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TOPOLOGICAL PRESSURES FOR
ε-STABLE AND STABLE SETS

XIANFENG MA AND ERCAI CHEN

In this paper, topological pressures of the preimages of ε-stable sets and
certain closed subsets of stable sets in positive entropy systems are investi-
gated. It is shown that the topological pressure of any topological system
can be calculated in terms of the topological pressure of the preimages of
ε-stable sets. For the constructed closed subset (W. Huang, Commun. Math.
Phys. 279, 535–557 (2008)) of the stable set or the unstable set of any point
in a measure-theoretic “rather big” set of a topological system with positive
entropy, especially for the weakly mixing subset contained in the closure of
the stable and unstable sets, it is proved that topological pressures of these
subsets can be no less than the measure-theoretic pressure.

1. Introduction

Let (X, T ) be a topological dynamical system (TDS) in the sense that X is a compact
metric space with a compatible metric d and T : X → X is a homeomorphism.
A TDS is said to be noninvertible if the map is surjective and continuous but not
one-to-one. For x ∈ X and ε > 0, the ε-stable set of x under T is the set of points
whose forward orbit ε-shadows that of x :

W s
ε (x, T )= {y ∈ X : d(T nx, T n y)≤ ε for all n ≥ 0}.

The preimages of these sets can be nontrivial and hence disperse at a nonzero
exponent rate. the dispersal rate function hs(T, x, ε) was introduced in [Fiebig et al.
2003]. The relationship between hs(T, x, ε) and the topological entropy htop(T )
was also investigated. It was proved that when X has finite covering dimension, for
all ε > 0,

sup
x∈X

hs(T, x, ε)= htop(T ).
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In [Huang 2008], the finite-dimensionality hypothesis turns out to be redundant.
This equality is proved to be always true for any noninvertible TDS.

It is known that certain results concerning topological entropy can be generalized
to topological pressure. For any f ∈ C(X,R), consider the topological pressure of
the preimages of the ε-stable set of x :

P(T, f, x, ε)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T )),

where

Pn(T, f, δ, T−nW s
ε (x, T ))

= sup
{∑

x∈E

exp fn(x) : E is an (n, δ)-separated subset of T−nW s
ε (x, T )

}
,

and fn(x)=
∑n−1

i=0 f ◦ T i (x). We show that the topological pressure of any non-
invertible TDS with positive metric entropy can be calculated in terms of the
topological pressure of the preimages of ε-stable sets. That is, for all ε > 0,

sup
x∈X

P(T, f, x, ε)= P(T, f ),

where P(T, f ) is the standard notion of the topological pressure. For the null
function f , this equality is the above one for the topological entropy.

For x ∈ X , the stable set W s(x, T ) and the unstable set W u(x, T ) of x are
defined as

W s(x, T )= {y ∈ X : lim
n→+∞

d(T nx, T n y)= 0},

W u(x, T )= {y ∈ X : lim
n→+∞

d(T−nx, T−n y)= 0}.

For Anosov diffeomorphisms on a compact manifold, pairs belonging to the stable
set are asymptotic under T and tend to diverge under T−1. However, Blanchard et al.
[2002] showed that in most case, this phenomenon does not happen in a TDS with
positive metric entropy. N. Sumi [2003] investigated the stable and unstable sets of
C2 diffeomorphisms of C∞ manifolds with positive metric entropy. He showed that
the closure of the stable set W s(x, T ) of “many points” is a perfect ∗-chaotic set and
the closure of the unstable set W u(x, T ) contains a perfect ∗-chaotic set. W. Huang
[2008] got further information in the general noninvertible TDS with positive metric
entropy. He proved that there exists a measure-theoretically “rather big” set such
that the closure of the stable or unstable sets of points in the set contains a weakly
mixing set. The Bowen entropies of these sets were also estimated there. It was
proved that the lower bound is the usual metric entropy hµ(T ) for the ergodic
invariant measure µ.

By introducing the topological pressure for the closed subset and using the
excellent partition formed in Lemma 4 of [Blanchard et al. 2002], we show that,
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for the constructed closed subsets of stable and unstable sets in [Huang 2008], the
topological pressure of these sets can also be estimated. More precisely, we prove
that if µ is an ergodic invariant measure of a TDS (X, T ) with hµ(T ) > 0, then,
for µ-a.e. x ∈ X , the closed subsets

A(x)⊆W s(x, T ), B(x)⊆W u(x, T )

and the weakly mixing subset

E(x)⊆W s(x, T )∩W u(x, T )

constructed in [Huang 2008] have the following properties:

(a) limn→+∞ diam T n A(x)= 0 and P(T−1, f, A(x))≥ Pµ(T, f ),

(b) limn→+∞ diam T−n B(x)= 0 and P(T, f, B(x))≥ Pµ(T, f ),

(c) P(T, f, E(x))≥ Pµ(T, f ) and P(T−1, f, E(x))≥ Pµ(T, f ),

where Pµ(T, f ) is the measure-theoretic pressure.

The paper is organized as follows. In Section 2, the topological pressure for
the closed subset of a TDS is introduced. Some related notions and results about
entropy are also listed. In Section 3, the topological pressure of the preimages of
an ε-stable set is introduced. Using the tool formed in [Blanchard et al. 2002], we
show that the topological pressure of any TDS can be calculated in terms of the
topological pressure of the preimages of an ε-stable set. As a generalization of
the entropy point, the notion of the pressure point is also introduced. In Section 4,
results (a)–(c) above are proved. In Section 5, the results in sections 3 and 4 are
stated and proved for the noninvertible TDS.

2. Preliminaries

Let (X, T ) be a TDS and BX be the σ -algebra of all Borel subsets of X . Recall
that a cover of X is a finite family of Borel subsets of X whose union is X , and
a partition of X is a cover of X whose elements are pairwise disjoint. We denote
the set of covers, partitions, and open covers, of X by CX , PX , and Co

X . Given a
partition α of X and x ∈ X , denote by α(x) the atom of α containing x . For two
given covers U, V ∈ CX , U is said to be finer than V (denoted by U� V) if each
element of U is contained in some element of V. Let

U∨V= {U ∩ V :U ∈U, V ∈ V}.

Given integers M, N with 0≤ M ≤ N and U ∈ CX , we set

UN
M =

N∨
n=M

T−nU.
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Given U ∈ CX and K ⊂ X , put

N (U, K )=min
{

the cardinality of F : F⊂U,
⋃

F∈F

F ⊃ K
}

and H(U, K )= log N (U, K ). Then the topological entropy of U with respect to T
for the compact subset K is

htop(T,U, K )= lim
n→∞

1
n

H(Un−1
0 , K )= inf

n≥1

1
n

H(Un−1
0 , K ).

The topological entropy of T for the compact subset K is defined by htop(T, K )=
supU∈Co

X
htop(T,U, K ); and the topological entropy of T is defined by htop(T )=

supK htop(T, K ).
Let (X, T ) be a TDS, K a closed subset of X , U ∈Co

X , and f ∈C(X,R), where
C(X,R) is the Banach space of all continuous, real-valued functions on X endowed
with the supremum norm. We set

(1) Pn(T, f,U, K )= inf
{ ∑

V∈V

sup
x∈V∩K

exp fn(x) : V ∈ CX and V�Un−1
0

}
,

where fn(x)=
∑n−1

j=0 f (T j x). When V ∩ K =∅, we let supx∈V∩K exp fn(x)= 0.
Then the above definition is well defined. It is clear that if f is the null function,
Pn(T, 0,U, K )= N (Un−1

0 , K ).
For V ∈ CX , we let α be the Borel partition generated by V and define

P∗(V)= {β ∈ PX : β � V and each atom of β is the union of some atoms of α}.

Lemma 2.1 [Ma et al. 2010, Lemma 2.1]. Let M be a compact subset of X and let
f ∈ C(X,R), V ∈ CX . Then

inf
β∈CX
β�V

∑
B∈β

sup
x∈B∩M

f (x)=min
{∑

B∈β

sup
x∈B∩M

f (x) : β ∈ P∗(V)

}
.

