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THE SHARP LOWER BOUND FOR THE FIRST POSITIVE
EIGENVALUE OF THE FOLLAND–STEIN OPERATOR ON A

CLOSED PSEUDOHERMITIAN (2n+ 1)-MANIFOLD

CHIN-TUNG WU

In this paper, we obtain a sharp lower bound estimate for the first nonzero
eigenvalue of the Folland–Stein operator Lc, |c| ≤ n, on a closed pseudoher-
mitian (2n+ 1)-manifold M. This generalizes the first nonzero eigenvalue
estimates of the sublaplacian and Kohn Laplacian.

1. Introduction

Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold (see the next section
for basic notions in pseudohermitian geometry). A. Greenleaf [1985], S.-Y. Li
and H.-S. Luk [2004], and H.-L. Chiu [2006] proved the sharp lower bound of the
first positive eigenvalue λ0

1 of the sublaplacian 1b on a pseudohermitian (2n+ 1)-
manifold M . More precisely, it was proved that

λ0
1 ≥

nk
n+ 1

if [Ric− n+1
2 Tor](Z , Z) ≥ k〈Z , Z〉 for all Z ∈ T1,0, some positive constant k, on

a closed pseudohermitian (2n + 1)-manifold with the nonnegative CR Paneitz
operator P0 if n = 1 (also see [Chang and Wu 2010]).

Very recently, S. Chanillo, H.-L. Chiu and P. Yang [Chanillo et al. 2012] obtained
the sharp lower bound of the first positive eigenvalue λn

1 of the Kohn Laplacian �b

on a pseudohermitian (2n+1)-manifold M with n=1, 2. Later, S.-C. Chang and the
author [Chang and Wu ≥ 2013] proved the same result for n ≥ 3. They showed that

λn
1 ≥

2nk
n+ 1

if Ric(Z , Z) ≥ k〈Z , Z〉 for all Z ∈ T1,0, some positive constant k, on a closed
pseudohermitian (2n+ 1)-manifold M with nonnegative CR Paneitz operator P0 if
n = 1. Note that there is no assumption involving the pseudohermitian torsion.
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In this paper, we generalize the first nonzero eigenvalue estimates of the sub-
laplacian 1b and Kohn Laplacian �b to the Folland–Stein operator Lc. First we
need some definitions.

Definition 1.1. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. De-
fine

Pϕ =
n∑
α=1

(
ϕα

α
β + in Aβαϕα

)
θβ = (Pβϕ)θβ, β = 1, 2, . . . , n,

which is an operator that characterizes CR-pluriharmonic functions ([Lee 1988] for
n= 1 and [Graham and Lee 1988] for n≥ 2). Here Pβϕ=

∑n
α=1(ϕα

α
β+in Aβαϕα)

and Pϕ = (Pβϕ)θβ , the conjugate of P . Moreover, we define

P0ϕ = δb(Pϕ),

which is the so-called CR Paneitz operator P0. Here δb is the divergence operator
that takes (1, 0)-forms to functions by δb(σαθ

α) = σα,
α and δ̄b(σαθ

α) = σα,
α. If

we define ∂bϕ = ϕαθ
α and ∂̄bϕ = ϕαθ

α , then the formal adjoint of ∂b on functions
(with respect to the Levi form and the volume form θ ∧ (dθ)n) is ∂∗b =−δb.

We observe that P0 is a real and symmetric operator and∫
〈Pϕ, ∂bϕ〉 = −

∫
(P0ϕ)ϕ.

Definition 1.2. We say that the Paneitz operator P0 with respect to (J, θ) is non-
negative if, for all C∞ smooth functions ϕ,∫

(P0ϕ)ϕ ≥ 0.

Remark 1.3. When (M, J, θ) is a closed pseudohermitian 3-manifold with vanish-
ing pseudohermitian torsion, the corresponding CR Paneitz operator is nonnegative
[Chang et al. 2007]. Unlike n = 1, let (M, J, θ) be a closed pseudohermitian
(2n+ 1)-manifold with n ≥ 2. The corresponding CR Paneitz operator is always
nonnegative as in (3-4).

