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SUPERDISTRIBUTIONS, ANALYTIC AND
ALGEBRAIC SUPER HARISH-CHANDRA PAIRS

CLAUDIO CARMELI AND RITA FIORESI

We extend the theory of super Harish-Chandra pairs, originally developed
by Kostant and Koszul for smooth Lie supergroups, to algebraic super-
groups over a field of characteristic zero. We also review the corresponding
complex analytic theory and we give a characterization of the action of an
algebraic (resp. complex analytic) super Harish-Chandra pair on a super-
variety (resp. complex analytic supermanifold).

1. Introduction

The main purpose of this paper is to extend the theory of super Harish-Chandra
pairs, originally developed by Kostant [1977] and Koszul [1983] for smooth Lie
supergroups, to algebraic supergroups, enlightening similarities and differences
with the complex analytic setting, treated in detail by Vishnyakova [2011]. This
approach appears to be especially fruitful in the study of algebraic supergroup
representations and more in general supergroup actions on supervarieties.

Roughly speaking, a super Harish-Chandra pair (SHCP for short) consists of a pair
(G0, g), where G0 is an ordinary algebraic (resp. analytic or smooth) supergroup
and g is a Lie superalgebra, with even part g0 = Lie(G0). If G is a supergroup
(algebraic, analytic or differential), we have a natural SHCP associated with it:
(G0,Lie(G)). What appears to be surprising is the fact that the correspondence
between supergroups and SHCP is bijective (up to isomorphism), i.e., starting from
a given SHCP (G0, g), we can reconstruct a supergroup, which has a corresponding
SHCP (G0,Lie(G))= (G0, g), and such supergroup is unique. Actually more is
true: there is an equivalence of categories between the category of supergroups
(algebraic, analytic or differential) and the category of SHCPs (algebraic, analytic
or differential), once morphisms are properly defined.

Such equivalence in the smooth context dates back to [Koszul 1983], while the
analytic setting is due to Vishnyakova [2011], though a careful reading of [Koszul
1983], shows that the complex theory appeared already, somehow implicitly, in that
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paper. Vishnyakova applied the result about the equivalence of categories between
analytic supergroups and analytic SHCPs to provide a characterization of those
complex homogeneous analytic supermanifolds that are split. We take her work
a step forward: we characterize the concept of action of an analytic SHCP on an
analytic supermanifold, proving it is equivalent to the ordinary notion of action
of an analytic super Lie group on an analytic supermanifold. Our result, which is
novel, immediately carries over to the affine algebraic category.

After our paper appeared on the web on June 2011, Masuoka [2012] published a
more general and very interesting result in which he quoted our work, giving us the
credit for being the first authors to treat the algebraic setting for the equivalence of
categories between algebraic supergroups and algebraic SHCPs in characteristic
zero. Masuoka is able to obtain a generalization of our result through a characteristic
free approach, in purely algebraic terms.

In his paper, Masuoka defines a category of SHCPs whose objects are pairs
consisting of an Hopf algebra C and a finite dimensional right C–comodule W ,
together with appropriate compatibility conditions. In the characteristic zero case,
the category of Masuoka’s SHCPs is anti-isomorphic to the algebraic SHCP category
we use in the present paper. He then establishes an equivalence between the category
of such SHCPs (C,W ) and the category of affine (i.e., super commutative and
finitely generated) Hopf superalgebras, which in turn is contravariantly equivalent
to the category of affine algebraic supergroups. The functor establishing such an
equivalence associates to each pair (C,W ) a subalgebra A(C,W ) of the completion
of the smash product Hopf algebra C×′T (W ) (here T (W ) denotes the tensor algebra
of W ). In this sense, Masuoka’s approach seems more related to Kostant’s proof of
the categorical equivalence between smooth SHCPs and smooth super Lie groups.
Indeed in his approach Kostant realizes the structure sheaf of the supergroup as a
subalgebra of the algebraic dual of the smash product R[G0]×

′U(g). We believe
that the importance of Koszul’s approach relies in the simple geometrical realization
of the sheaf as the coinduced module

HomU(g0)(U(g),OG0(G0)),

which is very explicit. This is particularly important when one tries to deduce
general properties of super Lie groups (see, for instance, the characterization of
split homogeneous supermanifold in [Vishnyakova 2011], or our Proposition 4.3).
Moreover, as far as we understand, it is still an open problem to establish whether
the correspondence between SHCPs as we define them and algebraic supergroups
is an equivalence of categories in the positive characteristic case.

Since our methods are essentially different from Masuoka’s and present a geo-
metric point of view particularly useful for the applications (see our Section 4), we
believe that our work still deserves a place in the literature.



SUPERDISTRIBUTIONS AND SUPER HARISH-CHANDRA PAIRS 31

Our treatment begins with the definition of distribution superalgebra. We keep
our discussion general enough to accommodate both the analytic and algebraic
category and we believe this is one of the strengths of our paper and it singles
it out from the previous treatments of the same subject we quoted above, which
usually deal with just one category (algebraic, analytic or differential) at a time. The
distribution superalgebra is a key object; its definition in differential supergeometry
dates back to Kostant [1977], who first recognized its importance in this context.
As we show in our work, the distribution superalgebra D(G) of a supergroup G
(algebraic, analytic or differential) is naturally equipped with a Hopf superalgebra
structure and it is indeed this Hopf structure, which makes possible the reconstruction
of the algebraic, analytic or differentiable supergroup associated with an SHCP.
In fact, when the characteristic of the ground field k is zero, D(G) is linearly
isomorphic to k|G| ⊗U(g) (k|G| denoting the ordinary group algebra associated
with the topological group |G| underlying the supergroup G). This allows us to
endow k|G|⊗U(g) with an Hopf superalgebra structure, inherited by D(G) via the
above mentioned linear isomorphism. The superalgebra of the global sections of the
structural sheaf of the algebraic supergroup G, associated (uniquely) with the given
SHCP (|G|, g), is then realized inside the dual of k|G| ⊗U(g), thus inheriting its
Hopf structure. This is essentially the reason why the above mentioned equivalence
of categories works, though the proofs and the statements are necessarily more
complicated, since of the technicalities involved, which at this point differ depending
on the category we consider, for example for the analytic category we cannot take
into consideration the global sections only, but we need to look at the whole sheaf.

This paper is organized as follows.
In Section 2 we describe the superalgebra of distributions of an analytic or

an algebraic supergroup, establishing its relation with the universal enveloping
superalgebra. The material exposed here is general common knowledge, though
we are not aware of a treatment as complete and general as ours.

Section 3 contains the main results of our paper, including Theorem 3.6, which
establishes the equivalence of categories between SHCPs (algebraic or analytic) and
supergroups (algebraic or analytic). For the reader’s convenience, this is preceded
(starting on page 39) by a brief review of the equivalence between the category of
analytic SHCPs and the category of analytic supergroups.1 Subsequently (page 42)
we establish the equivalence between the category of algebraic SHCPs and the
category of affine algebraic supergroups under suitable hypothesis for the ground
field. The results of this section were generalized in [Masuoka 2012], with totally
different methods, posted on the web at a later date than ours.

In Section 4 we provide an equivalent approach to the study of the actions of

1The material of this section appeared already, essentially in this form, in [Vishnyakova 2011].
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supergroups, via SHCPs. This result extends the result stated in [Deligne and
Morgan 1999] for the smooth category (see also [Balduzzi et al. 2009; Carmeli
et al. 2011]). These results are novel as far as we know.

We believe the present work is justified, given the importance of the algebraic
theory for practical purposes together with the lack of an appropriate and complete
available reference.

