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BIHARMONIC HYPERSURFACES IN COMPLETE
RIEMANNIAN MANIFOLDS

LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ AND MARCO RIGOLI

We consider biharmonic hypersurfaces in complete Riemannian manifolds
and prove that, under some additional assumptions, they are minimal.

1. Introduction

According to a definition first given by B. Y. Chen [1991], an isometrically immersed
oriented hypersurface in Euclidean space, ' WM !RmC1 is biharmonic if its mean
curvature vector field H satisfies

�HD 0;

where � denotes the Laplacian on the hypersurface. It is well known that for
submanifolds of Euclidean space, trace.B/DmHD�', where B is the second
fundamental form of the immersion. Hence, for any fixed unit vector a of RmC1,

(1) m�hH; ai D�2
h'; ai

and the hypersurface is biharmonic if and only if each component of the immersion
' is a biharmonic function. Chen [1991; 1996] conjectured that a biharmonic
hypersurface (in fact any biharmonic submanifold) of RmC1 is minimal, the converse
being, of course trivially true. This statement is of a local nature and the conjecture
holds for hypersurfaces in R3 [Chen 1991] and R4 [Hasanis and Vlachos 1995;
Defever 1998]. However, in general, it has been shown to be true only under some
additional assumptions, sometimes of a global nature: see for instance [Akutagawa
and Maeta 2013] and [Nakauchi and Urakawa 2011].
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This problem can be considered in a more general perspective. Indeed, let .M;g/

and .N; h/ be Riemannian manifolds and ' W .M;g/! .N; h/ a smooth map. Let
�.'/ denote its tension field, that is,

�.'/D trace.rd'/D

mX
iD1

.rd'/.ei ; ei/; mD dim M;

where rd' is the generalized second fundamental tensor and fe1; : : : ; emg is a
local orthonormal frame on .M;g/. Given a relatively compact domain ��M

one introduces the bienergy functional E
'
� .�/ on � by setting

E'
� .�/D

1

2

Z
�

j�.'/j2;

where integration is understood with respect to the volume element of .M;g/. Then
' is a biharmonic map (meaning a critical point of this functional on M — i.e., on
each relatively compact domain ��M ), if and only if the bitension field

(2) �2.'/D��.'/�
X

i

RN
�
�.'/; '�.ei/

�
'�.ei/

vanishes identically. Here RN denotes the .3;1/ curvature tensor of .N; h/.
When ' W .M m;g/! .N mC1; h/ is an isometric immersion of an m-dimensional

hypersurface and � is a local unit normal vector field along ', writing the mean
curvature vector as

(3) HDH�

and indicating with B the second fundamental form in the direction of �, a heavy
computation shows that (2) is equivalent to the system

�H � jBj2H CRicN .�; �/H D 0;(4a)

2B.rH; � /]C 1
2
mrH 2

� 2H.RicN .�; � /]/T D 0;(4b)

where ] W TM �! TM denotes the musical isomorphism, T the tangential compo-
nent and RicN the Ricci tensor of .N; h/ [Ou 2010, Theorem 2.1].

At this point one easily verifies that a biharmonic hypersurface in RmC1 in the
sense of Chen is exactly a biharmonic hypersurface as defined in this more general
setting. In this new perspective Chen’s conjecture has been generalized to the
following [Caddeo et al. 2001; 2002]:

Let ' W .M;g/! .N; h/ be an isometric immersion into a Riemannian
manifold of nonpositive sectional curvature. If ' is biharmonic then it is
minimal.
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This new conjecture has been shown to be true if M is compact [Jiang 1986]
or if H is constant [Ou 2010], but false in general [Ou and Tang 2012]. Here we
restrict ourselves to complete noncompact biharmonic hypersurfaces and in fact we
concentrate our efforts on the consequences of (4a) alone.

To avoid confusion with a terminology used for biharmonic submanifolds, we
underline that in what follows by a proper immersion we mean an immersion that
is topologically proper: preimages of compact sets are compact sets.

2. Statement of main results

Our first main result is the following.