Definition 1.4 [Graham and Lee 1988]. Let (M, J, θ) be a closed pseudohermitian
(2n+ 1)-manifold. We define the purely holomorphic second-order operator Q by

Qϕ = 2i(Aαβϕα),β .

Note that [T,1b] = 2 Im Q and

(1-1) 4P0 =1
2
b+ n2T 2

− 2n Re Q = (1b+ inT )(1b− inT )− 2nQ

= (1b− inT )(1b+ inT )− 2nQ.
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Now we consider, for c ∈ R, the self-adjoint operators

Lc =1b+ icT,

with |c|≤n. By a result in [Folland and Stein 1974], each Lc, |c|<n, is a subelliptic
operator of order 1

2 ; hence Lc has a discrete spectrum tending to +∞.
In the following we can obtain a sharp lower bound for the first nonzero

eigenvalue λc
1 of the Folland–Stein operator Lc, c ∈ R with |c| ≤ n, on a closed

pseudohermitian (2n+ 1)-manifold.

Theorem 1.5. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that

(1-2)


[

Ric−
(n− c)(n+ 1)

2(n+ c)
Tor
]
(Z , Z)≥ k〈Z , Z〉 if c ≥ 0,[

Ric−
(n+ c)(n+ 1)

2(n− c)
Tor
]
(Z , Z)≥ k〈Z , Z〉 if c < 0,

for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n= 1. Then the first nonzero eigenvalue of Lc, |c| ≤ n,
must satisfy

λc
1 ≥

n+ |c|
n+ 1

k.

Note that the constant in the torsion tensor term in assumption (1-2) depends on
the variable c. In the standard pseudohermitian (2n+ 1)-sphere (S2n+1, Ĵ , θ̂ ) with
the induced CR structure Ĵ from Cn+1 and the standard contact form θ̂ , we can
show that the lower bound in Theorem 1.5 is sharp (see Section 4).

In particular, when (M, J, θ) is a closed pseudohermitian 3-manifold with
vanishing pseudohermitian torsion, the corresponding CR Paneitz operator P0

is nonnegative.

Corollary 1.6. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold with
vanishing pseudohermitian torsion. Suppose that{

Ric(Z , Z)≥ k〈Z , Z〉 if c ≥ 0,
Ric(Z , Z)≥ k〈Z , Z〉 if c < 0,

for a positive constant k and for all Z ∈ T1,0. Then the first nonzero eigenvalue
of Lc, |c| ≤ n, must satisfy

λc
1 ≥

n+ |c|
n+ 1

k.
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Moreover, when c = n, the operator Ln is just the Kohn Laplacian: Ln =�b.

Corollary 1.7. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that

Ric(Z , Z)≥ k〈Z , Z〉

for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n = 1. Then the first nonzero eigenvalue of the Kohn
Laplacian �b must satisfy

λn
1 ≥

2nk
n+ 1

.

When c = 0, the operator L0 is just the sublaplacian 1b; i.e., L0 =1b.

Corollary 1.8. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that [

Ric−
n+ 1

2
Tor
]
(Z , Z)≥ k〈Z , Z〉

for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n = 1. Then the first nonzero eigenvalue of the
sublaplacian 1b must satisfy

λ0
1 ≥

nk
n+ 1

.

Further, we study the case when a sharp lower bound estimate of Lc, |c| ≤ n, is
achieved in Section 4.

Proposition 1.9. Under the same conditions as in Theorem 1.5, if we assume the
first nonzero eigenvalue of Lc, 0< |c| ≤ n, satisfies

λc
1 =

n+ |c|
n+ 1

k,∫
Aαβϕcαϕcβ = 0(1-3)

for a corresponding eigenfunction ϕc of Lc with respect to λc
1 and with

∫
〈ϕc, ϕc〉=1,

then the eigenfunction ϕc will satisfy

(1-4)
∫
|∂bϕc|

2
=

n(n+ c)
2(n2+ c2)

λc
1 and

∫
|∂bϕc|

2
=

n(n− c)
2(n2+ c2)

