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BIHARMONIC HYPERSURFACES IN COMPLETE
RIEMANNIAN MANIFOLDS

LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ AND MARCO RIGOLI

We consider biharmonic hypersurfaces in complete Riemannian manifolds
and prove that, under some additional assumptions, they are minimal.

1. Introduction

According to a definition first given by B. Y. Chen [1991], an isometrically immersed
oriented hypersurface in Euclidean space, ' WM !RmC1 is biharmonic if its mean
curvature vector field H satisfies

�HD 0;

where � denotes the Laplacian on the hypersurface. It is well known that for
submanifolds of Euclidean space, trace.B/DmHD�', where B is the second
fundamental form of the immersion. Hence, for any fixed unit vector a of RmC1,

(1) m�hH; ai D�2
h'; ai

and the hypersurface is biharmonic if and only if each component of the immersion
' is a biharmonic function. Chen [1991; 1996] conjectured that a biharmonic
hypersurface (in fact any biharmonic submanifold) of RmC1 is minimal, the converse
being, of course trivially true. This statement is of a local nature and the conjecture
holds for hypersurfaces in R3 [Chen 1991] and R4 [Hasanis and Vlachos 1995;
Defever 1998]. However, in general, it has been shown to be true only under some
additional assumptions, sometimes of a global nature: see for instance [Akutagawa
and Maeta 2013] and [Nakauchi and Urakawa 2011].
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(Fondo Europeo de Desarrollo Regional) project MTM2009-10418 and Fundación Séneca project
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This problem can be considered in a more general perspective. Indeed, let .M;g/

and .N; h/ be Riemannian manifolds and ' W .M;g/! .N; h/ a smooth map. Let
�.'/ denote its tension field, that is,

�.'/D trace.rd'/D

mX
iD1

.rd'/.ei ; ei/; mD dim M;

where rd' is the generalized second fundamental tensor and fe1; : : : ; emg is a
local orthonormal frame on .M;g/. Given a relatively compact domain ��M

one introduces the bienergy functional E
'
� .�/ on � by setting

E'
� .�/D

1

2

Z
�

j�.'/j2;

where integration is understood with respect to the volume element of .M;g/. Then
' is a biharmonic map (meaning a critical point of this functional on M — i.e., on
each relatively compact domain ��M ), if and only if the bitension field

(2) �2.'/D��.'/�
X

i

RN
�
�.'/; '�.ei/

�
'�.ei/

vanishes identically. Here RN denotes the .3;1/ curvature tensor of .N; h/.
When ' W .M m;g/! .N mC1; h/ is an isometric immersion of an m-dimensional

hypersurface and � is a local unit normal vector field along ', writing the mean
curvature vector as

(3) HDH�

and indicating with B the second fundamental form in the direction of �, a heavy
computation shows that (2) is equivalent to the system

�H � jBj2H CRicN .�; �/H D 0;(4a)

2B.rH; � /]C 1
2
mrH 2

� 2H.RicN .�; � /]/T D 0;(4b)

where ] W TM �! TM denotes the musical isomorphism, T the tangential compo-
nent and RicN the Ricci tensor of .N; h/ [Ou 2010, Theorem 2.1].

At this point one easily verifies that a biharmonic hypersurface in RmC1 in the
sense of Chen is exactly a biharmonic hypersurface as defined in this more general
setting. In this new perspective Chen’s conjecture has been generalized to the
following [Caddeo et al. 2001; 2002]:

Let ' W .M;g/! .N; h/ be an isometric immersion into a Riemannian
manifold of nonpositive sectional curvature. If ' is biharmonic then it is
minimal.
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This new conjecture has been shown to be true if M is compact [Jiang 1986]
or if H is constant [Ou 2010], but false in general [Ou and Tang 2012]. Here we
restrict ourselves to complete noncompact biharmonic hypersurfaces and in fact we
concentrate our efforts on the consequences of (4a) alone.

To avoid confusion with a terminology used for biharmonic submanifolds, we
underline that in what follows by a proper immersion we mean an immersion that
is topologically proper: preimages of compact sets are compact sets.

2. Statement of main results

Our first main result is the following.

Theorem 1. Let ' WM ! .N; h ; i/ be an oriented, proper, isometrically immersed,
biharmonic hypersurface in the complete manifold N . For some origin o 2 N

assume that
'.M /\ cut.o/D∅:

Having set %D distN . � ; o/, suppose that the radial sectional curvature KN
rad of N

satisfies

(5) KN
rad � �G.%/

for %� 1 and some G 2 C2.RC
0
/ such that G.0/ > 0, G0.t/� 0 and G.t/D o.t2/

as t !C1. Let � be a unit normal vector field along ' and suppose

(6) RicN .�; �/� 0

along '. Then ' is minimal. In particular if the sectional curvature KN
sect is

nonpositive, '.M / is unbounded in N .

As an immediate consequence of Theorem 1, using [Mari and Rigoli 2010] and
[Alías et al. 2009], we obtain:

Corollary 2. Let ' WM ! RmC1 be an oriented, isometrically immersed, bihar-
monic hypersurface. If the image '.M / is contained in a nondegenerate open cone
of RmC1 or the hypersurface is cylindrically bounded as '.M /�Br .o/�Rm�1 �

R2 �Rm�1, then the immersion cannot be proper.

We recall here that, fixed an origin o 2 RmC1, the nondegenerate cone with
vertex o, direction a and width � is the subset

CD Co;a;� D

�
p 2 RmC1

nfog W

�
p� o

jp� oj
; a

�
� cos �

�
;

where a 2 Sm is a unit vector and � 2 .0; �=2/. By nondegenerate we mean that
it is strictly smaller than a half-space. On the other hand, following the definition
introduced in [Alías et al. 2009], an immersed hypersurface ' WM ! RmC1 is said
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to be cylindrically bounded if '.M /� Br .o/�RmC1�p � Rp �RmC1�p , where
p � 2 and Br .o/� Rp denotes the ball of radius r . In particular, p D 2 gives the
weakest requirement.

To introduce the next result we consider the operator

(7) LD�CRicN .�; �/

where � is a unit normal vector field along the hypersurface ' WM ! .N; h ; i/

and we let �L
1
.M / denote its spectral radius. Clearly if RicN .�; �/ � 0 then

�L
1
.M / � 0 but this latter fact can be true even if RicN .�; �/ > 0 provided this

positivity compensate with the geometry of M . (For a detailed discussion see
[Bianchini et al. 2012]). Thus �L

1
.M /� 0 is weaker than RicN .�; �/� 0.

Theorem 3. Let ' WM ! .N; h ; i/ be a biharmonic, complete, oriented hypersur-
face with mean curvature H . Suppose that the operator L in (7) satisfies

(8) �L
1 .M /� 0:

If H 2L2.M / then ' is minimal.

This result is extended to a different class of integrability for H in Theorem 7 of
Section 3 below.

Next, we consider the case when .N; h ; i/ is a Cartan–Hadamard manifold, that
is, N is complete, simply connected and with nonpositive sectional curvature. What
follows is a gap theorem.

Theorem 4. Let ' W M ! .N; h ; i/ be an isometrically immersed, oriented, bi-
harmonic hypersurface of dimension m � 3 into a Cartan–Hadamard manifold.
Suppose that the mean curvature H satisfies

(9) kHkLm.M / <
!

1=m
m

�2m�1

m� 1

m.mC 1/1C
1
m

;

where !m is the volume of the unit ball of Rm. Then ' is a minimal hypersurface.

3. Proof of the main theorems and some further results

With the notations of Theorem 1 we consider the function vD%2ı'. The assumption
'.M /\ cut.o/D∅ implies that v is smooth on M . Clearly,

(10) jrvj � 2
p
v:

Since M is complete and noncompact and ' is proper we have

(11) v.x/!C1 as x!1 in M:
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To compute �v we recall (see, for instance, [Jorge and Koutroufiotis 1981]) that

(12) �.%2
ı'/D .Hess %2/

�
'�.ei/; '�.ei/

�
C
˝
r%2;mH

˛
with feig a local orthonormal frame on M . Let G 2 C1.RC

0
/ satisfy

(13) G.0/ > 0 and G0.t/� 0 on RC
0
:

(In particular, G can be chosen to agree, for t large, with the function ctd , where
0< d < 2, or with ct2.log t/�", where " > 0.)

If KN
rad � �G, by the Hessian comparison theorem (see Theorem 2.3 and Re-

mark 2.3 of [Pigola et al. 2008] for the appropriate statement that we are using
here) we get

(14) Hess.%2/� C%
p

G.%/h ; i

outside a compact set and for some appropriate constant C > 0. Up to modifying C

we can assume that (14) is true on M . Hence, from (12) and (14) we deduce that

(15) �v � C 2
p
v
p

G.
p
v/C 2m

p
vjH j

on M . Next, from (4a), letting uDH 2 we get

(16) �uD 2H�H C 2jrH j2 D 2jBj2u� 2 RicN .�; �/uC 2jrH j2:

Using Newton’s inequality,

(17) jBj2 �mjH j2;

we obtain

(18) �uC 2 RicN .�; �/u� 2mu2
� 2jrH j2 � 0;

and we are left with a solution u� 0 of the differential inequality

(19) �uC a.x/u� 2mu2
� 0

with

(20) a.x/D 2 RicN .�; �/ ı'.x/:

Proof of Theorem 1. First observe that since ' is proper and N is complete, the
induced metric on M is complete. Next we follow an idea introduced in [Akutagawa
and Maeta 2013]. Since ' is proper, for every T 2 RC, the set

DT D v
�1.Œ0;T �/

is compact. Suppose u 6� 0. Then there exists x0 2M such that u.x0/ > 0 and we
can suppose to have chosen T sufficiently large that x0 2DT=2n@DT=2.
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We define

(21) F.x/D .T � v.x//2u.x/

on DT . Note that F � 0, F � 0 on @DT and F.x0/ > 0. It follows that there exists
a positive absolute maximum for F.x/ at some point Nx 2DT n@DT . At this point
we have

(22)
rF

F
. Nx/D 0 and

�F

F
. Nx/� 0:

From (22), a straightforward computation yields

(23)
ru. Nx/

u. Nx/
D

2

T � v. Nx/
rv. Nx/

and
�u. Nx/

u. Nx/
�

2

T � v. Nx/
�v. Nx/�

2

.T � v. Nx//2
jrv. Nx/j2C

4

T � v. Nx/

jru. Nx/j

u. Nx/
jrv. Nx/j:

We use (23), (15) at Nx with
p

uD jH j, and (10) at Nx into the above inequality to
obtain (omitting Nx for the ease of notation)

�u

u
�

2

T � v

�
C 2
p

G.
p
v/C 2m

p
u
�p
vC

6

.T � v/2
jrvj2

�
2

T � v

�
C 2
p

G.
p
v/C 2m

p
u
�p
vC

24

.T � v/2
v:

From (19) we then deduce

(24) u�
a

2m
C

C 2
p
v

m.T � v/

p
G.
p
v/C

2
p
v

T � v

p
uC

12

m.T � v/2
v:

Multiplying by .T �v.x//2 both sides of (24) and using that a.x/DaC.x/�a�.x/,
that G is nondecreasing, and that Nx 2DT we have

F. Nx/�
aC. Nx/

2m
.T � v. Nx//2C

C 2
p
v. Nx/

m
.T � v. Nx//

p
G.
p
v. Nx//

C 2
p
v. Nx/

p
F. Nx/C

12

m
v. Nx/

�
T 2

2m
aC. Nx/C

C 2T 3=2

m

p
G.
p

T /C 2
p

T
p

F. Nx/C
12

m
T:

Therefore
F. Nx/� 2

p
T
p

F. Nx/�T Z.T /� 0;

where

Z.T /D
T

2m
supDT

aCC
C 2

m

p
T
p

G.
p

T /C
12

m
:
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Note that Z.T /� 0. Then

F.x0/� F. Nx/� T
�
1C

p
1CZ.T /

�2
� C 2T .1CZ.T //

and therefore, since x0 2DT=2,

u.x0/�
C 2T

.T � v.x0//2

�
T supDT

aCC
p

T
p

G.
p

T /
�

�
C 2

T

�
T supDT

aCC
p

T
p

G.
p

T /
�
D C 2

�
supDT

aCC
1
p

T

p
G.
p

T /
�
:

However, by assumption aC � 0 and using G.t/D o.t2/ as t !C1 we have

T �1=2
p

G.
p

T /D o.1/ as T !C1:

Thus, letting T ! C1 in (25), we deduce u.x0/ � 0 which contradicts the
assumption u.x0/ > 0. The contradiction shows that uDH 2 � 0 on M , that is, '
is minimal.

Suppose now that KN
sect � 0. Since ' is minimal (15) becomes

(25) �v � C 2
p
v
p

G.
p
v/:

This, together with (10) and (11), guarantees the validity of the Omori–Yau max-
imum principle on M (see Theorem 1.9 of [Pigola et al. 2005]). Now the result
follows from Theorem 3.9 of [Pigola et al. 2005]. �

For the proof of Theorem 3 we need the next proposition which is a version,
adapted to the present purposes, of Lemma 3.1 in [Brandolini et al. 1998].

Proposition 5. Let .M; h ; i/ be a complete manifold and let a.x/; b.x/ 2 C0.M /

and suppose that

(26) b.x/� 0

and

(27) �L
1 .M /� 0 with LD�C a.x/:

Let u 2 C 2.M / be a solution of

(28) �uC a.x/u� b.x/uD 0 on M:

If u 2L2.M / then u� 0 on supp.b.x//. In particular, if u does not change sign
and b.x/ 6� 0, then u� 0.

Proof. We suppose b.x/ 6� 0 otherwise there is nothing to prove. Next, we reason
by contradiction and we assume the existence of x0 2 supp.b.x//�M such that
u.x0/ ¤ 0 and b.x0/ ¤ 0. (Note that if u.x0/ ¤ 0 and b.x0/ D 0 by continuity
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we can always find x0
0

sufficiently close to x0 so that u.x0
0
/¤ 0 and b.x0

0
/¤ 0).

Choose R� 1 such that x0 2BR . Let  be a cut-off function 0� � 1 satisfying

 � 1 on BR; supp. /� BRC1; jr j � 2:

Then u 2 C2
0
.M /, u ¤ 0 and by the variational characterization of �L

1
.BRC1/

we have

(29) �L
1 .BRC1/�

R
BRC1

�
jr.u /j2� a.x/.u /2

�R
BRC1

.u /2
:

Since �L
1
.M /� 0 the monotonicity property of eigenvalues yields �L

1
.BRC1/ > 0.

Next, we consider the vector field W D u 2ru. A direct computation using (28)
gives

div.W /D b.x/u2 2
� a.x/u2 2

Cjr.u /j2�u2
jr j2:

Hence by (29) and the divergence theorem

0� �L
1 .BRC1/

Z
BRC1

u2 2
�

Z
BRC1

u2
jr j2C

Z
BRC1

b.x/u2 2:

Rearranging, using the properties of  and (26) we obtain

�L
1 .BRC1/

Z
BR

u2
�

Z
BR

b.x/u2
� 4

Z
BRC1nBR

u2:

Letting R!C1 and using the fact that u 2L2.M / we deduce

�L
1 .M /

Z
M

u2
�

Z
M

b.x/u2
� 0:

We reach a contradiction by observing that �L
1
.M /� 0 and in a neighborhood of

x0, b.x/ and u2.x/ are strictly positive.
The last statement follows immediately from the strong maximum principle and

(28) (see the remark after the proof of Theorem 3.5 on page 35 of [Gilbarg and
Trudinger 1983]). �

Proof of Theorem 3. We apply Proposition 5 to the solution H of (4a) with a.x/D

RicN .�; �/ and b.x/D jBj2. By Newton’s inequality (17), supp.H /� supp.b.x//,
which gives a contradiction to the conclusion of Proposition 5 unless H � 0; thus
' WM ! .N; h ; i/ is minimal. �

Corollary 6. Any biharmonic, isometrically immersed, complete oriented hyper-
surface M with mean curvature satisfying H 2L2.M / in a space with nonpositive
Ricci tensor is minimal.
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For the proof of this corollary simply observe that since RicN .�; �/ � 0 then
�L

1
.M /� 0 for LD�CRicN .�; �/.
With the aid of Theorem 4.6 in [Pigola et al. 2008] we can extend the range of

integrability of H as follows.

Theorem 7. Let ' W M ! .N; h ; i/ be a biharmonic, isometrically immersed,
oriented hypersurface. For some ƒ� 1

2
let Lƒ D�C 2ƒRicN .�; �/ and suppose

that

(30) �
Lƒ

1
.M /� 0:

Let �1
2
� ˇ �ƒ� 1 and assume that

(31) H 2L4.ˇC1/.M /:

Then ' is minimal.

Remark 8. If ƒD 1
2

, Lƒ DLD�CRicN .�; �/ and ˇ D�1
2

so that condition
(31) becomes H 2L2.M /. In this way, we recover Theorem 3.

Proof of Theorem 7. We let uDH 2. From the differential inequality (18) and

jrH j2 D
1

4

jruj2

u

we deduce that u is a nonnegative solution of

(32) u�uC 2 RicN .�; �/u2
� 2mu3

�
1
2
jruj2:

By Theorem 1 of [Fischer-Colbrie and Schoen 1980], inequality (30) implies the
existence of a positive solution  on M of

� C 2ƒRicN .�; �/ D 0:

We can thus apply Theorem 4.6 of [Pigola et al. 2008] with 'D , AD�1
2

, jHjDƒ,
K D 0, a.x/D 2 RicN .�; �/, b.x/D 2m and � D 2. Note that assumption (4.43)
of Theorem 4.6 of [Pigola et al. 2008] is true by (31). It follows that u� 0, that is,
' WM ! .N; h ; i/ is minimal. �

We remark that if we let Lm=4 D�C .m=2/RicN .�; �/ and we assume

(33) �
Lm=4

1
.M /� 0;

as a consequence of Theorem 7, if H 2Lm.M / then ' is minimal.
As a matter of fact, we can avoid assumption (33) and obtain the same conclusion

in case .N; h ; i/ is a Cartan–Hadamard manifold. This is the content of Theorem 4.
Towards this end, we observe that if ' WM ! .N; h ; i/ is an isometric immersion
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of dimension m� 2, Hoffman and Spruck [1974] have shown the validity of the
following L1-Sobolev inequality: for every u 2W

1;1
0
.M /,

(34) S1.m/
�1

�Z
M

jujm=.m�1/

�.m�1/=m

�

Z
M

�
jrujCmjH jjuj

�
with

(35) S1.m/D
�2m�1

!
1=m
m

.mC 1/1C
1
m

m� 1

where !m is the volume of the unit ball of Rm (observe that in [Hoffman and Spruck
1974] the mean curvature vector field is not normalized). Having fixed " > 0, from
(34) we immediately deduce (see for instance [Pigola et al. 2008, pp. 175–176])
that for every v 2W

1;2
0
.M /

(36)

S2.m; "/
�1

�Z
M

jvj2m=.m�2/

�.m�2/=m

�

Z
M

�
jrvj2C

"2

4

�
m� 2

m� 1

�2

m2
jH j2v2

�
with

(37) S2.m; "/D
4.m� 1/2

.m� 2/2
1C "2

"2
S1.m/

2:

Proof of Theorem 4. In the assumptions of the theorem and by the above discussion
we have the validity of (36) on M . Next, for uDH 2 we rewrite (16) in the form

(38) u�uC 2 RicN .�; �/u2
� 2jBj2u2

D
1
2
jruj2:

Since N is Cartan–Hadamard,

(39) 2.RicN .�; �/� jBj2/� 0:

From (9) and the fact that H 2Lm.M / we have

(40) u 2Lm=2.M / with m=2> 1
2
;

because m � 3. Applying Theorem 9.12 of [Pigola et al. 2008] with � D m=2,
˛ D 2=m and A D �1

2
to (38) we deduce that either u is identically zero or, by

formula (9.41) of [Pigola et al. 2008],�Z
M

jH jm
�2=m

�
1

.1C "2/m2S1.m/2
:

Note that to obtain this inequality we use (37). Thus, letting " # 0C we obtain

kHkLm.M / �
1

mS1.m/
D

!
1=m
m

�2m�1

m� 1

m.mC 1/1C
1
m

:



BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS 11

Using (35) in this latter we contradict (9). Thus u� 0 and ' WM ! .N; h ; i/ is
minimal. �
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HALF-COMMUTATIVE ORTHOGONAL HOPF ALGEBRAS

JULIEN BICHON AND MICHEL DUBOIS-VIOLETTE

A half-commutative orthogonal Hopf algebra is a Hopf ∗-algebra generated
by the self-adjoint coefficients of an orthogonal matrix corepresentation
v= (vi j ) that half commute in the sense that abc= cba for any a, b, c∈ {vi j }.
The first nontrivial such Hopf algebras were discovered by Banica and Spe-
icher. We propose a general procedure, based on a crossed product con-
struction, that associates to a self-transpose compact subgroup G ⊂ Un a
half-commutative orthogonal Hopf algebra A∗(G). It is shown that any
half-commutative orthogonal Hopf algebra arises in this way. The fusion
rules of A∗(G) are expressed in term of those of G.

1. Introduction

The half-liberated orthogonal quantum group O∗n were recently discovered by
Banica and Speicher [2009]. These are compact quantum groups in the sense of
[Woronowicz 1987], and the corresponding Hopf ∗-algebra A∗o(n) is the universal
∗-algebra presented by self-adjoint generators vi j submitted to the relations making
v = (vi j ) an orthogonal matrix and to the half-commutation relations

abc = cba, a, b, c ∈ {vi j }.

The half-commutation relations arose, via Tannaka duality, from a deep study
of certain tensor subcategories of the category of partitions; see [Banica and
Speicher 2009]. More examples of Hopf algebras with generators satisfying the
half-commutation relations were given in [Banica et al. 2010], and the classification
of “easy” orthogonal Hopf algebras (which means that the tensor category of
corepresentations is spanned by partitions) with generators satisfying the half-
commutation relations was very recently done in [Weber 2012].

The representation theory of O∗n was discussed in [Banica and Vergnioux 2010],
where strong links with the representation theory of the unitary group Un were found.
It followed that the fusion rules of O∗n are noncommutative if n ≥ 3. Moreover a
matrix model A∗o(n) ↪→ M2(R(Un)) was found in [Banica et al. 2011].

MSC2010: 20G42, 22C05, 16T05.
Keywords: Hopf algebras, quantum groups, compact groups.
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The aim of this paper is to continue these works by a general study of what we
call half-commutative orthogonal Hopf algebras: Hopf ∗-algebras generated by the
self-adjoint coefficients of an orthogonal matrix corepresentation v = (vi j ) whose
coefficients satisfy the previous half-commutation relations. Our main results are
as follows.

(1) To any self-transpose compact subgroup G ⊂Un we associate a half-commuta-
tive orthogonal Hopf algebra A∗(G), with A∗(Un)' A∗o(n). The Hopf algebra
A∗(G) is a Hopf ∗-subalgebra of the crossed product R(G)oCZ2, where the
action of Z2 of R(G) is induced by the transposition.

(2) Conversely, any noncommutative half-commutative orthogonal Hopf algebra
arises from the previous construction for some compact group G ⊂Un .

(3) The fusion rules of A∗(G) can be described in terms of those of G.

Therefore it follows from our study that quantum groups arising from half-
commutative orthogonal Hopf algebras are objects that are very close from classical
groups. This was suggested by the representation theory results from [Banica and
Vergnioux 2010], by the matrix model found in the “easy” case in [Banica et al.
2011] and by the results of [Banica et al. 2013] where it was shown that the quantum
group inclusion On ⊂ O∗n is maximal. The techniques from [Banica et al. 2013],
and especially the short five lemma for cosemisimple Hopf algebras, are used in
essential way here. The use of versions of the five lemma for Hopf algebras was
initiated in [Andruskiewitsch and García 2009].

The paper is organized as follows. In Section 2 we fix some notation and recall
the necessary background. In Section 3 we formally introduce half-commutative
orthogonal Hopf algebras, and recall the early examples from [Banica and Speicher
2009; Banica et al. 2010]. Section 4 is devoted to our main construction, which
associates to a self-transpose compact subgroup G ⊂ Un a half-commutative or-
thogonal Hopf algebra A∗(G), and we show that any half-commutative orthogonal
Hopf algebra arises in this way. At the end of the section we use our construction to
propose a possible orthogonal half-liberation of the unitary group Un . In Section 5
we describe the fusion rules of A∗(G) in terms of those of G.

We assume that the reader is familiar with Hopf algebras [Montgomery 1993],
Hopf ∗-algebras and with the algebraic approach (via algebras of representative
functions) to compact quantum groups [Dijkhuizen and Koornwinder 1994; Klimyk
and Schmüdgen 1997].

2. Preliminaries

Classical groups. We first fix some notation. As usual, the group of complex n×n
unitary matrices is denoted by Un , while On denotes the group of real orthogonal
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matrices. We denote by T the subgroup of Un consisting of scalar matrices, and by
PUn the quotient group Un/T.

Definition 2.1. Let G ⊂Un be a compact subgroup.

(1) We say that G is self-transpose if gt
∈ G for all g ∈ G.

(2) We say that G is nonreal if G 6⊂ On , i.e., if there exists g ∈ G with gi j 6∈ R,
for some i, j .

(3) We say that G is doubly nonreal if there exists g ∈G with gi j gkl 6∈R, for some
i, j, k, l.

Note that the subgroup Õn = TOn ⊂Un (considered in [Banica et al. 2013]) is
nonreal but is not doubly nonreal.

Orthogonal and unitary Hopf algebras. We next recall some definitions on the
algebraic approach to compact quantum groups. We work at the level of Hopf
∗-algebras of representative functions. The following simple key definition arose
from [Woronowicz 1987].

Definition 2.2. A unitary Hopf algebra is a ∗-algebra A which is generated by
elements {ui j | 1 ≤ i, j ≤ n} such that the matrices u = (ui j ) and ū = (u∗i j ) are
unitaries, and such that:

(1) There is a ∗-algebra map 1 : A→ A⊗ A such that 1(ui j )=
∑n

k=1 uik ⊗ uk j .

(2) There is a ∗-algebra map ε : A→ C such that ε(ui j )= δi j .

(3) There is a ∗-algebra map S : A→ Aop such that S(ui j )= u∗j i .

If ui j = u∗i j for 1≤ i, j ≤ n, we say that A is an orthogonal Hopf algebra.

It follows that 1, ε, S satisfy the usual Hopf ∗-algebra axioms and that u = (ui j )

is a matrix corepresentation of A. Note that the definition forces that a unitary
Hopf algebra is of Kac type, i.e., S2

= id. The motivating example of unitary (resp.
orthogonal) Hopf algebra is A =R(G), the algebra of representative functions on
a compact subgroup G ⊂Un (resp. G ⊂ On). Here the standard generators ui j are
the coordinate functions which take a matrix to its (i, j)-entry.

In fact every commutative unitary Hopf algebra is of the form R(G) for some
unique compact group G⊂Un defined by G=Hom∗-alg(A,C) (this the Hopf algebra
version of the Tannaka–Krein theorem). This motivates the notation “A=R(G)” for
any unitary (resp. orthogonal) Hopf algebra, where G is a unitary (resp. orthogonal)
compact quantum group.

The universal examples of unitary and orthogonal Hopf algebras are as follows
[Wang 1995a].
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Definition 2.3. The universal unitary Hopf algebra Au(n) is the universal ∗-algebra
generated by elements {ui j | 1 ≤ i, j ≤ n} such that the matrices u = (ui j ) and
ū = (u∗i j ) in Mn(Au(n)) are unitaries.

The universal orthogonal Hopf algebra Ao(n) is the universal ∗-algebra generated
by self-adjoint elements {ui j | 1≤ i, j ≤ n} such that the matrix u = (ui j )1≤i, j≤n in
Mn(Ao(n)) is orthogonal.

The existence of the Hopf ∗-algebra structural morphisms follows from the
universal properties of Au(n) and Ao(n). As discussed above, we use the notations
Au(n)=R(U+n ) and Ao(n)=R(O+n ), where U+n is the free unitary quantum group
and O+n is the free orthogonal quantum group.

The Hopf ∗-algebra Au(n) was introduced by Wang [1995a], while the Hopf
algebra Ao(n) was defined first in [Dubois-Violette and Launer 1990] under the
notation A(In), and was then defined independently in [Wang 1995a] in the compact
quantum group framework.

Exact sequences of Hopf algebras. In this subsection we recall some facts on
exact sequences of Hopf algebras.

Definition 2.4. A sequence of Hopf algebra maps

C→ B
i
→ A

p
→ L→ C

is called preexact if i is injective, p is surjective and i(B)= Aco p, where

Aco p
= {a ∈ A | (id⊗p)1(a)= a⊗ 1}.

A preexact sequence as in Definition 2.4 is said to be exact [Andruskiewitsch
and Devoto 1995] if in addition we have i(B)+A = ker(p) = Ai(B)+, where
i(B)+ = i(B)∩ ker(ε). For the kind of sequences to be considered in this paper,
preexactness is actually equivalent to exactness.

The following lemma, that we record for future use, is Proposition 3.2 in [Banica
et al. 2013].

Lemma 2.5. Let A be an orthogonal Hopf algebra with generators ui j . Assume that
we have surjective Hopf algebra map p : A→ CZ2, ui j → δi j g, where < g >= Z2.
Let Pu A be the subalgebra generated by the elements ui j ukl with the inclusion
i : Pu A ⊂ A. Then the sequence

C→ Pu A
i
→ A

p
→ CZ2→ C

is preexact.

Exact sequences of compact groups induce exact sequences of Hopf algebras. In
particular, if G ⊂Un is a compact subgroup, we have an exact sequence of compact
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groups
1→ G ∩T→ G→ G/G ∩T→ 1,

which induces an exact sequence of Hopf algebras

C→R(G/G ∩T)→R(G)→R(G ∩T)→ C.

We sketch a proof of the next lemma for completeness.

Lemma 2.6. Let G ⊂Un be a compact subgroup. Then R(G/G ∩T) is the subal-
gebra of R(G) generated by the elements ui j u∗kl , i, j, k, l ∈ {1, . . . , n}. Moreover, if
G =Un , then R(PUn)=R(Un/T) is isomorphic with the commutative ∗-algebra
presented by generators wi j,kl , 1≤ i, j, k, l ≤ n and submitted to the relations

n∑
j=1

wik, j j = δik =

n∑
j=1

w j j,ik, w∗i j,kl = w j i,lk,

n∑
k,l=1

wi j,klw
∗

pq,kl = δi pδ jq .

The isomorphism is given by wi j,kl 7→ uiku∗jl .

Proof. Let p : R(G)→ R(G ∩ T) be the restriction map. It is clear Ker(p) is
generated as a ∗-ideal by the elements ui j , i 6= j , and ui i − u j j . Let B be the
subalgebra generated by the elements ui j u∗kl . Then B is a Hopf ∗-subalgebra of
R(G) and it is clear that B ⊂ R(G)co p. To prove the reverse inclusion we form
the Hopf algebra quotient R(G)//B =R(G)/B+R(G) and denote by ρ :R(G)→
R(G)//B the canonical projection. It is not difficult to see that in R(G)//B we
have ρ(ui j ) = 0 if i 6= j and ρ(ui i ) = ρ(u j j ) for any i, j . Hence there exists a
Hopf ∗-algebra map p′ :R(G/T)→R(G)//B such that p′ ◦ p = ρ. It follows that
R(G)co p

⊂R(G)co ρ . But since our algebras are commutative, R(G) is a faithfully
flat B-module and hence by [Takeuchi 1972] (see also [Andruskiewitsch and Devoto
1995]) we have R(G)co ρ

= B, and hence R(G/G ∩T)=R(G)co p
= B.

The last assertion is just the reformulation of the standard fact that PUn is the
automorphism group of the ∗-algebra Mn(C) (see, e.g., [Wang 1998]). �

3. Half-commutative Hopf algebras

We now formally introduce half-commutative orthogonal Hopf algebras. Of course
the definition of half-commutativity can be given in a general context, as follows.
It was first formalized, in a probabilistic context, in [Banica et al. 2012].

Definition 3.1. Let A be an algebra. We say that a family (ai )i∈I of elements of A
half-commute if abc = cba for any a, b, c ∈ {ai , i ∈ I }. The algebra A is said to
be half-commutative if it has a family of generators that half-commute.
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At a Hopf algebra level, a reasonable definition seems to be the following one.

Definition 3.2. A half-commutative Hopf algebra is a Hopf algebra A generated
by the coefficients of a matrix corepresentation v = (vi j ) whose coefficients half-
commute.

We will not study half-commutative Hopf algebras in this generality. A reason for
this is that it is unclear if the half-commutativity relations outside of the orthogonal
case are the natural ones in the categorical framework of [Banica and Speicher
2009]. Thus we will restrict to the following special case.

Definition 3.3. A half-commutative orthogonal Hopf algebra is a Hopf ∗-algebra A
generated by the self-adjoint coefficients of an orthogonal matrix corepresentation
v = (vi j ) whose coefficients half-commute.

The first example is the universal one, defined in [Banica and Speicher 2009].

Definition 3.4. The half-liberated orthogonal Hopf algebra A∗o(n) is the universal
∗-algebra generated by self-adjoint elements {vi j | 1≤ i, j ≤ n} which half-commute
and such that the matrix v = (vi j )1≤i, j≤n in Mn(A∗o(n)) is orthogonal.

The existence of the Hopf algebra structural morphisms follows from the universal
property of A∗o(n), and hence A∗o(n) is a half-commutative orthogonal Hopf algebra.
We use the notation A∗o(n) = R(O∗n ), where O∗n is the half-liberated orthogonal
quantum group. We have R(O+n ) � R(O∗n ) � R(On), i.e., On ⊂ O∗n ⊂ O+n .
At n = 2 we have O∗2 = O+2 , but for n ≥ 3 these inclusions are strict.

Another example of half-commutative orthogonal Hopf algebra is the following
one, taken from [Banica et al. 2010].

Definition 3.5. The half-liberated hyperoctahedral Hopf algebra A∗h(n) is the uni-
versal ∗-algebra generated by self-adjoint elements {vi j | 1 ≤ i, j ≤ n} which
half-commute, such that vi jvik = 0 = vkiv j i for k 6= j , and such that the matrix
v = (vi j )1≤i, j≤n in Mn(A∗o(n)) is orthogonal.

Again the existence of the Hopf algebra structural morphisms follows from the
universal property of A∗h(n), and hence A∗h(n) is a half-commutative orthogonal
Hopf algebra. See [Banica et al. 2010] and [Weber 2012] for further examples.

The following lemma will be an important ingredient in the proof of the structure
theorem of half-commutative orthogonal Hopf algebras.

Lemma 3.6. Let A be a half-commutative orthogonal Hopf algebra generated by
the self-adjoint coefficients of an orthogonal matrix corepresentation v = (vi j )

whose coefficients half-commute. Then PvA is a commutative Hopf ∗-subalgebra
of A. If moreover A is noncommutative then there exists a Hopf ∗-algebra map
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p : A→ CZ2 such that for any i, j , p(vi j )= δi j s, where 〈s〉 = Z2, that induces a
preexact sequence

C→ PvA
i
→ A

p
→ CZ2→ C.

Proof. The key observation that PvA is commutative is Proposition 3.2 in [Banica
and Vergnioux 2010]. It is clear that PvA is a normal Hopf ∗-subalgebra of A,
and hence we can form the Hopf ∗-algebra quotient A//PvA = A/A(PvA)+, with
p : A→ A//PvA the canonical surjection. It is not difficult to see that in A//PvA
we have p(vi j )= 0 if i 6= j , p(vi i )= p(v j j ) for any i, j and if we put g = p(vi i ),
g2
= 1. So we have to prove that g 6= 1. If g = 1, then A//PvA is trivial and p = ε.

We know from [Chirvasitu 2011] that A is faithfully flat as a PvA-module (since
orthogonal Hopf algebras are cosemisimple), and hence by [Schneider 1992], we
have Aco p

= PvA. So if g = 1 we have Aco p
= PvA = A and A is commutative.

Thus if A is noncommutative we have g 6= 1, the map p satisfies the conditions in
the statement and we have the announced exact sequence (Lemma 2.5). �

Remark 3.7. The previous exact sequence is cocentral. Thus it is possible, in prin-
ciple, to classify the finite-dimensional half-commutative orthogonal Hopf algebras
according to the scheme used in [Bichon and Natale 2011]. The classification data
will involve in particular pairs (0, ω) formed by a finite subgroup 0 ⊂ PUn and a
cocycle ω ∈ H 2(0,Z2), see [Bichon and Natale 2011] for details.

4. The main construction

In this section we perform our main construction that associates to any self-transpose
compact subgroup G ⊂ Un a half-commutative orthogonal Hopf algebra A∗(G)
and we show any half-commutative orthogonal Hopf algebra arises in this way.

We begin with a well-known lemma. We give a proof for the sake of completeness.

Lemma 4.1. Let G ⊂Un be a compact subgroup, and denote by ui j the coordinate
functions on G. The following assertions are equivalent.

(1) G is self-transpose.

(2) There is a unique involutive Hopf ∗-algebra automorphism s :R(G)→R(G)
such that s(ui j )= u∗i j .

Moreover if G is self-transpose the automorphism is nontrivial if and only G is
nonreal.

Proof. Assume that G is self-transpose. Then we have an involutive compact group
automorphism

σ : G→ G, g 7→ (gt)−1
= ḡ,

which induces an involutive Hopf ∗-algebra automorphism s :R(G)→R(G) such
that s(ui j ) = u∗i j . Uniqueness is obvious since the elements ui j generate R(G)
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as a ∗-algebra. Conversely, the existence of s will ensure the existence of the
automorphism σ since G'Hom∗-alg(R(G),C), and hence G will be self-transpose.
The last assertion is immediate. �

Definition 4.2. Let G ⊂Un be a self-transpose nonreal compact subgroup. We de-
note by R(G)oCZ2 the crossed product Hopf ∗-algebra associated to the involutive
Hopf ∗-algebra automorphism s of Lemma 4.1.

Recall that the Hopf ∗-algebra structure of R(G)oCZ2 is defined as follows
(see, e.g., [Klimyk and Schmüdgen 1997]).

(1) As a coalgebra, R(G)oCZ2 =R(G)⊗CZ2.

(2) We have ( f⊗si )·(g⊗s j )= f si (g)⊗si+ j , for any f, g∈R(G) and i, j ∈{0, 1}.

(3) We have ( f ⊗ si )∗ = si ( f )∗⊗ si for any f ∈R(G) and i ∈ {0, 1}.

(4) The antipode is given by S(ui j ⊗ 1)= u∗j i ⊗ 1, S(ui j ⊗ s)= u j i ⊗ s (in short
S( f ⊗ si )= si (S( f ))⊗ si for any f ∈R(G) and i ∈ {0, 1}).

For notational simplicity we denote, for f ∈R(G), the respective elements f ⊗1
and f ⊗ s of R(G)oCZ2 by f and f s.

Definition 4.3. Let G ⊂Un be a self-transpose compact subgroup. We denote by
A∗(G) the subalgebra of R(G)oCZ2 generated by the elements ui j s, where i, j
range over {1, . . . , n}.

Proposition 4.4. Let G ⊂Un be a self-transpose compact subgroup. Then A∗(G)
is a Hopf ∗-subalgebra of R(G)oCZ2, and there exists a surjective Hopf ∗-algebra
morphism

π : A∗o(n)→A∗(G), vi j 7→ ui j s.

Hence A∗(G) is a half-commutative orthogonal Hopf algebra, and is noncommuta-
tive if and only if G is doubly nonreal.

Proof. We have (ui j s)∗ = su∗i j = ui j s and hence the elements ui j s are self-adjoint
and generate a ∗-subalgebra. Moreover, using the coproduct and antipode formula,
it is immediate to check that 1(ui j s) =

∑
k uiks ⊗ uk j s and S(ui j s) = u j i s, and

hence A∗(G) is an orthogonal Hopf ∗-subalgebra of R(G)oCZ2. We have

ui j suklsu pqs = ui j u∗klu pqs = u pqu∗klui j s = u pqsuklsui j s.

Hence the coefficients of the orthogonal matrix (ui j s) half-commute, and we get
our Hopf ∗-algebra map π : A∗o(n)→A∗(G). The algebra A∗(G) is commutative
if and only if the elements ui j s pairwise commute. We have ui j sukls = ui j u∗kl , so
A∗(G) is noncommutative if and only if there exist i, j, k, l with ui j u∗kl 6= uklu∗i j ,
which precisely means that G is doubly nonreal. �

The Hopf ∗-algebra A∗(G) is part of a natural preexact sequence.
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Proposition 4.5. Let G ⊂ Un be a self-transpose compact subgroup. Then there
exists a Hopf ∗-algebra embedding R(G/G∩T) ↪→A∗(G) and a preexact sequence

C→R(G/G ∩T)
j
→A∗(G)

q
→ CZ2→ C.

Proof. The map q is defined as the restriction to A∗(G) of the Hopf ∗-algebra
map ε⊗ id : R(G)o CZ2→ CZ2. Hence we have q(ui j s) = δi j s. Let B be the
subalgebra of A∗(G) generated by the elements ui j sukls = ui j u∗kl . It is clear that
B =A∗(G)co q , and hence we have a preexact sequence

C→ B
j
→A∗(G)

q
→ CZ2→ C.

Consider now the injective Hopf algebra map ν :R(G) ↪→R(G)oCZ2, f 7→ f ⊗1.
Since R(G/G ∩T)=R(G)G∩T is the subalgebra generated by the elements ui j u∗kl
(Lemma 2.6), we have ν(R(G/G∩T))= B, and we get our preexact sequence. �

We will prove (Theorem 4.7) that a noncommutative half-commutative orthogonal
Hopf algebra is isomorphic to A∗(G) for some compact group G ⊂Un . Before this
we first prove that the morphism in Proposition 4.4 is an isomorphism A∗o(n) '
A∗(Un). This can be seen as a consequence of the forthcoming Theorem 4.7, but
the proof is less technical while it already well enlightens the main ideas.

Theorem 4.6. We have a Hopf ∗-algebra isomorphism A∗o(n)'A∗(Un).

Proof. Let π : A∗o(n)→A∗(Un) be the Hopf ∗-algebra map from Proposition 4.4,
defined by π(vi j )= ui j s. It induces a commutative diagram of Hopf algebra maps
with preexact rows

C −−−→ PvA∗o(n)
i

−−−→ A∗o(n)
p

−−−→ CZ2 −−−→ Cyπ| yπ ∥∥∥
C −−−→ R(PUn)

j
−−−→ A∗(Un)

q
−−−→ CZ2 −−−→ C

where the sequence on the top row is the one of Lemma 3.6 and the sequence on
the lower row is the one of Proposition 4.5. The standard presentation of R(PUn)

(Lemma 2.6) ensures the existence of a ∗-algebra map R(PUn) → PvA∗o(n),
ui j u∗kl 7→ vi jvkl , which is clearly an inverse isomorphism for π|. Thus we can
invoke the short five lemma from [Banica et al. 2013, Theorem 3.4] to conclude
that π is an isomorphism. �

A precursor for the previous isomorphism A∗o(n)'A∗(Un) was the matrix model
A∗o(n) ↪→ M2(R(Un)) found in [Banica et al. 2011, Section 8].

Theorem 4.7. Let A be a noncommutative half-commutative orthogonal Hopf
algebra. Then there exists a self-transpose doubly nonreal compact group G with
T ⊂ G ⊂Un such that A 'A∗(G).
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Proof. Let A be a noncommutative half-commutative orthogonal Hopf algebra.

Step 1. We first write a convenient presentation for A. By Lemma 3.6 there exist
surjective Hopf ∗-algebra maps

A∗o(n)
f
→ A

p
→ CZ2

with p f (vi j )= δi j s. We denote by V the comodule over A∗o(n) corresponding to
the matrix v = (vi j ) ∈ Mn(A∗o(n)), with its standard basis e1, . . . , en . To any linear
map λ : C→ V⊗m , with

λ(1)=
∑

i1,...,im

λ(i1, . . . , im)ei1 ⊗ · · ·⊗ eim ,

we associate families X (λ) and X ′(λ) of elements of A∗o(n) defined by

X (λ)=
{ ∑

j1,..., jm
vi1 j1 · · ·vim jmλ( j1, . . . , jm)−λ(i1, . . . , im)1

∣∣ i1, . . . , im ∈ {1, . . . ,n}
}
,

X ′(λ)=
{ ∑

j1,..., jm
v jm im · · ·v j1i1λ( j1, . . . , jm)−λ(i1, . . . , im)1

∣∣ i1, . . . , im ∈ {1, . . . ,n}
}
.

These elements generate a ∗-ideal in A∗o(n), which is in fact a Hopf ∗-ideal, that we
denote by Iλ. We also view V as an A-comodule via f , and the map λ is a morphism
of A-comodules if and only if f (Iλ) = 0. Now given a family C of linear maps
C→ V⊗m , m ∈N, we denote by IC the Hopf ∗-ideal of A∗o(n) generated by all the
elements of X (λ) and X ′(λ), λ ∈ C. It follows from Woronowicz Tannaka–Krein
duality [Woronowicz 1988] that f induces an isomorphism A∗o(n)/IC ' A for a
suitable set C of morphisms of A-comodules (typically C is a family of morphisms
that generate the tensor category of corepresentations of A).

Step 2. We now construct a compact group G with T ⊂ G ⊂Un . We start with a
presentation A∗o(n)/IC ' A as in Step 1. The existence of the map p : A→ CZ2

implies that for λ : C→ V⊗m , if λ 6= 0 and λ ∈ C, then m is even (evaluate p on
the elements of X (λ)). We associate to λ : C→ V⊗2m

∈ C the following families
of elements in R(Un), where in each case i1, . . . , i2m range over {1, . . . , n}:

X1(λ)=
{ ∑

j1,..., j2m

ui1 j1u∗i2 j2 · · · ui2m−1 j2m−1u∗i2m j2m
λ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X ′1(λ)=
{ ∑

j1,..., j2m

u∗j1i1
u j2i2 · · · u

∗

j2m−1i2m−1
u j2m i2mλ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X2(λ)=
{ ∑

j1,..., j2m

u∗i1 j1ui2 j2 · · · u
∗

i2m−1 j2m−1
ui2m j2mλ( j1, . . . , j2m)− λ(i1, . . . , i2m)1

}
,

X ′2(λ)=
{ ∑

j1,..., j2m

u j1i1u∗j2i2
· · · u j2m−1i2m−1u∗j2m i2m

λ( j1, . . . , j2m)− λ(i1, . . . , i2m)1
}
.
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Now denote by JC the ∗-ideal of R(Un) generated by the elements of X1(λ), X ′1(λ),
X2(λ) and X ′2(λ) for all the elements λ ∈ C. In fact JC is a Hopf ∗-ideal and we
define G to be the compact group G ⊂ Un such that R(G) ' R(Un)/JC. The
existence of a Hopf ∗-algebra map ρ :R(G)→ CZ, ui j 7→ δi j t , where t denotes
a generator of Z, is straightforward, and thus T ⊂ G. Also it is easy to check the
existence of a Hopf ∗-algebra map R(G)→ R(G), ui j 7→ u∗i j , and this shows
that G is self-transpose. We have, by Proposition 4.4, a Hopf ∗-algebra map
π : A∗o(n)→A∗(G), vi j 7→ ui j s. It is a direct verification to check that π vanishes
on IC, so induces a Hopf ∗-algebra map π : A→ A∗(G). We still denote by vi j

the element f (vi j ) in A. We get a commutative diagram with preexact rows

C −−−→ PvA
i

−−−→ A
p

−−−→ CZ2 −−−→ Cyπ | yπ ∥∥∥
C −−−→ R(G/T)

j
−−−→ A∗(G)

q
−−−→ CZ2 −−−→ C

where the sequence on the top row is the one of Lemma 3.6 and the sequence on
the lower row is the one of Proposition 4.5. To prove that π is an isomorphism,
we just have, by the short five-lemma for cosemisimple Hopf algebra [Banica
et al. 2013], to prove that π | : PvA→R(G/T) is an isomorphism. Let J ′C be the
∗-ideal of R(PUn) generated by the elements of X1(λ), X ′1(λ), X2(λ) and X2(λ)

for all the elements λ ∈ C. It is clear, using the Z-grading on R(G) induced by
the inclusion T ⊂ G and the fact that JC is generated by elements of degree zero,
that J ′C= JC∩R(PUn), so R(G/T)'R(PUn)/J ′C. But then the natural ∗-algebra
map R(PUn)→ PvA (Lemma 2.6) vanishes on J ′C, and hence induces a ∗-algebra
map R(G/T)→ PvA, which is an inverse for π |. Hence π is an isomorphism,
and the algebra A being noncommutative, it follows from Proposition 4.4 that G is
doubly nonreal. �

The proof of Theorem 4.7 also provides a method to find the compact group G
from the half-commutative orthogonal Hopf algebra A.

Example 4.8. On can check, by following the proof of Theorem 4.7, that the
hyperoctahedral Hopf algebra A∗h(n) is isomorphic to A∗(Kn), where Kn is the
subgroup of Un formed by matrices having exactly one nonzero element on each
column and line (with Kn ' Tn o Sn).

Remark 4.9. Let H ⊂G ⊂Un be self-transpose compact subgroups. The inclusion
H ⊂ G induces a surjective Hopf ∗-algebra map A∗(G)→ A∗(H), compatible
with the exact sequence in Proposition 4.5. Thus if the inclusion H ⊂ G induces
an isomorphism H/H ∩T' G/G ∩T, the short five lemma ensures that A∗(G)'
A∗(H). In particular, A∗(Un)'A∗(SUn).
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We now propose a tentative orthogonal half-liberation for the unitary group. In
fact another possible half-liberation of Un has already been proposed in [Bhowmick
et al. 2011], using the symbol A∗u(n). We shall use the notation A∗∗u (n) for the
object we construct, which is different from the one in [Bhowmick et al. 2011].

Example 4.10. Let A∗∗u (n) be the quotient of Au(n) by the ideal generated by the
elements

abc− cba, a, b, c,∈ {ui j , u∗i j },

Then A∗∗u (n) is isomorphic with A∗(U2,n), where U2,n is the subgroup of U2n

consisting of unitary matrices of the form(
A B
−B A

)
, A, B ∈ Mn(C),

and hence is a half-commutative orthogonal Hopf algebra.

Proof. Let ω ∈ C be a primitive fourth root of unity. We start with the probably
well-known surjective Hopf ∗-algebra map

Ao(2n)→ Au(n),

xi, j , xn+i,n+ j 7→
ui j + u∗i j

2
, i, j ∈ {1, . . . , n},

xn+i, j 7→
ui j − u∗i j

2ω
, i, j ∈ {1, . . . , n},

xi,n+ j 7→
u∗i j − ui j

2ω
, i, j ∈ {1, . . . , n},

where xi, j denote the standard generators of Ao(2n). It is clear that it induces
a surjective Hopf ∗-algebra map A∗o(2n)→ A∗∗u (n), and hence A∗∗u (n) is a half-
commutative orthogonal Hopf algebra.

Let J be the ideal of A∗o(2n) generated by the elements

vi, j − vn+i,n+ j , vn+i, j + vi,n+ j , i, j ∈ {1, . . . , n}

(where vi, j denotes the class of xi j in A∗o(n)). Then J is a Hopf ∗-ideal in A∗o(2n) and
the previous Hopf ∗-algebra map induces an isomorphism A∗o(2n)/J ' A∗∗u (n) (the
inverse sends ui j to xi j+ωxn+i, j ). Now having the presentation A∗o(2n)/J ' A∗∗u (n),
the proof of Theorem 4.7 yields A∗∗u (n)'A∗(U2,n). �

5. Representation theory

In this section we describe the fusion rules of A∗(G) for any compact group G (as
usual by fusion rules we mean the set of isomorphism classes of simple comodules
together with the decomposition of tensor products of simple comodules into simple
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constituents). Thanks to Theorem 4.7, this gives a description of the fusion rules of
any half-commutative orthogonal Hopf algebra.

If A is a cosemisimple Hopf algebra, we denote by Irr(A) the set of simple
(irreducible) comodules over A. If A = R(G) for some compact group, then
Irr(R(G))= Irr(G), the set of isomorphism classes of irreducible representations of
G. By a slight abuse of notation, for a simple A-comodule V , we write V ∈ Irr(A).

Let G ⊂Un be a self-transpose compact subgroup. Recall that the transposition
induces an involutive compact group automorphism

σ : G→ G, g 7→ (gt)−1
= ḡ.

For V ∈ Irr(G), we denote by V σ the (irreducible) representation of G induced by
the composition with σ . If U is the fundamental n-dimensional representation of
G, then Uσ

'U .
We begin by recalling the description of the fusion rules for the crossed product

R(G)oCZ2. See [Wang 1995b, Theorem 3.7], for example.

Proposition 5.1. Let G ⊂Un be a self-transpose compact subgroup. Then there is
a bijection

Irr(R(G)oCZ2)' Irr(G)q Irr(G).

More precisely, if X ∈ Irr(R(G)oCZ2), then there exists a unique V ∈ Irr(G) with
either X ' V or X ' V ⊗ s. For V,W ∈ Irr(G), we have

V ⊗ (W ⊗ s)' (V ⊗W )⊗ s,

(V ⊗ s)⊗W ' (V ⊗W σ )⊗ s,

(V ⊗ s)⊗ (W ⊗ s)' V ⊗W σ .

Proof. The description of the simple comodules follows in a straightforward manner
from the fact that R(G)oCZ2 =R(G)⊗CZ2 as coalgebras. The tensor product
decompositions are obtained by using character theory; see [Woronowicz 1987] or
[Klimyk and Schmüdgen 1997]. �

Remark 5.2. If G ⊂Un is connected and has a maximal torus T of G contained
in Tn , it follows from highest weight theory that V σ

' V for any V ∈ Irr(G). We
do not know if this is still true without these assumptions.

To express the fusion rules of A∗(G), we need more notation. Let G ⊂Un be a
compact subgroup, and denote by U the fundamental n-dimensional representation
of G. For m ∈ Z, we put

Irr(G)[m] = {V ∈ Irr(G), V ⊂U⊗m
⊗ (U ⊗U )⊗l for some l ∈ N},

where U⊗0
= C and for m < 0 U⊗m

=U⊗−m .
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Now if V ∈ Irr(G)[0], then V ∈ Irr(G/G ∩ T) (see Lemma 2.6), and since
R(G/G ∩T)⊂A∗(G), we get an element in Irr(A∗(G)), still denoted V .

If V ∈ Irr(G)[1], then V ⊂ U ⊗ (U ⊗ U )⊗l , for some l ∈ N, and hence the
coefficients of V ⊗ s belong to A∗(G). Thus we get an element of Irr(A∗(G)),
denoted V s.

Corollary 5.3. Let G ⊂Un be a self-transpose compact subgroup. Then the map

Irr(G)[0]q Irr(G)[1]→ Irr(A∗(G))

given by

V 7→
{

V if V ∈ Irr(G)[0],
V s if V ∈ Irr(G)[1],

is a bijection. Moreover, for V ∈ Irr(G)[0], W,W ′ ∈ Irr(G)[1], we have

V ⊗W s ' (V ⊗W )s,

W s⊗ V ' (W ⊗ V σ )s,

W s⊗W ′s 'W ⊗W ′σ ,

W s 'W σ s.

Proof. The existence of the map follows from the discussion before the corollary,
while injectivity comes from Proposition 5.1. For V ∈ Irr(G)[m], V ′ ∈ Irr(G)[m′], the
simple constituents of V ⊗V ′ all belong to Irr(G)[m+m′], and that V σ

∈ Irr(G)[−m].
So the isomorphisms in the statement (that all come from the isomorphisms of
Proposition 5.1) yield decompositions into simple A∗(G)-comodules. Thus we
have a family of simple A∗(G)-comodules, stable under decompositions of tensor
products and conjugation, and that contains the fundamental comodule Us: we
conclude (e.g., from the orthogonality relations [Woronowicz 1987; Klimyk and
Schmüdgen 1997]) that we have all the simple comodules. �
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SUPERDISTRIBUTIONS, ANALYTIC AND
ALGEBRAIC SUPER HARISH-CHANDRA PAIRS

CLAUDIO CARMELI AND RITA FIORESI

We extend the theory of super Harish-Chandra pairs, originally developed
by Kostant and Koszul for smooth Lie supergroups, to algebraic super-
groups over a field of characteristic zero. We also review the corresponding
complex analytic theory and we give a characterization of the action of an
algebraic (resp. complex analytic) super Harish-Chandra pair on a super-
variety (resp. complex analytic supermanifold).

1. Introduction

The main purpose of this paper is to extend the theory of super Harish-Chandra
pairs, originally developed by Kostant [1977] and Koszul [1983] for smooth Lie
supergroups, to algebraic supergroups, enlightening similarities and differences
with the complex analytic setting, treated in detail by Vishnyakova [2011]. This
approach appears to be especially fruitful in the study of algebraic supergroup
representations and more in general supergroup actions on supervarieties.

Roughly speaking, a super Harish-Chandra pair (SHCP for short) consists of a pair
(G0, g), where G0 is an ordinary algebraic (resp. analytic or smooth) supergroup
and g is a Lie superalgebra, with even part g0 = Lie(G0). If G is a supergroup
(algebraic, analytic or differential), we have a natural SHCP associated with it:
(G0,Lie(G)). What appears to be surprising is the fact that the correspondence
between supergroups and SHCP is bijective (up to isomorphism), i.e., starting from
a given SHCP (G0, g), we can reconstruct a supergroup, which has a corresponding
SHCP (G0,Lie(G))= (G0, g), and such supergroup is unique. Actually more is
true: there is an equivalence of categories between the category of supergroups
(algebraic, analytic or differential) and the category of SHCPs (algebraic, analytic
or differential), once morphisms are properly defined.

Such equivalence in the smooth context dates back to [Koszul 1983], while the
analytic setting is due to Vishnyakova [2011], though a careful reading of [Koszul
1983], shows that the complex theory appeared already, somehow implicitly, in that

MSC2010: primary 14A22, 14M30, 32C11, 58A50; secondary 16S38, 58C50.
Keywords: supergroups, supergeometry.
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paper. Vishnyakova applied the result about the equivalence of categories between
analytic supergroups and analytic SHCPs to provide a characterization of those
complex homogeneous analytic supermanifolds that are split. We take her work
a step forward: we characterize the concept of action of an analytic SHCP on an
analytic supermanifold, proving it is equivalent to the ordinary notion of action
of an analytic super Lie group on an analytic supermanifold. Our result, which is
novel, immediately carries over to the affine algebraic category.

After our paper appeared on the web on June 2011, Masuoka [2012] published a
more general and very interesting result in which he quoted our work, giving us the
credit for being the first authors to treat the algebraic setting for the equivalence of
categories between algebraic supergroups and algebraic SHCPs in characteristic
zero. Masuoka is able to obtain a generalization of our result through a characteristic
free approach, in purely algebraic terms.

In his paper, Masuoka defines a category of SHCPs whose objects are pairs
consisting of an Hopf algebra C and a finite dimensional right C–comodule W ,
together with appropriate compatibility conditions. In the characteristic zero case,
the category of Masuoka’s SHCPs is anti-isomorphic to the algebraic SHCP category
we use in the present paper. He then establishes an equivalence between the category
of such SHCPs (C,W ) and the category of affine (i.e., super commutative and
finitely generated) Hopf superalgebras, which in turn is contravariantly equivalent
to the category of affine algebraic supergroups. The functor establishing such an
equivalence associates to each pair (C,W ) a subalgebra A(C,W ) of the completion
of the smash product Hopf algebra C×′T (W ) (here T (W ) denotes the tensor algebra
of W ). In this sense, Masuoka’s approach seems more related to Kostant’s proof of
the categorical equivalence between smooth SHCPs and smooth super Lie groups.
Indeed in his approach Kostant realizes the structure sheaf of the supergroup as a
subalgebra of the algebraic dual of the smash product R[G0]×

′U(g). We believe
that the importance of Koszul’s approach relies in the simple geometrical realization
of the sheaf as the coinduced module

HomU(g0)(U(g),OG0(G0)),

which is very explicit. This is particularly important when one tries to deduce
general properties of super Lie groups (see, for instance, the characterization of
split homogeneous supermanifold in [Vishnyakova 2011], or our Proposition 4.3).
Moreover, as far as we understand, it is still an open problem to establish whether
the correspondence between SHCPs as we define them and algebraic supergroups
is an equivalence of categories in the positive characteristic case.

Since our methods are essentially different from Masuoka’s and present a geo-
metric point of view particularly useful for the applications (see our Section 4), we
believe that our work still deserves a place in the literature.
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Our treatment begins with the definition of distribution superalgebra. We keep
our discussion general enough to accommodate both the analytic and algebraic
category and we believe this is one of the strengths of our paper and it singles
it out from the previous treatments of the same subject we quoted above, which
usually deal with just one category (algebraic, analytic or differential) at a time. The
distribution superalgebra is a key object; its definition in differential supergeometry
dates back to Kostant [1977], who first recognized its importance in this context.
As we show in our work, the distribution superalgebra D(G) of a supergroup G
(algebraic, analytic or differential) is naturally equipped with a Hopf superalgebra
structure and it is indeed this Hopf structure, which makes possible the reconstruction
of the algebraic, analytic or differentiable supergroup associated with an SHCP.
In fact, when the characteristic of the ground field k is zero, D(G) is linearly
isomorphic to k|G| ⊗U(g) (k|G| denoting the ordinary group algebra associated
with the topological group |G| underlying the supergroup G). This allows us to
endow k|G|⊗U(g) with an Hopf superalgebra structure, inherited by D(G) via the
above mentioned linear isomorphism. The superalgebra of the global sections of the
structural sheaf of the algebraic supergroup G, associated (uniquely) with the given
SHCP (|G|, g), is then realized inside the dual of k|G| ⊗U(g), thus inheriting its
Hopf structure. This is essentially the reason why the above mentioned equivalence
of categories works, though the proofs and the statements are necessarily more
complicated, since of the technicalities involved, which at this point differ depending
on the category we consider, for example for the analytic category we cannot take
into consideration the global sections only, but we need to look at the whole sheaf.

This paper is organized as follows.
In Section 2 we describe the superalgebra of distributions of an analytic or

an algebraic supergroup, establishing its relation with the universal enveloping
superalgebra. The material exposed here is general common knowledge, though
we are not aware of a treatment as complete and general as ours.

Section 3 contains the main results of our paper, including Theorem 3.6, which
establishes the equivalence of categories between SHCPs (algebraic or analytic) and
supergroups (algebraic or analytic). For the reader’s convenience, this is preceded
(starting on page 39) by a brief review of the equivalence between the category of
analytic SHCPs and the category of analytic supergroups.1 Subsequently (page 42)
we establish the equivalence between the category of algebraic SHCPs and the
category of affine algebraic supergroups under suitable hypothesis for the ground
field. The results of this section were generalized in [Masuoka 2012], with totally
different methods, posted on the web at a later date than ours.

In Section 4 we provide an equivalent approach to the study of the actions of

1The material of this section appeared already, essentially in this form, in [Vishnyakova 2011].
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supergroups, via SHCPs. This result extends the result stated in [Deligne and
Morgan 1999] for the smooth category (see also [Balduzzi et al. 2009; Carmeli
et al. 2011]). These results are novel as far as we know.

We believe the present work is justified, given the importance of the algebraic
theory for practical purposes together with the lack of an appropriate and complete
available reference.

For all the definitions and main results in supergeometry expressed with our
notation, we refer the reader to [Fioresi and Gavarini 2011] or [Fioresi and Gavarini
2012, Chapter 2] or [Carmeli et al. 2011, Chapters 1, 4, 10]. In particular we shall
employ both the sheaf-theoretic and the functor of points approach to supergeometry.
On this we invite the reader to consult the classical references [Deligne and Morgan
1999; Manin 1988; Varadarajan 2004].

2. The superalgebra of distributions

We start by giving the definition of distribution and distribution superalgebra. Our
treatment is general enough to accommodate the two very different categories of
supermanifolds and superschemes. For the classical definitions we send the reader
to [Jantzen 2003, page 95], [Demazure and Gabriel 1970, Chapter II §4, no. 6], and
[Dieudonné 1970]. For the basic definitions of supergeometry we refer the reader
to [Manin 1988; Varadarajan 2004; Deligne and Morgan 1999; Fioresi and Gavarini
2012].

Distributions. Let k be the ground field.
Let X = (|X |,OX ) be an analytic supermanifold or an algebraic superscheme

over the field k.2

Let X (k) be the k-points of X , that is X (k) = Hom(k0|0, X) in the functor of
points notation. For an analytic supermanifold X we have that its k-points X (k) are
identified with the topological points |X |, while for X a superscheme the k-points,
are in one to one correspondence with the rational points, that is, the points x ∈ |X |
for which OX,x/m X,x ∼= k, m X,x being the maximal ideal in the stalk OX,x .

Definition 2.1. A distribution supported at x ∈ X (k) of order at most n is a mor-
phism φ : OX,x → k, with mn+1

X,x ⊂ ker(φ) for some n. The set of all distributions
at x of order n is denoted as Dn(X, x), while D(X, x) denotes all distributions
supported at x . Both Dn(X, x) and D(X, x) have a natural super vector space
structure.

We also define
D(X)=

⋃
x∈X (k)

D(X, x)

2If X is an analytic supermanifold, k = R or k = C or even k =Qp , the p-adic numbers (see for
example [Serre 1992]). If X is a superscheme, k is a generic field.
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as the distributions of finite order of X . Also D(X) has a natural super vector space
structure.

Observation 2.2. (1) We have

Dn(X, x)∼= (OX,x/mn+1
X,x )

∗,

since if φ ∈ Dn(X, x), we have φ(mn+1
X,x ) = 0; hence φ factors and becomes an

element in (OX,x/mn+1
X,x )

∗. Further notice that

D0(X, x)= k, D1(X, x)= k⊕ (m X,x/m2
X,x)
∗.

Hence D1(X, x)+ := (m X,x/m2
X,x)
∗ becomes identified with the tangent space to

X at the point x .

(2) If X is an affine algebraic superscheme, O(X) the superalgebra of the global
sections of its structural sheaf, a distribution supported at x of order n can be
equivalently seen as a morphism φ : O(X)→ k, with mn

x ⊂ ker(φ), where mx :=

{φ ∈ O(X) |φ(x) = 0} is the maximal ideal of all the functions vanishing at x ,
where as usual in supergeometry f (x) simply means the image in OX,x/m X,x of the
element f ∈ O(X) under the natural morphisms: O(X)→ OX,x → OX,x/m X,x ∼= k.
(Notice that since x is rational, we have O(X)= k⊕mx and OX,x/m X,x ∼= k).

We leave it to the reader to check that the two definitions of distributions given
are essentially the same in this case.

(3) If X is a smooth supermanifold, that is, if we are in the differential category, we
can view a point supported distribution as a morphism φ : O(X)→R, mn

x ⊂ ker(φ),
where mx is the maximal ideal corresponding to the point x ∈ |X | (see [Kostant
1977] and [Carmeli et al. 2011, 4.7]), thus recovering the same definition as in (2)
for the affine algebraic category. This is one of the many analogies between the
category of affine supervarieties and smooth supermanifolds.

Example 2.3 (distributions on k p|q). Here we assume char(k) = 0. Consider the
superspace X=k p|q (both in the analytic and affine algebraic context). Let x1 . . . x p,

ξ1 . . . ξq denote the global coordinates and m0 = (x1 . . . x p, ξ1 . . . ξq) the maximal
ideal in the stalk OX,0 at the origin. We have

OX,0/mn+1
0
∼= spank

{
1, x i1

1 . . . x
i p
p ξ

i p+1
1 . . . ξ

i p+q
q ,

∑
ik = n

}
.