For all the definitions and main results in supergeometry expressed with our
notation, we refer the reader to [Fioresi and Gavarini 2011] or [Fioresi and Gavarini
2012, Chapter 2] or [Carmeli et al. 2011, Chapters 1, 4, 10]. In particular we shall
employ both the sheaf-theoretic and the functor of points approach to supergeometry.
On this we invite the reader to consult the classical references [Deligne and Morgan
1999; Manin 1988; Varadarajan 2004].

2. The superalgebra of distributions

We start by giving the definition of distribution and distribution superalgebra. Our
treatment is general enough to accommodate the two very different categories of
supermanifolds and superschemes. For the classical definitions we send the reader
to [Jantzen 2003, page 95], [Demazure and Gabriel 1970, Chapter II §4, no. 6], and
[Dieudonné 1970]. For the basic definitions of supergeometry we refer the reader
to [Manin 1988; Varadarajan 2004; Deligne and Morgan 1999; Fioresi and Gavarini
2012].

Distributions. Let k be the ground field.
Let X = (|X |,OX ) be an analytic supermanifold or an algebraic superscheme

over the field k.2

Let X (k) be the k-points of X , that is X (k) = Hom(k0|0, X) in the functor of
points notation. For an analytic supermanifold X we have that its k-points X (k) are
identified with the topological points |X |, while for X a superscheme the k-points,
are in one to one correspondence with the rational points, that is, the points x ∈ |X |
for which OX,x/m X,x ∼= k, m X,x being the maximal ideal in the stalk OX,x .

Definition 2.1. A distribution supported at x ∈ X (k) of order at most n is a mor-
phism φ : OX,x → k, with mn+1

X,x ⊂ ker(φ) for some n. The set of all distributions
at x of order n is denoted as Dn(X, x), while D(X, x) denotes all distributions
supported at x . Both Dn(X, x) and D(X, x) have a natural super vector space
structure.

We also define
D(X)=

⋃
x∈X (k)

D(X, x)

2If X is an analytic supermanifold, k = R or k = C or even k =Qp , the p-adic numbers (see for
example [Serre 1992]). If X is a superscheme, k is a generic field.
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as the distributions of finite order of X . Also D(X) has a natural super vector space
structure.

Observation 2.2. (1) We have

Dn(X, x)∼= (OX,x/mn+1
X,x )

∗,

since if φ ∈ Dn(X, x), we have φ(mn+1
X,x ) = 0; hence φ factors and becomes an

element in (OX,x/mn+1
X,x )

∗. Further notice that

D0(X, x)= k, D1(X, x)= k⊕ (m X,x/m2
X,x)
∗.

Hence D1(X, x)+ := (m X,x/m2
X,x)
∗ becomes identified with the tangent space to

X at the point x .

(2) If X is an affine algebraic superscheme, O(X) the superalgebra of the global
sections of its structural sheaf, a distribution supported at x of order n can be
equivalently seen as a morphism φ : O(X)→ k, with mn

x ⊂ ker(φ), where mx :=

{φ ∈ O(X) |φ(x) = 0} is the maximal ideal of all the functions vanishing at x ,
where as usual in supergeometry f (x) simply means the image in OX,x/m X,x of the
element f ∈ O(X) under the natural morphisms: O(X)→ OX,x → OX,x/m X,x ∼= k.
(Notice that since x is rational, we have O(X)= k⊕mx and OX,x/m X,x ∼= k).

We leave it to the reader to check that the two definitions of distributions given
are essentially the same in this case.

(3) If X is a smooth supermanifold, that is, if we are in the differential category, we
can view a point supported distribution as a morphism φ : O(X)→R, mn

x ⊂ ker(φ),
where mx is the maximal ideal corresponding to the point x ∈ |X | (see [Kostant
1977] and [Carmeli et al. 2011, 4.7]), thus recovering the same definition as in (2)
for the affine algebraic category. This is one of the many analogies between the
category of affine supervarieties and smooth supermanifolds.

Example 2.3 (distributions on k p|q). Here we assume char(k) = 0. Consider the
superspace X=k p|q (both in the analytic and affine algebraic context). Let x1 . . . x p,

ξ1 . . . ξq denote the global coordinates and m0 = (x1 . . . x p, ξ1 . . . ξq) the maximal
ideal in the stalk OX,0 at the origin. We have

OX,0/mn+1
0
∼= spank

{
1, x i1

1 . . . x
i p
p ξ

i p+1
1 . . . ξ

i p+q
q ,

∑
ik = n

}
.

If I = (i1 . . . i p+q), let X I denote the monomial x i1
1 . . . x

i p
p ξ

i p+1
1 . . . ξ

i p+q
q . Since the

distributions at 0 of order n are the dual of the super vector space OX,0/mn+1
0 , we

have that a basis for the super vector space of distributions at the point 0 is given by
φJ such that φJ (X I )= δI J , with I = (i1 . . . i p+q), J = ( j1 . . . jp+q) multiindices,
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ik =

∑
jk = n. So we have

φ j1... jp+q ( f )=
1

j1! . . . jp+q !

(
∂

∂x1

) j1
. . .

(
∂

∂x p

) jp
(
∂

∂ξq

) jp+1

. . .

(
∂

∂ξ1

) jp+q

( f )(0).

The superalgebra of distributions of an analytic supermanifold. In this section
we characterize the distributions for an analytic supermanifold M = (|M |,OM) in
the following way. Distributions at the point x ∈ |M | are the elements in O∗M,x
whose kernel contains an ideal of finite codimension, in analogy with Kostant’s
treatment [1977] for the smooth category. We start with a lemma.

Lemma 2.4. Let M = (|M |,OM) be an analytic supermanifold, x ∈ |M |, m X,x the
ideal in OM,x of the sections vanishing at x. For each positive integer p, m p

X,x is an
ideal of finite codimension.

Proof. It follows from the Taylor expansion formula. In fact, every element f in
OM,x can be written as f =

∑
I f I θ

I , where f I is an element in the classical stalk
of germs of holomorphic functions HM,x . For each positive integer q, a germ f I

can in turn be written as

f I (z)= f I (x)+
∑

K : 1≤|K |≤q−1

(∂K f I )(x)zK
+

∑
J : |J |=q

z J h I,J (z)

where I , J , K are multiindices. Hence we can write

f =
∑

I

(
f I (x)+

∑
R : |R+I |<p

(∂R f I )(x)zR
)
θ I
+

∑
|I+R|=p

h I,R(z)zRθ I .

From this formula, it follows that the elements in m p
X,x are generated by the mono-

mials {zK θ I
}|K+I |≤p, and OM,x/m p

M,x has finite dimension. �

Proposition 2.5. An ideal J in OM,x has finite codimension if and only if there
exists an integer p > 0 such that m p

M,x ⊆ J .

Proof. The “if” part follows from the previous lemma. For the “only if” part we
reason as follows. Consider the descending chain of ideals J +m p

M,x ⊇ J +m p+1
M,x .

Since J has finite codimension there exists q such that J +mq
M,x = J +mq+1

M,x .
From this it follows that mq

M,x ⊆ J +mq
M,x ·m M,x . Since, by the previous lemma,

mq
M,x is finitely generated we can apply the super version of Nakayama lemma (see

[Varadarajan 2004]) and we get mq
M,x ⊆ J . �

We have then obtained the following result, which establishes a parallelism with
the smooth category.

Theorem 2.6. The distributions on an analytic supermanifold M supported at a
point x correspond to morphisms f : OM,x → k whose kernel contains an ideal of
finite codimension.
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The distributions of a supergroup at the identity. We now want to restrict our
attention to the distributions of a supergroup (analytic or algebraic) at the identity
element e ∈ G(k).