λc
1;

thus we also have∫
〈1bϕc, ϕc〉 =

n2

n2+ c2λ
c
1 and

∫
i〈Tϕc, ϕc〉 =

c
n2+ c2λ

c
1.
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Letting c→ 0+, we see that
∫
|∂bϕc|

2
=
∫
|∂bϕc|

2
=

1
2λ

0
1 and

∫
i〈Tϕc, ϕc〉 = 0

for c = 0. When c = n, from (1-4), we get that ∂bϕn = 0 and thus �bϕn = 0. This
implies that the corresponding eigenfunction ϕn of Ln =�b with respect to λn

1 will
also satisfy

1bϕn =
nk

n+ 1
ϕn.

This yields that ϕn achieves a sharp lower bound for the first nonzero eigenvalue of
the sublaplacian1b. Furthermore, it can be showed the pseudohermitian torsion Aαβ
of M is zero; thus (M, J, θ) is the standard pseudohermitian (2n + 1)-sphere
(S2n+1, Ĵ , θ̂ ) (see [Chang and Wu ≥ 2013] for details).

2. Basic materials

Let us give a brief introduction to pseudohermitian geometry (see [Lee 1988] for
more details). Let (M, ξ) be a (2n+ 1)-dimensional, orientable, contact manifold
with contact structure ξ , dimR ξ = 2n. A CR structure compatible with ξ is an
endomorphism J : ξ → ξ such that J 2

=−1. We also assume that J satisfies the
following integrability condition: if X and Y are in ξ , then so is [J X, Y ]+[X, JY ],
and J ([J X, Y ] + [X, JY ]) = [J X, JY ] − [X, Y ]. A CR structure J can extend
to C⊗ ξ and decomposes C⊗ ξ into the direct sum of T1,0 and T0,1, which are
eigenspaces of J with respect to i and−i , respectively. A pseudohermitian structure
compatible with ξ is a CR structure J compatible with ξ together with a choice of
contact form θ . Such a choice determines a unique real vector field T transverse
to ξ , called the characteristic vector field of θ , such that θ(T ) = 1 and LT θ = 0
or dθ(T, · )= 0. Let {T, Zα, Z ᾱ} be a frame of TM⊗C, where Zα is any local frame
of T1,0, Z ᾱ = Zα ∈ T0,1 and T is the characteristic vector field. Then {θ, θα, θ ᾱ},
which is the coframe dual to {T, Zα, Z ᾱ}, satisfies

dθ = ihαβ̄θ
α
∧ θ β̄

for some positive definite hermitian matrix of functions (hαβ̄). Actually we
can always choose Zα such that hαβ̄ = δαβ ; hence, throughout this paper, we
assume hαβ̄ = δαβ .

The Levi form 〈 , 〉 is the Hermitian form on T1,0 defined by

〈Z ,W 〉 = −i
〈
dθ, Z ∧W

〉
.

We can extend 〈 , 〉 to T0,1 by defining 〈Z ,W 〉 = 〈Z ,W 〉 for all Z , W ∈ T1,0. The
Levi form induces naturally a Hermitian form on the dual bundle of T1,0, also
denoted by 〈 , 〉, and hence on all the induced tensor bundles.
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The pseudohermitian connection of (J, θ) is the connection ∇ on TM⊗C (and
extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ωαβ ⊗ Zβ, ∇Z ᾱ = ωᾱ β̄ ⊗ Z β̄, ∇T = 0,

where ωαβ are the 1-forms uniquely determined by the following equations:

dθβ = θα∧ωαβ + θ ∧ τβ, τα ∧ θ
α
= 0, ωα

β
+ωβ̄

ᾱ
= 0.

We can write τα = Aαβθβ with Aαβ = Aβα . The curvature of the Webster–Stanton
connection, expressed in terms of the coframe {θ = θ0, θα, θ ᾱ}, is

5β
α
=5β̄

ᾱ = dωβα −ωβγ∧ωγ α,

50
α
=5α

0
=50

β̄
=5β̄

0
=50

0
= 0.

