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BRAUER’S HEIGHT ZERO CONJECTURE
FOR METACYCLIC DEFECT GROUPS

BENJAMIN SAMBALE

We prove that Brauer’s height zero conjecture holds for p-blocks of finite
groups with metacyclic defect groups. If the defect group is nonabelian
and contains a cyclic maximal subgroup, we obtain the distribution into
p-conjugate and p-rational irreducible characters. The Alperin–McKay
conjecture then follows provided p = 3. Along the way we verify a few
other conjectures. Finally we consider more closely the extraspecial defect
group of order p3 and exponent p2 for an odd prime. Here for blocks with
inertial index 2 we prove the Galois–Alperin–McKay conjecture by comput-
ing k0(B). Then for p ≤ 11 also Alperin’s weight conjecture follows. This
improves results of Gao (2012), Holloway, Koshitani, Kunugi (2010) and
Hendren (2005).

1. Introduction

An important task in representation theory is the determination of the invariants of
a block of a finite group when its defect group is given. For a p-block B of a finite
group G we are interested in the number k(B) of irreducible ordinary characters and
the number l(B) of irreducible Brauer characters of B. Let D be a defect group of B.
Then the irreducible ordinary characters split into ki (B) characters of height i ≥ 0.
Here the height h(χ) of a character χ in B is defined by χ(1)p = ph(χ)

|G : D|p.
If p = 2, the block invariants for several defect groups were obtained in the last

years. In particular the invariants are known if the defect group is metacyclic; see
[Sambale 2012]. However, for odd primes p the situation is more complicated.
Here even in the smallest interesting example of an elementary abelian defect group
of order 9, the block invariants are not determined completely; see [Kiyota 1984].
Nevertheless Brauer’s k(B)-conjecture and Olsson’s conjecture were proved for all
blocks with metacyclic defect groups in [Gao 2011; Yang 2011]. Following these
lines, we obtain in this paper that also Brauer’s height zero conjecture is fulfilled
for these blocks. The proof uses the notion of lower defect groups and inequalities
from [Héthelyi et al. 2012]. Moreover, if G is p-solvable, we obtain the algebra
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structure of B with respect to an algebraically closed field of characteristic p. If
one restricts to blocks with maximal defect, the precise invariants were determined
in [Gao 2012]. We can confirm at least some of these values. For principal blocks
there is even a perfect isometry between B and its Brauer correspondent in NG(D)
by the main theorem of [Horimoto and Watanabe 2012].

In the second part of the paper we consider the (unique) nonabelian p-group with
a cyclic subgroup of index p as a special case. Here the difference k(B)− l(B) is
known from [Gao and Zeng 2011]. We confirm this result and derive the distribution
into p-conjugate and p-rational irreducible characters. We also show that ki (B)= 0
for i ≥ 2. This implies various numerical conjectures. Moreover, it turns out that the
Alperin–McKay conjecture holds provided p= 3. This is established by computing
k0(B). Here in the case |D| ≤ 34 we even obtain the other block invariants k(B),
ki (B) and l(B), which leads to a proof of Alperin’s weight conjecture in this case.
This generalizes some results from [Holloway et al. 2010], where these blocks were
considered under additional assumptions on G.

The smallest nonabelian example for a metacyclic defect group for an odd prime
is the extraspecial defect group p1+2

− of order p3 and exponent p2. For this special
case Hendren [2005] obtained some inequalities on the invariants. In [Schulz 1980]
one can find results for these blocks under the hypothesis that G is p-solvable.
The present paper improves both of these works. In particular if the inertial index
e(B) of B is 2, we verify the Galois–Alperin–McKay conjecture (see [Isaacs and
Navarro 2002]), a refinement of the Alperin–McKay conjecture. As a consequence,
for p ≤ 11 we are able to determine the block invariants k(B), ki (B) and l(B)
completely without any restrictions on G. Then we use the opportunity to prove
several conjectures including Alperin’s weight conjecture for this special case. As
far as I know, these are the first nontrivial examples of Alperin’s conjecture for a
nonabelian defect group for an odd prime.

2. Brauer’s height zero conjecture

Let B be a p-block of a finite group G with metacyclic defect group D. Since for
p = 2 the block invariants are known and most of the conjectures are verified (see
[Sambale 2012]), we assume p> 2 for the rest of the paper. If D is abelian, Brauer’s
height zero conjecture is true by [Kessar and Malle 2011] (using the classification).
Hence, we can also assume that D is nonabelian. Then we have to distinguish
whether D splits or not. In the nonsplit case the main theorem of [Gao 2011] says
that B is nilpotent. Again, the height zero conjecture holds. Thus, let us assume that
D is a nonabelian split metacyclic group. Then D has a presentation of the form

(2-1) D = 〈x, y | x pm
= y pn

= 1, yxy−1
= x1+pl

〉
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with 0 < l < m and m − l ≤ n. Many of the results in this paper will depend on
these parameters. Assume that the map x→ xα1 generates an automorphism of 〈x〉
of order p− 1. Then by Theorem 2.5 in [Gao 2011], the map α with α(x)= xα1

and α(y)= y is an automorphism of D of order p− 1. By the Schur–Zassenhaus
theorem applied to Op(Aut(D)) E Aut(D), 〈α〉 is unique up to conjugation in
Aut(D). In particular the isomorphism type of the semidirect product D o 〈α〉
does not depend on the choice of α. We denote the inertial quotient of B by I (B);
in particular e(B) = |I (B)|. It is known that I (B) is a p′-subgroup of the outer
automorphism group Out(D). Hence, we may assume that I (B)≤ 〈α〉. Sometimes
we regard α as an element of NG(D) by a slight abuse of notation.

We fix a Brauer correspondent bD of B in CG(D). For an element u ∈ D we
have a B-subsection (u, bu) ∈ (D, bD). Here bu is a Brauer correspondent of B in
CG(u). Let F be the fusion system of B. Then by Proposition 5.4 in [Stancu 2006],
F is controlled. In particular CD(u) is a defect group of bu ; see Theorem 2.4(ii) in
[Linckelmann 2006]. In case l(bu) = 1 we denote the unique irreducible Brauer
character of bu by ϕu . Then the generalized decomposition numbers du

i j form a
vector du

:= (du
χϕu
:χ ∈ Irr(B)). More generally we have subpairs (R, bR)≤ (D, bD)

for every subgroup R ≤ D. In particular I (B)=NG(D, bD)/D CG(D). For r ∈N

we set ζr := e2π i/r .

Proposition 2.1. Let B be a p-block of a finite group with a nonabelian metacyclic
defect group for an odd prime p. Then l(B)≥ e(B).

Proof. We use the notation above. If D is nonsplit, we have e(B)= l(B)= 1. Thus,
assume that D is given by (2-1). Let m(d) be the multiplicity of d ∈N as an elemen-
tary divisor of the Cartan matrix of B. It is well-known that m(pm+n)=m(|D|)= 1.
Hence, it suffices to show m(pn)≥ e(B)− 1.

By Corollary V.10.12 in [Feit 1982], we have

m(pn)=
∑
R∈R

m(1)
B (R)

where R is a set of representatives for the G-conjugacy classes of subgroups of
G of order pn . After combining this with the formula (2S) of [Broué and Olsson
1986] we get

m(pn)=
∑

(R,bR)∈R′

m(1)
B (R, bR)

where R′ is a set of representatives for the G-conjugacy classes of B-subpairs
(R, bR) such that R has order pn .

Thus, it suffices to prove m(1)
B (〈y〉, by) ≥ e(B)− 1. By (2Q) [ibid.] we have

m(1)
B (〈y〉, by)=m(1)

By
(〈y〉) where By := bNG(〈y〉,by)

y . It is easy to see that ND(〈y〉)=
CD(y), because D/〈x〉 ∼= 〈y〉 is abelian. Since B is controlled and I (B) acts
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trivially on 〈y〉, we get NG(〈y〉, by) = CG(y) and By = by . Thus, it remains to
prove m(1)

by
(〈y〉) ≥ e(B)− 1. Let x i y j

∈ CD(y) \ 〈y〉. Then x i
∈ Z(D). Hence,

by Theorem 2.3(2)(iii) in [Gao 2011] we have CD(y)= Z(D)〈y〉 = 〈x pm−l
〉× 〈y〉.