As a consequence of the Observation 2.2, we have

D1(G, e)+ ∼= (mG,e/m2
G,e)
∗ ∼= Te(G)= Lie(G).

It is only natural to expect D(G, e) to be identified with U(g), with g = Lie(G).
This is true, as we shall see, provided we exert some care.

As we remarked in the Definition 2.1 the distributions at the identity are a super
vector space, however there is a natural additional superalgebra structure that we
can associate to the super vector space of distributions, by defining the convolution
product.

Definition 2.7. Let φ, ψ ∈ D(G, e). We define their convolution product as the
following morphism:

(φ ?ψ)( f )= (φ⊗ψ)µ∗( f ), f ∈ OG,e

where µ denotes the multiplication in the supergroup G and µ∗ the corresponding
sheaf morphism.

The following proposition is a straightforward check.

Proposition 2.8. The convolution product makes D(G, e) into an associative su-
peralgebra, its unit being the evaluation at e, denoted by eve : OG,e→ k.

We now want to examine the relation of D(G, e) with the universal enveloping
superalgebra of the supergroup G. Since D(G, e) ⊃ D1(G, e)+ ∼= Lie(G), by
the universal property of the universal enveloping superalgebra U(g), we have a
superalgebra morphism α :U(g)→ D(G, e).

Observation 2.9. If G is an algebraic supergroup and the characteristic of k is
positive, say char(k)= p> 0, then D(G, e) contains more than the elements coming
from U(g) (refer to Example 2.3). This is because the divided powers Xm/m! are
in D(G, e) but not in U(g). Again similarly, as in the classical situation, we have
that any morphism U(g)→ D(G, e) factors via the universal enveloping restricted
algebra Ur (g):

U(g)→Ur (g)=U(g)/(X p
− X [p])→ D(G, e)

where X [p] denotes the derivation in g corresponding to p-times the derivation X
(which is a derivation here, since we are in characteristic p).

Let char(k)= 0.

Proposition 2.10. The morphism α :U(g)→ D(G, e) is an isomorphism.
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Proof. This is done essentially in the same way as in the classical setting, which is
detailed in [Varadarajan 2004, Chapter I] for the analytic category and [Demazure
and Gabriel 1970, Chapter II, 6, 1.1] for the algebraic category. �

Proposition 2.11. There is an isomorphism of the superalgebra of distributions on
a supergroup G and the superalgebra of the left-invariant differential operators
on G. In this situation U(g) is isomorphic to the superalgebra of the left-invariant
differential operators on G.

Proof. The same remarks as in the previous proof apply. �

The distributions of an affine algebraic supergroup. We now want to restrict
ourselves to the case of affine algebraic supergroups. As we shall see, this algebraic
setting shares many similarities with the differential one.

Consider the module of distributions D(G) (see Observation 2.2):

D(G)=
⋃

x∈G(k)

D(G, x)⊂ O(G)∗.

Definition 2.12. If φ =
∑
φpi is a distribution with φpi ∈ D(G, pi ) we say that

φ is supported at {pi }. On the whole D(G) we have a well-defined associative
product, called the convolution product:

(φp ? φq)( f )= (φp⊗φq)µ
∗( f )

and its unit is eve, the evaluation at the unit element: eve( f ) = f (e). Here µ∗

denotes (as before) the comultiplication in the Hopf superalgebra O(G).

Observation 2.13. If φp and φq are distributions supported at p and q respectively,
then φp ? φq is supported at pq . This is a consequence of the fact that

µ∗(m pq)⊂ m p⊗O(G)+O(G)⊗mq

where mx is as usual the maximal ideal of the sections in O(G) vanishing at
x ∈ G(k). mx =mx,0+ JO(G), that is, mx is the sum of mx,0 the ordinary maximal
ideal corresponding to the topological rational point x ∈ G(k) and the ideal JO(G)

generated by the odd sections in O(G).

Lemma 2.14. Let φg ∈ D(G, g). Then there exists a unique φe ∈ D(G, e) such that
φe = evg−1 ? φg.

Proof. Since φg = (evg ? evg−1) ? φg, define φe = evg−1 ? φg ∈ D(G, e). �

Proposition 2.15. D(G) is a super Hopf algebra with comultiplication 1, counit ε
and antipode S given by

1(φg)( f ⊗g) := φg( f ·g), ε(φg)( f ) := φg(eve( f )), S(φg)( f ) := φg(i∗( f )),

where i : G→ G denotes the inverse morphism.
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Proof. Direct check. �

Let k|G| be the group algebra corresponding to the ordinary group G(k), i.e.,

k|G| =
{ ∑

g∈G(k)
λg∈k

λgg
}
.

Proposition 2.16. We have a linear isomorphism

9 : D(G)→ k|G| ⊗U(g), φg 7→ g⊗φe,

which endows k|G| ⊗U(g) of a Hopf superalgebra structure. This structure is
induced by the natural Hopf structures on the group algebra k|G| and U(g):

1k|G|(g)= g⊗ g, 1U(g)(U )=U ⊗ 1+ 1⊗U, g ∈ G(k),U ∈ g.

The superalgebra structure is defined by

(g⊗ X)(h⊗ Y )= gh⊗ (h−1 X)Y, g ∈ G(k), X, Y ∈U(g),

with h−1 X := evh−1 ? X ? evh . (By Proposition 2.10 we identify distributions at e
with elements in U(g).)

Proof. This is done with a direct check. We just point out that it is enough to do
such check just on generators. �

3. Super Harish-Chandra pairs

The theory of super Harish-Chandra Pairs (SHCP) that we shall develop presently
provides an equivalent way to approach the analytic or affine algebraic supergroups.

Definition of an SHCP. Any time we say supergroup we mean an analytic or an
affine algebraic supergroup over a field k of characteristic zero.

Definition 3.1. Let G0 be a group (complex analytic or affine algebraic) and g a
super Lie algebra. We make the following assumptions:

(1) g0 ' Lie(G0).

(2) G0 acts on g and this action restricted to g0 is the adjoint representation of G0

on Lie(G0). Moreover, the differential of the action is the Lie bracket. We
denote such an action by Ad or as g.X , g ∈ G0, X ∈ g.

Then (G0, g) is called a super Harish-Chandra pair (SHCP).
A morphism of SHCP is simply a pair of morphisms ψ = (ψ0, ρ

ψ) preserving
the SHCP structure; that is:

(1) ψ0 : G0→ H0 is a group morphism (in the analytic or algebraic category).

(2) ρψ : g→ h is a super Lie algebra morphism.
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(3) ψ0 and ρψ are compatible in the sense that ρψ
|g0
= dψ0 and

Ad(ψ0(g)) ◦ ρψ = ρψ ◦Ad(g).

When G0 is an analytic group we shall speak of an analytic SHCP, when G0 is
an affine algebraic group of an algebraic SHCP.

We would like to show that the category of (analytic of algebraic) SHCP, denoted
by (shcps), is equivalent to the category of supergroups (analytic or algebraic),
denoted by (sgrps). In order to do this we start by associating in a natural way a
supergroup to an SHCP.

Definition 3.2. Let (G0, g) be an SHCP. The sheaf OG0 of the ordinary group G0

carries a natural action of U(g0), since the elements of U(g0) act on the sections in
OG0(U ) as left-invariant differential operators. We define OG(U ) as

OG(U ) := HomU(g0)(U(g),OG0(U )), U ⊂open G0.