If I = (i1 . . . i p+q), let X I denote the monomial x i1
1 . . . x

i p
p ξ

i p+1
1 . . . ξ

i p+q
q . Since the

distributions at 0 of order n are the dual of the super vector space OX,0/mn+1
0 , we

have that a basis for the super vector space of distributions at the point 0 is given by
φJ such that φJ (X I )= δI J , with I = (i1 . . . i p+q), J = ( j1 . . . jp+q) multiindices,
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ik =

∑
jk = n. So we have

φ j1... jp+q ( f )=
1

j1! . . . jp+q !

(
∂

∂x1

) j1
. . .

(
∂

∂x p

) jp
(
∂

∂ξq

) jp+1

. . .

(
∂

∂ξ1

) jp+q

( f )(0).

The superalgebra of distributions of an analytic supermanifold. In this section
we characterize the distributions for an analytic supermanifold M = (|M |,OM) in
the following way. Distributions at the point x ∈ |M | are the elements in O∗M,x
whose kernel contains an ideal of finite codimension, in analogy with Kostant’s
treatment [1977] for the smooth category. We start with a lemma.

Lemma 2.4. Let M = (|M |,OM) be an analytic supermanifold, x ∈ |M |, m X,x the
ideal in OM,x of the sections vanishing at x. For each positive integer p, m p

X,x is an
ideal of finite codimension.

Proof. It follows from the Taylor expansion formula. In fact, every element f in
OM,x can be written as f =

∑
I f I θ

I , where f I is an element in the classical stalk
of germs of holomorphic functions HM,x . For each positive integer q, a germ f I

can in turn be written as

f I (z)= f I (x)+
∑

K : 1≤|K |≤q−1

(∂K f I )(x)zK
+

∑
J : |J |=q

z J h I,J (z)

where I , J , K are multiindices. Hence we can write

f =
∑

I

(
f I (x)+

∑
R : |R+I |<p

(∂R f I )(x)zR
)
θ I
+

∑
|I+R|=p

h I,R(z)zRθ I .

From this formula, it follows that the elements in m p
X,x are generated by the mono-

mials {zK θ I
}|K+I |≤p, and OM,x/m p

M,x has finite dimension. �

Proposition 2.5. An ideal J in OM,x has finite codimension if and only if there
exists an integer p > 0 such that m p

M,x ⊆ J .

Proof. The “if” part follows from the previous lemma. For the “only if” part we
reason as follows. Consider the descending chain of ideals J +m p

M,x ⊇ J +m p+1
M,x .

Since J has finite codimension there exists q such that J +mq
M,x = J +mq+1

M,x .
From this it follows that mq

M,x ⊆ J +mq
M,x ·m M,x . Since, by the previous lemma,

mq
M,x is finitely generated we can apply the super version of Nakayama lemma (see

[Varadarajan 2004]) and we get mq
M,x ⊆ J . �

We have then obtained the following result, which establishes a parallelism with
the smooth category.

Theorem 2.6. The distributions on an analytic supermanifold M supported at a
point x correspond to morphisms f : OM,x → k whose kernel contains an ideal of
finite codimension.
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The distributions of a supergroup at the identity. We now want to restrict our
attention to the distributions of a supergroup (analytic or algebraic) at the identity
element e ∈ G(k).

As a consequence of the Observation 2.2, we have

D1(G, e)+ ∼= (mG,e/m2
G,e)
∗ ∼= Te(G)= Lie(G).

It is only natural to expect D(G, e) to be identified with U(g), with g = Lie(G).
This is true, as we shall see, provided we exert some care.

As we remarked in the Definition 2.1 the distributions at the identity are a super
vector space, however there is a natural additional superalgebra structure that we
can associate to the super vector space of distributions, by defining the convolution
product.

Definition 2.7. Let φ, ψ ∈ D(G, e). We define their convolution product as the
following morphism:

(φ ?ψ)( f )= (φ⊗ψ)µ∗( f ), f ∈ OG,e

where µ denotes the multiplication in the supergroup G and µ∗ the corresponding
sheaf morphism.

The following proposition is a straightforward check.

Proposition 2.8. The convolution product makes D(G, e) into an associative su-
peralgebra, its unit being the evaluation at e, denoted by eve : OG,e→ k.

We now want to examine the relation of D(G, e) with the universal enveloping
superalgebra of the supergroup G. Since D(G, e) ⊃ D1(G, e)+ ∼= Lie(G), by
the universal property of the universal enveloping superalgebra U(g), we have a
superalgebra morphism α :U(g)→ D(G, e).

Observation 2.9. If G is an algebraic supergroup and the characteristic of k is
positive, say char(k)= p> 0, then D(G, e) contains more than the elements coming
from U(g) (refer to Example 2.3). This is because the divided powers Xm/m! are
in D(G, e) but not in U(g). Again similarly, as in the classical situation, we have
that any morphism U(g)→ D(G, e) factors via the universal enveloping restricted
algebra Ur (g):

U(g)→Ur (g)=U(g)/(X p
− X [p])→ D(G, e)

where X [p] denotes the derivation in g corresponding to p-times the derivation X
(which is a derivation here, since we are in characteristic p).

Let char(k)= 0.

Proposition 2.10. The morphism α :U(g)→ D(G, e) is an isomorphism.
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Proof. This is done essentially in the same way as in the classical setting, which is
detailed in [Varadarajan 2004, Chapter I] for the analytic category and [Demazure
and Gabriel 1970, Chapter II, 6, 1.1] for the algebraic category. �

Proposition 2.11. There is an isomorphism of the superalgebra of distributions on
a supergroup G and the superalgebra of the left-invariant differential operators
on G. In this situation U(g) is isomorphic to the superalgebra of the left-invariant
differential operators on G.

Proof. The same remarks as in the previous proof apply. �

The distributions of an affine algebraic supergroup. We now want to restrict
ourselves to the case of affine algebraic supergroups. As we shall see, this algebraic
setting shares many similarities with the differential one.

Consider the module of distributions D(G) (see Observation 2.2):

D(G)=
⋃

x∈G(k)

D(G, x)⊂ O(G)∗.

Definition 2.12. If φ =
∑
φpi is a distribution with φpi ∈ D(G, pi ) we say that

φ is supported at {pi }. On the whole D(G) we have a well-defined associative
product, called the convolution product:

(φp ? φq)( f )= (φp⊗φq)µ
∗( f )

and its unit is eve, the evaluation at the unit element: eve( f ) = f (e). Here µ∗

denotes (as before) the comultiplication in the Hopf superalgebra O(G).

Observation 2.13. If φp and φq are distributions supported at p and q respectively,
then φp ? φq is supported at pq . This is a consequence of the fact that

µ∗(m pq)⊂ m p⊗O(G)+O(G)⊗mq

where mx is as usual the maximal ideal of the sections in O(G) vanishing at
x ∈ G(k). mx =mx,0+ JO(G), that is, mx is the sum of mx,0 the ordinary maximal
ideal corresponding to the topological rational point x ∈ G(k) and the ideal JO(G)

generated by the odd sections in O(G).

Lemma 2.14. Let φg ∈ D(G, g). Then there exists a unique φe ∈ D(G, e) such that
φe = evg−1 ? φg.

Proof. Since φg = (evg ? evg−1) ? φg, define φe = evg−1 ? φg ∈ D(G, e). �

Proposition 2.15. D(G) is a super Hopf algebra with comultiplication 1, counit ε
and antipode S given by

1(φg)( f ⊗g) := φg( f ·g), ε(φg)( f ) := φg(eve( f )), S(φg)( f ) := φg(i∗( f )),

where i : G→ G denotes the inverse morphism.
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Proof. Direct check. �

Let k|G| be the group algebra corresponding to the ordinary group G(k), i.e.,

k|G| =
{ ∑

g∈G(k)
λg∈k

λgg
}
.

Proposition 2.16. We have a linear isomorphism

9 : D(G)→ k|G| ⊗U(g), φg 7→ g⊗φe,

which endows k|G| ⊗U(g) of a Hopf superalgebra structure. This structure is
induced by the natural Hopf structures on the group algebra k|G| and U(g):

1k|G|(g)= g⊗ g, 1U(g)(U )=U ⊗ 1+ 1⊗U, g ∈ G(k),U ∈ g.

The superalgebra structure is defined by

(g⊗ X)(h⊗ Y )= gh⊗ (h−1 X)Y, g ∈ G(k), X, Y ∈U(g),

with h−1 X := evh−1 ? X ? evh . (By Proposition 2.10 we identify distributions at e
with elements in U(g).)

Proof. This is done with a direct check. We just point out that it is enough to do
such check just on generators. �

3. Super Harish-Chandra pairs

The theory of super Harish-Chandra Pairs (SHCP) that we shall develop presently
provides an equivalent way to approach the analytic or affine algebraic supergroups.

Definition of an SHCP. Any time we say supergroup we mean an analytic or an
affine algebraic supergroup over a field k of characteristic zero.

Definition 3.1. Let G0 be a group (complex analytic or affine algebraic) and g a
super Lie algebra. We make the following assumptions:

(1) g0 ' Lie(G0).

(2) G0 acts on g and this action restricted to g0 is the adjoint representation of G0

on Lie(G0). Moreover, the differential of the action is the Lie bracket. We
denote such an action by Ad or as g.X , g ∈ G0, X ∈ g.

Then (G0, g) is called a super Harish-Chandra pair (SHCP).
A morphism of SHCP is simply a pair of morphisms ψ = (ψ0, ρ

ψ) preserving
the SHCP structure; that is:

(1) ψ0 : G0→ H0 is a group morphism (in the analytic or algebraic category).

(2) ρψ : g→ h is a super Lie algebra morphism.
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(3) ψ0 and ρψ are compatible in the sense that ρψ
|g0
= dψ0 and

Ad(ψ0(g)) ◦ ρψ = ρψ ◦Ad(g).

When G0 is an analytic group we shall speak of an analytic SHCP, when G0 is
an affine algebraic group of an algebraic SHCP.

We would like to show that the category of (analytic of algebraic) SHCP, denoted
by (shcps), is equivalent to the category of supergroups (analytic or algebraic),
denoted by (sgrps). In order to do this we start by associating in a natural way a
supergroup to an SHCP.

Definition 3.2. Let (G0, g) be an SHCP. The sheaf OG0 of the ordinary group G0

carries a natural action of U(g0), since the elements of U(g0) act on the sections in
OG0(U ) as left-invariant differential operators. We define OG(U ) as

OG(U ) := HomU(g0)(U(g),OG0(U )), U ⊂open G0.

Proposition 3.3. The assignment U 7→ OG(U ) is a sheaf of superalgebras on G0,
where the superalgebra structure on OG(U ) is given by

f1 · f2 = mOG0
◦ ( f1⊗ f2) ◦1U(g)

and the restriction morphisms ρU V : OG(U )→ OG(V ) are ρU V ( f ) := ρ̃U V ◦ f ,
where ρ̃U V are the restrictions of the ordinary sheaf OG0 .

Proof. The check f1 · f2 is an associative product is routine, while the sheaf property
comes from the fact OG0 is an ordinary sheaf. �

We now show that (G0,OG) is a superspace, by showing that is globally split; in
other words, that

OG(U )∼= OG0(U )⊗
∧
(g1).

Theorem 3.4. (1) Let γ :
∧
(g1)→U(g) be the symmetrization map, given by

γ (X1 ∧ · · · ∧ X p)=
1
p!

∑
τ∈Sp

(−1)|τ |Xτ(1) · · · Xτ(p),

where |τ | denotes the parity of the permutation τ . Then

γ̂ : U(g0)⊗
∧
(g1)→U(g), X ⊗ Y 7→ X · γ (Y )

is an isomorphism of super left U(g0)-modules.

(2) (G0,OG) is globally split; i.e., for each open subset U ⊆ G0 there is an
isomorphism of superalgebras

OG(U )' Hom
(∧
(g1),OG0(U )

)
' OG0(U )⊗

∧
(g1)

∗
.

Hence OG carries a natural Z-gradation.
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Proof. (1) is an application of Poincaré–Birkhoff–Witt (PBW) theorem (see
[Varadarajan 2004]), while for (2) consider the map

φU : OG(U )→ Hom
(∧
(g1),OG0(U )

)
, f 7→ f ◦ γ.

Since γ is a supercoalgebra morphism, φU is a superalgebra morphism. In fact,

φU ( f1 · f2)=m◦ f1⊗ f2◦1U(g)◦γ =m◦ f1⊗ f2◦(γ ⊗γ )1U(g)=φU ( f1)φU ( f2).

That φU is a superalgebra isomorphism follows at once from U(g0)-linearity. �

As an almost immediate consequence of the previous theorem we have:

Corollary 3.5. If G0 is an analytic manifold or algebraic scheme, then (G0,OG) is
a superspace.

In the next sections we complete the task of showing (G0,OG) is a supergroup by
providing explicit expression for the multiplication, unit and inverse. This will lead
to the main result of the paper, namely the equivalence of categories between the
SHCP and supergroups. We now state the main result of the paper and then we shall
prove it with different methods in the next sections, since at this point the analytic
and algebraic categories diverge and require dramatically different treatment.

Theorem 3.6. Let k be a field of characteristic zero, k=C if we are in the algebraic
category. Define the functors

H : (sgrps) → (shcps)

G 7→ (G0,Lie(G))

φ 7→ (|φ|, (dφ)e)

and
K : (shcps) → (sgrps)

(G0, g) 7→ G :=
(
G0,HomU(g0)(U(g),OG0)

)
ψ = (ψ0, ρ

ψ) 7→ f 7→ ψ∗0 ◦ f ◦ ρψ ,

where G and (G0, g) are objects and φ, ψ are morphisms of the corresponding
categories (in the definition of H, G0 is the ordinary group underlying G). Then
H and K define an equivalence between the categories of supergroups (analytic or
algebraic) and super Harish-Chandra pairs (analytic or algebraic).

Analytic SHCP. Let k = C.
For analytic SHCP it is relatively easy to define a supergroup structure on the

superspace (G0,OG) we have defined above, by mimicking what happens in the
smooth case. In fact for an analytic ordinary group G0, the action of U(g0) on OG0

is given by

(D̃Z · f )(g)= f (get Z ), Z ∈ g0, f ∈ OG0(U ),
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where et Z denotes the one-parameter subgroup corresponding to the element Z ∈ g0.
Notice that at this point we encounter an important difference with the algebraic
setting, since in that case we do not have a result such as the Frobenius theorem
available.

Proposition 3.7. (G0,OG) is an analytic supergroup where the multiplication µ,
inverse i and unit e are defined via the corresponding sheaf morphisms by[

µ∗( f )(X, Y )
]
(g, h)=

[
f
(
(h−1.X)Y

)]
(gh),[

i∗( f )(X)
]
(g−1)=

[
f (g−1.X)

]
(g),

e∗( f )=
[

f (1)
]
(e),

for f ∈ OG(U ) and g, h ∈ |G|, where |G| is the topological space underlying G0.
Here X denotes the antipode in U(g).

Note. We shall discuss the peculiar form of µ∗, i∗, e∗ in Remark 3.14.

Proof. The proof of this result is the same as in the differential smooth setting,
where everything is defined in the same way (see [Carmeli et al. 2011, Chapter 7]. In
particular to prove thatµ∗, i∗, e∗ are U(g0)-morphisms is harder than the verification
of the compatibility conditions and the Hopf superalgebra properties. As an example,
let us verify µ is well-defined the other properties being essentially the same type
of calculation. Due to the PBW theorem, it is enough to prove g0-linearity. Let
Z ∈ g0; then

µ∗( f )(Z X, Y )(g, h)= f (h−1(Z X)Y )(gh)

= f ((h−1.Z)(h−1.X)Y )(gh)

= D̃h−1.Z

[
f ((h−1.X)Y )

]
(gh).

On other hand,[
(D̃Z ⊗ id)(µ∗( f )(X, Y ))

]
(g, h)=

d
dt |t=0

f ((h−1 X)Y )(get Z h)

=
d
dt |t=0

f ((h−1 X)Y )(ghet (h−1 Z))

= D̃h−1 Z

[
f ((h−1.X)Y )

]
(gh).

Similarly, for the left entry, one finds

µ∗( f )(X, ZY )(g, h)= f ((h−1 X)ZY )(gh)

= f
(
Z(h−1 X)Y + [h−1 X, Z ]Y

)
(gh)

= D̃Z
(

f ((h−1 X)Y )
)
(gh)+ f

(
[h−1 X, Z ]Y

)
(gh)

and
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d
dt |t=0

µ∗( f )(X, Y )(g, het Z )=
d
dt |t=0

f
(
((het Z )−1 X)Y

)
(ghet Z )

=
[
D̃Z f ((h−1 X)Y )

]
(gh)+ f

(
[(h−1 X), Z ]Y

)
(gh).

�

We are now ready for the proof of Theorem 3.6 in the analytic setting.

Theorem 3.8. There is an equivalence of categories between analytic SHCP and
analytic supergroups expressed by the functors K and H in Theorem 3.6.

Proof. Let us first show the correspondence between morphisms. If φ is a morphisms
of analytic supergroups, it is immediate that (|φ|, (dφ)e) is a morphism of SHCP.
Conversely, if ψ = (ψ0, ρψ) is a morphism of SHCP (G0, g), (H0, h), then the map
ψ∗ : OH (U )→ OG(ψ

−1
0 (U )) defined by ψ∗( f )=ψ∗0 ◦ f ◦ρψ is a sheaf morphism

and (ψ0, ψ
∗) is a morphism of the supergroups G and H . As one can check, the

assignments in Theorem 3.6 establish a one-to-one correspondence between the set
of morphisms of SHCPs and the set of morphisms of analytic supergroups.

We now turn to the correspondence between the objects. Let G be a supergroup
and G the supergroup obtained from the SHCP (G0,Lie(G)), where G0 is the
ordinary analytic group underlying G. As for the smooth setting, let us define the
morphism η : G→ G by

η∗ : OG(U )→ OG(U )= HomU(g0)

(
U(g),OG0(U )

)
,

s 7→
(
s̄ : X→ (−1)|X ||(DX s)|

)
.

Here DX denotes the left-invariant differential operator on G associated with
X ∈ U(g), that is DX = (1 ⊗ X)µ∗. The definition is well-posed as one can
directly check, moreover η is a SLG morphism, i.e.,

η ◦µG = µG ◦ (η× η).

Indeed, for each s ∈ O(G), X, Y ∈U(g), and g, h ∈ G0,[(
(η∗⊗ η∗)µ∗G(s)

)
(X, Y )

]
(g, h)= (−1)|X |+|Y ||(DX ⊗ DY )µ

∗

G(s)|(g, h)

= (−1)|X |+|Y ||Dh−1.X DY s|(gh)

=
[
η∗(s)

(
(h−1.X)Y

)]
(gh)

=
[(
µ∗Gη

∗(s)
)
(X, Y )

]
(g, h).

The last thing to check is that η is an isomorphism. This is true because |η| is
clearly bijective and, for each g ∈ G0, the differential (dη)g is bijective:[

(dη)g(DX g)
]
(s)= DX gη

∗(s)= evg(DXη
∗(s))= [DXη

∗(s)](1)(g)

= (−1)|X |η∗(s)(X)(g)= |(DX s)|(g)= DX g(s),
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where we denote by DX a left-invariant differential operator on G corresponding
to X ∈U(g) while DX denotes a left-invariant differential operator on G.

We conclude using the inverse function theorem, which holds also for analytic
supermanifolds and again this is an important difference with the algebraic setting,
where we do not have this tool available. �

Remark 3.9 (p-adic SHCP). One can define p-adic supermanifolds, supergroups
and SHCP through the obvious same definitions within the framework described
classically in [Serre 1992]. In fact since the category of p-adic manifolds resembles
very closely the category of analytic manifolds, it is then only reasonable to expect
that one can develop along the same lines the theory of p-adic supermanifolds. Once
the basic results, like the inverse function theorem, are established, the equivalence
of categories between p-adic supergroups and the p-adic SHCP will then follow
through the same proof we have detailed for the analytic category.

Algebraic SHCP. We now prove our main result, Theorem 3.6, in the case of G an
affine algebraic supergroup over an algebraically closed field of characteristic zero.

The category of affine algebraic supergroups is equivalent to the category of
commutative Hopf superalgebras; hence we need to show that there is a unique
commutative Hopf superalgebra O(G) associated to a SHCP (G0, g), namely the
superalgebra of the global sections of the sheaf OG as in Definition 3.2.

Since the exponential appears for the action of U(g0) on O(G0) (see beginning
of previous subsection), the question is entirely classical and it is treated in detail in
[Demazure and Gabriel 1970, Chapter 2] for the algebraic setting. We shall briefly
review a few key facts, sending the reader to that reference for details.

Let G0 be an algebraic group and A a commutative algebra, p : A(t)→ A[t]/(t2)

the natural projection, t even. By definition, Lie(G0)(A)= ker G0(p). Since G0 is
affine we have G0 ⊂ GL(V ) for a suitable vector space V ; hence we can write

Lie(G0)(A)= { 1+ t Z } ⊂ G0(A(t))⊂ GL(V )(A(t))

= GL(V )(A)+ tEnd(V )(A)

for suitable Z ∈ End(V )(A), where End(V ) is the functor of points of the su-
perscheme of the endomorphisms of the vector space V . Very often Lie(G0) is
identified with the subspace in End(V ) consisting of the elements Z . As a notation
device we define

et Z
= 1+ t Z ∈ G0(A(t)).

Let g ∈G0(A)=Hom(O(G0), A), that is, g is an A-point of G0, and let f ∈ O(G0).
As another common notational device, we denote g( f ) with f (g). Since A embeds
naturally in A(t) we can view g also as an A(t)-point of G0 and consider f (get Z ).
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We then define

(*)
d
dt |t=0

f (get Z )= b,

where f (get Z ) = (get Z )( f ) = a+ bt ∈ A(t). One sees that the left-hand side of
(*) corresponds to the natural action of Z ∈ Lie(G0) on O(G0) via left-invariant
operators, that is,

d
dt |t=0

f (get Z )= (1⊗ Z)µ∗( f ),

which we denoted by D̃Z f in the analytic category.
We now go back to the super setting and prove the analogue of Proposition 3.7.

Proposition 3.10. The superalgebra O(G)= Hom(U(g),O(G0)) associated to the
algebraic SHCP (G0, g) is an Hopf superalgebra where the comultiplication µ∗,
antipode i∗ and counit e∗ 3 are defined as follows:

[µ∗( f )(X, Y )](g, h)= [ f ((h−1.X)Y )](gh),

[i∗( f )(X)](g−1)= [ f (g−1.X)](g),

e∗( f )= [ f (1)](e),

for f ∈ O(G), g, h ∈ |G|. Here X denotes the antipode in U(g).

Proof. It is the same as for Proposition 3.7. Though the context is different, once
the exponential terminology assumes a meaning for the algebraic category, the
calculations are the same. �

The next proposition shows a very natural fact: given an SHCP (G0,OG), the
sheaf OG is the structural sheaf associated with the superalgebra of its global sections
O(G), so that the morphisms µ∗, i∗, e∗ are actually defined as the appropriate sheaf
morphisms, corresponding to µ, i , e, multiplication, inverse and unit in the algebraic
supergroup G = Spec O(G). corresponding to the SHCP (G0, g).

Proposition 3.11. Let (G0, g) be an SHCP, with G0 an affine group scheme and
let OG as in 3.1. Then G := (G0,OG) is a supergroup scheme.

Proof. In Proposition 3.10 we have seen that O(G) := HomU(g0)(U(g),OG0(G0))

has an Hopf superalgebra structure, moreover by Theorem 3.4 it is globally split.
Hence we only need to prove that G = Spec O(G). Clearly the topological spaces
underlying the superspaces G = (G0,OG) and Spec O(G) are homeomorphic. We
only need to show that OO(G) ∼= OG , where OO(G) denotes the structural sheaf
associated with the superring O(G). We set up a morphism

3In analogy with Proposition 3.7 we have kept the terminology µ∗, i∗, e∗, though we are not
making (yet) any claim on the sheaf morphisms.
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φ : OG(U )→ OO(G)(U )

taking s :U(g)→ OG0(U ) to

φ(s) :U →
∐
x∈U

O(G)x ,

as follows. Any s ∈ OG(U ) gives raise naturally to sx :U(g)→ OG0(U )→ OG0,x .
Since as a U(g0) module, U(g) is finitely generated, say by N generators, once we
fix those generators, sx is equivalent to the choice of N elements in OG0,x . Since
likewise O(G)x is finitely generated by N elements as free OG0,x -module (those N
elements corresponds dually to the generators of U(g) as U(g0)-module), we have
that sx can be viewed as an element of O(G)x . So we define

φ(s)(x)= sx , x ∈U.

We leave to the reader the check that φ is a sheaf isomorphism. �

Theorem 3.12. The category of algebraic SHCP is equivalent to the category of
affine algebraic supergroups.

Proof. We need to establish a one to one correspondence between the objects and
the morphisms.

As for the objects, if (G0, g) is an algebraic SHCP, we can define an affine alge-
braic supergroup defining the following Hopf superalgebra (see Proposition 3.10):

O(G0, g)= HomU(g0)
(U(g),O(G0)).

Conversely, if we have an algebraic supergroup, we can find right away the SHCP
associated to it. What we need to show is that these operations are one the inverse
of the other; that is,

O(G0, g)∼= O(G),

where G0 is the algebraic group underlying G and g = Lie(G). Certainly they
are isomorphic as O(G0)-modules, since they have the same reduced part and, by
a result from [Masuoka 2005], they both can be written as O(G0)⊗3 for some
exterior algebra3, but being their odd dimension the same, the two exterior algebras
are isomorphic.

We can set a map
η∗ : O(G)→ O(G0, g)

taking s to s̄ : X 7→ (−1)|X ||DX (s)|, where DX (s) = (1⊗ X)µ∗. This is a well-
defined morphism of Hopf superalgebras and X 7→ (−1)|X ||DX (s)| is a U(g0)-
morphism. This is done precisely in the same way as in the proof of Theorem 3.8.

We now want to show that η∗ is surjective. This will imply that η∗ is an isomor-
phism. In fact the two given supergroups G = Spec O(G) and G = Spec O(G0, g)
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are smooth superschemes, with the same underlying topological space and same
Lie superalgebra (hence the same superdimension), and η∗ induces an injective
morphism η : G→ G (see [Fioresi and Gavarini 2013, Section 2]).

For the surjectivity of η∗, we need to show that, for each morphism of U(g0)-
modules s̄ :U(g)→ O(G0), there exists s ∈ O(G) such that s̄(X)= (−1)|X ||DX (s)|.
Since U(g) ∼= U(g0)⊗

∧
(g1) (see Theorem 3.4) and s̄ is a morphism of U(g0)-

modules, s̄ is determined by s̄(γ (X I )) for X I
= X i1

1 . . . X in
n , where the X i form a

basis for g1 and i j =0, 1 (again refer to Theorem 3.4). Notice that X i =γ (X i ). Since
X1, . . . , Xn are linearly independent, also the corresponding left-invariant vector
fields DX1, . . . , DXn will be linearly independent at each point. Let Dγ (X) denote the
left-invariant differential operator corresponding to γ (X)∈U(g). Notice that fixing
a suitable basis in U(g), the linear morphism X 7→ γ (X) corresponds to an upper
triangular matrix and sends linearly independent vectors to linearly independent
vectors. Consider the equation (−1)|X

I
|
|Dγ (X I )s| = s̄(X I ), for X I

= X i1
1 . . . Xn

in a
monomial in

∧
(g1). This is an equation where each DX i appearing in the expression

for Dγ (X I ) can be expressed as

DX i =

∑
ai ∂xi j , p(ai ) 6= p(xi j )

where the xi j are global coordinates on GLm|n ⊃ G (regardless of their parity).
Since the Di1

X1
. . . Din

Xn
are linearly independent by the PBW theorem (see also

Proposition 2.11), the Dγ (X) will also be linearly independent, and the equality

(−1)|X ||Dγ (X I )| = s̄(X I )

will yield a solution
∂xi1 j1

. . . ∂xir jr
s = ai1 j1...ir jr

for all i1 j1 . . . ir jr such that

s =
∑

ai1 j1...ir jr xi1 ji . . . xir jr .

We leave to the reader the correspondence between morphisms. �

Example 3.13. We want to verify explicitly the surjectivity of η∗ in the case of
GL(1|1) and make a few remarks on how to extend the calculation to the case of
G = GL(m|n). Let O(GL(1|1))= k[a11, a22, α12, α21][a−1

11 , a−1
22 ]. Let

D12 = (1⊗ ∂α12)µ
∗
= a11 ∂α12 +α21 ∂a22,

D21 = (1⊗ ∂α21)µ
∗
= α12 ∂a11 + a22 ∂α21,

be the left-invariant vector fields corresponding to the generators ∂α12 , ∂α21 of
Lie(G)1; then
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γ (D12 D21)=
1
2(D12 D21− D21 D12)

=
1
2(a11 ∂a11 − a22 ∂a22)

+ a11a22 ∂α12 ∂α21 + terms with coefficients in JO(GL(1|1)),

where JO(GL(1|1)) denotes as usual the ideal generated by the odd elements. Notice
that the terms with coefficients in JO(GL(1|1)) do not contribute in the expression
|Dγ (D12 D21)s|. For the same reason, the term a11 ∂a11−a22 ∂a22 will make a contribu-
tion only if applied to s0, and consequently can be considered not as unknown, but
as a known term. This is important in case one wants to generalize this procedure
to GL(m|n); in fact only the terms containing only odd derivations will produce
new quantities to be determined.

Given s̄ :U(g)→ O(G0) we want to determine s ∈ O(G), with η∗(s)= s̄. Since
Lie(GL(1|1)1 = 〈∂α12, ∂α21〉, the map s̄ is determined once we know its image on∧

Lie(GL(1|1)1, that is,

s0
= s̄(1), s12

= s̄(∂α12), s21
= s̄(∂α21), s12,21

= s̄(γ (∂α12∂α21)).

Consequently the s we want to determine must satisfy the equations

s0
= |1s|,

s12
=−|a11∂α12s+α21∂a22s|,

s21
=−|α12∂a11s+ a22∂α21s|,

s12,21
=
∣∣ 1

2(a11∂a11s− a22∂a22s)+ a11a22∂α12∂α21s
∣∣.

A simple calculation gives us

s = s0
+
α12s12

a11
−
α21s21

a22
+
[
s12,21

−
1
2

(
a11∂a11s0

− a22∂a22s0)] α12α21

a11a22
.

There is no conceptual obstacle to extending this calculation to the case of
G = GL(m|n). If O(G) = k[ai j , αkl][d−1

1 , d−1
2 ] where d1 = det(ai j ){1≤i, j≤m} and

d2 = det(ai j ){m+1≤i, j≤m+n}, the left-invariant vector fields are given by

X i j =
(
1⊗ ∂xi j

)
µ∗ =

∑
k

xki∂xk j ,

where xi j denote the coordinates on GL(m|n) regardless of their parity. We can then
repeat the calculation we did above. Notice that any even derivation appearing in
the expression |Dγ (X)s| will affect only s0

= |1s| since we are taking the reduction
modulo the ideal of the odd nilpotents.

Remark 3.14. We clarify the relation between the Hopf superalgebra O(G) =
Hom(U(g),O(G0)) associated to the SHCP (G0, g) and the distribution superal-
gebra D(G) of the supergroup G (also naturally associated to the same SHCP).
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For an affine supergroup G, the superalgebra of distributions D(G) has a natural
Hopf superalgebra structure; see Proposition 2.15. This structure is inherited by
k|G| ⊗U(g) through the linear isomorphism with D(G) given in Proposition 2.16.
The superalgebra of global sections of G, O(G)= Hom(U(g),O(G0)) can then be
naturally viewed as a subspace of D(G)∗∼= (k|G|⊗U(g))∗, since elements in O(G)
arise as suitable morphisms |G|×U(g)→ k. One can then immediately verify that
the Hopf superalgebra structure on O(G)⊂ D(G)∗ is precisely obtained by duality,
from the Hopf superalgebra on D(G) suitably restricting the comultiplication,
counit and antipode morphisms.

4. Action of supergroups and SHCPs

We now want to relate the action of an analytic of algebraic supergroup G on a
supermanifold or superscheme M , with the action of the corresponding SHCP
(G0, g) on M . In this section, if g ∈ |G| we denote by ĝ : C0|0

→ G the morphism
whose pull-back is the evaluation at g. We recall a well-know definition:

Definition 4.1. A morphism a : G×M→ M is called an action of G on M if

(**) a ◦ (µ×1M)= a ◦ (1G × a)

and

a ◦ 〈ê,1M〉 = 1M .

In the functor of points notation, this is the same as demanding the following,
where T is a supermanifold (resp. a superscheme) and M(T ) = Hom(T,M) are
the T -points of M :

(1) 1 · x = x for all x ∈ M(T ), where 1 the unit in G(T ).

(2) (g1g2) · x = g1 · (g2 · x) for all x ∈ M(T ) and all g1, g2 ∈ G(T ).

Here, as usual, we are writing a(g, x) as g · x .

If an action a of G on M is given, then we say that G acts on M .

Definition 4.2. An action of an analytic SHCP (G0, g) on a supermanifold M
consists of an action

a : G0×M→ M

of the reduced Lie group G0 on M , with a : a◦( j|G|→G×1M), plus a representation

ρa : g→ Vec(M)op

X 7→ (X ⊗1O(M))a∗
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of the super Lie algebra g of G on the opposite of the Lie superalgebra of vector
fields over M , the whole satisfying the compatibility relations

ρa |g0
(X)= (X ⊗1O(M))a∗ for all X ∈ g0,

ρa(g.Y )=
(
ag−1)∗

ρa(Y )(ag)
∗ for all g ∈ |G|, Y ∈ g,

where ag
: M→ M is given by ag

:= a ◦ 〈ĝ,1M〉.

The next proposition tells us that actions of an SHCP correspond bijectively to
actions of the corresponding analytic supergroup.

Proposition 4.3. Let G be an analytic supergroup acting on a supermanifold M.
Then there is an action of the SHCP (G0,Lie(G)) on M. Conversely, given an
action of the SHCP (G0, g) on M , there is a unique action aρ : G×M→ M of the
analytic supergroup G corresponding to the given SHCP on M whose reduced and
infinitesimal actions are the given ones. If U is an open subset of M , we have

a∗ρ : OM(U )→ HomU(g0)

(
U(g), (OG0⊗̂OM)(|a|−1 (U ))

)
,

f 7→
[
X 7→ (−1)|X |

(
1O(G0)⊗ ρ(X)

)
a∗( f )

]
.

Proof. Let us check that a∗ρ( f ) is U(g0)-linear. For all X ∈ U(g) and Z ∈ g0 we
have

a∗ρ( f )(Z X)= (−1)|X |
(
1⊗ ρ(Z X)

)
a∗( f )

= (−1)|X |
(
1⊗ ρ(X)

)
(1⊗ Ze⊗ 1)(1⊗ a∗)a∗( f )

= (−1)|X |
(
1⊗ ρ(X)

)
(1⊗ Ze⊗1)(µ̃∗⊗1)a∗( f )

=
(
D̃Z ⊗1

)[
a∗ρ( f )(X)

]
.

We now check that a∗ρ is a superalgebra morphism.[
a∗ρ( f1) · a∗ρ( f2)

]
(X)= mOG0 ⊗̂OM

[
a∗( f1)⊗ a∗( f2)

]
1(X)

= (−1)|X |m
[(

1⊗ ρ(X(1))
)
a∗( f1)⊗

(
1⊗ ρ(X(2))

)
a∗( f2)

]
= (−1)|X |

(
1⊗ ρ(X)

)(
a∗( f1) · a∗( f2)

)
= a∗ρ( f1 · f2)(X),

where fi ∈ O(M) and X(1) ⊗ X(2) denotes 1(X). Concerning the “associative”
property, we have that, for X, Y ∈U(g) and g, h ∈ G0,[

(µ∗⊗1)a∗ρ( f )
]
(X, Y )(g, h)=

[
a∗ρ( f )

]
(h−1.XY )(gh)

= (−1)|X |+|Y |+|X ||Y |ρ(Y )ρ(h−1.X)(agh)
∗
( f )

= (−1)|X |+|Y |+|X ||Y |ρ(Y )(ah)
∗
ρ(X)(ag)

∗
( f )

=
[
(1⊗ a∗ρ)a

∗

ρ( f )
]
(X, Y )(g, h),

and, finally, (eve⊗ 1)a∗ρ( f )= ρ(1)= f .
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Uniqueness can be proved as follows. Let a be an action of G on M and let
(a, ρa) be as in Proposition 4.3. If f ∈ OM(U ), then

a∗( f ) ∈ (HomU(g0)

(
U(g),OG0

)
⊗̂OM)(|a|−1 (U ))

∼= HomU(g0)

(
U(g), (OG0⊗̂OM)(|a|−1 (U ))

)
;

hence, using (**) in Definition 4.1 and the fact that ρa is an antihomomorphism,
we obtain for all X ∈U(g)

a∗( f )(X)= (−1)|X |
[
(DX ⊗1)a∗(φ)

]
(1)

= (−1)|X |
(
1⊗ ρa(X)

)(
a∗( f )(1)

)
= (−1)|X |

(
1⊗ ρa(X)

)
a∗( f ). �

Let us now assume G is an affine algebraic supergroup over a field of character-
istic zero and (G0, g) is the corresponding SHCP and furthermore assume they are
acting on a supervariety M , the Definition 4.2 being the same, taking the morphisms
in the appropriate category.

We state the analogue of the Proposition 4.3 in the algebraic setting, its proof
being essentially the same.

Proposition 4.4. Let G be an algebraic supergroup acting on a supervariety M
(not necessarily affine). Then there is an action of the SHCP (G0,Lie(G)) on M.
Conversely, given an algebraic action of the algebraic SHCP (G0, g) on M , there is
a unique action aρ : G×M→ M of the algebraic supergroup G corresponding to
the given SHCP on M whose reduced and infinitesimal actions are the given ones.
If U is an open subset of M , we have

a∗ρ : OM(U )→ HomU(g0)

(
U(g), (OG0 ⊗OM)(|a|−1 (U ))

)
,

f 7→
[
X 7→ (−1)|X |

(
1O(G0)⊗ ρ(X)

)
a∗( f )

]
.

Acknowledgements

We wish to thank Professor Varadarajan for suggesting the problem and Professors
Cassinelli and Gavarini for helpful discussions.

References

[Balduzzi et al. 2009] L. Balduzzi, C. Carmeli, and G. Cassinelli, “Super G-spaces”, pp. 159–176 in
Symmetry in mathematics and physics, edited by D. Babbitt et al., Contemp. Math. 490, Amer. Math.
Soc., Providence, RI, 2009. MR 2010k:58011 Zbl 1236.58012

[Carmeli et al. 2011] C. Carmeli, L. Caston, and R. Fioresi, Mathematical foundations of supersym-
metry, European Mathematical Society, Zürich, 2011. MR 2012h:58010 Zbl 1226.58003

[Deligne and Morgan 1999] P. Deligne and J. W. Morgan, “Notes on supersymmetry (following
Joseph Bernstein)”, pp. 41–97 in Quantum fields and strings: a course for mathematicians (Prince-
ton, NJ, 1996/1997), vol. 1, edited by P. Deligne et al., Amer. Math. Soc., Providence, RI, 1999.
MR 2001g:58007 Zbl 1170.58302

http://dx.doi.org/10.1090/conm/490/09594
http://msp.org/idx/mr/2010k:58011
http://msp.org/idx/zbl/1236.58012
http://dx.doi.org/10.4171/097
http://dx.doi.org/10.4171/097
http://msp.org/idx/mr/2012h:58010
http://msp.org/idx/zbl/1226.58003
http://msp.org/idx/mr/2001g:58007
http://msp.org/idx/zbl/1170.58302


50 CLAUDIO CARMELI AND RITA FIORESI

[Demazure and Gabriel 1970] M. Demazure and P. Gabriel, Groupes algébriques, I: Géométrie
algébrique, généralités, groupes commutatifs, Masson, Paris, 1970. MR 46 #1800 Zbl 0203.23401

[Dieudonné 1970] J. Dieudonné, Éléments d’analyse, Tome III: Chapitres XVI et XVII, Cahiers
Scientifiques 33, Gauthier-Villars, Paris, 1970. MR 42 #5266 Zbl 0208.31802

[Fioresi and Gavarini 2011] R. Fioresi and F. Gavarini, “On the construction of Chevalley super-
groups”, pp. 101–123 in Supersymmetry in mathematics and physics, edited by S. Ferrara et al.,
Lecture Notes in Math. 2027, Springer, Berlin, 2011. MR 2906339 Zbl 06078896

[Fioresi and Gavarini 2012] R. Fioresi and F. Gavarini, Chevalley supergroups, Mem. Amer. Math.
Soc. 1014, Amer. Math. Soc., Providence, RI, 2012. MR 2918543 Zbl 1239.14045

[Fioresi and Gavarini 2013] R. Fioresi and F. Gavarini, “Algebraic supergroups with Lie superalgebras
of classical type”, Journal of Lie Group Theory 23:1 (2013), 143–158.

[Jantzen 2003] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys
and Monographs 107, Amer. Math. Soc., Providence, RI, 2003. MR 2004h:20061 Zbl 1034.20041

[Kostant 1977] B. Kostant, “Graded manifolds, graded Lie theory, and prequantization”, pp. 177–306
in Differential geometrical methods in mathematical physics (Bonn, 1975), edited by K. Bleuler and
A. Reetz, Lecture Notes in Math 570, Springer, Berlin, 1977. MR 58 #28326 Zbl 0358.53024

[Koszul 1983] J.-L. Koszul, “Graded manifolds and graded Lie algebras”, pp. 71–84 in Proceedings
of the international meeting on geometry and physics (Florence, 1982), edited by M. Modugno,
Pitagora, Bologna, 1983. MR 85m:58019 Zbl 0548.22012

[Manin 1988] Y. I. Manin, Gauge field theory and complex geometry, Grundlehren der Mathematis-
chen Wissenschaften 289, Springer, Berlin, 1988. MR 89d:32001 Zbl 0641.53001

[Masuoka 2005] A. Masuoka, “The fundamental correspondences in super affine groups and super
formal groups”, J. Pure Appl. Algebra 202:1–3 (2005), 284–312. MR 2006e:16066 Zbl 1078.16045

[Masuoka 2012] A. Masuoka, “Harish–Chandra pairs for algebraic affine supergroup schemes over
an arbitrary field”, Transform. Groups 17:4 (2012), 1085–1121. MR 3000482

[Serre 1992] J.-P. Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics 1500,
Springer, Berlin, 1992. MR 93h:17001 Zbl 0742.17008

[Varadarajan 2004] V. S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant
Lecture Notes in Mathematics 11, New York University, 2004. MR 2005g:58011 Zbl 1142.58009

[Vishnyakova 2011] E. G. Vishnyakova, “On complex Lie supergroups and split homogeneous
supermanifolds”, Transform. Groups 16:1 (2011), 265–285. MR 2012b:58010 Zbl 1218.22013

http://msp.org/idx/mr/46:1800
http://msp.org/idx/zbl/0203.23401
http://msp.org/idx/mr/42:5266
http://msp.org/idx/zbl/0208.31802
http://dx.doi.org/10.1007/978-3-642-21744-9_5
http://dx.doi.org/10.1007/978-3-642-21744-9_5
http://msp.org/idx/mr/2906339
http://msp.org/idx/zbl/06078896
http://dx.doi.org/10.1090/S0065-9266-2011-00633-7
http://msp.org/idx/mr/2918543
http://msp.org/idx/zbl/1239.14045
http://msp.org/idx/mr/2004h:20061
http://msp.org/idx/zbl/1034.20041
http://msp.org/idx/mr/58:28326
http://msp.org/idx/zbl/0358.53024
http://msp.org/idx/mr/85m:58019
http://msp.org/idx/zbl/0548.22012
http://msp.org/idx/mr/89d:32001
http://msp.org/idx/zbl/0641.53001
http://dx.doi.org/10.1016/j.jpaa.2005.02.010
http://dx.doi.org/10.1016/j.jpaa.2005.02.010
http://msp.org/idx/mr/2006e:16066
http://msp.org/idx/zbl/1078.16045
http://dx.doi.org/10.1007/s00031-012-9203-8
http://dx.doi.org/10.1007/s00031-012-9203-8
http://msp.org/idx/mr/3000482
http://msp.org/idx/mr/93h:17001
http://msp.org/idx/zbl/0742.17008
http://msp.org/idx/mr/2005g:58011
http://msp.org/idx/zbl/1142.58009
http://dx.doi.org/10.1007/s00031-010-9114-5
http://dx.doi.org/10.1007/s00031-010-9114-5
http://msp.org/idx/mr/2012b:58010
http://msp.org/idx/zbl/1218.22013


SUPERDISTRIBUTIONS AND SUPER HARISH-CHANDRA PAIRS 51

Received September 5, 2012. Revised September 19, 2012.

CLAUDIO CARMELI

D.I.M.E., UNIVERSITÀ DI GENOVA

VIA CADORNA 2
I-17100 SAVONA

ITALY

and

INFN, SEZIONE DI GENOVA

VIA DODECANESO 33
I-16416 GENOVA

ITALY

claudio.carmeli@gmail.com

RITA FIORESI

DIPARTIMENTO DI MATEMATICA

UNIVERSITÀ DI BOLOGNA

PIAZZA DI PORTA S. DONATO, 5
40126 BOLOGNA

ITALY

fioresi@dm.unibo.it

mailto:claudio.carmeli@gmail.com
mailto:fioresi@dm.unibo.it


PACIFIC JOURNAL OF MATHEMATICS
Vol. 263, No. 1, 2013

dx.doi.org/10.2140/pjm.2013.263.53

ORBIFOLDS WITH SIGNATURE .0Ik; kn�1; kn; kn/

ANGEL CAROCCA, RUBÉN A. HIDALGO AND RUBÍ E. RODRÍGUEZ

Two interesting problems that arise in the theory of closed Riemann sur-
faces are (i) computing algebraic curves representing the surface and
(ii) deciding if the field of moduli is a field of definition.

In this paper we consider pairs .S; H /, where S is a closed Riemann
surface and H is a subgroup of Aut.S /, the group of automorphisms of
S , so that S=H is an orbifold with signature .0Ik; kn�1; kn; kn/ where
k, n� 2 are integers.

In the case that S is the highest abelian branched cover of S=H we
provide explicit algebraic curves representing S . In the case that k is
an odd prime, we also describe algebraic curves for some intermediate
abelian covers.

For kDp�3 a prime and H a p-group, we prove that H is a p-Sylow
subgroup of Aut.S /, and if p � 7 we prove that H is normal in Aut.S /.
Also, when n¤ 3 we prove that the field of moduli in such cases is a field
of definition. If, moreover, S is the highest abelian branched cover of
S=H , then we compute explicitly the field of moduli.

1. Introduction

A closed Riemann surface S of genus g � 2 may be described by many different
objects, for instance, by algebraic curves (by the Riemann–Roch theorem [Farkas
and Kra 1992]), by torsion-free cocompact Fuchsian groups (by the Koebe–Poincaré
uniformization theorem [Koebe 1907a; 1907b; Poincaré 1907]), by Schottky groups
(by the retrosection theorem [Bers 1975; Koebe 1907b]), or by certain principally
polarized abelian varieties (by the Torelli theorem [Torelli 1913; Weil 1956]).
In general, to provide different explicit representations for the same Riemann
surface has been a difficult problem, in spite of huge efforts to solve it. It seems
that Burnside [1893] and Klein [1878] provided the first examples of algebraic
curves and Fuchsian groups, both representing the same Riemann surfaces. In
many cases, the group Aut.S/ of automorphisms of S and its subgroups play

Carocca and Rodríguez were supported by Fondecyt grants 1095165 and 1100767. Hidalgo was
supported by Fondecyt grant 1110001 and UTFSM grant 12.11.01.
MSC2000: primary 30F10, 30F40; secondary 14H37.
Keywords: algebraic curves, Riemann Surfaces, automorphisms, field of moduli.
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a fundamental role in finding algebraic curves representing S . For instance, if
S=Aut.S/ has signature of the form .0I r; s; t/, then there are known examples
having an explicit Fuchsian group and an explicit algebraic curve, both representing
S [Burnside 1893; Klein 1878] (we also recommend reading [Karcher and Weber
1999]).

A field of definition of S is a subfield K of C for which it is possible to find
an irreducible nonsingular projective algebraic curve representing S , defined by
polynomials whose coefficients belong to K. If C is an algebraic curve describing S ,
then the field of moduli of S is defined as the fixed field of the group of field
automorphisms � of C such that C and C � are isomorphic, where C � is the
algebraic curve defined as the zeroes of the polynomials obtained from the ones
defining C after � acts on their coefficients. The field of moduli is always contained
in any field of definition, but it may happen that the field of moduli is not a field of
definition.

In this article we study closed Riemann surfaces S admitting subgroups H <

Aut.S/ so that S=H has signature .0I k; kn�1; kn; kn/, where n, k � 2 are integers.
For k D 2 this type of surface was considered in [Carvacho 2010; González-Diez
and Hidalgo 1997] to provide examples of closed Riemann surfaces admitting
topologically equivalent but conformally nonequivalent cyclic groups of order 2n.

In the general case, if S is the homology cover of S=H , then we compute the
field of moduli and we give explicit algebraic curves for S . These explicit algebraic
curves for homology covers allow us to find algebraic curves for those Riemann
surfaces S admitting an abelian group G < Aut.S/ such that S=G has signature
.0I k; kn�1; kn; kn/. We describe such a situation for the case that k is a prime and
G Š Zk �Zkn . Also, for k an odd prime, we describe the group Aut.S/ and we
prove that the field of moduli of S is in fact a field of definition.

In this article we will use letters such as S , R, zS to denote (closed) Riemann
surfaces, orbifolds will usually be denoted using italic letters such as O, zO or as
S=H (where S is a Riemann surface and H < Aut.S/), groups will be denoted by
letters such as H , � , G, etc.

2. Preliminaries

2.1. Orbifolds. An orbifold is a tuple OD .S; f.p1; k1/; : : : ; .pn; kn/; : : : g/ where
(i) S is a Riemann surface, called the Riemann surface structure of O, (ii) fp1;p2;:::g

� S is a collection of different isolated points, called the cone points of O, and
(iii) each kj � 2 is an integer, called the cone order of pj . An orbifold of signature
.
 I k1; : : : ; kn/ is given by an orbifold OD .S; f.p1; k1/; : : : ; .pn; kn/g/ where S

is a closed Riemann surface of genus 
 . An orbifold without cone points is just a
Riemann surface.
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A conformal homeomorphism between two orbifolds, say O1D.S1;f.p1;k1/; : : : ;

.pn;kn/; : : :g/ and O2 D .S2; f.q1; l1/; : : : ; .qn; ln/; : : : g/, is a conformal homeo-
morphism between S1 and S2 (the corresponding Riemann surface structures),
sending cone points to cone points, and preserving the cone point orders. If
O1 D O2 D O, then we speak about a conformal automorphism of the orbifold O.
We use the notation O1 Š O2 to indicate that O1 and O2 are conformally equivalent
orbifolds.

We denote by Autorb.O/ the group of conformal automorphisms of the orbifold O.
If S is the conformal Riemann surface structure of O, then we denote by Aut.S/ its
group of conformal automorphisms. There is a natural inclusion Autorb.O/<Aut.S/,
but in general these two groups are different.

If O is an orbifold and H <Autorb.O/ acts discontinuously on the Riemann surface
structure, then the quotient O=H may be seen again as an orbifold as follows. We
denote by � W O! O=H the canonical quotient map. A cone point of O=H may be
obtained in two different ways. In the first case, if p 2 O is not a cone point and
it has nontrivial H -stabilizer H.p/, then �.p/ is a cone point with order equal to
the order of H.p/. In the second case, if p 2 O is a cone point of order n and its
H -stabilizer has order m, then �.p/ is a cone point with order equal to nm.

The orbifolds we consider in this paper are the good orbifolds in Thurston’s
terminology; they are obtained as quotient spaces O D zS=F , where zS is a (not
necessarily closed) Riemann surface and F < Aut. zS/ is a discontinuous group of
conformal automorphisms of zS . The cone points are those equivalence classes of
points of zS with nontrivial F -stabilizer.

2.2. Homology covers. Good orbifolds admit as (branched) universal cover either
the Riemann sphere, the complex plane or the hyperbolic plane; this is a conse-
quence of the classical uniformization theorem. Let us consider a good orbifold
OD .S; f.p1; k1/; : : : ; .pn; kn/g/ of signature .
 I k1; : : : ; kn/. The first (orbifold)
fundamental group of O is

(2-1) �orb
1 .O/D

D
˛1; : : : ; ˛
 ; ˇ1; : : : ; ˇ
 ; ı1; : : : ; ın W


Q
jD1

Œ j̨ ; ǰ �
nQ

kD1

ık D ı
k1

1
D � � � D ıkn

n D 1
E
;

where�1.S/D
˝
˛1; : : : ; ˛
 ; ˇ1; : : : ; ˇ
 W

Q

jD1

Œ j̨ ; ǰ �D1
˛
, with Œa;b�Daba�1b�1,

and the element ıj represents a simple small loop around pj in S �fp1; : : : ;png,
for each j D 1; : : : ; n.

It is clear that to each normal subgroup N of finite index of �orb
1
.O/ there

corresponds an orbifold zO and a finite group H < Autorb.zO/, so that O D zO=H .
Observe that H is isomorphic to �orb

1
.O/=N . When N D �orb

1
.O/0 (the derived

subgroup of �orb
1
.O/), the corresponding cover orbifold zO is called the homology
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orbifold cover of O. We will be interested only in the particular case when the
homology orbifold cover is a closed Riemann surface (i.e., there are no cone points),
in which case we call it the homology cover of O, and say that O is a homology
orbifold.

Clearly, the homology orbifold cover of O is the homology cover if and only
if �orb

1
.O/0 has finite index in �orb

1
.O/ and it acts freely on the universal cover space

of O. The finite index condition is equivalent to the condition that the underlying
Riemann surface structure of O is the Riemann sphere; that is, 
 D 0. The free
action condition is equivalent to the following one.

Theorem 1 [Maclachlan 1965]. Let O be an orbifold of signature .
 I k1; : : : ; kn/.
Then �orb

1
.O/0 is torsion-free if and only if

(2-2) lcm.k1; : : : ; kj�1; kjC1; : : : ; kn/D lcm.k1; : : : ; kn/ for all j D1; : : : ; n:

The homology cover (when it exists) is the highest abelian Galois cover of O.

2.3. Fuchsian groups. The basic theory of Fuchsian groups may be found, for
instance, in the classical book [Beardon 1983]. A cocompact Fuchsian group acting
on the upper half-plane H2 is a discrete group � < PSL.2;R/ such that H2=� is
an orbifold of some signature; that is, the underlying Riemann surface is a closed
Riemann surface. It is known that a cocompact Fuchsian group � has a presentation
of the form
(2-3)

� D
D
a1; b1; : : : ; a
 ; b
 ; ı1; : : : ; ın W


Q
jD1

Œaj ; bj �
nQ

jD1

ıj D ı
k1

1
D � � � D ıkn

n D 1
E
;

where 
 and n are nonnegative integers, the kj � 2 are integers, and 2
 � 2C n�Pn
jD1 k�1

j > 0. The tuple .
 I k1; : : : ; kn/ is known as the signature of � (this is
the signature of its quotient orbifold H2=�).

An orbifold O is of hyperbolic type if there is a cocompact Fuchsian group � so
that OŠ H2=� . By the Poincaré–Koebe uniformization theorem [Koebe 1907a;
1907b; Poincaré 1907], every orbifold with signature .
 I k1; : : : ; kn/ is of hyperbolic
type if and only if 2
 � 2C n�

Pn
jD1 k�1

j > 0.
By the hyperbolic area of a Fuchsian group � (respectively, of a hyperbolic orb-

ifold) of signature .
 I k1; : : : ; kn/ we refer to the hyperbolic area of a fundamental
polygon domain for it; it is given by

(2-4) A.�/D 2�

�
2
 � 2C

nX
jD1

�
1�

1

kj

��
:

We say that a cocompact Fuchsian group � , with presentation (2-3), is a homology
Fuchsian group if 
 D 0 and it satisfies Maclachlan’s conditions (2-2). In other
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words, homology Fuchsian groups are exactly those cocompact Fuchsian groups
providing a Fuchsian uniformization of a hyperbolic homology orbifold of genus
zero. If � is a homology Fuchsian group of signature .0I k1; : : : ; kn/, then the
homology cover of the homology orbifold O D H2=� is S D H2=� 0, where � 0

denotes the derived subgroup of � .

2.4. Fields of moduli and fields of definition. As a consequence of the implicit
function theorem, every irreducible nonsingular projective algebraic curve defines a
closed Riemann surface; conversely, by the Riemann–Roch theorem, every closed
Riemann surface may be described by an irreducible nonsingular projective algebraic
curve. It is this equivalence which allows the work in the analytical and in the
algebraic settings in a parallel way.

Let C be an irreducible nonsingular projective algebraic curve, say defined by
homogeneous polynomials P1; : : : ;Pr , each one with coefficients in a subfield
K < C. Let g denote the genus of the closed Riemann surface corresponding
to C . If � 2 Aut.C=Q/, the group of field automorphisms of C, then we may
consider the new polynomials P�

1
; : : : ;P�

r , where the coefficients of P�
j are the

corresponding images under � of the coefficients of the original polynomial Pj .
The algebraic curve C � , defined by these new polynomials, is still an irreducible
nonsingular projective algebraic curve, and it defines a new closed Riemann surface
of genus g. It is not difficult to see that if zC is another irreducible nonsingular
projective algebraic curve that is birationally equivalent to C , then C � and zC � are
also birationally equivalent. Therefore, a natural action of Aut.C=Q/ is defined on
the moduli space of genus g. The stabilizer of the moduli class of C under such
action is the subgroup

KC D f� 2 Aut.C=Q/ W C Š C �
g< Aut.C=Q/:

The fixed field of KC , denoted by M.C /, is called the field of moduli of C .
A subfield K of C is called a field of definition of C if there is an irreducible

nonsingular projective algebraic curve zC defined over K which is birationally
equivalent to C . At this point it is important to note that it is not clear that given
a field of definition L< C of C there is a smaller subfield F< L which is again a
field of definition of C .

The field of moduli M.C / is contained in any field of definition of C , and it
coincides with the intersection of all fields of definition of C [Koizumi 1972].
Moreover, there is a field of definition of C which is an extension of finite degree
of the field of moduli [Dèbes and Emsalem 1999; Hammer and Herrlich 2003].

If gD 0, then C ŠP1, so in this case M.C /DQ is a field of definition. If gD 1,
then C is equivalent to an (affine) elliptic curve E� D fy

2 D x.x � 1/.x � �/g,
where � 2 C�f0; 1g. If j .�/D .1� �C �2/3=�2.�� 1/2 is its j -invariant and
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a.�/D
27j .�/

j .�/� 1
;

then E� is also described by D� D fy
2 D 4x3 � a.�/x � a.�/g. It follows that

Q.j .�// is a field of definition for E�. Moreover, if � 2Aut.C=Q/ and E�
� DE�.�/

is conformally equivalent to E�, then they must have the same j -invariant; that
is, �.j .�// D j .�/. It follows that M.C / DM.E�/ D Q.j .�// is also a field of
definition.

In genus g � 2, the situation is more difficult. There are examples for which
the field of moduli is not a field of definition [Earle 1971; Huggins 2007; Shimura
1972]; all of the examples there are hyperelliptic curves. It is stated in [Earle
1971] that there are examples of nonhyperelliptic Riemann surfaces with the same
properties, but no explicit one is given. An explicit example of a nonhyperelliptic
Riemann surface of genus g D 17 which cannot be defined over R and whose field
of moduli lies inside R is given in [Hidalgo 2009] (this example is related to the
hyperelliptic example in [Earle 1971]).

A. Weil [1956] provided the following sufficient and necessary conditions for
the moduli field to be a field of definition.

Theorem 2 [Weil 1956]. Let C be an irreducible nonsingular projective algebraic
curve defined over a finite Galois extension L of its field of moduli M.C /. If for every
� 2 Aut.L=M.C // there is a biholomorphism f� W C ! C � defined over L such
that the compatibility condition f�� D f �� ıf� holds for all � , � 2 Aut.L=M.C //,
then there exists an irreducible nonsingular projective algebraic curve E defined
over M.C / and there exists a biregular map F W C !E, defined over L, such that
F� ıf� D F .

As a consequence of Theorem 2, it follows that if C has no nontrivial auto-
morphism, then it may be defined over its field of moduli. Unfortunately, if C

has nontrivial automorphisms, then it is a very difficult task to check whether
Weil’s conditions hold. But if C=Aut.C / has signature of the form .0I a; b; c/

(quasiplatonic surfaces, or platonic if some cone order is equal to 2), then C may
be defined over its field of moduli [Coombes and Harbater 1985; Wolfart 2006].

Consider a (branched) holomorphic covering between closed Riemann surfaces,
say f W S!R. Assume S and R are given by fixed algebraic curves and that R is
defined over M.S/. For each � 2 Aut.C=M.S// we may consider the (branched)
holomorphic covering f � W S� ! R� D R. We say that they are equivalent
coverings, denoted by ff � W S� !Rg Š ff W S !Rg, if there is a holomorphic
isomorphism �� W S! S� so that f � ı�� D f . The field of moduli of f W S!R,
denoted by M.f W S !R/, is the fixed field of the subgroup

K.f W S !R/D
˚
� 2 Aut.C=M.S// W ff � W S� !Rg Š ff W S !Rg

	
:
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It is clear from the definition that M.S/ <M.f W S !R/, but in general they
may be different fields. For the particular case that RDS=Aut.S/ and S has genus
at least two, the following is well known (a direct consequence of Theorem 2).

Theorem 3 [Dèbes and Emsalem 1999]. If C is an irreducible nonsingular projec-
tive algebraic curve of genus g � 2, then there exists an irreducible nonsingular
projective algebraic curve C1, defined over M.C /, and there exists a Galois cover
f W C ! C1, with Aut.C / as deck group, so that M.f W C ! C1/ D M.C /.
Moreover, if .C1/f denotes the branch locus of f and if C1 � .C1/f contains at
least one M.C /-rational point, then M.C / is also a field of definition of C . Such a
curve C1 is called a canonical model of C=Aut.C /.

3. Main results

Let S be a closed Riemann surface and let H1, H2 < Aut.S/. We say that H1 and
H2 are (weakly) topologically equivalent (respectively, conformally equivalent) if
there is an orientation preserving self-homeomorphism (respectively, conformal
automorphism) h W S! S so that H2D fH1f

�1. If H <Aut.S/, then we denote
by AutH .S/ the normalizer of H in Aut.S/.

3.1. p-groups of automorphisms. A regular cover of an orbifold O is a closed
Riemann surface S together with a group H of conformal automorphisms such
that the quotient orbifold S=H is isomorphic to O. In the case that H is an abelian
group, we say that the regular cover is an abelian cover of the orbifold. In this
section we consider regular pnC1-covers of orbifolds of type .0Ip;pn�1;pn;pn/,
where n � 2 and p is an odd prime; that is, H is a p-group of order pnC1. The
interest in this type of example is that examples were constructed in [Carvacho
2010; González-Diez and Hidalgo 1997] of closed Riemann surfaces S admitting
topologically equivalent but conformally nonequivalent cyclic groups of order 2nC1,
where n � 2, so the quotient of S by the 2-group generated by these two cyclic
subgroups is an orbifold with signature .0I 2; 2n; 2nC1; 2nC1/.

Let S be a closed Riemann surface and let H < Aut.S/ be a p-group such that
S=H has signature of the form .0Ip;pn�1;pn;pn/, with n� 2, and consider the
regular branched cover P W S !bC, with H as deck group.

Since n� 3, then (up to left composition by a suitable Möbius transformation)
we may assume that the branch values of P are1 of order p, 0 of order pn�1,
and 1 and some � 2 C� f0; 1g are the ones of order pn. The choice of � is not
unique, but the only other possible choice is 1=�.

Theorem 4. Let p� 3 be a prime and let n� 2 be an integer. Consider a closed Rie-
mann surface S with a subgroup H < Aut.S/ such that H is a p-group with S=H

of signature .0Ip;pn�1;pn;pn/. Let � 2 C�f0; 1g be as defined above. Then:
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(1) H is a p-Sylow subgroup of Aut.S/. In particular, if H1, H2 < Aut.S/ are
p-groups with S=Hj of signature .0Ip;pn�1;pn;pn/, then H1 and H2 are
conformally equivalent.

(2) If n� 3, then
(a) AutH .S/DH for �¤�1,
(b) ŒAutH .S/ WH � 2 f1; 2g for �D�1.

(3) If nD 2, then
(a) ŒAutH .S/ WH � 2 f1; 2g for �¤�1,
(b) ŒAutH .S/ WH � 2 f1; 2; 4g for �D�1.

(4) If p � p0, where
(a) p0 D 7 for nD 2, and
(b) p0 D 5 for n� 3,
then AutH .S/D Aut.S/.

Remark 5. In the case � D �1 and n � 3, part (2) of Theorem 4 asserts that
either AutH .S/ D H or ŒAutH .S/ W H � D 2. In the last case, S=AutH .S/ has
signature .0I 2p; 2pn�1;pn/, which is a maximal signature [Singerman 1972], so
AutH .S/D Aut.S/.

3.2. Normality condition. Let S be a closed Riemann surface and H < Aut.S/.
Let M.S;H / denote the locus in the moduli space M.S/ of S consisting of those
classes of Riemann surfaces bS admitting a group bH of conformal automorphisms,
which is topologically equivalent to H . In general, one should expect that M.S;H /

is a singular variety. The following shows that this is not the case if H is a p-group
and S=H has signature .0Ip;pn�1;pn;pn/.

Corollary 6. Let p � 3 be a prime and let n� 2 be an integer. Consider a closed
Riemann surface S and let H <Aut.S/ be a p-group such that S=H has signature
.0Ip;pn�1;pn;pn/. Then M.S;H / is a normal subvariety of M.S/.

Proof. The normality condition for M.S;H / is equivalent to the following property:
given any two pairs .S1;H1/ and .S2;H2/, where Sj is a closed Riemann surface
(of the same genus as S) and Hj is a p-group of conformal automorphisms of
Sj so that Sj=Hj has signature .0Ip;pn�1;pn;pn/, and there is an orientation
preserving homeomorphism f W S1! S2 with fH1f

�1 D H2, then f may be
replaced by a biholomorphism with the same properties. This property is exactly
what part (1) of Theorem 4 states. �

3.3. Homology rigidity.
Corollary 7. Every orbifold of signature .0Ip;pn�1;pn;pn/, where p � 3 is a
prime and n� 2 is an integer, is uniquely determined, up to conformal equivalence,
by its homology cover Riemann surface.
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Proof. A consequence of part (1) of Theorem 4. �

Remark 8 (Torelli’s theorem). Let O be an orbifold of signature .0Ip;pn�1;pn;pn/,
where p � 3 is a prime and n� 2 is an integer. As any two homology covers of O

are conformally equivalent Riemann surfaces, we may define the Jacobian of O,
denoted by J.O/, as the Jacobian of any of these covers. It follows that J.O/ is
uniquely determined, up to equivalence of principally polarized abelian varieties,
by O. As a consequence of Torelli’s theorem, J.O/ determines the conformal class
of the homology cover of O and, by Corollary 7, it also determines the conformal
class of O. In this way, a kind of Torelli’s theorem is obtained for this class of
orbifolds. We may wonder how to describe the Jacobian of O in terms of multivalued
holomorphic differential forms so that it looks more similar to the construction for
the case of Riemann surfaces. In order to do this, we use as homology the orbifold
homology group

H orb
1 .O/D �orb

1 .O/=�orb
1 .O/0;

and as holomorphic forms those multivalued holomorphic forms whose liftings to
the homology cover define the holomorphic one forms of it.