Theorem 1. Let ' WM ! .N; h ; i/ be an oriented, proper, isometrically immersed,
biharmonic hypersurface in the complete manifold N . For some origin o 2 N

assume that
'.M /\ cut.o/D∅:

Having set %D distN . � ; o/, suppose that the radial sectional curvature KN
rad of N

satisfies

(5) KN
rad � �G.%/

for %� 1 and some G 2 C2.RC
0
/ such that G.0/ > 0, G0.t/� 0 and G.t/D o.t2/

as t !C1. Let � be a unit normal vector field along ' and suppose

(6) RicN .�; �/� 0

along '. Then ' is minimal. In particular if the sectional curvature KN
sect is

nonpositive, '.M / is unbounded in N .

As an immediate consequence of Theorem 1, using [Mari and Rigoli 2010] and
[Alías et al. 2009], we obtain:

Corollary 2. Let ' WM ! RmC1 be an oriented, isometrically immersed, bihar-
monic hypersurface. If the image '.M / is contained in a nondegenerate open cone
of RmC1 or the hypersurface is cylindrically bounded as '.M /�Br .o/�Rm�1 �

R2 �Rm�1, then the immersion cannot be proper.

We recall here that, fixed an origin o 2 RmC1, the nondegenerate cone with
vertex o, direction a and width � is the subset

CD Co;a;� D

�
p 2 RmC1

nfog W

�
p� o

jp� oj
; a

�
� cos �

�
;

where a 2 Sm is a unit vector and � 2 .0; �=2/. By nondegenerate we mean that
it is strictly smaller than a half-space. On the other hand, following the definition
introduced in [Alías et al. 2009], an immersed hypersurface ' WM ! RmC1 is said
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to be cylindrically bounded if '.M /� Br .o/�RmC1�p � Rp �RmC1�p , where
p � 2 and Br .o/� Rp denotes the ball of radius r . In particular, p D 2 gives the
weakest requirement.

To introduce the next result we consider the operator

(7) LD�CRicN .�; �/

where � is a unit normal vector field along the hypersurface ' WM ! .N; h ; i/

and we let �L
1
.M / denote its spectral radius. Clearly if RicN .�; �/ � 0 then

�L
1
.M / � 0 but this latter fact can be true even if RicN .�; �/ > 0 provided this

positivity compensate with the geometry of M . (For a detailed discussion see
[Bianchini et al. 2012]). Thus �L

1
.M /� 0 is weaker than RicN .�; �/� 0.

Theorem 3. Let ' WM ! .N; h ; i/ be a biharmonic, complete, oriented hypersur-
face with mean curvature H . Suppose that the operator L in (7) satisfies

(8) �L
1 .M /� 0:

If H 2L2.M / then ' is minimal.

This result is extended to a different class of integrability for H in Theorem 7 of
Section 3 below.

Next, we consider the case when .N; h ; i/ is a Cartan–Hadamard manifold, that
is, N is complete, simply connected and with nonpositive sectional curvature. What
follows is a gap theorem.

Theorem 4. Let ' W M ! .N; h ; i/ be an isometrically immersed, oriented, bi-
harmonic hypersurface of dimension m � 3 into a Cartan–Hadamard manifold.
Suppose that the mean curvature H satisfies

(9) kHkLm.M / <
!

1=m
m

�2m�1

m� 1

m.mC 1/1C
1
m

;

where !m is the volume of the unit ball of Rm. Then ' is a minimal hypersurface.

3. Proof of the main theorems and some further results

With the notations of Theorem 1 we consider the function vD%2ı'. The assumption
'.M /\ cut.o/D∅ implies that v is smooth on M . Clearly,

(10) jrvj � 2
p
v:

Since M is complete and noncompact and ' is proper we have

(11) v.x/!C1 as x!1 in M:
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To compute �v we recall (see, for instance, [Jorge and Koutroufiotis 1981]) that

(12) �.%2
ı'/D .Hess %2/

�
'�.ei/; '�.ei/

�
C
˝
r%2;mH

˛
with feig a local orthonormal frame on M . Let G 2 C1.RC

0
/ satisfy

(13) G.0/ > 0 and G0.t/� 0 on RC
0
:

(In particular, G can be chosen to agree, for t large, with the function ctd , where
0< d < 2, or with ct2.log t/�", where " > 0.)