Proposition 3.3. The assignment U 7→ OG(U ) is a sheaf of superalgebras on G0,
where the superalgebra structure on OG(U ) is given by

f1 · f2 = mOG0
◦ ( f1⊗ f2) ◦1U(g)

and the restriction morphisms ρU V : OG(U )→ OG(V ) are ρU V ( f ) := ρ̃U V ◦ f ,
where ρ̃U V are the restrictions of the ordinary sheaf OG0 .

Proof. The check f1 · f2 is an associative product is routine, while the sheaf property
comes from the fact OG0 is an ordinary sheaf. �

We now show that (G0,OG) is a superspace, by showing that is globally split; in
other words, that

OG(U )∼= OG0(U )⊗
∧
(g1).

Theorem 3.4. (1) Let γ :
∧
(g1)→U(g) be the symmetrization map, given by

γ (X1 ∧ · · · ∧ X p)=
1
p!

∑
τ∈Sp

(−1)|τ |Xτ(1) · · · Xτ(p),

where |τ | denotes the parity of the permutation τ . Then

γ̂ : U(g0)⊗
∧
(g1)→U(g), X ⊗ Y 7→ X · γ (Y )

is an isomorphism of super left U(g0)-modules.

(2) (G0,OG) is globally split; i.e., for each open subset U ⊆ G0 there is an
isomorphism of superalgebras

OG(U )' Hom
(∧
(g1),OG0(U )

)
' OG0(U )⊗

∧
(g1)

∗
.

Hence OG carries a natural Z-gradation.



SUPERDISTRIBUTIONS AND SUPER HARISH-CHANDRA PAIRS 39

Proof. (1) is an application of Poincaré–Birkhoff–Witt (PBW) theorem (see
[Varadarajan 2004]), while for (2) consider the map

φU : OG(U )→ Hom
(∧
(g1),OG0(U )

)
, f 7→ f ◦ γ.

Since γ is a supercoalgebra morphism, φU is a superalgebra morphism. In fact,

φU ( f1 · f2)=m◦ f1⊗ f2◦1U(g)◦γ =m◦ f1⊗ f2◦(γ ⊗γ )1U(g)=φU ( f1)φU ( f2).

That φU is a superalgebra isomorphism follows at once from U(g0)-linearity. �

As an almost immediate consequence of the previous theorem we have:

Corollary 3.5. If G0 is an analytic manifold or algebraic scheme, then (G0,OG) is
a superspace.

In the next sections we complete the task of showing (G0,OG) is a supergroup by
providing explicit expression for the multiplication, unit and inverse. This will lead
to the main result of the paper, namely the equivalence of categories between the
SHCP and supergroups. We now state the main result of the paper and then we shall
prove it with different methods in the next sections, since at this point the analytic
and algebraic categories diverge and require dramatically different treatment.

Theorem 3.6. Let k be a field of characteristic zero, k=C if we are in the algebraic
category. Define the functors

H : (sgrps) → (shcps)

G 7→ (G0,Lie(G))

φ 7→ (|φ|, (dφ)e)

and
K : (shcps) → (sgrps)

(G0, g) 7→ G :=
(
G0,HomU(g0)(U(g),OG0)

)
ψ = (ψ0, ρ

ψ) 7→ f 7→ ψ∗0 ◦ f ◦ ρψ ,

where G and (G0, g) are objects and φ, ψ are morphisms of the corresponding
categories (in the definition of H, G0 is the ordinary group underlying G). Then
H and K define an equivalence between the categories of supergroups (analytic or
algebraic) and super Harish-Chandra pairs (analytic or algebraic).

Analytic SHCP. Let k = C.
For analytic SHCP it is relatively easy to define a supergroup structure on the

superspace (G0,OG) we have defined above, by mimicking what happens in the
smooth case. In fact for an analytic ordinary group G0, the action of U(g0) on OG0

is given by

(D̃Z · f )(g)= f (get Z ), Z ∈ g0, f ∈ OG0(U ),
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where et Z denotes the one-parameter subgroup corresponding to the element Z ∈ g0.
Notice that at this point we encounter an important difference with the algebraic
setting, since in that case we do not have a result such as the Frobenius theorem
available.

Proposition 3.7. (G0,OG) is an analytic supergroup where the multiplication µ,
inverse i and unit e are defined via the corresponding sheaf morphisms by[

µ∗( f )(X, Y )
]
(g, h)=

[
f
(
(h−1.X)Y

)]
(gh),[

i∗( f )(X)
]
(g−1)=

[
f (g−1.X)

]
(g),

e∗( f )=
[

f (1)
]
(e),

for f ∈ OG(U ) and g, h ∈ |G|, where |G| is the topological space underlying G0.
Here X denotes the antipode in U(g).

Note. We shall discuss the peculiar form of µ∗, i∗, e∗ in Remark 3.14.

Proof. The proof of this result is the same as in the differential smooth setting,
where everything is defined in the same way (see [Carmeli et al. 2011, Chapter 7]. In
particular to prove thatµ∗, i∗, e∗ are U(g0)-morphisms is harder than the verification
of the compatibility conditions and the Hopf superalgebra properties. As an example,
let us verify µ is well-defined the other properties being essentially the same type
of calculation. Due to the PBW theorem, it is enough to prove g0-linearity. Let
Z ∈ g0; then

µ∗( f )(Z X, Y )(g, h)= f (h−1(Z X)Y )(gh)

= f ((h−1.Z)(h−1.X)Y )(gh)

= D̃h−1.Z

[
f ((h−1.X)Y )

]
(gh).

On other hand,[
(D̃Z ⊗ id)(µ∗( f )(X, Y ))

]
(g, h)=

d
dt |t=0

f ((h−1 X)Y )(get Z h)

=
d
dt |t=0

f ((h−1 X)Y )(ghet (h−1 Z))

= D̃h−1 Z

[
f ((h−1.X)Y )

]
(gh).

Similarly, for the left entry, one finds

µ∗( f )(X, ZY )(g, h)= f ((h−1 X)ZY )(gh)

= f
(
Z(h−1 X)Y + [h−1 X, Z ]Y

)
(gh)

= D̃Z
(

f ((h−1 X)Y )
)
(gh)+ f

(
[h−1 X, Z ]Y

)
(gh)

and
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d
dt |t=0

µ∗( f )(X, Y )(g, het Z )=
d
dt |t=0

f
(
((het Z )−1 X)Y

)
(ghet Z )

=
[
D̃Z f ((h−1 X)Y )

]
(gh)+ f

(
[(h−1 X), Z ]Y

)
(gh).

�

We are now ready for the proof of Theorem 3.6 in the analytic setting.

Theorem 3.8. There is an equivalence of categories between analytic SHCP and
analytic supergroups expressed by the functors K and H in Theorem 3.6.

Proof. Let us first show the correspondence between morphisms. If φ is a morphisms
of analytic supergroups, it is immediate that (|φ|, (dφ)e) is a morphism of SHCP.
Conversely, if ψ = (ψ0, ρψ) is a morphism of SHCP (G0, g), (H0, h), then the map
ψ∗ : OH (U )→ OG(ψ

−1
0 (U )) defined by ψ∗( f )=ψ∗0 ◦ f ◦ρψ is a sheaf morphism

and (ψ0, ψ
∗) is a morphism of the supergroups G and H . As one can check, the

assignments in Theorem 3.6 establish a one-to-one correspondence between the set
of morphisms of SHCPs and the set of morphisms of analytic supergroups.