Let K(X) be the collection of all nonempty closed subsets of X . For any
nonempty subset A of X and ε > 0, let N (A, ε) = {x ∈ X : dist(x, A) < ε},
where dist(x, A) = inf{d(x, y) : y ∈ A}. The Hausdorff metric Hd on the space
K(X) induced by the metric d is defined as

Hd(A, B)= inf{ε : A ⊂ N (B, ε) and B ⊂ N (A, ε)} for any A, B ⊂ X.

Then (K(X), Hd) constitutes a compact metric space.

Lemma 2.2. Let (X, T ) be a TDS, U ∈ Co
X , and f ∈ C(X,R+). Then the function

F : K → inf
{∑

V∈V

sup
x∈V∩K

f (x) : V ∈ CX and V�U

}
is measurable from K(X) to R+, where supx∈V∩K f (x)= 0 for V ∩ K =∅.
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Proof. By Lemma 2.1 it suffices to prove that for each B ∈ β, where β ∈ P∗(U),
the function FB : K → supx∈B∩K f (x) is measurable.

For each r ∈ R, let Er = {K : supx∈B∩K f (x) > r}. Let U = f −1(r,+∞). Then
U is an open subset of X . For r ≥ 0, if B ∩U = ∅, Er = ∅. If B ∩U 6= ∅,
Er = {K : K ∩ (B ∩U ) 6=∅}. Let α be the Borel partition generated by the open
cover U= {Ui }

s
i=1. Then each A ∈ α has the form

(⋂
i∈L Ui

)
∩
(⋂

j∈M U c
j

)
, where

L ,M ⊂ {1, . . . , s} and L ∩ M = ∅. Note that, for each open subset W of X ,
the sets {K : K ∩ (W ∩U ) 6= ∅} and {K : K ∩ (W c

∩U ) 6= ∅}— which equals
{K : K ∩U 6=∅}∩

(
K(X)\{K : K ⊂W }

)
— are both measurable subsets of K(X).

Then the set {K : K ∩ (A∩U ) 6=∅} is measurable for each A ∈ α. Since each atom
B of β is the finite union of elements of α, it follows that Er is a measurable subset
of K(X). For r < 0, Er = E0∪{K : supx∈B∩K f (x)= 0} = E0∪{K : B ∩ K =∅}.
Since {K : B ∩ K = ∅} = K(X)\{K : B ∩ K 6= ∅} and {K : B ∩ K 6= ∅} is
measurable, Er is also measurable. Thus FB is a measurable function. �

Let K ∈ K(X), U ∈ Co
X , and f ∈ C(X,R). We define P(T, f,U, K ) =

lim supn→∞(1/n) log Pn(T, f,U, K ).
Let (X, T ) be a TDS. Denote by M(X) the set of all Borel probability measures

on X , by M(X, T ) the set of T -invariant measures, and by Me(X, T ) the set of
ergodic measures. Then Me(X, T ) ⊂M(X, T ) ⊂M(X), and M(X),M(X, T ) are
convex, compact metric spaces endowed with the weak*-topology.

Since the map f is a homeomorphism, it induces in a natural way a homeomor-
phism T̂ : K(X)→ K(X) by T̂ (A) = T (A) for each A ∈ K(X). Then (K(X), T̂ )
constitutes a TDS induced by (X, T ).

For each µ̂ ∈M(K(X), T̂ ), the following lemma shows that the limit superior in
the above definition can be obtained by the limit for µ̂-a.e. K ∈ K(X).

Lemma 2.3. Let (X, T ) be a TDS, U ∈ Co
X , f ∈ C(X,R), and µ̂ ∈M(K(X), T̂ ).

Then, for µ̂-a.e. K ∈ K(X), P(T, f,U, K ) = limn→+∞(1/n) log Pn(T, f,U, K )
exists.

Proof. For any n,m ∈N, V1�Un−1
0 , V2�Um−1

0 , we have V1∨T−nV2�Un+m−1
0 .

It follows that

Pn+m(T, f,U, K )≤
∑

V1∈V1

∑
V1∈V2

sup
x∈V1∩T−n V2∩K

exp fn+m(x)

=

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩T−n V2∩K

exp( fn(x)+ fm(T nx))

≤

∑
V1∈V1

∑
V2∈V2

( sup
x∈V1 K

exp fn(x) · sup
z∈V2∩T n K

exp fm(z))

=

( ∑
V1∈V1

sup
x∈V1∩K

exp fn(x)
)( ∑

V2∈V2

sup
z∈V2∩T n K

exp fm(z)
)
.
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Since Vi , i = 1, 2 is arbitrary,

Pn+m(T, f,U, K )≤ Pn(T, f,U, K ) · Pm(T, f,U, T n K ).

By the definition of T̂ and Lemma 2.2, we have that

log Pn(T, f,U, K ) : K(X)→ R∪ {−∞}

is a subadditive sequence of measurable functions. Then, by Kingman’s subadditive
ergodic theorem (see [Walters 1982]), we complete the proof. �

When K = X , P(T, f,U, X) = P(T, f,U), which is the local topological
pressure defined by Huang and Yi [2007], clearly, P(T, 0,U, K )= htop(T,U, K ).

Given a partition α ∈ P(X), µ ∈M(X) and a sub-σ -algebra C⊆Bµ, let

Hµ(α)=
∑
A∈α

−µ(A) logµ(A),

Hµ(α | C)=
∑
A∈α

∫
X
−E(1A | C) log E(1A | C) dµ,

where E(1A | C) is the expectation of 1A with respect to C. One standard fact states
that Hµ(α | C) increases with respect to α and decreases with respect to C. The
measure-theoretic entropy of µ is defined as

hµ(T )= sup
α∈PX

hµ(T, α),

where

hµ(T, α)= lim
n→+∞

1
n

Hµ(αn−1
0 )= inf

n≥1
Hµ(αn−1

0 ).

For each f ∈ C(X,R), the measure-theoretic pressure of µ is defined as

Pµ(T, f )= hµ(T )+
∫

X
f dµ.

For a given U ∈ CX , set

Hµ(U)= inf
β∈PX , β�U

Hµ(β) and Hµ(U | C)= inf
β∈PX , β�U

Hµ(β | C).

When µ ∈M(X, T ) and C is T -invariant (that is, T−1C= C), Hµ(Un−1
0 | C) is a

nonnegative subadditive sequence for a given U ∈U. Let

hµ(T,U | C)= lim
n→+∞

1
n

Hµ(Un−1
0 | C)= inf

n≥1
Hµ(Un−1

0 | C).
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For C = {∅, X} (mod µ), we write Hµ(U | C) and hµ(T,U | C) as Hµ(U) and
hµ(T,U), respectively. Romagnoli [2003] proved that

hµ(T )= sup
U∈Co

X

hµ(T,U).

It is well known that, for β ∈PX , hµ(T, β)= hµ(T, β | Pµ(T ))≤ Hµ(β | Pµ(T )),
where Pµ(T ) is the Pinsker σ -algebra of (X,Bµ, µ, T ).

Lemma 2.4 [Huang 2008, Lemma 2.1]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
U ∈ CX . Then

hµ(T,U)= hµ(T,U | Pµ(T )).

For U ∈ Co
X , µ ∈M(X, T ) and f ∈ C(X,R), we define the measure-theoretic

pressure for T with respect to U as

Pµ(T, f,U)= hµ(T,U)+

∫
X

f dµ.

Obviously,

Pµ(T, f )= hµ(T )+
∫

X
f dµ= sup

U∈Co
X

hµ(T,U)+

∫
X

f dµ= sup
U∈Co

X

Pµ(T, f,U).

