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HALF-COMMUTATIVE ORTHOGONAL HOPF ALGEBRAS

JULIEN BICHON AND MICHEL DUBOIS-VIOLETTE

A half-commutative orthogonal Hopf algebra is a Hopf ∗-algebra generated
by the self-adjoint coefficients of an orthogonal matrix corepresentation
v= (vi j ) that half commute in the sense that abc= cba for any a, b, c∈ {vi j }.
The first nontrivial such Hopf algebras were discovered by Banica and Spe-
icher. We propose a general procedure, based on a crossed product con-
struction, that associates to a self-transpose compact subgroup G ⊂ Un a
half-commutative orthogonal Hopf algebra A∗(G). It is shown that any
half-commutative orthogonal Hopf algebra arises in this way. The fusion
rules of A∗(G) are expressed in term of those of G.

1. Introduction

The half-liberated orthogonal quantum group O∗n were recently discovered by
Banica and Speicher [2009]. These are compact quantum groups in the sense of
[Woronowicz 1987], and the corresponding Hopf ∗-algebra A∗o(n) is the universal
∗-algebra presented by self-adjoint generators vi j submitted to the relations making
v = (vi j ) an orthogonal matrix and to the half-commutation relations

abc = cba, a, b, c ∈ {vi j }.

The half-commutation relations arose, via Tannaka duality, from a deep study
of certain tensor subcategories of the category of partitions; see [Banica and
Speicher 2009]. More examples of Hopf algebras with generators satisfying the
half-commutation relations were given in [Banica et al. 2010], and the classification
of “easy” orthogonal Hopf algebras (which means that the tensor category of
corepresentations is spanned by partitions) with generators satisfying the half-
commutation relations was very recently done in [Weber 2012].

The representation theory of O∗n was discussed in [Banica and Vergnioux 2010],
where strong links with the representation theory of the unitary group Un were found.
It followed that the fusion rules of O∗n are noncommutative if n ≥ 3. Moreover a
matrix model A∗o(n) ↪→ M2(R(Un)) was found in [Banica et al. 2011].
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The aim of this paper is to continue these works by a general study of what we
call half-commutative orthogonal Hopf algebras: Hopf ∗-algebras generated by the
self-adjoint coefficients of an orthogonal matrix corepresentation v = (vi j ) whose
coefficients satisfy the previous half-commutation relations. Our main results are
as follows.

(1) To any self-transpose compact subgroup G ⊂Un we associate a half-commuta-
tive orthogonal Hopf algebra A∗(G), with A∗(Un)' A∗o(n). The Hopf algebra
A∗(G) is a Hopf ∗-subalgebra of the crossed product R(G)oCZ2, where the
action of Z2 of R(G) is induced by the transposition.

(2) Conversely, any noncommutative half-commutative orthogonal Hopf algebra
arises from the previous construction for some compact group G ⊂Un .

(3) The fusion rules of A∗(G) can be described in terms of those of G.

Therefore it follows from our study that quantum groups arising from half-
commutative orthogonal Hopf algebras are objects that are very close from classical
groups. This was suggested by the representation theory results from [Banica and
Vergnioux 2010], by the matrix model found in the “easy” case in [Banica et al.
2011] and by the results of [Banica et al. 2013] where it was shown that the quantum
group inclusion On ⊂ O∗n is maximal. The techniques from [Banica et al. 2013],
and especially the short five lemma for cosemisimple Hopf algebras, are used in
essential way here. The use of versions of the five lemma for Hopf algebras was
initiated in [Andruskiewitsch and García 2009].

The paper is organized as follows. In Section 2 we fix some notation and recall
the necessary background. In Section 3 we formally introduce half-commutative
orthogonal Hopf algebras, and recall the early examples from [Banica and Speicher
2009; Banica et al. 2010]. Section 4 is devoted to our main construction, which
associates to a self-transpose compact subgroup G ⊂ Un a half-commutative or-
thogonal Hopf algebra A∗(G), and we show that any half-commutative orthogonal
Hopf algebra arises in this way. At the end of the section we use our construction to
propose a possible orthogonal half-liberation of the unitary group Un . In Section 5
we describe the fusion rules of A∗(G) in terms of those of G.

We assume that the reader is familiar with Hopf algebras [Montgomery 1993],
Hopf ∗-algebras and with the algebraic approach (via algebras of representative
functions) to compact quantum groups [Dijkhuizen and Koornwinder 1994; Klimyk
and Schmüdgen 1997].

2. Preliminaries

Classical groups. We first fix some notation. As usual, the group of complex n×n
unitary matrices is denoted by Un , while On denotes the group of real orthogonal
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matrices. We denote by T the subgroup of Un consisting of scalar matrices, and by
PUn the quotient group Un/T.