We now turn to the correspondence between the objects. Let G be a supergroup
and G the supergroup obtained from the SHCP (G0,Lie(G)), where G0 is the
ordinary analytic group underlying G. As for the smooth setting, let us define the
morphism η : G→ G by

η∗ : OG(U )→ OG(U )= HomU(g0)

(
U(g),OG0(U )

)
,

s 7→
(
s̄ : X→ (−1)|X ||(DX s)|

)
.

Here DX denotes the left-invariant differential operator on G associated with
X ∈ U(g), that is DX = (1 ⊗ X)µ∗. The definition is well-posed as one can
directly check, moreover η is a SLG morphism, i.e.,

η ◦µG = µG ◦ (η× η).

Indeed, for each s ∈ O(G), X, Y ∈U(g), and g, h ∈ G0,[(
(η∗⊗ η∗)µ∗G(s)

)
(X, Y )

]
(g, h)= (−1)|X |+|Y ||(DX ⊗ DY )µ

∗

G(s)|(g, h)

= (−1)|X |+|Y ||Dh−1.X DY s|(gh)

=
[
η∗(s)

(
(h−1.X)Y

)]
(gh)

=
[(
µ∗Gη

∗(s)
)
(X, Y )

]
(g, h).

The last thing to check is that η is an isomorphism. This is true because |η| is
clearly bijective and, for each g ∈ G0, the differential (dη)g is bijective:[

(dη)g(DX g)
]
(s)= DX gη

∗(s)= evg(DXη
∗(s))= [DXη

∗(s)](1)(g)

= (−1)|X |η∗(s)(X)(g)= |(DX s)|(g)= DX g(s),
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where we denote by DX a left-invariant differential operator on G corresponding
to X ∈U(g) while DX denotes a left-invariant differential operator on G.

We conclude using the inverse function theorem, which holds also for analytic
supermanifolds and again this is an important difference with the algebraic setting,
where we do not have this tool available. �

Remark 3.9 (p-adic SHCP). One can define p-adic supermanifolds, supergroups
and SHCP through the obvious same definitions within the framework described
classically in [Serre 1992]. In fact since the category of p-adic manifolds resembles
very closely the category of analytic manifolds, it is then only reasonable to expect
that one can develop along the same lines the theory of p-adic supermanifolds. Once
the basic results, like the inverse function theorem, are established, the equivalence
of categories between p-adic supergroups and the p-adic SHCP will then follow
through the same proof we have detailed for the analytic category.

Algebraic SHCP. We now prove our main result, Theorem 3.6, in the case of G an
affine algebraic supergroup over an algebraically closed field of characteristic zero.

The category of affine algebraic supergroups is equivalent to the category of
commutative Hopf superalgebras; hence we need to show that there is a unique
commutative Hopf superalgebra O(G) associated to a SHCP (G0, g), namely the
superalgebra of the global sections of the sheaf OG as in Definition 3.2.

Since the exponential appears for the action of U(g0) on O(G0) (see beginning
of previous subsection), the question is entirely classical and it is treated in detail in
[Demazure and Gabriel 1970, Chapter 2] for the algebraic setting. We shall briefly
review a few key facts, sending the reader to that reference for details.

Let G0 be an algebraic group and A a commutative algebra, p : A(t)→ A[t]/(t2)

the natural projection, t even. By definition, Lie(G0)(A)= ker G0(p). Since G0 is
affine we have G0 ⊂ GL(V ) for a suitable vector space V ; hence we can write

Lie(G0)(A)= { 1+ t Z } ⊂ G0(A(t))⊂ GL(V )(A(t))

= GL(V )(A)+ tEnd(V )(A)

for suitable Z ∈ End(V )(A), where End(V ) is the functor of points of the su-
perscheme of the endomorphisms of the vector space V . Very often Lie(G0) is
identified with the subspace in End(V ) consisting of the elements Z . As a notation
device we define

et Z
= 1+ t Z ∈ G0(A(t)).

Let g ∈G0(A)=Hom(O(G0), A), that is, g is an A-point of G0, and let f ∈ O(G0).
As another common notational device, we denote g( f ) with f (g). Since A embeds
naturally in A(t) we can view g also as an A(t)-point of G0 and consider f (get Z ).
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We then define

(*)
d
dt |t=0

f (get Z )= b,

where f (get Z ) = (get Z )( f ) = a+ bt ∈ A(t). One sees that the left-hand side of
(*) corresponds to the natural action of Z ∈ Lie(G0) on O(G0) via left-invariant
operators, that is,

d
dt |t=0

f (get Z )= (1⊗ Z)µ∗( f ),

which we denoted by D̃Z f in the analytic category.
We now go back to the super setting and prove the analogue of Proposition 3.7.

Proposition 3.10. The superalgebra O(G)= Hom(U(g),O(G0)) associated to the
algebraic SHCP (G0, g) is an Hopf superalgebra where the comultiplication µ∗,
antipode i∗ and counit e∗ 3 are defined as follows:

[µ∗( f )(X, Y )](g, h)= [ f ((h−1.X)Y )](gh),

[i∗( f )(X)](g−1)= [ f (g−1.X)](g),

e∗( f )= [ f (1)](e),

for f ∈ O(G), g, h ∈ |G|. Here X denotes the antipode in U(g).

Proof. It is the same as for Proposition 3.7. Though the context is different, once
the exponential terminology assumes a meaning for the algebraic category, the
calculations are the same. �

The next proposition shows a very natural fact: given an SHCP (G0,OG), the
sheaf OG is the structural sheaf associated with the superalgebra of its global sections
O(G), so that the morphisms µ∗, i∗, e∗ are actually defined as the appropriate sheaf
morphisms, corresponding to µ, i , e, multiplication, inverse and unit in the algebraic
supergroup G = Spec O(G). corresponding to the SHCP (G0, g).

Proposition 3.11. Let (G0, g) be an SHCP, with G0 an affine group scheme and
let OG as in 3.1. Then G := (G0,OG) is a supergroup scheme.

Proof. In Proposition 3.10 we have seen that O(G) := HomU(g0)(U(g),OG0(G0))

has an Hopf superalgebra structure, moreover by Theorem 3.4 it is globally split.
Hence we only need to prove that G = Spec O(G). Clearly the topological spaces
underlying the superspaces G = (G0,OG) and Spec O(G) are homeomorphic. We
only need to show that OO(G) ∼= OG , where OO(G) denotes the structural sheaf
associated with the superring O(G). We set up a morphism

3In analogy with Proposition 3.7 we have kept the terminology µ∗, i∗, e∗, though we are not
making (yet) any claim on the sheaf morphisms.
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φ : OG(U )→ OO(G)(U )

taking s :U(g)→ OG0(U ) to

φ(s) :U →
∐
x∈U

O(G)x ,

as follows. Any s ∈ OG(U ) gives raise naturally to sx :U(g)→ OG0(U )→ OG0,x .
Since as a U(g0) module, U(g) is finitely generated, say by N generators, once we
fix those generators, sx is equivalent to the choice of N elements in OG0,x . Since
likewise O(G)x is finitely generated by N elements as free OG0,x -module (those N
elements corresponds dually to the generators of U(g) as U(g0)-module), we have
that sx can be viewed as an element of O(G)x . So we define

φ(s)(x)= sx , x ∈U.

We leave to the reader the check that φ is a sheaf isomorphism. �

Theorem 3.12. The category of algebraic SHCP is equivalent to the category of
affine algebraic supergroups.

Proof. We need to establish a one to one correspondence between the objects and
the morphisms.

As for the objects, if (G0, g) is an algebraic SHCP, we can define an affine alge-
braic supergroup defining the following Hopf superalgebra (see Proposition 3.10):

O(G0, g)= HomU(g0)
(U(g),O(G0)).