Let (X, T ) be a TDS, µ ∈M(X, T ), and Bµ be the completion of BX under µ.
Then (X,Bµ, µ, T ) is a Lebesgue system. If {αi }i∈I is a countable family of finite
partitions of X , the partition α =

∨
i∈I αi is called a measurable partition. The sets

A ∈Bµ, which are unions of atoms of α, form a sub-σ -algebra of Bµ by α̂ or α
if there is no ambiguity. Every sub-σ -algebra of Bµ coincides with a σ -algebra
constructed in this way (mod µ).

Given a measurable partition α, put α− =
∨
∞

n=1 T−nα and αT
=
∨
+∞

n=−∞ T−nα.
Define in the same way F− and FT if F is a sub-σ -algebra of Bµ. It is clear that
for a measurable partition α of X , we have

α̂− = (α̂)− and α̂T = (α̂)T (mod µ).

Let F be a sub-σ -algebra of Bµ and α be the measurable partition of X with
α− = F (mod µ). µ can be disintegrated over F as µ =

∫
X µx dµ(x), where

µx ∈M(X) and µx(α(x))= 1 for µ-a.e. x ∈ X . The disintegration is characterized
by two properties:

(a) For every f ∈ L1(X,BX , µ), f ∈ L1(X,BX , µx) for µ-a.e. x ∈ X , and the
map x 7→

∫
X f (y) dµx(y) is in L1(X,F, µ).

(b) For every f ∈ L1(X,BX , µ), Eµ( f | F)(x)=
∫

X f dµx for µ a.e. x ∈ X .

Then, for any f ∈ L1(X,BX , µ),∫
X

(∫
X

f dµx

)
dµ(x)=

∫
X

f dµ.
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Lemma 2.5 [Huang 2008, Lemma 2.2]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
F be a sub-σ -algebra of Bµ. If µ=

∫
X µx dµ(x) is the disintegration of µ over F,

(a) for V ∈ CX , Hµ(V | F)=
∫

X Hµx (V) dµ(x),

(b) for U, V ∈ CX , Hµ(U∨V | F)≤ Hµ(U | F)+ Hµ(V | F).

Let K be a nonempty closed subset of X . For ε > 0, a subset of X is called an
(n, ε)-spanning set of K , if for any x ∈K there exists y∈ F with dn(x, y)≤ε, where
dn(x, y)=maxn−1

i=0 d(T i x, T i y); a subset E of K is called an (n, ε)-separated set
of K , if x, y ∈ E , x 6= y implies dn(x, y)> ε. Let rn(d, T, ε, K ) denote the smallest
cardinality of any (n, ε)-spanning subset for K and sn(d, T, ε, K ) denote the largest
cardinality of any (n, ε)-separated subset of K .

For each ε > 0 and f ∈ C(X,R), we define

Pn(T, f, ε, K )= sup
{∑

x∈E
exp fn(x) : E is an (n, ε)-separated subset of K

}
.

The topological pressure of T for the closed subset K is defined as

P(T, f, K )= lim
ε→0

lim sup
n→+∞

1
n

log Pn(T, f, ε, K ).

Clearly, for f ≡ 0, we can write Pn(T, 0, ε, K ) = sn(d, T, ε, K ). It follows
that P(T, f, K ) = h(T, K ), where h(T, K ) is the Bowen entropy for the closed
subset K defined in [Walters 1982]; see also [Huang 2008]. When K = X ,
P(T, f, X)= P(T, f ), where P(T, f ) is the standard notion of topological pressure
defined in [Walters 1982]. Moreover, it is not hard to verify that P(T, f, K ) =
supU∈Co

X
P(T, f,U, K ).

3. ε-stable sets

Let (X, T ) be a TDS with a compatible metric d. Given ε > 0, the ε-stable set of
x under T is the set of points whose forward orbit ε-shadows that of x :

W s
ε (x, T )= {y ∈ X : d(T nx, T n y)≤ ε for all n = 0, 1, . . .}.

Since the preimages of these sets can be nontrivial, we can consider the following
function. For each x ∈ X , f ∈ C(X,R), and ε > 0, let

Ps(T, f, x, ε) := lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T )).

Ps(T, f, x, ε) is called the topological pressure of the preimages of the ε-stable
sets of x . For f ≡ 0, Ps(T, 0, x, ε)= hs(T, x, ε), where the latter is the dispersal
rate function defined in [Fiebig et al. 2003]. It was proved in [Huang 2008] that
supx∈X hs(T, x, ε) = htop(T ) for all ε > 0. In the present section, we show that
this is also true for the functions Ps(T, f, x, ε) and P(T, f ). By proving that,



TOPOLOGICAL PRESSURES FOR ε-STABLE AND STABLE SETS 125

for any µ ∈Me(X, T ) with positive entropy, limε→0 Ps(T, f, x, ε)≥ Pµ(T, f ) for
µ-a.e. x ∈ X , we can obtain the result. We need the following lemmas.

Lemma 3.1. Let (X, T ) be a TDS, f ∈ C(X,R), and {Kn} be a sequence of
nonempty closed subsets of X. Then

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)= sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

Proof. For a fixed δ > 0, choose V ∈ Co
X with diam V< δ. For n ∈ N let A be an

(n, δ)-separated set of Kn . Since B ∩ Kn contains at most one element of A for
each B of

∨n−1
i=0 T−i V, for every W ∈CX with W�Vn−1

0 , each element of W also
contains at most one element of A. We get

∑
x∈A exp fn(x) ≤ Pn(T, f,V, Kn).

That is Pn(T, f, δ, Kn)≤ Pn(T, f,V, Kn). Then

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)≤ lim sup
n→+∞

1
n

log Pn(T, f,V, Kn)

≤ sup
U∈Co

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

Letting δ→ 0, we get

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)≤ sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

In the following, we show the converse inequality. For any fixed U ∈ Co
X , let δ

be the Lebesgue number of U. For n ∈ N, let E be an (n, δ/2)-separated set of Kn

with the largest cardinality. Then E is also an (n, δ/2)-spanning set of Kn . From
the definition of spanning sets, we know that⋃

x∈E

n−1⋂
i=0

T−i Bδ/2(T i x)⊃ Kn, where Bδ/2(T i x)=
{

y ∈ X : d(T i x, y)≤ δ
2

}
.

Now, for each x ∈ E and 0≤ i ≤ n− 1, Bδ/2(T i x) is contained in some element of
U since δ is the Lebesgue number of the open cover U. Hence, for each x ∈ E , the
intersection

⋂n−1
i=0 T−i Bδ/2(T i x) is contained in some element of

∨n−1
i=0 T−i U. Let

W=
{⋂n−1

i=0 T−i Bδ/2(T i x) : x ∈ E
}
. Then W ∈ CX and W�Un−1

0 . Let

Qn(T, f,U, Kn)= inf
{ ∑

V∈V

inf
x∈V∩Kn

exp fn(x) : V ∈ CX and V�Un−1
0

}
.

Then

Qn(T, f,U, Kn)≤
∑
x∈E

fn(x)≤ Pn

(
T, f, δ

2
, Kn

)
.

Let τU = sup{| f (x)− f (y) |: d(x, y)≤ diam U}. Then

exp(−nτU)Pn(T, f,U, Kn)≤ Qn(T, f,U, Kn).
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So

−τU+ lim sup
n→+∞

1
n

log Pn(T, f,U, Kn)≤ lim sup
n→+∞

1
n

log Pn

(
T, f, δ

2
, Kn

)
≤ lim
δ→0

lim sup
n→+∞

1
n

log Pn

(
T, f, δ

2
, Kn

)
.

Since U is arbitrary, we get

sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn)≤ lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn). �

An immediate consequence of Lemma 3.1 is the following.

Lemma 3.2. Let (X, T ) be a TDS and f ∈ C(X,R). Then, for each x ∈ X and
ε > 0,

Ps(T, f, x, ε)= sup
U∈Co

X

lim sup
n→+∞

1
n

log Pn(T, f,U, T−nW s
ε (x, T )).

