenever
d(x, y) < δ. We know that δ can be independent of the choice of x when X is
compact.

Proposition 3.5 (power rule). Let (X, d) be a compact metric space and T1,∞ be a
sequence of equicontinuous maps from X to itself. Then

D(s, T m
1,∞)= ms D(s, T1,∞)

for any s > 0.

Proof. By Proposition 3.2, it suffices to prove D(s, T m
1,∞) ≥ ms D(s, T1,∞) for

m ≥ 2. For any ε > 0, let

δ(ε)= ε+ sup
i≥1

max
k=1,...,m−1

sup
x,y∈X

{
d(T k

i (x), T k
i (y)) : d(x, y)≤ ε

}
.

Since X is compact and T1,∞ is equicontinuous, we have:

(i) if ε→ 0, then δ(ε)→ 0;

(ii) if d(x, y)≤ε, then d(T k
i (x), T k

i (y))≤δ(ε) for any i≥1 and k=1, 2, . . . ,m−1.

Let E be any (nm, δ(ε))-separated set for T1,∞. Then, E is an (n, ε)-separated
set for T m

1,∞ and snm(T1,∞, δ(ε))≤ sn(T m
1,∞, ε).

Therefore, writing k = nm+r with 1≤ r ≤m, we have the following calculation:

D(s, T m
1,∞)= lim

ε→0
lim sup

n→∞

1
ns log sn(T m

1,∞, ε)

≥ lim
ε→0

lim sup
n→∞

1
ns log s(n−1)m+r (T1,∞, δ(ε))

= ms lim
ε→0

lim sup
n→∞

1
((n− 1)m+ r)s

log s(n−1)m+r (T1,∞, δ(ε))

≥ ms lim
δ(ε)→0

lim sup
k→∞

1
ks log sk(T1,∞, δ(ε))

= ms D(s, T1,∞). �
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Proposition 3.6 (monotonicity). Let X be a compact topological space and T1,∞ a
sequence of continuous maps from X to itself. Then

(3-2) D(s, Ti,∞)≤ D(s, T j,∞)

for any s > 0 and 1≤ i ≤ j ≤+∞.

Proof. Let A be any open cover of X . Lemma 3.1(i) implies
(3-3)

N(An
i )=N

( n−1∨
j=0

T− j
i (A)

)
=N

(
A∨

n−1∨
j=1

T− j
i (A)

)
≤N(A)N

( n−1∨
j=1

T− j
i (A)

)
.

Lemma 3.1(ii) shows that
(3-4)

N

( n−1∨
j=1

T− j
i (A)

)
= N

(
T−1

i

( n−2∨
j=0

T− j
i+1(A)

))
≤ N

( n−2∨
j=0

T− j
i+1(A)

)
= N(An−2

i+1 ).

Combining (3-3) and (3-4) leads to

N(An
i )≤ N(A)N(An−2

i+1 ).

Therefore,

D(s, Ti,∞,A)= lim sup
n→∞

1
ns log N(An

i )≤ lim sup
n→∞

1
ns log

(
N(A)N(An−2

i+1 )
)
.

Thus,

D(s, Ti,∞,A)≤ lim sup
n→∞

1
(n− 2)s

log N(An−2
i+1 )= D(s, Ti+1,∞,A),

and D(s, Ti,∞)≤ D(s, Ti+1,∞) by the arbitrariness of A. Hence, (3-2) holds. �

Applying the monotonicity shows that the s-topological entropy for the com-
position of two maps does not depend on the order, as the following theorem
indicates.

Theorem 3.7 (commutativity). Let X be a compact topological space and let T , S
be two continuous maps from X to itself. Then

D(s, T ◦ S)= D(s, S ◦ T )

for any s > 0.