By Proposition 2.1(b) in [An 2011], also by is a controlled block. Observe that
(CD(y), bCD(y)) is a maximal by-subpair. Since α ∈NCG(y)(CD(y), bCD(y)), we see
that e(by)= e(B).

As usual, by dominates a block of CG(y)/〈y〉 with cyclic defect group

CD(y)/〈y〉 ∼= 〈x pm−l
〉.

Hence, pn occurs as elementary divisor of the Cartan matrix of by with multi-
plicity e(by) − 1 = e(B) − 1 (see [Dade 1966; Fujii 1980]). By Corollary 3.7
in [Olsson 1980] every lower defect group of by must contain 〈y〉. This im-
plies m(1)

by
(〈y〉)= e(B)− 1. �

Since Alperin’s weight conjecture would imply that l(B)= e(B), it is reasonable
that 〈y〉 and D are the only (nontrivial) lower defect groups of D up to conjugation.
However, we do not prove this. We remark that Proposition 2.1 would be false for
abelian metacyclic defect groups; see [Kiyota 1984].

We introduce a general lemma.

Lemma 2.2. Let B be a controlled block of a finite group G with Brauer correspon-
dent bD in CG(D). If (u, bu) ∈ (D, bD) is a subsection such that

NG(D, bD)∩CG(u)⊆ CD(u)CG(CD(u)),

then e(bu)= l(bu)= 1.

Proof. By Proposition 2.1 in [An 2011], bu is a controlled block with Sylow
bu-subpair (CD(u), bCD(u)). Hence,

e(bu)= |NCG(u)(CD(u), bCD(u))/CD(u)CG(CD(u))|.

Every F-automorphism on CD(u) is a restriction from AutF(D). This gives

NCG(u)(CD(u), bCD(u))⊆ (NG(D, bD)∩CG(u))CG(CD(u))⊆ CD(u)CG(CD(u)).

Thus, we have e(bu) = 1. Since bu is controlled, it follows that bu is nilpotent
and l(bu)= 1. �

Theorem 2.3. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group for an odd prime p. Then

k(B)≥
(

pl
+ pl−1

− p2l−m−1
− 1

e(B)
+ e(B)

)
pn.
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Proof. If e(B) = 1, the block B is nilpotent. Then the claim follows from Theo-
rem 2.3(2)(iii) in [Gao 2011] and Remark 2.4 in [Héthelyi and Külshammer 2011].
So, assume e(B) > 1. The idea is to use Brauer’s formula [Nagao and Tsushima
1989, Theorem 5.9.4]. Let u ∈ D. Then bu has metacyclic defect group CD(u).
Assume first that u ∈ CD(I (B)). Since I (B) acts freely on 〈x〉, we see that u ∈ 〈y〉.
As in the proof of Proposition 2.1 (for u = y), we get e(bu) = e(B). If CD(u)
is nonabelian, Proposition 2.1 implies l(bu) ≥ e(B). Now suppose that CD(u) is
abelian. Since y ∈ CD(u), it follows that CD(u) = CD(y) = 〈x pm−l

〉 × 〈y〉. Thus,
by Theorem 1 in [Watanabe 1991] we have l(bu)= l(by)= e(B).

Now assume that u is not F-conjugate to an element of CD(I (B)) = 〈y〉. We
are going to show that e(bu) = l(bu) = 1 by using Lemma 2.2. For this let
γ ∈ (NG(D, bD) ∩ CG(u)) \ CD(u)CG(CD(u)) by way of contradiction. Since
D CG(D) ∩ CG(u) = CG(D)CD(u) ⊆ CD(u)CG(CD(u)), γ is not a p-element.
Hence, after replacing γ by a suitable power if necessary, we may assume that
γ is a nontrivial p′-element modulo CG(D). By the Schur–Zassenhaus Theorem
(in our special situation one could use more elementary theorems) applied to
D/Z(D)EAutF(D), γ is D-conjugate to a nontrivial power of α (modulo CG(D)).
But then u is D-conjugate to an element of 〈y〉. Contradiction. Hence, we have
NG(D, bD)∩CG(u)⊆ CD(u)CG(CD(u)) and e(bu)= l(bu)= 1 by Lemma 2.2.

It remains to determine a set R of representatives for the F-conjugacy classes
of D; see Lemma 2.4 in [Sambale 2011a]. Since the powers of y are pairwise
nonconjugate in F, we get pn subsections (u, bu) such that l(bu)≥ e(B) (including
the trivial subsection).

By Theorem 2.3(2)(iii) in [Gao 2011] we have |D′|= pm−l and |Z(D)|= pn−m+2l .
Hence, Remark 2.4 in [Héthelyi and Külshammer 2011] implies that D has pre-
cisely pn−m+2l−1(pm−l+1

+ pm−l
− 1) conjugacy classes. Let C be one of these

classes that do not intersect 〈y〉. Assume αi (C) = C for some i ∈ Z such that
αi
6= 1. Then there are elements u ∈ C and w ∈ D such that αi (u) = wuw−1.

Hence γ := w−1αi
∈ NG(D, bD)∩CG(u). Since γ is not a p-element, we get a

contradiction as above. This shows that no nontrivial power of α can fix C as a set.
Thus, all these conjugacy classes split in

pm−l+1
+ pm−l

− pm−2l+1
− 1

e(B)
pn−m+2l−1

orbits of length e(B) under the action of I (B). For every element u in one of these
classes we have l(bu)= 1 as above. This gives

k(B)=
∑
u∈R

l(bu)≥ e(B)pn
+

pl
+ pl−1

− p2l−m−1
− 1

e(B)
pn. �
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The results for blocks with maximal defect in [Gao 2012] show that the bound
in Theorem 2.3 is sharp (after evaluating the geometric series [ibid., Theorem 1.1]).

Theorem 2.4. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group D for an odd prime p. Then

k0(B)≤
(

pl
− 1

e(B)
+ e(B)

)
pn
≤ pn+l

= |D : D′|,

∞∑
i=0

p2i ki (B)≤
(

pl
− 1

e(B)
+ e(B)

)
pn+m−l

≤ pn+m
= |D|,

ki (B)= 0 for i >min
{

2(m− l), m+n−1
2

}
.

In particular k0(B) < k(B); that is, Brauer’s height zero conjecture holds for B.

Proof. We consider the subsection (y, by). We have already seen that l(by)= e(B)
and CD(y)/〈y〉 is cyclic of order pl . Hence, Proposition 2.5(i) in [Héthelyi et al.
2012] implies the first inequality. For the second we consider u := x pm−l

∈ Z(D).
Since u is not D-conjugate to a power of y, the proof of Theorem 2.3 gives l(bu)= 1.
Moreover, |AutF(〈u〉)|= e(B). Thus, Theorem 4.10 in the same reference shows the
second claim. Since k0(B)>0, it follows at once that ki (B)=0 for i>(n+m−1)/2.
On the other hand Corollary V.9.10 in [Feit 1982] implies ki (B)= 0 for i > 2(m−l).

Now we discuss the claim k0(B) < k(B). By Theorem 2.3 it suffices to show(
pl
− 1

e(B)
+ e(B)

)
pn <

(
pl
+ pl−1

− p2l−m−1
− 1

e(B)
+ e(B)

)
pn.

This reduces to l < m, one of our hypotheses. �

Again for blocks with maximal defect, the bound on k0(B) in Theorem 2.4 is
sharp; see [Gao 2012]. On the other hand the bound on the height of the irreducible
characters is probably not sharp in general.

Corollary 2.5. Let B be a p-block of a finite group with a nonabelian split meta-
cyclic defect group for an odd prime p. Then

k(B)≤
(

pl
− 1

e(B)
+ e(B)

)
(pn+m−l−2

+ pn
− pn−2).

Proof. In view of Theorem 2.4, the number k(B) is maximal if k0(B) is maximal
and k1(B)= k(B)− k0(B). Then

k1(B)≤
(

pl
− 1

e(B)
+ e(B)

)
(pn+m−l−2

− pn−2)

and the result follows. �
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Apart from a special case covered in [Schulz 1980], it seems that there are no
results about B in the literature for p-solvable groups. We take the opportunity to
give such a result, which also holds in a more general situation.