If KN
rad � �G, by the Hessian comparison theorem (see Theorem 2.3 and Re-

mark 2.3 of [Pigola et al. 2008] for the appropriate statement that we are using
here) we get

(14) Hess.%2/� C%
p

G.%/h ; i

outside a compact set and for some appropriate constant C > 0. Up to modifying C

we can assume that (14) is true on M . Hence, from (12) and (14) we deduce that

(15) �v � C 2
p
v
p

G.
p
v/C 2m

p
vjH j

on M . Next, from (4a), letting uDH 2 we get

(16) �uD 2H�H C 2jrH j2 D 2jBj2u� 2 RicN .�; �/uC 2jrH j2:

Using Newton’s inequality,

(17) jBj2 �mjH j2;

we obtain

(18) �uC 2 RicN .�; �/u� 2mu2
� 2jrH j2 � 0;

and we are left with a solution u� 0 of the differential inequality

(19) �uC a.x/u� 2mu2
� 0

with

(20) a.x/D 2 RicN .�; �/ ı'.x/:

Proof of Theorem 1. First observe that since ' is proper and N is complete, the
induced metric on M is complete. Next we follow an idea introduced in [Akutagawa
and Maeta 2013]. Since ' is proper, for every T 2 RC, the set

DT D v
�1.Œ0;T �/

is compact. Suppose u 6� 0. Then there exists x0 2M such that u.x0/ > 0 and we
can suppose to have chosen T sufficiently large that x0 2DT=2n@DT=2.
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We define

(21) F.x/D .T � v.x//2u.x/

on DT . Note that F � 0, F � 0 on @DT and F.x0/ > 0. It follows that there exists
a positive absolute maximum for F.x/ at some point Nx 2DT n@DT . At this point
we have

(22)
rF

F
. Nx/D 0 and

�F

F
. Nx/� 0:

From (22), a straightforward computation yields

(23)
ru. Nx/

u. Nx/
D

2

T � v. Nx/
rv. Nx/

and
�u. Nx/

u. Nx/
�

2

T � v. Nx/
�v. Nx/�

2

.T � v. Nx//2
jrv. Nx/j2C

4

T � v. Nx/

jru. Nx/j

u. Nx/
jrv. Nx/j:

We use (23), (15) at Nx with
p

uD jH j, and (10) at Nx into the above inequality to
obtain (omitting Nx for the ease of notation)

�u

u
�

2

T � v

�
C 2
p

G.
p
v/C 2m

p
u
�p
vC

6

.T � v/2
jrvj2

�
2

T � v

�
C 2
p

G.
p
v/C 2m

p
u
�p
vC

24

.T � v/2
v:

From (19) we then deduce

(24) u�
a

2m
C

C 2
p
v

m.T � v/

p
G.
p
v/C

2
p
v

T � v

p
uC

12

m.T � v/2
v:

Multiplying by .T �v.x//2 both sides of (24) and using that a.x/DaC.x/�a�.x/,
that G is nondecreasing, and that Nx 2DT we have

F. Nx/�
aC. Nx/

2m
.T � v. Nx//2C

C 2
p
v. Nx/

m
.T � v. Nx//

p
G.
p
v. Nx//

C 2
p
v. Nx/

p
F. Nx/C

12

m
v. Nx/

�
T 2

2m
aC. Nx/C

C 2T 3=2

m

p
G.
p

T /C 2
p

T
p

F. Nx/C
12

m
T:

Therefore
F. Nx/� 2

p
T
p

F. Nx/�T Z.T /� 0;

where

Z.T /D
T

2m
supDT

aCC
C 2

m

p
T
p

G.
p

T /C
12

m
:



BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS 7

Note that Z.T /� 0. Then

F.x0/� F. Nx/� T
�
1C

p
1CZ.T /

�2
� C 2T .1CZ.T //

and therefore, since x0 2DT=2,

u.x0/�
C 2T

.T � v.x0//2

�
T supDT

aCC
p

T
p

G.
p

T /
�

�
C 2

T

�
T supDT

aCC
p

T
p

G.
p

T /
�
D C 2

�
supDT

aCC
1
p

T

p
G.
p

T /
�
:

However, by assumption aC � 0 and using G.t/D o.t2/ as t !C1 we have

T �1=2
p

G.
p

T /D o.1/ as T !C1:

Thus, letting T ! C1 in (25), we deduce u.x0/ � 0 which contradicts the
assumption u.x0/ > 0. The contradiction shows that uDH 2 � 0 on M , that is, '
is minimal.