Webster showed that 5β
α can be written as

5β
α
= Rβαρσ̄ θρ∧ θ σ̄ +Wβ

α
ρθ
ρ
∧ θ −W α

βρ̄θ
ρ̄
∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σ ρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄ , Wβᾱγ =Wγ ᾱβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aαβ,γ . The indices {0, α, ᾱ} indicate derivatives with respect
to {T, Zα, Z ᾱ}. For derivatives of a function, we will often omit the comma, for
instance, ϕα = Zαϕ, ϕαβ̄ = Z β̄ Zαϕ − ωαγ (Z β̄)Zγϕ, ϕ0 = Tϕ for a (smooth)
function ϕ. Let the Cauchy–Riemann operator ∂b be defined locally by ∂bϕ = ϕαθ

α ,
and let ∂b be the conjugate of ∂b. For a function ϕ, the subgradient ∇b is defined
locally by ∇bϕ = ϕ

αZα+ϕαZ ᾱ . The sublaplacian 1b, the Kohn Laplacian �b, and
the Folland–Stein operator Lc on functions are defined by

1bϕ =−(ϕα
α
+ϕα

α), �bϕ = (1b+ inT )ϕ, Lcϕ = (1b+ icT )ϕ.

The Webster–Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X, Y )= Rαβ̄XαY β̄,

Tor(X, Y )= i
∑
α,β

(
Aᾱβ̄X ᾱY β̄ − AαβXαY β

)
,

where X = XαZα, Y = Y β Zβ , Rαβ̄ = Rγ γ αβ̄ . The Webster scalar curvature is
R = Rαα = hαβ̄Rαβ̄ .
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3. Proof of Theorem 1.5

Let (M, J, θ) be a closed pseudohermitian (2n+1)-manifold. In this section, we can
obtain lower bound estimates for the first nonzero eigenvalue of the Folland–Stein
operator Lc, |c| ≤ n, on a closed pseudohermitian (2n+ 1)-manifold.

First we need the following Bochner formula for the Kohn Laplacian [Chanillo
et al. 2012, Equation (2.8)]).

Lemma 3.1. For any complex-valued function ϕ, we have

(3-1) −
1
2
�b
∣∣∂bϕ

∣∣2 =∑
α,β

(
ϕαβϕαβ +ϕαβϕαβ

)
+Ric

(
(∇bϕ)C, (∇bϕ)C

)
−

1
2n

〈
∂bϕ, ∂b�bϕ

〉
−

n+ 1
2n

〈
∂b�bϕ, ∂bϕ

〉
−

1
n

〈
Pϕ, ∂bϕ

〉
+

n− 1
n

〈
Pϕ, ∂bϕ

〉
,

where (∇bϕ)C = ϕ
αZα is the corresponding complex (1, 0)-vector field of ∇bϕ.

First we derive some useful identities which we need in the proof of Theorem 1.5.
Let ϕ be a smooth complex-valued function on M . By integrating the Bochner
formula (3-1), we have

(3-2) 0=
∫ ∑

α,β

(
ϕαβϕαβ +ϕαβϕαβ

)
−

n+ 2
2n

∫ 〈
�bϕ,�bϕ

〉
+

2− n
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C, (∇bϕ)C

)
.

We also have

(3-3)
∫ ∑

α,β

ϕαβϕαβ =

∫ ∑
α,β

∣∣∣∣ϕαβ − 1
n
ϕγ

γ hαβ

∣∣∣∣2+ 1
4n

∫ 〈
�bϕ,�bϕ

〉
=

n− 1
n

∫
(P0ϕ)ϕ+

1
4n

∫ 〈
�bϕ,�bϕ

〉
.

Here we used the following divergence formula [Graham and Lee 1988] for the
trace-free part of ϕαβ :

Bαβϕ = ϕαβ −
1
n
ϕγ

γ hαβ .