Definition 2.1. Let G ⊂Un be a compact subgroup.

(1) We say that G is self-transpose if gt
∈ G for all g ∈ G.

(2) We say that G is nonreal if G 6⊂ On , i.e., if there exists g ∈ G with gi j 6∈ R,
for some i, j .

(3) We say that G is doubly nonreal if there exists g ∈G with gi j gkl 6∈R, for some
i, j, k, l.

Note that the subgroup Õn = TOn ⊂Un (considered in [Banica et al. 2013]) is
nonreal but is not doubly nonreal.

Orthogonal and unitary Hopf algebras. We next recall some definitions on the
algebraic approach to compact quantum groups. We work at the level of Hopf
∗-algebras of representative functions. The following simple key definition arose
from [Woronowicz 1987].

Definition 2.2. A unitary Hopf algebra is a ∗-algebra A which is generated by
elements {ui j | 1 ≤ i, j ≤ n} such that the matrices u = (ui j ) and ū = (u∗i j ) are
unitaries, and such that:

(1) There is a ∗-algebra map 1 : A→ A⊗ A such that 1(ui j )=
∑n

k=1 uik ⊗ uk j .

(2) There is a ∗-algebra map ε : A→ C such that ε(ui j )= δi j .

(3) There is a ∗-algebra map S : A→ Aop such that S(ui j )= u∗j i .

If ui j = u∗i j for 1≤ i, j ≤ n, we say that A is an orthogonal Hopf algebra.

It follows that 1, ε, S satisfy the usual Hopf ∗-algebra axioms and that u = (ui j )

is a matrix corepresentation of A. Note that the definition forces that a unitary
Hopf algebra is of Kac type, i.e., S2

= id. The motivating example of unitary (resp.
orthogonal) Hopf algebra is A =R(G), the algebra of representative functions on
a compact subgroup G ⊂Un (resp. G ⊂ On). Here the standard generators ui j are
the coordinate functions which take a matrix to its (i, j)-entry.

In fact every commutative unitary Hopf algebra is of the form R(G) for some
unique compact group G⊂Un defined by G=Hom∗-alg(A,C) (this the Hopf algebra
version of the Tannaka–Krein theorem). This motivates the notation “A=R(G)” for
any unitary (resp. orthogonal) Hopf algebra, where G is a unitary (resp. orthogonal)
compact quantum group.

The universal examples of unitary and orthogonal Hopf algebras are as follows
[Wang 1995a].
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Definition 2.3. The universal unitary Hopf algebra Au(n) is the universal ∗-algebra
generated by elements {ui j | 1 ≤ i, j ≤ n} such that the matrices u = (ui j ) and
ū = (u∗i j ) in Mn(Au(n)) are unitaries.

The universal orthogonal Hopf algebra Ao(n) is the universal ∗-algebra generated
by self-adjoint elements {ui j | 1≤ i, j ≤ n} such that the matrix u = (ui j )1≤i, j≤n in
Mn(Ao(n)) is orthogonal.

The existence of the Hopf ∗-algebra structural morphisms follows from the
universal properties of Au(n) and Ao(n). As discussed above, we use the notations
Au(n)=R(U+n ) and Ao(n)=R(O+n ), where U+n is the free unitary quantum group
and O+n is the free orthogonal quantum group.

The Hopf ∗-algebra Au(n) was introduced by Wang [1995a], while the Hopf
algebra Ao(n) was defined first in [Dubois-Violette and Launer 1990] under the
notation A(In), and was then defined independently in [Wang 1995a] in the compact
quantum group framework.

Exact sequences of Hopf algebras. In this subsection we recall some facts on
exact sequences of Hopf algebras.

Definition 2.4. A sequence of Hopf algebra maps

C→ B
i
→ A

p
→ L→ C

is called preexact if i is injective, p is surjective and i(B)= Aco p, where

Aco p
= {a ∈ A | (id⊗p)1(a)= a⊗ 1}.

A preexact sequence as in Definition 2.4 is said to be exact [Andruskiewitsch
and Devoto 1995] if in addition we have i(B)+A = ker(p) = Ai(B)+, where
i(B)+ = i(B)∩ ker(ε). For the kind of sequences to be considered in this paper,
preexactness is actually equivalent to exactness.

The following lemma, that we record for future use, is Proposition 3.2 in [Banica
et al. 2013].

Lemma 2.5. Let A be an orthogonal Hopf algebra with generators ui j . Assume that
we have surjective Hopf algebra map p : A→ CZ2, ui j → δi j g, where < g >= Z2.
Let Pu A be the subalgebra generated by the elements ui j ukl with the inclusion
i : Pu A ⊂ A. Then the sequence

C→ Pu A
i
→ A

p
→ CZ2→ C

is preexact.