Proof. From Proposition 3.6, we obtain

D(s, {S, T, S, T, . . . })≤ D(s, {T, S, T, S, . . . })≤ D(s, {S, T, S, T . . . }),

which implies

D(s, {S, T, S, T, . . . })= D(s, {T, S, T, S, . . . }).
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By Proposition 3.3,

D(s, T ◦S)=D(s, {T ◦S, T ◦S, . . . })=2s D(s, {S, T, S, T, . . . })

=2s D(s, {T, S, T, S, . . . })=D(s, {S◦T, S◦T, . . . })=D(s, S◦T ). �

Corollary 3.8. Let X be a compact topological space and Ti (i = 1, 2, . . . , n) be
the continuous self-maps on X. Then, for any 1< i ≤ n and s > 0,

D(s, Tn ◦ · · · ◦ T2 ◦ T1)= D(s, Ti−1 ◦ · · · ◦ T2 ◦ T1 ◦ Tn ◦ · · · ◦ Ti ).

Proof. By Theorem 3.7,

D(s, Tn◦· · ·◦Ti ◦Ti−1◦· · ·◦T2◦T1)= D(s, (Tn◦· · ·◦Ti )◦(Ti−1◦· · ·◦T2◦T1))

= D(s, (Ti−1◦· · ·◦T2◦T1)◦(Tn◦· · ·◦Ti ))

= D(s, Ti−1◦· · ·◦T2◦T1◦Tn◦· · ·◦Ti ). �

The following corollary was given in [Cheng and Li 2010]; however, this paper
provides a quick proof from the commutativity (Theorem 3.7).

Corollary 3.9. Let X be a compact topological spaces and T1, T2 be two continuous
maps on X. If (X, T1) is conjugate to (Y, T2), then D(s, T1) = D(s, T2) for any
s > 0.

Proof. Let φ be a conjugacy between T1 and T2. Since T2=φ◦T1◦φ
−1, Theorem 3.7

shows that
D(s, T2)= D(s, (φ ◦ T1) ◦φ

−1)= D(s, T1). �

As Corollary 3.9 shows, the s-topological entropy D(s, T ) for an autonomous
dynamical system is a conjugate invariant quantity. For the nonautonomous case,
the definition of conjugacy must be adapted to the following.

Definition 3.10. Let (X, {Ti }
∞

i=1) and (Y, {Si }
∞

i=1) be two nonautonomous dynam-
ical systems. Denote by π1,∞ = {πi }

∞

i=1 a sequence of equicontinuous surjective
maps from X to Y . If

πi+1 ◦ Ti = Si ◦πi

for every i ≥ 1, we say that π1,∞ is a topological equisemiconjugacy between T1,∞

and S1,∞, and the dynamical system (X, T1,∞) is topologically equisemiconjugate
with (Y, S1,∞). Furthermore, if π1,∞ is an equicontinuous sequence of homeomor-
phisms such that the sequence π−1

1,∞ = {π
−1
i }
∞

i=1 of inverse homeomorphisms is
also equicontinuous, we say that π1,∞ is a topological equiconjugacy between T1,∞

and S1,∞, and the dynamical system (X, T1,∞) is topologically equiconjugate with
(Y, S1,∞).
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Theorem 3.11. Let (X, d) and (Y, ρ) be compact metric spaces and T1,∞ and S1,∞

be the sequences of continuous maps from X and Y into themselves, respectively. If
the system (X, T1,∞) is equisemiconjugate with (Y, S1,∞), then

(3-5) D(s, S1,∞)≤ D(s, T1,∞)

for any s > 0.

Proof. Let π1,∞ be the equisemiconjugacy between X and Y . For any given ε > 0,
noting that π1,∞ is a sequence of equicontinuous maps from X onto Y and X is
compact, there exists δ(ε) > 0 such that if ρ(πi (x), πi (y)) > ε for some i ≥ 1,
then d(x, y) > δ(ε). Let E ⊂ Y be an (n, ε)-separated set for S1,∞ with maximal
cardinality s(S1,∞, n, ε). Choose one point from each fiber π−1

1 (y), y ∈ E and
denote by EX the set of such points. Then EX ⊂ X is an (n, δ(ε))-separated set for
T1,∞. Therefore, s(T1,∞, n, δ(ε))≥ s(S1,∞, n, ε), which implies (3-5). �

Apply Theorem 3.11, the following statement holds.