Theorem 2.6. Let B be a controlled block of a p-solvable group over an alge-
braically closed field F of characteristic p. If I (B) is cyclic, then B is Morita
equivalent to the group algebra F[D o I (B)] where D is the defect group of B. In
particular k(B)= k(D o I (B)) and l(B)= e(B).

Proof. Let P E D, H and H as in Theorem A in [Külshammer 1981]. As before
let F be the fusion system of B. Then parts (iii) and (v) of that theorem imply that
P is F-radical. Moreover, the Hall–Higman lemma gives

CD(P)Op′(H)/Op′(H)⊆ CH (Op(H))⊆ Op(H)= P Op′(H)/Op′(H).

Since P is normal in H , we have CD(P) ⊆ P . In particular P is also F-centric.
Now let g ∈ NG(P, bP). Since B is controlled, there exists a h ∈ NG(D, bD) such
that h−1g ∈ CG(P). Hence, g ∈ NG(D, bD)CG(P) and

D CG(P)/P CG(P)ENG(P, bP)/P CG(P).

Since P is F-radical, it follows that P CG(P)= D CG(P). Now CD(P)= Z(P)
implies P = D. Hence, H ∼= D o I (B). Observe at this point that I (B) can be
regarded as a subgroup of Aut(D) by the Schur–Zassenhaus Theorem. Moreover,
this subgroup is unique up to conjugation in Aut(D). Hence, the isomorphism
type of D o I (B) is uniquely determined. Since I (B) is cyclic, the 2-cocycle γ
appearing in [ibid.] is trivial. Thus, the result follows from Theorem A(iv). �

Let us consider the opposite situation where G is quasisimple. Then the main
theorem of [An 2011] tells us that B cannot have nonabelian metacyclic defect
groups. Thus, in order to settle the general case it would be sufficient to reduce the
situation to quasisimple groups.

For the convenience of the reader we collect the results about metacyclic de-
fect groups.

Theorem 2.7. Let B be a block of a finite group with metacyclic defect group. Then
Brauer’s k(B)-conjecture, Brauer’s height zero conjecture and Olsson’s conjecture
are satisfied for B.

In the next sections we make restrictions on the parameters p, m, n and l in order
to prove stronger results.

3. The group M pm+1

Let n = 1. Then m = l + 1 and D is the unique nonabelian group of order pm+1

with exponent pm . We denote this group by Mpm+1 (compare with [Holloway et al.
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2010]). It follows from Theorem 2.4 that ki (B)= 0 for i > 2. We will see that the
same holds for i = 2.

Theorem 3.1. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then ki (B)= 0 for i ≥ 2. In particular the following
conjectures are satisfied for B:

• Eaton’s conjecture [2003],

• Eaton–Moretó conjecture [2011],

• Robinson’s conjecture [1996],

• Malle–Navarro conjecture [2006].

Proof. Assume k2(B) > 0. We are going to show that the following inequality from
Theorem 2.4 is not satisfied:

(3-1) k0(B)+ p2k1(B)+ p4k2(B)≤
(

pm−1
− 1

e(B)
+ e(B)

)
p2.

In order to do so, we may assume k2(B)= 1. Moreover, taking Theorem 2.3 into
account, we assume

k0(B)=
(

pm−1
− 1

e(B)
+ e(B)

)
p, k1(B)=

pm−1
− pm−2

e(B)
− 1.

Now (3-1) gives the contradiction

p4
≤ (e(B)+ 1)p2

−
p2
− p

e(B)
− e(B)p ≤ p3.

Hence, k2(B)= 0. In particular Eaton’s conjecture is in fact equivalent to Brauer’s
k(B)-conjecture and Olsson’s conjecture. Also the Eaton–Moretó conjecture is
trivially satisfied. Robinson’s conjecture, stated in the introduction of [Robinson
1996], reads: If D is nonabelian, then ph(χ) < |D : Z(D)| for all χ ∈ Irr(B). This is
true in our case. It remains to verify the Malle–Navarro conjecture. For this, observe

k(B)
l(B)

≤

(
pm−1

− 1
e(B)2

+ 1
)
(p+ 1− p−1)≤ pm

+ pm−1
− pm−2

= k(D)

by Corollary 2.5 and Remark 2.4 in [Héthelyi and Külshammer 2011]. Now we
establish a lower bound for k0(B). From Theorem 2.4 we get

k1(B)≤
pm−1

− 1
e(B)

+ e(B)− 1.

This gives

(3-2) k0(B)= k(B)− k1(B)≥
pm
− pm−2

− p+ 1
e(B)

+ e(B)(p− 1)+ 1.
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The other inequality of the Malle–Navarro conjecture reads

k(B)≤ k0(B)k(D′)= k0(B)p.

After a calculation using (3-2) and Corollary 2.5, this boils down to

pm
+ 2pm−1

+ p2
≤ pm+1

+ 2p+ 1,

which is obviously true. �

The argument in the proof of Theorem 3.1 can also be used to improve the
general bound for the heights in Theorem 2.4 at least in some cases. However, it
does not suffice to prove ki (B)= 0 for i > m− l (which is conjectured). The next
theorem also appears in [Gao and Zeng 2011].

Theorem 3.2. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then

k(B)− l(B)=
pm
+ pm−1

− pm−2
− p

e(B)
+ e(B)(p− 1).

Proof. By the proof of Theorem 2.3, it suffices to show l(bu)= e(B) for 1 6= u ∈ 〈y〉.
Since n = 1, we have CD(u) = Z(D)〈y〉 = 〈x p

〉 × 〈y〉. Thus, by Theorem 1 in
[Watanabe 1991] we have l(bu)= e(B). �

This result leads to the distribution of the irreducible characters into p-conjugate
and p-rational characters. We need this later for the study of decomposition numbers.
We denote the Galois group of Q(ζ|G|)|Q(ζ|G|p′ ) by G. Then restriction gives an
isomorphism G∼=Gal(Q(ζ|G|p)|Q). In particular since p is odd, G is cyclic of order
|G|p(p− 1)/p. We often identify both groups.

Proposition 3.3. Let B be a block of a finite group with defect group Mpm+1 where
p is an odd prime and m ≥ 2. Then the ordinary irreducible characters of B split
into orbits of p-conjugate characters of the following lengths:

• two orbits of length pm−2(p− 1)/e(B),

• one orbit of length pi (p− 1)/e(B) for every i = 0, . . . ,m− 3,

• (p− 1)/e(B)+ e(B) orbits of length p− 1,

• (p− 1)/e(B) orbits of length pi (p− 1) for every i = 1, . . . ,m− 2,

• l(B) (≥ e(B)) p-rational characters.

Proof. By Brauer’s permutation lemma (Lemma IV.6.10 in [Feit 1982]) it suffices
to reveal the orbits of G on the columns of the generalized decomposition ma-
trix. The ordinary decomposition numbers are all integral, so the action on these
columns is trivial. This gives l(B) p-rational characters. Now we consider a set of
representatives for the B-subsections as in Theorem 2.3.
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There are (pm−1
− 1)/e(B) nontrivial major subsections (z, bz). All of them

satisfy l(bz) = 1 and AutF(〈z〉) = I (B). So these columns form m − 1 orbits of
lengths pm−2(p − 1)/e(B), pm−3(p − 1)/e(B), . . . , (p − 1)/e(B), respectively.
Now for u ∈ 〈x〉\Z(D) we have l(bu)= 1 and AutF(〈u〉)= 〈y〉× I (B). This gives
another orbit of length pm−2(p−1)/e(B). Next let 1 6= u ∈ 〈y〉. Then l(bu)= e(B)
and AutF(〈u〉)= 1. Hence, we get e(B) orbits of length p− 1 each.

Finally let u := x i y j
∈ D \ 〈x〉 such that u is not conjugate to an element of 〈y〉.