3.4. Algebraic curves in the abelian case. Curves for the hyperelliptic homology
covers and for the homology covers of homology orbifolds with triangular signature
have been described in [Hidalgo 2012]. Algebraic curves for the homology covers of
orbifolds with signature of the form .0I k; : : : ; k/ have been obtained in [González-
Diez et al. 2009]. We next provide the algebraic curves for the homology covers
of orbifolds with signature .0I k; kn�1; kn; kn/, where k, n� 2 are integers. As a
consequence of the results in [Hidalgo 2012], the homology covers of such orbifolds
cannot be hyperelliptic. Note that if R is the homology cover of such an orbifold O,
then ODR=H , where H Š Zk �Zkn�1 �Zkn .

Theorem 9. Let k, n � 2 be integers and let O be an orbifold with signature
.0I k; kn�1; kn; kn/. Denote by R a homology cover of O, let H < Aut.R/ be so
that R=H D O, and let P WR! O be the Galois cover with H as deck group. We
may assume (up to a Möbius transformation) that the cone points of O (that is, the
branch values of P ) are given by the points 0, 1,1 and �2C�f0; 1g. We may also
assume that1 is the cone point of order k, that 0 is the cone point of order kn�1

and that 1 and � are the cone points of order kn.
Then R is represented by the (singular) projective algebraic curve

C� W

(
zk

0 zkn�k
3 C zkn�1

1 zkn�kn�1

3 C zkn

2 D 0

�zk
0 zkn�1�k

3 C zkn�1

1 C zkn�1

3 D 0

)
� P3;
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H is generated by the projective linear transformations

a0.Œz0 W z1 W z2 W z3�/D Œ�1z0 W z1 W z2 W z3�;

b0.Œz0 W z1 W z2 W z3�/D Œz0 W �n�1z1 W z2 W z3�;

c0.Œz0 W z1 W z2 W z3�/D Œz0 W z1 W �nz2 W z3�;

where �s D e2�i=ks

, for each positive integer s, and the branched covering map P

is represented in this model by

P .Œz0 W z1 W z2 W z3�/D�

�
zkn�1

1

zk
0

zkn�1�k
3

�
:

The only singular point of the above curve is Œ1 W 0 W 0 W 0�.

Theorem 9 may be used to find algebraic curves for closed Riemann surfaces S

admitting an abelian group G <Aut.S/ whose quotient orbifold S=G has signature
of the form .0I k ; kn�1; kn; kn/. In fact, let Q WS!S=GD O be a regular abelian
branched cover with G as deck group. Let R be the homology cover of O, let
P WR! O be the regular abelian branched cover, with deck group H < Aut.R/.
Then there exists a subgroup K <H , acting freely on R and so that G ŠH=K,
and there exists a regular unbranched cover F W R! S , with K as deck group,
satisfying P DQıF . As we have explicit curves for R and an explicit presentation
for H , the classical invariant theory permits us to obtain explicit algebraic curves
for S and an explicit presentation of G. We show an application in the next section.

3.5. Families with Galois group of order pnC1. As mentioned before, we are in-
terested in regular pnC1-covers of orbifolds of type .0Ip;pn�1;pn;pn/, where n�

2 and p is an odd prime. In Section 9 we will see that the algebraic structure of
the corresponding groups of order pnC1 is restricted to only two algebraic types: a
direct or a semidirect product of Zpn and Zp. The geometric types (classified by
either geometric signature or generating vector for the corresponding action) are
more varied: four different types are found in each algebraic case.

We study the corresponding families of Riemann surfaces, giving their algebraic
curves in the abelian case.

The next result makes the above more explicit for the case when G Š Zp �Zpn ,
where p is a prime. As we will see in its proof, this is a heavy computational
procedure, but not a hard one.

Theorem 10. Let S be a closed Riemann surface admitting a group G < Aut.S/
such that G D hA;B W Ap D Bpn

D ŒA;B�D 1i Š Zp �Zpn and OD S=G is an
orbifold with signature .0Ip;pn�1;pn;pn/, where n � 2 and p is an odd prime.
Let R be a homology cover of O, let H <Aut.R/ be so that R=H D O. Let K <H

be the normal subgroup so that S DR=K and G DH=K.



ORBIFOLDS WITH SIGNATURE .0Ik;kn�1;kn;kn/ 63

(1) If K Š Zpn�1 , there exist ˇ 2 f1; 2; : : : ;pn�1 � 1g, ˛ 2 f0; 1; : : : ;p � 1g and
q 2 f1; : : : ; Œ.pn�1/=p�g, with .ˇ;p/D 1D .p; q/, such that a (singular) projective
algebraic curve representation of S is given by one of the following two families.

(a) If ˛ D 0, there exists � in C, with �¤ 0; 1, such that

S W

�
.�� 1/w

p
0
�w

p
1
Cw

p
3
D 0

.� 1/qC1.w
p
0
Cw

p
1
/qw

pn�1�ˇ
1

Cw
pn�1

2
w

qp�ˇ
3

D 0

�
� P3

and the action of G is generated by the projective linear transformations

A.Œw0 W w1 W w2 W w3�/D Œ�1w0 W w1 W w2 W w3�;

B.Œw0 W w1 W w2 W w3�/D Œw0 W �1w1 W �
pn�1�ˇ
n w2 W w3�;

where �k D e2� i=pk

. The regular branched covering map Q W S ! S=G in
this model is represented by

Q.Œw0 W w1 W w2 W w3�/D
w

p
0
Cw

p
1

w
p
0

:

The singular points of the above curve are given by the .p C 1/ points
Œ0 W 0 W 1 W 0� and Œ1 W 0 W 0 W .1��/1=p �.

(b) If ˛ > 0, there exists � in C, with �¤ 0; 1, such that

S W

8̂̂̂<̂
ˆ̂:

v
pn�1

1
C
.�1/qC1

.�� 1/q
.�v

p
1
� v

p
3
/qv

pn�1�ˇ
1

v
ˇ�pq
3

D 0

v
p
2
v

p.pr�ˇ/C˛p�p
3

C
.�1/˛C1

.��1/˛Cpr�ˇ
.v

p
0
�v

p
3
/p

r�ˇ.�v
p
0
�v

p
3
/˛ D 0

9>>>=>>>;�P3

and the group G is generated by the transformations

A.Œv0 W v1 W v2 W v3�/D Œv0 W v1 W �
pr�ˇ
1

v2 W v3�;

B.Œv0 W v1 W v2 W v3�/D Œ�
pn�1

n v0 W �
pn�1�ˇ
n v1 W v2 W v3�:

The regular branched covering map Q W S ! S=G in this model is repre-
sented by

Q.Œv0 W v1 W v2 W v3�/D
�v

p
0
� v

p
3

v
p
0
C v

p
3

:

(2) If K Š Zpn�2 � Zp, there exist � in C, with � ¤ 0; 1, and integers 
; v 2
f1; : : : ;p� 1g such that a (singular) projective algebraic curve representation of S
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is provided by the plane projective curve�
.�1/p

n�1.p�
/

�pn�1.p�
/C1

�
u

p
0
Cu

p
2

�pn�1.p�
/
u

p2v
1

�
.�� 1/u

p
0
�u

p
2

�
Cu

pn

1
u

pn.p�
�1/CpCp2v
2

D 0

�
� P2;

and the group G is generated by the transformations

A.Œu0 W u1 W u2�/D Œ�1u0 W u1 W u2�; B.Œu0 W u1 W u2�/D Œu0 W �nu1 W u2�:

The regular branched covering map Q W S ! S=G in this model is represented by

Q.Œu0 W u1 W u2�/D
�u

p
0

u
p
0
Cu

p
1

:

3.6. Field of moduli. If S is a closed Riemann surface, then it follows from the
Riemann–Roch theorem that S may be described by an irreducible nonsingular
projective algebraic curve C . It is clear from the definition that we may define the
field of moduli of S as the field of moduli of C and a field of definition of S as a
field of definition of C .

Theorem 11. Let p � 3 be a prime, n � 3 be an integer, S be a closed Riemann
surface, and H <Aut.S/ be a p-group with S=H of signature .0Ip;pn�1;pn;pn/.
Then S may be defined over its field of moduli.

Remark 12. Under the hypotheses of Theorem 11, if Autorb.S=H / is nontrivial,
then S=H admits an extra conformal involution J such that .S=H /=hJ i is the
orbifold whose underlying Riemann surface is bC, with exactly three cone points (of
orders 2p, 2pn�1 and pn). It follows that S is a Belyi curve and hence it may be
defined over a finite extension of Q.

Our next result computes the field of moduli for the homology covers of orbifolds
with signature .0Ip;pn�1;pn;pn/, where p � 3 is a prime and n� 2.

Theorem 13. Let p� 3 be a prime and n� 2 be an integer. For each �2C�f0; 1g,
let C� be as in Theorem 9 with k D p. Then:

(1) C� Š C� for �;� 2 C�f0; 1g if and only if � 2 f�; 1=�g.

(2) M.C�/DQ.�C��1/.

(3) M.C�/ is a field of definition for C�.

Theorem 13 will be proved using arguments similar to those given by Dèbes and
Emsalem in the proof of Theorem 3. In our case, we do not consider the quotient
by the full group of automorphisms, but just the quotient by the abelian group H

in Theorem 9.
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4. Proof of Theorem 4

Proof of part 4. As previously noted, there is a regular branched cover P W S !bC,
with H as deck group, so that its branch values are1 of order p, 0 of order pn�1,
1 of order pn and � of order pn. Let us denote by O� the orbifold whose underlying
Riemann surface is bC and whose cone points are1 of order p, 0 of order pn�1, 1

of order pn and � of order pn; that is, O� D S=H .
If H is not a p-Sylow subgroup, then there is some H CK < Aut.S/, where

K is a p-group and ŒK WH �D p. It follows that there is an automorphism of order
p � 3 of the orbifold O�. As there are no three cone points with the same order,
this is impossible. �

Proof of parts (2) and (3). If n� 3, then it is easy to see that

Autorb.O�/D

�
fIg; � 2 C�f0;˙1g;

h�.z/D�zi; �D�1:

Since AutH .S/=H < Autorb.O�/, it follows that

AutH .S/D
�

H; � 2 C�f0;˙1g;

K; �D�1;

where ŒK WH � 2 f1; 2g.
If nD 2, then

Autorb.O�/D

�
h˛.z/D �=zi; � 2 C�f0;˙1g;

h�.z/D�z; ˇ.z/D�1=zi; �D�1:

Again as AutH .S/=H < Autorb.O�/, it follows that

AutH .S/D
� bH ; � 2 C�f0;˙1g;bK; �D�1;

where ŒbH WH � 2 f1; 2g and ŒbK WH � 2 f1; 2; 4g. �

Proof of part (4). As a consequence of the results in [Leyton and Hidalgo 2007],
there exists a prime p0 such that the group H is a normal subgroup in Aut.S/ for
p � p0; that is, Aut.S/D AutH .S/. Next, we proceed to prove that p0 may be
chosen as desired.

Let p � 3 be any odd prime. We already know that H is a p-Sylow subgroup
of Aut.S/ and that S=H has signature .0Ip;pn�1;pn;pn/. If S=Aut.S/ has
signature of the form .0I a; b; c; d/, then it follows from Singerman’s list [1972] of
maximal Fuchsian groups that .0I a; b; c; d/D .0Ip;pn�1;pn;pn/ and, in particu-
lar, that H D Aut.S/.

Thus we need only take care of the case when S=Aut.S/ has signature of the
form .0I r; s; t/. In this case, at least one of the values r , s, t should be a multiple of
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pn. We may assume t D kpn, where k is a positive integer. We may also assume
that 2� r � s and, moreover, that if r D 2, then s � 3. Let

D D ŒAut.S/ WH �:

If D D 2, then clearly AutH .S/D Aut.S/.
From now on assume that D�3. Riemann–Hurwitz (hyperbolic area comparison)

asserts that

(4-1) D

�
1�

1

r
�

1

s
�

1

kpn

�
D 2�

1

p
�

1

pn�1
�

2

pn
;

where both sides are necessarily positive.

Lemma 14. If either

(1) p � 7, or

(2) p 2 f3; 5g and n� 3,

then D � 11.

Proof. Assume D � 12. As .r; s/¤ .2; 2/, it follows from (4-1) that

D

�
1

6
�

1

kpn

�
� 2�

1

p
�

1

pn�1
�

2

pn
:

Since the quantity in parentheses is positive, the last inequality implies that

k �
12

2CpCpn�1
:

Therefore, if p � 7 then

k �
12

2CpCpn�1
�

12

2C 2p
�

3

4
< 1;

and if p 2 f3; 5g and n� 3 then

k �
12

2CpCpn�1
�

12

2C 3C 32
�

6

7
< 1;

obtaining a contradiction in all cases. �

The following proposition gives the desired result.

Proposition 15.

(1) If n� 2, then p0 � 7.

(2) If n� 3, then p0 � 5.
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Proof. Let us denote by Np be the number of p-Sylow subgroups of Aut.S/. We
need to prove that Np D 1, if either (i) p � 7 is prime and n� 2 or (ii) p � 5 is a
prime and n� 3.

As Np � 1 mod p, we may write Np D 1CpLp, where Lp is a nonnegative
integer.

If we assume that Np > 1, then Np � 1Cp. As Np divides jAut.S/j DDjH j,
it follows that Np must divide D.

If p � 11, then Np � 12; as D � 11 by Lemma 14, we obtain a contradiction.
For the remaining cases, we will make use of the following equality, obtained

from (4-1):

(4-2)
�

D

�
1�

1

r
�

1

s

�
� 2

�
pn
Cpn�1

CpC 2D
D

k
2 f1; : : : ;Dg:

Note that both sides in this equality are positive integers.
If pD 7, since D� 11 by Lemma 14, we must have that L7D 1 and N7DDD 8.

If either r , s � 3 or r D 2 and s � 4, then�
8

�
1�

1

r
�

1

s

�
� 2

�
� 0

and the left side of (4-2) is bigger than 8, a contradiction to the fact that the right
side should be less than or equal to D.

We are left with the case r D 2 and s D 3. But in this case the left side of (4-2)
equals �

8

�
1�

1

r
�

1

s

�
� 2

�
7n
C 7n�1

C 9< 0;

again a contradiction.
Now we consider pD 5 and n� 3. In this case either (i) L5D 1 and N5DDD 6

or (ii) L5 D 2 and N5 DD D 11.
For D D 6, if either (a) r , s � 3 or (b) r D 2 and s � 6, then�

6

�
1�

1

r
�

1

s

�
� 2

�
� 0

and the left side of (4-2) is bigger than D, a contradiction. The remaining cases are
r D 2 and 3� s � 5. But in these cases we have�

6

�
1�

1

r
�

1

s

�
� 2

�
5n
C 5n�1

C 7< 0;

again a contradiction.
For D D 11, if either (a) r , s � 3 or (b) r D 2 and s � 4, then�

11

�
1�

1

r
�

1

s

�
� 2

�
� 0
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and the left side of (4-2) is bigger than D, a contradiction. The remaining cases are
r D 2 and s D 3; 4. But in these cases we have�

11

�
1�

1

r
�

1

s

�
� 2

�
5n
C 5n�1

C 7< 0;

again a contradiction. �

5. Proof of Theorem 9

Let R be the homology cover of an orbifold O with signature .0I k; kn�1; kn; kn/,
where k, n� 2. The closed Riemann surface R admits a group H <Aut.R/, where
H Š Zk �Zkn�1 �Zkn and such that R=H D O.

First consider the orbifold O� obtained from O, but assuming all cone points
are of order kn. The homology cover of this new orbifold is a closed Riemann
surface S admitting a group H� < Aut.S/, H� Š Zkn �Zkn �Zkn , and such that
O� D S=H�. It is known (see [González-Diez et al. 2009]) that an algebraic curve
representation of S is given by

bC W � xkn

0 Cxkn

1 Cxkn

2 D 0

�xkn

0 Cxkn

1 Cxkn

3 D 0

�
� P3;

that H� is generated by the projective transformations

a.Œx0 Wx1 Wx2 Wx3�/D Œ�nx0 Wx1 Wx2 Wx3�; b.Œx0 Wx1 Wx2 Wx3�/D Œx0 W�nx1 Wx2 Wx3�;

c.Œx0 Wx1 Wx2 Wx3�/D Œx0 Wx1 W�nx2 Wx3�

and that the holomorphic map

� W bC !bC W Œx0 W x1 W x2 W x3� 7! �

�
x1

x0

�kn

has degree k3n and is a branched regular cover with H� as deck group. In this
case, �.Fix.a//D1, �.Fix.b//D 0, �.Fix.c//D 1 and �.Fix.abc//D �.

Now consider the subgroup of H� given by KD hak ; bkn�1

i ŠZkn�1�Zk , and
set O0 D S=K. The group H0 DH�=K is a group of conformal automorphisms
of O0, H0 ŠH , and O0=H0 D O�.

Clearly, if R0 denotes the underlying Riemann surface structure of the orbifold O0,
then R0=H0 is the orbifold O. In this way, since any two homology covers of O are
conformally equivalent, we may assume RDR0.

In order to find an algebraic curve representation for R0 we proceed as follows.
First, we consider the affine curve representation of S defined by x D x0=x3,
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y D x1=x3 and z D x2=x3; that is,

bC 0 D

�
xkn

Cykn

C zkn

D 0

�xkn

Cykn

C 1D 0

�
� C3

and the action of H� is generated by the linear transformations

a.x;y; z/D .�nx;y; z/; b.x;y; z/D .x; �ny; z/; c.x;y; z/D .x;y; �nz/:

The subalgebra of hak ; bkn�1

i invariant polynomials, CŒx;y; z�ha
k ;bkn�1

i, is
generated by the monomials xkn�1

, yk and z. It follows that the holomorphic map

F W C3
! C3;

.x;y; z/ 7! .xkn�1

;yk ; z/D .u; v; w/

is a regular branched covering with hak ; bkn�1

i as deck group, and therefore F.bC 0/

provides an affine algebraic curve representation of R, given by

F.bC 0/D

�
uk
C vkn�1

Cwkn

D 0

�uk
C vkn�1

C 1D 0

�
� C3;

where the action of H DH�=K is generated by

a0.u; v; w/D .�1u; v; w/; b0.u; v; w/D .u; �n�1v;w/;

c0.u; v; w/D .u; v; �nw/:

If we consider the projective space P3 with coordinates Œz0 W z1 W z2 W z3�, and we
set

uD
z0

z3

; v D
z1

z3

; w D
z2

z3

;

then we obtain that R is represented by the projective algebraic curve

C D

(
zk

0 zkn�k
3 C zkn�1

1 zkn�kn�1

3 C zkn

2 D 0

�zk
0 zkn�1�k

3 C zkn�1

1 C zkn�1

3 D 0

)
� P3:

As the branched covering map P WR!R=H must satisfy � D P ıF and

F.Œx0 W x1 W x2 W x3�/D
�
xkn�1

0 W xk
1 xkn�1�k

3 W x2xkn�1�1
3 W xkn�1

3

�
;

then

P .Œz0 W z1 W z2 W z3�/D�

�
zkn�1

1

zk
0

zkn�1�k
3

�
:
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6. Proof of Theorem 10

Proof. Consider a closed Riemann surface S admitting a group G < Aut.S/ such
that GŠZp�Zpn and ODS=G is an orbifold with signature .0Ip;pn�1;pn;pn/,
where n� 2 and p is an odd prime. Denote by P W S ! O the natural holomorphic
branched cover with G as deck group.

In this section we will find algebraic curves representing S and the action of G

on them.
Let R be the homology cover of O, and let Q WR! ODR=H be the branched

regular covering with H as deck group, where H D Zp �Zpn�1 �Zpn .
Since G is abelian, there is a subgroup K <H such that S DR=K (and hence

K acts freely on R), G D H=K, and there is a regular holomorphic covering
T WR! S with K as deck group and QD P ıT .

Consider the affine algebraic curve C0 representing R, obtained from Theorem 9
by making z3 D 1:

C0 D

�
z

p
0
C z

pn�1

1
C z

pn

2
D 0

�z
p
0
C z

pn�1

1
C 1D 0

�
� C3;

in which case the group H is generated by

a0.z0; z1; z2/D .�1z0; z1; z2/; b0.z0; z1; z2/D .z0; �n�1z1; z2/;

c0.z0; z1; z2/D .z0; z1; �nz2/:

6.1. Algebraic structure of K . We next describe the algebraic structure of K. At
this point we should note that, using the model of R given in Theorem 9, the
transformations in H acting with fixed points on S are exactly the ones that belong
to ha0i [ hb0i [ hc0i [ ha0b0c0i.

Proposition 16. Consider the algebraic model of .R;H / provided by Theorem 9.
Let K <H be such that K acts freely on R and H=K Š Zp �Zpn . Then, either

(1) Zpn�1 ŠK D ha˛
0
b0c

pq
0
i, where .p; q/D 1 and 0� ˛ � p� 1; or

(2) Zpn�2 �Zp ŠK D hb
�p
0

c
p2v
0
i � ha0c

pn�1

0

i, where .p; v/D 1 and 1 � 
 �

p� 1.

Proof. Consider a surjective homomorphism

ˆ WH ! J D Zp �Zpn

with K D ker.ˆ/ acting freely on R. Note that the order of K is pn�1. Then:

a) K\ ha0i D fIg, which implies that ˆ.a0/ has order p.

b) K\ hb0i D fIg, which implies that ˆ.b0/ has order pn�1.



ORBIFOLDS WITH SIGNATURE .0Ik;kn�1;kn;kn/ 71

c) K\ hc0i D fIg, which implies that ˆ.c0/ has order pn.

d) K\ ha0b0c0i D fIg, which implies that ˆ.a0/ˆ.b0/ˆ.c0/ has order pn.

Hence the subgroups of J given by hˆ.b0/i and hˆ.c0/i have respective in-
dices p2 and p, and there are two cases to be considered, as follows.

Case i). Assume hˆ.b0/i � hˆ.c0/i. Then there exists 1 � u � p � 1 such that
ˆ.b0/ D ˆ.c

pu
0
/, in which case h D b0c

�pu
0

is an element of K of order pn�1,
and therefore K D hhi is cyclic of the form given in case (1).

Case ii). Assume hˆ.b0/i 6� hˆ.c0/i. Then we have the following commutative
diagram of subgroup inclusions and corresponding indices:

J

hˆ.c0/i

p

66

hˆ.b0/ip2

hh

hˆ.c0/i \ hˆ.b0/ip

p2

hh 66

and it follows that

hˆ.c0/i \ hˆ.b0/i D
˝
ˆ
�
c

p2

0

�˛
D hˆ.b

p
0
/i:

Hence there exists v such that h0 D c
p2v
0

b
�p
0

is in K, and h0 has order pn�2.
Also note that .v;p/ D 1, since otherwise an adequate power of h0 would be a
nontrivial power of b0 in K. It follows that there are two possibilities for K, either
K Š Zpn�1 or K D hh0i � hti Š Zpn�2 �Zp.

Subcase K is not cyclic. As previously noted, in this case K D hh0i � hti Š

Zpn�2 �Zp , where h0 D c
p2v
0

b
�p
0

and .p; v/D 1. As t 2H has order p, it has the
form

t D a˛0b
ˇpn�2

0
c

pn�1

0
;

where ˛, ˇ, 
 2 f0; 1; : : : ;p� 1g.
Let us assume ˛D 0. If 
 D 0, then t 2 hb0i. As K acts freely on R, necessarily

tD1 and we get a contradiction. If .
;p/D1, then we may assume tDb
ˇpn�2

0
c

pn�1

0

(by considering an appropriate power of the original t ); hence

QhD th
�pn�3

0
D b

.ˇCv/pn�2

0
2K\ hb0i:

Again, as K acts freely, Qh must be trivial, and t would belong to hh0i, again a
contradiction. Then we have proved that ˛ > 0.



72 ANGEL CAROCCA, RUBÉN A. HIDALGO AND RUBÍ E. RODRÍGUEZ

Since t has order p, we may replace t by a suitable power of it in order to assume
that t D a0b

ˇpn�2

0
c

pn�1

0
.

We now claim that we may assume ˇ D 0. Indeed, if ˇ > 0, then th
ˇpn�3

0
D

a0c
pn�1.
Cv/
0

is an element of order p in K that does not belong to hh0i.
Therefore we may write t D a0cpn�1
 , and observe that 1� 
 � p� 1 because

K\ ha0i D fIg. This is case (2).

Subcase K is cyclic. In this case, K D hhi Š Zpn�1 . Let us write

hD a˛0b
ˇ
0

c


0

where ˛ 2 f0; 1; : : : ;p� 1g, ˇ 2 f0; 1; : : : ;pn�1� 1g, 
 2 f0; 1; : : : ;pn� 1g.
The condition c


pn�1

0
D hpn�1

D 1 ensures that 
 � 0 mod p. It follows that
either 
 D 0 or 
 D psq, where s 2 f1; : : : ; n� 1g and .p; q/D 1.

Next, we need to ensure that, for ı 2 f1; 2; : : : ;pn�1�1g, no power hı acts with
fixed points in C ; that is, hı … ha0i [ hb0i [ hc0i [ ha0b0c0i.

But if 
 D 0 then hp D b
pˇ
0

is a nontrivial element of the group generated by
b0, a contradiction. Similarly, if s > 1 then hpn�s

D b
ˇpn�s

0
is a nontrivial element

of the group generated by b0, a contradiction.
Therefore hD a˛

0
b
ˇ
0

c
pq
0

, with .p; q/D 1, and it follows that hı is not in hb0i.
But if ˇ � 0 mod p, then hpn�2

D cqpn�2

is a nontrivial element of the group
generated by c0, a contradiction. Hence .p; ˇ/D 1, and hı is not in hc0i.

We note that hı 2 ha0i implies that ˇı � 0 mod pn�1, and since .ˇ;p/D 1,
to have ı � 0 mod pn�1, which is not possible by our choice for ı.

The condition hı 2 ha0b0c0i implies that ˇı � pqı mod pn�1, from which
.ˇ�pq/ı � 0 mod pn�1, and then ı � 0 mod pn�1, which is not possible by
our choice for ı.

By taking an appropriate power of h, we may assume that

K D ha˛0b0c
pq
0
i;

where .p; q/D 1.
Now note that in this case 1 � ˛ � p � 1, since ˛ D 0 implies that ˆ.b0/ D

ˆ.c0/
�pq is an element of hˆ.c0/i, which is a contradiction, as we are in case ii).

This is case (1). �

6.2. The cyclic case. As a consequence of Proposition 16, we may assume

K D ha˛0b0c
pq
0
i;

where .p; q/D 1 and ˛ 2 f0; 1; : : : ;p� 1g. Note that

a˛0b0c
pq
0
.z0; z1; z2/D .�

˛
1 z0; �n�1z1; �

q
n�1

z2/:
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6.2.1. The case ˛ D 0. We next search for polynomials in CŒz0; z1; z2�
K . We

first note that z0 2 CŒz0; z1; z2�
K . Next, we search for polynomials of the form

zu
1
zv

2
2 CŒz0; z1; z2�

K , where u, v 2 f0; 1; : : : ;pn�1g. The invariance property
requires that the values u and v satisfy the relation

uC vq � 0 mod pn�1:

As .p; q/D 1, we have that some of those polynomials are given by

z
pn�1

1
; z

pn�1

2
; z

q
1
z

pn�1�1
2

:

Let us consider the holomorphic map

F W C3
! C4;

F.z0; z1; z2/D .z0; z
pn�1

1
; z

pn�1

2
; z

q
1
z

pn�1�1
2

/D .x1;x2;x3;x4/:

Let us note that x4=x3 D z
q
1
=z2. As .pn�1; q/ D 1, it follows that there exist

integers a, b so that aqC bpn�1 D 1; that is, z1 D .z
q
1
/a.z

pn�1

1
/b D .x4=x3/

axb
2

.
It follows that z1 is uniquely determined by the tuple .x1;x2;x3;x4/ and a choice
for z2. In particular, as z0 is uniquely determined by x1, one sees that the map
F has degree pn�1 and it is K-invariant. In this way, an affine algebraic curve
defining F.C0/ is given by

F.C0/D

8̂<̂
:

x
p
1
Cx2Cx

p
3
D 0

�x
p
1
Cx2C 1D 0

x
pn�1

4
�x

q
2
x

pn�1�1
3

D 0

9>=>;� C4

and a projective one is provided by taking x1 D y0=y4, x2 D y1=y4, x3 D y2=y4,
x4 D y3=y4, where Œy0 W y1 W y2 W y3;y4� 2 P4, as follows:8̂̂<̂

:̂
y

p
0
Cy1y

p�1
4
Cy

p
2
D 0

�y
p
0
Cy1y

p�1
4
Cy

p
4
D 0

y
pn�1

3
�y

q
1
y

pn�1�1
2

y
1�q
4
D 0

9>>=>>;� P4:

The map F is, in projective coordinates, given as

F.Œz0 W z1 W z2 W z3�/D
�
z0z

pn�1�1
3

W z
pn�1

1
W z

pn�1

2
W z

q
1
z

pn�1�1
2

z
1�q
3
W z

pn�1

3

�
D Œy0 W y1 W y2 W y3 W y4�:

As, by the first equality above,

y1 D�

�
y

p
0
Cy

p
2

y
p�1
4

�
;
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the above also provides the (birational) algebraic curve�
.�� 1/y

p
0
�y

p
2
Cy

p
4
D 0

.�1/qC1.y
p
0
Cy

p
2
/qy

pn�1�1
2

Cy
pn�1

3
y

qp�1
4

D 0

�
� P3:

By making the change of coordinates w0 D y0, w1 D y2, w2 D y3, w3 D y4,
the above is written as�

.�� 1/w
p
0
�w

p
1
Cw

p
3
D 0

.�1/qC1.w
p
0
Cw

p
1
/qw

pn�1�1
1

Cw
pn�1

2
w

qp�1
3

D 0

�
� P3

and the map F is given as

F.Œz0 Wz1 Wz2 Wz3�/D
�
z0z

pn�1�1
3

Wz
pn�1

2
Wz

q
1
z

pn�1�1
2

z
1�q
3
Wz

pn�1

3

�
DŒw0 Ww1 Ww2 Ww3�:

In this case, the group G DH=K is generated by the transformations

A1.Œw0 W w1 W w2 W w3�/D Œ�1w0 W w1 W w2 W w3�;

B1.Œw0 W w1 W w2 W w3�/D Œw0 W w1 W �
q
n�1

w2 W w3�;

C1.Œw0 W w1 W w2 W w3�/D Œw0 W �1w1 W �
pn�1�1
n w2 W w3�:

Notice that the elements ADA1 and B DC1 also generate G as desired. As the
branched covering map Q WS!S=G must satisfy P DQıF , where P WR!R=H

is (as in Theorem 9) given by

P .Œz0 W z1 W z2 W z3�/D�

�
z

pn�1

1

z
p
0

z
pn�1�p
3

�
;

and since

�

�
z

pn�1

1

z
p
0

z
pn�1�p
3

�
D�

�
y1y

p�1
4

y
p
0

�
D

y
p
0
Cy

p
2

y
p
0

D
w

p
0
Cw

p
1

w
p
0

;

we obtain

Q.Œw0 W w1 W w2 W w3�/D
w

p
0
Cw

p
1

w
p
0

:

6.2.2. The case ˛ 2 f1; 2 : : : ;p� 1g. Next, we search for polynomials of the form
zt

0
zu

1
zv

2
2 CŒz0; z1; z2�

K , where t 2 f0; 1; : : : ;p � 1g and u, v 2 f0; 1; : : : ;pn�1g.
The invariance property requires that the values u and v satisfy the relation

t˛pn�2
CuC vq � 0 mod pn�1:

As .p; q/D .˛;p/D 1, we have that some of those polynomials are given by

z
p
0
; z

pn�1

1
; z

pn�1

2
; z

q
1
z

pn�1�1
2

; z
p�1
0

z
˛pn�2

1
:
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Let us consider the holomorphic map

F WC3
!C5;

F.z0; z1; z2/D
�
z

p
0
; z

pn�1

1
; z

pn�1

2
; z

q
1
z

pn�1�1
2

; z
p�1
0

z
˛pn�2

1

�
D.x1;x2;x3;x4;x5/:

Let us note that x4=x3D z
q
1
=z2. As .pn�1; q/D 1, it follows that there exist inte-

gers a, b so that aqCbpn�1D 1, from where z1D .z
q
1
/a
�
z

pn�1

1

�b
D .x4=x3/

axb
2
z2.

It follows that z1 is uniquely determined by the tuple .x1;x2;x3;x4;x5/ and a
choice for z2.

As z
p
0

is uniquely determined by x1, and z
p�1
0

z
˛pn�2

1
is uniquely determined

by x2, x3, x4, x5 and a choice of z2, we have that z0 is also uniquely determined
by the previous data.

All the above permits us to see that the map F has degree pn�1 and it is K-
invariant. In this way, an affine algebraic curve defining F.C0/ is given by

F.C0/D

8̂̂̂̂
<̂
ˆ̂̂:

x1Cx2Cx
p
3
D 0

�x1Cx2C 1D 0

x
pn�1

4
�x

q
2
x

pn�1�1
3

D 0

x
p
5
�x

p�1
1

x˛2 D 0

9>>>>=>>>>;� C5:

We may write x2D�.x1Cx
p
3
/. In this way, writing u1D x1, u2D x3, u3D x4

and u4 D x5, the above curve is8̂<̂
:

.�� 1/u1�u
p
2
C 1D 0

u
pn�1

3
C .�1/qC1.u1Cu

p
2
/qu

pn�1�1
2

D 0

u
p
4
C .�1/˛C1u

p�1
1

.u1Cu
p
2
/˛ D 0

9>=>;� C4:

Now, we may write

u1 D
1

�� 1
.u

p
2
� 1/;

and setting y1 D u2, y2 D u3 and y3 D u4, the above curve is8̂̂̂<̂
ˆ̂:

y
pn�1

2
C
.�1/qC1

.�� 1/q
.�y

p
1
� 1/qy

pn�1�1
1

D 0

y
p
3
C

.�1/˛C1

.�� 1/˛Cp�1
.y

p
1
� 1/p�1.�y

p
1
� 1/˛ D 0

9>>>=>>>;� C3

and F is of the form

F.z0; z1; z2/D
�
z

pn�1

2
; z

q
1
z

pn�1�1
2

; z
p�1
0

z
˛pn�2

1

�
D .y1;y2;y3/:



76 ANGEL CAROCCA, RUBÉN A. HIDALGO AND RUBÍ E. RODRÍGUEZ

Writing y1 D v0=v3, y2 D v1=v3 and y3 D v2=v3, we obtain the projective
model8̂̂̂<̂

ˆ̂:
v

pn�1

1
v

pq�1
3

C
.�1/qC1

.�� 1/q
.�v

p
0
� v

p
3
/qv

pn�1�1
0

D 0

v
p
2
v

p2Cp.˛�2/
3

C
.�1/˛C1

.�� 1/˛Cp�1
.v

p
0
� v

p
3
/p�1.�v

p
0
� v

p
3
/˛ D 0

9>>>=>>>;� P3

and for n� 3 we have that maxfpn�1;pn�1Cq�1; ˛pn�2Cp�1gDpn�1Cq�1

and therefore F W P3! P3 is given as

F.Œz0 W z1 W z2 W z3�/

D
�
z

pn�1

2
z

q�1
3
W z

q
1
z

pn�1�1
2

W z
p�1
0

z
˛pn�2

1
z

pn�1Cq�p�˛pn�2

3
W z

pn�1Cq�1
3

�
:

In the case n D 2 a similar formula may be given for F ; the maximum value
above is pC q� 1 if q � ˛ and pC˛� 1 otherwise.

Continuing with n� 3, the group G DH=K is generated by the transformations

A2.Œv0 W v1 W v2 W v3�/D Œv0 W v1 W �
p�1
1

v2 W v3�;

B2.Œv0 W v1 W v2 W v3�/D Œv0 W �
q
n�1

v1 W �
˛
1v2 W v3�;

C2.Œv0 W v1 W v2 W v3�/D Œ�1v0 W �
pn�1�1
n v1 W v2 W v3�:

Notice that the elements ADA2 and B DC2 also generate G as desired. As the
branched covering map Q WS!S=G must satisfy P DQıF , where P WR!R=H

is (as in Theorem 9) given by

P .Œz0 W z1 W z2 W z3�/D�

�
z

pn�1

1

z
p
0

z
pn�1�p
3

�
D�

�
x2

x1

�
D

u1Cu
p
2

u1

D 1C
.�� 1/u

p
2

.u
p
2
� 1/

D 1C
.�� 1/y

p
1

.y
p
1
� 1/

D 1C
.�� 1/v

p
0

v
p
0
� v

p
3

;

we obtain

Q.Œv0 W v1 W v2 W v3�/D
�v

p
0
� v

p
3

v
p
0
C v

p
3

:

6.3. The noncyclic case. In this case,

K D
˝
b
�p
0

c
p2v
0

; a0c

pn�1

0

˛
;

where .p; v/D 1 and 
 2 f1; 2; : : : ;p� 1g.
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We have that

b
�p
0

c
p2v
0

.z0; z1; z2/D .z0; �
�1
n�2z1; �

v
n�2z2/;

a0c

pn�1

0
.z0; z1; z2/D .�1z0; z1; �



1

z2/:

Clearly, zA
0

zB
1

zC
2
2 CŒz0; z1; z2�

K if and only if�
ACC
 � 0 mod p;

Cv�B � 0 mod pn�2:

In this way,

z
p
0
; z

pn�2

1
; z

p�

0

zv1z2 2 CŒz0; z1; z2�
K :

Let us consider the map

F W C3
! C3;

F.z0; z1; z2/D .z
p
0
; z

pn�2

1
; z

p�

0

zv1z2/D .x1;x2;x3/:

If we fix .x1;x2;x3/, then we have p choices for z0 (zp
0
D x1) and pn�2

choices for z1 (zpn�2

1
D x2). Once we have made such choices, the value of z2 is

uniquely determined from z
p�

0

zv
1
z2 D x3. It follows that F has degree pn�1 and

is K-invariant as desired.
The algebraic curve F.C0/ is provided by

F.C0/D

�
x

pn�1.p�
/
1

x
p2v
2

.x1Cx
p
2
/Cx

pn

3
D 0

�x1Cx
p
2
C 1D 0

�
� C3:

As

x1 D�
.1CxP

2
/

�
;

this curve is also represented by, taking y1 D x2 and y2 D x3,�
.�1/p

n�1.p�
/

�pn�1.p�
/

�
1Cy

p
1

�pn�1.p�
/
y

p2v
1

�
y

p
1
�
.1Cy

p
1
/

�

�
Cy

pn

2
D 0

�
� C2:

A projectivization of this plane curve is given by, using the projective coordinates
Œu0 W u1 W u2� 2 P2 and taking y1 D u0=u2 and y2 D u1=u2, the following one:�
.�1/p

n�1.p�
/

�pn�1.p�
/C1

�
u

p
0
Cu

p
2

�pn�1.p�
/
u

p2v
1

�
.�� 1/u

p
0
�u

p
2

�
Cu

pn

1
u

pn.p�
�1/CpCp2v
2

D 0

�
� P2:
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In this case, the transformations a0, b0 and c0 define the transformations

A3.Œu0 W u1 W u2�/D Œu0 W �
p�

1

u1 W u2�; B3.Œu0 W u1 W u2�/D Œ�1u0 W �
v
n�1u1 W u2�;

C3.Œu0 W u1 W u2�/D Œu0 W �nu1 W u2�:

The elements AD C
�vp
3

B3 and B D C3 also generate G as desired. And since

P .z0; z1; z2/D�

�
z

pn�1

1

z
p
0

�
D

�y
p
1

1Cy
p
1

;

we obtain

Q.Œu0 W u1 W u2�/D
�u

p
0

u
p
0
Cu

p
1

: �

7. Proof of Theorem 11

Proof. Let C be a nonsingular projective algebraic curve admitting a p-group H of
conformal automorphisms of C with C=H of signature .0Ip;pn�1;pn;pn/ and
let P W C ! C=H DbC be a holomorphic branched covering with H as deck group.
We may assume the branch values of P are given by1 or order p, 0 of order pn�1,
and 1 and � 2 C�f0; 1g are the ones of order pn. We notice that

Autorb.S=H /D

�
fIg; �¤�1;

hJ.z/D�zi; �D�1:

Let KC D f� 2 Aut.C=Q/ W C � Š C g. For each � 2 KC there is a biholo-
morphism f� W C ! C � . As H� is unique up to conjugation in Aut.C � /, by
Theorem 4, we may assume that f�Hf �1

� DH� . It follows that there is a Möbius
transformation M� so that P� ıf� DM� ıP . The transformation M� is uniquely
determined by f� . As M� must preserve the cone points and their orders, it
follows that M� .1/D1, M� .0/D 0 and that f1; ��gD fM� .1/;M� .�/g, where
�� 2 C�f0; 1g is branch value of order pn of P� W C � !bC (in fact, �� D �.�/).
It follows that either (i) M� D I , in which case �� D � or (ii) M� .z/D z=�, in
which case �� D 1=�.

7.1. Let us assume, from now on, that �¤�1.

Lemma 17. Let � ¤ �1 and � 2 KC . If there is another biholomorphism bf � W
C ! C � such that bf �H bf �1

� DH� , then bf � D h ıf� , for some h 2H .

Proof. If there is another biholomorphism bf � WC!C � such that bf �H bf �1

� DH� ,
then f �1

� ı
bf � 2Aut.C / normalizes H . In this way, f �1

� ı
bf � induces an element

of Autorb.S=H /. As this last group is trivial, we obtain that f �1
� ı

bf � 2H . �
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As a consequence of Lemma 17, M� is uniquely determined by � and, in
particular, the collection fM� W � 2KC g satisfies Weil’s conditions in Theorem 2.
Hence, there is an isomorphism F WbC! C1, where C1 is defined over M.C /, with
the property that F D F� ıM� for every � 2KC .

Let us consider the Galois cover Q W C ! B, where QD F ıP . We note that,
for � 2KC , we have (as P� D P )

Q�
ıf� D F� ıP�

ıf� D F ıM�1
� ıM� ıP ıf �1

� ıf� DR ıP DQ:

Now we follow Dèbes and Emsalem’s arguments [1999]. Assume we are able to
find a point c1 2 C1 which is M.C /-rational and so that c1 is not a branch value
of the Galois covering Q. Fix a point c 2 C so that Q.c/D c1. It follows that the
H -stabilizer of c is trivial. We have the points �.c/, f� .c/ 2 C � . As

Q� .�.c//D �.Q.c//D �.c1/D c1 and Q� .f� .c//DQ.c/D c1;

it follows that there is some h� 2 H so that h� .f� .c// D �.c/. Moreover, as a
consequence of Lemma 17 and the fact that c has trivial stabilizer in H , such
h� 2H is unique. In this way, we may assume that f� .c/D �.c/ and, by the above,
such an isomorphism is uniquely determined by � . Again, by the uniqueness, this
new family ff� W � 2 K�g satisfies Weil’s conditions and, by Theorem 2, C is
definable over its field of moduli.

In this way, in order to finish our proof, we only need find a M.C /-rational
point on C1 outside the branch set. This is equivalent to finding a point r 2bC� f1; 0; 1; �g with the property that F.r/ D �.F.r//, for every � 2 KC . As
�.F.r//D F� .�.r//D F.M�1

� .�.r///, we need to find a point r 2 C�f0; 1; �g

such that
M� .r/D �.r/:

In this way, we need to find a point r 2 C�f0; 1; �g so that

(1) if �.�/D �, then �.r/D r ; and

(2) if �.�/D 1=�, then �.r/D r=�.

Condition (1) asserts that we need to find r 2 Q.�/. Clearly, any point of the
form r D ˛.1C�/, where ˛ 2Q satisfies (1) and (2).

7.2. Let us now consider the case � D �1. We have (see Remark 5) that either
(i) AutH .C /DH or (ii) Aut.C /D AutH .C / and ŒAut.C / WH �D 2.

In case (i) we may proceed as in the case �¤�1 as Lemma 17 is still valid in
this situation (the normalizer of H in Aut.C / is H ).

In case (ii) we have that C=Aut.C /D .C=H /=hJ i; that is, C is quasiplatonic,
so it is defined over its field of moduli. �
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8. Proof of Theorem 13

Proof. Since

C� D

(
z

p
0

z
pn�p
3

C z
pn�1

1
z

pn�pn�1

3
C z

pn

2
D 0

�z
p
0

z
pn�1�p
3

C z
pn�1

1
C z

pn�1

3
D 0

)
� P3

and

P .Œz0 W z1 W z2 W z3�/D�

�
zkn�1

1

zk
0

zkn�1�k
3

�
;

then, for each � 2 Aut.C=Q/, one has that C �
�
D C�.�/ and P� D P .

Let K� D f� 2 Aut.C=Q/ W C� Š C�.�/g, so M.C�/D Fix.K�/.
If � 2K�, then there is an isomorphism f� W C�! C�.�/. As a consequence

of Theorem 4, we may assume f�Hf �1
� DH . So, there is a Möbius transforma-

tion M� such that M� ıP D P� ı f� . As M� must preserve the cone points and
their orders, one has that

M� .1/D1; M� .0/D 0; M�f1; �g D f1; �.�/g:

It follows from the first two equalities above that M� .z/D Lz, for a suitable
L 2 C�f0g. The equality M�f1; �g D f1; �.�/g asserts that either (1) LD 1 and
�.�/D � or (2) LD �.�/ and �.�/D 1=�. As a consequence, we have proved (1)
and (2).

Part (3) is a consequence of Theorem 11. �

9. Galois groups of order pnC1

In this section, we consider those groups G of order jGj DpnC1 acting on compact
Riemann surfaces with signature .0Ip;pn�1;pn;pn/, for any odd prime p.

The algebraic structure for these groups is determined by the following result.

Proposition 18. Let p be an odd prime number and let G < Aut.S/ be a group of
order jGj D pnC1 acting on a compact Riemann surface S with S=G of signature
.0Ip;pn�1;pn;pn/.

Then G is isomorphic to either

(1) Zpn �Zp; or

(2) hx;y W xpn

D yp D 1;y�1xy D xpn�1C1i:

Remark 19. in the first case we have provided, in Theorem 10, algebraic curves
for S . In the second case explicit algebraic curves are more complicated, but we
will study this problem elsewhere.
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Proof. First notice that G has a presentation of the form

G D
˝
x1;x2;x3;x4 W x

pn

1
D x

pn

2
D x

pn�1

3
D x

p
4
D x1x2x3x4 D 1;R

˛
where R denotes other relations.

Therefore G cannot be cyclic, since otherwise it could not be generated by
elements of the given orders.

Moreover, G has a cyclic subgroup of order pn, which is normal because it has
index p, and therefore G is isomorphic to

G Š Zpn Ì� Zp D hxiÌ� hyi

where �.x/D xu with up D 1 mod pn. The only solutions for u are uD 1 and the
powers of uD pn�1C 1, and the result follows. �

Remark 20. We will denote the groups appearing in Proposition 18 as follows:

(9-1) Gu D
˝
x;y W xpn

D yp
D 1;y�1xy D xu

˛
with u D 1 or u D 1Cpn�1, and we will study the families of algebraic curves
admitting Gu actions with signature .0Ipn;pn;pn�1;p/.

Lemma 21. Consider the groups Gu given by (9-1) and

(9-2) � D
˝
a0; b0; c0d0 W a

p
0
D b

pn�1

0
D c

pn

0
D d

pn

0
D a0b0c0d0 D 1

˛
:

Assume ˆ W ��Gu is an epimorphism such that K D kerˆ is torsion-free.
Then either

I) KD
˝˝
b0c
�pq
0

a�˛
0
; a�1

0
c0a0c�us

0

˛˛
, with 0�˛�p�1, 0<s<p and .q;p/D1,

or

II) K D
˝˝
a0c
�pn�1v
0

; b
p
0

c
�p2q
0

; b�1
0

c0b0c�us

0

˛˛
, with 1 � v � p � 1, 0 < s < p

and .q;p/D 1,

where hh � ii denotes normal closure in � .

Proof. Since K is torsion-free, we obtain that

a) K\ ha0i D f1g, and it follows that y1 Dˆ.a0/ has order p;

b) K\ hb0i D f1g, and it follows that y2 Dˆ.b0/ has order pn�1;

c) K\ hc0i D f1g, and it follows that y3 Dˆ.c0/ has order pn;

d) K\ ha0b0c0i D f1g, and it follows that y4 Dˆ.d0/ has order pn.

Since ˆ is an epimorphism, fy1;y2;y3;y4g generate Gu. But clearly y4 D

.y1y2y3/
�1, and therefore fy1;y2;y3g generate Gu.

We now examine the following two cases separately.
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Case I) Suppose hy1;y3i DGu. We have GuD hy3iÌus hy1i for some 0< s < p:

Also y2 D y˛
1

y
pq
3

with .q;p/D 1. Hence

y2y
�pq
3

y�˛1 Dˆ.b0c
�pq
0

a�˛0 /D 1

and it follows that b0c
�pq
0

a�˛
0
2K.

Furthermore ˆ.a�1
0

c0a0c�us

0
/D y�1

1
y3y1y�us

3
D 1; hence a�1

0
c0a0c�us

0
2K.

Then, checking the order of �=
˝˝
b0c
�pq
0

a�˛
0
; a0c�1

0
a�1

0
c�us

0

˛˛
, we obtain, as

required,
K D

˝˝
b0c
�pq
0

a�˛0 ; a0c�1
0 a�1

0 c�us

0

˛˛
:

Case II) Suppose hy1;y3i<Gu. Then

y1 D y
pn�1v
3

with .v;p/D 1, since hy3i is a maximal subgroup of Gu. Hence a0c
�pn�1v
0

2K.
In this case,

hy2;y3i DGu D hy3iÌus hy2i

for some 0< s < p: Hence y�1
2

y3y2y�us

3
D 1 from where b�1

0
c0b0c�us

0
2K.

Finally, y
p
2
D y

p2q
3

with .q;p/D 1, from where b
p
0

c
�p2q
0

2K.

Again, by checking the order of �=
˝˝
a0c
�pn�1v
0

; b
p
0

c
�p2q
0

; b�1
0

c0b0c�us

0

˛˛
, we

obtain
K D

˝˝
a0c
�pn�1v
0

; b
p
0

c
�p2q
0

; b�1
0 c0b0c�us

0

˛˛
: �

Considering the above notation for the elements y1 D ˆ.a0/, y2 D ˆ.b0/,
y3 Dˆ.c0/ and y4 Dˆ.d0/ in Gu, we have the following result, which states that
examples for both cases of Proposition 18 exist, by the Riemann existence theorem.

Corollary 22. If the group Gu, with u D 1 or u D 1C pn�1, acts on a compact
Riemann surface with signature .0Ip;pn�1;pn;pn/, then a generating vector for
the action may be chosen to be exactly of one of the following forms:

a)
�
y1;y

˛
1

y
pq
3
;y3;y

�1�pq
3

y�1�˛
1

�
, with .q;p/D 1 and 1� ˛ � p� 2;

b)
�
y1;y

pq
3
;y3;y

�1�pq
3

y�1
1

�
, with .q;p/D 1;

c)
�
y1;y

�1
1

y
pq
3
;y3;y

�1�pq
3

�
, with .q;p/D 1;

d)
�
y

pn�1v
3

;y2;y3;y
�1�pn�1v
3

y�1
2

�
.

In the first three cases the order of y1 is p, the order of y3 is pn and y�1
1

y3y1D

yus

3
with 0< s<p. In the last case y2 has order pn�1, y3 has order pn, y

p
2
Dy

qp2

3

and y�1
2

y3y2 D yus

3
with 0< s < p.
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The following table gives the genera of some intermediate curves, where gL

denotes the genus of the quotient of S by the subgroup L� Aut.S/ and where V is
any cyclic maximal subgroup acting freely:

generating vector uD 1Cpn�1 uD 1�
y1;y

˛
1

y
pq
3
;y3; ghy3i

D
p�1

2
ghy3i

D
p�1

2

y
�1�pq
3

y�1�˛
1

�
g
hy

�1�pq

3
y�1�˛

1
i
D

p�1
2

g
hy

�1�pq

3
y�1�˛

1
i
D

p�1
2

ghy1i
D

2pn�pn�2.2p�1/�p
2

ghy1i
D

pn�p
2

ghyp

3
i D p2� 2pC 1 ghyp

3
i D p2� 2pC 1

ghyp

3
;y1i
D 0 ghyp

3
;y1i
D 0

gV D p� 1 gV D p� 1�
y1;y

pq
3
;y3;y

�1�pq
3

y�1
1

�
ghy3i

D 0 ghy3i
D 0

g
hy

�1�pq

3
y�1

1
i
D 0 g

hy
�1�pq

3
y�1

1
i
D 0

ghy1i
D

2pn�pn�2.2p�1/�p
2

ghy1i
D

pn�p
2

ghyp

3
i D

p2�3p
2
C 1 ghyp

3
i D

p2�3p
2
C 1

ghyp

3
;y1i
D 0 ghyp
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EXPLICIT ISOGENY THEOREMS FOR DRINFELD MODULES

IMIN CHEN AND YOONJIN LEE

Let F = Fq(T ) and A = Fq[T ]. Given two nonisogenous rank-r Drinfeld
A-modules φ and φ′ over K , where K is a finite extension of F, we obtain a
partially explicit upper bound (dependent only on φ and φ′) on the degree of
primes ℘ of K such that P℘(φ) 6= P℘(φ′), where P℘(∗) denotes the charac-
teristic polynomial of Frobenius at ℘ on a Tate module of ∗. The bounds are
completely explicit in terms of the defining coefficients of φ and φ′, except
for one term, which can be made explicit in the case of r = 2. An ingredient
in the proof of the partially explicit isogeny theorem for general rank is an
explicit bound for the different divisor of torsion fields of Drinfeld modules,
which detects primes of potentially good reduction.

Our results are a Drinfeld module analogue of Serre’s work (1981), but
the results we obtain are unconditional because the generalized Riemann
hypothesis holds for function fields.

1. Introduction

Let A = Fq [T ], F = Fq(T ), and let F be a fixed algebraic closure of F , K a finite
extension of F in F , K the algebraic closure of K in F , O the ring of integers of K ,
and Fq a finite field of order q .

By a prime ℘ (or place) of K , we mean a discrete valuation ring R with field of
fractions K and maximal ideal ℘, and v denotes the discrete valuation associated
to a prime ℘ of K . For each place v of K , we fix a choice of K v and extend v
to K v, which by abuse of notation we also call v. Also, when we speak of finite
extensions of Kv, we assume they are initially given as subfields of K v.

Let∞ be the infinite prime of F with corresponding discrete valuation

v∞( f/g)= deg g− deg f,

where f, g ∈ A. Let SK
∞

be the set of the infinite primes of K lying over∞, and

Chen was supported by the NSERC. Lee was supported by Priority Research Centers Program through
the NRF funded by the Ministry of Education, Science and Technology (2009-0093827) and by the
NRF grant funded by the Korea government (MEST) (2012-0005432). Lee is the corresponding author.
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let ∞̄ ∈ SK
∞

have corresponding discrete valuation v∞̄.
Let τ be the map that raises an element to its q-th power. A Drinfeld A-module

φ over K is given by an Fq -algebra homomorphism i : A→ K and an Fq -algebra
homomorphism

φ : A→ K {τ }

such that φa has constant term i(a) for any a ∈ A, and the image of φ is not
contained in K .

A rank-r Drinfeld A-module φ over K is completely determined by

φT = i(T )+ a1(φ)τ + · · ·+ ar−1(φ)τ
r−1
+1(φ)τ r ,

where ai (φ), ar =1(φ) ∈ K for 1≤ i ≤ r−1. We call 1(φ) the discriminant of φ.
For any monic a ∈ Fq [T ], we have

(1) φa = i(a)+
M−1∑
i=1

ai (φ, a)τ i
+1(φ)(q

M
−1)/(qr

−1)τM

for some ai (φ, a) ∈ K , where M = r degK a.
For any a ∈ A, a 6= 0, we define the A-module of a-torsion points as

φ[a] = {λ ∈ K | φa(λ)= 0}.

If I is a nonzero ideal of A, we similarly define the A-module of I -torsion points:

φ[I ] = {λ ∈ K | φa(λ)= 0 for every a ∈ I }.

We have φ[a] ' (A/a A)r if φ is of rank r [Rosen 2002, Proposition 12.4]. Let
Kφ,a := K (φ[a]) be the field obtained by adjoining a-torsion points of φ to K , and
let Kφ,I := K (φ[I ]).

In the following, we briefly explain the definition of good reduction of a Drinfeld
module. For more details, refer to [Goss 1996; Thakur 2004]. Let φ be a rank-r
Drinfeld A-module over K and let ℘ be a prime of K . Let O℘ be the valuation ring
of ℘ with the maximal ideal ℘ and residue field F℘ := O℘/℘. We say that φ has
integral coefficients at ℘ if φa has coefficients in O℘ for all a ∈ A and the reduction
modulo ℘ of these coefficients defines a Drinfeld module over ℘. The reduced
Drinfeld module is denoted by φ℘ .

Let φ and φ′ be Drinfeld A-modules over K . Then a morphism f from φ to
φ′ over K is a polynomial f in K {τ } with the property that f φa = φ

′
a f for all

a ∈ A. A nonzero morphism from φ to φ′ over K is called an isogeny from φ

to φ′ (over K ). If there exists an isogeny from φ to φ′ over K , then we say that
φ and φ′ are isogenous (over K ). An isogeny f from φ to φ′ over K is called
an isomorphism (over K ) if there is an isogeny g from φ′ to φ over K such that
f g = I = g f , where I denotes the identity morphism. We note that φ and φ′ are
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isomorphic (over K ) if and only if there is a c ∈ K ∗ such that cφa = φ
′
ac for all

a ∈ A (for more details, refer to [Rosen 2002]).
We say that φ has good reduction at ℘ if there exists a Drinfeld module ψ over

K that is isomorphic to φ over K , ψ has integral coefficients at ℘, and ψ℘ is a
Drinfeld module of rank r .

By [Takahashi 1982] (see [Goss 1996, Theorem 4.10.5]; also [Goss 1992, Theo-
rem 3.2.3] for one direction), we have that φ has good reduction at ℘ if and only
if the G K -module φ[L∞] :=

⋃
m≥1 φ[L

m
] is unramified at ℘, where G K is the

absolute Galois group of K and L is a prime ideal of A different from ℘. This
is the analogue for Drinfeld modules of the classical result of Ogg, Néron, and
Shafarevich in the theory of abelian varieties.

If φ is a Drinfeld A-module defined over K and all its defining coefficients ai (φ)

lie in O, then we say that φ is integral over O. If φ is integral over O, then it has good
reduction outside any set of primes S of K that includes the primes lying over∞
and the primes dividing the discriminant 1(φ) of φ. In particular, the G K -modules
φ[L∞] and φ[L] are unramified outside S ∪ {primes of K lying over L}.

Let L be a finite prime of A. The L-torsion points of φ in K give rise to a
representation

ρφ,L : G K → AutA/L(φ[L])∼= GLr (A/LA),

where G K is the absolute Galois group of K . For a prime ℘ of K , if φ has good
reduction at ℘, then ρφ,L is unramified at ℘ if ℘ does not lie over L.

For an unramified prime ℘ of K , let Frob℘ ∈ G K denote a Frobenius conjugacy
class at ℘. Let a℘(φ) denote the trace of Frob℘ on the TL(φ), and P℘(φ)(X)
the characteristic polynomial of Frob℘ on the TL(φ). It is known that a℘(φ) and
P℘(φ)(X) are independent of L [Goss 1996, Theorem 4.12.12].

Serre [1972] proved that if E is an elliptic curve over a number field L without
complex multiplication, then there are only finitely many primes p such that the
Galois representation ρE,p on the p-torsion points of E is not surjective. The
analogue of Serre’s result [1972] for rank-2 Drinfeld A-modules was proved by
Gardeyn [2001], that is, if φ is a rank-2 Drinfeld module over K without complex
multiplication, then there are only finitely many primes L such that ρφ,L is not
surjective. The case of general rank is proven in [Pink and Rütsche 2009a; 2009b].

The following theorem is the Tate conjecture for rank-r Drinfeld A-modules
over K , and its generalization to t-motives can be found in [Tamagawa 1994].

Theorem 1.1 [Taguchi 1996]. Let φ, φ′ be rank-r Drinfeld A-modules over K , and
AL the L-adic completion of A. Then the natural homomorphism

HomK (φ, φ
′)⊗A AL→ HomAL[G K ](TL(φ), TL(φ′))

is an isomorphism, where TL(∗) is the L-adic Tate module of ∗.
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A consequence of the Tate conjecture is the isogeny theorem [Taguchi 1992,
Proposition 3.1] that states that two Drinfeld A-modules φ, φ′ over K are K -
isogenous if and only if P℘(φ)(X)= P℘(φ′)(X) for all but finitely many primes ℘.

We prove the following partially explicit and effective version of the isogeny
theorem for rank-r Drinfeld A-modules over K . For a Drinfeld A-module φ and a
place ℘ of K , define

τK ,℘(φ)= inf
{
v℘(ai (φ))

q i − 1
: i = 1, . . . , r

}
.

For any extension L/F , let γL = [FL : Fq ]. It is known that the constant field of

Kφ,tor := K (φ[a] : a ∈ A nonzero)

is finite over Fq (see [David 2001, Lemma 3.2]), so we may define γφ = γKφ,tor .
More precisely, let gφ,∞̄= [K∞̄(3φ,∞̄) : K∞̄], where 3φ,∞̄ is the lattice associated
to the uniformization of φ over C∞̄. Then we have

γφ ≤ gφ =min{gφ,∞̄ : ∞̄ | ∞}.

One can bound gφ,∞̄ using knowledge of the successive minima of the lattices
3φ,∞̄ associated to φ [Gardeyn 2002, Proposition 4(i)]. Unfortunately, an explicit
bound for these successive minima is not currently known except in the case of
rank ≤ 2 [Chen and Lee 2013], so this term is currently inexplicit in general.

Throughout, ln x denotes the natural logarithm of x , logq x denotes the logarithm
of x to base q, and log∗q x = logq max{x, 1}.

Theorem 1.2. Let φ1, φ2 be rank-r Drinfeld A-modules that are integral over O

and not K -isogenous. Let S be the set consisting of the primes of K lying over the
prime∞ and the primes dividing 1(φ1)1(φ2). Suppose ℘ 6∈ S is a prime of K of
least degree such that P℘(φ1) 6= P℘(φ2). Then

(2) degK ℘ ≤max
{

4
m0

(
Cq,r +W + cr sq,r logq W

)
, s max

{
1+ 2 logq s, 7

}}
,

where

s = the geometric extension degree of K/F,

m0 = γK ,

cr = 2r2
+ r + 1,

dr = cr + logq 86rs2(g+ 1),

sq,r =
ln(qdr )

ln(qdr )− 1
,

Cq,r = logq 86rs2(g+1)+cr

(
1+sq,r logq

4
m0
+logq dr

)
+cr sq,r logq logq dr ,
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ar (φi )=1(φi ), i = 1, 2,

W = log∗q
(
3K (φ1, φ2)+ 2D(φ1, φ2)

)
+ gφ1 gφ2m0,

where D(φ1, φ2)= degK radK 1(φ1)+ degK radK 1(φ2),

3K (φ1, φ2)=−
∑
v

τK ,v(φ1) degK v−
∑
v

τK ,v(φ2) degK v,

degK radK x =
∑

v(x) 6=0
degK v.

(The sums are over every place v of K .)

Note that any Drinfeld A-module defined over K is isomorphic over K to a
Drinfeld A-module that is integral over O. In order to reduce the bounds given by
the above theorem, in particular the quantity degK radK 1(φ1)1(φ2), one should
use minimal models of φ1 and φ2 (see [Taguchi 1993, Section 2]).

The proof follows the strategy in [Serre 1981] adapted to the Drinfeld module
situation, with the notable difference that the effective Chebotarev density theorem
we use [Kumar Murty and Scherk 1994] is stronger and unconditional because the
general Riemann hypothesis holds for function fields. Also, unlike in the number
field case, it is necessary to deal with wild ramification when bounding the different
divisor. The bound we obtain on the different divisor is completely explicit in terms
of the defining coefficients of the Drinfeld modules involved, unlike the results in
[Gardeyn 2002], which are effective but not explicit. Also, the bounds are sensitive
to primes of potentially good reduction, unlike the bounds in [Taguchi 1992].

We discuss some of the differences between our method and that of [Gardeyn
2002] in more detail in Section 7. In the rank-2 case, it is possible to make explicit
the quantities involved in Gardeyn’s bounds for the different divisor of torsion
fields by determining the Newton polygons of exponential functions attached to
Drinfeld modules [Chen and Lee 2013]. However, the computation of Newton
polygons grows in complexity for higher rank, so new techniques using weaker
information will likely be required to obtain explicit bounds for successive minima
so we can apply the bounds of [Gardeyn 2002] for the different divisor and gφ .
Further remarks about this will be made in Section 7.

Cojocaru and David [2008] find upper bounds for the number of primes ℘ of
degree d such that the field extension of F obtained by adjoining a root of the
characteristic polynomial of the Frobenius endomorphism of φ over the finite field
A/℘ is the fixed field K , where φ is a Drinfeld module over K of rank 2 and K
is an imaginary quadratic field over F . An ingredient in their proof requires the
surjectivity results of Pink [1997] and Gardeyn [2001]. However, they do not require
explicit versions of these in order to achieve their results; that is, they use the fact
that the Galois representation ρφ,L :Gal(F sep/F)→GL2(A/LA) and its projection
in PGL2(A/LA) are surjective for all but finitely many primes L in A, assuming
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EndF̄ (φ)= A. As a method, they also use the effective version of the Chebotarev
density theorem in [Kumar Murty and Scherk 1994], but for the different divisor
bounds they only require the bounds in [Gardeyn 2002, Proposition 6].

2. Preliminaries

Let L be a finite extension of K and let OL be the maximal order of L , that is, the
integral closure of O in L . The constant field FL of L is the algebraic closure of Fq

in L . The geometric extension degree of L/K is the degree of L/K ′, where K ′ is
the maximal constant field extension of K in L (that is, [L : K ]/[FL : FK ]). We say
L/K is a geometric extension if K = K ′.

For a prime ideal B of OL , we let degL B be the FL -dimension of the residue
class field FL ,B :=OL/B of B, extending this to a general ideal I of OL by additivity
on products. For a in OL , we define the degree of a by degL a := degL(a), where
(a) is the principal ideal of OL generated by a.

More generally, let B be a prime of L , OL ,B the valuation ring of B, and
FL ,B := OL ,B/B the residue class field of B. Then the degree of B is defined to
be degL B := [FL ,B : FL ], the FL -dimension of FL ,B. We extend the definition by
linearity to a divisor D=

∑
B nBB of L by degL D=

∑
B nB degL B. The finite

part D0 of a divisor D=
∑

B nBB is the divisor
∑

B-∞ nBB.
Let iL/K :Div(K )→Div(L) be the conorm map from divisors on K to divisors

on L , defined by
iL/K (℘)=

∑
B|℘

e(B/℘)B

for every prime ℘ of K and then extended by linearity, where e(B/℘) denotes the
ramification index of B over B.

For B a prime of L lying over the prime ℘ of K , denote by f (B/℘) the inertia
degree of B over ℘.

Lemma 2.1 [Rosen 2002, Proposition 7.7]. Let L/K be a finite extension, D a
divisor of K , and B a prime of L lying over the prime ℘ of K . Then

degL iL/KD= n′ degK D, degL B=
f (B/℘)
[FL : FK ]

degK ℘,

where n′ is the geometric extension degree of L/K .

Let L/K be a finite extension. Writing divisors in terms of places instead of
primes, the different divisor D(L/K ) of L/K is defined as

D(L/K )=
∑
w

w(D(Lw/Kv))w,
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and its degree is given by

degL D(L/K )=
∑
w

w(D(Lw/Kv)) degL w,

where w ranges through all normalized places of L , and D(Lw/Kv) is the different
ideal of Lw/Kv.