Exact sequences of compact groups induce exact sequences of Hopf algebras. In
particular, if G ⊂Un is a compact subgroup, we have an exact sequence of compact
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groups
1→ G ∩T→ G→ G/G ∩T→ 1,

which induces an exact sequence of Hopf algebras

C→R(G/G ∩T)→R(G)→R(G ∩T)→ C.

We sketch a proof of the next lemma for completeness.

Lemma 2.6. Let G ⊂Un be a compact subgroup. Then R(G/G ∩T) is the subal-
gebra of R(G) generated by the elements ui j u∗kl , i, j, k, l ∈ {1, . . . , n}. Moreover, if
G =Un , then R(PUn)=R(Un/T) is isomorphic with the commutative ∗-algebra
presented by generators wi j,kl , 1≤ i, j, k, l ≤ n and submitted to the relations

n∑
j=1

wik, j j = δik =

n∑
j=1

w j j,ik, w∗i j,kl = w j i,lk,

n∑
k,l=1

wi j,klw
∗

pq,kl = δi pδ jq .

The isomorphism is given by wi j,kl 7→ uiku∗jl .

Proof. Let p : R(G)→ R(G ∩ T) be the restriction map. It is clear Ker(p) is
generated as a ∗-ideal by the elements ui j , i 6= j , and ui i − u j j . Let B be the
subalgebra generated by the elements ui j u∗kl . Then B is a Hopf ∗-subalgebra of
R(G) and it is clear that B ⊂ R(G)co p. To prove the reverse inclusion we form
the Hopf algebra quotient R(G)//B =R(G)/B+R(G) and denote by ρ :R(G)→
R(G)//B the canonical projection. It is not difficult to see that in R(G)//B we
have ρ(ui j ) = 0 if i 6= j and ρ(ui i ) = ρ(u j j ) for any i, j . Hence there exists a
Hopf ∗-algebra map p′ :R(G/T)→R(G)//B such that p′ ◦ p = ρ. It follows that
R(G)co p

⊂R(G)co ρ . But since our algebras are commutative, R(G) is a faithfully
flat B-module and hence by [Takeuchi 1972] (see also [Andruskiewitsch and Devoto
1995]) we have R(G)co ρ

= B, and hence R(G/G ∩T)=R(G)co p
= B.

The last assertion is just the reformulation of the standard fact that PUn is the
automorphism group of the ∗-algebra Mn(C) (see, e.g., [Wang 1998]). �

3. Half-commutative Hopf algebras

We now formally introduce half-commutative orthogonal Hopf algebras. Of course
the definition of half-commutativity can be given in a general context, as follows.
It was first formalized, in a probabilistic context, in [Banica et al. 2012].

Definition 3.1. Let A be an algebra. We say that a family (ai )i∈I of elements of A
half-commute if abc = cba for any a, b, c ∈ {ai , i ∈ I }. The algebra A is said to
be half-commutative if it has a family of generators that half-commute.
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At a Hopf algebra level, a reasonable definition seems to be the following one.

Definition 3.2. A half-commutative Hopf algebra is a Hopf algebra A generated
by the coefficients of a matrix corepresentation v = (vi j ) whose coefficients half-
commute.

We will not study half-commutative Hopf algebras in this generality. A reason for
this is that it is unclear if the half-commutativity relations outside of the orthogonal
case are the natural ones in the categorical framework of [Banica and Speicher
2009]. Thus we will restrict to the following special case.

Definition 3.3. A half-commutative orthogonal Hopf algebra is a Hopf ∗-algebra A
generated by the self-adjoint coefficients of an orthogonal matrix corepresentation
v = (vi j ) whose coefficients half-commute.

The first example is the universal one, defined in [Banica and Speicher 2009].

Definition 3.4. The half-liberated orthogonal Hopf algebra A∗o(n) is the universal
∗-algebra generated by self-adjoint elements {vi j | 1≤ i, j ≤ n} which half-commute
and such that the matrix v = (vi j )1≤i, j≤n in Mn(A∗o(n)) is orthogonal.

The existence of the Hopf algebra structural morphisms follows from the universal
property of A∗o(n), and hence A∗o(n) is a half-commutative orthogonal Hopf algebra.
We use the notation A∗o(n) = R(O∗n ), where O∗n is the half-liberated orthogonal
quantum group. We have R(O+n ) � R(O∗n ) � R(On), i.e., On ⊂ O∗n ⊂ O+n .
At n = 2 we have O∗2 = O+2 , but for n ≥ 3 these inclusions are strict.