That is, (
Bαβϕ

)(
Bαβϕ

)
= ϕαβ

(
Bαβϕ

)
=
(
ϕαBαβϕ

)
,β −

n− 1
n

ϕαPαϕ

=
(
ϕαBαβϕ

)
,β −

n− 1
n

(ϕPαϕ),α +
n− 1

n
(P0ϕ)ϕ.
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Then we integrate both sides to get

(3-4)
∫ ∑

α,β

∣∣Bαβϕ∣∣2 = n− 1
n

∫
(P0ϕ)ϕ.

Taking together the two formulas (3-2) and (3-3), we get

(3-5)
n+1
4n

∫ 〈
�bϕ,�bϕ

〉
=

∫ ∑
α,β

ϕαβϕαβ+
1
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C,(∇bϕ)C

)
.

By taking complex conjugate to (3-5) and replacing ϕ by ϕ, one obtains

(3-6)
n+1
4n

∫ 〈
�bϕ,�bϕ

〉
=

∫ ∑
α,β

ϕαβϕαβ+
1
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C,(∇bϕ)C

)
.

From the formula (1-1), we have

(3-7) 4
∫
(P0ϕ)ϕ =

∫ 〈
(1b+ inT )(1b− inT )ϕ− 2nQϕ, ϕ

〉
=

∫ 〈
�bϕ,�bϕ

〉
− 2n

∫
〈Qϕ, ϕ〉.

By (1-1), we can also obtain

(3-8) 4
∫
(P0ϕ)ϕ =

∫ 〈
�bϕ,�bϕ

〉
− 2n

∫ 〈
Qϕ, ϕ

〉
.

Proof of Theorem 1.5. Let ϕc be an eigenfunction of the Folland–Stein operator Lc,
c ∈R with |c| ≤ n, with respect to the first nonzero eigenvalue λc

1; i.e., Lcϕc = λ
c
1ϕc.

When 0≤ c ≤ n, from (3-6) and (3-7) for

Lc =
n+ c

2n
�b+

n− c
2n

�b,

we have

1
2

∫ 〈
�bϕc,Lcϕc

〉
=

n+c
4n

∫ 〈
�bϕc,�bϕc

〉
+

n−c
4n

∫ 〈
�bϕc,�bϕc

〉
=

n+c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2−c

n+1

∫
(P0ϕc)ϕc

+
n+c
n+1

∫
Ric

(
(∇bϕc)C, (∇bϕc)C

)
+

n−c
2

∫ 〈
Qϕc, ϕc

〉
=

n+c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2−c

n+1

∫
(P0ϕc)ϕc

+
n+c
n+1

∫ [
Ric−

(n−c)(n+1)
2(n+c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
,
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where we used the equation∫ 〈
Qϕc, ϕc

〉
=−

∫
Tor
(
(∇bϕc)C, (∇bϕc)C

)
,

since
∫
〈Qϕc, ϕc〉 is real, and thus

∫
〈Qϕc, ϕc〉=2

∫
i Aαβϕcαϕcβ =−2

∫
i Aαβϕcαϕcβ .

Hence, if P0 is nonnegative and

[Ric−
(n− c)(n+ 1)

2(n+ c)
Tor]((∇bϕc)C, (∇bϕc)C)≥ k|∂bϕc|

2,

we have

(3-9) λc
1

∫ ∣∣∂bϕc
∣∣2 = n+ c

n+ 1

∫ ∑
α,β

ϕcαβϕcαβ +
n+ 2− c

n+ 1

∫
(P0ϕc)ϕc

+
n+ c
n+ 1

∫ [
Ric−

(n− c)(n+ 1)
2(n+ c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
≥

n+ c
n+ 1

k
∫
|∂bϕc|

2,

which shows that λc
1 ≥

n+c
n+1 k.

When −n ≤ c < 0, from (3-5) and (3-8), the same computation shows that

1
2

∫ 〈
�bϕc,Lcϕc

〉
=

n+ c
4n

∫ 〈
�bϕc,�bϕc

〉
+

n− c
4n

∫ 〈
�bϕc,�bϕc

〉
=

n− c
n+ 1

∫ ∑
α,β

ϕcαβϕcαβ +
n+ 2+ c

n+ 1

∫
(P0ϕc)ϕc

+
n− c
n+ 1

∫ [
Ric−

(n+ c)(n+ 1)
2(n− c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
.