Conversely, if we have an algebraic supergroup, we can find right away the SHCP
associated to it. What we need to show is that these operations are one the inverse
of the other; that is,

O(G0, g)∼= O(G),

where G0 is the algebraic group underlying G and g = Lie(G). Certainly they
are isomorphic as O(G0)-modules, since they have the same reduced part and, by
a result from [Masuoka 2005], they both can be written as O(G0)⊗3 for some
exterior algebra3, but being their odd dimension the same, the two exterior algebras
are isomorphic.

We can set a map
η∗ : O(G)→ O(G0, g)

taking s to s̄ : X 7→ (−1)|X ||DX (s)|, where DX (s) = (1⊗ X)µ∗. This is a well-
defined morphism of Hopf superalgebras and X 7→ (−1)|X ||DX (s)| is a U(g0)-
morphism. This is done precisely in the same way as in the proof of Theorem 3.8.

We now want to show that η∗ is surjective. This will imply that η∗ is an isomor-
phism. In fact the two given supergroups G = Spec O(G) and G = Spec O(G0, g)
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are smooth superschemes, with the same underlying topological space and same
Lie superalgebra (hence the same superdimension), and η∗ induces an injective
morphism η : G→ G (see [Fioresi and Gavarini 2013, Section 2]).

For the surjectivity of η∗, we need to show that, for each morphism of U(g0)-
modules s̄ :U(g)→ O(G0), there exists s ∈ O(G) such that s̄(X)= (−1)|X ||DX (s)|.
Since U(g) ∼= U(g0)⊗

∧
(g1) (see Theorem 3.4) and s̄ is a morphism of U(g0)-

modules, s̄ is determined by s̄(γ (X I )) for X I
= X i1

1 . . . X in
n , where the X i form a

basis for g1 and i j =0, 1 (again refer to Theorem 3.4). Notice that X i =γ (X i ). Since
X1, . . . , Xn are linearly independent, also the corresponding left-invariant vector
fields DX1, . . . , DXn will be linearly independent at each point. Let Dγ (X) denote the
left-invariant differential operator corresponding to γ (X)∈U(g). Notice that fixing
a suitable basis in U(g), the linear morphism X 7→ γ (X) corresponds to an upper
triangular matrix and sends linearly independent vectors to linearly independent
vectors. Consider the equation (−1)|X

I
|
|Dγ (X I )s| = s̄(X I ), for X I

= X i1
1 . . . Xn

in a
monomial in

∧
(g1). This is an equation where each DX i appearing in the expression

for Dγ (X I ) can be expressed as

DX i =

∑
ai ∂xi j , p(ai ) 6= p(xi j )

where the xi j are global coordinates on GLm|n ⊃ G (regardless of their parity).
Since the Di1

X1
. . . Din

Xn
are linearly independent by the PBW theorem (see also

Proposition 2.11), the Dγ (X) will also be linearly independent, and the equality

(−1)|X ||Dγ (X I )| = s̄(X I )

will yield a solution
∂xi1 j1

. . . ∂xir jr
s = ai1 j1...ir jr

for all i1 j1 . . . ir jr such that

s =
∑

ai1 j1...ir jr xi1 ji . . . xir jr .

We leave to the reader the correspondence between morphisms. �

Example 3.13. We want to verify explicitly the surjectivity of η∗ in the case of
GL(1|1) and make a few remarks on how to extend the calculation to the case of
G = GL(m|n). Let O(GL(1|1))= k[a11, a22, α12, α21][a−1

11 , a−1
22 ]. Let

D12 = (1⊗ ∂α12)µ
∗
= a11 ∂α12 +α21 ∂a22,

D21 = (1⊗ ∂α21)µ
∗
= α12 ∂a11 + a22 ∂α21,

be the left-invariant vector fields corresponding to the generators ∂α12 , ∂α21 of
Lie(G)1; then
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γ (D12 D21)=
1
2(D12 D21− D21 D12)

=
1
2(a11 ∂a11 − a22 ∂a22)

+ a11a22 ∂α12 ∂α21 + terms with coefficients in JO(GL(1|1)),

where JO(GL(1|1)) denotes as usual the ideal generated by the odd elements. Notice
that the terms with coefficients in JO(GL(1|1)) do not contribute in the expression
|Dγ (D12 D21)s|. For the same reason, the term a11 ∂a11−a22 ∂a22 will make a contribu-
tion only if applied to s0, and consequently can be considered not as unknown, but
as a known term. This is important in case one wants to generalize this procedure
to GL(m|n); in fact only the terms containing only odd derivations will produce
new quantities to be determined.

Given s̄ :U(g)→ O(G0) we want to determine s ∈ O(G), with η∗(s)= s̄. Since
Lie(GL(1|1)1 = 〈∂α12, ∂α21〉, the map s̄ is determined once we know its image on∧

Lie(GL(1|1)1, that is,

s0
= s̄(1), s12

= s̄(∂α12), s21
= s̄(∂α21), s12,21

= s̄(γ (∂α12∂α21)).

Consequently the s we want to determine must satisfy the equations

s0
= |1s|,

s12
=−|a11∂α12s+α21∂a22s|,

s21
=−|α12∂a11s+ a22∂α21s|,

s12,21
=
∣∣ 1

2(a11∂a11s− a22∂a22s)+ a11a22∂α12∂α21s
∣∣.

A simple calculation gives us

s = s0
+
α12s12

a11
−
α21s21

a22
+
[
s12,21

−
1
2

(
a11∂a11s0

− a22∂a22s0)] α12α21

a11a22
.

There is no conceptual obstacle to extending this calculation to the case of
G = GL(m|n). If O(G) = k[ai j , αkl][d−1

1 , d−1
2 ] where d1 = det(ai j ){1≤i, j≤m} and

d2 = det(ai j ){m+1≤i, j≤m+n}, the left-invariant vector fields are given by

X i j =
(
1⊗ ∂xi j

)
µ∗ =

∑
k

xki∂xk j ,

where xi j denote the coordinates on GL(m|n) regardless of their parity. We can then
repeat the calculation we did above. Notice that any even derivation appearing in
the expression |Dγ (X)s| will affect only s0

= |1s| since we are taking the reduction
modulo the ideal of the odd nilpotents.

Remark 3.14. We clarify the relation between the Hopf superalgebra O(G) =
Hom(U(g),O(G0)) associated to the SHCP (G0, g) and the distribution superal-
gebra D(G) of the supergroup G (also naturally associated to the same SHCP).
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For an affine supergroup G, the superalgebra of distributions D(G) has a natural
Hopf superalgebra structure; see Proposition 2.15. This structure is inherited by
k|G| ⊗U(g) through the linear isomorphism with D(G) given in Proposition 2.16.
The superalgebra of global sections of G, O(G)= Hom(U(g),O(G0)) can then be
naturally viewed as a subspace of D(G)∗∼= (k|G|⊗U(g))∗, since elements in O(G)
arise as suitable morphisms |G|×U(g)→ k. One can then immediately verify that
the Hopf superalgebra structure on O(G)⊂ D(G)∗ is precisely obtained by duality,
from the Hopf superalgebra on D(G) suitably restricting the comultiplication,
counit and antipode morphisms.

4. Action of supergroups and SHCPs

We now want to relate the action of an analytic of algebraic supergroup G on a
supermanifold or superscheme M , with the action of the corresponding SHCP
(G0, g) on M . In this section, if g ∈ |G| we denote by ĝ : C0|0

→ G the morphism
whose pull-back is the evaluation at g. We recall a well-know definition:

Definition 4.1. A morphism a : G×M→ M is called an action of G on M if

(**) a ◦ (µ×1M)= a ◦ (1G × a)

and

a ◦ 〈ê,1M〉 = 1M .