Lemma 3.3 [Walters 1982, Lemma 9.9]. Let a1, . . . , ak be given real numbers. If
pi ≥ 0, i = 1, . . . , k, and

∑k
i=1 pi = 1,

k∑
i=1

pi (ai − log pi )≤ log
k∑

i=1

eai ,

and equality holds if and only if

pi =
eai∑k

i=1 eai
for all i = 1, . . . , k.

Let (X, T ) be a TDS, µ ∈ M(X, T ), and Bµ be the completion of BX under
µ. The Pinsker σ -algebra Pµ(T ) is defined as the smallest sub-σ -algebra of Bµ

containing {ξ ∈ PX : hµ(T, ξ)= 0}. It is well known that Pµ(T )= Pµ(T−1) and
Pµ(T ) is T -invariant, that is, T−1(Pµ(T ))= Pµ(T ).

Lemma 3.4 [Huang 2008, Lemma 3.5]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
δ > 0. Then there exist {Wi }

∞

i=1 ⊂ PX and 0= k1 < k2 < · · · such that

(a) diam W1 < δ and limi→+∞ diam Wi = 0,

(b) limk→+∞ Hµ(Pk |P
−)= hµ(T ), where Pk =

∨k
i=1 T−ki Wi and P=

∨
∞

k=1 Pk ,

(c)
⋂
∞

n=0 T̂−nP− = Pµ(T ).

Lemma 3.5. Let (X, T ) be a TDS, U ∈ Co
X , f ∈ C(X,R), and K ∈ K(X). Then,

for each n ∈ N,

Pn(T, f,U, T−n K )= Pn(T, f ◦ T−n, T nU, K ).
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Proof. For each V ∈ CX and V�
∨n

i=1 T i U, obviously, T−nV ∈ Cx and T−nV�∨n−1
i=0 T−i U.
Since for each V ∈ V,

sup
x∈T−n V∩T−n K

exp fn(x)= sup
x∈V∩K

exp fn(T−nx),

it is easy to see that Pn(T, f,U, T−n K ) ≤ Pn(T, f ◦ T−n, T nU, K ). From the
homeomorphism of T , the inverse inequality holds. Then Pn(T, f,U, T−n K ) =
Pn(T, f ◦ T−n, T nU, K ). �

Recall that a set-valued map F from X to K(X) is said to be measurable if
{x ∈ X : F(x)∩ A 6=∅} ∈BX for every Borel (open or closed) subset A of X .

Lemma 3.6. Let G : X→ K(X) be a measurable set-valued map, f ∈ C(X,R+),
and U ∈ Co

X . Then

F : x→ inf
{ ∑

V∈V

sup
y∈V∩G(x)

f (y) : V ∈ CX and V�U
}

is Borel-measurable, where supy∈V∩G(x) f (y)= 0 for V ∩G(x)=∅.

Proof. By Lemma 2.1, for each x ∈ X , we have

inf
{ ∑

V∈V

sup
y∈V∩G(x)

f (y) :V∈CX ,V�U
}
=min

{ ∑
V∈V

sup
y∈V∩G(x)

f (y) :V∈P∗(U)
}
.

It is sufficient to prove that, for each V ∈ V, where V ∈ P∗(U), the function
HV : x→ supy∈V∩G(x) f (y) is Borel-measurable.

For each r ∈R, let Er = {x : supy∈V∩G(x) f (y) > r}. Note that U = f −1(r,+∞)
is an open subset of X . For r ≥ 0, if V ∩U = ∅, Er = ∅. If V ∩U 6= ∅, then
Er ={x : V ∩G(x)∩U 6=∅}. Since V ∩U ∈B(X), by the set-valued measurability
of G, it is clear that Er is a Borel subset of X . For r < 0, Er = E0 ∪ F , where
F = {x : supy∈V∩G(x) f (y)= 0}. Since

F = {x : V ∩G(x)=∅} = X\{x : V ∩G(x) 6=∅}

is Borel-measurable, Er is also a Borel subset of X ; thus HV is Borel-measurable.
�

The next theorem clearly implies the main result of this paper.

Theorem 3.7. Let (X,T ) be a TDS, f ∈C(X,R), andµ∈Me(X,T )with hµ(T )>0.
Then, for µ-a.e. x ∈ X , limε→0 Ps(T, f,x,ε)≥ Pµ(T, f ).

Proof. It suffices to prove that, for a given ε > 0, Ps(T, f, x, ε) ≥ Pµ(T, f ) for
µ-a.e. x ∈ X .

Fix ε > 0. Since T is a homeomorphism on X , there exists δ ∈ (0, ε) such that
d(T−1x, T−1 y) < ε when d(x, y) < δ. By Lemma 3.4, there exists {Pi }

∞

i=1 ⊂ PX

satisfying diam P1 ≤ δ,
⋂
∞

n=0 T̂−nP− = Pµ(T ), and Hµ(Pk | P
−)→ hµ(T ) when
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k→+∞, where P=
∨
∞

i=1 Pi . Since diam P1≤ δ, it is clear that P−(x)⊆W s
ε (x, T )

for each x ∈ X .
Let µ=

∫
X µx dµ(x) be the disintegration of µ over P−. Then

supp(µx)⊆ P−(x)⊆W s
ε (x, T ) for µ-a.e. x ∈ X.

Let k ∈ N. By inequality (3.3) in [Huang 2008], we know that there exists
Uk ∈ Co

X such that

(2) lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T−i Uk | T−nP−
)
≥ Hµ(Pk | P

−)−
1
k
.

For n ∈N, let Fn(x)= (1/n) log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T )). Noting that

the map x→W s
ε (x, T ) is upper semicontinuous, it follows from Lemma 3.6 that Fn

is a Borel-measurable function. Let F(x)= lim supn→+∞ Fn(x) for x ∈ X . Then
F is also Borel-measurable. Since T W s

ε (x, T )⊆ W s
ε (T x, T ) for each x ∈ X , we

have

Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

≤ inf
{ ∑

V∈V

sup
y∈V∩T W s

ε (x,T )
exp fn ◦ T−(n+1)(y) : V ∈ CX and V�

n+1∨
i=2

T i Uk

}
≤ inf

{ ∑
V∈V

sup
y∈V∩W s

ε (T x,T )
exp fn ◦ T−(n+1)(y) : V ∈ CX and V�

n+1∨
i=1

T i Uk

}
= Pn+1(T, f ◦ T−(n+1), T n+1Uk,W s

ε (T x, T )).

Then

F(x)= lim sup
n→+∞

1
n

log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

≤ lim sup
n→+∞

n+ 1
n
·

1
n+ 1

log Pn+1(T, f ◦ T−(n+1), T n+1Uk,W s
ε (T x, T ))

= F(T x).

Thus, F(x) ≤ F(T x) for each x ∈ X . Since µ ∈ M(X, T ),
∫

X F(T x) dµ(x) =∫
X F(x) dµ(x), we have, F(T x) = F(x) for µ-a.e. x ∈ X . Moreover, F(x) ≡ ak

for µ-a.e. x ∈ X as µ is ergodic, where ak ≥ 0 is a constant.
From Lemma 2.1, there exists a finite partition

β ∈ P∗
( n∨

i=1

T i Uk

)
such that

Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))=

∑
B∈β

sup
x∈B∩W s

ε (x,T )
exp fn ◦ T−n(x).
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It follows from Lemma 3.3 that

log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

= log
∑
B∈β

sup
x∈B∩W s

ε (x,T )
exp fn ◦ T−n(x)

≥

∑
B∈β

µx(B ∩W s
ε (x, T ))( sup

x∈B∩W s
ε (x,T )

exp fn ◦ T−n(x)− logµx(B ∩W s
ε (x, T )))

= Hµx (β)+
∑
B∈β

sup
x∈B∩W s

ε (x,T )
fn ◦ T−n(x) ·µx(B) (supp(µx)⊆W s

ε (x, T )

for µ-a.e. x ∈ X)