Thus, if P0 is nonnegative and

[Ric−
(n+ c)(n+ 1)

2(n− c)
Tor]((∇bϕc)C, (∇bϕc)C)≥ k|∂bϕc|

2,

we get

λc
1

∫
|∂bϕc|

2
=

n−c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2+c

n+1

∫
(P0ϕc)ϕc

+
n−c
n+1

∫ [
Ric−

(n+c)(n+1)
2(n−c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
≥

n−c
n+1

k
∫
|∂bϕc|

2,

which implies that λc
1 ≥

n−c
n+1

k. This completes the proof of Theorem 1.5. �
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4. Example and proof of Proposition 1.9

In this section, we calculate the eigenvalues of sublaplacian1b, Kohn Laplacian �b,
and the Folland–Stein operator Lc, |c|≤n, of the standard pseudohermitian (2n+1)-
sphere S2n+1. We show that the lower bound in Theorem 1.5 is sharp. We also
study the case when a sharp lower bound estimate of Lc, |c| ≤ n, is achieved.

Let S2n+1
=
{
(z0, z1, . . . , zn) |

∑n
j=0 z j z j=1

}
⊂Cn+1 with the induced CR struc-

ture from Cn+1 and the contact form θ= i
2(∂u−∂u)|S2n+1 where u=

(∑n
j=0 z j z j

)
−1

is a defining function. It can be shown that the pseudohermitian torsion is free and
the Webster–Ricci tensor is given by Rαβ̄ = (n+ 1)hαβ̄ .

We write

∂ j =
∂

∂z j
, ∂ j =

∂

∂z j
(0≤ j ≤ n), ∂ jk = ∂ j∂k (0≤ j, k ≤ n),

and z = (z0, z1, . . . , zn), δ = (∂0, ∂1, . . . , ∂n). We let · denote the dot product.
Then, by the computation in Section 1 of [Geller 1980], we have

Lc = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ (n+ c)z · δ+ (n− c)z · δ,

where 1=
∑n

j=0 ∂ j∂ j is the standard Laplacian on Cn+1. In particular, we have

1b = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ n

(
z · δ+ z · δ

)
,

�b = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ 2nz · δ.

If Y is a bigraded spherical harmonic of type (p, q) on Cn+1 (a harmonic poly-
nomial which is a linear combination in terms of the form zρzγ , where ρ, γ are
multiindices with |ρ| = p, |γ | = q), then LcY =

(
2pq + (n+ c)q + (n− c)p

)
Y.

Similarly,

1bY = (2pq + n(p+ q))Y, �bY = 2q(p+ n)Y.

This example shows that the lower bound in Theorem 1.5 is sharp.
Now we study the case when a sharp lower bound estimate for the first nonzero

eigenvalue of the Folland–Stein operator Lc, |c| ≤ n, on a pseudohermitian (2n+1)-
manifold M is achieved. We only consider the case when the constant c is nonneg-
ative. The same computation follows when c is negative.

First, from (3-9), we have the following observation.
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Lemma 4.1. Under the same conditions as in Theorem 1.5, when the first nonzero
eigenvalue of Lc, 0≤ c ≤ n, satisfies

λc
1 =

n+ c
n+ 1

k,

then the corresponding eigenfunction ϕc will satisfy

ϕcαβ = 0 for all α, β,(4-1) [
Ric−

(n− c)(n+ 1)
2(n+ c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
= k

∣∣∂bϕc
∣∣2,(4-2)

P0ϕc = 0.(4-3)

Proof of Proposition 1.9. The integral condition (1-3) says that∫
〈Qϕc, ϕc〉 = −2i

∫
Aαβϕcαϕcβ = 0,

and then by integration by parts, we obtain

(4-4)
∫ 〈

Qϕc, ϕc
〉
=

∫
〈ϕc, Qϕc〉 =

∫
〈Qϕc, ϕc〉 = 0.

From (1-1), one can see that

4P0 = [1b− i(n2/c)T ][1b+ icT ] −
1
2c

[
(2nc+ n+ c)Q+ (2nc− n− c)Q

]
.