As in the proof of Theorem 2.3, pl - i holds. Since |D′| = p, we have (x i y j )p
= x i p

by Hilfssatz III.1.3 in [Huppert 1967]. In particular D′ ⊆ 〈u〉 and ND(〈u〉) = D.
Moreover, |D : Z(D)| = p2 and |AutD(〈u〉)| = p. Since I (B) acts trivially on
D/〈x〉 ∼= 〈y〉, we see that |AutF(〈u〉)| = p. The calculation above shows that u has
order pm−log i . We have exactly pm−log i−1(p−1)2 such elements of order pm−log i .
These split in pm−log i−2(p − 1)2/e(B) conjugacy classes. In particular we get
(p−1)/e(B) orbits of length pm−i−2(p−1) each for every i = 0, . . . , l−1=m−2.

�

It should be emphasized that the proof of Proposition 3.3 heavily relies on the
fact AutF(〈u〉) = 1 whenever l(bu) > 1. Since otherwise it would be not clear,
whether some Brauer characters of bu are conjugate under NG(〈u〉, bu). In other
words, generally the knowledge of k(B)− l(B) does not provide the distribution
into p-conjugate and p-rational characters.

For p = 3 the inequalities Theorem 2.3 and Corollary 2.5 almost coincide. This
allows us to prove the Alperin–McKay conjecture.

Theorem 3.4. Let B be a nonnilpotent block of a finite group with defect group
M3m+1 where m ≥ 2. Then

e(B)= 2, k0(B)=
3m
+9
2

,

k1(B) ∈
{
3m−2, 3m−2

+ 1
}
, ki (B)= 0 for i ≥ 2,

k(B) ∈
{11·3m−2

+9
2

,
11·3m−2

+11
2

}
, l(B) ∈ {2, 3}.

In particular the Alperin–McKay conjecture holds for B.

Proof. Since B is nonnilpotent, we must have e(B) = 2. From Theorem 2.3
we get k(B) ≥ (11 · 3m−2

+ 9)/2. On the other hand Corollary 2.5 implies
k(B) ≤ (11 · 3m−2

+ 11)/2. Hence, l(B) ∈ {2, 3} by Theorem 3.2. Moreover,
we have (3m

+7)/2≤ k0(B)≤ (3m
+9)/2 by Theorem 2.4 (otherwise k1(B) would

be too large). Now Corollary 1.6 in [Landrock 1981] shows that k0(B)= (3m
+9)/2.

Since we get the same number for the Brauer correspondent of B in NG(D), the
Alperin–McKay conjecture follows. �
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The next aim is to show that even Alperin’s weight conjecture holds in the
situation of Theorem 3.4 provided m ≤ 3. Moreover, we verify the ordinary weight
conjecture [Robinson 2004] in this case using the next proposition.

Proposition 3.5. Let B be a block of a finite group with defect group Mpm+1 where p
is an odd prime and m ≥ 2. Then the ordinary weight conjecture for B is equivalent
to the equalities

k0(B)=
(

pm−1
− 1

e(B)
+ e(B)

)
p, k1(B)=

p− 1
e(B)

pm−2.

Proof. We use the version in Conjecture 6.5 in [Kessar 2007]. Let Q be an
F-centric and F-radical subgroup of D. Since |D : Z(D)| = p2 and CD(Q)≤ Q,
we have |D : Q| ≤ p. Assume |D : Q| = p. Then D/Q ≤ AutF(Q). Since F

is controlled, all F-automorphisms on Q come from automorphisms on D. In
particular D/QEAutF(Q). But then Q cannot be F-radical. Hence, we have seen
that D is the only F-centric and F-radical subgroup of D. It follows that the set
ND in [Kessar 2007] only consists of the trivial chain. Since I (B) is cyclic, all
2-cocycles appearing in the same paper are trivial. Hence, we see that

w(D, d)=
∑

χ∈Irrd (D)/I (B)

|I (B)∩ I (χ)|

where Irrd(D) is the set of irreducible characters of D of defect d ≥ 0 and

I (B)∩ I (χ) := {γ ∈ I (B) : γχ = χ}.

Now the ordinary weight conjecture predicts that kd(B)= w(D, d) where kd(B)
is the number of irreducible characters of B of defect d ≥ 0. For d < m both
numbers vanish. Now consider d ∈ {m,m+1}. Let us look at a part of the character
table of D:

D x x p y

χi j ζ i
pm−1 ζ i

pm−2 ζ
j
p

ψk 0 pζ k
pm−1 0

Here i, k ∈ {0, . . . , pm−1
− 1}, j ∈ {0, . . . , p − 1} and gcd(k, p) = 1. The

characters of degree p are induced from Irr(〈x〉). It can be seen that the linear
characters of D split into (pm

−p)/e(B) orbits of length e(B) and p stable characters
under the action of I (B). This gives

w(D,m+ 1)=
(

pm−1
− 1

e(B)
+ e(B)

)
p.
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Similarly, the irreducible characters of D of degree p split into pm−2(p− 1)/e(B)
orbits of length e(B). Hence,

w(D,m)=
p− 1
e(B)

pm−2.

The claim follows. �

We introduce another lemma, which will be needed at several points.

Lemma 3.6. Let q be the integral quadratic form corresponding to the Dynkin
diagram Ar , and let a ∈ Zr .

(i) If q(a)= 1, then a =±(0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0).

(ii) If q(a)= 2, then one of the following holds:

• a =±(0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0),
• a =±(0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1, 0, . . . , 0),
• a =±(0, . . . , 0, 1, 1, . . . , 1, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . , 0).

Here s, . . . , s includes the possibility of no s ∈ Z at all.

Proof. Without loss of generality, r ≥ 2. Let a = (a1, . . . , ar ). Then

(3-3) q(a)=
r∑

i=1

a2
i −

r−1∑
i=1

ai ai+1 =
1
2

(
a2

1 +

r−1∑
i=1

(ai − ai+1)
2
+ a2

r

)
.

Assume first that q(a) = 1 and ai 6= 0 for some i ∈ {1, . . . , r}. After replacing
a with −a if necessary, we have ai > 0. By the equation above we see that the
difference between two adjacent entries of a is at most 1. Going from i to the left
and to the right, we see that a has the stated form.

Now assume q(a) = 2. If one of {a1, ar } is ±2, so must be the other, since
each two adjacent entries of a must coincide. But this contradicts (3-3). Hence,
a1, ar ∈ {±1, 0}. Now let |ai | ≥ 3 for some i ∈ {2, . . . , r − 1}. Going from i to the
left we get at least two nonvanishing summands in (3-3). The same holds for the
entries on the right side of i . Thus, we end up with a configuration where a1 6= 0.
This is again a contradiction. It follows that ai ∈ {±1,±2, 0} for i = 2, . . . , r − 1.
In particular we have only finitely many solutions for a. If no ±2 is involved in
a, it is easy to see that a must be one of the given vectors in the statement of the
lemma. Thus, let us consider ai = 2 for some i ∈ {2, . . . , r − 1} (after changing
signs if necessary). Then ai−1, ai+1 ∈ {1, 2}, since otherwise (ai − ai−1)

2
≥ 4 or

(ai+1−ai )
2
≥ 4. Now we can repeat this argument with ai−1 and ai+1 until we get

the desired form for a. �



BRAUER’S HEIGHT ZERO CONJECTURE FOR METACYCLIC DEFECT GROUPS 493

Theorem 3.7. Let B be a nonnilpotent block of a finite group with defect group
M3m+1 where m ∈ {2, 3}. Then

k0(B)=
3m
+9
2

, k1(B)= 3m−2, k(B)= 11·3m−2
+9

2
, l(B)= e(B)= 2.

In particular Alperin’s weight conjecture and Robinson’s ordinary weight conjecture
[Robinson 2004] are satisfied for B.

Proof. Since B is nonnilpotent, we must have e(B)= 2. The case m= 2 is very easy
and will be handled in the next section together with some more information. Hence,
we assume m = 3 (that is, |D| = 81) for the rest of the proof. By Theorem 3.4
we already know k0(B) = 18. By way of contradiction we assume k(B) = 22,
k1(B)= 4 and l(B)= 3.