For convenience, we also define the degree with respect to K of D(L/K ) as

degK D(L/K )=
∑
v

max
{
v(D(Lw/Kv)) : w|v

}
degK v,

where v ranges through all normalized places of K . Similarly, we define the degree
with respect to K of D0(L/K ) as

degK D0(L/K )=
∑
v-∞

max
{
v(D(Lw/Kv)) : w|v

}
degK v.

Lemma 2.2. Let L/K be a finite extension. Then

degL D(L/K )≤ n′ degK D(L/K ),

where n′ is the geometric extension degree of L/K .

Proof. By the definition, we have

degL D(L/K )=
∑
w

w(D(Lw/Kv)) degL w

=

∑
v

∑
w|v

w(D(Lw/Kv)) degL w

=

∑
v

∑
w|v

v(D(Lw/Kv))e(w/v) f (w/v)
1

[FL : FK ]
degK v

≤
1

[FL : FK ]

∑
v

max
{
v(D(Lw/Kv)) : w|v

}∑
w|v

e(w/v) f (w/v) degK v

= n′
∑
v

max
{
v(D(Lw/Kv)) : w|v

}
degK v = n′ degK D(L/K ),

where FL and FK are the constant fields of L and K respectively, f (w/v) denotes
the relative degree of w over v, and we use the identity

[L : K ] =
∑
w|v

e(w/v) f (w/v),

which is valid because our constant fields are finite and hence perfect [Rosen 2002,
Proposition 7.4]. �
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Lemma 2.3 [Serre 1979, Proposition 8, Chapter III.4]. Let M/L/K be a tower of
finite separable extensions. The different divisor satisfies the transitivity relation

D(M/K )=D(M/L)+ iM/LD(L/K ).

Lemma 2.4. Let K be a local field with ring of integers O, and let L/K be a
finite extension of K with ring of integers OL . Let α ∈ OL be such that L = K (α),
and suppose f (X) ∈ O[X ] is the minimal polynomial of α over K . Then the
different ideal D(OL/O) divides the ideal ( f ′(α)), with equality holding if and only
if OL = O[α]. Furthermore, we may replace f (X) by any monic polynomial g(X)
in O[X ] that α satisfies.

Proof. See [Serre 1979, Corollary 2, III.6]. For the final remark, note that g(X)=
f (X)h(X) for some g(X) ∈ O[X ], so (g′(α))= ( f ′(α)h(α))⊆ ( f ′(α)). �

Lemma 2.5. Let E/K and L/K be finite extensions of local fields, with O the ring
of integers of K , OE the ring of integers of E , OEL the ring of integers of EL , and
OL the ring of integers of L.

Then the different ideals satisfy D(EL/L) | OEL · D(E/K ).

Proof. Suppose that OE =OK [x] for some x ∈ B, so that E = K (x) (see [Serre 1979,
Proposition 12, III.6]). Let f ∈ OK [X ] be the minimal polynomial of x over K .

Now EL = K (x)L = K (x) and x ∈ OEL .
As f ∈ O[X ] is monic and x ∈ OEL is a root of f , we may apply Lemma 2.4 to

get that D(EL/L) | OEL · f ′(x). But as OE = O[x], we have D(E/K )= OE · f ′(x).
Hence, OEL · f ′(x)= OEL ·OE · f ′(x)= OEL ·D(E/K ). The result thus follows. �

Lemma 2.6. Let E/K and L/K be finite extensions of global fields. Then

D(EL/K )≤ iEL/ED(E/K )+ iEL/LD(L/K ).

Proof. This follows by localization and applying Lemma 2.3 and Lemma 2.5. �

3. Effective Chebotarev density theorem

Lemma 3.1. Let K be a finite extension of F = Fq(T ) with constant field Fq , where
Fq is a finite field of order q, and let g be the genus of K . Let S(N ) be the number
of primes ℘ of K with degK ℘ = N. Then∣∣∣∣S(N )− q N

N

∣∣∣∣≤ (2g+ 1+
(
2g+ 3

2

)4
q

)
q N/2

N
.

Proof. From the prime number theorem for L [Rosen 2002, Theorem 5.12], we
have that

S(N )=
q N

N
+ O

(q N/2
N

)
.

We recall the proof to make the constant explicit.
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Let Z K (u) be the zeta function of K . Using the Euler product decomposition of
Z K (u) and [Rosen 2002, Theorem 5.9], we obtain

Z K (u)=
∏2g

i=1(1−πi u)
(1− u)(1− qu)

=

∞∏
d=1

(1− ud)−S(d).

Taking the logarithmic derivative of both sides, multiplying by u, and equating
coefficients of uN yields the relation

q N
+ 1−

2g∑
i=1

π N
i =

∑
d|N

d S(d).

Using the Möbius inversion formula yields

NS(N )=
∑
d|N

µ(d)q N/d
+ 0−

∑
d|N

µ(d)
( 2g∑

i=1

π
N/d
i

)
.

Following the argument in [Rosen 2002, Theorem 2.2], we obtain∣∣∣∣∑
d|N

µ(d)q N/d
− q N

∣∣∣∣≤ q N/2
+ Nq N/3.

Similarly, using the Riemann hypothesis [Rosen 2002, Theorem 5.10], we obtain∣∣∣∣∑
d|N

µ(d)
( 2g∑

i=1

π
N/d
i

)∣∣∣∣≤ 2gq N/2
+ 2gNq N/4.

It follows that∣∣NS(N )− q N
∣∣≤ (2g+ 1)q N/2

+ Nq N/3
+ 2gNq N/4,

so

(3)
∣∣∣∣S(N )− q N

N

∣∣∣∣≤ 2g+ 1
N

q N/2
+ q N/3

+ 2gq N/4

≤
q N/2

N

(
2g+ 1+

N
q N/6 + 2g

N
q N/4

)
.

Since x/qx
≤ 1/q for x ≥ 1, (3) is less than or equal to

q N/2

N

(
2g+ 1+

(
2g+ 3

2

)4
q

)
. �

The next theorem follows from the effective Chebotarev density theorem in
[Kumar Murty and Scherk 1994, Theorem 1].
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Theorem 3.2. Let K be a finite extension of F = Fq0(T ) with constant field Fq and
genus g, where q = qm0

0 . Let E be a finite Galois extension of K with Galois group
G, Fqm the algebraic closure of Fq in E , and K ′ = Fqm K the maximal constant field
extension of K in E.

Let C⊆ G = Gal(E/K ) be a nonempty conjugacy class in G whose restriction
to Fqm/Fq ∼= K ′/K is τ k , where τ is the Frobenius map τ(x)= xq , and let D be the
different divisor of E/K ′. Let 6 be the divisor of K that is the sum of the primes of
K that are ramified in E , and suppose 6′ is a divisor of K such that 6′ ≥6. Let
B =max{degK 6

′, degE D, 2|Gal(E/K ′)| − 2, 1}.
If

N ≥
2

m0
logq0

4
3

(
B2
+ B

(
2g+ g

m
+ 3

)
+ 2

(
5g+ g

m
+ 3

))
and N ≡ k (mod m), there is a prime ℘ /∈ 6′ of K such that degK ℘ = N and
Frob℘ = C.

Proof. The situation at the outset is that we start with F = Fq0(T ) and K a finite
extension of F with possibly larger constant field Fq , where q = qn

0 . Next, we
replace F = Fq0(T ) by F = Fq(T ), so that K is a geometric extension of F = Fq(T ).
This allows us to use Lemma 3.1 without modification, but now q0 is replaced by q .

Another remark is that if there exists a prime ℘ /∈6′ of K such that degK ℘ = N
and Frob℘ = C, then it follows that C restricted to K ′/K ∼= Fqm/Fq is τ N by
[Kumar Murty and Scherk 1994, Lemma 1]. Since Gal(Fqm/Fq) is cyclic of order m,
we have that τ N

= τ k in Gal(Fqm/Fq) if and only if N ≡ k (mod m).
Let Fqm be the algebraic closure of Fq in E , so K ′ := Fqm K and E/K ′ is a

geometric extension. Let D := degE D and δ′ = degK 6
′. Let π(N , 6′) be the

number of primes ℘ /∈ Supp6′ of K with degK ℘ = N , and let πC(N , 6′) be the
number of primes ℘ /∈ Supp6′ of K such that degK ℘ = N and Frob℘ = C.

It suffices to find a lower bound N0 for N such that for N ≥ N0, πC(N , 6′) is
positive.

In fact, the genus g of K over Fq is the same as that of K ′ over Fqm (see [Rosen
2002, Proposition 8.9]). We know that the genus of K ′ over Fqm and the genus of E
over Fqm are related by the Riemann–Hurwitz theorem [Rosen 2002, Theorem 7.16].
Thus, letting gE be the genus of E , we have

(4) gE = 1+ |Gal(E/K ′)|(g− 1)+ 1
2 D.

The effective Chebotarev density theorem in [Kumar Murty and Scherk 1994,
Theorem 1] gives

m|C|
|G|

π(N , 6′)−α ≤ πC(N , 6′)≤
m|C|
|G|

π(N , 6′)+α,
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where

(5) α =
|C|

N
q N/2

(
2gE

1
|G|
+ 2(2g+ 1)+

1+ N/|C|
q N/2 δ′

)
.

The condition N ≡ r (mod m) ensures C restricted to Fqm/Fq is τ N .

Remark 3.3. When 6′ =6, this is what is proved in [Kumar Murty and Scherk
1994, Theorem 1]. However, the proof carries over with 6 replaced by 6′. In
particular, the key identity (2.1) still holds with y ∈ Yr unramified replaced by
y ∈ Yr not in the support of 6′ ≥6.

We have π(N , 6′)≥ S(N )−
degK 6

′

N
. Thus,

m|C|
|G|

(
S(N )−

degK 6
′

N

)
−α ≤ πC(N , 6′).

It is therefore enough to find a lower bound for N such that

(6)
m|C|
|G|

(
S(N )−

degK 6
′

N

)
−α > 0.

From Lemma 3.1, we have

(7)
q N

N
−

(
2g+ 1+

(
2g+ 3

2

)4
q

)
q N/2

N
≤ S(N )

≤
q N

N
+

(
2g+ 1+

(
2g+ 3

2

)4
q

)
q N/2

N
.

Since |G|/m = |Gal(E/L ′)| and (1+ N/|C|)/q N/2
≤ 2, from (5) we have

(8) α ≤
2m|C|
N |G|

q N/2
(
|Gal(E/K ′)|(2g+ 1+ δ′)+

gE

m

)
.

Therefore, combining (6) through (8), we obtain

(9)
m|C|
|G|

(
S(N )−

degK 6
′

N

)
−α

≥
m|C|
N |G|

q N/2
(

q N/2
−

(
c0+

degK 6
′

q N/2 +2
∣∣Gal(E/K ′)

∣∣(2g+1+δ′
)
+2

gE

m

))
,

where c0 = 2g+ 1+
(
2g+ 3

2

)
4/q .

We thus need to find a lower bound of N such that the right-hand side of the
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inequality in (9) is positive, or equivalently,

q N/2 > c0+
degK 6

′

q N/2 + 2|Gal(E/K ′)|(2g+ 1+ δ′)+ 2
gE

m

= c0+
degK 6

′

q N/2 + 2|Gal(E/K ′)|(2g+ 1+ δ′)

+
2
m

(
1+ |Gal(E/K ′)|(g− 1)+ 1

2 D
)

= c0+
degK 6

′

q N/2 + 2|Gal(E/K ′)|
(

2g+ 1+ δ′+ g−1
m

)
+

2
m

(
1+ 1

2 D
)
,

using (4).
Let 1 ≤ B, δ′ ≤ B, D ≤ B, and |Gal(E/K ′)| ≤ 1

2 B + 1. Note that if g = 0, it
suffices to take δ′ ≤ B and D≤ B only, as it is then automatic that |Gal(E/K ′)| ≤
1
2 D+ 1≤ 1

2 B+ 1. Therefore, we have

c0+
degK 6

′

q N/2 + 2|Gal(E/K ′)|
(

2g+ 1+ δ′+ g−1
m

)
+

2
m
(
1+ 1

2 D
)

≤ c0+
B

q N/2 + (B+ 2)
(

2g+ 1+ B+ g−1
m

)
+

2
m
(
1+ 1

2 B
)

≤ 2g+ 1+
(
2g+ 3

2

)4
q
+

B
q N/2 + (B+ 2)

(
2g+ 1+ B+ g−1

m

)
+

2
m
(
1+ 1

2 B
)

≤ B2
+ B

(
2g+ 3+ g

m

)
+ 6g+ 3+ 2g

m
+
(
2g+ 3

2

)4
q
+

B
q N/2

≤ B2
+ B

(
2g+ 3+ g

m

)
+ 10g+ 6+ 2g

m
+

B
q N/2 ,

where the last inequality uses 4/q ≤ 2. Therefore, it suffices to have

q N/2 >
(

B2
+ B

(
2g+ 3+ g

m

)
+ 10g+ 6+ 2g

m

)
+

B
q N/2 .

This can be satisfied if the following two inequalities hold:

αq N/2
≥ B2

+ B
(

2g+ 3+
g
m

)
+ 10g+ 6+

2g
m
, (1−α)q N/2 >

B
q N/2 ,

where 0< α < 1; equivalently,

N ≥ 2 logq
1
α

(
B2
+ B

(
2g+ 3+

g
m

)
+ 10g+ 6+

2g
m

)
, N > logq

1
1−α

B.

Taking α = 3
4 , the required inequalities become

N ≥ 2 logq
4
3

(
B2
+ B

(
2g+ 3+

g
m

)
+ 10g+ 6+

2g
m

)
, N > logq 4B.
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So if
N ≥

2
m0

logq0

4
3

(
B2
+ B

(
2g+ 3+

g
m

)
+ 2

(
5g+ 3+

g
m

))
and N ≡ k (mod m), then there is a prime ℘ /∈6′ of K such that degK ℘ = N and
Frob℘ = C. �

Corollary 3.4. Let the notation and hypotheses be as in Theorem 3.2. Then there
exists a prime ℘ /∈6′ of K such that Frob℘ = C and

(10) degK ℘ ≤
4

m0
logq0

4
3(B+ 3g+ 3)+m.

Proof. Let M be the integer such that

M = 2
m0

logq0

4
3

(
B2
+ B

(
2g+ g

m
+ 3

)
+ 2

(
5g+ g

m
+ 3

))
+ δ,

where 0 ≤ δ < 1. Let N = M + k ′, where 0 ≤ k ′ ≤ m − 1 is chosen so that
N ≡ k (mod m). Then

N ≥ 2
m0

logq0

4
3

(
B2
+ B

(
2g+ g

m
+ 3

)
+ 2

(
5g+ g

m
+ 3

))
and N ≡ k (mod m). By Theorem 3.2, there exists a prime ℘ /∈6′ of K such that
degK ℘ = N and Frob℘ = C. Now,

degK ℘ = N = M + k ′

≤
2

m0
logq0

4
3

(
B2
+ B

(
2g+ 3+ g

m

)
+ 10g+ 6+ 2g

m

)
+m

≤
2

m0
logq0

4
3

(
B+ 2g+ 3+ g

m

)2
+m

≤
4

m0
logq0

4
3(B+ 3g+ 3)+m. �

4. Bounds for the different divisor

Proposition 4.1. Let φ be a rank-r Drinfeld A-module that is integral over K , and
let L= (a) be a finite prime of A with a monic. Let D0(Kφ,L/K ) be the finite part
of the different divisor D(Kφ,L/K ). Then we have

(11) degK D0(Kφ,L/K )≤ r
(

degK a+
(`r
− 2)(`r

− 1)
qr − 1

degK 1(φ)

)
,

where `= qdegF L. In addition, if v(a1(φ))= 0 for a finite place v of K , then

(12) v(D(Kφ,L,w/Kv))= 0,

where D(Kφ,L,w/Kv) is the different ideal of Kφ,L,w/Kv, and w|v is a place of
Kφ,L,w.
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Proof. This is a slightly modified version of [David 2001, Lemma 4.2], derived
from [Taguchi 1992].

Let α ∈ K be a root of a separable polynomial

f (X)= b0 X + b1 Xq
+ · · ·+ bm Xqm

with bi ∈ O and b0bm 6= 0. Then

h(X)= bqm
−1

m f (X/bm)

= b0bqm
−2

m X + b1bqm
−1−q

m Xq
+ · · ·+ bm−1bqm

−1−qm−1

m Xqm−1
+ Xqm

∈ O[X ]

is monic. Since h(bmα) = 0 and K (α) = K (bmα), we may apply Lemma 2.4 to
bmα and h(X) to show that the different ideal D(K (α)/K ) divides the principal
ideal (b0bqm

−2
m ).

Let L= (a) and f (X)=φa(X). Then f (X)= aX+· · ·+1(φ)(q
m
−1)/(qr

−1)Xqm
,

where m = r degF a (see [Rosen 2002, Proposition 13.8]). There are r roots
β1, . . . , βr of φa(X) that generate Kφ,L over K . Using the transitivity of the
different (see Lemma 2.3), it follows that

(13) D(Kφ,L/K )
∣∣ (b0bqm

−2
m )r =

(
a (1(φ))(q

m
−2)(qm

−1)/(qr
−1))r .

This shows that if v(a1(φ))= 0 for a finite place v, then v(D(Kφ,L,w/Kv))= 0.
Furthermore, taking the degree with respect to K of (13), we obtain

degK D0(Kφ,L/K )≤ r
(

degK a+
(`r
− 2)(`r

− 1)
qr − 1

degK 1(φ)

)
. �

It is possible to obtain a bound on degK D(Kφ,L/K ) based on Proposition 4.1
and Lemma 4.2, but instead we find a slightly more refined bound in Proposition 4.3,
using additional techniques.

Lemma 4.2. Let ∞̄ be an infinite prime of K , K∞̄ the completion of K at ∞̄, O∞̄
the valuation ring of ∞̄, v∞̄ the valuation associated to ∞̄, and e the ramification
index of ∞̄ over∞.

Let φT (X) = TX + a1 Xq
+ · · · + ai Xq i

+ · · · + ar Xqr
be a rank-r Drinfeld

A-module defined over K , and write

φT n (X)= T n X + b1 Xq
+ · · ·+ bi Xq i

+ · · ·+ brn Xqrn
,

where n ≥ 1.

Let ω1 =max
{

e,−
v∞̄(ai )

q i : i = 1, . . . , r
}

and ωn = nω1. Then

ωn ≥max
{

ne,−
v∞̄(bi )

q i : i = 1, . . . , rn
}
.
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Proof. We use induction on n. First note that

φT n (λn X)= T nλn X + b1λ
q
n Xq
+ · · ·+ biλ

q i

n Xq i
+ · · ·+ brnλ

qrn

n Xqrn
,

so taking λn ∈ K with

v∞̄(λn)= ωn ≥max
{

ne,−
v∞̄(bi )

q i : i = 1, . . . , rn
}

implies that φT n (λn X) ∈ O∞̄[X ].
The result is true for n = 1, as

ω1 =max
{

e,−
v∞̄(ai )

q i : i = 1, . . . , r
}
.

Assume
ωn = nω1 ≥max

{
ne,−

v∞̄(bi )

q i : i = 1, . . . , rn
}
.

Now consider the terms in the product

φT n+1 = φT n ◦φT = (T n
+ b1τ + · · ·+ brnτ

rn) ◦ (T + a1τ + · · ·+ arτ
r ),

where there are 2(r + 1) types of terms to consider:

biτ
i T = bi T q i

τ i , 1≤ i ≤ rn,

biτ
i a1τ = bi a

q i

1 τ
i+1, 1≤ i ≤ rn,

...

biτ
i arτ

r
= bi aq i

r τ
i+r , 1≤ i ≤ rn,

T n+1, T na1τ, T na2τ
2, . . . , T narτ

r .

We need to show thatωn+1 is greater than or equal to the valuations of the coefficients
of each type of term, that is, for each i with 1≤ i ≤ rn,

ωn+1 ≥−
v∞̄(bi )

q i + e,(14)

ωn+1 ≥−
v∞̄(bi )

q i+ j −
v∞̄(a j )

q j , 1≤ j ≤ r,(15)

ωn+1 ≥ ne+ 1,(16)

ωn+1 ≥ ne−
v∞̄(a j )

q j , 1≤ j ≤ r.(17)

As ωn ≥−v∞̄(bi )/q i for 1≤ i ≤ 2n, we have

ωn+1 = ωn +ω1 ≥
ωn

q j +ω1 ≥−
v∞̄(bi )

q i+ j +ω1
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for j = 0, 1, . . . , r and i = 1, 2, . . . , rn, so (14) and (15) are satisfied. Since
ω1 =max{e,−v∞̄(a j )/q j

: j = 1, . . . , r},

ωn+1 = (n+ 1)ω1 = nω1+ ω1 ≥ ne+ω1

≥max
{
(n+ 1)e, ne−

v∞̄(a j )

q j : j = 1, . . . , r,
}

so the last inequalities in (16) and (17) are satisfied. �

In the following proposition, we obtain an upper bound on the degree of the
different divisor of Kφ,L/K that uses mild information from the Newton polygons
of φa(X) and takes into account primes of potentially good reduction.

Proposition 4.3. Let φ be a rank-r Drinfeld A-module that is integral over K , and
let L = (a) be a finite prime of A with a monic. Let D(Kφ,L/K ) be the different
divisor of Kφ,L/K . Then we have

degK D(Kφ,L/K )≤ r
(
`r
− 1

q − 1

(
s degK a+3(φ)

)
+ 2 degK a radK 1(φ)

)
,

where s denotes the geometric extension degree of K/F , ` = qdegF L, 3(φ) =
−
∑

v τv(φ) degK v, and for x ∈ K we let degK radK x :=
∑

v(x) 6=0 degK v (the
sums are over every place v of K ).

Proof. Let φT (X)= TX + a1 Xq
+ · · ·+ ar Xqr

, where ai ∈ O. Let

f (X)= φa(X)= b0 X + b1 Xq
+ · · ·+ brn Xqrn

= brn

qrn∏
i=1

(X −αi ),

where b0 = a, brn = a(q
rn
−1)/(qr

−1)
r , and n = degK a = degK L. Let α be any one

of the αi .
Let ℘ be a finite place of K with corresponding discrete valuation v℘ , and let

τ℘ = inf
{
v℘(ai )

q i − 1
, i = 1, . . . , r.

}
Note that τ℘ ≥ 0. Let K℘ be the completion of K at ℘, and K ′℘/K℘ a totally tamely
ramified extension with ramification index 1/(qrn

− 1) and ring of integers O′℘ .
Over K ′℘ , φT is isomorphic to a Drinfeld A-module

φ′T (X)= T X + a′1 Xq
+ · · ·+ a′r Xqr

,

where a′i = ai/λ
q i
−1, v℘(a′i )≥ 0 for 1≤ i ≤ r , v℘(λ)= τ℘ , and λ ∈ K ′℘ .

Let φ′a(X)= b′0 X + b′1 Xq
+ · · ·+ b′rn Xqrn

. As b′i = bi/λ
q i
−1, we have

v℘(bi )≥ (q i
− 1)v℘(λ)= (q i

− 1)τ℘ .
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From the Newton polygon of f (X), we have

v℘(α)≥−

v℘(ar )
qrn
− 1

qr − 1
− (qrn−1

− 1)τ℘

qrn − qrn−1 =: −δ.

Pick a µ ∈ K ′℘ such that v℘(µ)= δ+ ε, where 0≤ ε <
1

qrn − 1
. Now

f (X/µ)= brn/µ
qrn

qrn∏
i=1

(X −µαi ),

and we know that g(X)=
∏

i (X −µαi ) is monic and lies in O′℘[X ], where O′℘ is
the ring of integers of K ′℘ . Thus, g′(X)= µqrn

−1a/brn . Hence,

v℘(g′(µα))= v℘(µ)(qrn
− 1)+ v℘(a)− v℘(brn)

≤ δ(qrn
− 1)+ 1+ v℘(a)− v℘(ar )

qrn
− 1

qr − 1

≤ v℘(ar )
qrn
− 1

qr − 1

(
qrn
− 1

qrn − qrn−1 − 1
)
−
(qrn−1

− 1)(qrn
− 1)

qrn − qrn−1 τ℘ + 1+ v℘(a)

≤ v℘(ar )
qrn
− 1

qr − 1
·

1− q1−rn

q − 1
−

q2rn−1
− qrn

− qrn−1
+ 1

qrn − qrn−1 τ℘ + 1+ v℘(a)

= v℘(ar )
qrn
− 1

(qr − 1)(q − 1)
−

qrn
− q − 1+ q1−rn

q − 1
τ℘ + 1+ v℘(a).

It follows that

v℘
(
D(K ′℘(µα)/K ′℘)

)
≤ v℘(ar )

qrn
−1

(qr−1)(q−1)
−

qrn
−q−1+q1−rn

q−1
τ℘+1+v℘(a)

and

v℘
(
D(K℘(α)/K℘)

)
≤ v℘

(
D(K ′℘(µα)/K ′℘)

)
+ v℘(D(K ′℘/K℘))

≤ v℘(ar )
qrn
− 1

(qr − 1)(q − 1)
−

qrn
− q − 1+ q1−rn

q − 1
τ℘ + 2+ v℘(a).

Since τ℘ ≤ v℘(ar )/(qr
− 1), we have

v℘(ar )
qrn
− 1

(qr − 1)(q − 1)
−

qrn
− q − 1+ q1−rn

q − 1
τ℘ + 2+ v℘(a)

≥ v℘(ar )
qrn
− 1

(qr − 1)(q − 1)
−

qrn
− q − 1+ q1−rn

q − 1
v℘(ar )

qr − 1
+ 2+ v℘(a)

= v℘(ar )
q − q1−rn

(qr − 1)(q − 1)
+ 2+ v℘(a)≥ 2.
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From Proposition 4.1, we know that for a finite place v℘ of K , v℘(D(K (α)/K ))= 0
if v℘(aar )= 0. It follows that

(18) v℘
(
D(K℘(α)/K℘)

)
≤ v℘(ar )

qrn
− 1

(qr − 1)(q − 1)
−

qrn
− q − 1+ q1−rn

q − 1
τ℘ + 2ν+ v℘(a),

where ν = 1 if v℘(aar ) > 0 and ν = 0 if v℘(aar )= 0.
Let ∞̄ ∈ SK

∞
be an infinite prime of K with corresponding valuation v∞̄, and let

K ′
∞̄
/K∞̄ be a totally tamely ramified extension with ramification index 1/(qrn

−1)
and ring of integers O′

∞̄
.

Let

τ∞̄(φ)= inf
{
v∞̄(ai )

q i − 1
, i = 1, . . . , r.

}
Note that τ∞̄ ≤ 0.

Over K ′
∞̄

, φT is isomorphic to a Drinfeld A-module

φ′T (X)= TX + a′1 Xq
+ · · ·+ a′r Xqr

,

where a′i = ai/λ
q i
−1, v∞̄(a′i )≥ 0 for 1≤ i ≤ r , v∞̄(λ)= τ∞̄, and λ ∈ K ′

∞̄
.

Let φ′a(X)= b′0 X + b′1 Xq
+ · · ·+ b′rn Xqrn

. Set

ω1 =max
{

e,−
v∞̄(a′i )

q i : i = 1, . . . , r
}
= 1.

From Lemma 4.2, we know that

ωn = nω1 ≥max
{

ne,−
v∞̄(b′i )

q i : i = 1, . . . , rn
}
.

Thus, v∞̄(b′i )≥−q i ne for i = 1, . . . , rn. As b′i = bi/λ
q i
−1, we have

v∞̄(bi )≥−q i ne+ (q i
− 1)v∞̄(λ)=−q i ne+ (q i

− 1)τ∞̄.

From the Newton polygon of f (X), it follows that

v∞̄(α)≥−

v∞̄(ar )
qrn
− 1

qr − 1
+ neqrn−1

− (qrn−1
− 1)τ∞̄

qrn − qrn−1 =: −δ∞̄.

Let µ∞̄ be such that v∞̄(µ∞̄)= δ∞̄+ ε∞, where 0≤ ε∞ < 1/(qrn
− 1). Now

f (X/µ∞̄)= brn/µ
qrn

∞̄

qrn∏
i=1

(X −µ∞̄αi ),
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and we know that g(X) =
∏qrn

i=1(X −µ∞̄αi ) is monic and lies in O′
∞̄
[X ], where

O′
∞̄

is the ring of integers of K ′
∞̄

. Thus, g′(X)= µqrn
−1

∞̄
a/brn . Hence,

v∞̄(g′(µ∞̄α))

= v∞̄(µ∞̄)(qrn
−1)+v∞̄(a)−v∞̄(brn)

≤ δ∞̄(qrn
−1)+1+v∞̄(a)−v∞̄(ar )

qrn
−1

qr−1

≤ v∞̄(ar )
qrn
−1

qr−1

(
qrn
−1

qrn−qrn−1−1
)
+ne

qrn
−1

q−1
−
(qrn−1

−1)(qrn
−1)

qrn−qrn−1 τ∞̄+1+v∞̄(a)

= v∞̄(ar )
qrn
−1

qr−1
·
1−q1−rn

q−1
+ne

qrn
−1

q−1
−

q2rn−1
−qrn

−qrn−1
+1

qrn−qrn−1 τ∞̄+1+v∞̄(a)

= v∞̄(ar )
qrn
−1

(qr−1)(q−1)
+ne

qrn
−1

q−1
−

qrn
−q−1+q1−rn

q−1
τ∞̄+1+v∞̄(a).

It follows that

(19) v∞̄
(
D(K∞̄(α)/K∞̄)

)
≤ v∞̄(ar )

qrn
− 1

(qr − 1)(q − 1)
+ ne

qrn
− 1

q − 1

−
qrn
− q − 1+ q1−rn

q − 1
τ∞̄+ 2+ v∞̄(a).

Let D(K (α)/K ) be the different divisor of K (α) over K , and �P the set of
conjugates of α over K P . Using (18) and (19), we obtain

degK D(K (α)/K )=
∑

P

max
{
vP(D(K P(α)/K P)) : α ∈�P

}
degK P

≤ n
qrn
− 1

q − 1

∑
∞̄∈SK

∞

e(∞̄/∞) degK ∞̄

−
qrn
− q − 1+ q1−rn

q − 1

∑
v

τP degK P + 2 degK radK aar

= n
qrn
− 1

q − 1

∑
∞̄∈SK

∞

e(∞̄/∞)
f (∞̄/∞)
[FK : FF ]

degF∞

−
qrn
− q − 1+ q1−rn

q − 1

∑
v

τP degK P + 2 degK radK aar

≤ n
qrn
− 1

q − 1
s−

qrn
− q − 1+ q1−rn

q − 1

∑
v

τP degK P + 2 degK radK aar ,
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where the summation runs through all the primes P of K , s is the geometric
extension degree of K/F , and we use the fact that

∑
P vP(x) degK P = 0 for

x ∈ K . Remark that
∑

P τP degK P ≤ 0; so we finally get

degK D(K (α)/K )

≤ ns
qrn
− 1

q − 1
+

qrn
− q − 1+ q1−rn

q − 1

(
−

∑
v

τP degK P
)
+ 2 degK radK aar

≤ ns
qrn
− 1

q − 1
+

qrn
− 1

q − 1

(
−

∑
P

τP degK P
)
+ 2 degK radK aar

≤
qrn
− 1

q − 1

(
ns−

∑
v

τP degK P
)
+ 2 degK radK aar

≤
`r
− 1

q − 1
(ns+3(φ))+ 2 degK radK aar

≤
`r
− 1

q − 1
(s degK a+3(φ))+ 2 degK radK a1(φ).

Using transitivity of the different (see Lemma 2.3) and the fact that Kφ,L is generated
by r of the roots αi , the result follows. �

Corollary 4.4. Assume the notation of Proposition 4.3. Let φ1 and φ2 be rank-r
Drinfeld A-modules that are integral over O. Let D(K̃/K ) be the different divisor
of K̃/K , where K̃ = Kφ1,LKφ2,L. Then we have

degK D(K̃/K )≤ r
(
`r
− 1

q − 1

(
2s degK a+3(φ1, φ2)

)
+ 2D(φ1, φ2)+ 4 degK a

)
,

where 3(φ1, φ2)=3(φ1)+3(φ2).

Proof. The result follows from Lemma 2.6 and Proposition 4.3. �

5. Proof of Theorem 1.2

We first recall some intermediate results, which are function field analogues of
those found in [Serre 1981] (see [Gardeyn 2002]).

Lemma 5.1. We have ∑
1≤degF L≤N

degF L≥ q N

for all positive integers N , where the sum is over finite primes L of F.

Proof. The product of all finite primes L of F such that degL divides N is equal to
T q N
− T , so the inequality follows. �
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Lemma 5.2. For any nonzero n ∈ A, there exists a finite prime L of F such that
n 6≡ 0 (mod L) with degF L≤ 1+ logq degF n.

Proof. Suppose n ≡ 0 (mod L) for all the primes L such that

1≤ degF L≤ 1+ logq degF n.

Choose k := b1+ logq degF nc, so that k − 1 ≤ logq degF n < k, and hence
qk−1
≤ degF n < qk .

Then
∏

1≤degF L≤k divides n, so qk
≤ degF n, by Lemma 5.1. But degF n < qk ,

which is a contradiction. �

For the proof of Theorem 1.2, we will require an estimate of the form

(20) γ x t
≤

x
1+ logq x

,

for x ≥ C .

Lemma 5.3. Let c∗ ≥ 1 be given and set t∗ = 1− 1/ln(qc∗). Then we have

(21) γ x t∗
≤

x
1+ logq x

for x ≥ c∗, where

γ =
(c∗)1−t∗

1+ logq c∗
=
(c∗)1/ln(qc∗)

1+ logq c∗
.

Proof. The inequality
γ x t
≤

x
1+ logq x

is equivalent to

f (x, t)=
x1−t

1+ logq x
≥ γ.

For a fixed t , taking the derivative of f with respect to x ,

f ′(x, t)= x−t
(
(1− t)(1+ logq x)−

1
ln q

)/
∗

2,

where ∗ = (1+ logq x). Hence, f ′(x, t)≥ 0 is equivalent to

(1− t)(1+ logq x)−
1

ln q
≥ 0,

or equivalently,

(22) (1− t)(ln q + ln x)≥ 1.
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Assuming t < 1, (22) is equivalent to

x ≥
e1/(1−t)

q
=: β(t).

Thus, for a fixed t < 1, f (x, t) is increasing with respect to x , when x ≥ β(t); that
is, f (x, t)≥ f (β(t), t) if x ≥ β(t). Now, β(t∗)= c∗ and t∗ < 1, so we obtain

x t∗ f (c∗, t∗)≤
x

1+ logq x
,

for x ≥ c∗. �

Lemma 5.4.

logq(x + y)≤max{logq(2x), logq(2y)},(23)

logq(x + y)≤ logq x + logq y if x, y ≥ 2.(24)

Proof. In order to have z ≥ logq(x + y), it suffices to have

1
2q z
≥ x and 1

2q z
≥ y,

which is equivalent to

z ≥ logq(2x) and z ≥ logq(2y).

Thus, taking z =max{logq(2x), logq(2y)}, we have

logq(x + y)≤max{logq(2x), logq(2y)}. �

Conclusion of the proof of Theorem 1.2. Let ℘ 6∈ S be a prime of K with least
degree such that P℘(φ1) 6= P℘(φ2), where S is the given finite set of primes of
K outside of which both φ1 and φ2 have good reduction. Let α0 be a nonzero
coefficient of P℘(φ1)− P℘(φ2).

It is known that a root γ of P℘(φ1) or P℘(φ2) satisfies

v∞(γ )=−
1
r

degK ℘

(see [Goss 1992, Theorem 3.2.3(c)(d); Gardeyn 2002, Proposition 9]). This implies
that each coefficient β of P℘(φ1) and P℘(φ2) satisfies degF β ≤ degK ℘, and hence
each coefficient α of P℘(φ1)− P℘(φ2) also satisfies degF α ≤ degK ℘; in particular
degF α0 ≤ degK ℘.

We choose a finite prime L of F by Lemma 5.2 such that

(25) α0 6≡ 0 (mod L) and degF L≤ 1+ logq degK ℘,

and write L= (a), where a is monic in A.
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Suppose ℘ lies above the prime p of F . For x ≥ 7, we have logq x < 1
2(x − 1)

(since if we let f (x)= 1
2(x − 1)− logq x , then f ′(x) > 0 for x ≥ 7 and f (7) > 0).

Hence, we obtain that x < q(1/2)(x−1), so q(1/2)(x−1)/x > 1; hence, qx−1/x >
q(1/2)(x−1) for x ≥ 7. Thus, noting that

s ≥
f (℘/p)
[FK : FF ]

,

if x ≥max{1+ 2 logq s, 7}, we get that

qx−1

x
> q(1/2)(x−1)

≥ s ≥
f (℘/p)
[FK : FF ]

.

But then if L= ℘, we would have

degF p≤ 1+ logq degK ℘ = 1+ logq
f (℘/p)
[FK : FF ]

degF p;

in other words,
qx−1

x
≤

f (℘/p)
[FK : FF ]

,

where x = degF p= degF L. Therefore, we either have that

degF p≤max{1+ 2 logq s, 7},

or L 6= p by the above inequality. In the former case, it follows that degK ℘ ≤

s max{1+ 2 logq s, 7}.
Suppose we are now in the latter case, where L 6= p. Consider the representation

ψL : G K → AutA/L(φ1[L])×AutA/L(φ2[L])∼= GLr (A/L)×GLr (A/L),

where ψL = ρφ1,L×ρφ2,L. Let GL be the image of this homomorphism. Let CL be
the subset of GL consisting of pairs (a, b) such that the characteristic polynomials
of a and b are not equal. Note that CL is invariant under conjugation, so it is a
union of conjugacy classes in GL. Since L 6= p, we have CL 6= ∅; in particular,
there is some conjugacy class C⊆ CL in GL with C 6=∅.

Let SL = S ∪ {primes l of K lying over L}. Then the Galois representation ψL

is unramified outside SL. We have A/L∼= F`, where `= qdegF L.
Let K̃/K be the field extension associated to ψL, and let n (resp. n′) be its

degree (resp. geometric extension degree). Applying Corollary 3.4 to K̃/K , and
using Lemma 2.2 together with the bound for the degree with respect to K of
D=D(K̃/K ) given in Corollary 4.4, we deduce that there is a prime P 6∈ SL such
that FrobP = C⊆ CL and

degK P ≤
4

m0
logq

4
3 (B+ 3g+ 3)+m,

where
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6′ =
∑
p∈SL

p≥6 =
∑
p∈S

p, m = [FK̃ : FK ], m0 = [FK : FF ],

degK 6
′
= degK radK 1(φ1)1(φ2)+ degK L,

B =max{degK 6
′, degK̃ D, 2|Gal(E/K ′)| − 2, 2},

degK̃ D≤ rn′
(
`r
−1

q−1
(
2s degK a+3(φ1, φ2)

)
+ 2D(φ1, φ2)+ 4 degK a

)
.

Then

(26) degK P ≤ 4
m0

logq
4
3(B+3g+3)+m ≤ 4

m0

(
logq

4
3 B+ logq 4(g+1)

)
+m,

using B ≥ 2 and Lemma 5.4. Note that regarding B, the terms degK 6
′ and

2|Gal(E/K ′)| − 2 are less than the bound we use for degK̃ D, so we can ignore
them later on when we bound B.

Using Lemma 5.4, we obtain

logq degK̃ D

= logq rn′
(
`r
−1

q−1
3(φ1,φ2)+ 2D(φ1,φ2)+

(
2s `

r
−1

q−1
+ 4

)
degK a

)
≤ logq rn′+ logq

(
`r
−1

q−1
(3(φ1,φ2)+ 2D(φ1,φ2))+

(
2s `

r
−1

q−1
+ 4

)
degK a

)
≤ logq rn′+max{V1, V2},

where

V1 := logq 2`
r
−1

q−1
(
3(φ1, φ2)+ 2 D(φ1, φ2)

)
= logq 2+ logq

`r
−1

q−1
+ logq

(
3(φ1, φ2)+ 2 D(φ1, φ2)

)
,

V2 := logq 2
(

2s `
r
−1

q−1
+ 4

)
degK a

≤ logq 2+ logq 8s+ logq
`r
−1

q−1
+ logq degK a ≤ V1+ logq 8s+ logq degK a.

Thus,

logq B

≤ logq rn′+V1+ logq 8s+ logq degK a

= logq rn′+ logq16s+ logq
`r
−1

q−1
+ logq degK a+ logq

(
3(φ1, φ2)+2 D(φ1, φ2)

)
.

Since n′ ≤ n = |GL| < `
2r2

, logq ` = degF L = degF a, and degK a ≤ s degF a =
s logq `, we finally obtain
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(27) logq B

≤ logq 16rs2
+(2r2

+r) logq `+logq logq `+logq
(
3(φ1, φ2)+2 D(φ1, φ2)

)
.

Note that if logq
(
3(φ1, φ2)+ 2 D(φ1, φ2)

)
= 0, the derivation of the bound (27)

above can be modified so as to obtain

logq B ≤ logq 16rs2
+ (2r2

+ r) logq `+ logq logq `.(28)

Thus, we have

(29) logq
4
3 B≤ logq

64
3 rs2
+(2r2

+r+1) logq `+log∗q (3(φ1, φ2)+ 2 D(φ1, φ2)) .

Returning to (26), we obtain

(30) degK P ≤
4

m0

(
logq 86rs2(g+ 1)+ (2r2

+ r + 1) logq `

+ log∗q(3(φ1, φ2)+ 2 D(φ1, φ2))
)
+m.

By construction of CL, we have PP(φ1) 6≡ PP(φ2) (mod L). Thus, degK ℘ ≤

degK P , and from (25), it follows that

(31) degK ℘ ≤
4

m0

(
logq 86rs2(g+ 1)+ (2r2

+ r + 1) logq `

+ log∗q(3(φ1, φ2)+ 2 D(φ1, φ2))
)
+m

≤
4

m0

(
logq 86rs2(g+ 1)+ (2r2

+ r + 1)(1+ logq degK ℘)

+ log∗q(3(φ1, φ2)+ 2 D(φ1, φ2))
)
+m.

As 1+ logq x ≥ 1,
logq x

x
≤ 1, we have

degK ℘

1+ logq(degK ℘)
≤

4
m0
(dr +W ),

where cr = 2r2
+ r + 1, dr := cr + logq 86rs2(g+ 1), and

W := log∗q
(
3(φ1, φ2)+ 2 D(φ1, φ2)

)
+mm0.

If x ≥ dr , then using Lemma 5.3 with c∗ = dr and x = degK ℘, we obtain

γ x t∗
≤

x
1+ logq x

≤
4

m0
(dr +W ),

where γ is as in Lemma 5.3. This implies that

x t∗
≤

4
m0

(dr +W )

γ
,
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so that

(32) logq degK ℘ = logq x ≤
1
t∗

logq
4

m0
(dr +W ) ·

1+ logq dr

(dr )1/ln(qdr )

≤ s∗
(

logq
4

m0
+ logq(dr +W )+ logq(1+ logq dr )−

1
ln(qdr )

logq dr

)
≤ s∗

(
logq

4
m0
+ logq dr + logq W + logq(1+ logq dr )−

1
ln(qdr )

logq dr

)
≤ s∗

(
logq

4
m0
+ logq W + logq logq dr

)
+ logq dr ,

using dr ,W ≥ 2, and where

t∗ =
ln(qdr )− 1

ln(qdr )
and s∗ = s∗q,r =

1
t∗
=

ln(qdr )

ln(qdr )− 1
.

We note that when q or r is large, s∗q,r tends to 1 from above.
Substitution of (32) into (31) yields

(33) 1
4 degK ℘ ≤ logq 86rs2(g+ 1)+ cr (1+ logq degK ℘)+W

≤ logq 86rs2(g+ 1)

+ cr

(
1+s∗

(
logq

4
m0
+ logq W + logq logq dr

)
+ logq dr

)
+W

= logq 86rs2(g+ 1)+ cr

(
1+ s∗ logq

4
m0
+ logq dr

)
+ cr s∗ logq logq dr +W + cr s∗ logq W

= Cq,r +W + cr s∗q,r logq W,

where

Cq,r = logq 86rs2(g+ 1)+ cr

(
1+ s∗q,r logq

4
m0
+ logq dr

)
+ cr s∗q,r logq logq dr .

Therefore, we either have the above upper bound (33) on degK ℘ or degK ℘ ≤

dr ≤ Cq,r , so in the end we get

(34) degK ℘ ≤
4

m0

(
Cq,r +W + cr sq,r logq W

)
.

Finally, we note from the discussion in the introduction that m ≤ gφ1 gφ2 .

6. The case of rank 2

In this section, we consider the case of rank 2 and K = F , and explain how to make
all the terms explicit in our isogeny theorem.
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For a Drinfeld A-module φ of rank 2 over K = F = Fq(T ), the successive
minima of the lattices associated to the uniformizations of φ are determined in
[Chen and Lee 2013], and this is used to obtain an explicit bound for the valuation
v∞(D(K∞(φ[a])/K∞)) of the different of Kφ,a = K (φ[a]) over K at the infinite
prime∞ of K and vp(D(Kp(φ[a])/Kp)) at a finite prime p of K , following the
work of Goss [1996].

The infinite prime case is obtained using the explicit information about the
Newton polygon of the exponential map eφ,∞ attached to φ from its uniformization
over C∞.

Assume the same notation as in the proof and statement of Proposition 4.3, taking
K = F = Fq(T ) and ∞̄ =∞; the explicit bounds given in [Chen and Lee 2013]
are as follows.

Let φT = T + a1τ + a2τ
2 and j (φ) = aq+1

1 /a2, and let m be the least positive
integer such that −v∞( j (φ))≤ qm+1. Then we have

v∞
(
D(K∞(φ[a])/K∞)

)
≤

{
1 if − v∞( j (φ))≤ q,
1+ κ(qκ+1

− 1) if q <−v∞( j (φ))≤ qm+1,

where

κ =
−v∞( j (φ))− qm

qm(q − 1)
+m− 1,

and

vp
(
D(Kp(φ[a])/Kp)

)
≤



2vp(a) if φ has good reduction
over Kp,

2vp(a)+ 1 if vp( j (φ))≥ 0 and φ has
bad reduction over Kp,

2vp(a)+ 1− 2
q−1

vp( j (φ)) if vp( j (φ)) < 0.

Putting this together yields the following explicit bound on the different divisor
of F(φ[a])/F when φ has rank 2, which can be used in place of the more general
bound that we use in this paper. See Section 7 for a comparison of the two bounds
in the context of our application.

Theorem 6.1. Let φ be a Drinfeld A-module of rank 2 over F , and D(F(φ[a])/F)
the different divisor of F(φ[a])/F. Then

degF D(F(φ[a])/F)

≤ 2 degF a+ degF η+
2

q − 1
degF δ+ v∞

(
D(F∞(φ[a])/F∞)

)
,

where δ is the (monic) denominator of j (φ) as represented by a fraction in reduced
form, and η is the product of finite primes p such that φ has bad reduction over Fp.
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Concerning the term gφ , we have from [Gardeyn 2002] that

gφ = gφ,∞ ≤ (q2
− 1)(q2

− q)ν2,φ,∞/ν1,φ,∞,

where νi,φ,∞ is the i-th successive minimum of φ associated to its uniformization
over C∞. In [Chen and Lee 2013], the νi,φ,∞ are determined as follows.

Case 1: If −v( j (φ))≤ q , then ν1,φ,∞ = ν2,φ,∞ =−s1.

Case 2: If q < −v( j (φ)) ≤ qm+1, then ν1,φ,∞ = −s1, ν2,φ,∞ = −s1 − κ , where
s1 = (v(a2)+ q2)/(q2

− 1) in Case 1 and s1 = (v(a1)+ q)/(q − 1) in Case 2, and
m, κ are as above.

7. Comparison with work of Gardeyn

In this section we make some detailed comparisons with the work in [Gardeyn
2002], where an effective isogeny theorem is proven.

For the proof of our Theorem 1.2, an essential ingredient is the bound on the
different divisor given in Proposition 4.3,

(35) degK D(Kφ,L/K )

≤ r
(
`r
−1

q−1
(
s degK a+3(φ)

)
+ 2 degK radK 1(φ)+ 2 degK a

)
,

where we recall that 3(φ) = −
∑

v τv(φ) degK v. The counterpart of (35) in
[Gardeyn 2002] is

degK D(Kφ,L/K )≤ r degK a+ degK 1φ,(36)

where 1φ is a divisor of K that is determined from the Newton polygons of the
exponential functions associated to uniformizations of φ over C℘ , where ℘ is a
prime of K .

Although there is a larger dependence on ` in our different bounds when we take
degrees with respect to K , what is required in the application is the degree with
respect to Kφ,L, which necessitates multiplying the degree with respect to K by
n′ < `r2

. This means both bounds end up being comparable in their dependence on
`, as we later take the logq of this degree with respect to Kφ,L.

The quantity 1φ is more difficult to make explicit and compare, as we saw in
Section 6, where its determination in the case of rank 2 and K = F = Fq(T ) is
recalled from [Chen and Lee 2013]. The method in [Chen and Lee 2013] yields
the entire Newton polygon and uses Gekeler’s theory of Drinfeld modular forms as
well as Rosen’s theory of formal Drinfeld modules. It may be possible to obtain
weaker information using the more elementary approach of Chen and Lee [2012] in
the infinite prime case, and to generalize Rosen’s work to higher rank in the finite
prime case, in such a way that Gardeyn’s bounds can be made explicit.
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As for the terms gφ , it would seem that this also requires some knowledge relating
to the successive minima of the lattices associated to the uniformization of φ over
infinite primes.

Finally, two other places of difference are in our use of [Kumar Murty and Scherk
1994] for the Chebotarev density theorem instead of [Geyer and Jarden 1998], and
in our analytic estimation methods, which differ slightly from [Gardeyn 2002; Serre
1981] because we have attempted to reduce the size of the constants in the different
divisor bound, especially in front of the dominating terms.
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TOPOLOGICAL PRESSURES FOR
ε-STABLE AND STABLE SETS

XIANFENG MA AND ERCAI CHEN

In this paper, topological pressures of the preimages of ε-stable sets and
certain closed subsets of stable sets in positive entropy systems are investi-
gated. It is shown that the topological pressure of any topological system
can be calculated in terms of the topological pressure of the preimages of
ε-stable sets. For the constructed closed subset (W. Huang, Commun. Math.
Phys. 279, 535–557 (2008)) of the stable set or the unstable set of any point
in a measure-theoretic “rather big” set of a topological system with positive
entropy, especially for the weakly mixing subset contained in the closure of
the stable and unstable sets, it is proved that topological pressures of these
subsets can be no less than the measure-theoretic pressure.

1. Introduction

Let (X, T ) be a topological dynamical system (TDS) in the sense that X is a compact
metric space with a compatible metric d and T : X → X is a homeomorphism.
A TDS is said to be noninvertible if the map is surjective and continuous but not
one-to-one. For x ∈ X and ε > 0, the ε-stable set of x under T is the set of points
whose forward orbit ε-shadows that of x :

W s
ε (x, T )= {y ∈ X : d(T nx, T n y)≤ ε for all n ≥ 0}.

The preimages of these sets can be nontrivial and hence disperse at a nonzero
exponent rate. the dispersal rate function hs(T, x, ε) was introduced in [Fiebig et al.
2003]. The relationship between hs(T, x, ε) and the topological entropy htop(T )
was also investigated. It was proved that when X has finite covering dimension, for
all ε > 0,

sup
x∈X

hs(T, x, ε)= htop(T ).
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In [Huang 2008], the finite-dimensionality hypothesis turns out to be redundant.
This equality is proved to be always true for any noninvertible TDS.

It is known that certain results concerning topological entropy can be generalized
to topological pressure. For any f ∈ C(X,R), consider the topological pressure of
the preimages of the ε-stable set of x :

P(T, f, x, ε)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T )),

where

Pn(T, f, δ, T−nW s
ε (x, T ))

= sup
{∑

x∈E

exp fn(x) : E is an (n, δ)-separated subset of T−nW s
ε (x, T )

}
,

and fn(x)=
∑n−1

i=0 f ◦ T i (x). We show that the topological pressure of any non-
invertible TDS with positive metric entropy can be calculated in terms of the
topological pressure of the preimages of ε-stable sets. That is, for all ε > 0,

sup
x∈X

P(T, f, x, ε)= P(T, f ),

where P(T, f ) is the standard notion of the topological pressure. For the null
function f , this equality is the above one for the topological entropy.

For x ∈ X , the stable set W s(x, T ) and the unstable set W u(x, T ) of x are
defined as

W s(x, T )= {y ∈ X : lim
n→+∞

d(T nx, T n y)= 0},

W u(x, T )= {y ∈ X : lim
n→+∞

d(T−nx, T−n y)= 0}.

For Anosov diffeomorphisms on a compact manifold, pairs belonging to the stable
set are asymptotic under T and tend to diverge under T−1. However, Blanchard et al.
[2002] showed that in most case, this phenomenon does not happen in a TDS with
positive metric entropy. N. Sumi [2003] investigated the stable and unstable sets of
C2 diffeomorphisms of C∞ manifolds with positive metric entropy. He showed that
the closure of the stable set W s(x, T ) of “many points” is a perfect ∗-chaotic set and
the closure of the unstable set W u(x, T ) contains a perfect ∗-chaotic set. W. Huang
[2008] got further information in the general noninvertible TDS with positive metric
entropy. He proved that there exists a measure-theoretically “rather big” set such
that the closure of the stable or unstable sets of points in the set contains a weakly
mixing set. The Bowen entropies of these sets were also estimated there. It was
proved that the lower bound is the usual metric entropy hµ(T ) for the ergodic
invariant measure µ.

By introducing the topological pressure for the closed subset and using the
excellent partition formed in Lemma 4 of [Blanchard et al. 2002], we show that,
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for the constructed closed subsets of stable and unstable sets in [Huang 2008], the
topological pressure of these sets can also be estimated. More precisely, we prove
that if µ is an ergodic invariant measure of a TDS (X, T ) with hµ(T ) > 0, then,
for µ-a.e. x ∈ X , the closed subsets

A(x)⊆W s(x, T ), B(x)⊆W u(x, T )

and the weakly mixing subset

E(x)⊆W s(x, T )∩W u(x, T )

constructed in [Huang 2008] have the following properties:

(a) limn→+∞ diam T n A(x)= 0 and P(T−1, f, A(x))≥ Pµ(T, f ),

(b) limn→+∞ diam T−n B(x)= 0 and P(T, f, B(x))≥ Pµ(T, f ),

(c) P(T, f, E(x))≥ Pµ(T, f ) and P(T−1, f, E(x))≥ Pµ(T, f ),

where Pµ(T, f ) is the measure-theoretic pressure.

The paper is organized as follows. In Section 2, the topological pressure for
the closed subset of a TDS is introduced. Some related notions and results about
entropy are also listed. In Section 3, the topological pressure of the preimages of
an ε-stable set is introduced. Using the tool formed in [Blanchard et al. 2002], we
show that the topological pressure of any TDS can be calculated in terms of the
topological pressure of the preimages of an ε-stable set. As a generalization of
the entropy point, the notion of the pressure point is also introduced. In Section 4,
results (a)–(c) above are proved. In Section 5, the results in sections 3 and 4 are
stated and proved for the noninvertible TDS.

2. Preliminaries

Let (X, T ) be a TDS and BX be the σ -algebra of all Borel subsets of X . Recall
that a cover of X is a finite family of Borel subsets of X whose union is X , and
a partition of X is a cover of X whose elements are pairwise disjoint. We denote
the set of covers, partitions, and open covers, of X by CX , PX , and Co

X . Given a
partition α of X and x ∈ X , denote by α(x) the atom of α containing x . For two
given covers U, V ∈ CX , U is said to be finer than V (denoted by U� V) if each
element of U is contained in some element of V. Let

U∨V= {U ∩ V :U ∈U, V ∈ V}.

Given integers M, N with 0≤ M ≤ N and U ∈ CX , we set

UN
M =

N∨
n=M

T−nU.
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Given U ∈ CX and K ⊂ X , put

N (U, K )=min
{

the cardinality of F : F⊂U,
⋃

F∈F

F ⊃ K
}

and H(U, K )= log N (U, K ). Then the topological entropy of U with respect to T
for the compact subset K is

htop(T,U, K )= lim
n→∞

1
n

H(Un−1
0 , K )= inf

n≥1

1
n

H(Un−1
0 , K ).

The topological entropy of T for the compact subset K is defined by htop(T, K )=
supU∈Co

X
htop(T,U, K ); and the topological entropy of T is defined by htop(T )=

supK htop(T, K ).
Let (X, T ) be a TDS, K a closed subset of X , U ∈Co

X , and f ∈C(X,R), where
C(X,R) is the Banach space of all continuous, real-valued functions on X endowed
with the supremum norm. We set

(1) Pn(T, f,U, K )= inf
{ ∑

V∈V

sup
x∈V∩K

exp fn(x) : V ∈ CX and V�Un−1
0

}
,

where fn(x)=
∑n−1

j=0 f (T j x). When V ∩ K =∅, we let supx∈V∩K exp fn(x)= 0.
Then the above definition is well defined. It is clear that if f is the null function,
Pn(T, 0,U, K )= N (Un−1

0 , K ).
For V ∈ CX , we let α be the Borel partition generated by V and define

P∗(V)= {β ∈ PX : β � V and each atom of β is the union of some atoms of α}.

Lemma 2.1 [Ma et al. 2010, Lemma 2.1]. Let M be a compact subset of X and let
f ∈ C(X,R), V ∈ CX . Then

inf
β∈CX
β�V

∑
B∈β

sup
x∈B∩M

f (x)=min
{∑

B∈β

sup
x∈B∩M

f (x) : β ∈ P∗(V)

}
.

Let K(X) be the collection of all nonempty closed subsets of X . For any
nonempty subset A of X and ε > 0, let N (A, ε) = {x ∈ X : dist(x, A) < ε},
where dist(x, A) = inf{d(x, y) : y ∈ A}. The Hausdorff metric Hd on the space
K(X) induced by the metric d is defined as

Hd(A, B)= inf{ε : A ⊂ N (B, ε) and B ⊂ N (A, ε)} for any A, B ⊂ X.

Then (K(X), Hd) constitutes a compact metric space.

Lemma 2.2. Let (X, T ) be a TDS, U ∈ Co
X , and f ∈ C(X,R+). Then the function

F : K → inf
{∑

V∈V

sup
x∈V∩K

f (x) : V ∈ CX and V�U

}
is measurable from K(X) to R+, where supx∈V∩K f (x)= 0 for V ∩ K =∅.
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Proof. By Lemma 2.1 it suffices to prove that for each B ∈ β, where β ∈ P∗(U),
the function FB : K → supx∈B∩K f (x) is measurable.

For each r ∈ R, let Er = {K : supx∈B∩K f (x) > r}. Let U = f −1(r,+∞). Then
U is an open subset of X . For r ≥ 0, if B ∩U = ∅, Er = ∅. If B ∩U 6= ∅,
Er = {K : K ∩ (B ∩U ) 6=∅}. Let α be the Borel partition generated by the open
cover U= {Ui }

s
i=1. Then each A ∈ α has the form

(⋂
i∈L Ui

)
∩
(⋂

j∈M U c
j

)
, where

L ,M ⊂ {1, . . . , s} and L ∩ M = ∅. Note that, for each open subset W of X ,
the sets {K : K ∩ (W ∩U ) 6= ∅} and {K : K ∩ (W c

∩U ) 6= ∅}— which equals
{K : K ∩U 6=∅}∩

(
K(X)\{K : K ⊂W }

)
— are both measurable subsets of K(X).

Then the set {K : K ∩ (A∩U ) 6=∅} is measurable for each A ∈ α. Since each atom
B of β is the finite union of elements of α, it follows that Er is a measurable subset
of K(X). For r < 0, Er = E0∪{K : supx∈B∩K f (x)= 0} = E0∪{K : B ∩ K =∅}.
Since {K : B ∩ K = ∅} = K(X)\{K : B ∩ K 6= ∅} and {K : B ∩ K 6= ∅} is
measurable, Er is also measurable. Thus FB is a measurable function. �

Let K ∈ K(X), U ∈ Co
X , and f ∈ C(X,R). We define P(T, f,U, K ) =

lim supn→∞(1/n) log Pn(T, f,U, K ).
Let (X, T ) be a TDS. Denote by M(X) the set of all Borel probability measures

on X , by M(X, T ) the set of T -invariant measures, and by Me(X, T ) the set of
ergodic measures. Then Me(X, T ) ⊂M(X, T ) ⊂M(X), and M(X),M(X, T ) are
convex, compact metric spaces endowed with the weak*-topology.

Since the map f is a homeomorphism, it induces in a natural way a homeomor-
phism T̂ : K(X)→ K(X) by T̂ (A) = T (A) for each A ∈ K(X). Then (K(X), T̂ )
constitutes a TDS induced by (X, T ).

For each µ̂ ∈M(K(X), T̂ ), the following lemma shows that the limit superior in
the above definition can be obtained by the limit for µ̂-a.e. K ∈ K(X).

Lemma 2.3. Let (X, T ) be a TDS, U ∈ Co
X , f ∈ C(X,R), and µ̂ ∈M(K(X), T̂ ).

Then, for µ̂-a.e. K ∈ K(X), P(T, f,U, K ) = limn→+∞(1/n) log Pn(T, f,U, K )
exists.

Proof. For any n,m ∈N, V1�Un−1
0 , V2�Um−1

0 , we have V1∨T−nV2�Un+m−1
0 .

It follows that

Pn+m(T, f,U, K )≤
∑

V1∈V1

∑
V1∈V2

sup
x∈V1∩T−n V2∩K

exp fn+m(x)

=

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩T−n V2∩K

exp( fn(x)+ fm(T nx))

≤

∑
V1∈V1

∑
V2∈V2

( sup
x∈V1 K

exp fn(x) · sup
z∈V2∩T n K

exp fm(z))

=

( ∑
V1∈V1

sup
x∈V1∩K

exp fn(x)
)( ∑

V2∈V2

sup
z∈V2∩T n K

exp fm(z)
)
.
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Since Vi , i = 1, 2 is arbitrary,

Pn+m(T, f,U, K )≤ Pn(T, f,U, K ) · Pm(T, f,U, T n K ).

By the definition of T̂ and Lemma 2.2, we have that

log Pn(T, f,U, K ) : K(X)→ R∪ {−∞}

is a subadditive sequence of measurable functions. Then, by Kingman’s subadditive
ergodic theorem (see [Walters 1982]), we complete the proof. �

When K = X , P(T, f,U, X) = P(T, f,U), which is the local topological
pressure defined by Huang and Yi [2007], clearly, P(T, 0,U, K )= htop(T,U, K ).

Given a partition α ∈ P(X), µ ∈M(X) and a sub-σ -algebra C⊆Bµ, let

Hµ(α)=
∑
A∈α

−µ(A) logµ(A),

Hµ(α | C)=
∑
A∈α

∫
X
−E(1A | C) log E(1A | C) dµ,

where E(1A | C) is the expectation of 1A with respect to C. One standard fact states
that Hµ(α | C) increases with respect to α and decreases with respect to C. The
measure-theoretic entropy of µ is defined as

hµ(T )= sup
α∈PX

hµ(T, α),

where

hµ(T, α)= lim
n→+∞

1
n

Hµ(αn−1
0 )= inf

n≥1
Hµ(αn−1

0 ).

For each f ∈ C(X,R), the measure-theoretic pressure of µ is defined as

Pµ(T, f )= hµ(T )+
∫

X
f dµ.

For a given U ∈ CX , set

Hµ(U)= inf
β∈PX , β�U

Hµ(β) and Hµ(U | C)= inf
β∈PX , β�U

Hµ(β | C).

When µ ∈M(X, T ) and C is T -invariant (that is, T−1C= C), Hµ(Un−1
0 | C) is a

nonnegative subadditive sequence for a given U ∈U. Let

hµ(T,U | C)= lim
n→+∞

1
n

Hµ(Un−1
0 | C)= inf

n≥1
Hµ(Un−1

0 | C).

For C = {∅, X} (mod µ), we write Hµ(U | C) and hµ(T,U | C) as Hµ(U) and
hµ(T,U), respectively. Romagnoli [2003] proved that

hµ(T )= sup
U∈Co

X

hµ(T,U).
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It is well known that, for β ∈PX , hµ(T, β)= hµ(T, β | Pµ(T ))≤ Hµ(β | Pµ(T )),
where Pµ(T ) is the Pinsker σ -algebra of (X,Bµ, µ, T ).

Lemma 2.4 [Huang 2008, Lemma 2.1]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
U ∈ CX . Then

hµ(T,U)= hµ(T,U | Pµ(T )).

For U ∈ Co
X , µ ∈M(X, T ) and f ∈ C(X,R), we define the measure-theoretic

pressure for T with respect to U as

Pµ(T, f,U)= hµ(T,U)+

∫
X

f dµ.

Obviously,

Pµ(T, f )= hµ(T )+
∫

X
f dµ= sup

U∈Co
X

hµ(T,U)+

∫
X

f dµ= sup
U∈Co

X

Pµ(T, f,U).

Let (X, T ) be a TDS, µ ∈M(X, T ), and Bµ be the completion of BX under µ.
Then (X,Bµ, µ, T ) is a Lebesgue system. If {αi }i∈I is a countable family of finite
partitions of X , the partition α =

∨
i∈I αi is called a measurable partition. The sets

A ∈Bµ, which are unions of atoms of α, form a sub-σ -algebra of Bµ by α̂ or α
if there is no ambiguity. Every sub-σ -algebra of Bµ coincides with a σ -algebra
constructed in this way (mod µ).

Given a measurable partition α, put α− =
∨
∞

n=1 T−nα and αT
=
∨
+∞

n=−∞ T−nα.
Define in the same way F− and FT if F is a sub-σ -algebra of Bµ. It is clear that
for a measurable partition α of X , we have

α̂− = (α̂)− and α̂T = (α̂)T (mod µ).

Let F be a sub-σ -algebra of Bµ and α be the measurable partition of X with
α− = F (mod µ). µ can be disintegrated over F as µ =

∫
X µx dµ(x), where

µx ∈M(X) and µx(α(x))= 1 for µ-a.e. x ∈ X . The disintegration is characterized
by two properties:

(a) For every f ∈ L1(X,BX , µ), f ∈ L1(X,BX , µx) for µ-a.e. x ∈ X , and the
map x 7→

∫
X f (y) dµx(y) is in L1(X,F, µ).

(b) For every f ∈ L1(X,BX , µ), Eµ( f | F)(x)=
∫

X f dµx for µ a.e. x ∈ X .

Then, for any f ∈ L1(X,BX , µ),∫
X

(∫
X

f dµx

)
dµ(x)=

∫
X

f dµ.

Lemma 2.5 [Huang 2008, Lemma 2.2]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
F be a sub-σ -algebra of Bµ. If µ=

∫
X µx dµ(x) is the disintegration of µ over F,

(a) for V ∈ CX , Hµ(V | F)=
∫

X Hµx (V) dµ(x),

(b) for U, V ∈ CX , Hµ(U∨V | F)≤ Hµ(U | F)+ Hµ(V | F).
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Let K be a nonempty closed subset of X . For ε > 0, a subset of X is called an
(n, ε)-spanning set of K , if for any x ∈K there exists y∈ F with dn(x, y)≤ε, where
dn(x, y)=maxn−1

i=0 d(T i x, T i y); a subset E of K is called an (n, ε)-separated set
of K , if x, y ∈ E , x 6= y implies dn(x, y)> ε. Let rn(d, T, ε, K ) denote the smallest
cardinality of any (n, ε)-spanning subset for K and sn(d, T, ε, K ) denote the largest
cardinality of any (n, ε)-separated subset of K .