≥ Hµx

( n∨
i=1

T i Uk

)
+

∫
X

fn ◦ T−n dµx

Then

ak =

∫
X

F(x) dµ=
∫

X
lim sup
n→+∞

Fn(x) dµ≥ lim sup
n→+∞

∫
X

Fn(x) dµ

≥ lim sup
n→+∞

∫
X

1
n

(
Hµx

( n∨
i=1

T i Uk

)
+

∫
fn ◦ T−n dµx

)
dµ(x)

= lim sup
n→+∞

(∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

1
n

∫
X

∫
fn ◦ T−n dµx dµ(x)

)

= lim sup
n→+∞

(∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

1
n

∫
X

fn ◦ T−n dµ(x)
)

= lim sup
n→+∞

∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

∫
X

f dµ(x) (since µ ∈M(X, T ))

= lim sup
n→+∞

1
n

Hµ

( n∨
i=1

T i Uk | P
−

)
+

∫
X

f dµ(x) (by Lemma 2.5(a))

= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=1

T−i Uk | T−nP−
)
+

∫
X

f dµ(x)

≥ Hµ(Pk | P
−)−

1
k
+

∫
X

f dµ(x) (by inequality (2)).

Since Ps(T, f, x, ε)≥ F(x) for each x ∈ X , we have

Ps(T, f, x, ε)≥ lim
k→+∞

(
Hµ(Pk | P

−)−
1
k
+

∫
X

f dµ(x)
)

= hµ(T )+
∫

X
f dµ(x)= Pµ(T, f )

for µ-a.e. x ∈ X . �
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We introduce the ε-pressure point and pressure point for a TDS. Let (X, T )
be a TDS, f ∈ C(X,R). For ε > 0, we call x ∈ X an ε-pressure point for T if
Ps(T, f, x, ε)= P(T, f ), and we call it a pressure point if limε→o Ps(T, f, x, ε)=
P(T, f ). The function Ps(T, f, x, ε) is decreasing in ε. It follows that every
pressure point is also an ε-pressure point for each ε > 0. Note that, while the
notion of an ε-pressure point depends on the choice of the metric, that of pressure
point does not. Denote by P(T, f ) the set of all pressure points of (X, T ) for
f ∈ C(X,R). For f ≡ 0, the ε-pressure point and pressure point are the ε-entropy
point and entropy point, respectively, which are introduced in [Fiebig et al. 2003].
Moreover, P(T, 0)= E(T ), where E is the set of all entropy points of (X, T ).

Remark 3.8. Let (X, T ) be a TDS, f ∈ C(X,R). If there exists µ ∈ Me(X, T )
such that P(T, f )= Pµ(T, f ), P(T, f ) 6=∅.

4. Stable sets

The main results of the present section are Theorems 4.1 and 4.5. Recall that, for a
TDS (X, T ) and x ∈ X ,

W s(x, T )= {y ∈ X : lim
n→+∞

d(T nx, T n y)= 0},

W u(x, T )= {y ∈ X : lim
n→+∞

d(T−nx, T−n y)= 0}.

W s(x, T ) is called the stable set of x for T , and W u(x, T ) is called the unstable
set of x for T . Obviously, W s(x, T )=W u(x, T−1) and W u(x, T )=W s(x, T−1).

Theorem 4.1. Let (X, T ) be a TDS, f ∈C(X,R), and µ∈Me(X, T ) with hµ(T )>
0. Then, for µ-a.e. x ∈ X ,

(a) there exists a closed subset A(x)⊆W s(x, T ) such that

lim
n→+∞

diam T n A(x)= 0 and P(T−1, f, A(x))≥ Pµ(T, f );

(b) there exists a closed subset B(x)⊆W u(x, T ) such that

lim
n→+∞

diam T−n B(x)= 0 and P(T, f, B(x))≥ Pµ(T, f ).

Proof. Sinceµ∈Me(X, T ), Pµ(T−1, f )= Pµ(T, f ), and W s(x, T−1)=W u(x, T ),
(a) implies (b). It remains to prove (a).

By Lemma 3.4, there exist {Wi }
∞

i=1 ⊂ PX and 0= k1 < k2 < · · · satisfying

(a) diam W1 < δ and limi→+∞ diam Wi = 0,

(b) limk→+∞ Hµ(Pk |P
−)= hµ(T ), where Pk =

∨k
i=1 T−ki Wi and P=

∨
∞

k=1 Pk ,

(c)
⋂
∞

n=0 T̂−nP− = Pµ(T ).
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Let Qi =
∨i

j=1 T− j (P1∨ P2∨· · ·∨ Pi ) for i ∈N. Then Qi ∈PX , Q1 � Q2 � · · · ,
and

∨
∞

i=1 Qi = P−.
For x ∈ X , let A(x)=

⋂
∞

i=1 Qi (x). Then A(x) is a closed set and A(x)⊇P−(x).
The set A(x) also has the properties limn→+∞ diam T n A(x) = 0 and A(x) ⊆
W s(x, T ) (see the proof of [Huang 2008, Theorem 4.2] for details).

Moreover, the set-valued map A : x → A(x) is measurable. In fact, for each
open set U of X ,{

x :
∞⋂

n=1
Qi (x)⊆U

}
=
⋃

n≥1

⋂
k≥n

⋂
{A ∈ Qk : Ā ⊆U }

is a Borel set of X . Then, for each closed set V of X , {x : Qi (x) ⊆ X\V } is a
Borel set. It follows that {x : Qi (x)∩ V 6=∅} is Borel and then A : x→ A(x) is
set-valued measurable.

Let µ=
∫

X µx dµ(x) be the disintegration of µ over P−. Then

(3) supp(µx)⊆ P−(x)⊆ A(x) for µ-a.e. x ∈ X.

We now prove that, for µ-a.e. x ∈ X , P(T−1, f, A(x)) ≥ Pµ(T, f ). Since
limk→+∞ Hµ(Pk | P−) = hµ(T ), it is sufficient to prove that, for each k ∈ N,
P(T−1, f, A(x))≥ Hµ(Pk | P

−)− 1/k+
∫

X f dµ(x) for µ-a.e. x ∈ X .
For a given k ∈ N, there exists Uk ∈ Co

X such that

(4) lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T−i Uk | T−nP−
)
≥ Hµ(Pk | P

−)−
1
k

for each n ∈ N

(see [Huang 2008] for details).
Let Fn(x)= (1/n) log Pn(T−1, f,Uk, A(x)), where

Pn(T−1, f,Uk, A(x))

= inf
{ ∑

V∈V

sup
y∈V∩A(x)

exp fn ◦ T−(n−1)(y) : V ∈ CX and V�
n−1∨
i=0

T i Uk

}
,

and fn(z)=
∑n−1

i=0 f (T i z). By Lemma 3.6, Fn is a Borel-measurable function. Let
F(x) = lim supn→+∞ Fn(x) for each x ∈ X . Then F is also a Borel-measurable
function on X .

For each V �
∨n−1

i=0 T i Uk , T−1V �
∨n−1

i=0 T i Uk . Since T (A(x)) ⊆ A(T (x))
(see the proof of [Huang 2008, Theorem 4.2]), for each V ∈ V,

sup
y∈T−1V∩A(x)

n−1∑
i=0

f (T−i y)≤ sup
y∈T−1(V∩A(T x))

n−1∑
i=0

f (T−i y)

= sup
y∈V∩A(T x)

n∑
i=1

f (T−i y)≤ sup
y∈V∩A(T x)

n∑
i=0

f (T−i y),
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it is not hard to see that Pn(T−1, f,Uk, A(x))≤ Pn+1(T−1, f,Uk, A(T x)). Hence

F(x)= lim sup
n→+∞

1
n

log Pn(T−1, f,Uk, A(x))

≤ lim sup
n→+∞

n+ 1
n
·

1
n+ 1

log Pn(T−1, f,Uk, A(T x))= F(T x).