We consider the vector d z for z := x3
∈ Z(D). As in [Héthelyi et al. 2012] (we

will use this paper a lot) we can write d z
=
∑5

i=0 aiζ
i
9 for integral vectors ai . We

will show that (a0, ai )= 0 for i ≥ 1. By Lemma 4.7 [ibid.] this holds unless i = 3.
But in this case we have (a3, a3)= 0 and a3 = 0 by Proposition 4.4 [ibid.]. If we
follow the proof of Theorem 4.10 [ibid.] closely, it turns out that the vectors ai are
spanned by a0, a1 and a4. So we can also write

d z
= a0+ a1τ + a4σ

where τ and σ are certain linear combinations of powers of ζ9. Of course, one
could give more precise information here, but this is not necessary in this proof.
By Lemma 4.7 [ibid.] we have (a0, a0)= 27.

Let q be the quadratic form corresponding to the Dynkin diagram of type A3.
We set a(χ) := (a0(χ), a1(χ), a4(χ)) for χ ∈ Irr(B). Since the subsection (z, bz)

gives equality in Theorem 4.10 [ibid.], we have

k0(B)+ 9k1(B)=
∑

χ∈Irr(B)

q(a(χ))= 54.

This implies q(a(χ)) = 32h(χ) for χ ∈ Irr(B). Assume that there is a character
χ ∈ Irr(B) such that a0(χ)ai (χ) > 0 for some i ∈ {1, 4}. Since (a0, ai )= 0, there
must be another character χ ′ ∈ Irr(B) such that a0(χ

′)ai (χ
′) < 0. However, then

q(a(χ ′)) > 32h(χ) by Lemma 3.6. Thus, we have shown that a0(χ)ai (χ) = 0 for
all χ ∈ Irr(B) and i ∈ {1, 4}. Moreover, if a0(χ) 6= 0, then a0(χ)=±3h(χ) again
by Lemma 3.6.

In the next step we determine the number β of integral numbers d z(χ) for
characters χ of height 1. Since (a0, a0) = 27, we have β < 4. Let ψ ∈ Irr(B)
of height 1 such that d z(ψ) /∈ Z. Then we can form the orbit of d z(ψ) under the
Galois group H of Q(ζ9)|(Q(ζ9)∩R). The length of this orbit must be |H| = 3. In
particular β = 1.
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This implies that d z(χ) = a0(χ) = ±1 for all 18 characters χ ∈ Irr(B) of
height 0. In the following we derive a contradiction using the orthogonality relations
of decomposition numbers. In order to do so, we repeat the argument with the
subsection (x, bx). Again we get equality in Theorem 4.10, but this time for k0(B)
instead of k0(B)+ 9k1(B). Hence, dx(χ)= 0 for characters χ ∈ Irr(B) of height
1. Again we can write dx

=
∑17

i=0 aiζ
i
27 where ai are integral vectors. Lemma 4.7

[ibid.] implies (a0, a0) = 9. Using Lemma 3.6 we also have a0(χ) ∈ {0,±1} in
this case. This gives the final contradiction 0= (d z, dx)= (a0, a0)≡ 1 (mod 2).

Hence, we have proved that k(B) = 21, k1(B) = 3 and l(B) = 2. Since B is
controlled, Alperin’s weight conjecture asserts that l(B) = l(b) where b is the
Brauer correspondent of B in NG(D). Since e(b) = e(B), the claim follows at
once. the ordinary weight conjecture follows from Proposition 3.5. This completes
the proof. �

4. The group p1+2
−

In this section we restrict further to the case n = 1 and m = 2, that is,

D = 〈x, y | x p2
= y p

= 1, yxy−1
= x1+p

〉

is extraspecial of order p3 and exponent p2. We denote this group by p1+2
− (compare

with [Hendren 2005]). In particular we can use the results from the last section.
One advantage of this restriction is that the bounds are slightly sharper than in the
general case.

Inequalities. Our first theorem says that the block invariants fall into an interval
of length e(B).

Theorem 4.1. Let B be a block of a finite group with defect group p1+2
− for an odd

prime p. Then

p2
− 1

e(B)
+ e(B)p ≤ k(B)≤

p2
− 1

e(B)
+ e(B)p+ e(B)− 1,(

p− 1
e(B)

+ e(B)
)

p− e(B)+ 1≤ k0(B)≤
(

p− 1
e(B)

+ e(B)
)

p,

p− 1
e(B)

≤ k1(B)≤
p− 1
e(B)

+ e(B)− 1,

ki (B)= 0 for i ≥ 2,

e(B)≤ l(B)≤ 2e(B)− 1,

k(B)− l(B)=
p2
− 1

e(B)
+ (p− 1)e(B).
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Proof. The formula for k(B)− l(B) comes from Theorem 3.2. The lower bounds
for l(B) and k(B) follow from Proposition 2.1 and Theorem 2.3. The upper bound
for k0(B) comes from Theorem 2.4. The same theorem gives also

k1(B)≤
p− 1
e(B)

+ e(B)− 1.

Adding this to the upper bound for k0(B) results in the stated upper bound for k(B).
Now the upper bound for l(B) follows from k(B)− l(B). A lower bound for k0(B)
is given by

k0(B)= k(B)− k1(B)

≥
p2
− 1

e(B)
+ e(B)p−

p− 1
e(B)

− e(B)+ 1=
(

p− 1
e(B)

+ e(B)
)

p− e(B)+ 1

Moreover,

k1(B)= k(B)− k0(B)≥
p2
− 1

e(B)
+ e(B)p−

(
p− 1
e(B)

+ e(B)
)

p =
p− 1
e(B)

. �

Since we already know that the upper bound for k0(B) and the lower bound for
k(B) are sharp (for blocks with maximal defect), it follows at once that the lower
bound for k1(B) in Theorem 4.1 is also sharp (compare with Proposition 3.5).

If e(B) is as large as possible, we can prove slightly more.

Proposition 4.2. Let B be a block of a finite group with defect group p1+2
− for an

odd prime p. If e(B) = p − 1, then k(B) ≤ p2
+ p − 2, l(B) ≤ 2e(B)− 2 and

k0(B) 6= p2
− r for r ∈ {1, 2, 4, 5, 7, 10, 13}.

Proof. By way of contradiction, assume k(B)= p2
+ p− 1. By Theorem 4.1 we

have k0(B)= p2 and k1(B)= p− 1. Set z := x p
∈ Z(D). Then we have l(bz)= 1.

Since I (B) acts regularly on Z(D)\{1}, the vector d z is integral. By Lemma 4.1 in
[Héthelyi et al. 2012] we have 0 6= d z

χϕz
≡ 0 (mod p) for characters χ of height 1.

Hence, d z must consist of p2 entries ±1 and p−1 entries ±p. Similarly l(bx)= 1.
Moreover, all powers x i for (i, p) = 1 are conjugate under F. Hence, also the
vector dx is integral. Thus, the only nonvanishing entries of dx are ±1 for the
characters of height 0, because (dx , dx) = p2 (again using [ibid., Lemma 4.1]).
Now the orthogonality relations imply the contradiction 0= (d z, dx)≡ 1 (mod 2),
since p is odd. Thus, we must have k(B)≤ p2

+ p− 2 and l(B)≤ 2e(B)− 2.
We have seen that every character of height 0 corresponds to a nonvanishing

entry in dx . If we have a nonvanishing entry for a character of height 1 on the other
hand, then Theorem V.9.4 in [Feit 1982] shows that this entry is ±p. However, this
contradicts the orthogonality relation (d z, dx)= 0. Hence, the nonvanishing entries
of dx are in one-to-one correspondence to the irreducible characters of height 0.
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Thus, we see that p2 is the sum of k0(B) nontrivial integral squares. This gives the
last claim. �

Since in case e(B)= 2 the inequalities are very strong, it seems reasonable to
obtain more precise information here. In the last section we proved for arbitrary m
that the Alperin–McKay conjecture holds provided p = 3. As a complementary
result we now show the same for all p, but with the restrictions m = 2 and e(B)= 2.
We even obtain a refinement of the Alperin–McKay conjecture, which is called the
Galois–Alperin–McKay conjecture; see Conjecture D in [Isaacs and Navarro 2002].

Theorem 4.3. Let B be a block of a finite group with defect group p1+2
− for an odd

prime p and e(B)= 2. Then k0(B)= p(p+3)/2. In particular the Galois–Alperin–
McKay conjecture holds for B.