For each ε > 0 and f ∈ C(X,R), we define

Pn(T, f, ε, K )= sup
{∑

x∈E
exp fn(x) : E is an (n, ε)-separated subset of K

}
.

The topological pressure of T for the closed subset K is defined as

P(T, f, K )= lim
ε→0

lim sup
n→+∞

1
n

log Pn(T, f, ε, K ).

Clearly, for f ≡ 0, we can write Pn(T, 0, ε, K ) = sn(d, T, ε, K ). It follows
that P(T, f, K ) = h(T, K ), where h(T, K ) is the Bowen entropy for the closed
subset K defined in [Walters 1982]; see also [Huang 2008]. When K = X ,
P(T, f, X)= P(T, f ), where P(T, f ) is the standard notion of topological pressure
defined in [Walters 1982]. Moreover, it is not hard to verify that P(T, f, K ) =
supU∈Co

X
P(T, f,U, K ).

3. ε-stable sets

Let (X, T ) be a TDS with a compatible metric d. Given ε > 0, the ε-stable set of
x under T is the set of points whose forward orbit ε-shadows that of x :

W s
ε (x, T )= {y ∈ X : d(T nx, T n y)≤ ε for all n = 0, 1, . . .}.

Since the preimages of these sets can be nontrivial, we can consider the following
function. For each x ∈ X , f ∈ C(X,R), and ε > 0, let

Ps(T, f, x, ε) := lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T )).

Ps(T, f, x, ε) is called the topological pressure of the preimages of the ε-stable
sets of x . For f ≡ 0, Ps(T, 0, x, ε)= hs(T, x, ε), where the latter is the dispersal
rate function defined in [Fiebig et al. 2003]. It was proved in [Huang 2008] that
supx∈X hs(T, x, ε) = htop(T ) for all ε > 0. In the present section, we show that
this is also true for the functions Ps(T, f, x, ε) and P(T, f ). By proving that,
for any µ ∈Me(X, T ) with positive entropy, limε→0 Ps(T, f, x, ε)≥ Pµ(T, f ) for
µ-a.e. x ∈ X , we can obtain the result. We need the following lemmas.
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Lemma 3.1. Let (X, T ) be a TDS, f ∈ C(X,R), and {Kn} be a sequence of
nonempty closed subsets of X. Then

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)= sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

Proof. For a fixed δ > 0, choose V ∈ Co
X with diam V< δ. For n ∈ N let A be an

(n, δ)-separated set of Kn . Since B ∩ Kn contains at most one element of A for
each B of

∨n−1
i=0 T−i V, for every W ∈CX with W�Vn−1

0 , each element of W also
contains at most one element of A. We get

∑
x∈A exp fn(x) ≤ Pn(T, f,V, Kn).

That is Pn(T, f, δ, Kn)≤ Pn(T, f,V, Kn). Then

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)≤ lim sup
n→+∞

1
n

log Pn(T, f,V, Kn)

≤ sup
U∈Co

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

Letting δ→ 0, we get

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn)≤ sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn).

In the following, we show the converse inequality. For any fixed U ∈ Co
X , let δ

be the Lebesgue number of U. For n ∈ N, let E be an (n, δ/2)-separated set of Kn

with the largest cardinality. Then E is also an (n, δ/2)-spanning set of Kn . From
the definition of spanning sets, we know that

⋃
x∈E

n−1⋂
i=0

T−i Bδ/2(T i x)⊃ Kn, where Bδ/2(T i x)=
{

y ∈ X : d(T i x, y)≤ δ
2

}
.

Now, for each x ∈ E and 0≤ i ≤ n− 1, Bδ/2(T i x) is contained in some element of
U since δ is the Lebesgue number of the open cover U. Hence, for each x ∈ E , the
intersection

⋂n−1
i=0 T−i Bδ/2(T i x) is contained in some element of

∨n−1
i=0 T−i U. Let

W=
{⋂n−1

i=0 T−i Bδ/2(T i x) : x ∈ E
}
. Then W ∈ CX and W�Un−1

0 . Let

Qn(T, f,U, Kn)= inf
{ ∑

V∈V

inf
x∈V∩Kn

exp fn(x) : V ∈ CX and V�Un−1
0

}
.

Then

Qn(T, f,U, Kn)≤
∑
x∈E

fn(x)≤ Pn

(
T, f, δ

2
, Kn

)
.

Let τU = sup{| f (x)− f (y) |: d(x, y)≤ diam U}. Then

exp(−nτU)Pn(T, f,U, Kn)≤ Qn(T, f,U, Kn).
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So

−τU+ lim sup
n→+∞

1
n

log Pn(T, f,U, Kn)≤ lim sup
n→+∞

1
n

log Pn

(
T, f, δ

2
, Kn

)
≤ lim
δ→0

lim sup
n→+∞

1
n

log Pn

(
T, f, δ

2
, Kn

)
.

Since U is arbitrary, we get

sup
U∈C0

X

lim sup
n→+∞

1
n

log Pn(T, f,U, Kn)≤ lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, Kn). �

An immediate consequence of Lemma 3.1 is the following.

Lemma 3.2. Let (X, T ) be a TDS and f ∈ C(X,R). Then, for each x ∈ X and
ε > 0,

Ps(T, f, x, ε)= sup
U∈Co

X

lim sup
n→+∞

1
n

log Pn(T, f,U, T−nW s
ε (x, T )).

Lemma 3.3 [Walters 1982, Lemma 9.9]. Let a1, . . . , ak be given real numbers. If
pi ≥ 0, i = 1, . . . , k, and

∑k
i=1 pi = 1,

k∑
i=1

pi (ai − log pi )≤ log
k∑

i=1

eai ,

and equality holds if and only if

pi =
eai∑k

i=1 eai
for all i = 1, . . . , k.

Let (X, T ) be a TDS, µ ∈ M(X, T ), and Bµ be the completion of BX under
µ. The Pinsker σ -algebra Pµ(T ) is defined as the smallest sub-σ -algebra of Bµ

containing {ξ ∈ PX : hµ(T, ξ)= 0}. It is well known that Pµ(T )= Pµ(T−1) and
Pµ(T ) is T -invariant, that is, T−1(Pµ(T ))= Pµ(T ).

Lemma 3.4 [Huang 2008, Lemma 3.5]. Let (X, T ) be a TDS, µ ∈M(X, T ), and
δ > 0. Then there exist {Wi }

∞

i=1 ⊂ PX and 0= k1 < k2 < · · · such that

(a) diam W1 < δ and limi→+∞ diam Wi = 0,

(b) limk→+∞ Hµ(Pk |P
−)= hµ(T ), where Pk =

∨k
i=1 T−ki Wi and P=

∨
∞

k=1 Pk ,

(c)
⋂
∞

n=0 T̂−nP− = Pµ(T ).

Lemma 3.5. Let (X, T ) be a TDS, U ∈ Co
X , f ∈ C(X,R), and K ∈ K(X). Then,

for each n ∈ N,

Pn(T, f,U, T−n K )= Pn(T, f ◦ T−n, T nU, K ).
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Proof. For each V ∈ CX and V�
∨n

i=1 T i U, obviously, T−nV ∈ Cx and T−nV�∨n−1
i=0 T−i U.
Since for each V ∈ V,

sup
x∈T−n V∩T−n K

exp fn(x)= sup
x∈V∩K

exp fn(T−nx),

it is easy to see that Pn(T, f,U, T−n K ) ≤ Pn(T, f ◦ T−n, T nU, K ). From the
homeomorphism of T , the inverse inequality holds. Then Pn(T, f,U, T−n K ) =
Pn(T, f ◦ T−n, T nU, K ). �

Recall that a set-valued map F from X to K(X) is said to be measurable if
{x ∈ X : F(x)∩ A 6=∅} ∈BX for every Borel (open or closed) subset A of X .

Lemma 3.6. Let G : X→ K(X) be a measurable set-valued map, f ∈ C(X,R+),
and U ∈ Co

X . Then

F : x→ inf
{ ∑

V∈V

sup
y∈V∩G(x)

f (y) : V ∈ CX and V�U
}

is Borel-measurable, where supy∈V∩G(x) f (y)= 0 for V ∩G(x)=∅.

Proof. By Lemma 2.1, for each x ∈ X , we have

inf
{ ∑

V∈V

sup
y∈V∩G(x)

f (y) :V∈CX ,V�U
}
=min

{ ∑
V∈V

sup
y∈V∩G(x)

f (y) :V∈P∗(U)
}
.

It is sufficient to prove that, for each V ∈ V, where V ∈ P∗(U), the function
HV : x→ supy∈V∩G(x) f (y) is Borel-measurable.

For each r ∈R, let Er = {x : supy∈V∩G(x) f (y) > r}. Note that U = f −1(r,+∞)
is an open subset of X . For r ≥ 0, if V ∩U = ∅, Er = ∅. If V ∩U 6= ∅, then
Er ={x : V ∩G(x)∩U 6=∅}. Since V ∩U ∈B(X), by the set-valued measurability
of G, it is clear that Er is a Borel subset of X . For r < 0, Er = E0 ∪ F , where
F = {x : supy∈V∩G(x) f (y)= 0}. Since

F = {x : V ∩G(x)=∅} = X\{x : V ∩G(x) 6=∅}

is Borel-measurable, Er is also a Borel subset of X ; thus HV is Borel-measurable.
�

The next theorem clearly implies the main result of this paper.

Theorem 3.7. Let (X,T ) be a TDS, f ∈C(X,R), andµ∈Me(X,T )with hµ(T )>0.
Then, for µ-a.e. x ∈ X , limε→0 Ps(T, f,x,ε)≥ Pµ(T, f ).

Proof. It suffices to prove that, for a given ε > 0, Ps(T, f, x, ε) ≥ Pµ(T, f ) for
µ-a.e. x ∈ X .

Fix ε > 0. Since T is a homeomorphism on X , there exists δ ∈ (0, ε) such that
d(T−1x, T−1 y) < ε when d(x, y) < δ. By Lemma 3.4, there exists {Pi }

∞

i=1 ⊂ PX

satisfying diam P1 ≤ δ,
⋂
∞

n=0 T̂−nP− = Pµ(T ), and Hµ(Pk | P
−)→ hµ(T ) when
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k→+∞, where P=
∨
∞

i=1 Pi . Since diam P1≤ δ, it is clear that P−(x)⊆W s
ε (x, T )

for each x ∈ X .
Let µ=

∫
X µx dµ(x) be the disintegration of µ over P−. Then

supp(µx)⊆ P−(x)⊆W s
ε (x, T ) for µ-a.e. x ∈ X.

Let k ∈ N. By inequality (3.3) in [Huang 2008], we know that there exists
Uk ∈ Co

X such that

(2) lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T−i Uk | T−nP−
)
≥ Hµ(Pk | P

−)−
1
k
.

For n ∈N, let Fn(x)= (1/n) log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T )). Noting that

the map x→W s
ε (x, T ) is upper semicontinuous, it follows from Lemma 3.6 that Fn

is a Borel-measurable function. Let F(x)= lim supn→+∞ Fn(x) for x ∈ X . Then
F is also Borel-measurable. Since T W s

ε (x, T )⊆ W s
ε (T x, T ) for each x ∈ X , we

have

Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

≤ inf
{ ∑

V∈V

sup
y∈V∩T W s

ε (x,T )
exp fn ◦ T−(n+1)(y) : V ∈ CX and V�

n+1∨
i=2

T i Uk

}
≤ inf

{ ∑
V∈V

sup
y∈V∩W s

ε (T x,T )
exp fn ◦ T−(n+1)(y) : V ∈ CX and V�

n+1∨
i=1

T i Uk

}
= Pn+1(T, f ◦ T−(n+1), T n+1Uk,W s

ε (T x, T )).

Then

F(x)= lim sup
n→+∞

1
n

log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

≤ lim sup
n→+∞

n+ 1
n
·

1
n+ 1

log Pn+1(T, f ◦ T−(n+1), T n+1Uk,W s
ε (T x, T ))

= F(T x).

Thus, F(x) ≤ F(T x) for each x ∈ X . Since µ ∈ M(X, T ),
∫

X F(T x) dµ(x) =∫
X F(x) dµ(x), we have, F(T x) = F(x) for µ-a.e. x ∈ X . Moreover, F(x) ≡ ak

for µ-a.e. x ∈ X as µ is ergodic, where ak ≥ 0 is a constant.
From Lemma 2.1, there exists a finite partition

β ∈ P∗
( n∨

i=1

T i Uk

)
such that

Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))=

∑
B∈β

sup
x∈B∩W s

ε (x,T )
exp fn ◦ T−n(x).
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It follows from Lemma 3.3 that

log Pn(T, f ◦ T−n, T nUk,W s
ε (x, T ))

= log
∑
B∈β

sup
x∈B∩W s

ε (x,T )
exp fn ◦ T−n(x)

≥

∑
B∈β

µx(B ∩W s
ε (x, T ))( sup

x∈B∩W s
ε (x,T )

exp fn ◦ T−n(x)− logµx(B ∩W s
ε (x, T )))

= Hµx (β)+
∑
B∈β

sup
x∈B∩W s

ε (x,T )
fn ◦ T−n(x) ·µx(B) (supp(µx)⊆W s

ε (x, T )

for µ-a.e. x ∈ X)

≥ Hµx

( n∨
i=1

T i Uk

)
+

∫
X

fn ◦ T−n dµx

Then

ak =

∫
X

F(x) dµ=
∫

X
lim sup
n→+∞

Fn(x) dµ≥ lim sup
n→+∞

∫
X

Fn(x) dµ

≥ lim sup
n→+∞

∫
X

1
n

(
Hµx

( n∨
i=1

T i Uk

)
+

∫
fn ◦ T−n dµx

)
dµ(x)

= lim sup
n→+∞

(∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

1
n

∫
X

∫
fn ◦ T−n dµx dµ(x)

)

= lim sup
n→+∞

(∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

1
n

∫
X

fn ◦ T−n dµ(x)
)

= lim sup
n→+∞

∫
X

1
n

Hµx

( n∨
i=1

T i Uk

)
dµ(x)+

∫
X

f dµ(x) (since µ ∈M(X, T ))

= lim sup
n→+∞

1
n

Hµ

( n∨
i=1

T i Uk | P
−

)
+

∫
X

f dµ(x) (by Lemma 2.5(a))

= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=1

T−i Uk | T−nP−
)
+

∫
X

f dµ(x)

≥ Hµ(Pk | P
−)−

1
k
+

∫
X

f dµ(x) (by inequality (2)).

Since Ps(T, f, x, ε)≥ F(x) for each x ∈ X , we have

Ps(T, f, x, ε)≥ lim
k→+∞

(
Hµ(Pk | P

−)−
1
k
+

∫
X

f dµ(x)
)

= hµ(T )+
∫

X
f dµ(x)= Pµ(T, f )

for µ-a.e. x ∈ X . �
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We introduce the ε-pressure point and pressure point for a TDS. Let (X, T )
be a TDS, f ∈ C(X,R). For ε > 0, we call x ∈ X an ε-pressure point for T if
Ps(T, f, x, ε)= P(T, f ), and we call it a pressure point if limε→o Ps(T, f, x, ε)=
P(T, f ). The function Ps(T, f, x, ε) is decreasing in ε. It follows that every
pressure point is also an ε-pressure point for each ε > 0. Note that, while the
notion of an ε-pressure point depends on the choice of the metric, that of pressure
point does not. Denote by P(T, f ) the set of all pressure points of (X, T ) for
f ∈ C(X,R). For f ≡ 0, the ε-pressure point and pressure point are the ε-entropy
point and entropy point, respectively, which are introduced in [Fiebig et al. 2003].
Moreover, P(T, 0)= E(T ), where E is the set of all entropy points of (X, T ).

Remark 3.8. Let (X, T ) be a TDS, f ∈ C(X,R). If there exists µ ∈ Me(X, T )
such that P(T, f )= Pµ(T, f ), P(T, f ) 6=∅.

4. Stable sets

The main results of the present section are Theorems 4.1 and 4.5. Recall that, for a
TDS (X, T ) and x ∈ X ,

W s(x, T )= {y ∈ X : lim
n→+∞

d(T nx, T n y)= 0},

W u(x, T )= {y ∈ X : lim
n→+∞

d(T−nx, T−n y)= 0}.

W s(x, T ) is called the stable set of x for T , and W u(x, T ) is called the unstable
set of x for T . Obviously, W s(x, T )=W u(x, T−1) and W u(x, T )=W s(x, T−1).

Theorem 4.1. Let (X, T ) be a TDS, f ∈C(X,R), and µ∈Me(X, T ) with hµ(T )>
0. Then, for µ-a.e. x ∈ X ,

(a) there exists a closed subset A(x)⊆W s(x, T ) such that

lim
n→+∞

diam T n A(x)= 0 and P(T−1, f, A(x))≥ Pµ(T, f );

(b) there exists a closed subset B(x)⊆W u(x, T ) such that

lim
n→+∞

diam T−n B(x)= 0 and P(T, f, B(x))≥ Pµ(T, f ).

Proof. Sinceµ∈Me(X, T ), Pµ(T−1, f )= Pµ(T, f ), and W s(x, T−1)=W u(x, T ),
(a) implies (b). It remains to prove (a).

By Lemma 3.4, there exist {Wi }
∞

i=1 ⊂ PX and 0= k1 < k2 < · · · satisfying

(a) diam W1 < δ and limi→+∞ diam Wi = 0,

(b) limk→+∞ Hµ(Pk |P
−)= hµ(T ), where Pk =

∨k
i=1 T−ki Wi and P=

∨
∞

k=1 Pk ,

(c)
⋂
∞

n=0 T̂−nP− = Pµ(T ).
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Let Qi =
∨i

j=1 T− j (P1∨ P2∨· · ·∨ Pi ) for i ∈N. Then Qi ∈PX , Q1 � Q2 � · · · ,
and

∨
∞

i=1 Qi = P−.
For x ∈ X , let A(x)=

⋂
∞

i=1 Qi (x). Then A(x) is a closed set and A(x)⊇P−(x).
The set A(x) also has the properties limn→+∞ diam T n A(x) = 0 and A(x) ⊆
W s(x, T ) (see the proof of [Huang 2008, Theorem 4.2] for details).

Moreover, the set-valued map A : x → A(x) is measurable. In fact, for each
open set U of X ,{

x :
∞⋂

n=1
Qi (x)⊆U

}
=
⋃

n≥1

⋂
k≥n

⋂
{A ∈ Qk : Ā ⊆U }

is a Borel set of X . Then, for each closed set V of X , {x : Qi (x) ⊆ X\V } is a
Borel set. It follows that {x : Qi (x)∩ V 6=∅} is Borel and then A : x→ A(x) is
set-valued measurable.

Let µ=
∫

X µx dµ(x) be the disintegration of µ over P−. Then

(3) supp(µx)⊆ P−(x)⊆ A(x) for µ-a.e. x ∈ X.

We now prove that, for µ-a.e. x ∈ X , P(T−1, f, A(x)) ≥ Pµ(T, f ). Since
limk→+∞ Hµ(Pk | P−) = hµ(T ), it is sufficient to prove that, for each k ∈ N,
P(T−1, f, A(x))≥ Hµ(Pk | P

−)− 1/k+
∫

X f dµ(x) for µ-a.e. x ∈ X .
For a given k ∈ N, there exists Uk ∈ Co

X such that

(4) lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T−i Uk | T−nP−
)
≥ Hµ(Pk | P

−)−
1
k

for each n ∈ N

(see [Huang 2008] for details).
Let Fn(x)= (1/n) log Pn(T−1, f,Uk, A(x)), where

Pn(T−1, f,Uk, A(x))

= inf
{ ∑

V∈V

sup
y∈V∩A(x)

exp fn ◦ T−(n−1)(y) : V ∈ CX and V�
n−1∨
i=0

T i Uk

}
,

and fn(z)=
∑n−1

i=0 f (T i z). By Lemma 3.6, Fn is a Borel-measurable function. Let
F(x) = lim supn→+∞ Fn(x) for each x ∈ X . Then F is also a Borel-measurable
function on X .

For each V �
∨n−1

i=0 T i Uk , T−1V �
∨n−1

i=0 T i Uk . Since T (A(x)) ⊆ A(T (x))
(see the proof of [Huang 2008, Theorem 4.2]), for each V ∈ V,

sup
y∈T−1V∩A(x)

n−1∑
i=0

f (T−i y)≤ sup
y∈T−1(V∩A(T x))

n−1∑
i=0

f (T−i y)

= sup
y∈V∩A(T x)

n∑
i=1

f (T−i y)≤ sup
y∈V∩A(T x)

n∑
i=0

f (T−i y),
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it is not hard to see that Pn(T−1, f,Uk, A(x))≤ Pn+1(T−1, f,Uk, A(T x)). Hence

F(x)= lim sup
n→+∞

1
n

log Pn(T−1, f,Uk, A(x))

≤ lim sup
n→+∞

n+ 1
n
·

1
n+ 1

log Pn(T−1, f,Uk, A(T x))= F(T x).

Thus F(x)≤ F(T x) for each x ∈ X . Since µ ∈M(X, T ), we have∫
X
( f (T x)− f (x)) dµ(x)= 0.

Then F(T x) = F(x) for µ-a.e. x ∈ X . From the ergodicity of µ, there exists a
constant ak ≥ 0 such that F(x)≡ ak for µ-a.e. x ∈ X .

By Lemma 2.1, there exists a partition β ∈ P∗(
∨n−1

i=0 T i Uk) such that, for µ-a.e.
x ∈ X ,

log Pn(T−1, f,Uk, A(x))

= log
∑
B∈β

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y)

≥

∑
B∈β

µx(B)
(

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y)− logµx(B)
)

(by (3) and Lemma 3.3)

= Hµx (β)+
∑
B∈β

sup
y∈B∩A(x)

exp
n−1∑
i=0

f (T−i y) ·µx(B)

≥ Hµx

(n−1∨
i=0

T i Uk

)
+

∫
X

fn ◦ T−(n−1) dµX .

Then

ak =

∫
X

F(x) dµ=
∫

X
lim sup
n→+∞

Fn(x) dµ(x)≥ lim sup
n→+∞

∫
X

Fn(x) dµ(x)

≥ lim sup
n→+∞

1
n

∫
X

(
Hµx

(n−1∨
i=0

T i Uk

)
+

∫
X

fn ◦ T−(n−1) dµx

)
dµ(x)

= lim sup
n→+∞

1
n

(∫
X

Hµx

(n−1∨
i=0

T i Uk

)
dµ(x)+

∫
X

fn ◦ T−(n−1) dµ(x)
)

= lim sup
n→+∞

1
n

∫
X

Hµx

(n−1∨
i=0

T i Uk

)
dµ(x)+

∫
X

f dµ(x) (since µ ∈M(X, T ))
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= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T i Uk | P
−

)
+

∫
X

f dµ(x) (by Lemma 2.5(a))

= lim sup
n→+∞

1
n

Hµ

(n−1∨
i=0

T i Uk | T−(n−1)P−
)
+

∫
X

f dµ(x)

≥ Hµ(Pk | P
−)−

1
k
+

∫
X

f dµ(x) (by (4)).

Therefore, for µ-a.e. x ∈ X ,

P(T−1, f, A(x))≥ P(T−1, f,Uk, A(x))= F(x)≥ Hµ(Pk |P
−)−

1
k
+

∫
X

f dµ(x)

for each k ∈ N.
Then

P(T−1, f, A(x))≥ lim
n→+∞

(
Hµ(Pk | P

−)−
1
k

)
+

∫
X

f dµ(x)

= Hµ(T )+
∫

X
f dµ(x)= Pµ(T, f ). �

This completes the proof of Theorem 4.1.

A direct consequence of Theorem 4.1 is the following.

Corollary 4.2. Let (X, T ) be a TDS, f ∈ C(X,R). If there exists µ ∈ Me(X, T )
with Pµ(T, f ) = P(T, f ), there exists x ∈ X , a closed subset A(x) ⊆ W s(x, T ),
and a closed subset B(x)⊆W u(x, T ) such that

(a) limn→+∞ diam T n A(x)= 0 and P(T−1, f, A(x))= P(T, f );

(b) limn→+∞ diam T−n B(x)= 0 and P(T, f, B(x))= P(T, f ).

A TDS (X, T ) is transitive if, for each pair of nonempty open subsets U and
V of X , there exists n ≥ 0 such that U ∩ T−nV 6= ∅; and it is weakly mixing if
(X × X, T × T ) is transitive. These notions describe the global properties of the
whole TDS. Blanchard and Huang [2008] give a new criterion to picture “a certain
amount of weakly mixing” in some consistent sense. The notion of a weakly mixing
set was introduced as follows.

If X , Y are topological spaces, denote by C(X, Y ) the set of all continuous maps
from X to Y .

Definition 4.3. Let (X, T ) be a TDS and A ∈ 2X . The set A is said to be weakly
mixing for T if there exists B ⊂ A satisfying

(a) B is the union of countably many Cantor sets;

(b) the closure of B equals A;

(c) for any C ∈ B and g ∈ C(C, A), there exists an increasing sequence of natural
numbers {ni } ⊂ N such that limi→+∞ T ni x = g(x) for any x ∈ C .
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Denote by WMs(X, T ) the family of weakly mixing subsets of (X, T ). The
system (X, T ) itself is called partially mixing when it contains a weakly mixing
set. The whole space X is a weakly mixing set if and only if TDS (X, T ) is weakly
mixing [Xiong and Yang 1991]. The following result (See [Blanchard and Huang
2008, Proposition 4.2]) gives an equivalent characterization of the weakly mixing
set in another way.

Proposition 4.4. Let (X, T ) be a TDS and A be a nonsingleton closed subset of X.
Then A is a weakly mixing subset of X if and only if , for any k ∈ N and any choice
of nonempty open subsets V1, . . . , Vk of A and nonempty open subsets U1, . . . ,Uk

of X with A∩Ui 6=∅, i = 1, 2, . . . , k, there exists m ∈N such that T m Vi ∩Ui 6=∅
for each 1≤ i ≤ k.

Now we prove the following theorem. Part (a) of Theorem 4.5 was already
proved in [Huang 2008]. For completeness, we state it in the theorem.

Theorem 4.5. Let (X, T ) be a TDS and µ ∈Me(X, T ) with hµ(T ) > 0. Then, for
µ-a.e. x ∈ X , there exists a closed subset

E(x)⊆W s(x, T )∩W u(x, T )

such that

(a) E(x) ∈WMs(X, T )∩WMs(X, T−1), i.e., E(x) is weakly mixing for T , T−1;

(b) P(T, f, E(x))≥ Pµ(T, f ) and P(T−1, f, E(x))≥ Pµ(T, f ).

Proof. Let Bµ be the completion of BX under µ. Then (X,Bµ, µ, T ) is a Lebesgue
system. Let Pµ(T ) be the Pinsker σ -algebra of (X,Bµ, µ, T ). Letµ=

∫
X µx dµ(x)

be the disintegration of µ over Pµ(T ). Then, for µ-a.e. x ∈ X ,

supp(µx)⊆W s(x, T )∩W u(x, T )

and

supp(µx) ∈WMs(X, T )∩WMs(X, T−1)

(see [Huang 2008, Theorem 4.6] for details).
We now prove that, for µ-a.e. x ∈ X ,

P(T, f, supp(µx))≥ Pµ(T, f ) and P(T−1, f, supp(µx))≥ Pµ(T, f ).

By the symmetry of T and T−1, Pµ(T, f ) = Pµ(T−1, f ). It remains to prove
that, for µ-a.e. x ∈ X , P(T, f, supp(µx))≥ Pµ(T, f ). Since Pµ(T ) is T -invariant,
Tµx = µT x for µ-a.e. x ∈ X . Therefore, there exists a T -invariant measurable set
X0 ⊂ X with µ(X0)= 1 and Tµx = µT x for x ∈ X0.
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For each U∈Co
X , x ∈ X0, and n ∈N, by Lemma 2.1, there exists a β ∈P∗(Un−1

0 )

such that

(5) log Pn(T, f,U, supp(µx))

= log inf
{∑

V∈V

sup
y∈V∩supp(µx )

exp fn(x) : V ∈ CX and V�Un−1
0

}
= log

∑
B∈β

sup
y∈B∩supp(µx )

exp fn(x)

≥

∑
B∈β

µx(B)
(

sup
y∈B∩supp(µx )

fn(x)− logµx(B)
)

(by Lemma 3.3)

= Hµx (β)+
∑
B∈β

µx(B) sup
y∈B∩supp(µx )

fn(x)

≥ Hµx (U
n−1
0 )+

∫
X

fn dµx

Fix U∈Co
X and n ∈N. Denote Fn(x)= Hµx (

∨n−1
i=0 T−i U) +

∫
X fn dµx for each

x ∈ X0. Then

Fn+m(x)=Hµx

(n+m−1∨
i=0

T−i U

)
+

∫
X

fn+m dµx

≤Hµx

(n−1∨
i=0

T−i U

)
+Hµx

(
T−n

m−1∨
i=0

T−i U

)
+

∫
X

fn dµx+

∫
X

fm ◦T n dµx

≤ Fn(x)+HT nµx

(m−1∨
i=0

T−i U

)
+

∫
X

fm ◦T n dµx

= Fn(x)+HT nµx

(m−1∨
i=0

T−i U

)
+

∫
X

fmdT nµx

= Fn(x)+HµT n x

(m−1∨
i=0

T−i U

)
+

∫
X

fm dµT n x

= Fn(x)+Fm(T nx),

that is, {Fn} is subadditive. Since the map x→µx(A) for each A ∈B is measurable
on X0, it follows that Fn(x) is measurable on X0. By Kingman’s subadditive ergodic
theorem, limn→∞(1/n)Fn(x)≡ aU for µ-a.e. x ∈ X , where aU is a constant. Then,
by (5),

P(T, f,U, supp(µx))≥ aU



136 XIANFENG MA AND ERCAI CHEN

for each U ∈ C0
X and µ-a.e. x ∈ X . Therefore

aU =

∫
X

lim
n→∞

1
n

Fn(x) dµ= lim
n→∞

1
n

∫
X

Fn(x) dµ

= lim
n→∞

1
n

∫
X

(
Hµx (U

n−1
0 )+

∫
X

fn dµx

)
dµ(x)

= lim
n→∞

1
n

Hµ(Un−1
0 | Pµ(T ))+

∫
X

f dµ

= hµ(T,U | Pµ(T ))+
∫

X
f dµ

= Pµ(T, f,U) (by Lemma 2.4).

It follows that

P(T, f,U, supp(µx))≥ Pµ(T, f,U)

for each U ∈ Co
X and µ-a.e. x ∈ X .

Choose a sequence of open covers {Um}
∞

m=1 with lim diam{Um} = 0. Then

lim
n→∞

Pµ(T, f,Um)= lim
n→∞

(
hµ(T,Um)+

∫
X

f dµ
)

= hµ(T )+
∫

X
f dµ= Pµ(T, f ).

Since for each m ∈ N and µ-a.e. x ∈ X , P(T, f,Um, supp(µx)) ≥ Pµ(T, f,Um),
we have

P(T, f, supp(µx))= sup
m∈N

P(T, f,Um, supp(µx))≥ sup
m≥1

Pµ(T, f,Um)= Pµ(T, f )

for each µ-a.e. x ∈ X . �

It is not hard to see that the following corollary holds.

Corollary 4.6. Let (X, T ) be a TDS and f ∈ C(X,R). Then

(a) supx∈X P(T, f,W s(x, T )∩W u(x, T ))= P(T, f );

(b) if there exists µ ∈Me(X, T ) with Pµ(T, f )= P(T, f ), then, for µ-a.e. x ∈ X ,
there exists a closed subsets E(x)⊆W s(x, T )∩W u(x, T ) such that

(i) E(x) ∈WMs(X, T )∩WMs(X, T−1),
(ii) P(T, f, E(x))= P(T−1, f, E(x))= P(T, f ).
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5. Noninvertible case

In this section, we generalize the results in Sections 3 and 4 to the noninvertible
case. Let (X, T ) be a noninvertible TDS, that is, X is a compact metric space, and
T : X→ X is a surjective continuous map but not one-to-one.

Set X̃ = {(x1, x2, . . . ) : T (xi+1) = xi , xi ∈ X, i ∈ N}. It is clear that X̃ is a
subspace of the product space 5∞i=1 X with the metric dT defined by

dT ((x1, x2, . . .), (y1, y2, . . .))=

∞∑
i=1

d(xi , yi )

2i .

Let T̃ : X̃→ X̃ be the shift homeomorphism, that is,

T̃ (x1, x2, . . .)= (T (x1), x1, x2, . . .).

We refer to the TDS (X̃ , T̃ ) as the inverse limit of (X, T ). Let πi : X̃→ X be the
natural projection onto the i-th coordinate. Then πi : (X̃ , T̃ )→ (X, T ) is a factor
map.

Lemma 5.1. Let (X, T ) be a noninvertible TDS, f ∈ C(X,R). Then, for each
U ∈ Co

X and K ∈ K(X),

Pn+m(T, f,U, K )≤ Pm(T, f,U, K ) · Pn(T, f ◦ T m, T−mU, K )

for each n,m ∈ N.

Proof. Since for each V1 �Um−1
0 and V2 �Un−1

0 we have V1∨T−mV2 �Un+m−1
0 ,

it follows that

Pn+m(T, f,U, K )≤
∑

V1∈V1

∑
V2∈V2

sup
x∈V1∩T−m V2∩K

exp fn+m(x)

=

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩T−m V2∩K

exp( fm(x)+ fn(T m x))

≤

∑
V1∈V1

∑
V2∈V2

sup
x∈V1∩K

exp fm(x) · sup
x∈T−m V2∩K

exp fn(T m x)

=

∑
V1∈V1

sup
x∈V1∩K

exp fm(x) ·
∑

V2∈V2

sup
x∈T−m V2∩K

exp( f ◦ T m)n(x).

By the arbitrariness of V1 and V2, we have

Pn+m(T, f,U, K )≤ Pm(T, f,U, K ) · Pn(T, f ◦ T m, T−mU, K ). �
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Lemma 5.2. Let (X, T ) be a noninvertible TDS, f ∈ C(X,R). Then, for each
U ∈ Co

X and K ∈ K(X),

Pn(T, f ◦ T m, T−mU, T−m K )= Pn(T, f,U, K ) for each n,m ∈ N.

Proof. Fix n,m ∈ N. For each V� (T−mU)n−1
0 ,∑

V∈V

sup
x∈V∩T−m K

exp( f ◦ T m)n(x)=
∑
V∈V

sup
x∈V∩T−m K

exp fn(T m x)

=

∑
V∈V

sup
x∈T m V∩K

exp fn(x).

Since T mV�Un−1
0 ,

Pn(T, f ◦ T m, T−mU, T−m K )≤ Pn(T, f,U, K ).

Conversely, for each V�Un−1
0 , T−mV� (T−mU)n−1

0 and∑
V∈V

sup
x∈V∩K

exp fn(x)=
∑
V∈V

sup
x∈T−m(V∩K )

exp fn(T m x)

=

∑
V∈V

sup
x∈T−m V∩T−m K

exp( f ◦ T m)n(x).

Then
Pn(T, f ◦ T m, T−mU, T−m K )≥ Pn(T, f,U, K ),

which completes the proof. �

Lemma 5.3. Let (X̃ , T̃ ) be the inverse limit of a noninvertible TDS (X, T ). Let
f ∈ C(X,R) and let π1 : X̃→ X be the projection to the first coordinate. Then, for
any sequence of nonempty closed subsets Kn of X̃ ,

lim
δ→0

lim sup
n→+∞

1
n

log Pn(T̃ , f ◦π1, δ, Kn)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, π1(Kn)).

Proof. Let U∈Co
X . For each V∈CX with V�Un−1

0 and x ∈ V ∩π1(Kn), obviously,
π−1

1 V� (π−1
i U)n−1

0 and

( f ◦π1)n(x̃)=
n−1∑
j=0

( f ◦π1)(T̃ j (x̃))=
n−1∑
j=0

f ◦ T j (π1 x̃)= fn(π1 x̃)= fn(x),

where x = π1 x̃ . Then∑
V∈V

sup
x̃∈π−1

1 V∩Kn

exp( f ◦π1)n(x̃)=
∑
V∈V

sup
x∈V∩π1(Kn)

exp fn(x).

It follows that

(6) Pn(T̃ , f ◦π1, π
−1
1 U, Kn)≤ Pn(T, f,U, π1(Kn)).
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On the other hand, for each Ṽ∈CN
X with Ṽ� (π−1

1 U)n−1
0 , x̃ ∈ Ṽ ∩Kn , π1Ṽ �Un−1

0 ,
and ∑

Ṽ∈Ṽ

sup
x̃∈Ṽ∩Kn

exp( f ◦π1)n(x̃)=
∑
Ṽ∈Ṽ

sup
x∈π1(Ṽ∩Kn)

exp fn(x)

=

∑
V∈π1Ṽ

sup
x∈π1Ṽ∩π1 Kn

exp fn(x),

where x = π1 x̃ . Then we get the opposite part of the inequality of (6), and
consequently

(7) Pn(T̃ , f ◦π1, π
−1
1 U, Kn)= Pn(T, f,U, πi (Kn)).

Now we have

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, π
−1
1 U, Kn)= lim sup

n→∞

1
n

log Pn(T, f,U, π1(Kn)).

From Lemma 3.1, we get

lim
δ→0

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, δ, Kn)≥ lim
δ→0

lim sup
n→∞

1
n

log Pn(T, f, δ, π1(Kn)).

Conversely, let πi : X̃→ X be the projection to the ith coordinate and Ũ ∈ Co
X̃

.
By the definition of X̃ , it is easy to see that there exists some U ∈ Co

X such that
π−1

i (U)� Ũ . Since for any two closed subsets C and D of X , Pn(T, f,U,C)≤
Pn(T, f,U, D) and πi (Kn)� T−(i−1)πi (Kn), by (7), we have

lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, Ũ, Kn)

≤ lim sup
n→∞

1
n

log Pn(T̃ , f ◦π1, π
−1
i U, Kn)

= lim sup
n→∞

1
n

log Pn(T, f,U, πi (Kn))

≤ lim sup
n→∞

1
n

log Pn(T, f,U, T−(i−1)πi (Kn))

= lim sup
n→∞

1
n+ i − 1

log Pn+i−1(T, f,U, T−(i−1)πi (Kn))

≤ lim sup
n→∞

1
n+ i − 1

log
(
Pi−1(T, f,U, T−(i−1)πi (Kn))

· Pn(T, f ◦ T i−1, T−(i−1)U, T−(i−1)πi (Kn))
)

(by Lemma 5.1)

= lim sup
n→∞

1
n

Pn(T, f,U, π1(Kn)) (by Lemma 5.2)

≤ lim
δ→0

lim sup
n→∞

1
n

Pn(T, f, δ, π1(Kn)).
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By Lemma 3.1, we get

lim
δ→0

limsup
n→∞

1
n

log Pn(T̃ , f ◦π1,δ,Kn)≤ lim
δ→0

limsup
n→∞

1
n

log Pn(T, f,δ,π1(Kn)). �

Now we can prove the following theorem.

Theorem 5.4. Let (X, T ) be a noninvertible TDS, f ∈C(X,R), and µ∈Me(X, T )
with hµ(T ) > 0. Then, for µ-a.e. x ∈ X , limε→0 Ps(T, f, x, ε)≥ Pµ(T, f ).

Proof. Let (X̃ , T̃ ) be the inverse limit of (X, T ). For ε > 0, n ∈ N, and x̃ ∈ X̃ ,
denote Kn = T̃−nW s

ε/2(x̃, T̃ ). Then, from the definitions of dT and X̃ , it is easy to
see that π1(Kn)⊆ T−nW s

ε (x, T ), where x = π1(x̃). By Lemma 5.3, we have

Ps(T, f, x, ε)= lim
δ→0

lim sup
n→+∞

1
n

log Pn(T, f, δ, T−nW s
ε (x, T ))

≥ lim
δ→0

lim sup
n→+∞

log Pn(T, f, δ, π1(Kn))

= lim
δ→0

lim sup
n→+∞

log Pn(T̃ , f ◦π1, δ, Kn)

= Ps

(
T̃ , f ◦π1, x̃, ε

2

)
.

It follows that, for each x̃ ∈ X̃ ,

(8) lim
ε→0

Ps(T, f, π1(x̃), ε)≥ lim
ε→0

Ps

(
T̃ , f ◦π1, x̃, ε

2

)
.

Let µ̃ ∈ Me(X̃ , T̃ ) with π1(µ̃) = µ. Then, by Theorem 3.7, there exists a Borel
subset X̃0 ⊆ X̃ with µ̃(X̃0)= 1 such that, for any x̃ ∈ X̃0,

(9) lim
ε→0

Ps

(
T̃ , f ◦π1, x̃, ε

2

)
≥ Pµ̃(T̃ , f ◦π1)= hµ̃(T̃ )+

∫
X̃

f ◦π1dµ̃

≥ hµ(T )+
∫

X
f dµ= Pµ(T, f ).

Let X0 = π1(X̃0). Then X0 ∈Bµ and µ(X0)= 1. By the inequality (8) and (9), we
have

lim
ε→0

Ps(T, f, x, ε)≥ Pµ(T, f ) for each x ∈ X0, �

Theorem 5.4 immediately leads to the following corollary.

Corollary 5.5. Let (X, T ) be a noninvertible TDS and f ∈ C(X,R). If there exists
a µ ∈Me(X, T ) such that Pµ(T, f )= P(T, f ), P(T, f ) 6=∅.

Lemma 5.6. Let (X̃ , T̃ ) be the inverse limit of a noninvertible TDS (X, T ). If
A ⊆ Ẽ is weak mixing, so is π1(A) and P(T̃ , f ◦π1, A)= P(T, f, π1(A)).
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Proof. The fact that π1(A) is weak mixing follows from Lemma 4.8 in [Blanchard
and Huang 2008]. The latter follows from Lemmas 5.3 and 3.1. �

The following theorem shows that Theorem 4.5 also holds for noninvertible TDS.

Theorem 5.7. Let (X, T ) be a noninvertible TDS andµ∈Me(X, T )with hµ(T )>0.
Then, for µ-a.e. x ∈ X , there exists a closed subset E(x) ⊆ W s(x, T ) such that
P(T, f, E(x))≥ Pµ(T, f ) and E(x) ∈WMs(X, T ).

Proof. Let (X̃ , T̃ ) be the inverse limit of (X, T ). Then there exists µ̃ ∈Me(X̃ , T̃ )
with π1(µ̃)= µ, where π1 is the projection to the first coordinate. Obviously,

Pµ̃(T̃ , f ◦π1)= hµ̃(T̃ )+
∫

X̃
f ◦π1 dµ̃≥ hµ(T )+

∫
X

f dµ= P(T, f ).

By Theorem 4.5, there exists a Borel set X̃0 ⊆ X̃ with µ̃(X̃0) = 1 such that, for
each x̃ ∈ X̃0, there exists a closed subset E(x̃)⊆W s(x̃, T̃ ) such that

P(T̃ , f ◦π1, E(x̃))≥ Pµ̃(T̃ , f ◦π1) and E(x̃) ∈WMs(X̃ , T̃ ).

Let (X0) = π1(X̃0). Then X0 ∈ Bµ and µ(X0) = 1. For each x ∈ X0 let
E(x)= π1(E(x̃)), where x = π1(x̃). Then E(x)⊆ π1(W s(x̃, T̃ ))⊆W s(x, T ). By
Lemma 5.6, we have

P(T, f, E(x))= P(T̃ , f ◦, E(x̃))≥ Pµ̃(T̃ , f ◦π1)≥ Pµ(T, f )

and E(x) ∈WMs(X, T ). �

The following result is immediate.

Corollary 5.8. Let (X, T ) be a noninvertible TDS. Then

(a) supx∈X P(T, f,W s(x, T ))= P(T, f );

(b) if there exists µ ∈Me(X, T ) with Pµ(T, f )= P(T, f ), then, for µ-a.e. x ∈ X ,
there exists a closed subset E(x) ⊆ W s(x, T ) such that E(x) ∈ WMs(X, T )
and P(T, f, E(x))= P(T, f ).

Remark 5.9. From the proof of Theorem 4.5, we know that E(x) = supp(µx),
where µx is a probability measure determined by the disintegration of µ∈Me(X, T )
over the Pinsker σ -algebra Pµ(T ).
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LIPSCHITZ AND BILIPSCHITZ MAPS ON CARNOT GROUPS

WILLIAM MEYERSON

Suppose A is an open subset of a Carnot group G and H is another Carnot
group. We show that a Lipschitz function from A to H whose image has
positive Hausdorff measure in the appropriate dimension is bilipschitz on
a subset of A of positive Hausdorff measure. We also construct Lipschitz
maps from open sets in Carnot groups to Euclidean space that do not de-
crease dimension. Finally, we discuss two counterexamples to explain why
Carnot group structure is necessary for these results.

1. Introduction

Guy David [1988] proved that if f is a Lipschitz function from the unit cube in
Rn to a subset of some Euclidean space with positive n-dimensional Hausdorff
measure, there exists a subset K of the domain of f with positive n-dimensional
Hausdorff measure such that f is bilipschitz on K .

Shortly thereafter, Peter Jones [1988] proved the following stronger result: if
f is a Lipschitz function from the unit cube in Rn to a subset of some Euclidean
space, then the unit cube can be broken up into the union of a “garbage” set (whose
image under f has arbitrarily small n-dimensional Hausdorff content) and a finite
number of sets K1, . . . , KN such that f is bilipschitz on each Ki .

David [1991] later translated this proof into the language of wavelets, which are
more readily generalizable to Heisenberg and other Carnot groups. The proof as
written in [David 1991] only depends on a few general properties, all but one of
which hold for Heisenberg (and other Carnot) groups.

This story has further generalizations: for example, [David and Semmes 1993]
generalizes Jones’ argument to work with Lipschitz functions that are only defined
on Ahlfors d-regular subsets of a Euclidean space RN , with d possibly less than N ,
while [Semmes 2000] allows the domain and range to be metric spaces subject to a
specific condition.

In Section 2 we adapt some of the ideas in [David 1991; Jones 1988] to Carnot
groups and prove that a Lipschitz function between such groups having an image of
positive Hausdorff measure in the appropriate dimension is bilipschitz on a subset
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of the domain of positive Hausdorff measure. Section 3 investigates how big, in
terms of dimension, Lipschitz images of Carnot groups in Euclidean space can
be. Finally, Section 4 explores two counterexamples explaining why Carnot group
structure is necessary for these results. In particular, neither Ahlfors regularity nor
subriemannian manifold structure would be sufficient.

2. Jones-type decomposition for Carnot groups

2A. Brief outline. This section is organized as follows. In Section 2B we give
some definitions concerning Carnot groups and set up some notational conventions.
In Section 2C we state the five properties of Euclidean space on which David’s
argument rests and show how the first four of them work for Heisenberg groups. In
Section 2D we explain why these properties also work for other Carnot groups. In
Section 2E, we prove our main result (Theorem 2.12): If A is an appropriate subset
of the k-th Heisenberg group Hk corresponding roughly to the unit cube in Rn , and
F is a Lipschitz function from A to another Heisenberg group whose image has
positive Hausdorff (2k + 2)-dimensional measure, then there exists B ⊂ A with
positive Hausdorff (2k+ 2)-dimensional measure such that F is bilipschitz on B.
Finally, in Section 2F we derive some corollaries of Theorem 2.12.

Although our main focus is on the Heisenberg groups (especially H1), all of the
results in this paper apply equally well to Carnot groups in general. To exploit this
fact, the results in Section 2E will be stated and proved in the more general context
of Carnot groups.

2B. Definitions.

Definition 2.1. The n-th Heisenberg group Hn is defined as the set

{(z1, . . . , zn, t) : z j ∈ C, t ∈ R}

equipped with the following group law:

(z1, . . . , zn, t)(w1, . . . , wn, s)=
(
z1+w1, . . . , zn +wn, t + s+=

n∑
j=1

z jw j
)
,

where = denotes imaginary part.

For n = 1, we often write z1 in terms of its real components as z1 = x + iy and
refer to the point (z1, t) as (x, y, t), so H1 inherits a natural Euclidean coordinate
structure from R3.

The Heisenberg group is a special example of a Carnot group:

Definition 2.2. A Carnot group G is a connected, simply connected, nilpotent Lie
group whose Lie algebra g is graded, i.e.,

g=
d⊕

j=1
g j ,
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where
[g1, g j ] = g j+1 and gd+1 = {0}.

We call g1 the horizontal component of g.

By standard results of Lie group theory (see, for example, [Varadarajan 1984]),
the exponential map gives a diffeomorphism between a Carnot group and its Lie
algebra. Further, the standard definition of a Lie algebra in terms of vector fields
provides a canonical identification between the tangent space of a Lie group at a
given point and the Lie group itself. (When g ∈ G is fixed, for every tangent vector
v there is a unique X ∈ g such that X (g)= v and we can identify exp(X) with v.)

We shall freely use these canonical identifications between a Carnot group, its
Lie algebra, and its tangent space throughout this paper. For example, every Carnot
group has a coordinate structure induced by its Lie algebra. For Hn , this coordinate
structure was already mentioned in Definition 2.1, where g1 consists of the points
of the form (z1, . . . , zn, 0) with final coordinate equal to zero.

Every Carnot group has a family of dilation homomorphisms {δλ : λ > 0} and a
metric called the Carnot–Carathéodory metric. They are defined as follows:

Definition 2.3. Let λ > 0, let G be a Carnot group and let g ∈ G, where g =
∑

i
gi

with gi ∈ gi . Define the dilation

δλ(g)=
∑

i
λi gi .

Definition 2.4. Let G be a Carnot group, let g, h ∈ G, and let 0g,h be the set of all
curves

γ : [0, 1] → G

with γ (0) = g, γ (1) = h, and γ ′(t) ∈ g1 for each t ∈ [0, 1]. Define the Carnot–
Carathéodory distance between g and h to be

dCC(g, h)= inf
γ∈0g,h

∫ 1

0
|γ ′(t)| dt,

where |γ ′(t)| is the length of γ ′(t) in a fixed Euclidean metric on the real vector
space g1.

Because 0g,h in this definition is nonempty — see [Montgomery 2002] — we
have dCC(g, h) <∞ whenever g, h ∈ G.

Note 2.5. It is often easier to work with a comparable L∞ quasidistance function
d based on the Carnot metric. For the first Heisenberg group H1, this is done by
defining distance to the origin as

d((x, y, z), (0, 0, 0))=max(|x |, |y|, |z|1/2)

and for an arbitrary g, h in this group, defining
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d(g, h)= d(h−1g, (0, 0, 0)).

There is of course a completely analogous construction in an arbitrary Carnot
group: if G is a Carnot group, we use the grading of its Lie algebra g as in the
definition of Carnot groups:

g=
d⊕

j=1
g j .

Because the identity element in a Carnot group is the image of the origin under the
exponential map, we shall refer to it as 0. Now, letting g be an arbitrary point in G
we first define its quasidistance to the identity element, d(g, 0), by recalling the
direct sum decomposition

exp−1(g)=
∑

j
g j

with g j ∈ gj and setting

d(g, 0)= max
1≤ j≤d

(‖g j‖ j )
1/j .

where ‖ · ‖ j is a norm on g j for j = 1, . . . , d . Finally, for an arbitrary g, h ∈ G, we
finish by setting

d(g, h)= d(h−1g, 0).

For the duration of this paper, dCC shall refer to Carnot–Carathéodory distance
and d shall refer to quasidistance.

A fundamental operation for Carnot groups is the Pansu differential, defined as
follows (see [Capogna et al. 2007], for example):

Definition 2.6. Let F : G→ H be a function from one Carnot group G to another
Carnot group H . The Pansu differential DF(g) of F at g ∈ G is the map

DF(g) : G→ H

defined at g′ ∈ G as the limit

DF(g)(g′)= lim
s→0

δs−1[F(g)−1 F(gδs g′)]

whenever the limit exists.

Using the canonical identifications stated above, we can view the Pansu differen-
tial as a map between Lie algebras or as a map from the tangent space at g ∈ G to
the tangent space at F(g). We shall take advantage of this fact throughout.

In the tangent vector interpretation, the Pansu differential DF(g) induces a linear
map between the horizontal component of the tangent space of G at g and the
horizontal component of the tangent space of H at F(g) [Pansu 1989]. Calling this
linear map MF(g), we can view MF as a matrix-valued map sending g to MF(g).
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2C. Five key properties.

2C1. Dyadic decomposition. There exists a dyadic decomposition for Euclidean
space defined as follows: For each nonnegative integer k we let Qk be the set of all
cubes of the form(

a1 · 2−k, (a1+ 1) · 2−k)
× · · ·×

(
an · 2−k, (an + 1) · 2−k)

contained in the unit cube, where the ai are all integers. Then the elements of Qk

are disjoint open sets. Further, each element of Qk is (up to a set of measure zero) a
disjoint union of elements of Qk+1, the Qk are all translates of each other, and one
can transform an arbitrary element of Qk into an arbitrary element of Qk+1 by a
dilation (by a factor of 2−1) followed by translation. Finally, fixing a cube Q ∈ Qk

and letting d be its diameter (i.e., d =
√

n2−k), the number of cubes in Qk whose
distance from Q is at most d is bounded above by a constant depending only on n.

Our immediate goal is to generalize this decomposition to the Heisenberg group
H1. To do this we loosely follow Christ’s construction of Theorem 11 in [Christ
1990]. First we let B0 denote the discrete subgroup of H1 generated by (1, 0, 0)
and (0, 1, 0) and call it the discrete Heisenberg group. We then define Bn , for each
positive integer n, to be the image of B0 under the dilation δ10−n (in particular, the
first 2 coordinates are multiplied by 10−n; the final coordinate is multiplied by
10−2n). Equivalently, Bn is the subgroup of the first Heisenberg group generated
by (10−n, 0, 0) and (0, 10−n, 0). If x is a point in Bn , we give it the label (x, n)
and note that x has a different label for each Bn containing x . We form a tree
by defining an order relation ≤ on the set of all such pairs (x, n). We start this
procedure with the following definition.

Definition 2.7. We say that (x, α) is a parent of (y, β) if β = α+ 1 and y = xg,
where the first two components of g all lie in

(
−

1
2 10−α, 1

2 10−α
]

and the final
component lies in

(
−

1
2 · 10−2α, 1

2 · 10−2α
]
.

Using the obvious analogies from family trees (“ancestor”, “descendant”, “grand-
parent”, “sibling”, etc.) for both the tree points and corresponding dyadic cubes (to
be defined momentarily), we say (x, α)≤ (y, β) if (y, β) is an ancestor of (x, α).
Following along exactly as in Definition 14 of [Christ 1990], we create from this
tree a family of dyadic “cubes”. In particular, we define

Q(x, α)=
⋃

(y,β)≤(x,α)
BCC(y, 1

10 10−β),

where BCC(z, ε) is the ball centered at z of radius ε with respect to Carnot–
Carathéodory distance. We will say that each cube Q(x, α) is a cube at scale
α and we define Qα to be the set of all the cubes of scale α. All the cubes in
Qα are translates of each other by elements of the discrete Heisenberg group of
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the appropriate scale; further, each member of each Qα is an open set while each
element of Qα is (up to a set of measure zero) the disjoint union of elements of
Qα+1. Also, one can transform an arbitrary element of Qα into an arbitrary element
of Qα+1 by a dilation (by a factor of 10−1) followed by translation. Finally, the
number of cubes in Qα within diam(Q(x, α)) of Q(x, α) is bounded by a constant
independent of α.

Analogously, for the k-th Heisenberg group, we begin by rewriting the elements of
Hk to mirror the above construction for H1: in other words, writing z j = x2 j−1+i x2 j

where x2 j−1, x2 j ∈ R, we let B0 be the subgroup of Hk generated by

{(x1, . . . , x2k, 0) : x j =±δ j,l, 1≤ l ≤ 2k}

where δ j,l is the Kronecker delta. In this setting, Bn would be the subgroup of Hk

generated by

{(x1, . . . , x2k, 0) : x j =±10−nδ j,l, 1≤ l ≤ 2k}

and the construction for H1 goes through for Hk with only minor changes. In
particular, the definition of (x, α) being a parent of (y, β) would now require
y = xg where the first 2k components of g all lie in

(
−

1
2 10−α, 1

2 10−α
]

and the final
component lies in

(
−

1
2 · 10−2α, 1

2 · 10−2α
]
.

In this construction, the analogue to the unit cube in Euclidean space is the
unique cube of scale 0 containing the identity element; according to the notation
defined in the preceding paragraph, the name for this cube is Q(0, 0).

Remark. In making this decomposition we are saying nothing about the boundaries
of the elements of the Qα other than that they are closed sets of Hausdorff measure
zero in the appropriate dimension. Also, this decomposition is not the same as the
decomposition of the Heisenberg group found in [Strichartz 1992].

2C2. Orthogonal decomposition of L2. Looking back at Euclidean space Rn for
inspiration, we note that the Hilbert space L2([0, 1]n) of square-integrable functions
on the unit cube can be decomposed into orthogonal subspaces as follows: if β is a
positive integer, we define Cβ ⊂ L2([0, 1]n) as{

f ∈ L2([0, 1]n) : f |Q is constant for Q ∈ Qβ and
∫

Q f = 0 for Q ∈ Qβ−1
}
,

while C0 ⊂ L2([0, 1]n) is defined as

{ f ∈ L2([0, 1]n) : f is constant}.

This yields the orthogonal decomposition

L2([0, 1]n)=
∞⊕
β=0

Cβ .
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In other words, if f ∈ Cβ, g ∈ Cγ with β 6= γ ,
∫
[0,1]n f g = 0 while for each

h ∈ L2([0, 1]n) there exists hβ ∈Cβ for β a nonnegative integer with h =
∑
∞

β=0 hβ ,
the sum in question converging in L2([0, 1]n) to h.

For the Heisenberg groups we can mimic this procedure as follows: here, our
“base” cube shall be denoted as Q(0, 0) where the first zero denotes the origin and
the second zero denotes scale. Similarly, we define the Cβ (as subspaces of the
Hilbert space L2(Q(0, 0)) of real-valued, square-integrable functions) identically
to the way we did with Euclidean space. In other words, if β is a positive integer,
we define Cβ ⊂ L2(Q(0, 0)) as{

f ∈ L2(Q(0, 0)) : f |Q is constant for Q ∈ Qβ and
∫

Q f = 0 for Q ∈ Qβ−1
}
,

while C0 ⊂ L2(Q(0, 0)) is defined as

{ f ∈ L2(Q(0, 0)) : f is constant}.

This yields the orthogonal decomposition

L2(Q(0, 0))=
∞⊕
β=0

Cβ .

For β > 0, Cβ has a spanning set consisting of the functions fQ,Q′ for Q, Q′

sibling cubes in Qβ defined as follows: fQ,Q′ is equal to 1 on Q, −1 on Q′, and 0
everywhere else; we shall call this spanning set Sβ . Sβ is approximately orthogonal
in the following sense: there exists some universal constant K (independent of β)
such that for each f ∈ Sβ we have

#
{
g ∈ Sβ :

∫
Q(0,0) f g 6= 0

}
≤ K ,

where the # symbol denotes cardinality.
When we proceed to the proof, we will wish to find a fixed Y > 0 such that if

g, g′ ∈ Q(0, 0) with g 6= g′, there exists some dyadic cube Q such that

diam (Q) < Y dCC(g, g′) and g, g′ ∈ Q.

This is arranged by considering not just the cube families Qα discussed in the
previous section but expanding each cube family Qα to a larger family Q′α.

If α > 0, we define Q′α to consist of the cubes of the form

{gQ : Q ∈ Qα, g ∈ Bα+2};

remember that Bα+2 was defined in the previous subsection as the discrete Heisen-
berg group of scale α+ 2.

This does not cause the number of dyadic cubes of a given scale to multiply
unreasonably because writing g ∈ Bα+2 in coordinate form as (z1, . . . , zn, t), every
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element of Q′α can be written as gQ for some Q ∈ Qα and g ∈ Bα+2 with

z1, . . . , zn ∈ [−10−α, 10−α] and t ∈ [−10−2α, 10−2α
].

Letting Lg denote left translation by g whenever g ∈ H k , we then define

C ′β = { f ◦ Lg−1 : f ∈ Cβ, g ∈ Bβ+2}.

In fact, writing g ∈ Bβ+2 in coordinate form as (z1, . . . , zn, t), every element of
C ′β can be written as f ◦ Lg−1 for some f ∈ Cβ and g ∈ Bβ+2 with

z1, . . . , zn ∈ [−10−β, 10−β] and t ∈ [−10−2β, 10−2β
].

Fixing β, we can construct an approximately orthogonal basis for C ′β analogously
to the way we did for each Cβ : we simply construct an approximately orthogonal
basis for Cβ ◦ Lg−1 for each g separately.

Finally, for both Euclidean space and the Heisenberg group, it is occasionally
necessary to work with sets on a slightly larger scale than the unit cube. To do this,
one fixes some integer k ≤ 0, denotes our base cube to be the cube of scale k which
contains Q(0, 0), and then defines Cβ and C ′β appropriately for β ≤ 0 (for example,
Ck will consist of the constant functions on our new base cube here).

2C3. Differentiability. On the Euclidean unit cube, there exists a Jacobian map that
sends each Lipschitz function f (which may be either scalar-valued or Euclidean
vector-valued) on the unit cube to the almost-everywhere-defined function J f , the
Jacobian of f . At almost every point, the Jacobian is a linear map from the tangent
space of the domain to the tangent space of the image. Further, the partial derivative
of each component is bounded above by the Lipschitz coefficient of f . Finally,
a Lipschitz function f with almost everywhere constant Jacobian defined on a
connected open set is uniquely determined by this Jacobian and its value at a single
point: if J f is equal to the linear map T almost everywhere and f (x0)= y0 then

f (x)= T (x − x0)+ y0 for all x where f (x) is defined.

Similarly, if G and H are two Heisenberg groups and F : G→ H is Lipschitz,
then by [Pansu 1989] the Pansu differential DF (which, for almost every g ∈ G
induces a map DF(g) : G→ H ) satisfies these three properties:

(i) At almost every g ∈ G, the differential of the Lie group map DF(g) at the
identity induces a Lie algebra homomorphism from the tangent space of G at
g to the tangent space of H at F(g).

(ii) The magnitude of each component of DF is bounded above (up to a constant
depending on normalization) by the Lipschitz coefficient of F .
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(iii) If for almost every g with respect to Haar measure on G, DF(g) (which was
defined as an H -valued function defined on G) is equal to the Lie group
homomorphism φ : G→ H and g0 ∈ G, h0 ∈ H with F(g0)= h0 then

F(g)= h0φ(g−1
0 g) for all g where F(g) is defined.

Of the properties, only (iii) is not a simple consequence of [Pansu 1989]. However,
(iii) is a direct consequence of this fact concerning uniqueness of Lipschitz maps:

Fact 2.8. Suppose G and H are Carnot groups, U ⊂ G is connected and open,
g0 ∈U and F1 :U→G and F2 :U→G are two Lipschitz maps such that DF1(g)=
DF2(g) for almost all g ∈ U with respect to Haar measure and F1(g0) = F2(g0).
Then F1 = F2.

Proof. Suppose there exists u ∈U with F1(u) 6= F2(u). Fix ε > 0 such that

dCC(F1(u), F2(u)) > ε.

Let γ be a piecewise horizontal curve in U joining g0 to u. There exists g′ ∈ G
sufficiently close to the identity such that the left translation of γ by g′ lies in U
(which implies that g′g0, g′u ∈ U ) with dCC(F1(g′g0), F2(g′u)) > ε and almost
everywhere on this translation, DF1 = DF2. However, integration then implies

F1(g′u)F1(g′g0)
−1
= F2(g′u)F2(g′g0)

−1.

Therefore, we know that dCC(F1(g′u), F2(g′u)) = dCC(F1(g′g0), F2(g′g0)) > ε;
since g′ can be made arbitrarily close to the identity this gives us that

ε ≤ dCC(F1(u), F2(u))= dCC(F1(g0), F2(g0))= 0

producing a contradiction, so we conclude that F1 = F2 as desired. �

In fact, because each linear map ψ from the horizontal component of G to the
horizontal component of H has at most one extension (which we call ψ̃) to a Lie
group homomorphism from G to H , we can go one step further and say that if
MF is equal to the linear map ψ almost everywhere and g0 ∈ G, h0 ∈ H with
F(g0)= h0 then

F(g)= h0ψ̃(g−1
0 g)

for all g where F(g) is defined.

2C4. Weak convergence. If a sequence fn of uniformly Lipschitz functions on
a bounded Euclidean region converges uniformly to some function f then f is
Lipschitz, and moreover the Jacobians J fn converge weakly in L2 to the Jacobian
of f . In other words:
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Fact 2.9. Let U ⊂Rk be a bounded open set and let { fn} :U→Rm be a sequence of
uniformly Lipschitz functions which converges uniformly to the function f :U→Rm .
If g :U → R is an L2 function and D represents partial differentiation with respect
to a fixed vector in Rk then ∫

U
(D fn)g→

∫
U
(D f )g,

where the integrals are with respect to Lebesgue measure and the derivatives in
question are defined almost everywhere.

As will be stated shortly, Fact 2.9 generalizes to Heisenberg groups when the map
MF induced by the Pansu differential (see the definitions section) is used in place
of the Jacobian. In particular, one notes that because MF consists of derivatives
of horizontal components of F with respect to horizontal tangent vectors, MF can
be viewed as an array of horizontal derivatives of real-valued Lipschitz functions
(after postcomposing with the appropriate coordinate functions). Then, the weak
convergence in question is the following fact:

Fact 2.10. Let U ⊂ Hk be a bounded open set and let { fn} : U → Hm be a
sequence of uniformly Lipschitz functions which converges uniformly to the function
f :U → Hm . If g :U → R is an L2 function (with respect to Haar measure) and
D represents partial differentiation with respect to a fixed left-invariant horizontal
vector field in Hk then ∫

U
(D fn)g→

∫
U
(D f )g,

where the integrals are with respect to Haar measure and the derivatives in question
are defined almost everywhere.

Facts 2.9 and 2.10 have the same classical proof, which involves approximating g
by sufficiently smooth test functions with compact support and integrating by parts.

2C5. Lipschitz extension. If A is a subset of the unit cube of Rn and f is a Lipschitz
function from A to some Euclidean space, then f can be extended to a Lipschitz
function on the entire unit cube (or, in fact, to all of Rn for that matter). It is not
known whether this extension property also holds for maps from a subset of a
Heisenberg group G into the same group G [Balogh and Fässler 2009; Brudnyi and
Brudnyi 2007], and for that reason we assume the Lipschitz map in Corollary 2.17
below is defined on an open subset of G. It has been shown recently in [Balogh
and Fässler 2009] that this extension property does not hold for maps from Rk to
Hn with n < k. Also, [Rigot and Wenger 2010] shows that the property does not
hold for maps from Rk to any jet space on Hn whenever n < k. However, this
property does hold for maps from any Carnot group to any Rk . It also holds for
maps from R2 to Hn for n ≥ 2, as was shown in [Fässler 2007; Magnani 2010].
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More generally, based on recent results in [Wenger and Young 2010] the Lipschitz
extension property holds for maps from any set with Assouad–Nagata dimension
less than or equal to n to any jet space group on Rn . Notably, this implies the
Lipschitz extension property for maps from Hk to H2k+1.

2D. General Carnot groups. We now explain how the constructions performed in
Section 2C on the Heisenberg group can be generalized to work on other Carnot
groups. We need a notion of discretization (already used implicitly in the decompo-
sition in Section 2C1).

Definition 2.11. Let G be a Carnot group whose Lie algebra g is graded as

g=
d⊕

j=1
g j .