Thus F(x)≤ F(T x) for each x ∈ X . Since µ ∈M(X, T ), we have∫
X
( f (T x)− f (x)) dµ(x)= 0.

Then F(T x) = F(x) for µ-a.e. x ∈ X . From the ergodicity of µ, there exists a
constant ak ≥ 0 such that F(x)≡ ak for µ-a.e. x ∈ X .

By Lemma 2.1, there exists a partition β ∈ P∗(
∨n−1

i=0 T i Uk) such that, for µ-a.e.
x ∈ X ,

log Pn(T−1, f,Uk, A(x))

= log
∑
B∈β

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y)

≥

∑
B∈β

µx(B)
(

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y)− logµx(B)
)

(by (3) and Lemma 3.3)

= Hµx (β)+
∑
B∈β

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y) ·µx(B)

≥ Hµx

(n−1∨
i=0

T i Uk

)
+

∫
X

fn ◦ T−(n−1) dµX .

Then

ak =

∫
X

F(x) dµ=
∫

X
lim sup
n→+∞

Fn(x) dµ(x)≥ lim sup
n→+∞

∫
X

Fn(x) dµ(x)

≥ lim sup
n→+∞

1
n

∫
X

(
Hµx

(n−1∨
i=0

T i Uk

)
+

∫
X

fn ◦ T−(n−1) dµx

)
dµ(x)

= lim sup
n→+∞

1
n

(∫
X

Hµx

(n−1∨
i=0

T i Uk

)
dµ(x)+

∫
X

fn ◦ T−(n−1) dµ(x)
)

= lim sup
n→+∞

1
n

∫
X

Hµx

(n−1∨
i=0

T i Uk

)
dµ(x)+

∫
X

f dµ(x) (since µ ∈M(X, T ))
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= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T i Uk | P
−

)
+

∫
X

f dµ(x) (by Lemma 2.5(a))

= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T i Uk | T−(n−1)P−
)
+

∫
X

f dµ(x)

≥ Hµ(Pk | P
−)−

1
k
+

∫
X

f dµ(x) (by (4)).

Therefore, for µ-a.e. x ∈ X ,

P(T−1, f, A(x))≥ P(T−1, f,Uk, A(x))= F(x)≥ Hµ(Pk |P
−)−

1
k
+

∫
X

f dµ(x)

for each k ∈ N.
Then

P(T−1, f, A(x))≥ lim
n→+∞

(
Hµ(Pk | P

−)−
1
k

)
+

∫
X

f dµ(x)

= Hµ(T )+
∫

X
f dµ(x)= Pµ(T, f ). �

This completes the proof of Theorem 4.1.

A direct consequence of Theorem 4.1 is the following.

Corollary 4.2. Let (X, T ) be a TDS, f ∈ C(X,R). If there exists µ ∈ Me(X, T )
with Pµ(T, f ) = P(T, f ), there exists x ∈ X , a closed subset A(x) ⊆ W s(x, T ),
and a closed subset B(x)⊆W u(x, T ) such that

(a) limn→+∞ diam T n A(x)= 0 and P(T−1, f, A(x))= P(T, f );

(b) limn→+∞ diam T−n B(x)= 0 and P(T, f, B(x))= P(T, f ).

A TDS (X, T ) is transitive if, for each pair of nonempty open subsets U and
V of X , there exists n ≥ 0 such that U ∩ T−nV 6= ∅; and it is weakly mixing if
(X × X, T × T ) is transitive. These notions describe the global properties of the
whole TDS. Blanchard and Huang [2008] give a new criterion to picture “a certain
amount of weakly mixing” in some consistent sense. The notion of a weakly mixing
set was introduced as follows.

If X , Y are topological spaces, denote by C(X, Y ) the set of all continuous maps
from X to Y .

Definition 4.3. Let (X, T ) be a TDS and A ∈ 2X . The set A is said to be weakly
mixing for T if there exists B ⊂ A satisfying

(a) B is the union of countably many Cantor sets;

(b) the closure of B equals A;

(c) for any C ∈ B and g ∈ C(C, A), there exists an increasing sequence of natural
numbers {ni } ⊂ N such that limi→+∞ T ni x = g(x) for any x ∈ C .
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Denote by WMs(X, T ) the family of weakly mixing subsets of (X, T ). The
system (X, T ) itself is called partially mixing when it contains a weakly mixing
set. The whole space X is a weakly mixing set if and only if TDS (X, T ) is weakly
mixing [Xiong and Yang 1991]. The following result (See [Blanchard and Huang
2008, Proposition 4.2]) gives an equivalent characterization of the weakly mixing
set in another way.

Proposition 4.4. Let (X, T ) be a TDS and A be a nonsingleton closed subset of X.
Then A is a weakly mixing subset of X if and only if , for any k ∈ N and any choice
of nonempty open subsets V1, . . . , Vk of A and nonempty open subsets U1, . . . ,Uk

of X with A∩Ui 6=∅, i = 1, 2, . . . , k, there exists m ∈N such that T m Vi ∩Ui 6=∅
for each 1≤ i ≤ k.

Now we prove the following theorem. Part (a) of Theorem 4.5 was already
proved in [Huang 2008]. For completeness, we state it in the theorem.

Theorem 4.5. Let (X, T ) be a TDS and µ ∈Me(X, T ) with hµ(T ) > 0. Then, for
µ-a.e. x ∈ X , there exists a closed subset

E(x)⊆W s(x, T )∩W u(x, T )

such that

(a) E(x) ∈WMs(X, T )∩WMs(X, T−1), i.e., E(x) is weakly mixing for T , T−1;

(b) P(T, f, E(x))≥ Pµ(T, f ) and P(T−1, f, E(x))≥ Pµ(T, f ).

Proof. Let Bµ be the completion of BX under µ. Then (X,Bµ, µ, T ) is a Lebesgue
system. Let Pµ(T ) be the Pinsker σ -algebra of (X,Bµ, µ, T ). Letµ=

∫
X µx dµ(x)

be the disintegration of µ over Pµ(T ). Then, for µ-a.e. x ∈ X ,

supp(µx)⊆W s(x, T )∩W u(x, T )

and

supp(µx) ∈WMs(X, T )∩WMs(X, T−1)

(see [Huang 2008, Theorem 4.6] for details).
We now prove that, for µ-a.e. x ∈ X ,

P(T, f, supp(µx))≥ Pµ(T, f ) and P(T−1, f, supp(µx))≥ Pµ(T, f ).

By the symmetry of T and T−1, Pµ(T, f ) = Pµ(T−1, f ). It remains to prove
that, for µ-a.e. x ∈ X , P(T, f, supp(µx))≥ Pµ(T, f ). Since Pµ(T ) is T -invariant,
Tµx = µT x for µ-a.e. x ∈ X . Therefore, there exists a T -invariant measurable set
X0 ⊂ X with µ(X0)= 1 and Tµx = µT x for x ∈ X0.
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For each U∈Co
X , x ∈ X0, and n ∈N, by Lemma 2.1, there exists a β ∈P∗(Un−1

0 )

such that

(5) log Pn(T, f,U, supp(µx))

= log inf
{∑

V∈V

sup
y∈V∩supp(µx )

exp fn(x) : V ∈ CX and V�Un−1
0

}
= log

∑
B∈β

sup
y∈B∩supp(µx )

exp fn(x)

≥

∑
B∈β

µx(B)
(

sup
y∈B∩supp(µx )

fn(x)− logµx(B)
)

(by Lemma 3.3)

= Hµx (β)+
∑
B∈β

µx(B) sup
y∈B∩supp(µx )

fn(x)