Proof. By Theorem 3.4 we may assume p > 3. For some subtle reasons we
also have to distinguish between p = 7 and p 6= 7. Let us assume first that
p 6= 7. By Theorem 4.1 we have k0(B) ∈ {p(p+ 3)/2− 1, p(p+ 3)/2}. We write
dx
=
∑p(p−1)−1

i=0 aiζ
i
p2 with integral vectors ai . As in Proposition 4.9 of [Héthelyi

et al. 2012] we see that ai = 0 if (i, p)= 1. Moreover, the arguments in the proof
of Proposition 4.8 of the same paper tell us that a p = 0 and ai p = a(p−i)p for
i = 2, . . . , (p− 1)/2. Now let τi := ζ

i
p + ζ

−i
p for i = 2, . . . , (p− 1)/2. Then we

can write

dx
= a0+

(p−1)/2∑
i=2

aiτi

for integral vectors ai . Here observe that dx is real, since (x, bx) and (x−1, bx−1) are
conjugate under I (B). By [ibid., Lemma 4.7] we have (a0, a0)=3p, (ai , a j )= p for
i 6= j and (ai , ai )= 2p for i ≥ 2. Now let a(χ)= (ai (χ) : i = 0, 2, 3, . . . , (p−1)/2)
for χ ∈ Irr(B). Moreover, let q be the integral quadratic form corresponding to the
Dynkin diagram of type A(p−1)/2. Then as in [ibid., Proposition 4.2], we get∑

χ∈Irr(B)

q(a(χ))= p
(

3+ 2
p− 3

2
−

p− 3
2

)
= p

p+ 3
2

.

Let χ ∈ Irr(B) be a character of height 1. Suppose that a(χ) 6= 0. Then we have
k0(B)= p(p+3)/2−1 and χ is the only character of height 1 such that a(χ) 6= 0.
In particular χ is p-rational and a(χ)= a0(χ) ∈ Z. Now Theorem V.9.4 in [Feit
1982] implies p | a0(χ). Since (a0, a0)= 3p, this gives p = 3, which contradicts
our hypothesis. Hence, we have shown that a(χ)= 0 for all characters χ ∈ Irr(B)
of height 1. In particular ∑

χ∈Irr(B)
h(χ)=0

q(a(χ))= p
p+ 3

2
.
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By way of contradiction suppose that k0(B) = p(p+ 3)/2− 1. Then there is
exactly one character χ ∈ Irr(B) such that q(a(χ)) = 2 (this already settles the
case p = 5). Now the idea is to show that there is a p-conjugate character ψ
also satisfying q(a(ψ)) > 1. In order to do so, we discuss the different cases in
Lemma 3.6. Here we can of course choose the sign of a(χ).

First assume

a(χ)= (0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0,−1,−1, . . . ,−1, 0, . . . , 0).

Choose an index k corresponding to one of the −1 entries in a(χ). Let k ′ ∈
{2, . . . , (p − 1)/2} such that kk ′ ≡ ±1 (mod p), and let γk′ ∈ G be the Galois
automorphism which sends ζp to ζ k′

p . Then

γk′(τk)=−1−
(p−1)/2∑

i=2

τi .

Apart from this, γk′ acts as a permutation on the remaining indices

{2, . . . , (p− 1)/2} \ {k}.

This shows that a(γk′(χ)) contains an entry 2. In particular γk′(χ) 6= χ . Moreover,
Lemma 3.6 gives q(a(γk′(χ))) > 1.

Next suppose that

a(χ)= (0, . . . , 0, 1, 1, . . . , 1, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . , 0).

Here we choose k corresponding to an entry 2 in a(χ). Then the same argument as
above implies that a(γk′(χ)) has a −2 on position k1. Contradiction.

Now let a(χ)= (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0) (ob-
serve the leading 0). We choose the index k corresponding to a 1 in a(χ). Let
γk′ be the automorphism as above. Observe that χ is not p-rational. Thus,
Proposition 3.3 implies γk′(χ) 6= χ . In particular q(a(γk′(χ))) = 1. Hence, we
must have a(γk′(χ)) = (−1,−1, . . . ,−1, 0, 0, . . . , 0) where the number of −1
entries is uniquely determined by a(χ). In particular a(γk′(χ)) is independent
of the choice of k. Now choose another index k1 corresponding to an entry 1
in a(χ) (always exists). Then we see that a(χ) and thus χ is fixed by γ−1

k′ γk′1 .
Proposition 3.3 shows that γ−1

k′ γk′1 must be (an extension of) the complex con-
jugation. This means k ′ ≡ −k ′1 (mod p) and k ≡ −k1 (mod p). However this
contradicts 2≤ k, k1 ≤ (p− 1)/2.

Finally let a(χ)= (1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0). Here a quite
similar argument shows that a(χ) only contains one entry 0, say on position k.
Now we can use the same trick where k1 ≥ 2 corresponds to an entry 1. Here
a(γk′1(χ))= (0, 0, . . . , 0,−1,−1, 0, . . . , 0). Let k2 ∈ {2, . . . , (p− 1)/2} such that
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k2 ≡±kk ′1 (mod p). Then the −1 entries of a(γk′1(χ)) lie on positions k ′1 and k2.
Since these entries lie next to each other, we get k± 1≡±k1 (mod p) where the
signs are independent. However, this shows that k and k1 are adjacent. Hence, we
proved that a(χ)= (1, 0, 1) and p = 7 ((1, 1, 0, 1) is not possible, since 9 is not a
prime). However, this case was excluded. Thus, k0(B)= p(p+ 3)/2.

It remains to deal with the case p = 7. It can be seen that there is in fact a
permissible configuration for k0(B)= 34:

dx
= (1, . . . , 1︸ ︷︷ ︸

13 times

, 1+τ2+τ3, . . . , 1+τ2+τ3︸ ︷︷ ︸
6 times

, 1+τ2, 1+τ3, τ2+τ3,

τ2, . . . , τ2︸ ︷︷ ︸
6 times

, τ3, . . . , τ3︸ ︷︷ ︸
6 times

, 0, . . . , 0).

Hence, we consider d z for z := x7. Suppose by way of contradiction that k0(B)= 34.
Then k1(B)= 4 and k(B)= 38. By Proposition 3.3 we have exactly two 7-rational
irreducible characters in Irr(B). Moreover, the orbit lengths of the 7-conjugate
characters are all divisible by 3. Hence, we have precisely one 7-rational char-
acter of height 1 and one of height 0. In the same way as above we can write
d z
= a0 + a2τ2 + a3τ3; see Proposition 4.8 in [Héthelyi et al. 2012]. Then

(a0, a0) = 3 · 72, (ai , a j ) = 72 for i 6= j and (ai , ai ) = 2 · 72 for i = 2, 3. For
a character χ ∈ Irr(B) of height 1 we have 7 | ai (χ) for i = 0, 2, 3 by [ibid.,
Lemma 4.1]. Since ∑

χ∈Irr(B)

q(a(χ))= 5p2,

it follows that q(a(χ))= 72 for every character χ ∈ Irr(B) of height 1. It is easy to
see that a(χ) /∈ {±7(0, 1, 1),±7(1, 1, 0)}. Hence, the four rows a(χ) for characters
χ of height 1 have to following form up to signs and permutations:

7


1 · ·
· 1 ·
· · 1
1 1 1

 .
Thus, for a character χi ∈ Irr(B) of height 0 (i = 1, . . . , 34) we have

d z(χi )= a0(χi ) 6= 0 and
34∑

i=1

a0(χi )
2
= 72.

Up to signs and permutations we get (a0(χi ))= (4, 1, . . . , 1) (taking into account
that only χ1 can be 7-rational). So still no contradiction.
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Now consider d y
i j . The Cartan matrix of by is 7

(
4 3
3 4

)
up to basic sets; see [Dade

1966; Rouquier 1998]. We can write

d y
χϕ1
=

5∑
i=0

ãi (χ)ζ
i
7 and d y

χϕ2
=

5∑
i=0

b̃i (χ)ζ
i
7

for χ ∈ Irr(B). It follows that (̃a0, ã0) = (̃b0, b̃0) = 8 (this is basically the same
calculation as in Proposition 4.8 in [Héthelyi et al. 2012]). By Corollary 1.15
in [Murai 2000] we have ã0(χ1) 6= 0 or b̃0(χ1) 6= 0. Without loss of generality
assume ã0(χ1) 6= 0. Then ã0(χ1) = ±1, since (a0, ã0) = (d z, ã0) = 0. On the
other hand ã0(χ) = 0 for characters χ ∈ Irr(B) of height 1, because we have
equality in Theorem 2.4 in [Héthelyi et al. 2012]. However, this gives the following
contradiction:

0= (a0, ã0)=

34∑
i=1

a0(χi )̃a0(χi )≡

34∑
i=2

ã0(χi )≡

34∑
i=2

ã0(χi )
2
≡ 7 (mod 2).