Then, from (4-3) and (4-4), one obtains

0= 4
∫
(P0ϕc)ϕc = λ

c
1

∫ 〈
[1b− i(n2/c)T ]ϕc, ϕc

〉
=

1
2
λc

1

∫ 〈
[(1− n/c)�b+ (1+ n/c)�b]ϕc, ϕc

〉
= λc

1

∫ [
(1− n/c)|∂bϕc|

2
+ (1+ n/c)|∂bϕc|

2],
which is

(4-5) (n− c)
∫ ∣∣∂bϕc

∣∣2 = (n+ c)
∫
|∂bϕc|

2.

On the other hand, the equation Lcϕc = (1b+ icT )ϕc = λ
c
1ϕc yields

(4-6) λc
1 = λ

c
1

∫
〈ϕc, ϕc〉 =

∫
〈Lcϕc, ϕc〉

=
1

2n

∫ 〈[
(n+ c)�b+ (n− c)�b

]
ϕc, ϕc

〉
=

∫
(1+ n/c)

∣∣∂bϕc
∣∣2+ (1− n/c)|∂bϕc|

2.
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The equations (1-4) follow from (4-5) and (4-6) easily. �

References

[Chang and Wu 2010] S.-C. Chang and C.-T. Wu, “The entropy formulas for the CR heat equation
and their applications on pseudohermitian (2n+ 1)-manifolds”, Pacific J. Math. 246:1 (2010), 1–29.
MR 2011i:58038 Zbl 1206.32016

[Chang and Wu ≥ 2013] S.-C. Chang and C.-T. Wu, “On the CR Obata theorem for Kohn Laplacian
in a closed pseudo-Hermitian hypersurface in Cn+1”, in preparation.

[Chang et al. 2007] S.-C. Chang, J.-H. Cheng, and H.-L. Chiu, “A fourth order curvature flow on a CR
3-manifold”, Indiana Univ. Math. J. 56:4 (2007), 1793–1826. MR 2009a:53111 Zbl 1129.53046

[Chanillo et al. 2012] S. Chanillo, H.-L. Chiu, and P. Yang, “Embeddability for 3-dimensional
Cauchy–Riemann manifolds and CR Yamabe invariants”, Duke Math. J. 161:15 (2012), 2909–2921.
MR 2999315 Zbl 06121401

[Chiu 2006] H.-L. Chiu, “The sharp lower bound for the first positive eigenvalue of the sublaplacian
on a pseudohermitian 3-manifold”, Ann. Global Anal. Geom. 30:1 (2006), 81–96. MR 2007j:58034
Zbl 1098.32017

[Folland and Stein 1974] G. B. Folland and E. M. Stein, “Estimates for the ∂̄b complex and analysis on
the Heisenberg group”, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 51 #3719 Zbl 0293.35012

[Geller 1980] D. Geller, “The Laplacian and the Kohn Laplacian for the sphere”, J. Differential Geom.
15:3 (1980), 417–435. MR 82i:35132 Zbl 0507.58049

[Graham and Lee 1988] C. R. Graham and J. M. Lee, “Smooth solutions of degenerate Lapla-
cians on strictly pseudoconvex domains”, Duke Math. J. 57:3 (1988), 697–720. MR 90c:32031
Zbl 0699.35112

[Greenleaf 1985] A. Greenleaf, “The first eigenvalue of a sub-Laplacian on a pseudo-Hermitian mani-
fold”, Comm. Partial Differential Equations 10:2 (1985), 191–217. MR 86f:58157 Zbl 0563.58034

[Lee 1988] J. M. Lee, “Pseudo-Einstein structures on CR manifolds”, Amer. J. Math. 110:1 (1988),
157–178. MR 89f:32034 Zbl 0638.32019

[Li and Luk 2004] S.-Y. Li and H.-S. Luk, “The sharp lower bound for the first positive eigenvalue of
a sub-Laplacian on a pseudo-Hermitian manifold”, Proc. Amer. Math. Soc. 132:3 (2004), 789–798.
MR 2005c:58056 Zbl 1041.32024

Received May 8, 2011. Revised November 29, 2012.