≥ Hµx (U
n−1
0 )+

∫
X

fn dµx

Fix U∈Co
X and n ∈N. Denote Fn(x)= Hµx (

∨n−1
i=0 T−i U) +

∫
X fn dµx for each

x ∈ X0. Then

Fn+m(x)=Hµx

(n+m−1∨
i=0

T−i U

)
+

∫
X

fn+m dµx

≤Hµx

(n−1∨
i=0

T−i U

)
+Hµx

(
T−n

m−1∨
i=0

T−i U

)
+

∫
X

fn dµx+

∫
X

fm ◦T n dµx

≤ Fn(x)+HT nµx

(m−1∨
i=0

T−i U

)
+

∫
X

fm ◦T n dµx

= Fn(x)+HT nµx

(m−1∨
i=0

T−i U

)
+

∫
X

fmdT nµx

= Fn(x)+HµT n x

(m−1∨
i=0

T−i U

)
+

∫
X

fm dµT n x

= Fn(x)+Fm(T nx),

that is, {Fn} is subadditive. Since the map x→µx(A) for each A ∈B is measurable
on X0, it follows that Fn(x) is measurable on X0. By Kingman’s subadditive ergodic
theorem, limn→∞(1/n)Fn(x)≡ aU for µ-a.e. x ∈ X , where aU is a constant. Then,
by (5),

P(T, f,U, supp(µx))≥ aU



136 XIANFENG MA AND ERCAI CHEN

for each U ∈ C0
X and µ-a.e. x ∈ X . Therefore

aU =

∫
X

lim
n→∞

1
n

Fn(x) dµ= lim
n→∞

1
n

∫
X

Fn(x) dµ

= lim
n→∞

1
n

∫
X

(
Hµx (U

n−1
0 )+

∫
X

fn dµx

)
dµ(x)

= lim
n→∞

1
n

Hµ(Un−1
0 | Pµ(T ))+

∫
X

f dµ

= hµ(T,U | Pµ(T ))+
∫

X
f dµ

= Pµ(T, f,U) (by Lemma 2.4).

It follows that

P(T, f,U, supp(µx))≥ Pµ(T, f,U)

for each U ∈ Co
X and µ-a.e. x ∈ X .

Choose a sequence of open covers {Um}
∞

m=1 with lim diam{Um} = 0. Then

lim
n→∞

Pµ(T, f,Um)= lim
n→∞

(
hµ(T,Um)+

∫
X

f dµ
)

= hµ(T )+
∫

X
f dµ= Pµ(T, f ).

Since for each m ∈ N and µ-a.e. x ∈ X , P(T, f,Um, supp(µx)) ≥ Pµ(T, f,Um),
we have

P(T, f, supp(µx))= sup
m∈N

P(T, f,Um, supp(µx))≥ sup
m≥1

Pµ(T, f,Um)= Pµ(T, f )

for each µ-a.e. x ∈ X . �

It is not hard to see that the following corollary holds.

Corollary 4.6. Let (X, T ) be a TDS and f ∈ C(X,R). Then

(a) supx∈X P(T, f,W s(x, T )∩W u(x, T ))= P(T, f );

(b) if there exists µ ∈Me(X, T ) with Pµ(T, f )= P(T, f ), then, for µ-a.e. x ∈ X ,
there exists a closed subsets E(x)⊆W s(x, T )∩W u(x, T ) such that

(i) E(x) ∈WMs(X, T )∩WMs(X, T−1),
(ii) P(T, f, E(x))= P(T−1, f, E(x))= P(T, f ).



TOPOLOGICAL PRESSURES FOR ε-STABLE AND STABLE SETS 137

5. Noninvertible case

In this section, we generalize the results in Sections 3 and 4 to the noninvertible
case. Let (X, T ) be a noninvertible TDS, that is, X is a compact metric space, and
T : X→ X is a surjective continuous map but not one-to-one.

Set X̃ = {(x1, x2, . . . ) : T (xi+1) = xi , xi ∈ X, i ∈ N}. It is clear that X̃ is a
subspace of the product space 5∞i=1 X with the metric dT defined by

dT ((x1, x2, . . .), (y1, y2, . . .))=

∞∑
i=1

d(xi , yi )

2i .

Let T̃ : X̃→ X̃ be the shift homeomorphism, that is,

T̃ (x1, x2, . . .)= (T (x1), x1, x2, . . .).

We refer to the TDS (X̃ , T̃ ) as the inverse limit of (X, T ). Let πi : X̃→ X be the
natural projection onto the i-th coordinate. Then πi : (X̃ , T̃ )→ (X, T ) is a factor
map.

Lemma 5.1. Let (X, T ) be a noninvertible TDS, f ∈ C(X,R). Then, for each
U ∈ Co

X and K ∈ K(X),

Pn+m(T, f,U, K )≤ Pm(T, f,U, K ) · Pn(T, f ◦ T m, T−mU, K )

for each n,m ∈ N.

Proof. Since for each V1 �Um−1
0 and V2 �Un−1

0 we have V1∨T−mV2 �Un+m−1
0 ,

it follows that

Pn+m(T, f,U, K )≤
∑

V1∈V1

∑
V2∈V2

sup
x∈V1∩T−m V2∩K

exp fn+m(x)

=

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩T−m V2∩K

exp( fm(x)+ fn(T m x))

≤

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩K

exp fm(x) · sup
x∈T−m V2∩K

exp fn(T m x)

=

∑
V1∈V1

sup
x∈V1∩K

exp fm(x) ·
∑

V2∈V2

sup
x∈T−m V2∩K

exp( f ◦ T m)n(x).

By the arbitrariness of V1 and V2, we have

Pn+m(T, f,U, K )≤ Pm(T, f,U, K ) · Pn(T, f ◦ T m, T−mU, K ). �
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Lemma 5.2. Let (X, T ) be a noninvertible TDS, f ∈ C(X,R). Then, for each
U ∈ Co

X and K ∈ K(X),

Pn(T, f ◦ T m, T−mU, T−m K )= Pn(T, f,U, K ) for each n,m ∈ N.

Proof. Fix n,m ∈ N. For each V� (T−mU)n−1
0 ,∑

V∈V

sup
x∈V∩T−m K

exp( f ◦ T m)n(x)=
∑
V∈V

sup
x∈V∩T−m K

exp fn(T m x)

=

∑
V∈V

sup
x∈T m V∩K

exp fn(x).

Since T mV�Un−1
0 ,

Pn(T, f ◦ T m, T−mU, T−m K )≤ Pn(T, f,U, K ).

Conversely, for each V�Un−1
0 , T−mV� (T−mU)n−1

0 and∑
V∈V

sup
x∈V∩K

exp fn(x)=
∑
V∈V

sup
x∈T−m(V∩K )

exp fn(T m x)

=

∑
V∈V

sup
x∈T−m V∩T−m K

exp( f ◦ T m)n(x).

Then
Pn(T, f ◦ T m, T−mU, T−m K )≥ Pn(T, f,U, K ),

which completes the proof. �

Lemma 5.3. Let (X̃ , T̃ ) be the inverse limit of a noninvertible TDS (X, T ). Let
f ∈ C(X,R) and let π1 : X̃→ X be the projection to the first coordinate. Then, for
any sequence of nonempty closed subsets Kn of X̃ ,

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T̃ , f ◦π1, δ, Kn)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, π1(Kn)).

Proof. Let U∈Co
X . For each V∈CX with V�Un−1

0 and x ∈ V ∩π1(Kn), obviously,
π−1

1 V� (π−1
i U)n−1

0 and

( f ◦π1)n(x̃)=
n−1∑
j=0

( f ◦π1)(T̃ j (x̃))=
n−1∑
j=0

f ◦ T j (π1 x̃)= fn(π1 x̃)= fn(x),

where x = π1 x̃ . Then∑
V∈V

sup
x̃∈π−1

1 V∩Kn

exp( f ◦π1)n(x̃)=
∑
V∈V

sup
x∈V∩π1(Kn)

exp fn(x).