Another example of half-commutative orthogonal Hopf algebra is the following
one, taken from [Banica et al. 2010].

Definition 3.5. The half-liberated hyperoctahedral Hopf algebra A∗h(n) is the uni-
versal ∗-algebra generated by self-adjoint elements {vi j | 1 ≤ i, j ≤ n} which
half-commute, such that vi jvik = 0 = vkiv j i for k 6= j , and such that the matrix
v = (vi j )1≤i, j≤n in Mn(A∗o(n)) is orthogonal.

Again the existence of the Hopf algebra structural morphisms follows from the
universal property of A∗h(n), and hence A∗h(n) is a half-commutative orthogonal
Hopf algebra. See [Banica et al. 2010] and [Weber 2012] for further examples.

The following lemma will be an important ingredient in the proof of the structure
theorem of half-commutative orthogonal Hopf algebras.

Lemma 3.6. Let A be a half-commutative orthogonal Hopf algebra generated by
the self-adjoint coefficients of an orthogonal matrix corepresentation v = (vi j )

whose coefficients half-commute. Then PvA is a commutative Hopf ∗-subalgebra
of A. If moreover A is noncommutative then there exists a Hopf ∗-algebra map
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p : A→ CZ2 such that for any i, j , p(vi j )= δi j s, where 〈s〉 = Z2, that induces a
preexact sequence

C→ PvA
i
→ A

p
→ CZ2→ C.

Proof. The key observation that PvA is commutative is Proposition 3.2 in [Banica
and Vergnioux 2010]. It is clear that PvA is a normal Hopf ∗-subalgebra of A,
and hence we can form the Hopf ∗-algebra quotient A//PvA = A/A(PvA)+, with
p : A→ A//PvA the canonical surjection. It is not difficult to see that in A//PvA
we have p(vi j )= 0 if i 6= j , p(vi i )= p(v j j ) for any i, j and if we put g = p(vi i ),
g2
= 1. So we have to prove that g 6= 1. If g = 1, then A//PvA is trivial and p = ε.

We know from [Chirvasitu 2011] that A is faithfully flat as a PvA-module (since
orthogonal Hopf algebras are cosemisimple), and hence by [Schneider 1992], we
have Aco p

= PvA. So if g = 1 we have Aco p
= PvA = A and A is commutative.

Thus if A is noncommutative we have g 6= 1, the map p satisfies the conditions in
the statement and we have the announced exact sequence (Lemma 2.5). �

Remark 3.7. The previous exact sequence is cocentral. Thus it is possible, in prin-
ciple, to classify the finite-dimensional half-commutative orthogonal Hopf algebras
according to the scheme used in [Bichon and Natale 2011]. The classification data
will involve in particular pairs (0, ω) formed by a finite subgroup 0 ⊂ PUn and a
cocycle ω ∈ H 2(0,Z2), see [Bichon and Natale 2011] for details.

4. The main construction

In this section we perform our main construction that associates to any self-transpose
compact subgroup G ⊂ Un a half-commutative orthogonal Hopf algebra A∗(G)
and we show any half-commutative orthogonal Hopf algebra arises in this way.

We begin with a well-known lemma. We give a proof for the sake of completeness.

Lemma 4.1. Let G ⊂Un be a compact subgroup, and denote by ui j the coordinate
functions on G. The following assertions are equivalent.

(1) G is self-transpose.

(2) There is a unique involutive Hopf ∗-algebra automorphism s :R(G)→R(G)
such that s(ui j )= u∗i j .

Moreover if G is self-transpose the automorphism is nontrivial if and only G is
nonreal.

Proof. Assume that G is self-transpose. Then we have an involutive compact group
automorphism

σ : G→ G, g 7→ (gt)−1
= ḡ,

which induces an involutive Hopf ∗-algebra automorphism s :R(G)→R(G) such
that s(ui j ) = u∗i j . Uniqueness is obvious since the elements ui j generate R(G)
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as a ∗-algebra. Conversely, the existence of s will ensure the existence of the
automorphism σ since G'Hom∗-alg(R(G),C), and hence G will be self-transpose.
The last assertion is immediate. �

Definition 4.2. Let G ⊂Un be a self-transpose nonreal compact subgroup. We de-
note by R(G)oCZ2 the crossed product Hopf ∗-algebra associated to the involutive
Hopf ∗-algebra automorphism s of Lemma 4.1.

Recall that the Hopf ∗-algebra structure of R(G)oCZ2 is defined as follows
(see, e.g., [Klimyk and Schmüdgen 1997]).

