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TOPOLOGICAL PRESSURES FOR
e-STABLE AND STABLE SETS

XIANFENG MA AND ERCAI CHEN

In this paper, topological pressures of the preimages of e-stable sets and
certain closed subsets of stable sets in positive entropy systems are investi-
gated. It is shown that the topological pressure of any topological system
can be calculated in terms of the topological pressure of the preimages of
e-stable sets. For the constructed closed subset (W. Huang, Commun. Math.
Phys. 279, 535-557 (2008)) of the stable set or the unstable set of any point
in a measure-theoretic “rather big” set of a topological system with positive
entropy, especially for the weakly mixing subset contained in the closure of
the stable and unstable sets, it is proved that topological pressures of these
subsets can be no less than the measure-theoretic pressure.

1. Introduction

Let (X, T) be a topological dynamical system (TDS) in the sense that X is a compact
metric space with a compatible metric d and 7 : X — X is a homeomorphism.
A TDS is said to be noninvertible if the map is surjective and continuous but not
one-to-one. For x € X and € > 0, the e-stable set of x under T is the set of points
whose forward orbit e-shadows that of x:

Wix,T)={yeX:d(T"x,T"y) <e forall n > 0}.

The preimages of these sets can be nontrivial and hence disperse at a nonzero
exponent rate. the dispersal rate function A, (T, x, €) was introduced in [Fiebig et al.
2003]. The relationship between A (T, x, €) and the topological entropy /A, (T)
was also investigated. It was proved that when X has finite covering dimension, for

all e > 0,
sup hy (T, x, €) = hyop(T).
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In [Huang 2008], the finite-dimensionality hypothesis turns out to be redundant.
This equality is proved to be always true for any noninvertible TDS.

It is known that certain results concerning topological entropy can be generalized
to topological pressure. For any f € C(X, R), consider the fopological pressure of
the preimages of the e€-stable set of x:

P(T, f,x, €)= lim lim sup l log Po(T, f,8, T7"W.(x,T)),
850 ps400 N

where
P,(T, f,8, T7"W:(x,T))

= sup {Z exp f,(x) : E is an (n, §)-separated subset of 7" W/ (x, T)},

xekE

and f,,(x) = Z?:_()l f o T (x). We show that the topological pressure of any non-
invertible TDS with positive metric entropy can be calculated in terms of the
topological pressure of the preimages of e-stable sets. That is, for all € > 0,

sup P(T, f,x,e) = P(T, f),
xeX
where P(T, f) is the standard notion of the topological pressure. For the null
function f, this equality is the above one for the topological entropy.
For x € X, the stable set W*(x, T) and the unstable set W"(x, T) of x are
defined as ] )
W' x,T)={yeX: lim d(T"x,T"y) =0},
n——+0o
W, T)={yeX: lim d(T7"x,T"y)=0}.
n—-+o0o

For Anosov diffeomorphisms on a compact manifold, pairs belonging to the stable
set are asymptotic under 7 and tend to diverge under 7~'. However, Blanchard et al.
[2002] showed that in most case, this phenomenon does not happen in a TDS with
positive metric entropy. N. Sumi [2003] investigated the stable and unstable sets of
C? diffeomorphisms of C° manifolds with positive metric entropy. He showed that
the closure of the stable set W*(x, T') of “many points” is a perfect x-chaotic set and
the closure of the unstable set W*(x, T') contains a perfect *-chaotic set. W. Huang
[2008] got further information in the general noninvertible TDS with positive metric
entropy. He proved that there exists a measure-theoretically “rather big” set such
that the closure of the stable or unstable sets of points in the set contains a weakly
mixing set. The Bowen entropies of these sets were also estimated there. It was
proved that the lower bound is the usual metric entropy 4, (T) for the ergodic
invariant measure ji.

By introducing the topological pressure for the closed subset and using the
excellent partition formed in Lemma 4 of [Blanchard et al. 2002], we show that,
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for the constructed closed subsets of stable and unstable sets in [Huang 2008], the
topological pressure of these sets can also be estimated. More precisely, we prove
that if u is an ergodic invariant measure of a TDS (X, T') with /4, (T) > 0, then,
for u-a.e. x € X, the closed subsets

Ax) S W(x,T), Bkx)W4x,T)

and the weakly mixing subset

Ex)STWs(x, T)NW¥(x,T)
constructed in [Huang 2008] have the following properties:
(a) lim,,_, yoo diam 7" A(x) =0 and P(T7', f, A(x)) > P.(T, ),
(b) lim, yoodiam 7T "B(x) =0and P(T, f, B(x)) > P,(T, f),
(© P(T, f, E(x)) = Pu(T, f) and P(T~', f, E(x)) = Pu(T, f),
where P, (T, f) is the measure-theoretic pressure.

The paper is organized as follows. In Section 2, the topological pressure for
the closed subset of a TDS is introduced. Some related notions and results about
entropy are also listed. In Section 3, the topological pressure of the preimages of
an e-stable set is introduced. Using the tool formed in [Blanchard et al. 2002], we
show that the topological pressure of any TDS can be calculated in terms of the
topological pressure of the preimages of an e-stable set. As a generalization of
the entropy point, the notion of the pressure point is also introduced. In Section 4,
results (a)—(c) above are proved. In Section 5, the results in sections 3 and 4 are
stated and proved for the noninvertible TDS.

2. Preliminaries

Let (X, T) be a TDS and By be the o-algebra of all Borel subsets of X. Recall
that a cover of X is a finite family of Borel subsets of X whose union is X, and
a partition of X is a cover of X whose elements are pairwise disjoint. We denote
the set of covers, partitions, and open covers, of X by €x, Px, and €<. Given a
partition @ of X and x € X, denote by «(x) the atom of o containing x. For two
given covers AU, V' € €x, U is said to be finer than V" (denoted by U > V') if each
element of AU is contained in some element of V. Let

UV ={UNV:Ueu,V eV}

Given integers M, N with0 <M < N and U € €x, we set

N
wy = \/ T
n=M
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Given U € €x and K C X, put
N@L, K) = min {the cardinality of #: F c U, |J F > K}
Fe%

and H (U, K) =log N (U, K). Then the topological entropy of U with respect to T’
for the compact subset K is

1 1
iop(T, U, K) = lim —H (g™, K) = inf —HOUy™", K).

The topological entropy of T for the compact subset K is defined by i (T, K) =
SUP g, hwop(T, U, K); and the topological entropy of T is defined by hp(T) =
supg hiop(T, K).

Let (X, T) be a TDS, K a closed subset of X, U € €%, and f € C(X, R), where
C (X, R) is the Banach space of all continuous, real-valued functions on X endowed
with the supremum norm. We set

(D P.(T, f,U, K) =inf{ > sup exp fn(x):V €€y and V zoug—‘},
VeV xeVNK

where f;(x) = Z'};(l) f(T/x). When VN K = &, we let sup, cyng €xp fn(x) =0.
Then the above definition is well defined. It is clear that if f is the null function,
P,(T,0,%, K) =N, K).