Write mj as the vector space dimension of g j for 1 ≤ j ≤ d. We say that G is
discretizable if for 1≤ j ≤ d there exist collections

{X( j,i)}
mj
i=1 ∈ g j and {g( j,i)}

mj
i=1 ∈ G, with exp(X( j,i))= g( j,i),

and subgroups

H j ≤ G, where H j = 〈{g( j ′,i)}1≤i≤m j ′ , j≤ j ′≤d〉,

such that {X( j,i)}
mj
i=1 spans g j as a vector space and, writing G ′ = 〈{g(1,i)}

m1
i=1〉 and

G j = 〈{exp(g j ′)} j ′≥ j 〉,

G ′ is a discrete subgroup with G ′ ∩G j = H j .

In this setting, we say that G ′ is the discretization of G.

Examples of discretizable Carnot groups include Heisenberg groups, Euclidean
spaces, and jet spaces. For example, we can take the discrete Heisenberg groups as
the discretization of the Heisenberg groups.

If G is discretizable, the method in [Christ 1990] can be followed as in Section 2C1
to create a dyadic decomposition, with B0 now defined to be the discretization G ′.
Although the scaling constant used to create Bn from B0 (which was 10−n in the case
of Heisenberg groups) depends on the specific Carnot group itself (in particular,
it depends on the relationship between the coordinates of an arbitrary point g
and dCC(g, 0); compare Theorem 2.10 in [Montgomery 2002]), the procedure for
Heisenberg groups can otherwise be copied exactly to create a dyadic decomposition
for G into dyadic “cubes”. Because the base cube for our construction will still be
a cube based at the origin of scale zero, we can still refer to it as Q(0, 0). With our
new dyadic decomposition in hand, we can also copy the construction of the Cβ
and C ′β in Section 2C2 in the setting of our discretizable group G.
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Finally, we observe that the results in Sections 2C3 and 2C4 (which involved
differentiability and weak convergence) used no properties specific to Heisenberg
groups. Therefore, the results in Sections 2C3 and 2C4 carry over just as well to
maps from one Carnot group to another. Actually, Fact 2.8 in Section 2C3 was
already stated and proved in terms of Carnot groups.

2E. Proof of main theorem. In what follows, H k and hk shall refer to Hausdorff
k-dimensional measure and Hausdorff k-dimensional content, respectively (both of
which we define with respect to Carnot–Carathéodory distance).

Our goal is to prove the following theorem.

Theorem 2.12. Let G be a discretizable Carnot group of homogeneous dimension
k and let H be another Carnot group. Suppose F : Q(0, 0)⊂ G→ H is Lipschitz.
If δ > 0, there exists a positive integer N and subsets Z , X1, . . . , X N of Q(0, 0)
such that

hk(F(Z)) < δ,

Z ∪ X1 ∪ · · · ∪ X N = Q(0, 0),

and F is bilipschitz on each X i . Furthermore, N and the bilipschitz coefficients of
the F |X i depend only on the groups G and H , δ, and the Lipschitz coefficient of F ,
and not on the map F itself.

Before beginning the proof, we shall introduce two notions of nearness.

Definition 2.13. Suppose Q(x, α) and Q(y, α) are elements of the decomposition
from 2C1 of a discretizable Carnot group into cubes of the same scale. We say
that Q(x, α) and Q(y, α) are adjacent if the distance from Q(x, α) to Q(y, α) is
bounded above by the diameter of Q(x, α).

Note that two coincident cubes of the same scale are considered adjacent.

Definition 2.14. Suppose Q(x, α) and Q(y, α) are elements of the decomposition
of a discretizable Carnot group into cubes of the same scale. We say that Q(x, α)
and Q(y, α) are semiadjacent if Q(x, α) and Q(y, α) are not adjacent and the
parents of Q(x, α) and Q(y, α) are not adjacent, but the grandparents of Q(x, α)
and Q(y, α) are adjacent.

Turning to the proof of Theorem 2.12, we begin by establishing some further
notation and normalizations.

Let E be the ratio of the diameter of an arbitrary “cube” to the diameter of
one of its “children” using Carnot–Carathéodory distance. For example, if G is
a Heisenberg group (using exactly the “cube” decomposition from Section 2C1),
then E = 10.
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Using the Carnot–Carathéodory distance, we set

θ = diam(Q(0, 0)).

Also, we let 0< L1< L2<∞ be constants such that if Q and Q′ are semiadjacent,

L1diam(Q) < d(Q, Q′) < L2diam(Q).

We note that L1 and L2 only depend on G, not Q or Q′.
In addition, we may assume that F is 1-Lipschitz and that there exists η > 0 such

that F is defined on the dilation δ1+ηQ(0, 0). For convenience we scale Hausdorff
measure so that |Q(0, 0)| = 1 where |S| denotes the Hausdorff measure of S.

Finally, we let W be a positive integer such that every cube Q′ of scale W − 10
such that Q′ ∩ Q(0, 0) 6=∅ satisfies Q′ ⊂ δ1+ηQ(0, 0). Throughout this proof, we
will be focusing primarily on subcubes of Q(0, 0) of scale at least W .

With our notation and normalizations set up, we prove the following proposition,
which provides a partial wavelet decomposition of the linear map MF induced by
the Pansu differential DF of F .

Proposition 2.15. Suppose 1 ≥ ε > 0. There exists n,C > 0 such that if α ≥ W
and Q := Q(a, α) and Q′ := Q(b, α) are semiadjacent cubes with

(1) hk(F(Q)) > εE−kα

and

(2) hk(F(Q′)) > εE−kα

but

(3) dCC(F(Q), F(Q′))≤ 1
2εL1θE−α

then there exists β ∈ [α−4, α+n] and fQ,Q′ ∈ C ′β and integers i, j such that

(4)
|〈(MF)i, j , fQ,Q′〉|

|〈 fQ,Q′, fQ,Q′〉|
≥ C |Q|1/2,

where C ′β is the space defined in Section 2C2 and MF is the matrix of horizontal
components of the Pansu differential DF.

Further, C only depends on G, H , and ε (and, in particular, not on the specific
choice of F).

Also, the inner product in (4) is taken with respect to L2(G); it equals∫
G
(MF)i, j fQ,Q′dµ

where µ is Haar measure on G scaled so that µ(Q(0, 0))= 1.
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We also note that the number of possible candidates for fQ,Q′ for a given Q is
uniformly bounded, with a bound that depends only on the specific groups G and H .

Proof. Assume the contrary. Then, for each n there exists a 1-Lipschitz map Fn

and semiadjacent cubes Q(an, αn) and Q(bn, αn) such that

• hk(Fn(Q(an, αn))) > εE−kαn ,

• hk(Fn(Q(bn, αn))) > εE−kαn ,

• dCC
(
Fn(Q(an, αn)), Fn(Q(bn, αn))

)
< 1

2εL1θE−αn , and

•

∫
Q(0,0) ψ f ≤ 2−n

|Q(an, αn)|
1/2
‖ f ‖2L2(Q(0,0)) whenever ψ is a matrix entry of

MFn and f ∈ C ′β , where β ∈ [αn−4, αn+n].

By rescaling and translating we may suppose

Q(an, αn)= Q(a, α)

for all n and by passing to a subsequence we suppose

Q(bn, αn)= Q(b, α)

for all n. Further, the Arzelà–Ascoli theorem lets us pass to another subsequence
such that Fn converges uniformly on Q(0, 0) to some Lipschitz map F . Moreover,
by translation (we can do this because of the expanded C ′ families) we can sup-
pose Q(a, α) and Q(b, α) have the same great-great-grandparent Q(z, α− 4). By
weak-star convergence, the restriction of each component of MF to Q(z, α− 4) is
orthogonal to Cβ for β >α−4 which implies that MF is constant almost everywhere
on Q(z, α−4). From this, the discussion in Section 2C3 lets us conclude that there
exists a Lie group homomorphism φ such that DF = φ on Q(z, α− 4) and further,
there exist elements g0 ∈ G, h0 ∈ H such that

(5) F(g)= h0φ(g−1
0 g)

for all g ∈ Q(z, α− 4). Further,

hk(F(Q(a, α))≥ lim inf
n

hk(Fn(Q(a, α)))≥ εE−kα

because Fn(Q(a, α)) is eventually contained in an arbitrarily small neighborhood of
the closure F(Q(a, α)); such a neighborhood can have Hausdorff content arbitrarily
close to hk(F(Q(a, α))).

Working towards a contradiction, we next define the sequences of points {Xn}

and {Yn} such that
Xn ∈ Q(a, α), Yn ∈ Q(b, α)

and

dCC(Fn(Xn), Fn(Yn))≤
1
2εL1θE−α.
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By the definition of sequential compactness, there exist points a′ ∈ Q(a, α), b′ ∈
Q(b, α) such that

dCC(F(a′), F(b′))≤ 1
2εL1θE−α.

However, because Q(a, α) and Q(b, α) are semiadjacent,

dCC(a′, b′)≥ L1θE−α.

Therefore, since (5) implies that the Pansu differential DF of F is defined everywhere
and, in fact, is constant, the image of the Pansu differential DF of F in the direction
of the tangent vector from a′ to b′ has magnitude at most 1

2ε. As F is Lipschitz
with coefficient 1, this implies that

(6) hk(F(Q(a, α)))≤ |F(Q(a, α))| ≤ 1
2εE−kα.

The first inequality in (6) follows immediately from the fact that Hausdorff content is
bounded above by Hausdorff measure. The second inequality is a direct consequence
of the change-of-variables formula for Carnot groups (see the proof of Theorem 7
of [Vodopyanov and Ukhlov 1996], which can be directly adapted to this case).

As (6) contradicts our hypotheses, the proposition follows. �

Armed with this proposition, our next goal is to show that a sufficiently large
portion of our domain lies in finitely many such semiadjacent pairs.

Proposition 2.16. Let� be the set of all pairs of cubes which satisfy the hypotheses
of Proposition 2.15 and let

φ(x)= #{ω = (Q, Q′) ∈� : x ∈ Q ∪ Q′}.

Suppose N > 0; then there exists a constant K ′ depending only G, H , and ε such
that

|{x : φ(x)≥ N }| ≤ K ′N−1.

Proof. If (Q, Q′) ∈ �, Proposition 2.15 gives us a wavelet function fQ,Q′ corre-
sponding to (Q, Q′) such that the projection of MF onto fQ,Q′ had L2 magnitude
at least Cε|Q|1/2. However, only a bounded number of pairs of cubes can be
assigned a given wavelet function in this way. This is because of the control that
Proposition 2.15 gives to both the scale and support of fQ,Q′ in terms of the scale
and location of Q. Now, we seek to show that

1�
∑

(Q,Q′)∈�
|Q|

where the implied multiplicative constant only depends on G, H , and ε.
Because F is 1-Lipschitz, we can replace the constant 1 on the left hand side

with ‖MF‖22. Next, for any specific pair (Q, Q′) in our sum, we let π(Q,Q′)(MF)
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be the orthogonal projection of MF onto fQ,Q′ . By Proposition 2.15,

‖π(Q,Q′)(MF)‖2 ≥ Cε|Q|1/2;

in other words, ∫
|π(Q,Q′)(MF)|2 ≥ C2ε2

|Q|.

Summing this over � gives us indeed that

1� ‖MF‖22 �
∑

(Q,Q′)∈�
|Q|

because the fQ,Q′ are approximately orthogonal and a given wavelet function can
only appear in the sum a bounded number of times. However,∫

φ =
∑

(Q,Q′)∈�
|Q|,

so Chebyshev’s inequality therefore tells us that

SN = {x : φ(x)≥ N }

has
|SN | � N−1,

which proves the proposition. �

Proof of theorem. We complete the theorem through an infinite series of iterations
as in [Jones 1988]. This process is divided into stages (indexed by α ≥ 0); at stage
α we assign each point x of each subcube of Q(0, 0) of scale α a label xα, i.e., a
finite string of zeroes and ones, such that every point in a fixed cube of scale α has
the same label.

At stage 0 we apply a leading digit of 0 to every point in the base cube. In other
words, for each x ∈ Q(0, 0), we set x0 = 0. Also, we define Z0 = ∅ for future
reference.

For 0<α, we begin by defining the garbage set Zα by letting Sα be the collection
of all cubes Q of scale α+W such that

|F(Q)| ≤ δE−k(α+W )

and set Zα = Sα ∪ Zα−1.
Next, we run through each pair of cubes at scale α+W which lie in Q(0, 0)\ Zα

and which satisfy the hypotheses of Proposition 2.16 with ε = 1
100δ. Supposing that

there are nα such pairs (Q1, Q′1), . . . , (Qnα , Q′nα ), we will inductively define the
labels x(α,m) for m = 0, 1, . . . , nα as follows:

First, x(α,0) = xα−1 for each x ∈ Q(0, 0) \ Zα. Then, for m > 0 we define
x(α,m) = x(α,m−1) for x /∈ Qm ∪ Q′m . We note that x(α,m−1), when viewed as a



LIPSCHITZ AND BILIPSCHITZ MAPS ON CARNOT GROUPS 159

function on Q(0, 0) \ Zα, is constant at a value (call it z1, and let y1 be its length)
on Qm and at a possibly different value (call it z2, and let y2 be its length) on Q′m ;
without loss of generality we may assume that y1 ≥ y2. There are several cases to
consider:

(I) If y1 = y2 and z1 6= z2 we simply define x(α,m) = x(α,m−1) on both Qm and
Q′m .

(II) If y1 = y2 and z1 = z2 we then let x(α,m) be equal to the string created by
adding a 0 to the end of x(α,m−1) on Qm and the string created by adding a 1
to the end of x(α,m−1) on Q′m .

(III) If y1> y2 and z2 is not the first y2 digits of z1 we simply define x(α,m)= x(α,m−1)

on both Qm and Q′m .

(IV) If y1 > y2 and z2 is the first y2 digits of z1, we let define x(α,m) = x(α,m−1) on
Qm ; on Q′m we let y′ be the element of {0, 1} that is not the (y2+ 1)-th digit
of z1 and define x(α,m) on Q′m to be the string created by adding y′ to the end
of x(α,m−1).

Once we have finished this process for each cube, we define xα = x(α,nα) on
Q(0, 0) \ Zα.

Now, defining Yn to be the set of all points x such that xα has length at least n
for some α, we conclude from Proposition 2.16 that there exists N such that∣∣{x ∈ Q(0, 0) \

⋃
α

Zα : x ∈ YN
}∣∣< 1

100δ;

we now define the set Z =
⋃
α Zα ∪ YN .

If x ∈ Q(0, 0) \ Z , the sequence {xα} is eventually constant; denote its limiting
value by x∞. Since there are at most 2n strings of length n, there are at most 2N

possible values of x∞.
We finish by setting

Xw = {x ∈ Q(0, 0) \ Z : x∞ = w}

whenever w is a string of zeroes and ones of length less than N . For each such
w, F |Xw must be bilipschitz (if not, there exist x1, x2 ∈ Xw and a pair of cubes
(Q, Q′) satisfying the hypotheses of Proposition 2.15 such that x1 ∈ Q, x2 ∈ Q′,
contradicting the definition of Xw), proving the theorem. �

2F. Consequences.

Corollary 2.17. Suppose A is an open subset of a discretizable Carnot group G
(with homogeneous dimension k), H is another Carnot group, and F : A→ H
is Lipschitz, and H k(F(A)) > 0. Then there exists a subset B ⊂ A of positive
k-dimensional Hausdorff measure such that F restricted to B is bilipschitz.
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Proof. We can express A as a countable union of translates and dilates of the base
cube Q(0, 0); by countable additivity of Hausdorff measure one of these cubes,
which we call C , is sent by F to a set F(C) with H k(F(C)) > 0. By rescaling we
can suppose C is the base cube Q(0, 0). The previous theorem divides this cube into
the union of a “garbage” set Z (consisting of those cubes whose image has measure
too small, as well as those cubes which are in too many bad pairs), where F(Z)
can be taken to be arbitrarily small (say, with hk(F(Z)) < 1

2 hk(F(A))) and a finite
union of sets F j such that F |F j is bilipschitz for each j . Since H k(F(

⋃
j F j )) > 0,

there exists some j where |F j |> 0 and we let B = F j . �

If one assumed that H k(A) <∞, looking closely at the shape of A would allow
us to conclude above that the measure of B and the bilipschitz constant of F would
depend only on G, H , A, the Lipschitz coefficient of F , and the k dimensional
Hausdorff content of F(A).

Restricting attention to the first Heisenberg group H1, we use this corollary
to show that if we only consider maps whose domains are open, two questions
from [Heinonen and Semmes 1997] are equivalent. To begin we need two more
definitions.

Definition 2.18. Suppose Q1 and Q2 are metric spaces with Hausdorff dimension k.
We say that Q1 looks down on Q2 if there exists a Lipschitz function f from some
subset of Q1 to Q2 such that the image of f has nonzero Hausdorff k-measure.

Definition 2.19. Suppose Q is a metric space with Hausdorff dimension k. We say
that Q is minimal in looking down if whenever Q′ is a metric space with Hausdorff
dimension k such that Q looks down on Q′, Q′ also looks down on Q.

(Note that this definition is formulated differently from the one in [Heinonen
and Semmes 1997].)

Question 22 in [Heinonen and Semmes 1997] asks whether the first Heisenberg
group is minimal in looking down and Question 24 asks if every Lipschitz map
from H1 to a metric space with nontrivial Hausdorff 4-measure is bilipschitz on
some subset with positive Hausdorff 4-measure.

Clearly 24 implies 22. However, we now know from the corollary that 22 implies
24 when only looking at maps from open sets. This is true because (assuming H1 is
minimal in looking down) if F : E ⊂ H1→ X is Lipschitz and H 4(F(E)) > 0 then,
letting G : X→ H1 be another Lipschitz map with H 4(G(X)) > 0 (and supposing,
by restricting images, that X = F(E)), G◦F satisfies the conditions of the corollary
and therefore is bilipschitz on some subset E ′ ⊂ E with |E ′|> 0. On this set, we
therefore have that F is invertible with inverse (G ◦ F)−1

◦ G, which is clearly
Lipschitz, which therefore implies that F |E ′ is bilipschitz. Because F was arbitrary,
we can conclude that Question 24, when restricted to maps defined on open sets, is
equivalent to Question 22.
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Raanan Schul recently proved a statement corresponding to Question 24 for
maps where the domain is Euclidean in [Schul 2009]. In particular, he showed that
if F is a Lipschitz function from the k-dimensional unit cube [0, 1]k into a general
metric space, one has the decomposition

[0, 1]k = G ∪
n⋃

j=1
F j ,

where F(G) has arbitrarily small k-dimensional Hausdorff content and F is bilips-
chitz on each of the F j . The main reason why Schul’s argument does not generalize
to this setting is the dearth of rectifiable curves passing through a given point
in a general Carnot group. For example, although the first Heisenberg group has
Hausdorff dimension 4, the space of horizontal tangents to rectifiable curves through
a given point in that group has dimension two.

We finish this section by discussing the question of Jones-style decompositions
for Lipschitz maps on Carnot groups. Just as in [Jones 1988], my argument for the
main theorem actually implies the following stronger statement:

Corollary 2.20. Suppose U is a bounded open subset of a discretizable Carnot
group G with Hausdorff dimension Q, H is another Carnot group, F :U → H is
Lipschitz, and ε > 0. Then there exists a finite collection {Ai } of subsets of U such
that each restriction F |Ai is bilipschitz and

hQ(F(U \⋃
i

Ai
))
< ε.

For unbounded open subsets of discretizable Carnot groups a diagonalization
argument yields the following.

Corollary 2.21. Suppose U is an open subset of a discretizable Carnot group
G with Hausdorff dimension Q, H is another Carnot group and F : U → H is
Lipschitz. Then there exists a countable collection {Ai } of subsets of U such that
each restriction F |Ai is bilipschitz and

hQ(F(U \⋃
i

Ai
))
= 0.

A natural generalization of the above results is in the setting of subriemannian
manifolds, defined below.

Definition 2.22. A subriemannian manifold is a triple (M,1, g) where M is a
smooth manifold, 1 is a distribution (i.e., subbundle of the tangent bundle T M)
on M which is smooth and satisfies the property that for each p ∈ M , (T M)p is
generated as a Lie algebra by 1p, and g is a smooth section of positive-definite
quadratic forms on1 (i.e., gp defines an inner product on1p which varies smoothly
in p).
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Recall [Varadarajan 1984] that the set S is said to generate a Lie algebra g if the
set of finite Lie brackets of elements of S spans g as a vector space.

We shall consider M to be naturally equipped with a metric dCC defined as
follows: for x, y ∈ M ,

dCC(x, y)= inf
γ∈0x,y

∫ 1

0

√
g(γ ′(t), γ ′(t)) dt

where 0x,y is the family of all curves

γ : [0, 1] → M

with γ (0)= x , γ (1)= y, and γ ′(t) ∈1γ (t) for all t .
Now, suppose M and N are subriemannian manifolds such that M is locally

bilipschitz equivalent to a discretizable Carnot group G and N is locally bilipschitz
equivalent to a Carnot group H . Then Corollary 2.21 still holds if G is replaced by
M and H is replaced by N .

For example, M and N could both be ordinary riemannian manifolds. Because
riemannian manifolds are locally bilipschitz equivalent to Euclidean spaces, where
we have all five properties from Section 2, we can consider arbitrary subsets of
M instead of just open subsets. Thus we have the following corollary: if M is a
riemannian manifold, A ⊂ M has Hausdorff dimension k, N is another riemannian
manifold, and F : A→ N is Lipschitz with H k(F(A)) > 0, then there exists a
subset B ⊂ A with H k(B) > 0 such that f |B is bilipschitz.

Not all subriemannian manifolds are locally bilipschitz equivalent to Carnot
groups, and hence we cannot replace G and H by arbitrary subriemannian manifolds
in Corollary 2.21. In particular, we will show in Section 4B that Corollary 2.21
becomes false if G and H are replaced by the Grushin plane and the Euclidean
plane, respectively.

3. Hausdorff dimension of Lipschitz images

We begin by observing the following corollary of the results in Section 2.

Corollary 3.1. Assume A is an open subset of a discretizable Carnot group G with
homogeneous dimension k, assume H is another Carnot group, and let f : A→ H
be a Lipschitz map such that H k( f (A)) > 0. Then there exists an injective Lie
group homomorphism from G to H.

Proof. By the preceding results, f is bilipschitz on some B ⊂ A with positive
k-dimensional Hausdorff measure. Then the Pansu differential of f at any Lebesgue
point of B gives the desired homomorphism. �
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Because the converse of this result is trivial (the Lie group homomorphism in
question is locally Lipschitz), Corollary 3.1 reduces the question of whether one
Carnot group “looks down” on another to a question about the groups’ Lie algebras.

An easy consequence of Corollary 3.1 is that if G is a discretizable nonabelian
Carnot group with homogeneous dimension k and U ⊂ G then every Lipschitz
image of U in any Euclidean space has zero k-dimensional Hausdorff measure. This
follows because there are no injective group homomorphisms from a nonabelian
group to an abelian group. In fact, for this consequence we need not assume U is
open here because the image space, Euclidean space, has the Lipschitz extension
property.

Despite having Hausdorff measure k-measure zero, the Lipschitz image of U
in Rk can still be quite large. For example, we have the following theorem, which
answers a question asked by Le Donne (personal communication, 2009):

Theorem 3.2. Suppose that G is a discretizable Carnot group with homogeneous
dimension k, and let ε > 0. There exists a bounded open U ⊂ G and a Lipschitz
map F :U → Rk such that H k−ε(F(U )) > 0.

Proof. As in our results in Section 2, we illustrate the case G = H 1 in detail and
remark that the construction is analogous for the general case. The construction is
based on the procedure from [Kaufman 1979].
We begin by setting

γ = 161/(ε−4),

which tells us that γ < 1
2 and logγ−1 16= 4− ε. We next fix β ∈

[
γ, 1

2

)
and define

λ=
20

1
4 −β

2
;

in particular,
λ
( 1

4 −β
2)
= 20> 10.

With this data, we then set our initial box

I 0
= [−1, 1]× [−1, 1]× [−λ, λ] ⊂ H 1

and define I 1 to be the union of the sixteen boxes

(a, b, c) · δβ I 0

where
a ∈

{
−

1
2 ,

1
2

}
, b ∈

{
−

1
2 ,

1
2

}
, c ∈

{
−

3
4λ,−

1
4λ,

1
4λ,

3
4λ
}
.

We arbitrarily label these boxes I 1
j for j = 1, . . . , 16.
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The point of this construction is to find η > 0 such that

dCC(I 1
j , I 1

k ) > η for j 6= k

and
dCC(I 1

j , δ(I
0)) > η for all j.

Clearly, if two of the boxes in I 1 have different horizontal components, then they
are at least 1− 2β apart; similarly, every box in I 1 is at a distance of exactly 1

2 −β

away from the nearest horizontal edge of I 0.
The only issue is vertical distance. To find the minimum distance between a

vertical edge of I 0 and a box in I 1, it suffices to consider a box in I 1 where c=− 3
4λ

and look at the bottom edge of I 0. Every point on the bottom edge of such a box
has a vertical coordinate which is at least

−
3
4λ−β

2λ− 2 · 1
2β >−λ+ 10− 2=−λ+ 8.

Now, we recall that if g = (x1, y1, 0) and h = (x2, y2, 0) are points in H 1 with
x1, y1, x2, y2 ∈ [−1, 1], then writing the product g−1h as (x3, y3, z3) we note that
|z3|< 2.

Consequently, if p= (p1, p2, p3) is a point in I 1 and q = (q1, q2,−λ) is a point
on the bottom edge of I 0, we note that the vertical coordinate of p−1q is at most

−(−λ+ 8)− λ+ 2=−6,

which implies that vertical edges of I 0 will be separated from boxes in I 1 by at
least 6 units.

Similarly, looking at two boxes in I 1 with the same horizontal component (e.g.,
let A be such a box with c=− 3

4λ and B be such a box with c=− 1
4λ), the vertical

coordinate of points in A are at most − 1
2λ− 8 and the vertical coordinate of points

in B are at least −1
2λ+ 8. Therefore, whenever a ∈ A and b ∈ B, the vertical

coordinate of a−1b is at least(
−

1
2λ+ 8

)
−
(
−

1
2λ− 8

)
− 2= 14,

implying a separation of 14 between any two such boxes.
In subsequent stages we replace each box of the form

p · δµ I 0

(there are 16k such boxes in stage k; at this stage µ= βk) with the sixteen boxes

p · δµ(a, b, c) · δβµ(I 0)

and denote by I k the union of all the boxes produced in stage k.
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In stage k, each box has a label of the form I k
(a1,...,ak)

where each ai ranges from 1
to 16; we extend this process to stage k+1 by labeling the subboxes from I k

(a1,...,ak)

as I k+1
(a1,...,ak ,v)

where v = 1, 2, . . . , 16. The intersection of the I k’s, to be defined as
I , is a Cantor set in H 1 of dimension

logβ−1 16≥ 4− ε.

Each point x ∈ I has a unique label of the form (a1, . . . , an, . . . ) (where each ai

ranges from 1 to 16) such that for each n ∈N, x ∈ I n
(a1,...,an)

; if v= (a1, . . . , an, . . . )

and w = (b1, . . . , bn, . . . ) with m being the smallest integer where am 6= bm , the
distance between the points corresponding to v and w is (up to a multiplicative
constant independent of m) equal to βm .

Similarly, we set J 0 to be the box [−1, 1]4 in Euclidean space R4 and J 1 to be
the union of the sixteen boxes

(a, b, c, d)+ γ I 0

where a, b, c, d can each equal −1
2 or 1

2 . We arbitrarily label these boxes J 1
j for

j = 1, . . . , 16.
The point of this construction is now to find η′ > 0 such that

d(J 1
j , J 1

k ) > η
′ for j 6= k

and
d(J 1

j , δ(J
0)) > η′ for all j,

where the distance above is Euclidean.
Clearly, any two of the boxes in J 1 are at least 1−2γ apart; similarly, each such

box is at a distance of exactly 1
2 − γ away from the boundary of J 0.

In subsequent stages we replace the box

p+ ν J 0

with the sixteen boxes
p+ ν((a, b, c, d)+ γ J 0)

and denote by J k the union of all boxes produced in stage k. Note that at stage k,
ν = γ k .

In stage k, each box has a label of the form J k
(a1,...,ak)

where each ai ranges from 1
to 16; we extend this process to stage k+1 by labeling the subboxes from J k

(a1,...,ak)

as J k+1
(a1,...,ak ,v)

where v = 1, 2, . . . , 16. The intersection of the J k’s, to be defined as
J , is a Cantor set in R4 of dimension

logγ−1 16= 4− ε.
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Each point x ∈ J has a unique label of the form (a1, . . . , an, . . . ) (where each ai

ranges from 1 to 16) such that for each n ∈N, x ∈ J n
(a1,...,an)

; if v= (a1, . . . , an, . . . )

and w = (b1, . . . , bn, . . . ) with m being the smallest integer where am 6= bm , the
distance between the points corresponding to v and w is (up to a multiplicative
constant independent of m) equal to γ m .

We can define a Lipschitz map F from I 0
⊂ H 1 to R4 whose image contains J

(and therefore has Hausdorff dimension logγ−1(16)) via the following three-step
process.

Step 1. Map I to J . This is done by mapping a point in I with a label of the form
(a1, . . . , an, . . . ) to the point with the same label in J . By construction, one notes
that if β = γ then this map is bilipschitz.

Step 2. For each ordered n-tuple (a1, . . . , an) with each ai in {1, . . . , 16} (this
includes the zero-tuple, where we would be mapping the boundary of I 0) we choose
a point p(a1,...,an) in J n

(a1,...,an)
and then send all of the points in the boundary of

I n
(a1,...,an)

to p(a1,...,an).

Step 3. The remaining region of I 0 consists of sets of the form Sn
(a1,...,an)

defined as
the set of all points in I n

(a1,...,an)
which do not lie in I n+1

(a1,...,an,v)
for v = 1, 2, . . . , 16.

The closure of this region includes the boundary of I n
(a1,...,an)

and of I n+1
(a1,...,an,v)

for
v = 1, . . . , 16. Fixing (a1, . . . , an) (we may work on each Sn

(a1,...,an)
separately) we

define the map f from the interval [0, 16] to R4 to be a smooth function sending
0 to p(a1,...,an) and v = 1, . . . , 16 to p(a1,...,an,v). We can suppose f has Lipschitz
norm comparable to γ n . We then define g to be a smooth, real-valued, Lipschitz
function (with Lipschitz coefficient comparable to β−n) on the closure of Sn

(a1,...,an)

which sends the boundary of I n
(a1,...,an)

to 0 and the boundary of I n+1
(a1,...,an,v)

to v. We
can create such a g by the Whitney extension theorem (the construction is more
straightforward if we do not require smoothness). On the closure of Sn

(a1,...,an)
(the

construction merely repeats the existing one on the boundary) set F = f ◦ g; then
F |Sn

(a1,...,an)
has Lipschitz norm comparable to (γ

β
)n .

Note that if γ < β, (γ
β
)n goes to zero as n goes to infinity, which means that F is

differentiable (in the Pansu sense) at each point of I with derivative zero. Further,
by construction F is C1 outside of I where the Pansu differential always has rank
zero or one (and this differential approaches zero as we approach points of I ); in
fact, it is locally constant near the boundaries of the relevant cubes if we use the
Whitney extension, so the construction here is indeed an appropriate analogue of
[Kaufman 1979]. �

In fact, because the constructed map is constant on the boundary of I 0, nesting
appropriately rescaled examples of this form inside each other yield the following
corollary.
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Corollary 3.3. Suppose that G is a discretizable Carnot group with homogeneous
dimension k. There exists a bounded open U ⊂ G and a Lipschitz map F :U→ Rk

such that F(U ) has Hausdorff dimension k.

4. Counterexamples

In this section we develop two counterexamples to show why Carnot group structure,
or something close to it, is necessary for the results of the previous two sections.

4A. A space-filling curve.

Theorem 4.1. There exists an Ahlfors 2-regular metric space X and a Lipschitz
map F : X → R2 such that F(X) has positive 2-dimensional Hausdorff measure
but F is not bilipschitz on any set of positive 2-dimensional measure.

Proof. The function in question will be the space-filling curve F from [0, 1]
(equipped with the square root distance metric) to the unit square in R2 mentioned
in Section 7.3 of [Stein and Shakarchi 2005]. Although this function is a surjective
map of spaces with Hausdorff dimension 2 and Lipschitz, it is not bilipschitz on any
subset with positive Hausdorff 2-measure. To see this, suppose that the space-filling
curve F is bilipschitz on a set A with H 2(A) > 0. As F(A) has positive Lebesgue
measure, it contains a point x of Lebesgue density one. Letting ε > 0 there exists
δ > 0 such that

|B(x; δ)∩ F(A)|> (1− ε)|B(x; δ)|.

Writing out the binary expansion of the components of x and of δ, B(x; δ) contains
a dyadic cube Q of side at least 1

10δ; since ε|B(x; δ)| ≤ 1000ε|Q|, we have

|Q ∩ F(A)|> (1− 1000ε)|Q|.

As F is measure-preserving, letting J be the preimage of Q we conclude

|J ∩ A|> (1− 1000ε)|J |.

By rescaling and translating we can suppose F is therefore bilipschitz on a set
A of Hausdorff 2-measure arbitrarily close to 1 (although the rescaled F is not
identical to our space-filling curve, it preserves all the relevant properties, such as
being Lipschitz in the appropriate metric, measure-preserving, and sending a pair
of points whose “square root” distance is at least 1

2 to the same point).
Let x , x ′ be two points which are at least 1

4 apart in Euclidean distance (and
therefore 1

2 away with respect to square root distance) such that F(x) = F(x ′).
We can suppose that y, y′ ∈ A are arbitrarily close to x , x ′ respectively; therefore,
|y− y′| ≥ 1

4 ; however,

|F(y)− F(y′)| ≤ |F(x)− F(y)| + |F(x ′)− F(y′)|
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which can be made arbitrarily small by the Lipschitz property (all distances use the
square root metric in the domain and the Euclidean metric in the image) showing
that F cannot be bilipschitz on A with any coefficient. �

In this example, the third and fourth properties (involving differentiability) from
Section 2C fail. This suggests that some notion of differentiability is necessary for
the results in [Jones 1988] to extend to other spaces.

4B. The Grushin plane.

Theorem 4.2. There exists a 2-dimensional subriemannian manifold M with Haus-
dorff dimension 2, an open U ⊂ M , and a Lipschitz map

F :U → R2

which is not decomposable in the following sense: There does not exist a countable
collection {Ai } of sets such that

H 2(F(U \⋃
i

Ai
))
= 0

and F |Ai is bilipschitz for each i .

Proof. We use the Grushin plane M as our subriemannian manifold.
To construct the Grushin plane we define a riemannian metric on the following

region of R2: {(x, y) : y 6= 0}.
This metric is defined as ds2

= dx2
+ x−2dy2. We then use this metric to induce

a geodesic structure on all of R2, where a rectifiable curve must have horizontal
tangent at each point that it crosses the y-axis.

One can observe that off of the vertical axis, the Grushin plane is locally bilips-
chitz to Euclidean space (but with a constant that blows up as we get closer to the
axis). However, the distance between two points on the vertical axis is proportional
to the square root of their Euclidean distance.

In other words, the Grushin plane is a union of a (disconnected) riemannian
manifold and a line of Hausdorff dimension two, making it a subriemannian manifold
of both Euclidean and Hausdorff dimension two.

To construct our counterexample, we consider an open neighborhood of the
segment S joining (0, 0) to (0, 1), say: Uε = (−ε, ε)× (−ε, 1+ ε) for ε > 0. The
space-filling curve previously constructed as in Chapter 7 of [Stein and Shakarchi
2005] has already been shown to be Lipschitz when defined as a function from
a set which is bilipschitz to S with image the unit square. We can extend this
mapping to a Lipschitz mapping F from Uε to R2 by standard constructions (note
the importance of having a Euclidean target space here).

However, there does not exist a countable collection of sets A1, . . . , An, . . . such
that G :=Uε \

⋃
n An is sent to a set of arbitrarily small Hausdorff content by F and
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F is bilipschitz when restricted to the An . This is because An ∩ S must be a nullset
(by the previous arguments concerning the space-filling curve for each G) which
implies that G must contain almost all of S, in the sense of Hausdorff measure.
Therefore, F(G)must contain almost all of the unit square in the sense of Hausdorff
measure (or Hausdorff content, which is equivalent in this case), producing our
desired contradiction. �

In this example, the first and second properties (involving homogeneity) from
Section 2C fail, which suggests that some notion of homogeneity is also necessary
for the results in [Jones 1988] to extend to other spaces.
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GEOMETRIC INEQUALITIES IN CARNOT GROUPS

FRANCESCOPAOLO MONTEFALCONE

Let G be a subriemannian k-step Carnot group of homogeneous dimension
Q. We prove several geometric inequalities concerning smooth hypersur-
faces (submanifolds of codimension one) immersed in G, endowed with the
H-perimeter measure.

1. Introduction 171
2. Isoperimetric constants and the first eigenvalue of LHS on
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1. Introduction

During the last years there has been an increasing interest in studying analysis
and geometric measure theory in metric spaces (see [Ambrosio 2001; Ambrosio
and Kirchheim 2000a; 2000b; Cheeger and Kleiner 2010; David and Semmes
1997; Garofalo and Nhieu 1996; Varopoulos et al. 1992] and bibliographic ref-
erences therein, but this list is far from being exhaustive). In this regard, impor-
tant examples of highly noneuclidean geometries are represented by the so-called
Carnot–Carathéodory (or subriemannian) geometries; see [Capogna et al. 1994;
Gromov 1996; Montgomery 2002; Pansu 1982; 1989; 2005; Strichartz 1986;
Vershik and Gershkovich 1994]. In this context, Carnot groups play the role of
modeling the tangent space (in a suitable generalized sense, which is related to
the Gromov–Hausdorff convergence) of a subriemannian manifold; see [Gromov
1996; Montgomery 2002]. For this and many other reasons, Carnot groups are an
intriguing field of research; see [Ambrosio et al. 2006; Balogh 2003; Balogh et al.
2009; Capogna et al. 2010; Cheng et al. 2005; Danielli et al. 2007; 2010; Franchi
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et al. 2001; 2003a; 2003b; 2007; Hladky and Pauls 2008; Magnani 2002; Magnani
and Vittone 2008; Montefalcone 2005; 2007a; Ritoré and Rosales 2008].

A k-step Carnot group .G; � / is an n-dimensional, connected, simply connected,
nilpotent, stratified Lie group (with respect to the group multiplication � ) whose
Lie algebra gŠ Rn satisfies

gD H1˚ � � �˚Hk ; ŒH1;Hi�1�D Hi .i D 2; : : : ; k/; HkC1 D f0g:

We assume that hi D dim Hi (i D 1; : : : ; k) so that n D
Pk

iD1 hi . Any Carnot
group G has a 1-parameter family of dilations, adapted to the stratification, that
makes it a homogeneous group, in the sense of Stein’s definition [1993]. We refer
the reader to Section 1.1 for a more detailed introduction to Carnot groups.

In this paper, we shall prove some geometric inequalities concerning smooth
hypersurfaces immersed in a subriemannian k-step Carnot group G of homogeneous
dimension Q WD

Pk
iD1 ihi . We have to stress that hypersurfaces will be endowed

with the so-called H-perimeter measure �n�1
H

, which is a natural substitute for the
intrinsic .Q�1/-dimensional CC Hausdorff measure. In Section 1.2, we will discuss
some preliminary notions concerning homogeneous measures and the horizontal
geometry of hypersurfaces. Then we will recall some tools which will be important
in the sequel, such as a coarea-type formula and the horizontal integration by parts
theory; see Section 1.3.

In Section 2 we will extend to this setting some isoperimetric-type constants,
introduced in [Cheeger 1970] for compact riemannian manifolds and later studied
in [Yau 1975].

In particular, we shall prove the validity of some global inequalities for smooth
compact hypersurfaces with (or without) boundary, immersed into G. Here, we
would like to remark that there is a strong relationship between these inequalities
and some eigenvalue problems related to the second-order differential operator LHS

(which is nothing but a horizontal version of the Laplace–Beltrami operator); see,
more precisely, Definition 21 in Section 1.2.

Roughly speaking, after defining the isoperimetric constants (in purely geometric
terms), we will show that they are equal to the infimum of some Rayleigh quo-
tients. More precisely, let S � G be a smooth hypersurface and assume @S ¤∅.
Furthermore, set

Isop.S/ WD inf
�n�2

H
.N /

�n�1
H

.S1/
;

where N � S is a smooth hypersurface of S such that N \ @S D∅ and S1 is the
unique .n�2/-dimensional submanifold of S such that N D @S1. We have to stress
that �n�1

H
and �n�2

H
denote homogeneous measures on S1 and N , respectively.

These measures can be thought of, respectively, as the .Q� 1/-dimensional and



GEOMETRIC INEQUALITIES IN CARNOT GROUPS 173

the .Q� 2/-dimensional CC Hausdorff measures on S1 and N ; see Section 1.2.
Then, it will be shown that

Isop.S/D inf

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

;

where the infimum is taken over suitably smooth functions on S such that  j@S D 0.
As mentioned, this constant is related to the first nonzero eigenvalue �1 of the
following Dirichlet-type problem:�

�LHS D � ;

 j@S D 0I

see Definition 21. Indeed, we shall see that

�1 �
.Isop.S//2

4
I

see Corollary 28. Some similar results concerning another isoperimetric constant
will be proved; see Theorem 30 and Corollary 31. The proofs of these results follow
the scheme of the riemannian case, for which we refer the reader to [Yau 1975];
see also [Cheeger 1970] and [Chavel 1984; 1993]. We also remark that the main
technical tool in the original proofs is the coarea formula.

In Section 3 we shall prove two geometric inequalities involving volume, H-
perimeter and the first eigenvalue of the operator LHS on S . These results generalize
an inequality of Chavel [1978] and an inequality of Reilly [1977], respectively.

In Section 4 we will extend to the Carnot setting some classical differential-
geometric results (such as linear isoperimetric inequalities); see, for instance,
[Burago and Zalgaller 1988] and references therein. The starting point is an integral
formula very similar to the euclidean Minkowski formula; see Corollary 20 for a
precise statement. In particular, we will show that

.h� 1/ �n�1
H .S/�R

�ˆ
S

�
jHHjC jCH�Hj

�
�n�1

H C �n�2
H .@S/

�
;

where S � G is a compact hypersurface with boundary and R denotes the radius
of a homogeneous %-ball circumscribed about S . From this linear (isoperimetric)
inequality, it is possible to infer some geometric consequences and, among them,
we prove a weak monotonicity inequality for the H-perimeter; see Section 4.1,
Proposition 38.

Section 5 contains a theorem about nonhorizontal graphs in 2-step Carnot groups.
This generalizes a classical result of Heinz [1955]; see also [Chern 1965].

Let us describe this result in the simpler case of the Heisenberg group H1. So let
S � H1 be a T -graph associated with a function t D f .x;y/ of class C 2 over the
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xy-plane. If the horizontal mean curvature HH of S satisfies a bound jHHj �C > 0,
then

C H2
Eu.Pxy.U//�H1

Eu.Pxy.@U//

for every C 1-smooth relatively compact open set U� S , where Hi
Eu .i D 1; 2/ is

the usual i-dimensional euclidean Hausdorff measure and Pxy is the orthogonal
projection onto the xy-plane. Hence, taking U WDS\Cr .T/, where Cr .T/ denotes
a vertical cylinder of radius r around the T -axis of H1, yields

r �
2

C

for every r > 0. It follows that any entire xy-graph of class C 2, having either
constant or only bounded horizontal mean curvature HH , must be necessarily a
H-minimal surface. An analogous result holds true in the framework of step 2
Carnot groups; see Theorem 42.

In Section 6 we shall study some (local) Poincaré-type inequalities, depending on
the local geometry of the hypersurface S and, more precisely, on its characteristic
set CS ; see Theorems 44 and 45.

For instance, let S � G be a C 2-smooth hypersurface with bounded horizontal
mean curvature HH . Then, we shall prove that for every x 2 S there exists R0 �

dist%.x; @S/ (which explicitly depends on CS ) such that�ˆ
SR

j jp �n�1
H

�1
p

� CpR

�ˆ
SR

jgradHS j
p �n�1

H

�1
p

; p 2 Œ1;C1Œ;

for all  2 C 1
0
.SR/ and all R�R0, where SR WD S \B%.x;R/.

These results are obtained by means of elementary “linear” estimates starting
from the horizontal integration by parts formula, together with a simple analysis of
the role played by the characteristic set. Finally, in Section 6.1 we will prove the
validity of a Caccioppoli-type inequality for weak solutions of the operator LHS.

1.1. Carnot groups. A k-step Carnot group .G; � / is a finite-dimensional con-
nected, simply connected, nilpotent and stratified Lie group with respect to a poly-
nomial group law � . The Lie algebra gŠRn fulfills the conditions gDH1˚� � �˚Hk ,
ŒH1;Hi�1�D Hi for all i D 2; : : : ; kC 1, HkC1 D f0g, where Œ � ; � � denotes the Lie
bracket and each Hi is a vector subspace of g. In particular, we denote by 0 the
identity of G and assume that g Š T0G. We also use the notation H WD H1 and
V WD H2˚ � � �˚Hk . The subspaces H and V are smooth subbundles of TG called
horizontal and vertical, respectively.

Notation 1. Throughout this paper, we denote by PHi
W TG! Hi the orthogonal

projection map from TG onto Hi for any i D 1; : : : ; k. In particular, we set
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PH WDPHi
. Analogously, we set PV W TG! V to denote the orthogonal projection

map from TG onto V .

Let hi WD dim Hi for any i D 1; : : : ; k. Set n0 WD 0 and ni WD
Pi

jD1 hj for any
i D 1; : : : ; k. Note that n1 D h1, n2 D h1C h2, : : : , and nk D n.

Notation 2. Throughout this paper, we set IHi
WD fni�1 C 1; : : : ; nig for any

i D 1; : : : ; k. We also set IV WD fh1C 1; : : : ; ng and use Greek letters ˛, ˇ, 
 , : : : ,
for indices in IV . For the sake of simplicity, we set h WD h1 and IH WD IH1

.

The horizontal bundle H is generated by a frame XH WD fX1; : : : ;Xhg of left-
invariant vector fields. This frame can be completed to a global graded, left-invariant
frame X WD fX1; : : : ;Xng for TG. Note that the standard basis fei W i D 1; : : : ; ng

of Rn can be relabeled to be graded or adapted to the stratification. Any left-
invariant vector field of the frame X is given by Xi.x/ D Lx�ei (i D 1; : : : ; n),
where Lx� denotes the differential of the left-translation Lx , defined by Lxy WDx�y

for all y 2G. We also fix a euclidean metric on gDT0G such that fei W i D 1; : : : ; ng

is an orthonormal basis. This metric gD h � ; � i extends to the whole tangent bundle
by left-translations and makes X an orthonormal left-invariant frame. Therefore
.G;g/ is a riemannian manifold.

Let exp W g! G be the exponential map. Hereafter, we will use exponential
coordinates of the first kind; see [Varadarajan 1974, Chapter 2, p. 88].

As for the case of nilpotent Lie groups, the multiplication � of G is uniquely
determined by the “structure” of the Lie algebra g. This is the content of the Baker–
Campbell–Hausdorff formula; see [Corwin and Greenleaf 1990]. More precisely,

exp.X / � exp.Y /D exp.X ?Y / for all X;Y 2 g;

where ? W g� g! g denotes the Baker–Campbell–Hausdorff product, given by

(1) X ?Y DX CY C 1
2
ŒX;Y �C 1

12
ŒX; ŒX;Y ��� 1

12
ŒY; ŒX;Y ��

C brackets of length� 3:

Using exponential coordinates and (1), the group multiplication � turns out
to be polynomial and explicitly computable; see [Corwin and Greenleaf 1990].
Moreover, 0 D exp.0; : : : ; 0/ and the inverse of x 2 G (x D exp.x1; : : : ;xn/) is
x�1 D exp.�x1; : : : ;�xn/.

A subriemannian metric gH is a symmetric positive bilinear form on the hori-
zontal bundle H. The CC-distance dCC.x;y/ between x, y 2 G is given by

dCC.x;y/ WD inf
ˆ q

gH. P
 ; P
 / dt;

where the infimum is taken over all piecewise-smooth horizontal paths 
 joining x

to y. Later, we shall choose gH WD gjH .
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Carnot groups are homogeneous groups; that is, they admit a 1-parameter group
of automorphisms ıt WG!G (t � 0) defined by ıtx WD exp

�P
j ; ij

tj xij eij

�
, where

x D exp
�P

j ; ij
xij eij

�
2G. As already said, the homogeneous dimension of G is

the integer Q WD
Pk

iD1 ihi coinciding with the Hausdorff dimension of .G; dCC/

as a metric space; see [Montgomery 2002].
We recall that a continuous distance % W G�G! RC [ f0g is a homogeneous

distance if, and only if,

%.x;y/D %.z �x; z �y/ for all x;y; z 2GI %.ıtx; ıty/D t%.x;y/ for all t � 0:

The structural constants of g (see [Chavel 1993]) associated with the frame X

are defined by C r
ij WD hŒXi ;Xj �;Xr i for all i; j ; r D 1; : : : ; n. They are skew-

symmetric and satisfy Jacobi’s identity. The stratification of the Lie algebra g

implies a fundamental “structural” property of Carnot groups: if Xi 2Hl , Xj 2Hm,
then ŒXi ;Xj � 2 HlCm. Note that, if i 2 IHs

and j 2 IHr
, then

(2) C m
ij ¤ 0H)m 2 IHsCr

:

Equivalently, if C r
ij ¤ 0, then ord.i/C ord.j /D ord.r/, where ord W f1; : : : ; ng !

f1; : : : ; kg is the function defined as ord.l/D i” l 2 IHi
.

Notation 3. Henceforth, we shall set

� C ˛
H
WD ŒC ˛

ij �i; jD1; :::;h 2Mh�h.R/ for all ˛ 2 IH2
D fhC 1; : : : ; hC h2g;

� C ˛ WD ŒC ˛
ij �i; jD1; :::;n 2Mn�n.R/ for all ˛ 2 IV D fhC 1; : : : ; ng.

Remark 4. It is important to observe that (2) immediately implies that the matrices
just defined are the only ones which can be nonzero.

Let us define the left-invariant coframe ! WD f!i W i D 1; : : : ; ng dual to X ; i.e.,
!i DX �i for every i D 1; : : : ; n. The left-invariant 1-forms !i for i D 1; : : : ; n are
uniquely determined by the condition !i.Xj /DhXi ;Xj iD ı

j
i for all i; j D1; : : : ; n,

where ıj
i denotes Kronecker delta.

Definition 5. We shall denote by r the unique left-invariant Levi-Civita connection
on G associated with the left-invariant metric g D h � ; � i. Moreover, if X , Y 2

X.H/ WD C1.G;H/, we shall set

r
H
X Y WD PH.rX Y /:

Let X D fX1; : : : ;Xng be the global left-invariant frame on TG. Then

(3) rXi
Xj D

1

2

nX
rD1

�
C r

ij �C i
j r CC

j
ri

�
Xr for all i; j D 1; : : : ; nI

see, for instance, [Milnor 1976, Section 5, pp. 310–311]. Furthermore, we stress
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that rH is a partial connection, called horizontal H-connection; see [Ge 1992] or
[Koiller et al. 2001]; see also [Montefalcone 2007a] and references therein. Using
Definition 5 together with (3) and (2), it is not difficult to show the following:

� rH is flat; i.e.,
r

H
Xi

Xj D 0 for all i; j 2 IHI

� rH is compatible with the subriemannian metric gH; i.e.,

X
˝
Y;Z

˛
D
˝
r

H
X Y;Z

˛
C
˝
Y;rH

X Z
˛

for all X;Y;Z 2 X.H/I

� rH is torsion-free; i.e.,

r
H
X Y �rH

Y X �PH ŒX;Y �D 0 for all X;Y 2 X.H/:

Definition 6. If  2 C1.G/ we define the horizontal gradient of  as the unique
horizontal vector field gradH such that hgradH ;X i D d .X /DX for every
X 2 X.H/. The horizontal divergence of X 2 X.H/, divH X , is defined, at each
point x 2 G, by

divH X.x/ WD Trace
�
Y !rH

Y X
�
.x/ .Y 2 Hx/:

For any Y D
P

j2IH
yj Xj 2 X.H/, we denote by JHY the horizontal Jacobian

matrix of Y ; i.e.,
JHY WD

�
Xi.yj /

�
j ; i2IH

:

Example 7 (Heisenberg group Hn (n � 1)). The Lie algebra hn Š R2nC1 of the
n-th Heisenberg group Hn can be described by means of a left-invariant frame Z WD

fX1;Y1; : : : ;Xi ;Yi ; : : : ;Xn;Yn;T g, where, at each p D exp.x1;y1;x2;y2; : : : ;

xn;yn; t/2Hn, we have set Xi.p/ WD @=@xi�
1
2
yi@=@t , Yi.p/ WD @=@yiC

1
2
xi@=@t

for every i D 1; : : : ; n; T .p/ WD @=@t . One has ŒXi ;Yi �D T for every i D 1; : : : ; n,
and all other commutators vanish, so that T is the center of hn and hn turns out to
be a nilpotent and stratified Lie algebra of step 2; i.e., hn D H˚H2. The structural
constants of hn are described by the skew-symmetric .2n� 2n/-matrix

C 2nC1
H WD

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

0 1 � 0 0

�1 0 � 0 0

� � � � �

0 0 � 0 1

0 0 � �1 0

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ :

1.2. Hypersurfaces. The (riemannian) left-invariant volume form of any Carnot
group G is defined as �n

R WD
Vn

iD1 !i 2
Vn

.T�G/. By integration of the n-form �n
R ,

one obtains the Haar measure of G, which equals the push-forward of the n-
dimensional Lebesgue measure Ln on gŠ Rn. The symbols Hs

CC, Hs
Eu will denote
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the intrinsic CC s-dimensional Hausdorff measure and the euclidean s-dimensional
Hausdorff measure, respectively. (Sometimes we will use the notation �n

R D Voln).
Let S �G be a hypersurface (i.e., a codimension 1 submanifold of G) of class C i

(i � 1). Let � denote the (riemannian) unit normal vector along S . Then x 2 S is a
characteristic point if and only if dim Hx D dim.Hx \TxS/. The characteristic
set of S is given by CS WD fx 2 S W dim Hx D dim.Hx \TxS/g. In other words, a
point x 2 S is noncharacteristic (hereafter abbreviated as NC) if and only if H is
transversal to S at x. Hence, one has CS WD fx 2 S W jPH�.x/j D 0g, where PH
denotes orthogonal projection onto H. It is of fundamental importance that the
.Q� 1/-dimensional CC Hausdorff measure of the characteristic set CS vanishes;
i.e., H

Q�1
CC .CS / D 0; see, for instance, Theorem 6.6.2 in [Magnani 2002]. We

also stress that if S is a hypersurface of class C 2, then precise estimates of the
riemannian Hausdorff dimension of CS can be found in [Balogh et al. 2010]; see
also [Balogh 2003] for the case of the Heisenberg group Hn (n� 1).

The .n� 1/-dimensional riemannian measure along S is defined by integration
of the .n � 1/-differential form �n�1

R S WD .� �n
R /jS , where denotes the

“contraction” operator on differential forms; see [Federer 1969]. We recall that
W
Vk

.T�G/!
Vk�1

.T�G/ is defined, for X 2 TG and ˛ 2
Vk

.T�G/, by setting
.X ˛/.Y1; : : : ;Yk�1/ WD ˛.X;Y1; : : : ;Yk�1/.

At each NC point x 2 S nCS the unit H-normal is defined as

�H WD
PH�

jPH�j
:

Similarly to the riemannian case, we define an .n� 1/-differential form �n�1
H
2Vn�1

.T�S/ by setting

�n�1
H S WD .�H �n

R /jS :

By integration of �n�1
H

S , one gets a left-invariant and .Q� 1/-homogeneous
measure, which is called H-perimeter measure. This measure can be extended to
the whole of S by setting �n�1

H
CS D 0. Note that �n�1

H
S D jPH�j �

n�1
R S .

Furthermore, denoting by S
Q�1
CC the .Q� 1/-dimensional spherical intrinsic CC

Hausdorff measure (i.e., associated with the CC-distance dCC), then

�n�1
H .S \B/D k.�H/S

Q�1
CC .S \B/ for all B 2Bor.G/;

where the density-function k.�H/, called metric factor, explicitly depends on �H

and dCC; see [Magnani 2002].
At each NC point x 2 S nCS , the horizontal tangent bundle HS WDH\TS� TS

and the horizontal normal bundle �HS � H split the horizontal bundle H into
an orthogonal direct sum; i.e., H D �H ˚HS . The stratification of g induces a
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stratification of TS WD ˚k
iD1

HiS , where we have set HS WD H1S ; see [Gromov
1996]. Note that at any characteristic point x 2 CS one has Hx D HxS , so that

dim.HxS/D

�
h� 1 if x 2 S nCS ;

h if x 2 CS :

Notation 8. Throughout this paper, we denote by PHS W TS! HS the orthogonal
projection map from TS onto HS.

Now let S � G be a hypersurface of class C 2 and let rTS denote the induced
connection on S fromr. The tangential connectionrTS induces a partial connection
on HS defined by

r
HS
X Y WD PHS

�
r

TS
X Y

�
for all X;Y 2 X1.HS/ WD C 1.S;HS/:

It turns out that

r
HS
X Y DrH

X Y �
˝
r

H
X Y; �H

˛
�H for every X;Y 2 X1.HS/I

see [Montefalcone 2007a].

Definition 9 (see [Montefalcone 2007a]). We call HS-gradient of  2 C 1.S/ the
unique horizontal tangent vector field gradHS such that

hgradHS ;X i D d .X /DX for all X 2 X1.HS/:

We denote by divHS the HS-divergence; i.e., if X 2 X1.HS/ and x 2 S , then

divHS X.x/ WD Trace
�
Y !rHS

Y X
�
.x/ .Y 2 HxS/:

The HS-Laplacian �HS is the second-order differential operator defined as

�HS WD divHS.gradHS / for every  2 C 2.S/:

The horizontal second fundamental form of S nCS is the map given by

BH.X;Y / WD
˝
r

H
X Y; �H

˛
for all X;Y 2 X1.HS/:

The horizontal mean curvature HH is the trace of BH; i.e., HH WDTr BHD� divH �H .

It is worth observing that the HS-connection admits, in general, a nonzero torsion
because BH is not symmetric; see [Montefalcone 2007a].

Definition 10. Let U � S be an open set. We shall denote by C i
HS.U/ (i D 1; 2)

the space of functions whose HS-derivatives up to i -th order are continuous on U.

We stress that the previous definitions concerning the horizontal second fundamen-
tal form BH. � ; � / and the HS-connection can also be reformulated by using the func-
tion space C i

HS.U/ (iD1; 2) and, more precisely, by replacing X1.HS/DC 1.S;HS/
with X1

HS.HS/ WD C 1
HS.S;HS/.
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Let S �G be a hypersurface of class C i (i � 1) and let � be the outward-pointing
unit normal vector field along S . We need to define some important geometric
objects. To this end, we first note that � D PH�CPV�. By using the left-invariant
frame X D fX1; : : : ;Xng, we see that PV� D

P
˛2IV

�˛X˛ , where �˛ WD h�;X˛i;
see Notation 2.

Notation 11. Hereafter we shall set

� $˛ WD
�˛
jPH�j

for all ˛ 2 IV ;

� $ WD
P
˛2IV

$˛X˛;

� CH WD
P
˛2IH2

$˛ C ˛
H

;

see, for instance, Notation 3 and Remark 4.

1.3. Other tools. Let S � G be a hypersurface of class C i (i � 1). Let @S be
an .n� 2/-dimensional submanifold of S of class C 1, oriented by the outward
pointing unit normal vector � 2 TS \ Nor.@S/. We shall denote by �n�2

R the
riemannian measure on @S ; i.e., �n�2

R @S D .� �n�1
R /j@S . In particular, note

that .X �n�1
H

/j@SDhX; �ijPH�j �
n�2
R @S for every X 2X1.TS/ WDC 1.S;TS/.

The unit HS-normal along @S is given by �HS WD PHS�=jPHS�j. In this way, we
can define a homogeneous .n� 2/-dimensional measure �n�2

H
2
Vn�2

.T�@S/ by
setting �n�2

H
@S WD .�HS �n�1

H
/j@S . It follows that

�n�2
H @S D jPH�jjPHS�j �

n�2
R @S

and that .X �n�1
H

/j@S D hX; �HSi �
n�2
H

@S for all X 2X1.HS/ WDC 1.S;HS/.
Now let � ^ � 2ƒ2.TS/ be a unit 2-vector orienting @S , where � 2 Nor.S/ and

� 2 TS\Nor.@S/. Then, the characteristic set of @S is defined as

C@S WD fp 2 @S W jPH.� ^ �/j D 0g;

where the orthogonal projection operator PH is extended to 2-vectors in the standard
way.

Proposition 12. Let S � G be a compact hypersurface of class C 1 and let � 2
C 1

HS.S/. Then

(4)
ˆ

S

jgradHS�.x/j �
n�1
H .x/D

ˆ
R

�n�2
H f��1Œs�\Sg ds:

Proof. This formula follows from the riemannian coarea formula; see [Burago and
Zalgaller 1988], [Chavel 2001] or [Montefalcone 2009]. We haveˆ

S

�.x/jgradTS'.x/j �
n�1
R .x/D

ˆ
R

ds

ˆ
'�1Œs�\S

�.y/ �n�2
R .y/
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for every � 2L1.S; �n�1
R /; see [Burago and Zalgaller 1988; Chavel 2001]. Choos-

ing

� D
jgradHS'j

jgradTS'j
jPH�j

yieldsˆ
S

�jgradTS'j �
n�1
R D

ˆ
S

jgradHS'j

jgradTS'j
jgradTS'j jPH�j �

n�1
R„ ƒ‚ …

D�n�1
H

D

ˆ
S

jgradHS'j �
n�1
H :

The (riemannian) unit normal � along '�1Œs� is given by �D gradTS'=jgradTS'j.
Hence jPHS�j D jgradHS'j=jgradTS'j and it turns out thatˆ

R

ds

ˆ
'�1Œs�\S

�.y/ �n�2
R D

ˆ
R

ds

ˆ
'�1Œs�\S

jgradHS'j

jgradTS'j
jPH�j �

n�2
R

D

ˆ
R

ds

ˆ
'�1Œs�\S

jPHS�jjPH�j �
n�2
R„ ƒ‚ …

D�n�2
H

D

ˆ
R

ds

ˆ
'�1Œs�\S

�n�2
H : �

Below, we recall a basic integration by parts formula for horizontal vector fields;
see [Montefalcone 2007a].

Definition 13. Let DHS W X
1
HS.HS/! C.S/ be the first-order differential operator

given by

DHSX WD divHS X ChCH�H;X i for all X 2 X1
HS.HS/

�
WD C 1

HS.S;HS/
�
:

Furthermore, let LHS W C
2
HS.S/! C.S/ be the second-order differential operator

given by

LHS' WD�HS'ChCH�H; gradHS'i for all ' 2 C 2
HS.S/I

see Definition 9 and Notation 11.

The horizontal matrix CH is a key object, related to the skew-symmetric part
of the horizontal second fundamental form BH . Note that DHS.'X /D 'DHSX C

hgradHS';X i for every X 2 X1
HS.HS/ and every ' 2 C 1

HS.S/. Moreover, one has
LHS' D DHS.gradHS'/ for every ' 2 C 2

HS.S/. These definitions are motivated by
Theorem 3.17, Corollary 3.18 and Corollary 3.19 in [Montefalcone 2007a].

Theorem 14 (see [Montefalcone 2007a]). Let S be a compact NC hypersurface of
class C 2 with boundary @S of class C 1. Then

(5)
ˆ

S

DHSX �n�1
H D�

ˆ
S

HHhX;�Hi�
n�1
H C

ˆ
@S

hX; �HSi�
n�2
H for all X 2X1.H/:
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Remark 15. We note that, in general, HH … L1
loc.S I �

n�1
R /; see [Danielli et al.

2012]. However, it is always true that HH 2 L1
loc.S I �

n�1
H

/; see, for instance,
[Montefalcone 2012].

Remark 16. Let S �G be a hypersurface of class C 2 and � the outward-pointing
unit normal vector along S . For any X 2 X.G/ let us set X? WD hX; �i� and
X> WDX �X? to denote the riemannian normal and tangential components of X

at any point of S . We would like to stress that formula (5) can be seen as a
particular case of a general integral formula, the so-called first variation formula of
the H-perimeter. More precisely, the first variation formula is given by

(6) IS .X; �
n�1
H /D

ˆ
S

�
�HHhX

?; �iC divTS
�
X>jPH�j � hX

?; �i�>H
��
�n�1

R ;

where IS .X; �
n�1
H

/ denotes the first derivative of the H-perimeter under a smooth
variation of S with initial velocity X ; see [Montefalcone 2012, Theorem 4.6].
Formula (6) also holds if CS ¤ ∅, but in this case we need to assume HH 2

L1
loc.S I �

n�1
R /. We observe that, in the case of the first Heisenberg group H1, this

formula coincides with that of Ritoré and Rosales [2008, Lemma 4.3, p. 14]. Note
that, if X DXH 2 X.H/, then

X>H jPH�j � hX
?
H ; �i�

>
H

D
�
XH � jPH�jhXH; �Hi�

�
jPH�j � jPH�jhXH; �i

�
�H � jPH�j�

�
D
�
XH � hXH; �i�H

�
jPH�j D PHS.XH/ jPH�j;

where we have used the fact that � D jPH�j�HC
P
˛2IV

�˛X˛ at each NC point.
Finally, inserting this into (6), we obtain an equivalent form of (5). In particular, for
any X 2X.H/ the function DHSX turns out to be the Lie derivative of the differential
.n� 1/-form �n�1

H
S with respect to the initial velocity X of a smooth variation

of S . Roughly speaking, this can be rephrased by saying that the differential
.n�1/-form .DHSX / �n�1

H
2ƒn�1.T�S/ is the “infinitesimal” first variation of S .

Formula (5) holds true even if CS ¤∅, at least under suitable assumptions.

Definition 17. Let X 2 C 1.S n CS ;HS/ and set ˛X WD .X �n�1
H

/jS . We say
that X is admissible (for the horizontal divergence formula) if the differential
forms ˛X and d˛X are continuous on all of S , or, more generally, if ˛, d˛ 2L1.S/

and {�
S
˛ 2 L1.@S/. We say that � 2 C 2

HS.S n CS / is admissible if gradHS� is
admissible for the horizontal divergence formula.

We stress that, if the differential forms ˛X and d˛X are continuous on all of S

(or, more generally, if ˛; d˛ 2L1.S/ and {�
S
˛ 2L1.@S/, where {S W @M !M

is the natural inclusion), then Stokes’ formula holds true; see, for instance, [Taylor
2006]. This fact motivates the following:
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Corollary 18. Let S �G be a compact hypersurface of class C 2 with boundary @S
of class C 1. Then:

(i)
´

S DHSX �n�1
H
D
´
@S hX; �HSi �

n�2
H

for every admissible X 2C 1.S nCS ;HS/.

(ii)
´
S LHS��

n�1
H
D
´
@S hgradHS�;�HSi�

n�2
H

for every admissible �2C 2
HS.SnCS /.

(iii) If @S D∅, then

�

ˆ
S

'LHS' �
n�1
H D

ˆ
S

jgradHS'j
2 �n�1

H

for every ' 2 C 2
HS.S nCS / such that '2 is admissible.

The last formula holds even if @S ¤∅, but for compactly supported functions.
One can show that '2 is admissible if and only if ' 2C 2

HS.SnCS /\W
1;2

HS .S; �
n�1
H

/,
where we have set W

1;2
HS .S;�

n�1
H

/ WDf'2L2.S;�n�1
H

/ W jgradHS'j2L2.S;�n�1
H

/g.
We also remark that any vector field X 2 C 1.S;HS/ turns out to be admissible.
Analogously, any ' 2 C 2

HS.S/ is admissible.