Suppose now that KN
sect � 0. Since ' is minimal (15) becomes

(25) �v � C 2
p
v
p

G.
p
v/:

This, together with (10) and (11), guarantees the validity of the Omori–Yau max-
imum principle on M (see Theorem 1.9 of [Pigola et al. 2005]). Now the result
follows from Theorem 3.9 of [Pigola et al. 2005]. �

For the proof of Theorem 3 we need the next proposition which is a version,
adapted to the present purposes, of Lemma 3.1 in [Brandolini et al. 1998].

Proposition 5. Let .M; h ; i/ be a complete manifold and let a.x/; b.x/ 2 C0.M /

and suppose that

(26) b.x/� 0

and

(27) �L
1 .M /� 0 with LD�C a.x/:

Let u 2 C 2.M / be a solution of

(28) �uC a.x/u� b.x/uD 0 on M:

If u 2L2.M / then u� 0 on supp.b.x//. In particular, if u does not change sign
and b.x/ 6� 0, then u� 0.

Proof. We suppose b.x/ 6� 0 otherwise there is nothing to prove. Next, we reason
by contradiction and we assume the existence of x0 2 supp.b.x//�M such that
u.x0/ ¤ 0 and b.x0/ ¤ 0. (Note that if u.x0/ ¤ 0 and b.x0/ D 0 by continuity
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we can always find x0
0

sufficiently close to x0 so that u.x0
0
/¤ 0 and b.x0

0
/¤ 0).

Choose R� 1 such that x0 2BR . Let  be a cut-off function 0� � 1 satisfying

 � 1 on BR; supp. /� BRC1; jr j � 2:

Then u 2 C2
0
.M /, u ¤ 0 and by the variational characterization of �L

1
.BRC1/

we have

(29) �L
1 .BRC1/�

R
BRC1

�
jr.u /j2� a.x/.u /2

�R
BRC1

.u /2
:

Since �L
1
.M /� 0 the monotonicity property of eigenvalues yields �L

1
.BRC1/ > 0.

Next, we consider the vector field W D u 2ru. A direct computation using (28)
gives

div.W /D b.x/u2 2
� a.x/u2 2

Cjr.u /j2�u2
jr j2:

Hence by (29) and the divergence theorem

0� �L
1 .BRC1/

Z
BRC1

u2 2
�

Z
BRC1

u2
jr j2C

Z
BRC1

b.x/u2 2:

Rearranging, using the properties of  and (26) we obtain

�L
1 .BRC1/

Z
BR

u2
�

Z
BR

b.x/u2
� 4

Z
BRC1nBR

u2:

Letting R!C1 and using the fact that u 2L2.M / we deduce

�L
1 .M /

Z
M

u2
�

Z
M

b.x/u2
� 0:

We reach a contradiction by observing that �L
1
.M /� 0 and in a neighborhood of

x0, b.x/ and u2.x/ are strictly positive.
The last statement follows immediately from the strong maximum principle and

(28) (see the remark after the proof of Theorem 3.5 on page 35 of [Gilbarg and
Trudinger 1983]). �

Proof of Theorem 3. We apply Proposition 5 to the solution H of (4a) with a.x/D

RicN .�; �/ and b.x/D jBj2. By Newton’s inequality (17), supp.H /� supp.b.x//,
which gives a contradiction to the conclusion of Proposition 5 unless H � 0; thus
' WM ! .N; h ; i/ is minimal. �

Corollary 6. Any biharmonic, isometrically immersed, complete oriented hyper-
surface M with mean curvature satisfying H 2L2.M / in a space with nonpositive
Ricci tensor is minimal.
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For the proof of this corollary simply observe that since RicN .�; �/ � 0 then
�L

1
.M /� 0 for LD�CRicN .�; �/.
With the aid of Theorem 4.6 in [Pigola et al. 2008] we can extend the range of

integrability of H as follows.