For V" € €x, we let « be the Borel partition generated by V" and define

P*(V) ={B € Px : B >V and each atom of B is the union of some atoms of «}.

Lemma 2.1 [Ma et al. 2010, Lemma 2.1]. Let M be a compact subset of X and let
feCX,R),V € €x. Then

inf > sup f(x):min{z sup f(x):ﬁe@*(V)}.

ﬂe‘f;/x —pX€BNM Bep¥EBOM

Let H(X) be the collection of all nonempty closed subsets of X. For any
nonempty subset A of X and € > 0, let N(A,¢) = {x € X : dist(x, A) < €},
where dist(x, A) = inf{d(x, y) : y € A}. The Hausdorff metric H; on the space
JH(X) induced by the metric d is defined as

H;(A,B)=infle: ACN(B,e)and BC N(A,¢)} forany A, B C X.

Then (¥ (X), Hy) constitutes a compact metric space.

Lemma 2.2. Let (X, T) be a TDS, U € 6%, and f € C(X, R"). Then the function

F:K—>inf{z sup f(x):VeC@Xandeou}
VEOVXGVHK

is measurable from % (X) to RT, where sup,.ynx f(x) =0 for VN K = 2.
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Proof. By Lemma 2.1 it suffices to prove that for each B € 8, where € P*(U),
the function Fp : K — sup,.pgnx f(x) is measurable.

Foreachr e R, let €, ={K :sup,.png f(x) >r}. Let U = £~ 1(r, +00). Then
U is an open subset of X. Forr >0, it BNU =9,¢, =9. If BNU # 9,
€ ={K: KN(BNU) # &}. Let o be the Borel partition generated by the open
cover U = {U;}{_,. Then each A € « has the form (();c; Ui) N ( Njem UJC.), where
L,McC{l,...,s}and LN M = &. Note that, for each open subset W of X,
the sets {K : KN(WNU) # &} and {K : KN (W NU) # &} —which equals
{(K:KNU #a2}N (?K(X)\{K K C W}) — are both measurable subsets of J(X).
Then the set {K : K N(ANU) # &} is measurable for each A € «. Since each atom
B of B is the finite union of elements of «, it follows that €, is a measurable subset
of H(X). Forr < 0,4, =€y U{K :sup,cpngx f(x) =0} =%oU{K: BNK =a}.
Since {K: BNK =2} =HX)\{K: BNK #2}and {K : BNK # O} is
measurable, €, is also measurable. Thus Fp is a measurable function. O

Let K € H(X), U € €%, and f € C(X,R). We define P(T, f,U, K) =
limsup,,_, .. (1/n)log P,(T, f,U, K).

Let (X, T) be a TDS. Denote by M(X) the set of all Borel probability measures
on X, by M(X, T) the set of T-invariant measures, and by JM°(X, T') the set of
ergodic measures. Then M°(X, T) C M(X, T) C M(X), and M(X), M(X, T) are
convex, compact metric spaces endowed with the weak*-topology.

Since the map f is a homeomorphism, it induces in a natural way a homeomor-
phism 7 : #(X) — %(X) by T(A) = T(A) for each A € ¥(X). Then (¥(X), T)
constitutes a TDS induced by (X, T).

For each i € M(H(X), ?), the following lemma shows that the limit superior in
the above definition can be obtained by the limit for i-a.e. K € H(X).

Lemma 2.3. Let (X, T) be a TDS, WU € €%, f € C(X, R), and ji € MK (X), T).
Then, for fi-a.e. K € %(X), P(T, f,U, K) = lim,_, o (1/n) log P,(T, f,U, K)

exists.

Proof. Forany n,m € N, V' = U5 ™", ¥ = Uy, we have V' v T "9 = g+~
It follows that

Pow(T, U, K)< D> > sup  exp furm(¥)
Vel Vi ecvszV]ﬂT_”VzﬁK

=> > sup  exp(fu(x) 4 fiu(T"x))

VeV Vaels xeViNT"V,NK

< Z Z ( sup exp fu(x)- sup exp fm(2))

ViV, VacTs xeViK zeVLoNT"K

= ( Z sup exp fn(x))( Z sup  exp fm(Z)>-

VieV, xeViNK Voel, zeVoNT"K
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Since V;,i =1, 2 is arbitrary,
Poim (T, f,U, K) < P,(T, f,U, K) - Ppu(T, f,U, T"K).
By the definition of T and Lemma 2.2, we have that
log P,(T, f,WU, K) : X(X) > RU{—00}

is a subadditive sequence of measurable functions. Then, by Kingman’s subadditive
ergodic theorem (see [Walters 1982]), we complete the proof. O

When K = X, P(T, f,U, X) = P(T, f,U), which is the local topological
pressure defined by Huang and Yi [2007], clearly, P(T, 0, WU, K) = hiop(T, U, K).
Given a partition o € P(X), u € M(X) and a sub-o-algebra € C B, let

Hy(@) =Y —pu(A)log u(A),

Aea

Hu@| €)= Y | —E(L1 1€ logE(Ly 1€ da.

Aea

where E(14 | €) is the expectation of 14 with respect to €. One standard fact states
that H, (a | €) increases with respect to @ and decreases with respect to 6. The
measure-theoretic entropy of u is defined as

hy(T) = sup h, (T, ),
Ole@x

where

1
hy(T, )= lim —H,(a)™") = inf H,(a) ).
w(T, ) pJim - AC7 ) inf wl(ay )
For each f € C(X, R), the measure-theoretic pressure of 1 is defined as
PUT. ) =hD)+ [ du.
X
For a given U € 6y, set

Hy@= _inf  H(f) and H,(U|€)= _inf  Hi(B|D).

When p € M(X, T) and € is T-invariant (that is, 7€ = @), HM(OIL’S_l | @) is a
nonnegative subadditive sequence for a given U € U. Let

1
T = lim —H,@ ! —inf H,(U""'|%).
h, (T, |6) LJm -~ LUy~ | €) inf LUy~ | €)



TOPOLOGICAL PRESSURES FOR ¢-STABLE AND STABLE SETS 123

For € = {&, X} (mod w), we write H,, (U | €) and h, (T, U | €) as H, (W) and
h, (T, W), respectively. Romagnoli [2003] proved that
hy(T) = sup hy, (T, ).
U6
It is well known that, for 8 € Px, h, (T, B) = h,(T, B | Pu.(T)) < H,(B | P,.(T)),
where P, (T) is the Pinsker o -algebra of (X, %, u, T).