Lemma 19. Let xH WD
P

i2IH
xiXi be the “horizontal position vector” and let gH

denote its component along the H-normal �H; i.e., gH WD hxH; �Hi. In the sequel,
the function gH will be called “horizontal support function” of xH . Then, we have:

.i/ divH xH D h;

.ii/ DHS.xHS/ D .h� 1/C gHHH C hCH�H;xHSi at each NC point x 2 S n CS ,
where xHS WD xH � gH�H .

Proof. We have divH xHD
Ph

iD1hrXi
xH;XiiD

Ph
i; jD1

�
Xi.xj /ChrXi

Xj ;Xii
�
DPh

i; jD1 ı
j
i D h, where ıj

i denotes Kronecker’s delta; here we have used JH.xH/D

Idh and hrXi
Xj ;Xii D 0 for all i , j 2 IH; see Definition 6 and formula (6).

Furthermore, by definition, one has divHS xH D divH xH � hr�H xH; �Hi. Hence
divHS xH D h� h�H; �Hi D h� 1. Furthermore, by definition, we have

(7) divHS xHS D

hX
iD2

˝
r�i

.xH � gH�H/; �i

˛
;

where we have used an orthonormal horizontal frame � H WD f�1; : : : ; �hg in an open
neighborhood U � G of S such that �1.x/ D �H.x/ at any x 2 S nCS ; see, for
instance, Definition 3.4 in [Montefalcone 2007a]. Starting from (7), we compute

divHS xHSD

hX
iD2

�
h�i ; �ii�gHhr

H
�i
�H; �i

i
�
D .h�1/�gH divH �HD .h�1/CgHHH

for every x 2 S nCS . The thesis easily follows from the definition of DHS. �

A simple consequence of Corollary 18 and Lemma 19 is given by the following:
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Corollary 20 (Minkowski-type formula). Let S � G be a compact hypersurface of
class C 2. Let xH D

P
i2IH

xiXi be the horizontal position vector. Furthermore, set
gH D hxH; �Hi and xHS D x� gH�H for every x 2 S nCS . Thenˆ

S

�
.h� 1/C gHHHChCH�H;xHSi

�
�n�1

H D 0:

Proof. It is enough to apply Corollary 18 to the horizontal tangent vector field xHS 2

C 1.S nCS ;HS/. Using Remark 15 and Lemma 19 the thesis easily follows. �
Definition 21 (eigenvalue problems for LHS). Let S �G be a compact hypersurface
of class C 2 without boundary. Then we look for solutions of class C 2

HS.S nCS /\

W
1;2

HS .S; �
n�1
H

/ to the problem

.P1/

�
�LHS D � I´

S  �
n�1
H
D 0:

If @S ¤ ∅, we look for solutions of class C 2
HS.S nCS /\W

1;2
HS .S; �

n�1
H

/ to the
problems

.P2/

�
�LHS D � I

 j@S D 0I
.P3/

(
�LHS D � I
@ 

@�HS

ˇ̌̌
@S
D 0:

We explicitly remark that @ =@�HS D hgradHS ; �HSi.

The problems (P1), (P2) and (P3) generalize to our context the classical closed,
Dirichlet and Neumann eigenvalue problems for the Laplace–Beltrami operator on
riemannian manifolds; see [Chavel 1984; 1993].

Finally, we recall a recent general result about the size of horizontal tangencies
to noninvolutive distributions, which applies to our Carnot setting; see Theorem 4.5
in [Balogh et al. 2010].

Theorem 22 (generalized Derridj’s theorem). Let G be a k-step Carnot group.

(i) If S �G is a hypersurface of class C 2, the euclidean-Hausdorff dimension of
the characteristic set CS of S satisfies dimEu-Hau.CN /� n� 2:

(ii) If V D H? � TG satisfies dim V � 2 and N � G is an .n� 2/-dimensional
submanifold of class C 2, then the euclidean-Hausdorff dimension of the char-
acteristic set CN of N satisfies dimEu-Hau.CN /� n� 3:

Remark 23. Let N �G be an .n� 2/-dimensional submanifold of class C 2. This
smoothness condition is sharp; see [Balogh et al. 2010]. Moreover, we stress
that dim V D 1 just for Heisenberg groups and 2-step Carnot groups having 1-
dimensional center. For Heisenberg groups Hn, n> 1, using Frobenius’ theorem
yields dimEu-Hau.CN /� n, where nD 1

2
dim H; see also [Balogh et al. 2010]. On

the contrary, 1-dimensional curves in H1 can be horizontal or transversal to H. For
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2-step groups having 1-dimensional center (or, equivalently, horizontal bundle H of
codimension 1) a simple analysis shows that dimEu-Hau.CN /D n�2 if, and only if,
G reduces to the direct product of H1 and of a euclidean space Rh�2.

2. Isoperimetric constants and the first eigenvalue of LHS
on compact hypersurfaces

As a consequence of the coarea formula (4) we may generalize to the Carnot groups
setting some results about isoperimetric constants and global Poincaré inequalities
for which we refer the reader to [Chavel 1984; 1993]; see also [Cheeger 1970; Yau
1975].

Let S � G be a compact hypersurface of class C 2 with (or without) boundary.
Similarly as in the riemannian setting (see [Cheeger 1970; Yau 1975]), we may
give the following:

Definition 24. The isoperimetric constant Isop.S/ of S is defined as follows:

� If @S D∅, we set

Isop.S/ WD inf
�n�2

H
.N /

min
˚
�n�1

H
.S1/; �

n�1
H

.S2/
	 ;

where the infimum is taken over all C 2-smooth .n� 2/-dimensional subman-
ifolds N of S which divide S into two hypersurfaces S1, S2 with common
boundary N D @S1 D @S2.

� If @S ¤∅, we set

Isop.S/ WD inf
�n�2

H
.N /

�n�1
H

.S1/
;

where N � S is a smooth hypersurface of S such that N \ @S D∅ and S1

is the unique C 2-smooth .n � 2/-dimensional submanifold of S such that
N D @S1.

Here @S , S1, S2 and N D @Si (i D 1; 2) are not assumed to be connected.

This definition requires some comments. As recalled in the introduction, in the
riemannian setting analogous isoperimetric constants were introduced in [Cheeger
1970], in order to give a geometric lower bound for the smallest eigenvalue of
the Laplace–Beltrami operator on smooth compact riemannian manifolds. This
definition was somewhat motivated by an example of Calabi, the so-called dumbbell
manifold, homeomorphic to S2. Actually, an analysis of this example shows that,
in order to bound � from below, the diameter and the volume are not enough.

We also have to recall that these isoperimetric constants turn out to be strictly
positive. Although this claim turns out to be (more or less) elementary in dimension
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n D 2, it becomes a bit more difficult when n > 2; see [Cheeger 1970]. Some
years after Cheeger’s result, Yau [1975] reconsidered the isoperimetric constants
and demonstrated that � has a bound in terms of volume, diameter and (of a lower
bound of the) Ricci curvature. See the survey [Li 1982] for a glimpse on this topic.

Below we shall generalize some of the results of [Yau 1975]. Our results will
follow the original scheme, which is based mainly on a suitable use of the coarea
formula for smooth functions. Note also that, instead of C1-smooth hypersurfaces,
here we are considering hypersurfaces of class C 2. We have to observe that all the
results could also be stated for C 1 hypersurfaces. But the delicate matter here is
that in our setting, new difficulties come from the presence of characteristic points
and, in the C 1 case, it is not simple to prove that isoperimetric constants are strictly
positive. Actually, the following further hypothesis seems to be unavoidable in
order to have nonzero isoperimetric constants:

.H/ Every C 2-smooth .n� 2/-dimensional submanifold N � S satisfies

dim CN < n� 2:

This assumption can be overcome by using the generalized Derridj’s theorem,
(Theorem 22); see also Remark 23. As a consequence, the results of this section
are “meaningful” (in the sense that the isoperimetric constants do not vanish) at
least for any Carnot group G such that dim V � 2 and for all Heisenberg groups
Hn, with n> 1.

Theorem 25. Let S � G be a compact hypersurface of class C 2.

(i) If @S D∅, then

Isop.S/D inf

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

;

where the infimum is taken over all C 2-smooth functions on S such that´
S  �

n�1
H
D 0.

(ii) If @S ¤∅, then

Isop.S/D inf

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

;

where the infimum is taken over all C 2-smooth functions on S such that
 j@S D 0.

Warning 26. The definition of Isop.S/ can be weakened. For instance, part (i)
of Definition 24 can be given by assuming S of class C 1 and then by taking the
infimum over all .n� 2/-dimensional submanifolds N of S of class C 1 which
divide S into two hypersurfaces S1, S2 with common boundary N D @S1 D @S2.



GEOMETRIC INEQUALITIES IN CARNOT GROUPS 187

In this case, Theorem 25(i) holds, without modifications, by taking the infimum
over C 1

HS-smooth functions. If @S ¤ ∅ an analogous claim holds, for the other
isoperimetric constant. Furthermore, equivalent remarks can be given for all the
results of this section. Nevertheless, as already said, this weaker formulation seems
to be less meaningful because of the presence of characteristic points.

Warning 27. Throughout this section, we shall fix a homogeneous distance % on G

of class C 1 outside the diagonal of G.

Proof of Theorem 25. The proof repeats almost verbatim the arguments of Theorem 1
in [Yau 1975]. We just prove the theorem for @S D ∅ since the other case is
analogous. First, let us prove the inequality

Isop.S/� inf

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

;

where  2 C 2.S/ and
´

S  �
n�1
H
D 0. To prove this inequality let us consider the

auxiliary functions  C Dmaxf0;  g;  � Dmaxf0;� g. By applying the coarea
formula (4) and the definition of Isop.S/ we get that
ˆ

S

jgradHS 
˙
j �n�1

H D

ˆ C1
0

�n�2
H fx 2S W ˙D tg dt � Isop.S/

ˆ
S

j ˙j �n�1
H :

Now we shall prove the reversed inequality. So let us assume that �n�1
H

.S1/ �

�n�1
H

.S2/ and let � > 0. By making use of the fixed homogeneous distance % on G,
we now define a function  � W S ! R by setting

(8)  �.x/jS1
WD

(%.x;N /

�
if %.x;N /� �;

1 if %.x;N / > �;

 �.x/jS2
WD

(
�˛

%.x;N /

�
if %.x;N /� �;

�˛ if %.x;N / > �;

where the constant ˛ depends on � and is chosen in a way that
´

S  � �
n�1
H
D 0.

Obviously

lim
�!0

˛ D
�n�1

H
.S1/

�n�1
H

.S2/
:

Sinceˆ
S

jgradHS �j �
n�1
H D

1C˛

�

ˆ
N� WD fx2S W%.x;N /� �g

jgradHS%.x;N /j �n�1
H

D
1C˛

�

ˆ �

0

�n�2
H fx 2N� W %.x;N /D tg dt;
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one gets

lim
�!0

ˆ
S

jgradHS �j �
n�1
H D .1C˛/ �n�2

H .N /:

Moreover lim�!0

´
S j �j �

n�1
H
D �n�1

H
.S1/C˛ �

n�1
H

.S2/. Putting it all together
we get

inf
 

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

� lim
�!0

´
S jgradHS �j �

n�1
H´

S j �j �
n�1
H

�
�n�1

H
.N /

�n�2
H

.S1/
:

If we take the infimum over N and S1, the inequality follows. �

Corollary 28. Let �1 be the first nonzero eigenvalue of either the closed eigenvalue
problem or the Dirichlet eigenvalue problem (see Definition 21). Then we have
�1 �

1
4
.Isop.S//2.

Proof. We just prove the first claim, as the second claim is similar. Let  be an
eigenfunction of LHS corresponding to �1. Then

�1D�

´
S LHS �

n�1
H´

S j j
2�n�1

H

D

´
S jgradHS j

2�n�1
H´

S j j
2�n�1

H

D

´
S jgradHS j

2�n�1
H�´

S j j
2�n�1

H

�2 ˆ
S

j j2�n�1
H

�

�´
S j jjgradHS j�

n�1
H

�2�´
S j j

2�n�1
H

�2 D
1

4

�´
S jgradHS 

2j�n�1
H

�2�´
S  

2�n�1
H

�2 �
.Isop.S//2

4
;

where we have used Theorem 25 together with the Cauchy–Schwarz inequality. �

We now extend, to Carnot groups, another isoperimetric constant and some
related facts which, in the riemannian case, were studied in [Yau 1975].

Definition 29. The isoperimetric constant Isop0.S/ of any C 2-smooth compact
hypersurface S � G with boundary @S is given by

Isop0.S/ WD inf
�

�n�2
H

.@S1\ @S2/

min
˚
�n�1

H
.S1/; �

n�1
H

.S2/
	�;

where the infimum is taken over all decompositions S D S1 [ S2 such that
�n�1

H
.S1\S2/D 0.

Theorem 30. Let S � G be a compact hypersurface of class C 2 with boundary.
Then

Isop0.S/D inf
� ´

S jgradHS j �
n�1
H

infˇ2R

´
S j �ˇj �

n�1
H

�
;

where the infimum is taken over all C 2-functions defined on S .
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Proof. The proof is analogous to that of Theorem 6 in [Yau 1975]. First, let us
prove the inequality

Isop.S/� inf

´
S jgradHS j �

n�1
H´

S j j �
n�1
H

:

To this end, let us define the functions C WDmaxf0;  �kg, � WD�minf0;  �kg,
where k 2 R is any constant such that

�n�1
H fx 2 S W  C > 0g � 1

2
�n�1

H .S/; �n�1
H fx 2 S W  � > 0g � 1

2
�n�1

H .S/:

By using again the coarea formula (4) together with the definition of Isop0.S/ we
get that
ˆ

S

jgradHS 
˙
j �n�1

H D

ˆ C1
0

�n�2
H fx 2S W ˙D tg dt � Isop.S/

ˆ
S

j ˙j �n�1
H :

We prove the other inequality. Assuming �n�1
H

.S1/ � �
n�1
H

.S2/ and � > 0, we
define the function

(9)  �.x/jS1
WD1;  �.x/jS2

WD

8<:1�
%.x; @S1\@S2/

�
if %.x; @S1\@S2//��;

0 if %.x; @S1\@S2//>�:

Furthermore, one can find a constant k.�/ satisfying
ˆ

S

j � � k.�/j �n�1
H D inf

ˇ2R

ˆ
S

j � �ˇj �
n�1
H

and such that k.�/! 0 for �! 0C. Hence

lim
�!0

� ´
S jgradHS �j �

n�1
H

infˇ2R

´
S j � �ˇj �

n�1
H

�
�

�n�2
H

.@S1\ @S2/

min
˚
�n�1

H
.S1/; �

n�1
H

.S2/
	 : �

Corollary 31. Let S � G be a compact hypersurface of class C 2. Then

(10)
ˆ

S

j � kj2 �n�1
H �

4

.Isop0.S//
2

ˆ
S

jgradHS j
2 �n�1

H

for every  2 C 2.S/ and every k 2 R such that

�n�1
H fx 2 S W  � kg � 1

2
�n�1

H .S/; �n�1
H fx 2 S W  � kg � 1

2
�n�1

H .S/:

Furthermore, if  2 C 2.S/ and
´

S  �
n�1
H
D 0, then

(11)
ˆ

S

j j2 �n�1
H �

4

.Isop0.S//
2

ˆ
S

jgradHS j
2 �n�1

H :
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Proof. One has
´

S . 
C � �/ �n�1

H
D 0, where the functions  ˙ are defined as in

the proof of Theorem 30. Moreover, by using once more coarea formula, we getˆ
S

j �kj2�n�1
H D

ˆ
S

j CC �j2�n�1
H �

ˆ
S

j Cj2�n�1
H C

ˆ
S

j �j2�n�1
H

�
1

Isop0.S/

�ˆ
S

jgradHS . 
C/2j�n�1

H C

ˆ
S

jgradHS . 
�/2j�n�1

H

�
�

2

Isop0.S/

ˆ
S

. CC �/jgradHS j�
n�1
H

�
2

Isop0.S/
k CC �kL2.S I�n�1

H
/kgradHS kL2.S I�n�1

H
/:

This proves (10). In order to prove (11) we note that the hypothesis
´

S  �
n�1
H
D 0

actually implies that ˆ
S

 2 �n�1
H D inf

k2R

ˆ
S

. � k/2 �n�1
H ;

which, together with (10), implies the thesis of the theorem. �

3. Two upper bounds on �1

Below we shall extend two (nowadays classical) inequalities obtained, respectively,
by Chavel and Reilly in the euclidean/riemannian setting. An important feature of
these results is that they give explicit upper bounds for the first nontrivial eigenvalue
(of the Laplacian) of a compact submanifold of Rn. For further details we refer to
[Chavel 1978] and [Reilly 1977]; see also [Heintze 1988]. To begin with, let �¨G

be a bounded domain and assume that S WD @� is a connected hypersurface of
class C 2, with orientation given by the outward normal vector �. Moreover, let xH
be the horizontal position vector field and let us apply the usual divergence formula.
We also set �n

R D Voln. We have

h Voln.�/D
ˆ
�

divH xH �
n
R D

ˆ
@�

hxH; �i �
n�1
R D

ˆ
S

hxH; �Hi �
n�1
H ;

where we have used Lemma 19(i). Furthermore, we may further assume that
the “center of mass” of @� (with respect to the H-perimeter) is placed at the
identity 0 2 G. In other words, let us assume that

´
S xi �

n�1
H
D 0 for every

i 2 IH D f1; : : : ; hg, where xH � .x1; : : : ;xi ; : : : ;xh/ is the horizontal position
vector; see Lemma 19.

The last assumption is justified by the following:

Lemma 32. Let S � G be a compact hypersurface of class C i (i � 1). We can
always choose a system of exponential coordinates x D exp.x1; : : : ;xn/ on G such
that
´

S xi �
n�1
H

.x/D 0 for every i 2 IH D f1; : : : ; hg.
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Proof. Let

ai WD

´
S xi �

n�1
H

.x/

�n�1
H

.S/
for all i 2 IH D f1; : : : ; hg

and aH � .a1; : : : ; ai ; : : : ; ah/. Set a WD exp.aH; 0V/, where the symbol 0V denotes
the origin of V � g. Consider the change of variables y WDˆ.x/D a�1

�x (x 2G).
Equivalently, we have ˆ.x/ D La�1.x/, where La�1 is the left-translation by
a�1 D�a; see Section 1.1. The usual change of variables formula together with
standard properties of the pull-back imply the following chain of equalities:

(12)
ˆ
ˆ.S/

f .y/ �n�1
H .y/D

ˆ
S

f .ˆ.x//Jac.ˆ/.x/ �n�1
H .x/

D

ˆ
S

ˆ�
�
f �n�1

H

�
D

ˆ
S

.f ıˆ/
�
ˆ� �n�1

H

�
for every smooth function f W S ! R; see, for instance, [Lee 2003, Lemma 9.11,
p. 214]. Using the left-invariance of the H-perimeter yields Jac.ˆ/D 1, or equiv-
alently, ˆ��n�1

H
D �n�1

H
. Now, let us assume that f .y/ WD yi for any i 2 IH .

Equivalently, let f be the i-th exponential coordinate of the variable y 2G. Note
also that .f ıˆ/.x/ D ˆi.x/ D �ai C xi for any i 2 IH . Actually, this follows
from the fact that the group law � acts linearly on the horizontal layer; see (1). Then,
using (12) yieldsˆ

ˆ.S/

yi �
n�1
H .y/D

ˆ
S

.�ai Cxi/ �
n�1
H .x/D 0 for all i 2 IH;

which achieves the proof. �
We therefore get that

h Voln.�/D
ˆ

S

hxH; �Hi �
n�1
H �

ˆ
S

jxHj �
n�1
H �

q
�n�1

H
.S/

ŝ
S

jxHj
2 �n�1

H

D

q
�n�1

H
.S/

ŝ
S

X
i2IH

x2
i �

n�1
H
�

s
�n�1

H
.S/

�1

ŝ
S

X
i2IH

jgradHS xi j
2�n�1

H
;

where the last identity follows from Lord Rayleigh’s characterization of the first
nontrivial eigenvalue �1 of the operator LHS on S . Now a direct computation gives
the pointwise identity

P
i2IH
jgradHS xi j

2 D h� 1. Hence, putting it all together,
we have shown the following:

Theorem 33. Let �¨G be a bounded domain with C 2 boundary S D @D. Let �1

be the first (nontrivial) eigenvalue of the operator LHS on S . Thenp
�1

Voln.�/

�n�1
H

.S/
�

p
h� 1

h
:
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We now discuss another geometric inequality, which looks very similar to the
last one. More precisely, let S be a C 2-smooth compact hypersurface without
boundary. So let us make use of Rayleigh’s principle:

�1

ˆ
S

'2 �n�1
H �

ˆ
S

jgradHS'j
2 �n�1

H

for any function ' 2 C 2.S nCS /\W 1;2
HS.S; �

n�1
H

/ satisfying
´

S ' �
n�1
H
D 0.

Again, we assume that the center of mass of S D @� is placed at 0 2 G so that´
S xi �

n�1
H
D 0 for every i 2 IH . Hence, similarly as above, we get that

�1

ˆ
S

jxHj
2�n�1

H D�1

X
i2IH

ˆ
S

x2
i �

n�1
H ��1

X
i2IH

ˆ
S

jgradHS xi j
2�n�1

H D.h�1/�n�1
H .S/:

At this point, we reformulate Corollary 20 as follows:
ˆ

S

�
.h� 1/C

˝
.HH�HCCH�H/;xH

˛�
�n�1

H D 0:

From this identity and the Cauchy–Schwarz inequality, we easily get that

.h� 1/ �n�1
H .S/�

sˆ
S

jxHj
2 �n�1

H

sˆ
S

ˇ̌
HH�HCCH�H

ˇ̌2
�n�1

H

�

sˆ
S

jxHj
2 �n�1

H

sˆ
S

�
H2

HCjCH�Hj
2
�
�n�1

H
:

Therefore �
.h� 1/ �n�1

H
.S/

�2
´

S

�
H2

HCjCH�Hj
2
�
�n�1

H

�

ˆ
S

jxHj
2 �n�1

H

and hence

�1

�
.h� 1/ �n�1

H
.S/

�2
´

S

�
H2

HCjCH�Hj
2
�
�n�1

H

� .h� 1/ �n�1
H .S/;

which proves the following:

Theorem 34. Let �¨ G be a bounded domain with C 2 boundary S D @D and �
the outward-pointing unit normal vector along S . Let �1 be the first eigenvalue of
the operator LHS on S . The following upper bound for �1 holds:

�1 �

´
S

�
H2

HCjCH�Hj
2
�
�n�1

H

.h� 1/ �n�1
H

.S/
D

ffl
S

�
H2

HCjCH�Hj
2
�
�n�1

H

h� 1
:
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4. Horizontal linear isoperimetric inequalities

Let S � G be a compact hypersurface of class C 2 with (or without) boundary.
Let xH be the horizontal position vector of S and set xHS WD xH � gH�H where
gH D hxH; �Hi is the horizontal support function of S ; see Lemma 19. We recall
that

(13)
ˆ

S

�
.h� 1/C gHHHChCH�H;xHSi

�
�n�1

H D

ˆ
@S

hxH; �HSi �
n�2
H I

see Corollary 20. Note that, if @S D∅, then the boundary integral vanishes. From
this we easily get that
(14)

.h�1/�n�1
H .S/�

ˆ
S

�
jgHjjHHjCjhCH�H;xHSij

�
�n�1

H C

ˆ
@S

jhxH; �HSij�
n�2
H :

Remark 35 (assumptions on %). Let %.x/ D %.0;x/ D kxk% be a homogeneous
norm on G and let %.x;y/D ky�1

�xk% be the associated (homogeneous) distance
on G. In this section we assume the following:

(i) % is piecewise C 1 outside the diagonal of G;

(ii) jgradH%j � 1 at each regular point of %;

(iii) jxHj � %.x; 0/ for all x 2 G.

Example 36. On the Heisenberg group Hn, the CC-distance dCC satisfies these
assumptions. Another example is the distance associated with the Koranyi norm

defined by kxk% WD %.x/D 4

q
jxHj

4C 16t2 for xD exp.xH; t/ 2Hn. This norm is
homogeneous and C1-smooth out of 0 2 Hn and satisfies conditions (ii) and (iii).
This example can easily be generalized to any Carnot group having step 2 and
satisfying C ˛

H
C
ˇ
H2
D �1Hi

ı
ˇ
˛ , .˛; ˇ 2 IH2

/. Actually, in this case, one can show
that the homogeneous norm k � k%, defined by kxk% WD

4
p
jxHj

4C 16jxH2
j2 for all

x D exp.xH;xH2
/ satisfies all the conditions in Remark 35.

Let R be the radius of the %-ball B%.0;R/, centered at the identity 0 of the
group G and circumscribed about S . It is important to remark that, because of the
left-invariance of the H-perimeter, we may replace 0 with any x 2G. Below, we
shall estimate (by the Cauchy–Schwarz inequality) the right-hand side of (14). To
this aim, note that gH � jxHj � kxk%. So we have

(15) .h� 1/ �n�1
H .S/�R

�ˆ
S

�
jHHjC jCH�Hj

�
�n�1

H C �n�2
H .@S/

�
;

which is a linear inequality. Obviously, if S is H-minimal, i.e., HH D 0, we have

(16) .h� 1/ �n�1
H .S/�R

�ˆ
S

jCH�Hj �
n�1
H C �n�2

H .@S/

�
:
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Furthermore, if H0
H WDmaxfHH.x/jx 2 Sg, one gets

(17) �n�1
H .S/

�
.h� 1/�RH0

H
�
�R

�ˆ
S

jCH�Hj �
n�1
H C �n�2

H .@S/

�
:

Equivalently, we have

(18) R�
.h� 1/ �n�1

H
.S/

H0
H�

n�1
H

.S/C
�´

S jCH�Hj �
n�1
H
C �n�2

H
.@S/

� ;
and, by assuming RH0

H < h� 1, we also get

(19) �n�1
H .S/�

R
�´

S jCH�Hj �
n�1
H
C �n�2

H
.@S/

�
.h� 1/�RH0

H

:

Here, we just remark that there are no closed compact H-minimal hypersurfaces
immersed in Carnot groups. This fact can be proved by using the first variation
formula of the H-perimeter; see [Montefalcone 2012]. The previous formulae have
been proved for hypersurfaces with boundary, but they hold even if @S D∅. More
precisely:

Proposition 37. Let S � G be a compact hypersurface of class C 2 without bound-
ary. Let R be the radius of the %-ball B%.0;R/, centered at the identity 0 of the
group G and circumscribed about S . Then

.h� 1/ �n�1
H .S/�R

ˆ
U

�
jHHjC jCH�Hj

�
�n�1

H I(20)

R�
.h� 1/ �n�1

H
.S/

H0
H�

n�1
H

.S/C
´

S jCH�Hj �
n�1
H

I(21)

�n�1
H .S/�

R
´

S jCH�Hj �
n�1
H

.h� 1/�RH0
H

:(22)

4.1. Application: a weak monotonicity formula. In the sequel, we shall set St D

S \B%.x; t/. The “natural” monotonicity formula which can be deduced from the
inequality (15) is contained in:

Proposition 38. The following inequality holds for L1-a.e. t > 0:
(23)

�
d

dt

�n�1
H

.St /

th�1
�

1

th�1

�ˆ
St

�
jHHjC jCH�Hj

�
�n�1

H C �n�2
H .@S \B%.x; t//

�
:

Proof. Since we are assuming that the homogeneous distance % is smooth (at
least piecewise C 1), by applying the classical Sard’s theorem we get that St is a
C 2-smooth manifold with boundary for L1-a.e. t > 0 (or, equivalently, this claim
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follows by intersecting S with the boundary of a %-ball B%.x; t/ centered at x and
of radius t ). So let us apply formula (13) for the set St . We have

.h� 1/ �n�1
H .St /� t

�ˆ
St

�
jHHjC jCH�Hj

�
�n�1

H C �n�2
H .@St /

�
;

where t is the radius of a %-ball centered at x and intersecting S . Since

@St D f@S \B%.x; t/g[ f@B%.x; t/\Sg;

we get

(24) .h� 1/ �n�1
H .St /� t

�ˆ
St

�
jHHjC jCH�Hj

�
�n�1

H„ ƒ‚ …
DWA.t/

C �n�2
H

�
@S \B%.x; t/

�„ ƒ‚ …
DWB.t/

C �n�2
H

�
@B%.x; t/\S

��
:

Now let us consider the function  .y/ WD ky�1
�xk% for all y 2 S . By hypothesis,

 is a C 1-smooth function — at least piecewise — satisfying jgradH j � 1; see
Remark 35. So we may apply the coarea formula to this function. Since jgradHS j�

jgradH j, we easily get that

�n�1
H .St1

/� �n�1
H .St /�

ˆ
St1
nSt

jgradHS j �
n�1
H D

ˆ t1

t

�n�2
H f �1Œs�\Sg ds

D

ˆ t1

t

�n�2
H

�
@B%.x; s/\S

�
ds:

From the last inequality we infer that

d

dt
�n�1

H .St /� �
n�2
H

�
@B%.x; t/\S

�
for L1-a.e. t > 0. Hence, from this inequality and (24), we obtain

.h� 1/ �n�1
H .St /� t

�
A.t/CB.t/C

d

dt
�n�1

H .St /

�
;

which is an equivalent form of (23). �

We have to notice however that, in order to prove an “intrinsic” isoperimetric
inequality, the number .h � 1/ in the previous differential inequality is not the
correct one, which is .Q� 1/. This fact motivates a further study, made by the
author in [Montefalcone 2009; 2010].
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5. A theorem about nonhorizontal graphs in 2-step Carnot groups

We begin by describing our result in the simpler setting of the first Heisenberg
group H1; see also [Montefalcone 2007b]. For the notation, see Example 7.

Theorem 39 (Heinz’s estimate for T -graphs). Let S D fp D exp.x;y; t/ 2 H1 W

t D f .x;y/ for all .x;y/ 2 R2g be a T -graph of class C 2 over the xy-plane. If
jHHj � C > 0, then

C H2
Eu.Pxy.U//�H1

Eu.Pxy.@U//

for every C 1-smooth relatively compact open set U � S . Hence, taking U WD

S \Cr .T/, where Cr .T/ denotes a vertical cylinder of radius r around the T -axis
T WD fp D exp.0; 0; t/ 2 H1; t 2 Rg, yields, for every r > 0,

r �
2

C
:

It follows that any entire xy-graph of class C 2 having constant (or just bounded)
horizontal mean curvature HH must be necessarily a H-minimal surface. To see this
fact, it is enough to send r!C1. The proof of the previous theorem is elementary.
More precisely, one uses the following identity:

�

ˆ
U

HH$ �2
H D

ˆ
@U
�H d�;

where � D T �D dtC ydx�xdy
2

denotes the dual 1-form to the vertical direction T .
We also have to remark that $�2

H
D�d� D dx ^ dy. The previous theorem is a

generalization to our context of a classical result obtained in [Heinz 1955]. This
was generalized in [Chern 1965] and then by other authors in a number of different
directions.

Below, we shall restrict ourselves to consider only 2-step Carnot groups.

Definition 40 (nonhorizontal graphs in 2-step Carnot groups). Let G be a 2-step
Carnot group and let Z D

P
˛2IV

z˛X˛ 2 V be a constant vertical vector. In this
case, for the sake of simplicity, we reorder the variables in g as x � .xZ? ;xZ /,
where xZ WD hx;Zi 2 R and xZ? WD x �xZ Z 2Z?. Then, we say that S � G

is a Z-graph (over the hyperplane Z?) if there exists a function  WZ?! R such
that S D fp D exp.xZ? ;  .xZ?// 2 G; xZ? 2Z?g.

Let us fix a constant vertical vector Z2V and let SDfpDexp.xZ? ;  .xZ?//2

G; xZ? 2Z?g be a Z-graph of class C 2 over the Z?-hyperplane. For the sake
of simplicity and without loss of generality, we may take Z DX˛ for a fixed index
˛ 2 IV D fhC 1; : : : ; ng.

Now let us define a differential .n� 2/-form on S � G by setting

�˛ WD
�
�H X˛ �n

R
�ˇ̌

SnCS
2ƒ2.T�S/:
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This differential .n�2/-form �˛ is well-defined out of CS and we have to compute
its exterior derivative. Below we will briefly sketch a proof, which can also be
found in [Montefalcone 2007a]; see Claim 3.22.

Lemma 41. At each NC point,

d�˛jSnCS
D�HH$˛�

n�1
H jSnCS

:

Proof. Let us set �j WD .X˛ Xj �n
R /jS for any ˛ 2 IV and j 2 IH and compute

d�j WD d.X˛ Xj �n
R /jS . Let G be a k-step Carnot group. We claim that

(25) d�j jSnCS
D

nX
kD˛C1

C k
˛j .Xk �n

R /jSnCS
D

nX
kD˛C1

C k
˛j �k �

n�1
R jSnCS

:

The proof of this claim is just a long, but elementary, calculation. Since we are
assuming that G has step 2, using the properties of the Carnot structural constants
yields C k

˛j D 0 whenever j , k 2 IH and ˛ 2 IV . Hence d�j D 0 for every j 2 IH .
By linearity �˛ D�

P
j2IH

�
j
H�j , where �j

H D h�H;Xj i for any j 2 IH . It follows
easily that d�˛ D�HH$˛�

n�1
H

, as wished. �

Theorem 42 (Heinz’s estimate for nonhorizontal graphs in 2-step Carnot groups).
Let G be a 2-step Carnot group and let Z 2 V be a constant vertical vector.
Furthermore, let S be a Z-graph of class C 2 over the Z?-hyperplane. If jHHj �

C > 0, then

(26) C Hn�1
Eu .PZ?.U//�Hn�2

Eu .PZ?.@U//

for every C 1-smooth relatively compact open set U � S . Hence, taking U WD

S \ Cr .Z/, where Cr .Z/ denotes a euclidean cylinder of radius r around the
Z-axis given by Z WD fp D exp.0Z? ; t/ 2 G; t 2 Rg, yields, for every r > 0,

(27) r �
n� 1

C
:

Proof. Without loss of generality, we may assume �HH � C > 0 and take Z DX˛
for some fixed index ˛ 2 IV . In this case, one has

$˛ �
n�1
H jS D �˛ �

n�1
R jS D

�
X˛ �n

R
�ˇ̌

S
D dHn�1

Eu X?˛ ;

where the last identity follows from our assumption that S is a X˛-graph. By using
Lemma 41 and Stokes’ formula, we obtain the integral identity

�

ˆ
U

HH$˛ �
n�1
H D

ˆ
@U
�H X˛ �n

R :

Furthermore, we have
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�

ˆ
U

HH$˛ �
n�1
H D�

ˆ
P

X?˛ .U/

HH dHn�1
Eu ;

ˆ �
�H dHn�1

Eu
�ˇ̌

P
X?˛ .@U/

D

ˆ
h�H; �i dHn�2

Eu PX?˛ .@U/:

Putting it all together, we get C Hn�1
Eu .PX?˛

.U//�Hn�2
Eu

�
PX?˛

.@U/
�
, which proves

(26) when Z DX˛ . The thesis follows by linearity. Finally, (27) follows from (26)
and the elementary calculation

Hn�2
Eu .@Bn�1

Eu /

Hn�1
Eu .Bn�1

Eu /
D n� 1;

where Bn�1
Eu denotes a euclidean unit ball in Z? Š Rn�1. �

It follows that an entire Z-graph of class C 2 over the Z?-hyperplane having
constant (or bounded) horizontal mean curvature HH must be necessarily a H-
minimal hypersurface.

6. Local Poincaré-type inequality

By using an elementary technique, somehow analogous to the one used in Section 4,
we will state a local Poincaré-type inequality for smooth compactly supported
functions on NC domains. First we need the following:

Definition 43. Let S �G be a hypersurface of class C 2 and let U� S be an open
domain. We say that U is uniformly noncharacteristic (abbreviated UNC) if

sup
x2U
j$.x/j D sup

x2U

jPV�.x/j

jPH�.x/j
<C1:

We stress that

(28) jCH�Hj D

ˇ̌̌̌X
˛2IV

!˛C ˛
H �H

ˇ̌̌̌
�

X
˛2IV

j!˛jkC
˛
H kGr �

C

jPH�j
;

where C WD
P
˛2IV
kC ˛

H kGr only depends on the structural constants of g. Set

RU WD
1

2
�
kHHkL1.U/CCk$kL1.U/

� :
From (28), we have jCH�Hj � C max˛2IV j$˛j. Moreover,

´
B j$˛j �

n�1
H
D´

B j�˛j �
n�1
R � �n�1

R .B/ for every Borel set B � S .

Theorem 44. Let S � G be a hypersurface of class C 2. Let U� S be a uniformly
NC open domain. Then, for all x 2U and for all R�minfdist%.x; @U/;RUg,
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(29)
�ˆ

UR

j jp �n�1
H

�1
p

� CpR

�ˆ
UR

jgradHS j
p �n�1

H

�1
p

; p 2 Œ1;C1Œ;

for every  2 C 1
HS.UR/\C0.UR/. More generally, let zU�U be a bounded open

subset of U with smooth boundary such that diam%.zU/� 2 minfdist%.x; @U/;RUg.
Then

(30)
�ˆ
zU
j jp�n�1

H

�1
p

�Cp diam%.zU/
�ˆ
zU
jgradHS j

p�n�1
H

�1
p

; p 2 Œ1;C1Œ;

for every  2 C 1
HS.
zU/\C0.zU/.

In this theorem one can take Cp WD
2p

2h�3
.

Proof. Let us set " WD
p
"2C 2 ("�0). By applying Theorem 14 with X D "xH

we getˆ
UR

˚
 "
�
.h� 1/C gHHHChCH�H;xHSi

�
ChgradHS ";xHi

	
�n�1

H

D

ˆ
@UR

 "hxH; �HSi �
n�2
H ;

and so

.h�1/

ˆ
UR

 "�
n�1
H �R

�ˆ
UR

�
 "
�
jHHjCjCH�Hj

�
CjgradHS "j

�
�n�1

H C

ˆ
@UR

 "�
n�2
H

�
�R

�
kHHkL1.UR/CCk$kL1.UR/

�ˆ
UR

 "�
n�1
H

CR

�ˆ
UR

jgradHS "j�
n�1
H C

ˆ
@UR

 "�
n�2
H

�
:

By using Fatou’s lemma and the estimate R�RU we get that

.h� 1/

ˆ
UR

j j �n�1
H

� .h� 1/ lim inf
"!0C

ˆ
UR

 " �
n�1
H

�
1

2
lim
"!0C

ˆ
UR

 " �
n�1
H CR lim

"!0C

�ˆ
UR

jgradHS "j �
n�1
H C

ˆ
@UR

 " �
n�2
H

�
:

Obviously,  "! j j and jgradHS "j ! jgradHS j as long as "! 0; moreover
j j D 0 along @UR . Now since, as it is well-known,

ˇ̌
gradHS j j

ˇ̌
� jgradHS j, we

easily get the claim by Lebesgue’s dominated convergence theorem. So we have
shown that ˆ

UR

j j �n�1
H �

2R

2h� 3

ˆ
UR

jgradHS j �
n�1
H
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for every  2 C 1
HS.UR/\C0.UR/. Finally, the general case follows by Hölder’s

inequality. More precisely, let us use the last inequality with j j replaced by j jp .
This implies
ˆ

UR

j jp �n�1
H �

2R

.2h� 3/

ˆ
UR

pj jp�1
jgradHS j �

n�1
H

�
2pR

.2h� 3/

�ˆ
UR

j j.p�1/q �n�1
H

�1
q
�ˆ

UR

jgradHS j
p �n�1

H

�1
p

;

where 1
p
C

1
q
D 1. This achieves the proof of (29). Finally, (30) can be proved by

repeating the same arguments as above, just by replacing R with diam.zU/. �

With some extra hypotheses one can show that (29) still holds up to the charac-
teristic set.

Theorem 45. Let S � G be a hypersurface of class C 2 with (or without) bound-
ary @S . We assume that S has bounded horizontal mean curvature HH and that
dim CS < n� 2. Furthermore, let U� (� > 0) be a family of open subsets of S with
C 1 boundaries, such that:

(i) CS �U� for every � > 0;

(ii) �n�1
R .U�/! 0 for �! 0C;

(iii)
´

U�
jPH�j �

n�2
R ! 0 for �! 0C.

Then, for every x 2S and every (small enough) � > 0 there exists R0 WDR0.x; �/�

dist%.x; @S/ such that

(31)
�ˆ

SR

j jp �n�1
H

�1
p

� CpR

�ˆ
SR

jgradHS j
p �n�1

H

�1
p

; p 2 Œ1;C1Œ;

holds for every  2 C 1
HS.SR/\C0.SR/ and every R�R0, where

R0 WDmin
�

dist%.x; @S/;
1

2
�
C
�
1Ck$kL1.SRnU�/

�
CkHHkL1.SR/

��:
Proof. Set  " WD

p
"2C 2 (0 � " < 1). We shall prove the theorem for p D 1.

The general case will follow by using Hölder’s inequality. Let U� (� > 0) be as
above. Fix �0 > 0. For every � � �0 one hasˆ

U�

 "jCH�Hj �
n�1
H � 2C k kL1.U�0

/�
n�1
R .U�/;

where we have put C WD
P
˛2IV
kC ˛

H kGr. Furthermore (ii) implies that for every
ı > 0 there exists �ı > 0 such that �n�1

R .U�/ < ı whenever � < �ı. Taking
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zı �

´
SR
 " �

n�1
H

2k kL1.U�0
/

, one getsˆ
U�

 "jCH�Hj �
n�1
H � C

ˆ
SR

 " �
n�1
H

for every � �minf�zı; �0g. Moreover, for any � 2 �0;minf�zı; �0gŒ, one has
ˆ

SRnU�

 "jCH�Hj �
n�1
H � Ck$kL1.SRnU�/

ˆ
SR

 " �
n�1
H :

It follows thatˆ
SR

 "jCH�Hj �
n�1
H � C

�
1Ck$kL1.SRnU�/

� ˆ
SR

 " �
n�1
H :

Since, by hypothesis, the horizontal mean curvature is bounded, we clearly haveˆ
SR

 "jHHj �
n�1
H � kHHkL1.SR/

ˆ
SR

 " �
n�1
H :

Applying Theorem 14 with X D "xH (and arguing as in the proof of Theorem 44)
yields

.h�1/

ˆ
SR

 " �
n�1
H �R

�ˆ
SR̊

 "
�
jHHjCjCH�Hj

�
CjgradHS "j

	
�n�1

H C

ˆ
@SR

 " �
n�2
H

�
�R

�
C
�
1Ck$kL1.SRnU�/

�
CkHHkL1.SR/

�ˆ
SR

 " �
n�1
H

CR

�ˆ
SR

jgradHS "j �
n�1
H C

ˆ
@SR

 " �
n�2
H

�
:

So if R�R0, one getsˆ
SR

 " �
n�1
H �

2R

2h� 3

�ˆ
SR

jgradHS "j �
n�1
H C

ˆ
@SR

 " �
n�2
H

�
:

We have  " ! j j and jgradHS "j ! jgradHS j as long as "! 0 and j j D 0

along @SR . Since
ˇ̌
gradHS j j

ˇ̌
� jgradHS j, the thesis follows from Fatou’s lemma

and Lebesgue’s dominated convergence theorem. �

6.1. A Caccioppoli-type inequality. Our final result is a generalization of the classi-
cal Caccioppoli inequality (see, for instance, [Ambrosio 1997]) for the operator LHS

on smooth hypersurfaces.
Let S � G be a hypersurface of class C 2 and set SR WD S \B%.x;R/ for any

x 2G. We are going to consider the functions satisfying, in the distributional sense,

(32) �LHS� D  on SR;

whenever  2L2.SR; �
n�1
H

/.
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So let us take a function � 2 C 1
HS.SR/\C0.SR/ such that 0� � � 1, � D 1 on

SR=2 D S \B%.0;R=2/ and jgradHS �j � C0=R. Inserting into the above equation
the function ' D �2.���0/, where �0 2R is a fixed constant, and then integrating
over SR, yields

(33)
ˆ

SR

�2
jgradHS�j

2 �n�1
H„ ƒ‚ …

DW I1

C 2

ˆ
SR

�.� ��0/
˝
gradHS �; gradHS�

˛
�n�1

H„ ƒ‚ …
DW I2

D

ˆ
SR

 �2.� ��0/ �
n�1
H„ ƒ‚ …

DW I3

:

We have

I2 �
1

2

ˆ
SR

j�j2jgradHS�j
2 �n�1

H C 2

ˆ
SR

j� ��0j
2
jgradHS�j

2 �n�1
H„ ƒ‚ …

DW I4

:

Moreover I4 � 2C 2
0
=R2k� ��0kL2.SR/

. Now let us estimate the third integral I3:

ˆ
SR

 �2.� ��0/ �
n�1
H D

ˆ
SR

2

�
.2R /

�2.� ��0/

4R

�
�n�1

H

� 4R2

ˆ
SR

 2 �n�1
H C

1

16R2

ˆ
SR

�4
j� ��0j

2 �n�1
H

� 4R2

ˆ
SR

2 2 �n�1
H C

1

R2

ˆ
SR

j� ��0j
2 �n�1

H :

Since � D 1 on SR=2, using the previous estimates yields

ˆ
SR=2

jgradHS�j
2 �n�1

H �
2C 2

0
C 1

R2

ˆ
SR

j� ��0j
2 �n�1

H C 4R2

ˆ
SR

 2 �n�1
H :

We summarize these calculations, as follows:

Theorem 46. Let S �G be a hypersurface of class C 2; let �02R and let � be a dis-
tributional solution to the equation �LHS� D  on SR , where  2L2.SR; �

n�1
H

/.
Then, there exists a positive constant C > 0 such that the following “Caccioppoli-
type” inequality holds:
ˆ

SR=2

jgradHS�j
2 �n�1

H � C

�
1

R2

ˆ
SR

j� ��0j
2 �n�1

H CR2

ˆ
SR

 2 �n�1
H

�
for every (small enough) R> 0, where SR WD S \B%.x;R/, for any x 2 S .
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FIXED POINTS OF ENDOMORPHISMS
OF VIRTUALLY FREE GROUPS

PEDRO V. SILVA

A fixed point theorem is proved for inverse transducers, which leads to an
automata-theoretic proof of the fixed point subgroup of an endomorphism
of a finitely generated virtually free group being finitely generated. If the en-
domorphism is uniformly continuous for the hyperbolic metric, it is proved
that the set of regular fixed points in the hyperbolic boundary has finitely
many orbits under the action of the finite fixed points. In the automorphism
case, it is shown that these regular fixed points are either exponentially sta-
ble attractors or exponentially stable repellers.

1. Introduction

Throughout the paper, the ambient groups are assumed to be finitely generated.
Gersten [1987] proved that the fixed point subgroup of a free group automorphism

ϕ is finitely generated. Using a different approach, Cooper [1987] gave an alternative
proof, proving also that the fixed points of the continuous extension of ϕ to the
boundary of the free group is, in some sense, finitely generated. Bestvina and
Handel [1992] achieved a major breakthrough with their innovative train track
techniques, bounding the rank of the fixed point subgroup and the generating set
for the infinite fixed points. Their approach was pursued by Maslakova [2003],
who considered the problem of effectively computing a basis for the fixed point
subgroup. The paper turned out to contain some errors, and subsequently a new
paper by Bogopolski and Maslakova [2012] was posted on arXiv with the purpose
of correcting these errors.

Gersten’s result was generalized to further classes of groups and endomorphisms
in subsequent years. Goldstein and Turner extended it to monomorphisms of free
groups [1985] and to arbitrary endomorphisms [1986]. Collins and Turner extended
it to automorphisms of free products of freely indecomposable groups [1994];
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see the survey by Ventura [2002]. With respect to automorphisms, the widest
generalization is to hyperbolic groups and is due to Paulin [1989].

Sykiotis [2002] extended Collins and Turner’s result to arbitrary endomorphisms
of virtually free groups using symmetric endomorphisms; see also [Sykiotis 2007]
for further results on symmetric endomorphisms. In [Silva 2012], we generalized
Goldstein and Turner’s automata-theoretic proof to arbitrary endomorphisms of free
products of cyclic groups. In the present paper, this result is extended to arbitrary
endomorphisms of virtually free groups, providing an automata-theoretic alternative
to Sykiotis’ result.

This is done by reducing the problem to the rationality of some languages
associated to a finite inverse transducer, and subsequent application of Anisimov
and Seifert’s theorem.

Infinite fixed points of automorphisms of free groups were discussed by Gaboriau,
Jaeger, Levitt, and Lustig [Gaboriau et al. 1998], where it is remarked in particular
that some of the results would hold for virtually free groups with some adaptations.

In [Silva 2010], we discussed infinite fixed points for monomorphisms of free
products of cyclic groups, the group case of a more general setting based on the
concept of special confluent rewriting system. These results are now extended to
endomorphisms with finite kernel of virtually free groups (which are precisely the
uniformly continuous endomorphisms for the hyperbolic metric), and we discuss the
dynamical nature of the regular fixed points in the automorphism case, generalizing
the results of [Gaboriau et al. 1998] on free groups.

The paper is organized as follows. Section 2 is devoted to preliminaries on
groups and automata. We discuss inverse transducers in Section 3, proving a
useful fixed point theorem. In Section 4 we prove that the fixed point subgroup is
finitely generated for arbitrary endomorphisms of a (finitely generated) virtually
free group G.

In Section 5 we get a rewriting system with good properties to represent the
elements of G, and in Section 6 we use it to construct a simple model for the hyper-
bolic boundary of G. We study uniformly continuous endomorphisms in Section 7
and in Section 8 we prove that the infinite fixed points of such endomorphisms are,
in some sense, finitely generated.

The classification of the infinite fixed points of automorphisms is performed in
Section 9, and Section 10 includes an example and some open problems.

2. Preliminaries

Throughout the paper, we assume alphabets to be finite. We start with some group-
theoretic definitions. Given an alphabet A, we denote by A−1 a set of formal
inverses of A, and write Ã = A ∪ A−1. We extend the mapping a 7→ a−1 to an
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involution of the free monoid Ã∗ in the obvious way. As usual, the free group on A
is the quotient of Ã∗ by the congruence generated by the relation {(aa−1, 1) : a ∈ Ã}.
We denote by θ : Ã∗→ FA the canonical morphism.

Let
RA = Ã∗ \

(⋃
a∈ Ã

Ã∗aa−1 Ã∗
)

be the subset of all reduced words in Ã∗. It is well known that, for every g ∈ FA,
gθ−1 contains a unique reduced word, denoted by ḡ. We also write ū = uθ for
every u ∈ Ã∗. Note that the equivalence uθ = vθ ⇔ ū = v̄ holds for all u, v ∈ Ã∗.

A group G is virtually free if G has a free subgroup F of finite index. In view
of Nielsen’s theorem, it is well-known that F can be assumed to be normal, and is
finitely generated if G is finitely generated itself. Therefore every finitely generated
virtually free group G admits a decomposition as a disjoint union

G = F ∪ Fb1 ∪ · · · ∪ Fbm,

where F EG is a free group of finite rank and b1, . . . , bm ∈ G.
We shall need also some basic concepts from automata theory.
Let A be a (finite) alphabet. A subset of A∗ is called an A-language. We say

that A= (Q, q0, T, δ) is a (finite) deterministic A-automaton if

• Q is a (finite) set,

• q0 ∈ Q and T ⊆ Q,

• δ : Q× A→ Q is a partial mapping.

We extend δ to a partial mapping Q× A∗→ Q by induction through

(q, 1)δ = q, (q, ua)δ = ((q, u)δ, a)δ (u ∈ A∗, a ∈ A).

When the automaton is clear from the context, we write qu = (q, u)δ. We can
view A as a directed graph with edges labeled by letters a ∈ A by identifying
(p, a)δ = q with the edge p

a
−→q . We denote by E(A)⊆ Q× A×Q the set of all

such edges.
A finite nontrivial path in A is a sequence

p0
a1
−→p1

a2
−→· · ·

an
−→pn

with (pi−1, ai , pi ) ∈ E(A) for i = 1, . . . , n. Its label is the word a1 · · · an ∈ A∗. It
is said to be a successful path if p0 = q0 and pn ∈ T . We also consider the trivial
path p

1
−→p for p ∈ Q. It is successful if p = q0 ∈ T .

The language L(A) recognized by A is the set of all labels of successful paths
in A. Equivalently, L(A)= {u ∈ A∗ : q0u ∈ T }. If (pi−1, ai , pi ) ∈ E(A) for every
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i ∈ N, we may also consider the infinite path

p0
a1
−→p1

a2
−→p2

a3
−→· · · .

Its label is the (right) infinite word a1a2a3 · · · . We denote by Aω the set of all
(right) infinite words on the alphabet A, and also write A∞ = A∗ ∪ Aω. We denote
by Lω(A) the set of labels of all infinite paths q0−→· · · in A.

Given u ∈ A∗ and α ∈ A∞, we say that u is a prefix of α and write u≤α if α= uβ
for some β ∈ A∞. By convention, this includes the case α ≤ α for α ∈ Aω. For
every n ∈N, we denote by α[n] the prefix of length n of α, applying the convention
that α[n] = α if n > |α|.

It is immediate that (A∞,≤) is a complete ∧-semilattice: given α, β ∈ A∞, α∧β
is the longest common prefix of α and β (or α if α = β ∈ Aω). The ∧ operator will
play a crucial role in later sections of the paper.

The star operator on A-languages is defined by

L∗ =
⋃
n≥0

Ln,

where L0
= {1}. An A-language L is said to be rational if L can be obtained from

finite A-languages using finitely many times the union, product, and star operators
(this is called a rational expression). Alternatively, by Kleene’s theorem [Berstel
1979, Section III], L is rational if and only if it is recognized by a finite deterministic
A-automaton A. The definition through rational expressions generalizes to subsets
of an arbitrary group in the obvious way. Moreover, if we fix a homomorphism
π : A∗→G, the rational subsets of G are the images by π of the rational A-languages.
For obvious reasons, we shall be dealing mostly with matched homomorphisms.
A homomorphism π : Ã∗→ G is said to be matched if a−1π = (aπ)−1 for every
a ∈ A. For details on rational languages and subsets, the reader is referred to
[Berstel 1979; Sakarovitch 2003].

We shall need also the following classical result of Anisimov and Seifert.

Proposition 2.1 [Sakarovitch 2003, Proposition II.6.2]. Let H be a subgroup of a
group G. Then H is a rational subset of G if and only if H is finitely generated.

We end this section with an elementary observation that helps us to establish
that fixed point subgroups are finitely generated.

Proposition 2.2. Let π : Ã∗→ G be a matched epimorphism and let X ⊆ G. Let
A be a finite Ã-automaton such that

(i) L(A)⊆ Xπ−1,

(ii) L(A)∩ xπ−1
6=∅ for every x ∈ X.

Then X is a rational subset of G.
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Proof. It follows immediately that X = (L(A))π , so X is a rational subset of G. �

3. Inverse transducers

Given a finite alphabet A, we say that T= (Q, q0, δ, λ) is a (finite) deterministic
A-transducer if

• Q is a (finite) set,

• q0 ∈ Q,

• δ : Q× A→ Q and λ : Q× A→ A∗ are mappings.

As in the automaton case, we may extend δ to a mapping Q×A∗→ Q. Similarly,
we extend λ to a mapping Q× A∗→ A∗ through

(q, 1)λ= 1, (q, ua)λ= (q, u)λ((q, u)δ, a)λ (u ∈ A∗, a ∈ A).

When the transducer is clear from the context, we write qa = (q, a)δ. We can
view T as a directed graph with edges labeled by elements of A× A∗ (represented
in the form a|w) by identifying (p, a)δ = q, (p, a)λ = w with the edge p

a|w
−→q.

The set of all such edges is denoted by E(T)⊆ Q× A× A∗× Q. If pu = q and
(p, u)λ= v, we also write p

u|v
−→q and call it a path in T.

It is immediate that, given u ∈ A∗, there exists exactly one path in T of the form
q0

u|v
−→q. We write uT̂= v, thus defining a mapping T̂ : A∗→ A∗.
Assume now that T= (Q, q0, δ, λ) is a deterministic Ã-transducer such that

p
a|u
−→q is an edge of T if and only if q

a−1
|u−1

−−−−→p is an edge of T.

Then T is said to be inverse.

Proposition 3.1. Let T= (Q, q0, δ, λ) be an inverse Ã-transducer. Then

(i) δ : Q× Ã∗→ Q induces a mapping δ̂ : Q× FA→ Q by (q, uθ)δ̂ = (q, u)δ,

(ii) T̂ : Ã∗→ Ã∗ induces a mapping T̃ : FA→ FA by uθT̃= uT̂θ .

Proof. (i) Since the free group congruence ∼ is generated by the pairs (aa−1, 1), it
suffices to show that (q, vaa−1w)δ = (q, vw)δ for all q ∈ Q; v,w ∈ Ã∗ and a ∈ Ã.

Since δ is a full mapping, we have a path

(1) q
v|v′

−→q1
a|u
−→q2

a−1
|u′

−−−→q3
w|w′

−→q4

in T. Since T is inverse (in particular deterministic), we must have u′ = u−1 and
q3 = q1. Hence we also have a path

q
v|v′

−→q1
w|w′

−→q4

and so (q, vaa−1w)δ = q4 = (q, vw)δ as required.
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(ii) Similarly to part (i), it suffices to show that (vaa−1w)T̂θ = (vw)T̂θ for all
v,w ∈ Ã∗ and a ∈ Ã.

We consider the path (1) for q = q0. Since u′ = u−1 and q3 = q1, we get

(vaa−1w)T̂θ = (v′uu−1w′)θ = (v′w′)θ = (vw)T̂θ,

as required. �

We now prove one of our main results, generalizing Goldstein and Turner’s proof
[1986] to mappings induced by inverse transducers.

Theorem 3.2. Let T be a finite inverse Ã-transducer and let z ∈ FA. Then

L = {g ∈ FA : gT̃= gz}
is rational.

Proof. Write T= (Q, q0, δ, λ). For every g ∈ FA, let P1(g)= g−1(gT̃) ∈ FA and
write q0g= (q0, g)δ̂, P(g)= (P1(g), q0g). Note that g ∈ L if and only if P1(g)= z.
We define a deterministic Ã-automaton AT = (P, (1, q0), S, E) by

P = {P(g) : g ∈ FA};

S = P ∩ ({z}× Q);

E = {(P(g), a, P(ga)) : g ∈ FA, a ∈ Ã}.

Clearly, AT is a possibly infinite automaton. Note that, since T is inverse, we
have qaa−1

= q for all q ∈ Q and a ∈ Ã. It follows that, whenever (p, a, p′) ∈ E ,
(p′, a−1, p) ∈ E . We say that such edges are the inverses of each other.

Since every w ∈ Ã∗ labels a unique path P(1)
w
−→P(wθ), it follows that

L(AT)= Lθ−1.

In view of Proposition 2.2, to prove that L is rational it suffices to construct a finite
subautomaton BT of AT such that L̄ ⊆ L(BT).

We now fix

M =max{|(q, a)λ| : q ∈ Q, a ∈ Ã}, N =max{2M + 1, |z|}

and
P ′ = {P(g) ∈ P : |P1(g)| ≤ N }.

Since A and T are finite, so is P ′. However, infinitely many g ∈ FA may yield the
same state P(g).

Given g ∈ FA, write gι= ḡ[1]. Given p = (g, q) ∈ P , we also write pι= gι. We
say that an edge (p1, a, p2) ∈ E is

• central if p1, p2 ∈ P ′,

• compatible if it is not central and p1ι= a.
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Lemma 3.3. (i) There are only finitely many central edges in AT.

(ii) If (p1, a, p2) ∈ E is not central, either (p1, a, p2) or (p2, a−1, p1) is compati-
ble.

(iii) For every p ∈ P , there is at most one compatible edge leaving p.

Proof. (i) A and P ′ are both finite.

(ii) Assume that (p1, a, p2) is neither central nor compatible. Write p1 = (g1, q1)

and p2 = (g2, q2). Suppose that g1 = 1. Then g2 = P1(a) = a−1(aT̃) and so
|g2| ≤ 1+M ≤ N , in contradiction with (p1, a, p2) being noncentral.

Thus ḡ1 = bu for some b ∈ Ã \ {a} and u ∈ RA. On the other hand, we have
g2 = a−1g1(q1, a)λ, and so

ḡ2 = a−1bu(q1, a)λ.

If |u|< M , then |g1|, |g2| ≤ 2M+1≤ N and (p1, a, p2) is central, a contradiction.
Thus |u| ≥ M ≥ |(q1, a)λ| and so g2ι= a−1. Thus (p2, a−1, p1) is compatible.

(iii) Any compatible edge leaving p must be labeled by pι, and AT is deterministic.
�

A (possibly infinite) path q0
a1
−→q1

a2
−→· · · in AT is

• central if all the vertices in it are in P ′,

• compatible if all the edges in it are compatible and no intermediate vertex is
in P ′.

Lemma 3.4. Let u ∈ L̄. Then there exists a path

(1, q0)= p′0
u0
−→p′′0

v1
−→p1

w−1
1
−→p′1

u1
−→· · ·

vn
−→pn

w−1
n
−→p′n

un
−→p′′n ∈ S

in AT such that

(i) u = u0v1w
−1
1 u1 · · · vnw

−1
n un ,

(ii) the paths p′j
u j
−→p′′j are central,

(iii) the paths p′′j−1
v j
−→p j and p′j

w j
−→p j are compatible,

(iv) p j /∈ P ′ if both v j and w j are nonempty.

Proof. Since S ⊆ P ′ by definition of N , there exists a path

(2) (1, q0)= p′0
u0
−→p′′0

x1
−→p′1

u1
−→· · ·

xn
−→p′n

un
−→p′′n ∈ S

in AT such that u = u0x1u1 · · · xnun and the paths p′j
u j
−→p′′j (which may be trivial)

collect all the occurrences of vertices in P ′ (and are therefore central).
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By Lemma 3.3(ii), if (p, a, r) occurs in a path p′′j−1
x j
−→p′j , either (p, a, r) or

(r, a−1, p) is compatible. On the other hand, since x j is reduced, it follows from
Lemma 3.3(iii) that p′′j−1

x j
−→p′j can be factored as

p′′j−1
v j
−→p j

w−1
j
−→p′j

with p′′j−1
v j
−→p j and p′j

w j
−→p j compatible. Clearly (iv) holds since no intermediate

vertex of p′′j−1
x j
−→p′j belongs to P ′ by construction. �

We say that a compatible path is maximal if it is infinite or cannot be extended
(to the right) to produce another compatible path.

Lemma 3.5. For every p ∈ P ′, there exists in AT a unique maximal compatible
path Mp starting at p.

Proof. Clearly, every compatible path can be extended to a maximal compatible
path. Uniqueness follows from Lemma 3.3(iii). �

We now define

P ′1 = {p ∈ P ′ : Mp has finitely many distinct edges }

and P ′2 = P ′ \ P ′1. Hence Mp contains no cycles if p ∈ P ′2. By Lemma 3.5, if Mp

and Mp′ intersect at vertex rpp′ , they coincide from rpp′ onwards. In particular, if
Mp and Mp′ intersect, then p ∈ P ′1 if and only if p′ ∈ P ′1. Let

Y = {(p, p′) ∈ P ′2× P ′2 : Mp intersects Mp′}.

For every (p, p′) ∈ Y , let Mp \Mp′ denote the (finite) subpath p−→rpp′ of Mp. In
particular, if p′ = p, Mp \Mp′ is the trivial path at p.

Let BT be the subautomaton of AT containing

• all vertices in P ′ and all central edges,

• all vertices and edges in the paths Mp (p ∈ P ′1) and their inverses,

• all vertices and edges in the paths Mp \Mp′ ((p, p′) ∈ Y ) and their inverses.

It follows easily from Lemma 3.3(i) and the definitions of P ′1 and Mp \Mp′ that
BT is a finite subautomaton of AT. As remarked before, it suffices to show that
L̄ ⊆ L(BT).

Let u ∈ L̄ . Since BT contains all the central edges of AT, it suffices to show
that all subpaths

p′′j−1
v j
−→p j

w−1
j
−→p′j

appearing in the factorization provided by Lemma 3.4 are paths in BT.
Without loss of generality, we may assume that v j 6= 1. If w j = 1, p′′j−1 ∈ P ′1

and we are done. Hence we may also assume that w j 6= 1. Now, if one of the
vertices p′′j−1, p′j is in P ′1, so is the other and we are done, since BT contains all
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the edges in the paths Mp (p ∈ P ′1) and their inverses. Hence we may assume that
p′′j−1, p′j ∈ P ′2. It follows that p j = rp′′j−1,p

′

j
. (Since v jw

−1
j ∈ RA, the paths Mp′′j−1

and Mp′j cannot meet before p j .) Thus p′′j−1
v j
−→p j is Mp′′j−1

\Mp′j and p′j
w j
−→p j

is Mp′j \Mp′′j−1
, and so these are also paths in BT as required. �

4. The fixed point subgroup

We can now produce an automata-theoretic proof to Sykiotis’ theorem.

Theorem 4.1 [Sykiotis 2002, Proposition 3.4]. Let ϕ be an endomorphism of a
finitely generated virtually free group. Then Fixϕ is finitely generated.

Proof. We consider a decomposition of G as a disjoint union

(3) G = Fb0 ∪ Fb1 ∪ · · · ∪ Fbm,

where F = FAEG is a free group with A finite and b0, . . . , bm ∈ G with b0 = 1.
Let ϕ0 : FA→ FA and η : FA→ {0, . . . ,m} be defined by

gϕ = (gϕ0)bgη (g ∈ FA).

Since the decomposition (3) is disjoint, gϕ0 and gη are both uniquely determined
by gϕ, and so both mappings are well defined.

Write Q = {0, . . . ,m}. For all i ∈ Q and a ∈ Ã, we have bi (aϕ) = hi,ab(i,a)δ
for some (unique) hi,a ∈ FA and (i, a)δ ∈ Q. It follows that, for every j ∈ Q,
A j = (Q, 0, j, δ) is a well-defined finite deterministic Ã-automaton. We define
also a finite deterministic Ã-transducer T = (Q, 0, δ, λ) by taking (i, a)λ = hi,a

for all i ∈ Q and a ∈ Ã.
Assume that

i
a|hi,a
−−−→(i, a)δ = j

is an edge of T. Then bi (aϕ)= hi,ab j and so

bi = bi (aϕ)(a−1ϕ)= hi,ab j (a−1ϕ)= hi,ah j,a−1b( j,a−1)δ.

This yields hi,ah j,a−1 = 1 and ( j, a−1)δ = i . Thus there is an edge

j
a−1
|hi,a

−1

−−−−−→( j, a−1)δ = i

in T and so T is an inverse transducer. We claim that T̃=ϕ0. Indeed, let g=a1 · · · an

(ai ∈ Ãi ). Then there exists a (unique) path in T of the form

0= i0
a1|hi0,a1
−−−−−→i1

a2|hi1,a2
−−−−−→· · ·

an |hin−1,an
−−−−−−→in.

Moreover, i j = (i j−1, a j )δ for j = 1, . . . , n. It follows that

gϕ = bi0(a1ϕ) · · · (anϕ)= hi0,a1bi1(a2ϕ) · · · (anϕ)

= hi0,a1hi1,a2bi2(a3ϕ) · · · (anϕ)= · · · = hi0,a1 · · · hin−1,an bin
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and so

gϕ0 = hi0,a1 · · · hin−1,an = (hi0,a1 · · · hin−1,an )θ = gT̃.