Corollary 3.12. Let (X, d) and (Y, ρ) be compact metric spaces and T1,∞ and S1,∞

be the sequences of continuous maps from X and Y into themselves, respectively. If
the system (X, T1,∞) is equiconjugate with (Y, S1,∞), then

D(s, S1,∞)= D(s, T1,∞)

for any s > 0. As a result, D(S1,∞)= D(T1,∞).

Theorem 3.13 (product rule). Let (X, d) and (Y, ρ) be compact metric spaces. Let
{Ti }
∞

i=1 and {Si }
∞

i=1 be two sequences of continuous maps on X and Y , respectively.
Define a metric d∗ on X × Y by d∗((x1, y1), (x2, y2))=max{d(x1, x2), ρ(y1, y2)}

and a sequence of transformations on X × Y by (Ti × Si )(x, y)= (Ti x, Si y). Then

D(s, T1,∞× S1,∞)≤ D(s, T1,∞)+ D(s, S1,∞)

for any s > 0, where T1,∞× S1,∞ = {Ti × Si }
∞

i=1.

Proof. We know that balls in the n-Bowen metric d∗n are products of balls on X and
Y since balls in the product metric d∗ are products of balls on X and Y . Therefore,

r(T1,∞× S1,∞, n, ε)≤ r(T1,∞, n, ε)r(S1,∞, n, ε).

Thus D(s, T1,∞× S1,∞)≤ D(s, T1,∞)+ D(s, S1,∞). �

4. Subadditivity

For S, T two continuous functions from the compact metric space X to itself, some
additional conditions are necessary to obtain some interesting results. It is natural
to assume that S and T commute, that is, S ◦ T = T ◦ S. For instance, in [Hu
1993], the subadditivity of topological entropy h(S ◦ T )≤ h(S)+ h(T ) was proved
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for diffeomorphisms on C∞ compact Riemannian manifolds. This section also
investigates the subadditivity for entropy dimension in one-dimensional dynamics.
For convenience, the following two definitions use the same concept and notation
adopted in [Cheng and Li 2010].

Definition 4.1. An interval map T : [0, 1] → [0, 1] is called piecewise monotone
continuous if there exist points 0= a0 < a1 < · · ·< aN = 1 such that T |(ai−1,ai ) is
continuous and monotone.

Definition 4.2. Let T be a piecewise monotone continuous map. If J is a maximal
interval on which T |J is continuous and monotone, then T : J → T (J ) is called a
branch or lap of T . The number of laps of T is denoted by l(T ).

Rothschild [1971] and Misiurewicz and Szlenk [1980] independently obtained
the topological entropy formula for a piecewise monotone map (see [Brucks and
Bruin 2004; Pollicott and Yuri 1998]). The following theorem gives a generalized
s-topological entropy formula.

Theorem 4.3 [Cheng and Li 2010]. Let T : [0, 1]→ [0, 1] be a piecewise monotone
continuous map and s > 0 a real number. Then

(4-1) D(s, T )= lim sup
n→∞

log l(T n)

ns .

Theorem 4.4 (subadditivity). Let T , S be piecewise monotone continuous maps
such that T ◦ S = S ◦ T and let s > 0 be a real number. Then

D(s, S ◦ T )≤ D(s, S)+ D(s, T ).

Hence, we have the inequality

(4-2) D(S ◦ T )≤max{D(S), D(T )}.

Proof. Since S ◦ T = T ◦ S, it is trivial that S p
◦ T q
= T q

◦ S p for all p, q ∈ N.
The number of intervals of monotonicity of Sn

◦ T n is smaller than or equal to
l(T n)l(Sn). Thus, we obtain that l((S ◦ T )n)≤ l(Sn)l(T n). The previous theorem
gives that

D(s, S ◦ T )= lim sup
n→∞

log l((S ◦ T )n)
ns ≤ lim sup

n→∞

log l(Sn)l(T n)

ns

≤ lim sup
n→∞

log l(Sn)

ns + lim sup
n→∞

log l(T n)

ns = D(s, S)+ D(s, T ).