Lemma 2.4 [Huang 2008, Lemma 2.1]. Let (X, T) be a TDS, u € M(X, T), and
WU eCx. Then
hu(T, W) = hy, (T, U | Py(T)).
For U € 6%, u € M(X, T) and f € C(X, R), we define the measure-theoretic
pressure for T with respect to U as

P, (T, f,U) =h,(T, OlLH—/ fdu.
X
Obviously,

P T, f)=h(T)+ | fdu= sup h,(T,W) +/ fdu= sup P,(T, f,U).
X Ue6s X Ue6s

Let (X, T) be aTDS, n € M(X, T), and %, be the completion of Bx under 1.
Then (X, B, u, T) is a Lebesgue system. If {c;};c; is a countable family of finite
partitions of X, the partition o = \/;_; «; is called a measurable partition. The sets
A € B, which are unions of atoms of «, form a sub-o-algebra of &, by & or «
if there is no ambiguity. Every sub-o-algebra of %, coincides with a o -algebra
constructed in this way (mod ).

Given a measurable partition o, put @™ = \/%>, T "o and a” = \//>° T«
Define in the same way ¥~ and F' if F is a sub-o-algebra of %,,. It is clear that
for a measurable partition o of X, we have

a- =@~ and of =@&7" (mod ).

Let & be a sub-o-algebra of %, and « be the measurable partition of X with
o~ = % (mod ). u can be disintegrated over F as u = fx Uy du(x), where
Wy € M(X) and py(x(x)) =1 for u-a.e. x € X. The disintegration is characterized
by two properties:

(a) For every f € L'(X, Bx, n), f € L'(X, By, nuy) for p-a.e. x € X, and the
map x — [, f(y)dpx(y) isin L'(X, F, ).
(b) For every f € L'(X,Bx, n), E.(f [F)(x) = fX fduy for pae. x € X.
Then, for any f € L](X, Bx, 1),

/X(/deux)dm):/xfdu.
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Lemma 2.5 [Huang 2008, Lemma 2.2]. Let (X, T) be a TDS, u € M(X, T), and
F be a sub-o-algebra of B,,. If © = fX Wy di(x) is the disintegration of | over %,

(@) for V' € 6x, Hu(V | F) = [y Hy, (V) dp(x),
(b) for W,V € 6x, Hy(UNVY | F) < H,(W| F) + H, (V| F).

Let K be a nonempty closed subset of X. For € > 0, a subset of X is called an
(n, €)-spanning set of K, if for any x € K there exists y € F with d, (x, y) <€, where
d,(x,y) = maxl'.l:_(} d(T'x, T'y); a subset E of K is called an (n, €)-separated set
of K,ifx,ye E, x #yimplies d,(x, y) > €. Letr,(d, T, €, K) denote the smallest
cardinality of any (n, €)-spanning subset for K and s,,(d, T, €, K') denote the largest
cardinality of any (n, €)-separated subset of K.

For each € > 0 and f € C(X, R), we define

P.(T, f,e, K) = sup{ > exp fu(x): E is an (n, €)-separated subset of K}.

xeE

The topological pressure of T for the closed subset K is defined as

P(T, f, K) = lim lim sup l log P,(T, f, €, K).
€e~>0 pst00 N

Clearly, for f = 0, we can write P,(T,0,¢,K) = s,(d, T, €, K). It follows
that P(T, f, K) = h(T, K), where h(T, K) is the Bowen entropy for the closed
subset K defined in [Walters 1982]; see also [Huang 2008]. When K = X,
P(T, f,X)=P(T, f),where P(T, f)isthe standard notion of topological pressure
defined in [Walters 1982]. Moreover, it is not hard to verify that P(T, f, K) =
Supyeq, P(T, f, U, K).

3. e-stable sets

Let (X, T') be a TDS with a compatible metric d. Given € > 0, the e-stable set of
x under T is the set of points whose forward orbit €-shadows that of x:

Wix, T)={yeX:d(T"x,T"y) <eforalln=0,1,...}.

Since the preimages of these sets can be nontrivial, we can consider the following
function. For each x € X, f € C(X, R), and € > 0, let

Py(T, f, x, €) := lim lim sup l log Py(T, f,8, T"W.(x,T)).
-0 p>400 N

P (T, f, x, €) is called the topological pressure of the preimages of the €-stable

sets of x. For f =0, Py(T, 0, x, €) = hs(T, x, €), where the latter is the dispersal

rate function defined in [Fiebig et al. 2003]. It was proved in [Huang 2008] that

Sup,ex hs(T, x, €) = hyp(T) for all € > 0. In the present section, we show that

this is also true for the functions Ps(T, f, x,€) and P(T, f). By proving that,
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for any pu € M°(X, T) with positive entropy, lim¢_.o Ps(T, f, x,€) > P, (T, f) for
n-a.e. x € X, we can obtain the result. We need the following lemmas.

Lemma 3.1. Let (X, T) be a TDS, f € C(X,R), and {K,} be a sequence of
nonempty closed subsets of X. Then

hmhmsupllogP (T, f, 8, K,) = sup hmsupllogP (T, f,U, K,).

>0 p>4o00 N ey n—>+oo
Proof. For a fixed § > 0, choose 1" € €<, with diam¥" < §. For n € N let A be an
(n, 8)-separated set of K,. Since B N K,, contains at most one element of A for
each B of \/;:01 T~V for every W € €x with W > °V8_1, each element of W also
contains at most one element of A. We get ) ., exp fu(x) < Py(T, f,V, K,).
That is P, (T, f, 8, K,) < P,(T, f,V, K,;). Then

1 1
limsup — log P, (T, f,§, K,) <limsup — log P,(T, f,V, K,)

n—+oo M n—+4oo N
< sup limsup — logP (T, f,%u, Ky).
ey n—>+oo N
Letting § — 0, we get
1 1
hmhmsup—logP (T, f,6, K,) < sup hmsup—logP (T, f,U, K,).

=0 p—>+oo %e‘@o n—+00

In the following, we show the converse inequality. For any fixed U € €5, let §
be the Lebesgue number of U. For n € N, let E be an (n, §/2)-separated set of K,
with the largest cardinality. Then E is also an (n, §/2)-spanning set of K,,. From
the definition of spanning sets, we know that

n—1

UmTﬁimDKn, Wheremz{yeXd(T’x,)’)S%}
xeE i=0

Now, foreachx € Eand 0 <i <n—1, B(g/z(Tix) is contained in some element of
U since § is the Lebesgue number of the open cover U. Hence, for each x € E, the
intersection ﬂ:’:_ol T~'Bs;>(T'x) is contained in some element of \/;7:_01 T~ Let
W = {ﬂ;:ol T~ 'Bs;»(T'x):x € E}. Then W € 6x and W > gt Let

0,.(T, £,9L, K,,):inf{ S nfexp fu(x):V € Gy and ¥ = UG 1}

VerXe
Then

OuT, UKD =Y i) = (T, 1.3 Ky,

xekE

Let T = sup{| f(x) — f(y) |:d(x, y) < diamU}. Then
exp(—nrou)Pn(T, f’ Ou’ Kn) S Qn(T’ fv ou’ Kl’l)



126 XTANFENG MA AND ERCAI CHEN

So
1 1 )
—rou—l—hmsup—logP (T, f,u, K, )<11msup—1ogP (T, b ok Kn)

n—-+00 n——+o0o

1
< lim lim sup — log P, (T, f, %, Kn>.