(1) As a coalgebra, R(G)oCZ2 =R(G)⊗CZ2.

(2) We have ( f⊗si )·(g⊗s j )= f si (g)⊗si+ j , for any f, g∈R(G) and i, j ∈{0, 1}.

(3) We have ( f ⊗ si )∗ = si ( f )∗⊗ si for any f ∈R(G) and i ∈ {0, 1}.

(4) The antipode is given by S(ui j ⊗ 1)= u∗j i ⊗ 1, S(ui j ⊗ s)= u j i ⊗ s (in short
S( f ⊗ si )= si (S( f ))⊗ si for any f ∈R(G) and i ∈ {0, 1}).

For notational simplicity we denote, for f ∈R(G), the respective elements f ⊗1
and f ⊗ s of R(G)oCZ2 by f and f s.

Definition 4.3. Let G ⊂Un be a self-transpose compact subgroup. We denote by
A∗(G) the subalgebra of R(G)oCZ2 generated by the elements ui j s, where i, j
range over {1, . . . , n}.

Proposition 4.4. Let G ⊂Un be a self-transpose compact subgroup. Then A∗(G)
is a Hopf ∗-subalgebra of R(G)oCZ2, and there exists a surjective Hopf ∗-algebra
morphism

π : A∗o(n)→A∗(G), vi j 7→ ui j s.

Hence A∗(G) is a half-commutative orthogonal Hopf algebra, and is noncommuta-
tive if and only if G is doubly nonreal.

Proof. We have (ui j s)∗ = su∗i j = ui j s and hence the elements ui j s are self-adjoint
and generate a ∗-subalgebra. Moreover, using the coproduct and antipode formula,
it is immediate to check that 1(ui j s) =

∑
k uiks ⊗ uk j s and S(ui j s) = u j i s, and

hence A∗(G) is an orthogonal Hopf ∗-subalgebra of R(G)oCZ2. We have

ui j suklsu pqs = ui j u∗klu pqs = u pqu∗klui j s = u pqsuklsui j s.

Hence the coefficients of the orthogonal matrix (ui j s) half-commute, and we get
our Hopf ∗-algebra map π : A∗o(n)→A∗(G). The algebra A∗(G) is commutative
if and only if the elements ui j s pairwise commute. We have ui j sukls = ui j u∗kl , so
A∗(G) is noncommutative if and only if there exist i, j, k, l with ui j u∗kl 6= uklu∗i j ,
which precisely means that G is doubly nonreal. �

The Hopf ∗-algebra A∗(G) is part of a natural preexact sequence.
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Proposition 4.5. Let G ⊂ Un be a self-transpose compact subgroup. Then there
exists a Hopf ∗-algebra embedding R(G/G∩T) ↪→A∗(G) and a preexact sequence

C→R(G/G ∩T)
j
→A∗(G)

q
→ CZ2→ C.

Proof. The map q is defined as the restriction to A∗(G) of the Hopf ∗-algebra
map ε⊗ id : R(G)o CZ2→ CZ2. Hence we have q(ui j s) = δi j s. Let B be the
subalgebra of A∗(G) generated by the elements ui j sukls = ui j u∗kl . It is clear that
B =A∗(G)co q , and hence we have a preexact sequence

C→ B
j
→A∗(G)

q
→ CZ2→ C.

Consider now the injective Hopf algebra map ν :R(G) ↪→R(G)oCZ2, f 7→ f ⊗1.
Since R(G/G ∩T)=R(G)G∩T is the subalgebra generated by the elements ui j u∗kl
(Lemma 2.6), we have ν(R(G/G∩T))= B, and we get our preexact sequence. �

We will prove (Theorem 4.7) that a noncommutative half-commutative orthogonal
Hopf algebra is isomorphic to A∗(G) for some compact group G ⊂Un . Before this
we first prove that the morphism in Proposition 4.4 is an isomorphism A∗o(n) '
A∗(Un). This can be seen as a consequence of the forthcoming Theorem 4.7, but
the proof is less technical while it already well enlightens the main ideas.

Theorem 4.6. We have a Hopf ∗-algebra isomorphism A∗o(n)'A∗(Un).