For any t > max{D(S), D(T )}, it is clear that D(t, S) = D(t, T ) = 0 by the
definition of entropy dimension. Thus, D(t, S◦T )= 0, which implies D(S◦T )≤ t .
It follows that D(S ◦ T )≤max{D(S), D(T )} by the arbitrariness of t . �
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Corollary 4.5. Let T , S be piecewise monotone continuous maps such that T ◦ S =
S ◦ T . If D(S)= D(T )= 0, then D(S ◦ T )= 0.

Note that in general from D(S) > 0 or D(T ) > 0, it may not possible to deduce
that D(S ◦ T ) > 0. To find a result in this setting, calculate the left shift S and right
shift T on the symbolic space {1, 2}Z. Then S ◦ T is the identity map. It is trivial
that D(S)= 1 and D(T )= 1. However, D(S ◦T )= 0. This example also indicates
that the inequality in (4-2) can be sharp. On the other hand, it is easy to see that the
inequality can be an equality. For example, if S is the identity map, then D(S)= 0,
and D(S◦T )= D(T )=max{D(S), D(T )}. Some related properties of topological
entropy of composition, S ◦ T , can be found in [Goodwyn 1972; Raith 2004].

Consider a sequence T1,∞={Ti }
∞

i=1 of continuous functions from a compact met-
ric space X to itself. Proposition 3.6 shows a kind of monotonicity of {D(s, Ti,∞)}

on i ∈N. Here, we can introduce the notion of the asymptotical entropy dimension
of the considered system as the limit of entropy dimension in

D∗(T∞)= lim
i→∞

D(Ti,∞),

where Ti,∞ is the tail Ti , Ti+1, . . . of the sequence T1,∞.

Theorem 4.6. Let T1,∞ = {Ti }
∞

i=1 be a sequence of monotone continuous functions
from X to itself , where X is the unit interval [0, 1] or unit circle S1. Then the
entropy dimension is D(T1,∞)= 0. Consequently, D∗(T∞)= 0.

Proof. Consider the unit interval case first. Assume that E = {x1, x2, . . . , xk} is
a subset of [0, 1] with x1 ≤ x2 ≤ · · · ≤ xk . Since the functions T1, T2, T3, . . . are
monotone, for every j = 0, 1, 2, 3, . . . , we obtain either

T j
1 (x1)≤ T j

1 (x2)≤ T j
1 (x3)≤ · · · ≤ T j

1 (xk)

or
T j

1 (x1)≥ T j
1 (x2)≥ T j

1 (x3)≥ · · · ≥ T j
1 (xk).

This implies that the set E is an (n, ε)-separated set if and only if for every
i = 1, 2, . . . , k− 1, the set {xi , xi+1} is (n, ε)-separated. Denote the integer part of
a number z by [z]. Since the length of the unit interval [0, 1] is 1, at most [1

ε
] of

the distances |T j
1 (x1)− T j

1 (x2)|, |T
j

1 (x2)− T j
1 (x3)|, . . . , |T

j
1 (xk−1)− T j

1 (xk)| are
longer than ε. Therefore, at most n[1

ε
] sets of the form {xi , xi+1}, i = 1, 2, . . . , k−1

are (n, ε)-separated. Thus, if E is (n, ε)-separated, then k−1≤ n[1
ε
]. By definition,

D(s, T1,∞)= 0 for any s > 0, which implies D(T1,∞)= 0. Similarly, D(T j,∞)= 0
for any j > 1. Thus, D∗(T∞)= 0

Next, consider the case X = S1. The proof is similar to that of the unit interval
case when the order of the points on S1 is the angle of points on S1. Therefore,
D∗(T∞)= 0 is also obtained in this case. �
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