Theorem 7. Let ' W M ! .N; h ; i/ be a biharmonic, isometrically immersed,
oriented hypersurface. For some ƒ� 1

2
let Lƒ D�C 2ƒRicN .�; �/ and suppose

that

(30) �
Lƒ

1
.M /� 0:

Let �1
2
� ˇ �ƒ� 1 and assume that

(31) H 2L4.ˇC1/.M /:

Then ' is minimal.

Remark 8. If ƒD 1
2

, Lƒ DLD�CRicN .�; �/ and ˇ D�1
2

so that condition
(31) becomes H 2L2.M /. In this way, we recover Theorem 3.

Proof of Theorem 7. We let uDH 2. From the differential inequality (18) and

jrH j2 D
1

4

jruj2

u

we deduce that u is a nonnegative solution of

(32) u�uC 2 RicN .�; �/u2
� 2mu3

�
1
2
jruj2:

By Theorem 1 of [Fischer-Colbrie and Schoen 1980], inequality (30) implies the
existence of a positive solution  on M of

� C 2ƒRicN .�; �/ D 0:

We can thus apply Theorem 4.6 of [Pigola et al. 2008] with 'D , AD�1
2

, jHjDƒ,
K D 0, a.x/D 2 RicN .�; �/, b.x/D 2m and � D 2. Note that assumption (4.43)
of Theorem 4.6 of [Pigola et al. 2008] is true by (31). It follows that u� 0, that is,
' WM ! .N; h ; i/ is minimal. �

We remark that if we let Lm=4 D�C .m=2/RicN .�; �/ and we assume

(33) �
Lm=4

1
.M /� 0;

as a consequence of Theorem 7, if H 2Lm.M / then ' is minimal.
As a matter of fact, we can avoid assumption (33) and obtain the same conclusion

in case .N; h ; i/ is a Cartan–Hadamard manifold. This is the content of Theorem 4.
Towards this end, we observe that if ' WM ! .N; h ; i/ is an isometric immersion
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of dimension m� 2, Hoffman and Spruck [1974] have shown the validity of the
following L1-Sobolev inequality: for every u 2W

1;1
0
.M /,

(34) S1.m/
�1

�Z
M

jujm=.m�1/

�.m�1/=m

�

Z
M

�
jrujCmjH jjuj

�
with

(35) S1.m/D
�2m�1

!
1=m
m

.mC 1/1C
1
m

m� 1

where !m is the volume of the unit ball of Rm (observe that in [Hoffman and Spruck
1974] the mean curvature vector field is not normalized). Having fixed " > 0, from
(34) we immediately deduce (see for instance [Pigola et al. 2008, pp. 175–176])
that for every v 2W

1;2
0
.M /

(36)

S2.m; "/
�1

�Z
M

jvj2m=.m�2/

�.m�2/=m

�

Z
M

�
jrvj2C

"2

4

�
m� 2

m� 1

�2

m2
jH j2v2

�
with

(37) S2.m; "/D
4.m� 1/2

.m� 2/2
1C "2

"2
S1.m/

2:

Proof of Theorem 4. In the assumptions of the theorem and by the above discussion
we have the validity of (36) on M . Next, for uDH 2 we rewrite (16) in the form

(38) u�uC 2 RicN .�; �/u2
� 2jBj2u2

D
1
2
jruj2:

Since N is Cartan–Hadamard,

(39) 2.RicN .�; �/� jBj2/� 0:

From (9) and the fact that H 2Lm.M / we have

(40) u 2Lm=2.M / with m=2> 1
2
;

because m � 3. Applying Theorem 9.12 of [Pigola et al. 2008] with � D m=2,
˛ D 2=m and A D �1

2
to (38) we deduce that either u is identically zero or, by

formula (9.41) of [Pigola et al. 2008],�Z
M

jH jm
�2=m

�
1

.1C "2/m2S1.m/2
:

Note that to obtain this inequality we use (37). Thus, letting " # 0C we obtain

kHkLm.M / �
1

mS1.m/
D

!
1=m
m

�2m�1

m� 1

m.mC 1/1C
1
m

:
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Using (35) in this latter we contradict (9). Thus u� 0 and ' WM ! .N; h ; i/ is
minimal. �
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