Altogether we have proved that k0(B) = p(p + 3)/2 for all odd primes p.
In order to verify the Galois–Alperin–McKay conjecture we have to consider a
p-automorphism γ ∈ G. By Lemma IV.6.10 in [Feit 1982] it suffices to compute
the orbits of 〈γ 〉 on the columns of the generalized decomposition matrix. For an
element u ∈ D of order p, γ acts trivially on 〈u〉. If u has order p2, then γ acts as
D-conjugation on 〈u〉. This shows that γ acts in fact trivially on the columns of
the generalized decomposition matrix. In particular all characters of height 0 are
fixed by γ . Hence, the Galois–Alperin–McKay conjecture holds. �

The case p ≤ 11. We already know k0(B) if e(B)= 2. For small primes it is also
possible to obtain k(B).

Theorem 4.4. Let B be a block of a finite group with defect group p1+2
− for

3≤ p ≤ 11 and e(B)= 2. Then

k(B)=
p2
+ 4p− 1

2
, k0(B)=

p+ 3
2

p, k1(B)=
p− 1

2
, l(B)= 2.

The irreducible characters split into two orbits of (p−1)/2 p-conjugate characters,
(p + 3)/2 orbits of length p − 1, and two p-rational characters. For p ≥ 5 the
p-rational characters have height 0. In particular Alperin’s weight conjecture and
Robinson’s ordinary weight conjecture [Robinson 2004] are satisfied for B.

Proof. We have k0(B)= p(p+3)/2 by Theorem 4.3. For p= 3 the block invariants
and the distribution into 3-conjugate and 3-rational characters follow at once from
Theorem 4.1 and Proposition 4.2. So we may assume p > 3 for the first part
of the proof. Suppose k(B) = (p2

+ 4p + 1)/2 and k1(B) = (p + 1)/2. Then
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Irr(B) contains exactly three p-rational characters. Moreover, the orbit lengths of
the p-conjugate characters are all divisible by (p− 1)/2. Let z := x p. Then we
can write

d z
= a0+

(p−1)/2∑
i=2

aiτi

as in Theorem 4.3 where τi := ζ
i
p+ζ

−i
p for i = 2, . . . , (p−1)/2 (see Proposition 4.8

in [Héthelyi et al. 2012]). Then (a0, a0) = 3p2, (ai , a j ) = p2 for i 6= j and
(ai , ai )= 2p2 for i ≥ 2. For a character χ ∈ Irr(B) of height 1 we have p | ai (χ)

by [ibid., Lemma 4.1]. Since∑
χ∈Irr(B)

q(a(χ))=
p+ 3

2
p2,

we have q(a(χ))= p2 for every character χ ∈ Irr(B) of height 1. If all characters
of height 1 are p-rational, we have p = 5. But then (a0, a2)= 0. Hence, exactly
one character of height 1 is p-rational. Now choose a non-p-rational character
ψ ∈ Irr(B) of height 1. Assume a(ψ)= p(0, . . . , 0, 1, 1, 1, . . . , 1, 0, . . . , 0) with
at least two entries 1 in a row and at least one entry 0 (see Lemma 3.6).

If a0(ψ) = 0, then a(γ (ψ)) = p(−1,−1, . . . ,−1, 0, 0, . . . , 0) = a(γ ′(ψ))
for two different Galois automorphisms γ, γ ′ ∈ G (see proof of Theorem 4.3).
Moreover, γ−1γ ′ is not (an extension of) the complex conjugation. In particular
(γ−1γ ′)(ψ) 6= ψ . Since (a2, a2)= 2p2, γ−1γ ′ (up to complex conjugation) is the
only nontrivial automorphism fixing d z(ψ). So, (γ−1γ ′)2 is (an extension of) the
complex conjugation. This gives 4 | p− 1 and p = 5 again. But for 5 the whole
constellation is not possible, since a(ψ) is 2-dimensional in this case.

Finally assume a(ψ)= p(1, 1, 1, . . . , 1, 0, 0, . . . , 0). Then we can find again a
Galois automorphism γ (corresponding to an entry 0 in a(ψ)) such that a(γ (ψ))=
a(ψ). So we get the same contradiction in this case too.

Hence, we have seen that a(ψ) contains either one or (p−1)/2 entries±1. Thus,
the rows a(χ) for characters χ of height 1 have to following form up to signs and
permutations:

p


1 · · · · ·

· 1
. . .

...
...
. . .

. . . ·

· · · · · 1
1 1 · · · 1

 .

In particular, for all characters χi of height 0,

d z(χi )= a0(χi ) 6= 0 (i = 1, . . . , p(p+ 3)/2).
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Moreover,
p(p+3)/2∑

i=1

a0(χi )
2
= p2.

Subtracting p(p+ 3)/2 on both sides gives

(4-1)
∞∑

i=2

ri (i2
− 1)= p

p− 3
2

for some ri ≥ 0. Choose r ′i ∈ {0, 1, . . . , (p−3)/2} such that ri ≡ r ′i (mod (p−1)/2).
Since we have only two p-rational characters of height 0, the following inequality
is satisfied:

∑
∞

i=2 r ′i ≤ 2. Using this, it turns out that (4-1) has no solution unless
p > 11. Hence, k(B)= (p2

+ 4p− 1)/2.
The orbit lengths of p-conjugate characters follow from Proposition 3.3. If

there is a p-rational character of height 1, we must have p = 5. Then of course
both characters ψ1, ψ2 of height 1 must be 5-rational. For these characters we
have d z(ψi ) = a0(ψi ) = ±5 with the notation above. Now our aim is to show
that ψ1 −ψ2 or ψ1 +ψ2 vanishes on the 5-singular elements of G. This is true
for the elements in Z(D). Now let (u, bu) be a nonmajor B-subsection. Assume
first that u ∈ 〈y〉. Since l(bu) = 2, we have equality in Theorem 2.4 in [Héthelyi
et al. 2012]. This implies du

ψi ,ϕ j
= 0 for i, j ∈ {1, 2}. Next suppose u ∈ 〈x〉. Then

du(ψi ) ∈ Z. Hence, Theorem V.9.4 in [Feit 1982] implies 5 | du(ψi ). Since the
scalar product of the integral part of du is 15 (compare with proof of Theorem 4.3),
we get du(ψi ) = 0 for i = 1, 2 again. It remains to handle the case u /∈ 〈x〉 and
l(bu)= 1. Here Lemma 4.7 in [Héthelyi et al. 2012] shows that the scalar product
of the integral part of du is 10. So by the same argument as before du(ψi )= 0 for
i = 1, 2. Hence, we have shown that ψ1−ψ2 or ψ1+ψ2 vanishes on the 5-singular
elements of G. Now, one can check that under these circumstances the number 2 is
representable by the quadratic form of the Cartan matrix C of B. However, by (the
proof of) Proposition 2.1, the elementary divisors of C are 5 and 53. In particular
every entry of C is divisible by 5. So this cannot happen. Hence, we have shown
that the two irreducible characters of height 1 are 5-conjugate.

Now let 3≤ p ≤ 11 be arbitrary. Then the two conjectures follow as usual. �

If we have p = 13 in the situation of Theorem 4.4, then (4-1) has the solution
r2 = 19, r3 = 1 and ri = 0 for i ≥ 4. For larger primes we get even more solutions.
With the help of Theorem 3.7 and Theorem 4.4 it is possible to obtain k(B)− l(B)
in the following situations:

• p = 3, D as in (2-1) with n = l = 2 (in particular |D| ≤ 36),

• 3 ≤ p ≤ 11, D as in (2-1) with n = 2 and l = 1 (in particular |D| ≤ p5),
and e(B)= 2.
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However, there is no need to do so.
In case p= 3, Theorem 4.4 applies to all nonnilpotent blocks. Here we can show

even more.