Since AU is arbitrary, we get

1 1
sup hmsup—logP (T, f,U, K)<11mhmsup—logP (T, f,6,K,). O

ouecg() n—+00 80 n—+o0
An immediate consequence of Lemma 3.1 is the following.

Lemma 3.2. Let (X, T) be a TDS and f € C(X,R). Then, for each x € X and
€>0,

Py(T, f,x,e) = sup hmsup—logP (T, f,U, TT"W (x, T)).
Ue6s n—>+0o0

Lemma 3.3 [Walters 1982, Lemma 9.9]. Let ay, ..., a; be given real numbers. If
pi ZO,i=1,...,k,ande=1p,-=1,

k k
Z pi(a; —log p;) <log Zeai,
i=1 i=1

and equality holds if and only if

ai

<~k 4
Dz e

Let (X, T) be a TDS, u € M(X, T), and %, be the completion of By under
w. The Pinsker o-algebra P, (T) is defined as the smallest sub-o-algebra of %,
containing {§ € Px : h, (T, &) = 0}. It is well known that P, (T) = PM(T_I) and
P, (T) is T-invariant, that is, T_I(PM(T)) = P,(T).

pi = foralli=1,... k.

Lemma 3.4 [Huang 2008, Lemma 3.5]. Let (X, T) be a TDS, n € M(X, T), and
8 > 0. Then there exist {W;}2, C Px and 0 =k; < ky < --- such that

(a) diam Wy < § and lim;_, o, diam W; =0,
(b) 1imy_s oo Hy (P | P7) =h,(T), where Py =\/*_, T8 W; and ® =\/32, P,
© N2, TP~ = P, (T).

Lemma 3.5. Let (X, T) be a TDS, U € €%, f € C(X,R), and K € H(X). Then,
foreachn e N,

PAT, f,U, T"K) = Pu(T, foT™", T"U, K).
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Proof. For each V" € €x and V" > \/;.1:1 Tio, obviously, 77"V € €, and T ™"V >
ViZo T
Since foreach V € ¥/,

sup exp fu(x) = sup exp f,(T"x),
xeT—"VNT"K xeVNK

it is easy to see that P, (T, f,WU, T7"K) < P,(T, f o T7", T"WU, K). From the
homeomorphism of 7', the inverse inequality holds. Then P, (T, f,U, T7"K) =
P,(T, foT™", T, K). U
Recall that a set-valued map F from X to J(X) is said to be measurable if
{xe X: F(x)NA # @} € By for every Borel (open or closed) subset A of X.

Lemma 3.6. Let G : X — H(X) be a measurable set-valued map, f € C(X, RT),
and WU € €5,. Then

F:x—>inf{ > sup  f(y):V ey andaifiou}
VeV yeVNG(x)
is Borel-measurable, where SUPy ey G (x) f)=0for VNGx)=2.

Proof. By Lemma 2.1, for each x € X, we have

inf{ Y sup f() :Ve‘@xﬂfzou} :min{ Y sup f() :ﬂ/e@*(ou)}.
VeV yeVNG(x) VeV yeVNG(x)

It is sufficient to prove that, for each V € V', where ¥ € ®*(U), the function

Hy : X — sup,cyng(y) f () is Borel-measurable.

Foreachr e R, let E, = {x : SUPy ey NG (x) f(y) >r}. Note that U = f‘l(r, +00)
is an open subset of X. Forr > 0,if VNU =@, E, =@. f VN U # &, then
E,={x:VNGx)NU # }. Since VNU € B(X), by the set-valued measurability
of G, it is clear that E, is a Borel subset of X. Forr <0, E, = Eyg U F, where
F ={x:sup,cyngu) f(y) =0}. Since

F=x:VNGx)=2}=X\{x:VNGx) # T}

is Borel-measurable, E, is also a Borel subset of X; thus Hy is Borel-measurable.
O

The next theorem clearly implies the main result of this paper.

Theorem 3.7. Let (X,T)beaTDS, f € C(X,R),and pe M®(X,T) with h,(T) > 0.
Then, for p-a.e. x € X, lime_,0 P(T, f,x,€) > P, (T, f).
Proof. It suffices to prove that, for a given € > 0, Pi(T, f,x,€) > P, (T, f) for
u-a.e. x € X.

Fix € > 0. Since T is a homeomorphism on X, there exists § € (0, €) such that
d(T x, T*Iy) <€ whend(x, y) < 4. By Lemma 3.4, there exists {P;}72, C Py
satisfying diam P; < 6, ﬂ::ozo T—ng— = P, (T),and H, (P | ?~) — h,(T) when
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k — 400, where P = \/loi1 P;. Since diam Py <4, itis clear that P~ (x) C W3 (x, T)
for each x € X.
Let u= |, x Mx dpu(x) be the disintegration of u over . Then

supp(uy) € P~ (x) S Wi(x,T) forpu-ae. xe€X.

Let k € N. By inequality (3.3) in [Huang 2008], we know that there exists
WUy € €% such that
n—1
. 1 _ e _ 1
) limsup —H,, \/T U | TP~ ) = Hy (P | P7) — —.
n—>+oo N i—0 k
Forn e N, let F,(x) = (1/n)log P,(T, foT™", T"WUx, Wi(x, T)). Noting that
the map x — W/} (x, T) is upper semicontinuous, it follows from Lemma 3.6 that F,
is a Borel-measurable function. Let F(x) =limsup,_, , ., F,(x) for x € X. Then
F is also Borel-measurable. Since TW} (x, T) € W (T'x, T) for each x € X, we
have

P}’l(T7 fOT_nv Tnouk’ Wg(xv T))

n+l
< inf{ > sup exp fro T~ "D (y): ¥V e by and ¥ > \V Tlouk}
Vel yeVNT W (x,T) i=2

n+l
< inf{ > sup exp fuo T " D(y): ¥V e€x and ¥V = \/ Tlouk}
Ve yeVNWS (Tx,T) i=1

= Py (T, foT™HD Tn¥lay ws(Tx, T)).

Then
1
F(x) =limsup —log P,(T, foT7", T"WUy, W)(x,T))

n—+oo N
. n+1 —(n+1) gn+l s

< lim sup . log P 1 (T, foT ST WU, Wo(Tx, T))
n— 400 n n+1

= F(Tx).