Proof. Let π : A∗o(n)→A∗(Un) be the Hopf ∗-algebra map from Proposition 4.4,
defined by π(vi j )= ui j s. It induces a commutative diagram of Hopf algebra maps
with preexact rows

C −−−→ PvA∗o(n)
i

−−−→ A∗o(n)
p

−−−→ CZ2 −−−→ Cyπ| yπ ∥∥∥
C −−−→ R(PUn)

j
−−−→ A∗(Un)

q
−−−→ CZ2 −−−→ C

where the sequence on the top row is the one of Lemma 3.6 and the sequence on
the lower row is the one of Proposition 4.5. The standard presentation of R(PUn)

(Lemma 2.6) ensures the existence of a ∗-algebra map R(PUn) → PvA∗o(n),
ui j u∗kl 7→ vi jvkl , which is clearly an inverse isomorphism for π|. Thus we can
invoke the short five lemma from [Banica et al. 2013, Theorem 3.4] to conclude
that π is an isomorphism. �

A precursor for the previous isomorphism A∗o(n)'A∗(Un) was the matrix model
A∗o(n) ↪→ M2(R(Un)) found in [Banica et al. 2011, Section 8].

Theorem 4.7. Let A be a noncommutative half-commutative orthogonal Hopf
algebra. Then there exists a self-transpose doubly nonreal compact group G with
T ⊂ G ⊂Un such that A 'A∗(G).
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Proof. Let A be a noncommutative half-commutative orthogonal Hopf algebra.

Step 1. We first write a convenient presentation for A. By Lemma 3.6 there exist
surjective Hopf ∗-algebra maps

A∗o(n)
f
→ A

p
→ CZ2

with p f (vi j )= δi j s. We denote by V the comodule over A∗o(n) corresponding to
the matrix v = (vi j ) ∈ Mn(A∗o(n)), with its standard basis e1, . . . , en . To any linear
map λ : C→ V⊗m , with

λ(1)=
∑

i1,...,im

λ(i1, . . . , im)ei1 ⊗ · · ·⊗ eim ,

we associate families X (λ) and X ′(λ) of elements of A∗o(n) defined by

X (λ)=
{ ∑

j1,..., jm
vi1 j1 · · ·vim jmλ( j1, . . . , jm)−λ(i1, . . . , im)1

∣∣ i1, . . . , im ∈ {1, . . . ,n}
}
,

X ′(λ)=
{ ∑

j1,..., jm
v jm im · · ·v j1i1λ( j1, . . . , jm)−λ(i1, . . . , im)1

∣∣ i1, . . . , im ∈ {1, . . . ,n}
}
.

These elements generate a ∗-ideal in A∗o(n), which is in fact a Hopf ∗-ideal, that we
denote by Iλ. We also view V as an A-comodule via f , and the map λ is a morphism
of A-comodules if and only if f (Iλ) = 0. Now given a family C of linear maps
C→ V⊗m , m ∈N, we denote by IC the Hopf ∗-ideal of A∗o(n) generated by all the
elements of X (λ) and X ′(λ), λ ∈ C. It follows from Woronowicz Tannaka–Krein
duality [Woronowicz 1988] that f induces an isomorphism A∗o(n)/IC ' A for a
suitable set C of morphisms of A-comodules (typically C is a family of morphisms
that generate the tensor category of corepresentations of A).

Step 2. We now construct a compact group G with T ⊂ G ⊂Un . We start with a
presentation A∗o(n)/IC ' A as in Step 1. The existence of the map p : A→ CZ2

implies that for λ : C→ V⊗m , if λ 6= 0 and λ ∈ C, then m is even (evaluate p on
the elements of X (λ)). We associate to λ : C→ V⊗2m

∈ C the following families
of elements in R(Un), where in each case i1, . . . , i2m range over {1, . . . , n}:

X1(λ)=
{ ∑

j1,..., j2m

ui1 j1u∗i2 j2 · · · ui2m−1 j2m−1u∗i2m j2m
λ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X ′1(λ)=
{ ∑

j1,..., j2m

u∗j1i1
u j2i2 · · · u

∗

j2m−1i2m−1
u j2m i2mλ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X2(λ)=
{ ∑

j1,..., j2m

u∗i1 j1ui2 j2 · · · u
∗

i2m−1 j2m−1
ui2m j2mλ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X ′2(λ)=
{ ∑

j1,..., j2m

u j1i1u∗j2i2
· · · u j2m−1i2m−1u∗j2m i2m

λ( j1, . . . , j2m)− λ(i1, . . . , i2m)1
}
.
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Now denote by JC the ∗-ideal of R(Un) generated by the elements of X1(λ), X ′1(λ),
X2(λ) and X ′2(λ) for all the elements λ ∈ C. In fact JC is a Hopf ∗-ideal and we
define G to be the compact group G ⊂ Un such that R(G) ' R(Un)/JC. The
existence of a Hopf ∗-algebra map ρ :R(G)→ CZ, ui j 7→ δi j t , where t denotes
a generator of Z, is straightforward, and thus T ⊂ G. Also it is easy to check the
existence of a Hopf ∗-algebra map R(G)→ R(G), ui j 7→ u∗i j , and this shows
that G is self-transpose. We have, by Proposition 4.4, a Hopf ∗-algebra map
π : A∗o(n)→A∗(G), vi j 7→ ui j s. It is a direct verification to check that π vanishes
on IC, so induces a Hopf ∗-algebra map π : A→ A∗(G). We still denote by vi j