Theorem 4.5. Let B be a nonnilpotent block of a finite group with defect group 31+2
− .

Then e(B)= l(B)= 2, k(B)= 10, k0(B)= 9 and k1(B)= 1. There are three pairs
of 3-conjugate irreducible characters (of height 0) and four 3-rational irreducible
characters. The Cartan matrix of B is given by 3

(
2 1
1 5

)
up to basic sets. Moreover,

the gluing problem [Linckelmann 2004] for B has a unique solution.

Proof. Since B is nonnilpotent, we get e(B) = 2. It remains to show the last
two claims.

It is possible to determine the Cartan matrix C of B by enumerating all de-
composition numbers with the help of a computer. However, we give a more
theoretical argument which does not rely on computer calculations. By (the proof
of) Proposition 2.1, C has elementary divisors 3 and 27. Hence, C̃ := 1

3C =
(

a b
b c

)
is an integral matrix with elementary divisors 1 and 9. By changing the basic set if
necessary, we may assume that C̃ is reduced as a binary quadratic form; see [Buell
1989]. This means 0≤ 2b ≤ a ≤ c. We derive

3
4a2
≤ ac− b2

= det C̃ = 9

and a ∈ {1, 2, 3}. This gives only the following two possibilities for C̃ :
(

2 1
1 5

)
,
(

1 0
0 9

)
.

It remains to exclude the second matrix. So assume by way of contradiction that this
matrix occurs for C̃ . Let d1 be the column of decomposition numbers corresponding
to the first irreducible Brauer character in B. Then d1 consists of three entries 1
and seven entries 0.

It can be seen easily that dx
= (1, . . . , 1, 0)T up to permutations and signs. Since

(d1, dx)= 0, we have d1(χ10)= 1 where χ10 is the unique irreducible character of
height 1.

Now consider y. The Cartan matrix of by is 3
(

2 1
1 2

)
; see [Dade 1966; Rouquier

1998]. We denote the two irreducible Brauer characters of by by ϕ1 and ϕ2 and
write d y

χϕi = ai (χ)+ bi (χ)ζ3 for i = 1, 2. Then we have

6= (ai , ai )+ (bi , bi )− (ai , bi ),

0= (ai , ai )+ 2(ai , bi )ζ3+ (bi , bi )ζ3

= (ai , ai )− (bi , bi )+ (2(ai , bi )− (bi , bi ))ζ3,

3= (a1, a2)+ (b1, b2)+ (b1, a2)ζ3+ (a1, b2)ζ3

= (a1, a2)+ (b1, b2)− (a1, b2)+ ((b1, a2)− (a1, b2))ζ3,

0= (a1, a2)+ ((a1, b2)+ (b1, a2))ζ3+ (b1, b2)ζ3

= (a1, a2)− (b1, b2)+ ((a1, b2)+ (b1, a2)− (b1, b2))ζ3.
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Thus, (ai , ai ) = (bi , bi ) = 4, (ai , bi ) = (a1, a2) = (b1, b2) = 2 and (a1, b2) =

(a2, b1) = 1 for i = 1, 2. It follows that the numbers d y
χϕi can be given in the

following form (up to signs and permutations):(
1 1 1+ ζ3 1+ ζ3 ζ3 ζ3 · · · ·

1 · 1+ ζ3 · ζ3 · 1+ ζ3 1 ζ3 ·

)T

.

But now we see that d1 cannot be orthogonal to both of these columns. This
contradiction gives C up to basic sets.

Finally we investigate the gluing problem for B. For this we use the notation
of [Park 2010]. Up to conjugation there are four F-centric subgroups Q1 :=

〈x3, y〉, Q2 := 〈x〉, Q3 := 〈xy〉 and D. This gives seven chains of F-centric
subgroups. It can be shown that AutF(Q1)∼= S3, AutF(Q2)∼= C6, AutF(Q3)∼= C3

and AutF(D) ∼= C3 × S3. It follows that H2(AutF(σ ), k×) = 0 for all chains
σ of F-centric subgroups of D. Consequently, H0([S(Fc)],A2

F) = 0. Hence, by
Theorem 1.1 in [Park 2010] the gluing problem has at least one solution. (Obviously,
this should hold in a more general context.)

Now we determine H1([S(Fc)],A1
F). For a finite group A it is known that

H1(A, k×)= Hom(A, k×)= Hom(A/A′Op ′(A), k×). Using this we observe that
H1(AutF(σ ), k×)∼= C2 for all chains except σ = Q3 and σ = (Q3 < D), in which
case we have H1(AutF(σ ), k×)= 0. Since [S(Fc)] is partially ordered by taking
subchains, one can view [S(Fc)] as a category where the morphisms are given by
the pairs of ordered chains. In particular [S(Fc)] has exactly 13 morphisms. With
the notation of [Webb 2007] the functor A1

F is a representation of [S(Fc)] over Z.
Hence, we can view A1

F as a module M over the incidence algebra of [S(Fc)].
More precisely, we have

M :=
⊕

a∈Ob[S(Fc)]

A1
F(a)∼= C5

2 .

At this point we can apply Lemma 6.2(2) in [Webb 2007]. For this let

d : Hom[S(Fc)] →M

a derivation. Then by definition we have d(β)= 0 for

β ∈ {(Q3, Q3), (Q3, Q3 < D), (D, Q3 < D), (Q3 < D, Q3 < D)}.

For all identity morphisms β ∈ Hom([S(Fc)]) we have

d(β)= d(ββ)=A1
F(β)d(β)+ d(β)= 2d(β)= 0.

Since βγ for β, γ ∈ Hom([S(Fc)]) is only defined if β or γ is an identity, we see
that there are no further restrictions on d. On the four morphisms (Q1, Q1 < D),
(D, Q1 < D), (Q2, Q2 < D) and (D, Q2 < D) the value of d is arbitrary. It
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remains to show that d is an inner derivation. For this observe that the map A1
F(β)

is bijective if β is one of the four morphisms above. Now we construct a set
u = {ua ∈A1

F(a) : a ∈Ob[S(Fc)]} such that d is the inner derivation induced by u.
Here we can set uQ1<D = 0. Then the equation

d((Q1, Q1 < D))=A1
F((Q1, Q1 < D))(uQ1)

determines uQ1 . Similarly d((D, Q1 < D)) = A1
F(u D) determines u D. Then

d((D, Q2 < D))=A1
F(u D)− uQ2<D gives uQ2<D and finally

d((Q2, Q2 < D))=A1
F(uQ2)− uQ2<D

determines uQ2 . Hence, Lemma 6.2(2) in [Webb 2007] shows H1([S(Fc)],A1
F)= 0.

So the Gluing Problem has only one solution by Theorem 1.1 in [Park 2010]. �

Whenever one knows the Cartan matrix (up to basic sets) for a specific defect
group, one can apply Theorem 2.4 in [Héthelyi et al. 2012]. This gives the following
corollary.

Corollary 4.6. Let B be a 3-block of a finite group and (u, bu) be a subsection
for B such that bu has defect group Q. If Q/〈u〉 ∼= 31+2

− , then k0(B) ≤ |Q|. If in
addition (u, bu) is major, we have k(B)≤ |Q|, and Brauer’s k(B)-conjecture holds
for B.

Using [Usami 1988; Puig and Usami 1993] one can show that Corollary 4.6
remains true if we replace 31+2

− by the similar group C9×C3.
The next interesting case which comes to mind is p = 5 and e(B) = 4. Here

Proposition 4.2 gives k(B) ∈ {26, 27, 28}, k0(B) ∈ {22, 25}, k1(B) ∈ {1, 2, 3, 4}
and l(B) ∈ {4, 5, 6}. It is reasonable that one can settle this and other small cases
as well, but this will not necessarily lead to any new insights.

We remark that also for the extraspecial group of order p3 and exponent p some
results of Hendren [2007] can be improved. In particular in [Héthelyi et al. 2012]
we proved Olsson’s conjecture for these blocks provided p 6= 3. On the other hand
for p = 3, Brauer’s k(B)-conjecture was shown in [Sambale 2011b].
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