Thus, F(x) < F(Tx) for each x € X. Since u € M(X, T), fx F(Tx)du(x) =
fX F(x)du(x), we have, F(Tx) = F(x) for u-a.e. x € X. Moreover, F(x) = a;
for p-a.e. x € X as u is ergodic, where a; > 0 is a constant.

From Lemma 2.1, there exists a finite partition

B e @*(\n/ Ti%k)
i=1

such that

Po(T, foT ", T"U, Wi(x.T))=)_  sup expfuol "(x).
Bep xeBNWE(x,T)
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It follows from Lemma 3.3 that

log Py(T, foT™", T" Uk, Wi (x, T))

= log Z sup  exp fpoT " (x)
Bep xeBNWE(x,T)

> e BOWSx, T)( sup  exp froT ™" (x) —log jux (BN W (x, T)))
Bep xeBNWE(x,T)

=H, B+ sup  foT"(x)-pe(B) (supp(py) € WS(x, T)
BeﬁxeBﬂWg(x,T)

n
> Hy, (\/ T"Ouk) + fX fuo T~ dpis
i=1

for pu-a.e. x € X)

Then
ak=/ F(x)du:/ lim sup Fn(x)dp,zlimsup/ F,(x)du
X X n——+0o0 n—>4+00 JX
l n
> lim sup/ —(Hm_(\/ T’Ouk> +/ fuoT™" d//«x) du(x)
n—+oco JX N i1

=limsup</ lH,L.‘,(\/T"Ouk> du(x)-l—l//fnoT_”duxdu(x))
n——+o00 xn i=1 nJx
=limsu (/ lH (\n/Tiou>d (x)+lff T7"d (x))

n—+o0o

=lim sup/x le (\/ TiOlLk) du(x) —i—/X fdu(x) (since u € M(X,T))

n— 400 n .
i=l1

= lim sup lHu (\/ Ty | @—) + f fdu(x) (by Lemma 2.5(a))
i=1 X

n—+oo N

n—1

1 .
= lim sup _Hu(\/ Ty | T"@’) +/ fdu(x)
i=1 X

n—+oo N
1
> H, (P |P7)— A —I—f fdu(x) (byinequality (2)).
X

Since Ps(T, f, x,€) > F(x) for each x € X, we have

1

P(T, f,x,e)> 1 H, (P |P)— - d
(T fox0) = lim (Hpd 9=+ [ fauo)

= (1) +fX fdp(x) = Po(T, )
for p-a.e. x € X. -
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We introduce the e-pressure point and pressure point for a TDS. Let (X, T)
be a TDS, f € C(X, R). For € > 0, we call x € X an e-pressure point for T if
P(T, f,x,e)= P(T, f), and we call it a pressure point if lim¢_,, P;(T, f, x,€) =
P(T, f). The function Py (T, f, x, €) is decreasing in €. It follows that every
pressure point is also an e-pressure point for each € > 0. Note that, while the
notion of an e-pressure point depends on the choice of the metric, that of pressure
point does not. Denote by P (T, f) the set of all pressure points of (X, T) for
f e C(X,R). For f =0, the e-pressure point and pressure point are the e-entropy
point and entropy point, respectively, which are introduced in [Fiebig et al. 2003].
Moreover, P (T, 0) = €(T), where € is the set of all entropy points of (X, T).

Remark 3.8. Let (X, T) be a TDS, f € C(X, R). If there exists u € M°(X, T)
such that P(T, f) = P,(T, f), (T, f) # @.
4. Stable sets

The main results of the present section are Theorems 4.1 and 4.5. Recall that, for a
TDS (X, T) and x € X,

Wix, T)={yeX: lim d(T"x,T"y) =0},
n—-+4o00
Wix, T)={yeX: lim d(T"x, T "y)=0}.
n—-+o0o
WS(x, T) is called the stable set of x for T, and W (x, T) is called the unstable
set of x for T. Obviously, W*(x, T) = W*(x, T~") and W*(x, T) = W¥(x, T~1).

Theorem 4.1. Let (X, T) bea TDS, f € C(X, R), and e M°(X, T) with h,,(T) >
0. Then, for pn-a.e. x € X,
(a) there exists a closed subset A(x) € W%(x, T) such that

lim diamT"A(x)=0 and P(T~', f, A(x)) > Pu(T, f);

n——+o0o

(b) there exists a closed subset B(x) € W*(x, T) such that

lim diamT "B(x)=0 and P(T, f. B(x)) > P,(T. f).

n——+o0o

Proof. Since € M¢(X, T), P,(T~Y, f)=Py(T, f),and W*(x, T~y = W"(x, T),
(a) implies (b). It remains to prove (a).
By Lemma 3.4, there exist {W;}72, C Py and 0 =k < kp < - - - satisfying

(a) diam W| < § and lim;_, 1 o, diam W; = 0,
(b) limg— yoo H, (Pi | P7) =h,(T), where P, = \/f;l T=5W; and P = Vi Px,
(©) ﬂflio T—"®~ = P,(T).
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Let O; :\/;:1 T_j(Pl\/Pz\/- -~V P)fori eN. Then Q; e Px, Q1 < Q0r<---,
and \/;2, Q; =P~

For x € X, let A(x) = ("2, Qi(x). Then A(x) is a closed set and A(x) 2 P~ (x).
The set A(x) also has the properties lim,— 1o diam 7" A(x) = 0 and A(x) C
W*(x, T) (see the proof of [Huang 2008, Theorem 4.2] for details).

Moreover, the set-valued map A : x — A(x) is measurable. In fact, for each
open set U of X,

o
fr:noamevf=Unnuea:icy
n=1 n>1k>n
is a Borel set of X. Then, for each closed set V of X, {x : Q;(x) C X\V}is a
Borel set. It follows that {x : Q;(x)NV % &} is Borel and then A : x — A(x) is
set-valued measurable.
Let u= |, x Mx dpu(x) be the disintegration of u over . Then

3) supp(iy) € P~ (x) € A(x) for p-a.e. x € X.

We now prove that, for u-ae. x € X, P(T~!, f, A(x)) > P, (T, f). Since
limy_ y oo Hy(Pr | P7) = h,(T), it is sufficient to prove that, for each k € N,
P(T7', f, A(x)) > H, (P |P7)— l/k—i—fx fdu(x) for p-ae. x € X.