It follows that

(6) Pn(T̃ , f ◦π1, π
−1
1 U, Kn)≤ Pn(T, f,U, π1(Kn)).
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On the other hand, for each Ṽ∈CN
X with Ṽ� (π−1

1 U)n−1
0 , x̃ ∈ Ṽ ∩Kn , π1Ṽ �Un−1

0 ,
and ∑

Ṽ∈Ṽ

sup
x̃∈Ṽ∩Kn

exp( f ◦π1)n(x̃)=
∑
Ṽ∈Ṽ

sup
x∈π1(Ṽ∩Kn)

exp fn(x)

=

∑
V∈π1Ṽ

sup
x∈π1Ṽ∩π1 Kn

exp fn(x),

where x = π1 x̃ . Then we get the opposite part of the inequality of (6), and
consequently

(7) Pn(T̃ , f ◦π1, π
−1
1 U, Kn)= Pn(T, f,U, πi (Kn)).

Now we have

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, π
−1
1 U, Kn)= lim sup

n→∞

1
n

log Pn(T, f,U, π1(Kn)).

From Lemma 3.1, we get

lim
δ→0

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, δ, Kn)≥ lim
δ→0

lim sup
n→∞

1
n

log Pn(T, f, δ, π1(Kn)).

Conversely, let πi : X̃→ X be the projection to the ith coordinate and Ũ ∈ Co
X̃

.
By the definition of X̃ , it is easy to see that there exists some U ∈ Co

X such that
π−1

i (U)� Ũ . Since for any two closed subsets C and D of X , Pn(T, f,U,C)≤
Pn(T, f,U, D) and πi (Kn)� T−(i−1)πi (Kn), by (7), we have

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, Ũ, Kn)

≤ lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, π
−1
i U, Kn)

= lim sup
n→∞

1
n

log Pn(T, f,U, πi (Kn))

≤ lim sup
n→∞

1
n

log Pn(T, f,U, T−(i−1)πi (Kn))

= lim sup
n→∞

1
n+ i − 1

log Pn+i−1(T, f,U, T−(i−1)πi (Kn))

≤ lim sup
n→∞

1
n+ i − 1

log
(
Pi−1(T, f,U, T−(i−1)πi (Kn))

· Pn(T, f ◦ T i−1, T−(i−1)U, T−(i−1)πi (Kn))
)

(by Lemma 5.1)

= lim sup
n→∞

1
n

Pn(T, f,U, π1(Kn)) (by Lemma 5.2)

≤ lim
δ→0

lim sup
n→∞

1
n

Pn(T, f, δ, π1(Kn)).
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By Lemma 3.1, we get

lim
δ→0

limsup
n→∞

1
n

log Pn(T̃ , f ◦π1,δ,Kn)≤ lim
δ→0

limsup
n→∞

1
n

log Pn(T, f,δ,π1(Kn)). �

Now we can prove the following theorem.

Theorem 5.4. Let (X, T ) be a noninvertible TDS, f ∈C(X,R), and µ∈Me(X, T )
with hµ(T ) > 0. Then, for µ-a.e. x ∈ X , limε→0 Ps(T, f, x, ε)≥ Pµ(T, f ).

Proof. Let (X̃ , T̃ ) be the inverse limit of (X, T ). For ε > 0, n ∈ N, and x̃ ∈ X̃ ,
denote Kn = T̃−nW s

ε/2(x̃, T̃ ). Then, from the definitions of dT and X̃ , it is easy to
see that π1(Kn)⊆ T−nW s

ε (x, T ), where x = π1(x̃). By Lemma 5.3, we have

Ps(T, f, x, ε)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T ))

≥ lim
δ→0

lim sup
n→+∞

log Pn(T, f, δ, π1(Kn))

= lim
δ→0

lim sup
n→+∞

log Pn(T̃ , f ◦π1, δ, Kn)

= Ps

(
T̃ , f ◦π1, x̃, ε

2

)
.

It follows that, for each x̃ ∈ X̃ ,

(8) lim
ε→0

Ps(T, f, π1(x̃), ε)≥ lim
ε→0

Ps

(
T̃ , f ◦π1, x̃, ε

2

)
.

Let µ̃ ∈ Me(X̃ , T̃ ) with π1(µ̃) = µ. Then, by Theorem 3.7, there exists a Borel
subset X̃0 ⊆ X̃ with µ̃(X̃0)= 1 such that, for any x̃ ∈ X̃0,

(9) lim
ε→0

Ps

(
T̃ , f ◦π1, x̃, ε

2

)
≥ Pµ̃(T̃ , f ◦π1)= hµ̃(T̃ )+

∫
X̃

f ◦π1dµ̃

≥ hµ(T )+
∫

X
f dµ= Pµ(T, f ).

Let X0 = π1(X̃0). Then X0 ∈Bµ and µ(X0)= 1. By the inequality (8) and (9), we
have

lim
ε→0

Ps(T, f, x, ε)≥ Pµ(T, f ) for each x ∈ X0, �

Theorem 5.4 immediately leads to the following corollary.

Corollary 5.5. Let (X, T ) be a noninvertible TDS and f ∈ C(X,R). If there exists
a µ ∈Me(X, T ) such that Pµ(T, f )= P(T, f ), P(T, f ) 6=∅.

Lemma 5.6. Let (X̃ , T̃ ) be the inverse limit of a noninvertible TDS (X, T ). If
A ⊆ Ẽ is weak mixing, so is π1(A) and P(T̃ , f ◦π1, A)= P(T, f, π1(A)).
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Proof. The fact that π1(A) is weak mixing follows from Lemma 4.8 in [Blanchard
and Huang 2008]. The latter follows from Lemmas 5.3 and 3.1. �

The following theorem shows that Theorem 4.5 also holds for noninvertible TDS.

Theorem 5.7. Let (X, T ) be a noninvertible TDS andµ∈Me(X, T )with hµ(T )>0.
Then, for µ-a.e. x ∈ X , there exists a closed subset E(x) ⊆ W s(x, T ) such that
P(T, f, E(x))≥ Pµ(T, f ) and E(x) ∈WMs(X, T ).

Proof. Let (X̃ , T̃ ) be the inverse limit of (X, T ). Then there exists µ̃ ∈Me(X̃ , T̃ )
with π1(µ̃)= µ, where π1 is the projection to the first coordinate. Obviously,

Pµ̃(T̃ , f ◦π1)= hµ̃(T̃ )+
∫

X̃
f ◦π1 dµ̃≥ hµ(T )+

∫
X

f dµ= P(T, f ).

By Theorem 4.5, there exists a Borel set X̃0 ⊆ X̃ with µ̃(X̃0) = 1 such that, for
each x̃ ∈ X̃0, there exists a closed subset E(x̃)⊆W s(x̃, T̃ ) such that

P(T̃ , f ◦π1, E(x̃))≥ Pµ̃(T̃ , f ◦π1) and E(x̃) ∈WMs(X̃ , T̃ ).

Let (X0) = π1(X̃0). Then X0 ∈ Bµ and µ(X0) = 1. For each x ∈ X0 let
E(x)= π1(E(x̃)), where x = π1(x̃). Then E(x)⊆ π1(W s(x̃, T̃ ))⊆W s(x, T ). By
Lemma 5.6, we have

P(T, f, E(x))= P(T̃ , f ◦, E(x̃))≥ Pµ̃(T̃ , f ◦π1)≥ Pµ(T, f )

and E(x) ∈WMs(X, T ). �

The following result is immediate.

Corollary 5.8. Let (X, T ) be a noninvertible TDS. Then

(a) supx∈X P(T, f,W s(x, T ))= P(T, f );

(b) if there exists µ ∈Me(X, T ) with Pµ(T, f )= P(T, f ), then, for µ-a.e. x ∈ X ,
there exists a closed subset E(x) ⊆ W s(x, T ) such that E(x) ∈ WMs(X, T )
and P(T, f, E(x))= P(T, f ).

Remark 5.9. From the proof of Theorem 4.5, we know that E(x) = supp(µx),
where µx is a probability measure determined by the disintegration of µ∈Me(X, T )
over the Pinsker σ -algebra Pµ(T ).
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