the element f (vi j ) in A. We get a commutative diagram with preexact rows

C −−−→ PvA
i

−−−→ A
p

−−−→ CZ2 −−−→ Cyπ | yπ ∥∥∥
C −−−→ R(G/T)

j
−−−→ A∗(G)

q
−−−→ CZ2 −−−→ C

where the sequence on the top row is the one of Lemma 3.6 and the sequence on
the lower row is the one of Proposition 4.5. To prove that π is an isomorphism,
we just have, by the short five-lemma for cosemisimple Hopf algebra [Banica
et al. 2013], to prove that π | : PvA→R(G/T) is an isomorphism. Let J ′C be the
∗-ideal of R(PUn) generated by the elements of X1(λ), X ′1(λ), X2(λ) and X2(λ)

for all the elements λ ∈ C. It is clear, using the Z-grading on R(G) induced by
the inclusion T ⊂ G and the fact that JC is generated by elements of degree zero,
that J ′C= JC∩R(PUn), so R(G/T)'R(PUn)/J ′C. But then the natural ∗-algebra
map R(PUn)→ PvA (Lemma 2.6) vanishes on J ′C, and hence induces a ∗-algebra
map R(G/T)→ PvA, which is an inverse for π |. Hence π is an isomorphism,
and the algebra A being noncommutative, it follows from Proposition 4.4 that G is
doubly nonreal. �

The proof of Theorem 4.7 also provides a method to find the compact group G
from the half-commutative orthogonal Hopf algebra A.

Example 4.8. On can check, by following the proof of Theorem 4.7, that the
hyperoctahedral Hopf algebra A∗h(n) is isomorphic to A∗(Kn), where Kn is the
subgroup of Un formed by matrices having exactly one nonzero element on each
column and line (with Kn ' Tn o Sn).

Remark 4.9. Let H ⊂G ⊂Un be self-transpose compact subgroups. The inclusion
H ⊂ G induces a surjective Hopf ∗-algebra map A∗(G)→ A∗(H), compatible
with the exact sequence in Proposition 4.5. Thus if the inclusion H ⊂ G induces
an isomorphism H/H ∩T' G/G ∩T, the short five lemma ensures that A∗(G)'
A∗(H). In particular, A∗(Un)'A∗(SUn).
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We now propose a tentative orthogonal half-liberation for the unitary group. In
fact another possible half-liberation of Un has already been proposed in [Bhowmick
et al. 2011], using the symbol A∗u(n). We shall use the notation A∗∗u (n) for the
object we construct, which is different from the one in [Bhowmick et al. 2011].

Example 4.10. Let A∗∗u (n) be the quotient of Au(n) by the ideal generated by the
elements

abc− cba, a, b, c,∈ {ui j , u∗i j },

Then A∗∗u (n) is isomorphic with A∗(U2,n), where U2,n is the subgroup of U2n

consisting of unitary matrices of the form(
A B
−B A

)
, A, B ∈ Mn(C),

and hence is a half-commutative orthogonal Hopf algebra.

Proof. Let ω ∈ C be a primitive fourth root of unity. We start with the probably
well-known surjective Hopf ∗-algebra map

Ao(2n)→ Au(n),

xi, j , xn+i,n+ j 7→
ui j + u∗i j

2
, i, j ∈ {1, . . . , n},

xn+i, j 7→
ui j − u∗i j

2ω
, i, j ∈ {1, . . . , n},

xi,n+ j 7→
u∗i j − ui j

2ω
, i, j ∈ {1, . . . , n},

where xi, j denote the standard generators of Ao(2n). It is clear that it induces
a surjective Hopf ∗-algebra map A∗o(2n)→ A∗∗u (n), and hence A∗∗u (n) is a half-
commutative orthogonal Hopf algebra.

Let J be the ideal of A∗o(2n) generated by the elements

vi, j − vn+i,n+ j , vn+i, j + vi,n+ j , i, j ∈ {1, . . . , n}

(where vi, j denotes the class of xi j in A∗o(n)). Then J is a Hopf ∗-ideal in A∗o(2n) and
the previous Hopf ∗-algebra map induces an isomorphism A∗o(2n)/J ' A∗∗u (n) (the
inverse sends ui j to xi j+ωxn+i, j ). Now having the presentation A∗o(2n)/J ' A∗∗u (n),
the proof of Theorem 4.7 yields A∗∗u (n)'A∗(U2,n). �

5. Representation theory

In this section we describe the fusion rules of A∗(G) for any compact group G (as
usual by fusion rules we mean the set of isomorphism classes of simple comodules
together with the decomposition of tensor products of simple comodules into simple
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constituents). Thanks to Theorem 4.7, this gives a description of the fusion rules of
any half-commutative orthogonal Hopf algebra.