For a given k € N, there exists Uy € €% such that

1 n—1 . 1
(4) limsup —Hﬂ(\/ T | T‘"QP‘) >H, (P |®")—— foreachneN
n—>+oo N iz0 k
(see [Huang 2008] for details).
Let F,(x) = (1/n) log P, (T, f, Ux, A(x)), where

Po(T™Y, f, U, A(x))

n—1
= inf{ > sup expfyo T V(y): ¥V eCx and ¥ > \/ Tiouk},
Vel yeVNA(x) i=0
and f,(2) = Z;:ol f(Tiz). By Lemma 3.6, F,, is a Borel-measurable function. Let
F(x) =limsup, ., F,(x) for each x € X. Then F is also a Borel-measurable
function on X.
For each ¥ = \/"Z) T Uy, T~'V = \/"Z, TUy. Since T(A(x)) C A(T(x))
(see the proof of [Huang 2008, Theorem 4.2]), for each V € ¥,

n—1 n—1
sup Y f(TTy < sup Y (T
yeTTIVNAKx) ;g yeT~H(VNA(Tx)) ;—g

n

= sup Zf(T_iy) < sup Zf(T_iy),

yeVNA(Tx) i=1 yeVNA(Tx) i=0
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it is not hard to see that P, (T ™", £, Uy, A(x)) < P,,+1(T_1, f, Ug, A(Tx)). Hence

F(x) =1lim sup l log P, (T_ |, Uy, A(x))

n—+0o
: n+1 1

< lim sup log P,(T™", f, WU, A(Tx)) = F(Tx).
n——+00 n 1

Thus F(x) < F(Tx) for each x € X. Since u € M(X, T), we have

fX (F(Tx) = F () dpu(x) =

Then F(Tx) = F(x) for u-a.e. x € X. From the ergodicity of u, there exists a
constant a; > 0 such that F(x) = a; for p-a.e. x € X.

By Lemma 2.1, there exists a partition § € 9’*(\/ -0 Lri ‘) such that, for p-a.e.
xeX,

log P,(T~Y, £, 9, A(x))

=log ) sup eXpi(T 'y)

Bep yeEBNA(x)

n—1

> Z Mx(B)( sup exp Z f(Tr- y) —log ,ux(B)) (by (3) and Lemma 3.3)

Bep yEBNA(x) i=0

=H, (f)+ ) sup epof(T 'V) - 11x(B)
Beﬂ)EBﬂA(x)

-
> Hy, (\/ T l‘%) + /X fooT™" Vdpy.
i=0

Then

ay = / F(x)du = / lim sup F,,(x) di(x) > lim sup/ F,(x)du(x)
X X X

n—+00 n——+0o

n—1
1 )
> lim sup — f (H,Lx <\/ T’ouk> +/ fooT =D dux> dp(x)
n—+oo N Jx i=0 X
1 n—1
= limsup — (f H,, (\/ T’Guk) du(x) +/ fooT =D du(x))
X i X

n—+oo N

n—1

= lim sup 1/ s (\/ T! Ouk> dp(x) +/ fdu(x) (since u € M(X, T))
X

n—+oo N
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n—1

= lim sup lHM ( \/ Ty | 9?) —I—/ fdu(x) (by Lemma 2.5(a))
i=0 X

n—+oo N
1 n—1
= lim sup _Hu<\/ T' Uy | T_(”_I)Q’_> +/ fdu(x)
n—+oo N i—0 X

1
= HP9) =+ [ fdut) Gy @),
X
Therefore, for p-a.e. x € X,

1
P(TY, f,A(x)) > P(T™Y, f, WU, A(x)) = F(x) > H, (P | @)—ﬁf fdp(x)
X

for each k € N.
Then

Pl a@) = tim (H(P 27— 1) +/deu<x)

= H(D)+ [ fduc =BT p. 0

This completes the proof of Theorem 4.1.
A direct consequence of Theorem 4.1 is the following.

Corollary 4.2. Let (X, T) be a TDS, f € C(X, R). If there exists u € M(X, T)
with P,(T, ) = P(T, f), there exists x € X, a closed subset A(x) € W*(x, T),
and a closed subset B(x) € W"(x, T) such that
(a) lim,_, yoo diam T"A(x) =0 and P(T~!, f, A(x)) = P(T, f);

(b) lim,, yoodiam T7"B(x) =0 and P(T, f, B(x)) = P(T, f).

A TDS (X, T) is transitive if, for each pair of nonempty open subsets U and
V of X, there exists n > 0 such that U NT "V # @; and it is weakly mixing if
(X x X, T xT) is transitive. These notions describe the global properties of the
whole TDS. Blanchard and Huang [2008] give a new criterion to picture “a certain
amount of weakly mixing” in some consistent sense. The notion of a weakly mixing
set was introduced as follows.

If X, Y are topological spaces, denote by €(X, Y) the set of all continuous maps
from X to Y.
Definition 4.3. Let (X, T) be a TDS and A € 2X. The set A is said to be weakly
mixing for T if there exists B C A satisfying

(a) B is the union of countably many Cantor sets;
(b) the closure of B equals A;

(c) forany C € B and g € €(C, A), there exists an increasing sequence of natural
numbers {n;} C N such that lim;_, ;oo 7" x = g(x) for any x € C.
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Denote by WM, (X, T) the family of weakly mixing subsets of (X, 7). The
system (X, T) itself is called partially mixing when it contains a weakly mixing
set. The whole space X is a weakly mixing set if and only if TDS (X, T') is weakly
mixing [Xiong and Yang 1991]. The following result (See [Blanchard and Huang
2008, Proposition 4.2]) gives an equivalent characterization of the weakly mixing
set in another way.

Proposition 4.4. Let (X, T) be a TDS and A be a nonsingleton closed subset of X.
Then A is a weakly mixing subset of X if and only if, for any k € N and any choice
of nonempty open subsets V1, ..., Vi of A and nonempty open subsets U1, ..., Uy
of X with ANU; #2,i=1,2,...,k, there exists m € N such that T"V;N\U; # &
foreach 1 <i <k.

Now we prove the following theorem. Part (a) of Theorem 4.5 was already
proved in [Huang 2008]. For completeness, we state it in the theorem.

Theorem 4.5. Let (X, T) be a TDS and v € M(X, T) with h,,(T) > 0. Then, for
n-a.e. x € X, there exists a closed subset

E(x) CWS(x, T) NW¥(x, T)
such that

(@) E(x) e WMy(X, T)NWM,(X, T™"), i.e., E(x) is weakly mixing for T, T™;
(b) P(T, f. E(x)) = P,(T, f)and P(T™", f, E(x)) = Pu(T, f).

Proof. Let B, be the completion of By under . Then (X, B, u, T) is a Lebesgue
system. Let P, (T') be the Pinsker o -algebra of (X, %B,, u, T). Let u = fx Uxdi(x)
be the disintegration of u over P, (T). Then, for p-a.e. x € X,

supp(px) € W*(x, T)NW*(x, T)

and
supp(iy) € WMy (X, T) N WM, (X, T™")

(see [Huang 2008, Theorem 4.6] for details).
We now prove that, for p-a.e. x € X,

P(T, f,supp(uy)) = Pu(T, f) and  P(T", f,supp()) = Pu(T, f).