CHIN-TUNG WU

DEPARTMENT OF APPLIED MATHEMATICS

NATIONAL PINGTUNG UNIVERSITY OF EDUCATION

NO. 4-18 MINSHENG RD

PINGTUNG CITY 90003
TAIWAN

http://dx.doi.org/10.2140/pjm.2010.246.1
http://dx.doi.org/10.2140/pjm.2010.246.1
http://msp.org/idx/mr/2011i:58038
http://msp.org/idx/zbl/1206.32016
http://dx.doi.org/10.1512/iumj.2007.56.3001
http://dx.doi.org/10.1512/iumj.2007.56.3001
http://msp.org/idx/mr/2009a:53111
http://msp.org/idx/zbl/1129.53046
http://dx.doi.org/10.1215/00127094-1902154
http://dx.doi.org/10.1215/00127094-1902154
http://msp.org/idx/mr/2999315
http://msp.org/idx/zbl/06121401
http://dx.doi.org/10.1007/s10455-006-9033-9
http://dx.doi.org/10.1007/s10455-006-9033-9
http://msp.org/idx/mr/2007j:58034
http://msp.org/idx/zbl/1098.32017
http://dx.doi.org/10.1002/cpa.3160270403
http://dx.doi.org/10.1002/cpa.3160270403
http://msp.org/idx/mr/51:3719
http://msp.org/idx/zbl/0293.35012
http://projecteuclid.org/euclid.jdg/1214435651
http://msp.org/idx/mr/82i:35132
http://msp.org/idx/zbl/0507.58049
http://dx.doi.org/10.1215/S0012-7094-88-05731-6
http://dx.doi.org/10.1215/S0012-7094-88-05731-6
http://msp.org/idx/mr/90c:32031
http://msp.org/idx/zbl/0699.35112
http://dx.doi.org/10.1080/03605308508820376
http://dx.doi.org/10.1080/03605308508820376
http://msp.org/idx/mr/86f:58157
http://msp.org/idx/zbl/0563.58034
http://dx.doi.org/10.2307/2374543
http://msp.org/idx/mr/89f:32034
http://msp.org/idx/zbl/0638.32019
http://dx.doi.org/10.1090/S0002-9939-03-07174-0
http://dx.doi.org/10.1090/S0002-9939-03-07174-0
http://msp.org/idx/mr/2005c:58056
http://msp.org/idx/zbl/1041.32024


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 263 No. 1 May 2013

1Biharmonic hypersurfaces in complete Riemannian manifolds
LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ and MARCO

RIGOLI

13Half-commutative orthogonal Hopf algebras
JULIEN BICHON and MICHEL DUBOIS-VIOLETTE

29Superdistributions, analytic and algebraic super Harish-Chandra pairs
CLAUDIO CARMELI and RITA FIORESI

53Orbifolds with signature (0; k, kn−1, kn, kn)

ANGEL CAROCCA, RUBÉN A. HIDALGO and RUBÍ E.
RODRÍGUEZ

87Explicit isogeny theorems for Drinfeld modules
IMIN CHEN and YOONJIN LEE

117Topological pressures for ε-stable and stable sets
XIANFENG MA and ERCAI CHEN

143Lipschitz and bilipschitz maps on Carnot groups
WILLIAM MEYERSON

171Geometric inequalities in Carnot groups
FRANCESCOPAOLO MONTEFALCONE

207Fixed points of endomorphisms of virtually free groups
PEDRO V. SILVA

241The sharp lower bound for the first positive eigenvalue of the
Folland–Stein operator on a closed pseudohermitian (2n+ 1)-manifold

CHIN-TUNG WU

253Remark on “Maximal functions on the unit n-sphere” by Peter M. Knopf
(1987)

HONG-QUAN LI

Pacific
JournalofM

athem
atics

2013
Vol.263,N

o.1


	1. Introduction
	2. Basic materials
	3. Proof of 0=theorem.71=1.5
	4. Example and proof of 0=theorem.121=1.9
	References
	
	