If A is a cosemisimple Hopf algebra, we denote by Irr(A) the set of simple
(irreducible) comodules over A. If A = R(G) for some compact group, then
Irr(R(G))= Irr(G), the set of isomorphism classes of irreducible representations of
G. By a slight abuse of notation, for a simple A-comodule V , we write V ∈ Irr(A).

Let G ⊂Un be a self-transpose compact subgroup. Recall that the transposition
induces an involutive compact group automorphism

σ : G→ G, g 7→ (gt)−1
= ḡ.

For V ∈ Irr(G), we denote by V σ the (irreducible) representation of G induced by
the composition with σ . If U is the fundamental n-dimensional representation of
G, then Uσ

'U .
We begin by recalling the description of the fusion rules for the crossed product

R(G)oCZ2. See [Wang 1995b, Theorem 3.7], for example.

Proposition 5.1. Let G ⊂Un be a self-transpose compact subgroup. Then there is
a bijection

Irr(R(G)oCZ2)' Irr(G)q Irr(G).

More precisely, if X ∈ Irr(R(G)oCZ2), then there exists a unique V ∈ Irr(G) with
either X ' V or X ' V ⊗ s. For V,W ∈ Irr(G), we have

V ⊗ (W ⊗ s)' (V ⊗W )⊗ s,

(V ⊗ s)⊗W ' (V ⊗W σ )⊗ s,

(V ⊗ s)⊗ (W ⊗ s)' V ⊗W σ .

Proof. The description of the simple comodules follows in a straightforward manner
from the fact that R(G)oCZ2 =R(G)⊗CZ2 as coalgebras. The tensor product
decompositions are obtained by using character theory; see [Woronowicz 1987] or
[Klimyk and Schmüdgen 1997]. �

Remark 5.2. If G ⊂Un is connected and has a maximal torus T of G contained
in Tn , it follows from highest weight theory that V σ

' V for any V ∈ Irr(G). We
do not know if this is still true without these assumptions.

To express the fusion rules of A∗(G), we need more notation. Let G ⊂Un be a
compact subgroup, and denote by U the fundamental n-dimensional representation
of G. For m ∈ Z, we put

Irr(G)[m] = {V ∈ Irr(G), V ⊂U⊗m
⊗ (U ⊗U )⊗l for some l ∈ N},

where U⊗0
= C and for m < 0 U⊗m

=U⊗−m .
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Now if V ∈ Irr(G)[0], then V ∈ Irr(G/G ∩ T) (see Lemma 2.6), and since
R(G/G ∩T)⊂A∗(G), we get an element in Irr(A∗(G)), still denoted V .

If V ∈ Irr(G)[1], then V ⊂ U ⊗ (U ⊗ U )⊗l , for some l ∈ N, and hence the
coefficients of V ⊗ s belong to A∗(G). Thus we get an element of Irr(A∗(G)),
denoted V s.

Corollary 5.3. Let G ⊂Un be a self-transpose compact subgroup. Then the map

Irr(G)[0]q Irr(G)[1]→ Irr(A∗(G))

given by

V 7→
{

V if V ∈ Irr(G)[0],
V s if V ∈ Irr(G)[1],

is a bijection. Moreover, for V ∈ Irr(G)[0], W,W ′ ∈ Irr(G)[1], we have

V ⊗W s ' (V ⊗W )s,

W s⊗ V ' (W ⊗ V σ )s,

W s⊗W ′s 'W ⊗W ′σ ,

W s 'W σ s.

Proof. The existence of the map follows from the discussion before the corollary,
while injectivity comes from Proposition 5.1. For V ∈ Irr(G)[m], V ′ ∈ Irr(G)[m′], the
simple constituents of V ⊗V ′ all belong to Irr(G)[m+m′], and that V σ

∈ Irr(G)[−m].
So the isomorphisms in the statement (that all come from the isomorphisms of
Proposition 5.1) yield decompositions into simple A∗(G)-comodules. Thus we
have a family of simple A∗(G)-comodules, stable under decompositions of tensor
products and conjugation, and that contains the fundamental comodule Us: we
conclude (e.g., from the orthogonality relations [Woronowicz 1987; Klimyk and
Schmüdgen 1997]) that we have all the simple comodules. �
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