By the symmetry of 7 and 77!, P,(T, f) = PM(T_I, f). It remains to prove
that, for u-a.e. x € X, P(T, f, supp(uy)) > P, (T, f). Since P,(T) is T -invariant,
T uy = ury for p-a.e. x € X. Therefore, there exists a T -invariant measurable set
Xo C X with u(Xg) =1 and T u, = ur, for x € Xj.
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For each U € €%, x € Xy, and n € N, by Lemma 2.1, there exists a € P* (oug—l)
such that

(5) log Pu(T, f,U, supp(tix))

:loginf{z sup exp fu(x): V e€x andeng—l}
vey YEVNsupp(ux)

=log)  sup  expfu(x)
Bep YEBNSupp(iix)

>y ux(B)( sup

fux) —log MX(B)) (by Lemma 3.3)

Bep yEBNsupp(ptx)
=Hy, (B)+ Y ue(B)  sup  fu(x)
Bep yEBNsupp(ix)

> H, () + / Fudii
X

Fix U € €5 and n € N. Denote F,, (x) = H,, (\/?:_01 T-') + fx fn duiy for each
x € Xg. Then

n+m—1
n+m(x)— ,bL\< \/ T lo“) /fn—i—md,ux
sHMX<\/T‘i%>+Hm<T‘”\/T"W>+/ fndux+f FuoT"dpa,
i=0 i=0 X X
m—1
V)« [ gorau,

i=0

< Fy(x)+Hrny,

._

:Fn(x)+HT” (\/ >+/ fmdT" 1y
X

= Fy(x)+Hy o, <\/T 0u> ffmd,m
= Fy(x)+ F,(T"x),

that is, { F,,} is subadditive. Since the map x — u, (A) for each A € % is measurable
on X, it follows that F},(x) is measurable on X(. By Kingman’s subadditive ergodic
theorem, lim,,—, oo (1/1) F,,(x) = aq for p-a.e. x € X, where aq is a constant. Then,

by (5),
P(Tv fv ou’ Supp(ﬂx)) = Ao,
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for each AU € %9( and p-a.e. x € X. Therefore

1 1
aou:f lim —F,(x)du = lim —f F,(x)du
X n n—-oon X

n—oo

1
= lim —/ (HNX(OILSI)—F/ fu d,ux) dp(x)
n—oon Jy X

1
= lim —H, g | PMT))—i—Lfd,u

n—oon

= (T, | P(T)) +fx fdp
=P, (T, f,U) (by Lemma 2.4).

It follows that

P(T, f, U, supp(px)) = P (T, f,U)

for each U € €5 and p-a.e. x € X.
Choose a sequence of open covers {W,;,};°_, with lim diam{%U,,} = 0. Then

lim Py (T, f,U%,) = lim (hM(T, Oum)+/ fd,u)
n—oo n—oo X
=h,L<T)+/deu=P,L<T, f.

Since for each m € N and p-a.e. x € X, P(T, f, WUy, supp(iyx)) = P (T, f, Up),
we have

P(T, f, supp(u)) = sup P(T, f, W, supp(ix)) = sup Py (T, f, Um) = Pu(T, f)

m>1
for each p-a.e. x € X. ([l
It is not hard to see that the following corollary holds.

Corollary 4.6. Let (X, T) be aTDS and f € C(X, R). Then

@) sup,ex P(T, f,Ws(x, T)NW"(x,T)) =P, f);

(b) if there exists € M°(X, T) with P,,(T, f)= P(T, f), then, for p-a.e. x € X,
there exists a closed subsets E(x) C Ws(x, T)NW4(x, T) such that

(i) E(x) € WM(X, T)NWMy(X,T™"),
(i) P(T, f, E())=P(T~", fLE(x)) = P(T, f).
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5. Noninvertible case

In this section, we generalize the results in Sections 3 and 4 to the noninvertible
case. Let (X, T') be a noninvertible TDS, that is, X is a compact metric space, and
T : X — X is a surjective continuous map but not one-to-one.

Set X = {(x1,x2,...) : T(xi41) = xi, x; € X,i € N}. It is clear that X is a
subspace of the product space 172, X with the metric dr defined by

o0

dr((x1, %2, ), (1, y2, - ) =)

i=1

d(xi, yi)
S

Let T : X — X be the shift homeomorphism, that is,
T(x1,x2,..) = (T(x1), x1, X2, ..).

We refer to the TDS (f , T) as the inverse limit of (X, T). Let 7; : X — X be the
natural projection onto the i-th coordinate. Then 7; : (X, T) — (X, T) is a factor
map.

Lemma 5.1. Let (X, T) be a noninvertible TDS, f € C(X, R). Then, for each
WU € €S and K € H(X),

Poiw(T, f,U, K) < P, (T, f,U, K)- P,(T, foT™, T7™, K)
foreachn, m € N.

Proof. Since for each V' > %81_1 and V' > Oug_l we have V| vV T~ > oug+m—1’
it follows that

Pogn(T, U KY< D" D" sup  exp fuym(x)
Vel Vzeo‘/szVlﬂT_mVQQK

=> > sup  exp(fu(x) + fu(T"x))

Viel Vol xeViNTmV,NK

Y > sup expfur)- sup exp fu(T™x)
Ve, Vzecx‘/szV]ﬂK xeT"V,NK

=Y s oexpfu) Y sup exp(fo ")),
Vier, xeViNK Vol xeT"V,NK

IA

By the arbitrariness of ¥’} and 9',, we have

Popm(T, f,U, K) < Pu(T, f,U, K) - Po(T, foT™, T7"U, K). O
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Lemma 5.2. Let (X, T) be a noninvertible TDS, f € C(X, R). Then, for each
WU € €S and K € H(X),

P(T, foT™, T7"U, T™"K)=P,(T, f,U, K) foreachn,m e N.
Proof. Fix n,m € N. For each ¥ > (T "),

sup  exp(foT™),(x)= Z sup  exp fn(T"x)
vy xeVNT MK vy xeVNTmK

=Z sup  exp fr(x).
Ve XeT"VNK

Since TV > Ong_l,
Py(T, foT™, T7"U, T™"K) < P,(T, f,U, K).
Conversely, for each V" > Oug—l, T > (T_’”Gu)g_1

sup exp fu(x)= Y sup  exp f,(T"x)
Veo‘/erﬂK Veo‘/xeT—m(VﬂK)

=Y sup exp(foT™u().
Ve XeT VAT K
Then

Py(T, foT™, T7"U, T™"K) > P, (T, f,U, K),
which completes the proof. O

Lemma 5.3. Let ()?, f) be the inverse limit of a noninvertible TDS (X, T). Let
feC(X,R)andlet w; : X — X be the projection to the first coordinate. Then, for
any sequence of nonempty closed subsets K, of X,

hmhmsupllogP (T fom,d, K )_hmhmsupllogP (T, f,8, 11(Kp)).