In the functor of points notation, this is the same as demanding the following,
where T is a supermanifold (resp. a superscheme) and M(T ) = Hom(T,M) are
the T -points of M :

(1) 1 · x = x for all x ∈ M(T ), where 1 the unit in G(T ).

(2) (g1g2) · x = g1 · (g2 · x) for all x ∈ M(T ) and all g1, g2 ∈ G(T ).

Here, as usual, we are writing a(g, x) as g · x .

If an action a of G on M is given, then we say that G acts on M .

Definition 4.2. An action of an analytic SHCP (G0, g) on a supermanifold M
consists of an action

a : G0×M→ M

of the reduced Lie group G0 on M , with a : a◦( j|G|→G×1M), plus a representation

ρa : g→ Vec(M)op

X 7→ (X ⊗1O(M))a∗
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of the super Lie algebra g of G on the opposite of the Lie superalgebra of vector
fields over M , the whole satisfying the compatibility relations

ρa |g0
(X)= (X ⊗1O(M))a∗ for all X ∈ g0,

ρa(g.Y )=
(
ag−1)∗

ρa(Y )(ag)
∗ for all g ∈ |G|, Y ∈ g,

where ag
: M→ M is given by ag

:= a ◦ 〈ĝ,1M〉.

The next proposition tells us that actions of an SHCP correspond bijectively to
actions of the corresponding analytic supergroup.

Proposition 4.3. Let G be an analytic supergroup acting on a supermanifold M.
Then there is an action of the SHCP (G0,Lie(G)) on M. Conversely, given an
action of the SHCP (G0, g) on M , there is a unique action aρ : G×M→ M of the
analytic supergroup G corresponding to the given SHCP on M whose reduced and
infinitesimal actions are the given ones. If U is an open subset of M , we have

a∗ρ : OM(U )→ HomU(g0)

(
U(g), (OG0⊗̂OM)(|a|−1 (U ))

)
,

f 7→
[
X 7→ (−1)|X |

(
1O(G0)⊗ ρ(X)

)
a∗( f )

]
.

Proof. Let us check that a∗ρ( f ) is U(g0)-linear. For all X ∈ U(g) and Z ∈ g0 we
have

a∗ρ( f )(Z X)= (−1)|X |
(
1⊗ ρ(Z X)

)
a∗( f )

= (−1)|X |
(
1⊗ ρ(X)

)
(1⊗ Ze⊗ 1)(1⊗ a∗)a∗( f )

= (−1)|X |
(
1⊗ ρ(X)

)
(1⊗ Ze⊗1)(µ̃∗⊗1)a∗( f )

=
(
D̃Z ⊗1

)[
a∗ρ( f )(X)

]
.

We now check that a∗ρ is a superalgebra morphism.[
a∗ρ( f1) · a∗ρ( f2)

]
(X)= mOG0 ⊗̂OM

[
a∗( f1)⊗ a∗( f2)

]
1(X)

= (−1)|X |m
[(

1⊗ ρ(X(1))
)
a∗( f1)⊗

(
1⊗ ρ(X(2))

)
a∗( f2)

]
= (−1)|X |

(
1⊗ ρ(X)

)(
a∗( f1) · a∗( f2)

)
= a∗ρ( f1 · f2)(X),

where fi ∈ O(M) and X(1) ⊗ X(2) denotes 1(X). Concerning the “associative”
property, we have that, for X, Y ∈U(g) and g, h ∈ G0,[

(µ∗⊗1)a∗ρ( f )
]
(X, Y )(g, h)=

[
a∗ρ( f )

]
(h−1.XY )(gh)

= (−1)|X |+|Y |+|X ||Y |ρ(Y )ρ(h−1.X)(agh)
∗
( f )

= (−1)|X |+|Y |+|X ||Y |ρ(Y )(ah)
∗
ρ(X)(ag)

∗
( f )

=
[
(1⊗ a∗ρ)a

∗

ρ( f )
]
(X, Y )(g, h),
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and, finally, (eve⊗ 1)a∗ρ( f )= ρ(1)= f .
Uniqueness can be proved as follows. Let a be an action of G on M and let

(a, ρa) be as in Proposition 4.3. If f ∈ OM(U ), then

a∗( f ) ∈ (HomU(g0)

(
U(g),OG0

)
⊗̂OM)(|a|−1 (U ))

∼= HomU(g0)

(
U(g), (OG0⊗̂OM)(|a|−1 (U ))

)
;

hence, using (**) in Definition 4.1 and the fact that ρa is an antihomomorphism,
we obtain for all X ∈U(g)

a∗( f )(X)= (−1)|X |
[
(DX ⊗1)a∗(φ)

]
(1)

= (−1)|X |
(
1⊗ ρa(X)

)(
a∗( f )(1)

)
= (−1)|X |

(
1⊗ ρa(X)

)
a∗( f ). �

Let us now assume G is an affine algebraic supergroup over a field of character-
istic zero and (G0, g) is the corresponding SHCP and furthermore assume they are
acting on a supervariety M , the Definition 4.2 being the same, taking the morphisms
in the appropriate category.

We state the analogue of the Proposition 4.3 in the algebraic setting, its proof
being essentially the same.

Proposition 4.4. Let G be an algebraic supergroup acting on a supervariety M
(not necessarily affine). Then there is an action of the SHCP (G0,Lie(G)) on M.
Conversely, given an algebraic action of the algebraic SHCP (G0, g) on M , there is
a unique action aρ : G×M→ M of the algebraic supergroup G corresponding to
the given SHCP on M whose reduced and infinitesimal actions are the given ones.
If U is an open subset of M , we have

a∗ρ : OM(U )→ HomU(g0)

(
U(g), (OG0 ⊗OM)(|a|−1 (U ))

)
,

f 7→
[
X 7→ (−1)|X |

(
1O(G0)⊗ ρ(X)

)
a∗( f )

]
.

Acknowledgements

We wish to thank Professor Varadarajan for suggesting the problem and Professors
Cassinelli and Gavarini for helpful discussions.

References

[Balduzzi et al. 2009] L. Balduzzi, C. Carmeli, and G. Cassinelli, “Super G-spaces”, pp. 159–176 in
Symmetry in mathematics and physics, edited by D. Babbitt et al., Contemp. Math. 490, Amer. Math.
Soc., Providence, RI, 2009. MR 2010k:58011 Zbl 1236.58012

[Carmeli et al. 2011] C. Carmeli, L. Caston, and R. Fioresi, Mathematical foundations of supersym-
metry, European Mathematical Society, Zürich, 2011. MR 2012h:58010 Zbl 1226.58003

http://dx.doi.org/10.1090/conm/490/09594
http://msp.org/idx/mr/2010k:58011
http://msp.org/idx/zbl/1236.58012
http://dx.doi.org/10.4171/097
http://dx.doi.org/10.4171/097
http://msp.org/idx/mr/2012h:58010
http://msp.org/idx/zbl/1226.58003


50 CLAUDIO CARMELI AND RITA FIORESI

[Deligne and Morgan 1999] P. Deligne and J. W. Morgan, “Notes on supersymmetry (following
Joseph Bernstein)”, pp. 41–97 in Quantum fields and strings: a course for mathematicians (Prince-
ton, NJ, 1996/1997), vol. 1, edited by P. Deligne et al., Amer. Math. Soc., Providence, RI, 1999.
MR 2001g:58007 Zbl 1170.58302