=0 p>400 N1 =0 ps4o0 N

Proof. Let U € 65,. For each V" € €x with V" > Gug—l and x € VN (K,), obviously,
711_1°V > (J'L'l._lcll,)g_1

n—1 n—1
(foma(® =) (for)(T/®@)=)_ foTl(m) = fulmi) = fo(x),

Jj=0 Jj=0

where x = 71 x. Then

Y sup exp(fomp)u(E) =) sup expfu(x).

ver ¥er'VNK, Ve XeVNTi(Ky)

It follows that

(6) P.(T, fomy, n; U, K,) < Py(T, f,U, 71 (Kp)).
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On the other hand, for each ¥ e (GJN( with ¥ > (nl—lou)g—l, Xe VﬂK,,, T V> Oug—‘,
and

sup exp(fom)y(® =), sup expfy(x)

Vo XEVNK, VT xem (VNK,)

=D sup expfuln),

Vem\7 xem VNm K,

where x = mx. Then we get the opposite part of the inequality of (6), and
consequently

(7) Pu(T, fomi ;' Ky) = Pu(T, f. U 7 (Ky)).-
Now we have
hmsup—logP (T fom, lai, K )_hmsup—logP (T, f,U, T (Ky)).
n— 00 n—oo
From Lemma 3.1, we get

lim hmsup 1 log P, (T fom,$6, K,) > hm hmsupllogP (T, f, 8, m1(Ky)).

-0 nooo -0 nooo
Conversely, let 7; : X — X be the projection to the i coordinate and AU e %" .
By the definition of X, it is easy to see that there exists some U € €% such that

T (Ou) > U. Since for any two closed subsets C and D of X, P,(T, f,U, C) <
P,(T, f,U, D) and 7;(K,) = T~ Dm;(K,), by (7), we have

1
hmsup—logP (T fom,ou K,)

n—oo

1 ~
<limsup —log P,(T, f omy, ni—lou, K,)

n—oo N

—hmsup—logP (T, f,U, m; (K,))

n—oo

< lim sup ; log P, (T, f,, T~V (K,))

n—oo

= lim sup log Pori—1 (T, f,U, T~V (K,))

n—soo N+i—1

1 )
<limsup ——— log(Pi—1(T, £, U, T~V (K,))

n—soo N+i—1

Py(T, foT' 1, 770Dy, 770"Vr;(K,))) (by Lemma 5.1)

1
_hmsup P,(T, f,U, 7 (K},)) (by Lemma 5.2)

n—oo

1
< lim hmsup —P,(T, 1,8, m1(K,)).

3=>0 p—ooo
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By Lemma 3.1, we get
1 1
hmhmsup—logP (T fom,8,K;) < hmhmsup—logP (T, f,6,m1(Ky)). O
=0 n—oo -0 p—o0

Now we can prove the following theorem.

Theorem 5.4. Let (X, T) be a noninvertible TDS, f € C(X,R),and u e M°(X, T)
with h,(T) > 0. Then, for p-a.e. x € X, lime_,o Ps(T, f, x,€) > P, (T, f).

Proof. Let (f, T} be the inverse limit of (X, T). Fore > 0,n € N, and x € i,
denote K, =T "W; 1 (x, T). Then, from the definitions of dr and X, it is easy to
see that 1 (K,) € T"W{(x, T), where x = m1(x). By Lemma 5.3, we have

1
Py(T, f, x, e)_llmllmsup—logP (T, f,6, T"W(x,T))

3—>0 p—+oo

> lim limsuplog P, (T, f, 8, m1(K,))

=0 p—>+oo

= lim lim sup log P, (T, fom, 8, Ky)

80 n—+o0

= I)S(T9 f0n1’jv %)'

It follows that, for each x € X ,
®) lim P(T, £, m1(®), €) = lim P(T. fom, % 5).
e—0 e—0 2

Let it € M° (i f) with m(,&) . Then, by Theorem 3.7, there exists a Borel
subset Xo C X with M(Xo) = 1 such that, for any x € Xo,

©)  lim PS<T,fom,)E, 5) > Pﬂ(f,fom)zhﬂ(f)+/~fomdﬁ
=0 2 X
th(T)+fodu=PM<T, f).

Let Xo = m()?o). Then Xo € %, and 1 (Xo) = 1. By the inequality (8) and (9), we
have
lil’l’(l) Py(T, f,x,e) > P (T, f) foreachx € X, |
€—

Theorem 5.4 immediately leads to the following corollary.

Corollary 5.5. Let (X, T) be a noninvertible TDS and [ € C(X, R). If there exists
apne M(X,T) such that P,,(T, f) = P(T, ), P(T, f) # <.

Lemma 5.6. Let (f , T) be the inverse limit of a noninvertible TDS (X, T). If
A C E is weak mixing, so is m(A) and P(T, f om, A) = P(T, f, m1(A)).
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Proof. The fact that 1 (A) is weak mixing follows from Lemma 4.8 in [Blanchard
and Huang 2008]. The latter follows from Lemmas 5.3 and 3.1. O

The following theorem shows that Theorem 4.5 also holds for noninvertible TDS.

Theorem 5.7. Let (X, T') be a noninvertible TDS and € M*(X, T) with h,(T) > 0.
Then, for w-a.e. x € X, there exists a closed subset E(x) € W*(x, T) such that
P(T, f, E(x))> P, (T, f)and E(x) € WMy (X, T).

Proof. Let (i , T) be the inverse limit of (X, T'). Then there exists & € Jl° ()? , T)
with 1 ({t) = u, where m; is the projection to the first coordinate. Obviously,

P,;(T,fom):h,;(f)—l—/;fom dﬂth(T)—i-/ fdu=P(T,f).
X X

By Theorem 4.5, there exists a Borel set io - X with ﬂ()?o) = 1 such that, for
each x € )?0, there exists a closed subset E(x) C W5 (x, T) such that

P(T, fom, ER)) > Py(T, fom) and E(X)e WMy (X, T).

Let (Xg) = nl(yo). Then X € B, and n(Xo) = 1. For each x € Xy let
E(x) = 1 (E (%)), where x = 71 (). Then E(x) C m1(W* (%, T)) € Wi(x, T). By
Lemma 5.6, we have

P(T, f, E(x)) = P(T, fo, E(¥)) > Pu(T, f om) = Pu(T, f)
and E(x) € WM(X, T). O
The following result is immediate.
Corollary 5.8. Let (X, T') be a noninvertible TDS. Then

(@) sup,cx P(T, f, W (x, T)) = P(T, f);

(b) if there exists u € M°(X, T) with P, (T, ) = P(T, f), then, for pu-a.e. x € X,
there exists a closed subset E(x) € W3(x, T) such that E(x) € WM (X, T)
and P(T, f, E(x)) = P(T, f).

Remark 5.9. From the proof of Theorem 4.5, we know that E(x) = supp(uy),
where 1, is a probability measure determined by the disintegration of u € M¢(X, T')
over the Pinsker o -algebra P, (T).
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