[Demazure and Gabriel 1970] M. Demazure and P. Gabriel, Groupes algébriques, I: Géométrie
algébrique, généralités, groupes commutatifs, Masson, Paris, 1970. MR 46 #1800 Zbl 0203.23401

[Dieudonné 1970] J. Dieudonné, Éléments d’analyse, Tome III: Chapitres XVI et XVII, Cahiers
Scientifiques 33, Gauthier-Villars, Paris, 1970. MR 42 #5266 Zbl 0208.31802

[Fioresi and Gavarini 2011] R. Fioresi and F. Gavarini, “On the construction of Chevalley super-
groups”, pp. 101–123 in Supersymmetry in mathematics and physics, edited by S. Ferrara et al.,
Lecture Notes in Math. 2027, Springer, Berlin, 2011. MR 2906339 Zbl 06078896

[Fioresi and Gavarini 2012] R. Fioresi and F. Gavarini, Chevalley supergroups, Mem. Amer. Math.
Soc. 1014, Amer. Math. Soc., Providence, RI, 2012. MR 2918543 Zbl 1239.14045

[Fioresi and Gavarini 2013] R. Fioresi and F. Gavarini, “Algebraic supergroups with Lie superalgebras
of classical type”, Journal of Lie Group Theory 23:1 (2013), 143–158.

[Jantzen 2003] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys
and Monographs 107, Amer. Math. Soc., Providence, RI, 2003. MR 2004h:20061 Zbl 1034.20041

[Kostant 1977] B. Kostant, “Graded manifolds, graded Lie theory, and prequantization”, pp. 177–306
in Differential geometrical methods in mathematical physics (Bonn, 1975), edited by K. Bleuler and
A. Reetz, Lecture Notes in Math 570, Springer, Berlin, 1977. MR 58 #28326 Zbl 0358.53024

[Koszul 1983] J.-L. Koszul, “Graded manifolds and graded Lie algebras”, pp. 71–84 in Proceedings
of the international meeting on geometry and physics (Florence, 1982), edited by M. Modugno,
Pitagora, Bologna, 1983. MR 85m:58019 Zbl 0548.22012

[Manin 1988] Y. I. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematis-
chen Wissenschaften 289, Springer, Berlin, 1988. MR 89d:32001 Zbl 0641.53001

[Masuoka 2005] A. Masuoka, “The fundamental correspondences in super affine groups and super
formal groups”, J. Pure Appl. Algebra 202:1–3 (2005), 284–312. MR 2006e:16066 Zbl 1078.16045

[Masuoka 2012] A. Masuoka, “Harish–Chandra pairs for algebraic affine supergroup schemes over
an arbitrary field”, Transform. Groups 17:4 (2012), 1085–1121. MR 3000482

[Serre 1992] J.-P. Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics 1500,
Springer, Berlin, 1992. MR 93h:17001 Zbl 0742.17008

[Varadarajan 2004] V. S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant
Lecture Notes in Mathematics 11, New York University, 2004. MR 2005g:58011 Zbl 1142.58009

[Vishnyakova 2011] E. G. Vishnyakova, “On complex Lie supergroups and split homogeneous
supermanifolds”, Transform. Groups 16:1 (2011), 265–285. MR 2012b:58010 Zbl 1218.22013

http://msp.org/idx/mr/2001g:58007
http://msp.org/idx/zbl/1170.58302
http://msp.org/idx/mr/46:1800
http://msp.org/idx/zbl/0203.23401
http://msp.org/idx/mr/42:5266
http://msp.org/idx/zbl/0208.31802
http://dx.doi.org/10.1007/978-3-642-21744-9_5
http://dx.doi.org/10.1007/978-3-642-21744-9_5
http://msp.org/idx/mr/2906339
http://msp.org/idx/zbl/06078896
http://dx.doi.org/10.1090/S0065-9266-2011-00633-7
http://msp.org/idx/mr/2918543
http://msp.org/idx/zbl/1239.14045
http://msp.org/idx/mr/2004h:20061
http://msp.org/idx/zbl/1034.20041
http://msp.org/idx/mr/58:28326
http://msp.org/idx/zbl/0358.53024
http://msp.org/idx/mr/85m:58019
http://msp.org/idx/zbl/0548.22012
http://msp.org/idx/mr/89d:32001
http://msp.org/idx/zbl/0641.53001
http://dx.doi.org/10.1016/j.jpaa.2005.02.010
http://dx.doi.org/10.1016/j.jpaa.2005.02.010
http://msp.org/idx/mr/2006e:16066
http://msp.org/idx/zbl/1078.16045
http://dx.doi.org/10.1007/s00031-012-9203-8
http://dx.doi.org/10.1007/s00031-012-9203-8
http://msp.org/idx/mr/3000482
http://msp.org/idx/mr/93h:17001
http://msp.org/idx/zbl/0742.17008
http://msp.org/idx/mr/2005g:58011
http://msp.org/idx/zbl/1142.58009
http://dx.doi.org/10.1007/s00031-010-9114-5
http://dx.doi.org/10.1007/s00031-010-9114-5
http://msp.org/idx/mr/2012b:58010
http://msp.org/idx/zbl/1218.22013


SUPERDISTRIBUTIONS AND SUPER HARISH-CHANDRA PAIRS 51

Received September 5, 2012. Revised September 19, 2012.

CLAUDIO CARMELI

D.I.M.E., UNIVERSITÀ DI GENOVA

VIA CADORNA 2
I-17100 SAVONA

ITALY

and

INFN, SEZIONE DI GENOVA

VIA DODECANESO 33
I-16416 GENOVA

ITALY

claudio.carmeli@gmail.com

RITA FIORESI

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DI BOLOGNA

PIAZZA DI PORTA S. DONATO, 5
40126 BOLOGNA

ITALY

fioresi@dm.unibo.it

mailto:claudio.carmeli@gmail.com
mailto:fioresi@dm.unibo.it


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 263 No. 1 May 2013

1Biharmonic hypersurfaces in complete Riemannian manifolds
LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ and MARCO

RIGOLI

13Half-commutative orthogonal Hopf algebras
JULIEN BICHON and MICHEL DUBOIS-VIOLETTE

29Superdistributions, analytic and algebraic super Harish-Chandra pairs
CLAUDIO CARMELI and RITA FIORESI

53Orbifolds with signature (0; k, kn−1, kn, kn)

ANGEL CAROCCA, RUBÉN A. HIDALGO and RUBÍ E.
RODRÍGUEZ

87Explicit isogeny theorems for Drinfeld modules
IMIN CHEN and YOONJIN LEE

117Topological pressures for ε-stable and stable sets
XIANFENG MA and ERCAI CHEN

143Lipschitz and bilipschitz maps on Carnot groups
WILLIAM MEYERSON

171Geometric inequalities in Carnot groups
FRANCESCOPAOLO MONTEFALCONE

207Fixed points of endomorphisms of virtually free groups
PEDRO V. SILVA

241The sharp lower bound for the first positive eigenvalue of the
Folland–Stein operator on a closed pseudohermitian (2n+ 1)-manifold

CHIN-TUNG WU

253Remark on “Maximal functions on the unit n-sphere” by Peter M. Knopf
(1987)

HONG-QUAN LI

Pacific
JournalofM

athem
atics

2013
Vol.263,N

o.1


	1. Introduction
	2. The superalgebra of distributions
	3. Super Harish-Chandra pairs
	4. Action of supergroups and SHCPs
	Acknowledgements
	References
	
	