Thus T̃= ϕ0.
Note that we have also shown that gη = in = (0, a1 · · · an)δ. Hence

(4) L(A j )= {u ∈ Ã∗ : uθη = j}.

Next let

Y = {(i, j) ∈ Q× Q : b j (biϕ) ∈ FAbi }.

For every (i, j) ∈ Y , let zi, j ∈ FA be such that b j (biϕ)= zi, j bi and define

X i, j = {g ∈ FA : gbi ∈ Fixϕ and gη = j}.

We claim that X i, j is a rational subset of FA for every (i, j) ∈ Y . Indeed, (gbi )ϕ =

(gϕ)(biϕ)= (gϕ0)bgη(biϕ). Hence

X i, j = {g ∈ FA : (gϕ0)b j (biϕ)= gbi and gη = j}

= {g ∈ FA : (gϕ0)zi, j bi = gbi and gη = j}

= {g ∈ FA : gϕ0 = gz−1
i, j } ∩ {g ∈ FA : gη = j}.

Writing

L i, j = {g ∈ FA : gϕ0 = gz−1
i, j },

it follows from (4) that X i, j = L i, j ∩ (L(A j ))θ . Since ϕ0 = T̃, it follows from
Theorem 3.2 that X i, j is an intersection of two rational subsets of FA, and is hence
rational itself; see [Berstel 1979, Corollary III.2.10].

Now it is easy to check that

(5) Fixϕ =
⋃

i∈Q

(⋃
{X i, j : (i, j) ∈ Y }

)
bi .

Indeed, for every (i, j)∈Y , we have X i, j bi ⊆Fixϕ by definition of X i, j . Conversely,
let gbi ∈ Fixϕ for some g ∈ FA and i ∈ Q. Then gbi = (gbi )ϕ = (gϕ0)bgη(biϕ)

and so bgη(biϕ) ∈ FAbi . Hence (i, gη) ∈ Y . Since g ∈ X i,gη, (5) holds. Since the
X i, j are rational subsets of FA and therefore of G, it follows that Fixϕ is a rational
subset of G and is thus finitely generated by Proposition 2.1. �

Unfortunately, our approach does not lead directly to an algorithm to compute a
basis of Fixϕ (see [Bogopolski and Maslakova 2012]) because it is not clear how
to decide in Section 3 whether p ∈ P ′ belongs to P ′1 or P ′2 and how to compute the
paths Mp and Mp \Mp′ .
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5. A good rewriting system

We recall that a (finite) rewriting system on A is a (finite) subset R of A∗ × A∗.
Given u, v ∈ A∗, we write u−→Rv if there exist (r, s) ∈R and x, y ∈ A∗ such that
u = xry and v = xsy. The reflexive and transitive closure of −→R is denoted by
−→

∗

R.
We say that R is

• length-reducing if |r |> |s| for every (r, s) ∈R,

• length-nonincreasing if |r | ≥ |s| for every (r, s) ∈R,

• noetherian if, for every u ∈ A∗, there is a bound on the length of a chain

u−→Rv1−→R · · · −→Rvn,

• confluent if, whenever u−→∗Rv and u−→∗Rw, there exists some z ∈ A∗ such
that v−→∗Rz and w−→∗Rz.

A word u ∈ A∗ is irreducible if no v ∈ A∗ satisfies u−→Rv. We denote by Irr R

the set of all irreducible words in A∗ with respect to R.
We introduce now some basic concepts and results from the theory of hyperbolic

groups. For details on this class of groups, the reader is referred to [Ghys and de la
Harpe 1990].

Let π : Ã∗→ G be a matched epimorphism with A finite. The Cayley graph
0A(G) of G with respect to π has vertex set G and edges (g, a, g(aπ)) for all
g ∈G and a ∈ Ã. We say that a path p

u
−→q in 0A(G) is a geodesic if it has shortest

length among all the paths connecting p to q in 0A(G). We denote by GeoA(G) the
set of labels of all geodesics in 0A(G). Note that, since 0A(G) is vertex-transitive,
it is irrelevant whether or not we fix a basepoint.

The geodesic distance d1 on G is defined by taking d1(g, h) to be the length of
a geodesic from g to h. Given X ⊆ G nonempty and g ∈ G, we define

d1(g, X)=min{d1(g, x) : x ∈ X}.

A geodesic triangle in 0A(G) is a collection of three geodesics

P1 : g1−→g2, P2 : g2−→g3, P3 : g3−→g1

connecting three vertices g1, g2, g3 ∈ G. Let V (Pi ) denote the set of vertices
occurring in the path Pi . We say that 0A(G) is δ-hyperbolic for some δ ≥ 0 if

∀g ∈ V (P1) : d1(g, V (P2)∪ V (P3)) < δ

for every geodesic triangle {P1, P2, P3} in 0A(G). If this happens for some δ, we
say that G is hyperbolic. It is well known that the concept is independent from both
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alphabet and matched epimorphism, but the hyperbolicity constant δ may change.
Virtually free groups are among the most important examples of hyperbolic groups.

We now use a theorem of Gilman, Hermiller, Holt, and Rees [Gilman et al. 2007]
to prove the following result.

Lemma 5.1. Let G be a finitely generated virtually free group. Then there exist a
finite alphabet A, a matched epimorphism π : Ã∗→ G, and a positive integer N0

such that, for all u ∈ GeoA(G) and v ∈ Ã∗,

(i) there exists some w ∈ GeoA(G) such that wπ = (uv)π and

|u ∧w| ≥ |u| − N0|v|;

(ii) there exists some z ∈ GeoA(G) such that zπ = (vu)π and |u−1
∧ z−1

| ≥

|u| − N0|v|.

Proof. (i) By [Gilman et al. 2007, Theorem 1], there exists a finite alphabet A, a
matched epimorphism π : Ã∗→G, and a finite length-reducing rewriting system R

such that GeoA(G)= Irr R. The authors also prove that this property characterizes
(finitely generated) virtually free groups.

Let N0 = 2 max{|r | : (r, s) ∈R}. Suppose that

uv = w0−→Rw1−→R · · · −→Rwn = w

is a sequence of reductions leading to a geodesic w. Then (wv−1)π = uπ and since
u is a geodesic we get |u| ≤ |v|+|w| and so |u|−|w| ≤ |v|. On the other hand, since
R is length-reducing, we get |u|+|v|= |uv|≥ |w|+n and so n−|v|≤ |u|−|w|≤ |v|.
Thus n ≤ 2|v|.

Trivially, |u ∧ w0| ≥ |u|. Since u ∧ wi−1 ∈ GeoA(G), it is immediate that
|u ∧wi |> |u ∧wi−1| − N0/2 and so

|u ∧w| = |u ∧wn| ≥ |u| − n
N0

2
≥ |u| − N0|v|.

(ii) The inverse of a geodesic is still a geodesic. By applying (i) to u−1 and v−1, we
get (u−1v−1)π = xπ for some x ∈GeoA(G) satisfying |u−1

∧x | ≥ |u−1
|−N0|v

−1
|.

Then we take z = x−1. �

We assume for the remainder of the paper that G is a finitely generated virtually
free group, π : Ã∗→G a matched epimorphism, and N0 a positive integer satisfying
the conditions of Lemma 5.1. Since G is hyperbolic, it follows from [Epstein et al.
1992, Theorem 3.4.5] that GeoA(G) is an automatic structure for G with respect to
π (see [Epstein et al. 1992] for definitions), and so the fellow traveler property holds
for some constant K0 > 0 (which can be taken as 2(δ+ 1), if δ is the hyperbolicity
constant). This amounts to saying that

∀u, v ∈ GeoA(G) : d1(uπ, vπ)≤ 1 ⇒ ∀n ∈ N : d1(u[n]π, v[n]π)≤ K0).
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We fix a total ordering of Ã. The shortlex ordering of Ã∗ is defined by

u ≤sl v if
{
|u|< |v|, or
|u| = |v| and u = wau′, v = wbv′ with a < b in Ã.

This is a well-known well-ordering of Ã∗, compatible with multiplication on the
left and on the right. Let

(6) L = {u ∈ GeoA(G) : u ≤sl v for every v ∈ uππ−1
}.

By [Epstein et al. 1992, Theorem 2.5.1], L is also an automatic structure for G
with respect to π , and therefore rational. We note that L is factorial (a factor of a
word in L is still in L).

Given g ∈G, let ḡ denote the unique word of L representing g. This corresponds
precisely to free group reduction if G = FA and π = θ . Since we shall not need free
group reduction from now on, we also write ū = uπ for every u ∈ Ã∗ to simplify
notation.

Theorem 5.2. Consider the finite rewriting system R′ on A defined by

R′ = {(u, ū) : u ∈ Ã∗, |u| ≤ K0 N0+ 1, u 6= ū}.

Then

(i) R′ is length-nonincreasing, noetherian and confluent,

(ii) IrrR′ = L.

Proof. (i) R′ is trivially length-nonincreasing, and that it is noetherian follows from

(7) (u, ū) ∈R′⇒ u >sl ū

and Ã∗ being well-ordered by ≤sl , plus compatibility of ≤sl with multiplication.
Next we show that

(8) u−→∗R′ ū holds for every u ∈ Ã∗.

We use induction on |u|. The case |u| ≤ K0 N0+ 1 follows from the definition
of R′. Hence assume that |u|> K0 N0+ 1 and (8) holds for shorter words. Write
u = avb with a, b ∈ Ã. If av /∈ L , we have u−→∗R′avb and ū = avb. Hence
u−→∗R′ ū follows from avb−→∗R′avb. Hence we may assume that av ∈ L .

Suppose that u /∈ GeoA(G). By Lemma 5.1(i), there exists some w ∈ GeoA(G)
such that wπ = (avb)π and |av∧w| ≥ |av|−N0 ≥ K0 N0+1−N0 > 0. Hence we
may write w= aw′ and we get (vb)π = (a−1w)π =w′π . Since |w′|< |vb| due to
u /∈ GeoA(G), we get |vb|< |vb|, and so we may apply the induction hypothesis
twice to get

u = avb−→∗R′avb−→∗R′avb = ū.
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Thus we may assume that u∈GeoA(G). We claim that ū[1]=a. Let p=K0 N0+1<
|u|. Since u, ū ∈ GeoA(G) and uπ = ūπ , the fellow traveler property yields
d1(u[p]π, ū[p]π)≤ K0, and so u[p]π = (ū[p]x)π for some x of length ≤ K0. Thus,
by Lemma 5.1(i), there exists some w ∈GeoA(G) such that wπ = (ū[p]x)π = u[p]π
and

|ū[p] ∧w| ≥ |ū[p]| − N0|x | ≥ p− K0 N0 = 1.

Hence ū[1] = w[1]. Now av ∈ L by assumption; hence u[p] ∈ L , and so u[p] = u[p].
Since wπ = u[p]π and w ∈GeoA(G), we get a = u[1] ≤w[1] = ū[1] in ( Ã,≤). On
the other hand, ū ≤sl u yields ū[1] ≤ a in ( Ã,≤), and so ū[1] = a as claimed.

Now it follows easily that ū = aa−1u = avb and the induction hypothesis yields
vb−→∗R′vb and therefore u = avb−→∗R′avb = ū. Therefore (8) holds.

Assume now that u−→∗R′v and u−→∗R′w. By (8), we get v−→∗R′ v̄ = ū and
w−→∗R′w̄ = ū. Hence R′ is confluent.

(ii) It follows from (8) that Irr R′ ⊆ L . The converse inclusion follows from the
implication

u−→R′v⇒ u >sl v,

which follows in turn from (7). �

We now establish some technical results which are useful in later sections.

Lemma 5.3. Let u, v ∈ L and letw ∈ Ã∗ be such that vw ∈GeoA(G) and (vw)π =
uπ . Then |u ∧ v| ≥ |v| − K0 N0.

Proof. Let k= |v| and write u= u[k]u′. Since v= (vw)[k], it follows from the fellow
traveler property that d1(vπ, u[k]π)≤ K0. Hence we may write vπ = (u[k]z)π with
|z| ≤ K0. Since u[k] is itself a geodesic, it follows from Lemma 5.1(i) that there
exists a geodesic u[p]z′ satisfying (u[p]z′)π = (u[k]z)π = vπ and

p = |u[k] ∧ u[p]z′| ≥ |u[k]| − N0|z| ≥ |v| − K0 N0.

Now v ∈ L yields v ≤sl u[p]z′, and so v[p] ≤sl u[p]. On the other hand, u ∈ L yields
u≤sl vw, and so u[p]≤sl v

[p]. Thus u[p]= v[p], and so |u∧v| ≥ p≥ |v|−K0 N0. �

Proposition 5.4. (i) Let uv ∈ L and let w ∈ Ã∗ be such that |v| ≥ K0 N0+N0|w|.
Then uvw = uvw.

(ii) Let u ∈ Ã∗ and let vw, vw′ ∈ L. Then |uvw∧ uvw′| ≥ |v| − K0 N0− N0|u|.

Proof. (i) Write v = v1v2 with |v2| = N0|w|. By Lemma 5.1(i), there exists some
uv1z ∈ GeoA(G) such that (uv1z)π = (uvw)π . Let x = uvw. By Lemma 5.3,
we get |x ∧ uv1| ≥ |uv1| − K0 N0. Since |v1| = |v| − |v2| ≥ K0 N0, u ≤ x and we
may write x = uy for some y. Since L is factorial, we have y ∈ L . In view of
yπ = (u−1x)π = (vw)π , we get y = vw and so uvw = uvw.



FIXED POINTS OF ENDOMORPHISMS OF VIRTUALLY FREE GROUPS 221

(ii) We may assume that |v| > K0 N0+ N0|u|. Write v = v1v2 with |v1| = N0|u|.
Let x = uv1 and write p = |x | + |v2|. By the proof of Lemma 5.1, we have
xv2w, xv2w

′
∈ GeoA(G).

Let y = uvw. Since (xv2w)π = yπ , it follows from the fellow traveler property
that d1((xv2)π, y[p]π)≤ K0. Hence we may write (xv2)π = (y[p]s)π with |s|≤ K0.
Since y[p] is itself a geodesic, it follows from Lemma 5.1(i) that there exists a
geodesic y[p−K0 N0]s ′ satisfying (y[p−K0 N0]s ′)π = (y[p]s)π = (xv2)π . To complete
the proof, it suffices to show that

(9) |y ∧ xv2| ≥ p− K0 N0.

Indeed, together with the corresponding inequality for y′ = uvw′, this implies

|uvw∧ uvw′| ≥ p− K0 N0 ≥ |v2| − K0 N0 = |v| − K0 N0− N0|u|

and we obtain the desired inequality.
To prove (9), we consider the geodesic y[p−K0 N0]s ′. Since (y[p−K0 N0]s ′)π =

(xv2)π , we get xv2 ≤sl y[p−K0 N0]s ′, and so xv2
[p−K0 N0] ≤sl y[p−K0 N0]. On the

other hand, xv2w is also a geodesic. Hence y = uvw = xv2w ≤sl xv2w yields
y[p−K0 N0] ≤sl xv2

[p−K0 N0]. Therefore y[p−K0 N0] = xv2
[p−K0 N0], so (9) holds. �

6. A new model for the boundary

We can now present a new model for the boundary of a finitely generated virtually
free group which proves useful in studying infinite fixed points. The notion of
boundary is indeed one of the important features associated to hyperbolic groups. To
present it, we define a second distance in G by means of the Gromov product (taking
1 as basepoint). We keep all the notation introduced in Section 5. In particular, G
is a finitely generated virtually free group and L = Irr R′.

Given g, h ∈ G, we define

(g|h)= 1
2(d1(1, g)+ d1(1, h)− d1(g, h)).

Fix ε > 0 such that εδ ≤ 1/5, where δ is the hyperbolicity constant from Section 5.
Write z = eε and define

ρ(g, h)=
{

z−(g|h) if g 6= h,
0 otherwise

for all g, h ∈ G. In general, ρ is not a distance because it fails the triangular
inequality. This problem is overcome by defining

d2(g, h)= inf{ρ(g0, g1)+ · · ·+ρ(gn−1, gn) : g0 = g, gn = h; g1, . . . , gn−1 ∈ G}.

By [Väisälä 2005, Proposition 5.16] (see also [Ghys and de la Harpe 1990, Propo-
sition 7.10]), d2 is a distance on G and the inequalities
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(10) 1
2ρ(g, h)≤ d2(g, h)≤ ρ(g, h)

hold for all g, h ∈ G.
In general, the metric space (G, d2) is not complete. Its completion (Ĝ, d̂2) is

essentially unique, and ∂G = Ĝ \G is the boundary of G. The elements of the
boundary admit several standard descriptions, such as equivalence classes of rays
(infinite words whose finite factors are geodesics) where two rays are equivalent
if the Hausdorff distance between them is finite [Ghys and de la Harpe 1990,
Section 7.1]. We won’t need precise definitions for these concepts or d̂2 since, as
we shall see next, we can get a simpler description of Ĝ for virtually free groups.

Lemma 6.1. There exists some M0 > 0 such that, for all g, h ∈ G,

(i) |ḡ| ≤ |ḡ∧ gh| + K0 N0+ N0|h|,

(ii) d1(g, h)≥
|ḡ| − |ḡ∧ h|

N0
− K0,

(iii) |ḡ∧ h| ≤ (g|h)≤ |ḡ∧ h| +M0.

Proof. (i) By applying Lemma 5.1 to the product ḡh, there exists some factorization
ḡ = vz and some geodesic vw ∈ (gh)π−1 such that |v| ≥ |ḡ| − N0|h|. Now we
apply Lemma 5.3 to u = gh and vw to get |u ∧ v| ≥ |v| − K0 N0. Hence

|ḡ∧ gh| = |u ∧ v| ≥ |v| − K0 N0 ≥ |ḡ| − N0|h| − K0 N0.

(ii) Let u = ḡ∧ h. Applying (i) to g and g−1h, and in view of d1(g, h)= |g−1h|,
we get

|ḡ| ≤ |ḡ∧ h| + K0 N0+ N0d1(g, h).

(iii) We define M0=δ+(2δ+1+K0)N0−1/2, assuming that 0A(G) is δ-hyperbolic.
Let u = ḡ∧ h, and write ḡ = uv, h = uw. It is easy to check that

(g|h)= 1
2(d1(1,g)+d1(1,h)−d1(g,h))=1

2(|u|+d1(uπ,g)+|u|+d1(uπ,h)−d1(g,h)).

Since d1(g, h)≤ d1(g, uπ)+ d1(uπ, h), we get |ḡ∧ h| = |u| ≤ (g|h).
Consider now the geodesic triangle determined by the paths

P1 : uπ
v
−→g, P2 : uπ

w
−→h, P3 : g

g−1h
−−−→h.

Since 0A(G) is δ-hyperbolic,

(11) d1(q, V (P1)∪ V (P2)) < δ for every q ∈ V (P3).

Assume that P3 : g = q0
a1
−→· · ·

an
−→qn = h with ai ∈ Ã. Since

d1(q0, V (P1))= 0< δ and d1(qn, V (P2))= 0< δ,
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it follows from (11) that there exist some j ∈ {0, . . . , n − 1} and p1 ∈ V (P1),
p2 ∈ V (P2) such that d1(q j , p1), d1(q j+1, p2)≤ δ. Since P1 and P2 are geodesics,
we get

(g|h)= 1
2(d1(1, g)+ d1(1, h)− d1(g, h))

=
1
2(|u| + d1(uπ, p1)+ d1(p1, g)

+ |u| + d1(uπ, p2)+ d1(p2, h)− d1(g, q j )− 1− d1(q j+1, h))

= |ḡ∧ h| + 1
2(d1(uπ, p1)+ d1(uπ, p2))

+
1
2(d1(p1, g)− d1(g, q j ))+

1
2(d1(p2, h)− d1(q j+1, h))− 1

2 .

Since d1(p1, g)≤ d1(p1, q j )+ d1(q j , g)≤ δ+ d1(q j , g), we have

1
2(d1(p1, g)− d1(g, q j ))≤

δ

2
.

Similarly,
1
2(d1(p2, h)− d1(q j+1, h))≤ δ

2
.

Out of symmetry, it suffices to show that d1(uπ, p1)≤ (2δ+ 1+ K0)N0.
Applying (ii) to p1 and p2, we get

d1(p1, p2)≥
|p1| − |p1 ∧ p2|

N0
− K0.

Since p1 (respectively p2) is a prefix of ḡ (respectively h), it follows easily that
p1 ∧ p2 = u and |p1| − |p1 ∧ p2| = d1(uπ, p1). Hence

d1(uπ, p1)

≤ (d1(p1, p2)+ K0)N0 ≤ (d1(p1, q j )+ d1(q j , q j+1)+ d1(q j+1, p2)+ K0)N0

≤ (2δ+ 1+ K0)N0. �

The language L introduced in (6) was noted to be rational. We recall that an
automaton is said to be trim if every vertex occurs in some successful path. Let
A= (Q, q0, T, E) be a finite trim deterministic Ã-automaton recognizing L (for
example, the minimal automaton of L; see [Berstel 1979]). Since L is factorial, we
must have T = Q. Let

∂L = {α ∈ Ãω : α[n] ∈ L for every n ∈ N}.

Equivalently, since A is trim and deterministic and T = Q, we have ∂L = Lω(A).
Write L̂ = L ∪ ∂L . We define a mapping d3 : L̂ × L̂→ R+0 by

d3(α, β)=

{
2−|α∧β| if α 6= β,
0 otherwise.



224 PEDRO V. SILVA

It is immediate that d3 is a distance in L̂ . Indeed, an ultrametric distance since

|α∧ γ | ≥min{|α∧β|, |β ∧ γ |}

holds for all α, β, γ ∈ L̂ . We commit a slight abuse of notation by also denoting by
d3 the restriction of d3 to L × L .

Proposition 6.2. (i) The mutually inverse mappings (G, d2)→ (L , d3) : g 7→ ḡ
and (L , d3)→ (G, d2) : u 7→ uπ are uniformly continuous;

(ii) (L̂, d3) is the completion of (L , d3);

(iii) (∂L , d3) is homeomorphic to the boundary of G.

Proof. (i) In view of (10), it suffices to show that

∀M > 0 ∃N > 0 : ((g|h) > N ⇒ |ḡ∧ h|> M),

∀M > 0 ∃N > 0 : (|ḡ∧ h|> N ⇒ (g|h) > M).

Now we apply Lemma 6.1(iii).

(ii) Let (αn)n be a Cauchy sequence in (L̂, d3). For every k ∈ N, the sequence
(α[k]n )n stabilizes when n→+∞. Moreover, limn→+∞ α

[k]
n is a prefix of

lim
n→+∞

α[k+1]
n .

Let β ∈ A∞ be the unique word satisfying β[k] = limn→+∞ α
[k]
n for every k ∈N. It

is immediate that β ∈ L̂ and β = limn→+∞ αn . Hence (L̂, d3) is complete. Since
α = limn→+∞ α

[n] for every α ∈ ∂L , (L̂, d3) is the completion of (L , d3).

(iii) By (i) and (ii), the uniformly continuous mappings (G, d2)→ (L , d3) : g 7→ ḡ
and (L , d3)→ (G, d2) : u 7→ uπ admit (unique) continuous extensions to their
completions (see [Dugundji 1966, Section XIV.6]), say

8 : Ĝ→ L̂, 9 : L̂→ Ĝ.

Hence89 is a continuous extension of the identity on G to its completion Ĝ. Since
such an extension is unique, 89 must be the identity mapping on Ĝ. Similarly,
98 must be the identity mapping on L̂ , and so 8 and 9 are mutually inverse
homeomorphisms. Therefore the restriction 8|∂G : ∂G → ∂L must also be a
homeomorphism. �

We have just proved that our construction of L̂ constitutes a model for the
hyperbolic completion of G. But we must also import to L̂ the algebraic operations
of Ĝ since we shall be considering homomorphisms soon. Clearly, the binary
operation on L is defined as

L × L→ L : (u, v) 7→ uv,
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so that (G, d2) → (L , d3) : g 7→ ḡ is also a group isomorphism. But there is
another important algebraic operation involved. Indeed, for every g ∈ G, the left
translation τg : G→ G : x 7→ gx is uniformly continuous for d2 and so admits a
continuous extension τ̂g : Ĝ→ Ĝ. It follows that the left action of G in its boundary,
G× ∂G→ ∂G : (g, α) 7→ ατ̂g, is continuous. We can also replicate this operation
in L̂ as follows.

Proposition 6.3. Let u ∈ L. Then τu : L→ L : v 7→ uv is uniformly continuous.

Proof. It suffices to show that

∀M > 0 ∃N > 0 : (|v∧w|> N ⇒ |uv∧ uv|> M).

By Proposition 5.4(ii), we can take N = M + K0 N0+ N0|u|. �

Therefore τu admits a continuous extension τ̂u : L̂ → L̂ and the left action
L × ∂L→ ∂L : (u, α) 7→ ατ̂u is continuous. Write uα = ατ̂u . For every α ∈ ∂L ,
we have

uα = u lim
n→+∞

α[n] = lim
n→+∞

uα[n].

Hence (L̂, d3) serves as a model for (Ĝ, d̂2) both topologically and algebraically.
From now on, we pursue our work within (L̂, d3).

7. Uniformly continuous endomorphisms

We keep all the notation introduced in Section 5. In particular, G is a finitely
generated virtually free group and L = Irr R′. Following the program announced
above, we work within (L̂, d3).

Given an endomorphism ϕ of G, we denote by ϕ̄ the corresponding endomor-
phism of L for the binary operation induced by the product in G, that is, uϕ̄= (uπ)ϕ.
To simplify notation, we often write uϕ instead of uπϕ for u ∈ Ã∗.

We say that ϕ satisfies the bounded cancellation property if

{|uϕ̄| − |uϕ̄ ∧ (uv)ϕ̄| : uv ∈ L}

is bounded. In that case, we denote its maximum by Bϕ . This property was
considered originally for free group automorphisms by Cooper [1987].

We also fix the notation Dϕ =max{|aϕ| : a ∈ Ã} and recall that a homomorphism
with finite kernel is called virtually injective.

Theorem 7.1. Let ϕ be a virtually injective endomorphism ϕ of G. Then ϕ satisfies
the bounded cancellation property.

Proof. Suppose that ϕ does not satisfy the bounded cancellation property. Then

∀m ∈ N ∃umvm ∈ L : |um ϕ̄| − |um ϕ̄ ∧ (umvm)ϕ̄|> m.
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Let X0 = (K0+ Dϕ)N0. We claim that

(12) ∀m ∈ N ∃u′mv
′

m ∈ L : (|u′m ϕ̄| − |(u
′

mv
′

m)ϕ̄|> m

and |(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| ≤ X0).

Indeed, let m ∈ N. Take n = m + X0 and write vn = a1 · · · ak (ai ∈ Ã). For
i = 0, . . . , k, let wi = (una1 · · · ai )ϕ̄. Let j denote the smallest i such that

|unϕ̄ ∧wi | ≤ |unϕ̄ ∧ (unvn)ϕ̄|.

Take u′m = un and v′m = a1 · · · a j−1 (since j > 0). Since L is factorial, we have
u′mv

′
m ∈ L .

Now, by the minimality of j , we get

|unϕ̄ ∧w j−1|> |unϕ̄ ∧ (unvn)ϕ̄|.

Since |unϕ̄ ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|, it follows that

|w j−1 ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|.

Applying Lemma 6.1(i) to w j−1π and a jϕ, we get

|w j−1| ≤ |w j−1 ∧w j | + K0 N0+ N0|a jϕ| ≤ |w j−1 ∧w j | + X0

≤ |unϕ̄ ∧ (unvn)ϕ̄| + X0 < |unϕ̄| − n+ X0 = |unϕ̄| −m,

and so |u′m ϕ̄| − |(u
′
mv
′
m)ϕ̄| = |unϕ̄| − |w j−1|> m.

Suppose that |w j−1| − |unϕ̄ ∧ w j−1| > X0. Since we have seen above that
|w j−1| ≤ |w j−1 ∧w j | + X0, we get |unϕ̄ ∧w j−1|< |w j−1 ∧w j |, in contradiction
with |w j−1 ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|< |unϕ̄ ∧w j−1|. Thus

|(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| = |w j−1| − |unϕ̄ ∧w j−1| ≤ X0,

and so (12) holds.
We prove that

(13) ∀m ∈ N ∃u′′mv
′′

m ∈ L : |u′′m ϕ̄|> m and |(u′′mv
′′

m)ϕ̄| ≤ X0+ N0 Dϕ.

Indeed, let m ∈ N. We have in 0A(G) geodesics

1
p // g

q //

r

''

u′mϕ

(u′mv
′
m)ϕ,
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where pq = u′m ϕ̄, pr = (u′mv
′
m)ϕ̄, and p = u′m ϕ̄ ∧ (u

′
mv
′
m)ϕ̄. Assume that u′m =

a1 · · · ak (ai ∈ Ã). Let

I = {i ∈ {0, . . . , k} : there exists a geodesic (a1 · · · ai )ϕ−→g
q
−→u′mϕ in 0A(G)}.

Clearly, 0 ∈ I . We claim that

(14)
(
i − 1 ∈ I and d1((a1 · · · ai−1)ϕ, g) > N0 Dϕ

)
⇒ i ∈ I

holds for i = 1, . . . , k. Indeed, assume i−1∈ I and (a1 · · · ai−1)ϕ
y
−→g

q
−→u′mϕ is

a geodesic with y ∈ L . Applying Lemma 5.1(ii) to the word a−1
i ϕ̄ and the geodesic

u = yq, it follows that there exists some geodesic (a1 · · · ai )ϕ
z
−→u′mϕ such that

z and u share a suffix of length ≥ |yq| − N0|a−1
i ϕ̄| ≥ |yq| − N0 Dϕ > |q|. Since

0A(G) is deterministic, our geodesic (a1 · · · ai )ϕ
z
−→u′mϕ factors through g, and

so (14) holds.
Since k /∈ I due to |q|> 0, it follows from (14) that d1((a1 · · · ai )ϕ, g)≤ N0 Dϕ

for some i ∈{1, . . . , k}. Let j denote the smallest such i . We define u′′m=a j+1 · · · ak

and v′′m = v
′
m . Since L is factorial and u′mv

′
m ∈ L , we also have u′′mv

′′
m ∈ L .

By minimality of j , we have d1((a1 · · · ai )ϕ, g)> N0 Dϕ for i = 0, . . . , j−1. By
(14), we get 1, . . . , j ∈ I and so there exists a geodesic (a1 · · · a j )ϕ−→g

q
−→u′mϕ

in 0A(G). Hence

|u′′m ϕ̄| = d1(1, u′′mϕ)= d1((a1 · · · a j )ϕ, u′mϕ)≥ |q| ≥ |u
′

m ϕ̄| − |(u
′

mv
′

m)ϕ̄|> m.

Finally,

|(u′′mv
′′

m)ϕ̄| = d1(1, (u′′mv
′′

m)ϕ)= d1((a1 · · · a j )ϕ, (u′mv
′

m)ϕ)

≤ d1((a1 · · · a j )ϕ, g)+ d1(g, (u′mv
′

m)ϕ)≤ N0 Dϕ + |r |

= N0 Dϕ + |(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| ≤ N0 Dϕ + X0

and so (13) holds.
Now, since |(u′′mv

′′
m)ϕ̄| is bounded, u′′mv

′′
m ∈ L , and Kerϕ is finite, |u′′mv

′′
m | must

be bounded and so must be |u′′m |. This implies that |u′′m ϕ̄| must be bounded, contra-
dicting |u′′m ϕ̄|> m. Thus ϕ satisfies the bounded cancellation property. �

Proposition 7.2. The following conditions are equivalent for a nontrivial endomor-
phism ϕ of G:

(i) ϕ is uniformly continuous for d2;

(ii) ϕ is virtually injective.

Proof. (i)⇒ (ii). Suppose that Kerϕ is infinite. In view of (10), it suffices to show
that there exists some η > 0 such that

∀ξ > 0 ∃g, h ∈ G : (ρ(g, h) < ξ and ρ(gϕ, hϕ)≥ η).
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By (10), we only need to show that there exists some M ∈ N such that

∀N ∈ N ∃g, h ∈ G :
(
(g|h) > N and gϕ 6= hϕ and ((gϕ)|(hϕ))≤ M

)
.

Take M = (g0ϕ|1)= 0 and fix g0 ∈ G \Kerϕ. We prove the claim by showing that

(15) ∀N ∈ N ∃h ∈ Kerϕ : ((hg0)|h) > N .

Let N ∈N. By Lemma 6.1(iii), we have |hg0∧h|≤ ((hg0)|h) for every h ∈G; hence
we only need to find out h ∈ Kerϕ satisfying |hg0 ∧ h|> N . By Lemma 6.1(i), we
have |hg0∧h|≥ |h|−K0 N0−N0|g0|. Hence it suffices that |h|> N+K0 N0+N0|g0|

for some h ∈ Kerϕ, and that is ensured by Kerϕ being infinite. Thus (15) holds as
required.

(ii)⇒ (i). Suppose that ϕ is not uniformly continuous for d2. In view of (10),
there exists some η > 0 such that

∀ξ > 0 ∃g, h ∈ G : (ρ(g, h) < ξ and ρ(gϕ, hϕ)≥ η).

Hence, by (10), there exists some M ∈ N such that

∀N ∈ N ∃g, h ∈ G :
(
(g|h) > N and gϕ 6= hϕ and ((gϕ)|(hϕ))≤ M

)
.

In view of Lemma 6.1(iii), we have that

∀n ∈ N ∃un, vn ∈ L : (|un ∧ vn|> n and unϕ̄ 6= vnϕ̄ and |unϕ̄ ∧ vnϕ̄| ≤ M).

Let wn = un ∧ vn ∈ L . Then either wnϕ̄ 6= unϕ̄ or wnϕ̄ 6= vnϕ̄. Without loss of
generality, we may assume that wnϕ̄ 6= unϕ̄. Suppose that |wnϕ̄| > M + Bϕ . By
definition of Bϕ , we get |wnϕ̄| − |wnϕ̄ ∧ unϕ̄| ≤ Bϕ , and so |wnϕ̄ ∧ unϕ̄| > M .
Similarly, |wnϕ̄ ∧ vnϕ̄|> M , and so |unϕ̄ ∧ vnϕ̄|> M , a contradiction. Therefore
|wnϕ̄| ≤ M + Bϕ for every n. Since |wn| > n and L is a cross-section for π , it
follows that Kerϕ is infinite. �

Given a uniformly continuous endomorphism ϕ of (G, d2), ϕ̄ : L → L is uni-
formly continuous for d3. Since L̂ is the completion of (L , d3), ϕ̄ admits a unique
continuous extension 8 : L̂→ L̂ . By continuity, we have

(16) α8= ( lim
n→+∞

α[n])8= lim
n→+∞

α[n]ϕ̄.

Corollary 7.3. Let ϕ be a uniformly continuous endomorphism of G and uα ∈ ∂L.
Then |uϕ̄| − |uϕ̄ ∧ (uα)8| ≤ Bϕ .

Proof. We have (uα)8 = limn→+∞(uα[n])ϕ̄ by (16). In view of Proposition 7.2,
we have limn→+∞ |(uα[n])ϕ̄| = +∞. Hence |uϕ̄ ∧ (uα)8| = |uϕ̄ ∧ (uα[m])ϕ̄| for
sufficiently large m. Since uα[m] ∈ L , the claim follows by definition of Bϕ . �
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8. Infinite fixed points

Keeping all the notation and assumptions introduced in the preceding sections, we
fix now a uniformly continuous endomorphism ϕ of the finitely generated virtually
free group G. We adapt notation introduced in [Ladra and Silva 2011] for free
groups, and the proofs are adaptations of proofs in [Silva 2010].

Given u ∈ L , let uσ = u ∧ uϕ̄ and write

u = (uσ)(uτ), uϕ̄ = (uσ)(uρ).

Also define
uσ ′ =

∧
{(uv)σ : uv ∈ L}

and write uσ = (uσ ′)(uσ ′′).

Lemma 8.1. Let uv ∈ L. Then

(i) |uσ ′′| ≤ Bϕ ,

(ii) |uσ | − |uσ ∧ (uv)ϕ̄| ≤ |uσ ′′|,

(iii) (uv)ϕ̄ = (uσ ′)(uσ ′′)(uρ)(vϕ̄),

(iv) (uv)σ ′ = (uσ ′)
( ∧

uvz∈L
((uσ ′′)(uρ)((vz)ϕ̄)∧ (uσ ′′)(uτ)vz)

)
.

Proof. (i) We may assume that |uσ |> Bϕ . Let v denote the suffix of length Bϕ of
uσ and write uσ = u′v. Suppose that uw ∈ L . It suffices to show that u′ is a prefix
of (uw)ϕ̄, and this follows from

|u′v(uρ)| − |u′v(uτ)∧ (uw)ϕ̄| = |uϕ̄| − |uϕ̄ ∧ (uw)ϕ̄| ≤ Bϕ

and |v| = Bϕ .

(ii) uσ ′ is a prefix of uσ ∧ (uv)ϕ̄.

(iii) uσ ′ is a prefix of (uv)ϕ̄ and both sides of the equality are equivalent in G.

(iv) uσ ′ is a prefix of (uv)σ ′ by (iii). �

For every u ∈ L , we define

uξ = (uσ ′′, uτ, uρ, q0u).

Note that there exists precisely one path of the form q0
u
−→q0u in A.

Lemma 8.2. Let u, v ∈ L be such that uξ = vξ and let a ∈ Ã, α ∈ Ã∞. Then

(i) ua ∈ L if and only if va ∈ L;

(ii) if ua ∈ L , (ua)ξ = (va)ξ ;

(iii) uv−1 ∈ Fix ϕ̄;

(iv) uα ∈ L̂ if and only if vα ∈ L̂;
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(v) uα ∈ Fix8 if and only if vα ∈ Fix8;

(vi) if α ∈ L̂ , α = limn→+∞ α[n]u.

Proof. (i) uξ = vξ implies q0u = q0v.

(ii) Clearly, q0u=q0v yields q0ua=q0va. Considering v=a in Lemma 8.1(iii), we
may write (ua)σ = (uσ ′)u′ and deduce that u′, (ua)τ , and (ua)ρ are all determined
by uξ . Hence (ua)τ = (va)τ , (ua)ρ = (va)ρ, and u′ = v′.

Finally, since q0u = q0v, we have uaz ∈ L if and only if vaz ∈ L . It follows
from Lemma 8.1(iv) that there exists a word x ∈ L which satisfies both (ua)σ ′ =
(uσ ′)x and (va)σ ′ = (vσ ′)x . Now (uσ ′)u′ = (ua)σ = ((ua)σ ′)((ua)σ ′′) =
(uσ ′)x((ua)σ ′′). Hence u′ = x((ua)σ ′′). Similarly, v′ = x((va)σ ′′). Since u′ = v′,
we get (ua)σ ′′ = (va)σ ′′, and so (ua)ξ = (va)ξ .

(iii) (uv−1)ϕ = (uϕ)(vϕ)−1 = (uσ)(uρ)(vρ)−1(vσ )−1 = (uσ)(vσ )−1

= (uσ)(uτ)(vτ)−1(vσ )−1 = uv−1.

(iv) We have uα ∈ L̂ if and only if uα[n] ∈ L for every n ∈ N. Now we use (i) and
induction on n.

(v) We have uα = (uσ ′)(uσ ′′)(uτ)α and, in view of Corollary 7.3 and (16), also

(uα)8= (uσ ′) lim
n→+∞

(uσ ′′)(uρ)(α[n]ϕ̄).

Hence uα ∈ Fix8 depends just on uξ and α.

(vi) Let m = K0 N0+ N0|u|. By Lemma 6.1(i), we have |α[n] ∧α[n]u| ≥ n−m for
every n. Hence α = limn→+∞ α

[n−m]
= limn→+∞ α[n]u. �

Given X ⊆ A∞, write

Pref X = {u ∈ A∗ : uα ∈ X for some α ∈ A∞}.

Recall the finite trim deterministic Ã-automaton A= (Q, q0, Q, E) recognizing L .
We build a (possibly infinite) Ã-automaton A′ϕ = (Q

′, q ′0, T ′, E ′) by taking

Q′ = {uξ : u ∈ Pref Fix8},

q ′0 = 1ξ,

T ′ = {uξ ∈ Q′ : uτ = uρ = 1},

E ′ = {(uξ, a, vξ) ∈ Q′× Ã× Q′ : v = ua ∈ Pref Fix8}.

We note that A′ϕ is deterministic by Lemma 8.2(ii) and is also accessible: if
u ∈ Pref Fix8, there exists a path q ′0

u
−→uξ , and so every vertex can be reached

from the initial vertex.
Let S denote the set of all vertices q ∈ Q′ such that there exist at least two edges

in B′ϕ leaving q . Let Q′′ denote the set of all vertices q ∈ Q′ such that there exists
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some path q−→p ∈ S ∪ T ′. We define A′′ϕ = (Q
′′, q ′′0 , T ′′, E ′′) by taking q ′′0 = q ′0,

T ′′ = T ′, and E ′′ = E ′ ∩ (Q′′× Ã× Q′′).

Lemma 8.3. S is finite.

Proof. In view of Lemma 8.1, the unique components of uξ that may assume
infinitely many values are uτ and uρ. Moreover, we claim that

(17) uτ 6= 1⇒ |uρ| ≤ Bϕ

holds for every u ∈ Pref Fix8. Indeed, suppose that uτ 6= 1 and |uρ| > Bϕ .
Write α = uβ for some α ∈ Fix8. In view of Corollary 7.3, |uρ| > Bϕ yields
|(uβ)8∧uϕ̄|> |uσ | and now uτ 6= 1 yields ((uβ)8∧uβ)= (uϕ̄∧u)= uσ . Since
β 6= 1, this contradicts α ∈ Fix8. Therefore (17) holds.

It is also easy to see that

(18) |uρ|> Bϕ⇒ uξ /∈ S

for every u ∈ Pref Fix8. Indeed, if |uρ|> Bϕ and a is the first letter of uρ, then,
by definition of Bϕ , (uσ)a is a prefix of (uα)8 whenever uα ∈ Fix8. Therefore
any edge leaving uξ in A′ϕ must have label a, and so (18) holds.

In view of Proposition 7.2, we can define

W0 =max{|u| : u ∈ L , |uϕ̄| ≤ 2(Bϕ + Dϕ − 1)}.

Let Z0 = Bϕ + N0(K0+W0)Dϕ . To complete the proof, it suffices to prove that

(19) |uτ |> Z0⇒ uξ /∈ S

for every u ∈ Pref Fix8.
Suppose that |uτ |> Z0 and

(uξ, a, (ua)ξ), (uξ, b, (ub)ξ) ∈ E ′

for some u ∈ Pref Fix8, where a, b ∈ Ã are distinct. We have (ua)ξ = vξ for some
v ∈ Pref Fix8. By Lemma 8.2(v), we get uaα ∈ Fix8 for some α ∈ L̂ . By (16),
we get uaα = limn→+∞(uaα[n])ϕ̄, and so |(uaα[n])ϕ̄| ≥ |u| for sufficiently large
n. Let

p =min{n ∈ N : |(uaα[n])ϕ̄| ≥ |u|}.

Note that p > 0 since |uτ | > Z0 and by (17). Since |(uaα[p−1])ϕ̄| < |u| by the
minimality of p, we get

(20) |(uaα[p])ϕ̄| ≤ |(uaα[p−1])ϕ̄| + Dϕ < |u| + Dϕ.

On the other hand,

(21) |u| − |(uaα[p])ϕ̄ ∧ u| ≤ Bϕ.
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Otherwise, by definition of Bϕ , uaα and (uaα)8 would differ at position

|(uaα[p])ϕ̄ ∧ u| + 1.

Similarly, ubβ ∈ Fix8 for some β ∈ L̂ . Defining

q =min{n ∈ N : |(ubβ[n])ϕ̄| ≥ |u|},

we get

(22) |(ubβ[q])ϕ̄|< |u| + Dϕ

and

(23) |u| − |(ubβ[q])ϕ̄ ∧ u| ≤ Bϕ.

Write u=u1u2 with |u2|= Bϕ . Then by (20) and (21) we may write (uaα[p])ϕ̄=u1x
for some x such that |x |< Bϕ+Dϕ . Similarly, (22) and (23) yield (ubβ[q])ϕ̄ = u1 y
for some x such that |x | < Bϕ + Dϕ . Writing w = (β[q])−1b−1aα[p], it follows
that wϕ = (y−1x)π , and so |wϕ̄| ≤ 2(Bϕ + Dϕ − 1). Hence |w| ≤ W0. Applying
Lemma 6.1(i) to g = (ubβ[q])π and h = wπ , we get

|ubβ[q]| ≤ |ubβ[q] ∧ uaα[p]| + N0(K0+ |w|)≤ |u| + N0(K0+W0),

and so q < N0(K0+W0). Hence, in view of (17), we get

|uτ | = |u| − |uσ | ≤ |(ubβ[q])ϕ̄| − |uσ | ≤ |uϕ̄| + |(bβ[q])ϕ̄| − |uσ |

≤ |uρ| + N0(K0+W0)Dϕ ≤ Bϕ + N0(K0+W0)Dϕ,

contradicting |uτ |> Z0. Thus (19) holds and the lemma is proved. �

We say that an infinite fixed point α ∈ Fix8∩ ∂L is singular if α belongs to
the topological closure (Fixϕ)c of Fixϕ. Otherwise, α is said to be regular. We
denote by Sing8 (respectively Reg8) the set of all singular (respectively regular)
infinite fixed points of 8.

Theorem 8.4. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G. Then

(i) the automaton A′′ϕ is finite;

(ii) L(A′′ϕ)= Fix ϕ̄;

(iii) Lω(A′′ϕ)= Sing8.

Proof. (i) The set T ′ is finite and S is finite by Lemma 8.3. On the other hand, by
definition of S, there are only finitely many paths in A′ϕ of the form ν j : p′−→q ′

with p′, q ′ ∈ S ∪ T ′ ∪ {q ′0} and no intermediate vertex in S ∪ T ′ ∪ {q ′0}. Now recall
that A′ϕ is accessible. Hence every path of the form q

u
−→p∈ S∪T ′ can be extended
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to some path q ′0
v
−→q

u
−→p ∈ S ∪ T ′ which is itself a concatenation of the finitely

many paths ν j . Therefore Q′′ is finite and so is A′′ϕ .

(ii) Every u ∈ L labels at most a unique path q ′0= 1ξ
u
−→uξ out of the initial vertex

in A′ϕ . On the other hand, if q ′0 = 1ξ
u
−→q ′ is a path in A′ϕ , the fourth component

of ξ yields a path q0
u
−→q in A, and so u ∈ L . Hence

L(A′ϕ)= {u ∈ L : uξ ∈ T ′} = {u ∈ L : uτ = uρ = 1} = Fix ϕ̄.

Since L(A′′ϕ)= L(A′ϕ), (ii) holds.

(iii) Let α ∈ Lω(A′′ϕ). Then there exists some q ′′ ∈ Q′′ and some infinite sequence
(in)n such that q ′′0

α[in ]

−−−→q ′′ is a path in A′′ϕ for every n. Write u = α[i1] and let

vn = α[in]u−1. By Lemma 8.2(iii), we have vn ∈ Fix ϕ̄ for every n. It follows from
Lemma 8.2(vi) that α = limn→+∞ vn . Thus α ∈ Sing8.

Conversely, let α ∈ Sing8. Then we may write α = limn→+∞ vn for some
sequence (vn)n in Fix ϕ̄. Let k ∈ N. For large enough n, we have α[k] = v[k]n , and
so there is some path

q ′′0
α[k]

−−→q ′′k
w
−→t ′′k ∈ T ′′,

where α[k]w = vn . Thus α ∈ Lω(A′′ϕ) as required. �

Recall now the continuous extensions τ̂u : L̂→ L̂ of the uniformly continuous
mappings τu : L→ L : v 7→ uv defined for each u ∈ L (see Proposition 6.3). As
remarked before, this is equivalent to saying that the left action

L × ∂L→ ∂L : (u, α) 7→ uα

is continuous. Identifying L with G and ∂L with ∂G, we have a continuous action
(on the left) of G on ∂G. Clearly, this action restricts to a left action of Fixϕ on
Fix8∩ ∂G: if g ∈ Fixϕ and α ∈ Fix8∩ ∂G with α = limn→+∞ gn (gn ∈ G),

(gα)8= (g lim
n→+∞

gn)8= ( lim
n→+∞

ggn)8= lim
n→+∞

(ggn)ϕ

= lim
n→+∞

(gϕ)(gnϕ)= (gϕ) lim
n→+∞

gnϕ = g( lim
n→+∞

gn)8

= g(α8)= gα.

Moreover, the (Fixϕ)-orbits of Sing8 and Reg8 are disjoint: if α ∈ Sing8, we
can write α = limn→+∞ gn with the gn ∈ Fixϕ and get gα = limn→+∞ ggn with
ggn ∈ Fixϕ for every n; hence α ∈ Sing8⇒ gα ∈ Sing8 and the action of g−1

yields the converse implication.
We can now prove the main result of this section.

Theorem 8.5. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G. Then Reg8 has finitely many (Fixϕ)-orbits.
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Proof. Let P be the set of all infinite paths s ′0
a1
−→s ′1

a2
−→· · · in A′ϕ such that

s ′0 ∈ S ∪ {q0}, s ′n /∈ S ∪ {q0} for every n > 0, s ′n 6= s ′m whenever n 6= m.

By Lemma 8.3, there are only finitely many choices for s ′0. Since A is finite and A′ϕ
is deterministic, there are only finitely many choices for s ′1, and from that vertex
onwards, the path is uniquely determined due to s ′n /∈ S (n ≥ 1). Hence P is finite,
and we may assume that it consists of paths p′i

αi
−→· · · for i = 1, . . . ,m. Fix a path

q ′0
ui
−→p′i for each i and let X ={u1α1, . . . , umαm}⊆ ∂L . We claim that X ⊆Reg8.
Let i ∈ {1, . . . ,m} and write β = uiαi . To show that β ∈ Fix8, it suffices to

show that limn→+∞ β
[n]ϕ̄ = β. Let k ∈ N. We must show that there exists some

r ∈ N such that

(24) n ≥ r ⇒ |β[n]ϕ̄ ∧β|> k.

In view of Proposition 7.2, there exists some r > k such that

n ≥ r ⇒ |β[n]ϕ̄|> k+ Bϕ.

Suppose that |β[n]ϕ̄ ∧ β| ≤ k for some n ≥ r . Then |β[n]σ | ≤ k. Since k < r ≤ n,
it follows that β[n]τ 6= 1. On the other hand, since |β[n]ϕ̄| > k + Bϕ , we get
|β[n]ρ|> Bϕ . In view of (17), this contradicts β[n]ξ ∈ Q′. Therefore (24) holds for
our choice of r and so X ⊆ Fix8. Since the path

q ′0
β
−→· · ·

can visit only finitely often a given vertex, β /∈ Lω(A′′ϕ), and so X ⊆ Reg8 by
Theorem 8.4(iii).

By the previous comments on (Fixϕ)-orbits, the (Fixϕ)-orbits of the elements
of X must be contained in Reg8. We complete the proof of the theorem by proving
the opposite inclusion.

Let β ∈ Reg8. By Theorem 8.4(iii), we have β /∈ Lω(A′′ϕ), and so there exists a
factorization β = uα and a path

q ′0
u
−→p′

α
−→· · ·

in A′ϕ such that p′ signals the last occurrence of a vertex from S ∪ {q ′0}. We claim
that no vertex is repeated after p′. Otherwise, since no vertex of S appears after p′,
we would get a factorization of p′

α
−→· · · as

p′
v
−→q ′

w
−→q ′

w
−→· · ·

and by Lemma 8.2(iii) and (iv) we would get (uvwnv−1u−1)π ∈ Fixϕ and

β = lim
n→+∞

uvwnv−1u−1,
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contradicting β ∈ Reg8. Thus no vertex is repeated after p′, and so we must
have p′ = p′i and α = αi for some i ∈ {1, . . . ,m}. It follows that β = uαi . By
Lemma 8.2(iii), we get

uu−1
i ∈ Fix ϕ̄,

and we are done. �

Theorem 8.5 is somehow a version for infinite fixed points of Theorem 4.1,
which we proved before for finite fixed points. Note however that Sing8 does not
in general have finitely many (Fixϕ)-orbits since Sing8 may be uncountable (take
for instance the identity automorphism on a free group of rank 2).

Since every finite set is closed in a metric space, we obtain the following corollary
from Theorem 8.5.

Corollary 8.6. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G with Fixϕ finite. Then Fix8 is finite.

9. Classification of the infinite fixed points

We can now investigate the nature of the infinite fixed points of 8 when ϕ is an
automorphism. Since, by Proposition 7.2, both ϕ and ϕ−1 are then uniformly
continuous, they extend to continuous mappings 8 and 9 which turn out to
be mutually inverse in view of the uniqueness of continuous extensions to the
completion. Therefore 8 is a bijection. We say that α ∈ Reg8 is

• an attractor if ∃ε > 0 ∀β ∈ L̂ : (d3(α, β) < ε⇒ limn→+∞ β8
n
= α);

• a repeller if ∃ε > 0 ∀β ∈ L̂ : (d3(α, β) < ε⇒ limn→+∞ β8
−n
= α).

The latter amounts to saying that α is an attractor for 8−1. There exist other types,
but they do not occur in our context as we shall see.

We say that an attractor α ∈ Reg8 is exponentially stable if

∃ε, k, ` > 0 ∀β ∈ L̂ ∀n ∈ N : (d3(α, β) < ε⇒ d3(α, β8
n)≤ k2−`nd3(α, β)).

This is equivalent to saying that

(25) ∃M, N , ` > 0 ∀β ∈ L̂ ∀n ∈ N :

(|α∧β|> M⇒ |α∧β8n
| + N > `n+ |α∧β|).

A repeller α ∈ Reg8 is exponentially stable if it is an exponentially stable
attractor for 8−1.

Theorem 9.1. Let ϕ be an automorphism of a finitely generated virtually free group
G. Then Reg8 contains only exponentially stable attractors and exponentially
stable repellers.
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Proof. Let α ∈ Reg8 and write α = a1a2 · · · with ai ∈ Ã. Then there exists a path

1ξ
a1
−→α[1]ξ

a2
−→α[2]ξ

a3
−→· · ·

in A′ϕ . Let Y0 = Bϕ(Dϕ−1 + 1)+ Bϕ−1(Dϕ + 1) and let

V = {uξ ∈ Q′ : |uτ |> Y0 or |uρ|> Y0}.

It is easy to see that Q′ \ V is finite. We saw in the proof of Theorem 8.5 that there
are only finitely many repetitions of vertices in a path in A′ϕ labeled by a regular
fixed point. Hence there exists some n0 ∈ N such that

(26) α[n]ξ ∈ V for every n ≥ n0.

Now we consider two cases.

Case I: α[n0]τ = 1. We claim that

(27) α[n]τ = 1 for every n ≥ n0.

The case n = n0 holds in Case I, so assume that α[n]τ = 1 for some n ≥ n0. Then
α[n]ξ ∈ V , and so |α[n]ρ|> Y0 > 2Bϕ . Since |α[n+1]ϕ̄| ≥ |α[n]ϕ̄|− Bϕ by definition
of Bϕ ,

|α[n+1]ρ| ≥ |α[n+1]ϕ̄| − |α[n+1]
| ≥ |α[n]ϕ̄| − Bϕ − |α[n]| − 1= |α[n]ρ| − Bϕ − 1

> Y0− Bϕ − 1> Bϕ.

By (17), we get α[n+1]τ = 1, and so (27) holds.
Next we show that

(28) ((α[n]γ )8)[n+1]
= α[n+1]

if n ≥ n0 and α[n]γ ∈ L̂ . Indeed, by (27) we have α[n]ϕ̄ = α[n](α[n]ρ) and |α[n]ρ|>
Y0 > Bϕ . By the definition of Bϕ and Corollary 7.3, we get ((α[n]γ )8)[n+1]

=

α[n](α[n]ρ)[1]. Considering the particular case γ = an+1, we also get

(α[n+1]ϕ̄)[n+1]
= α[n](α[n]ρ)[1] = ((α[n]γ )8)[n+1].

Since α[n+1]τ = 1 by (27), we have (α[n+1]ϕ̄)[n+1]
= α[n+1], and so (28) holds.

Hence we may write (α[n]γ )8 = α[n+1]γ ′ whenever α[n]γ ∈ L̂ . Iterating, it
follows that, for all k ≥ n0 and n ∈ N, α[k]γ ∈ L̂ implies (α[k]γ )8n

= α[k+n]γ ′ for
some γ ′. By considering β = α[k]γ and α[k] = α∧β, we deduce that

|α∧β| ≥ n0⇒ |α∧β8
n
| ≥ n+ |α∧β|

holds for all β ∈ L̂ and n ∈N. Therefore (25) holds, and so α is an exponentially
stable attractor in this case.
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Now, if |α[t]τ | = 1 for some t > n0, we can always replace n0 by t and deduce
by Case I that α is an exponentially stable attractor. Thus we may assume the
following.

Case II: α[n]τ 6= 1 for every n≥ n0. By replacing n0 by a larger integer if necessary,
we may assume that (26) is also satisfied when we consider the equivalents of ξ
and V for ϕ−1.

Since ϕ is injective, there exists some n1 ≥ n0 such that

|α[n1]ϕ̄| ≥ n0+ Bϕ.

Since α[n1]τ 6= 1, it follows from (17) that |α[n1]ρ| ≤ Bϕ; hence α[n1]σ = α[n2] for
some n2 ≥ n0. Write x = α[n1]ρ. Then α[n1]ϕ̄ = α[n2]x yields

α[n1] = (α[n2]ϕ−1)(xϕ−1),

and so

n1 = |α
[n1]| ≤ |α[n2]ϕ−1| + |xϕ−1| ≤ |α[n2]ϕ−1| + BϕDϕ−1 .

On the other hand, |α[n1]ρ| ≤ Bϕ < Y0 and α[n1] ∈ V together yield Y0 < |α
[n1]τ | =

n1− n2, and so

n2+ Bϕ−1 < n1− Y0+ Bϕ−1 < n1− BϕDϕ−1 ≤ |α[n2]ϕ−1|.

In view of (17), we can apply Case I to ϕ−1. Hence α is an exponentially stable
attractor for ϕ−1 and, therefore, an exponentially stable repeller for ϕ. �

10. Example and open problems

We include a simple example which illustrates some of the constructions introduced
earlier.

Example. Let G=Z×Z2 and let A={a, b, c}. We note that this is not the canonical
set of generators, which would not work. Then the matched homomorphism
π : Ã∗→ G defined by

aπ = (1, 0), bπ = (0, 1), cπ = (1, 1)

yields

GeoA(G)= (a ∪ c)∗ ∪ (a−1
∪ c−1)∗ ∪ {b, b−1

},

and we can take

R= {(xx−1, 1) : x ∈ Ã}∪{(aεbδ, cε), (bδaε, cε), (cεbδ, aε), (bδcε, aε) : δ, ε=±1}

∪ {(ac−1, b), (c−1a, b), (a−1c, b), (ca−1, b), (b2, 1), (b−2, 1)}
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to get GeoA(G)= Irr R. Ordering Ã by a < c < a−1 < c−1 < b < b−1, we get

L = a∗(1∪ c)∪ (a−1)∗(1∪ c−1)∪ b,

recognized by the automaton A depicted by

q0//oo a //

b,c,c−1

))
a−1

��

q1

c
��

//

a

��

q2oo
c−1

//

a−1

VV
q3 // .

Hence ∂L = Lω(A)= {aω, (a−1)ω}.
Let ϕ be the endomorphism of G defined by (m, n)ϕ = (2m, n). Then ϕ is

injective and therefore uniformly continuous, admitting a continuous extension 8
to L̂ . Since Bϕ = 0, it is easy to check that A′ϕ is the automaton

bξ //

· · · a−2ξ
a−1
oo a−1ξ

a−1
oo 1ξ

a−1
oo

a
//

b

OO

!!

aa

aξ a
// a2ξ a

// · · ·

and

1ξ= (1, 1, 1, q0), bξ= (1, 1, 1, q3), anξ= (1, 1, an, q1), a−nξ= (1, 1, a−n, q2)

for n ≥ 1. Note that, in general, we ignore how to compute A′ϕ , our proofs being
far from constructive!

It is immediate that Fix8 = {1, b, aω, (a−1)ω}. Moreover, the regular infinite
fixed points aω and (a−1)ω are both exponentially stable attractors.

Finally, we end the paper with some easily predictable open problems.

Problem 10.1. Is it possible to generalize Theorems 4.1, 8.5, and 9.1 to arbitrary
finitely generated hyperbolic groups?

Paulin proved [1989] that Theorem 4.1 holds for automorphisms of hyperbolic
groups.

Problem 10.2. Is Fixϕ effectively computable when ϕ is an endomorphism of a
finitely generated virtually free group?

For the moment, only the case of free group automorphisms is known; see
[Bogopolski and Maslakova 2012].
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Another natural question to ask in this context is whether similar results hold for
equalizers. Given homomorphisms ϕ,ψ : G→ G ′, let

Eq(ϕ, ψ)= {x ∈ G : xϕ = xψ}.

Problem 10.3. Given homomorphisms ϕ,ψ :G→G ′ of finitely generated virtually
free groups with ϕ injective, is Eq(ϕ, ψ) finitely generated?

This question has been solved by Goldstein and Turner for free groups [1986].
The restriction to the case where at least one of the homomorphisms is injective
is required even in the free group case (see [Gersten 1987] and [Ventura 2002,
Section 3] for counterexamples).
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THE SHARP LOWER BOUND FOR THE FIRST POSITIVE
EIGENVALUE OF THE FOLLAND–STEIN OPERATOR ON A

CLOSED PSEUDOHERMITIAN (2n+ 1)-MANIFOLD

CHIN-TUNG WU

In this paper, we obtain a sharp lower bound estimate for the first nonzero
eigenvalue of the Folland–Stein operator Lc, |c| ≤ n, on a closed pseudoher-
mitian (2n+ 1)-manifold M. This generalizes the first nonzero eigenvalue
estimates of the sublaplacian and Kohn Laplacian.

1. Introduction

Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold (see the next section
for basic notions in pseudohermitian geometry). A. Greenleaf [1985], S.-Y. Li
and H.-S. Luk [2004], and H.-L. Chiu [2006] proved the sharp lower bound of the
first positive eigenvalue λ0

1 of the sublaplacian 1b on a pseudohermitian (2n+ 1)-
manifold M . More precisely, it was proved that

λ0
1 ≥

nk
n+ 1

if [Ric− n+1
2 Tor](Z , Z) ≥ k〈Z , Z〉 for all Z ∈ T1,0, some positive constant k, on

a closed pseudohermitian (2n + 1)-manifold with the nonnegative CR Paneitz
operator P0 if n = 1 (also see [Chang and Wu 2010]).

Very recently, S. Chanillo, H.-L. Chiu and P. Yang [Chanillo et al. 2012] obtained
the sharp lower bound of the first positive eigenvalue λn

1 of the Kohn Laplacian �b

on a pseudohermitian (2n+1)-manifold M with n=1, 2. Later, S.-C. Chang and the
author [Chang and Wu ≥ 2013] proved the same result for n ≥ 3. They showed that

λn
1 ≥

2nk
n+ 1

if Ric(Z , Z) ≥ k〈Z , Z〉 for all Z ∈ T1,0, some positive constant k, on a closed
pseudohermitian (2n+ 1)-manifold M with nonnegative CR Paneitz operator P0 if
n = 1. Note that there is no assumption involving the pseudohermitian torsion.
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MSC2010: primary 32V05, 32V20; secondary 53C56.
Keywords: Folland–Stein operator, sublaplacian, Kohn Laplacian, CR Paneitz operator,

pseudohermitian manifold, pseudohermitian Ricci curvature, pseudohermitian torsion.
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In this paper, we generalize the first nonzero eigenvalue estimates of the sub-
laplacian 1b and Kohn Laplacian �b to the Folland–Stein operator Lc. First we
need some definitions.

Definition 1.1. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. De-
fine

Pϕ =
n∑
α=1

(
ϕα

α
β + in Aβαϕα

)
θβ = (Pβϕ)θβ, β = 1, 2, . . . , n,

which is an operator that characterizes CR-pluriharmonic functions ([Lee 1988] for
n= 1 and [Graham and Lee 1988] for n≥ 2). Here Pβϕ=

∑n
α=1(ϕα

α
β+in Aβαϕα)

and Pϕ = (Pβϕ)θβ , the conjugate of P . Moreover, we define

P0ϕ = δb(Pϕ),

which is the so-called CR Paneitz operator P0. Here δb is the divergence operator
that takes (1, 0)-forms to functions by δb(σαθ

α) = σα,
α and δ̄b(σαθ

α) = σα,
α. If

we define ∂bϕ = ϕαθ
α and ∂̄bϕ = ϕαθ

α , then the formal adjoint of ∂b on functions
(with respect to the Levi form and the volume form θ ∧ (dθ)n) is ∂∗b =−δb.

We observe that P0 is a real and symmetric operator and∫
〈Pϕ, ∂bϕ〉 = −

∫
(P0ϕ)ϕ.

Definition 1.2. We say that the Paneitz operator P0 with respect to (J, θ) is non-
negative if, for all C∞ smooth functions ϕ,∫

(P0ϕ)ϕ ≥ 0.

Remark 1.3. When (M, J, θ) is a closed pseudohermitian 3-manifold with vanish-
ing pseudohermitian torsion, the corresponding CR Paneitz operator is nonnegative
[Chang et al. 2007]. Unlike n = 1, let (M, J, θ) be a closed pseudohermitian
(2n+ 1)-manifold with n ≥ 2. The corresponding CR Paneitz operator is always
nonnegative as in (3-4).

Definition 1.4 [Graham and Lee 1988]. Let (M, J, θ) be a closed pseudohermitian
(2n+ 1)-manifold. We define the purely holomorphic second-order operator Q by

Qϕ = 2i(Aαβϕα),β .

Note that [T,1b] = 2 Im Q and

(1-1) 4P0 =1
2
b+ n2T 2

− 2n Re Q = (1b+ inT )(1b− inT )− 2nQ

= (1b− inT )(1b+ inT )− 2nQ.
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Now we consider, for c ∈ R, the self-adjoint operators

Lc =1b+ icT,

with |c|≤n. By a result in [Folland and Stein 1974], each Lc, |c|<n, is a subelliptic
operator of order 1

2 ; hence Lc has a discrete spectrum tending to +∞.
In the following we can obtain a sharp lower bound for the first nonzero

eigenvalue λc
1 of the Folland–Stein operator Lc, c ∈ R with |c| ≤ n, on a closed

pseudohermitian (2n+ 1)-manifold.

Theorem 1.5. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that

(1-2)


[

Ric−
(n− c)(n+ 1)

2(n+ c)
Tor
]
(Z , Z)≥ k〈Z , Z〉 if c ≥ 0,[

Ric−
(n+ c)(n+ 1)

2(n− c)
Tor
]
(Z , Z)≥ k〈Z , Z〉 if c < 0,

for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n= 1. Then the first nonzero eigenvalue of Lc, |c| ≤ n,
must satisfy

λc
1 ≥

n+ |c|
n+ 1

k.

Note that the constant in the torsion tensor term in assumption (1-2) depends on
the variable c. In the standard pseudohermitian (2n+ 1)-sphere (S2n+1, Ĵ , θ̂ ) with
the induced CR structure Ĵ from Cn+1 and the standard contact form θ̂ , we can
show that the lower bound in Theorem 1.5 is sharp (see Section 4).

In particular, when (M, J, θ) is a closed pseudohermitian 3-manifold with
vanishing pseudohermitian torsion, the corresponding CR Paneitz operator P0

is nonnegative.

Corollary 1.6. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold with
vanishing pseudohermitian torsion. Suppose that{

Ric(Z , Z)≥ k〈Z , Z〉 if c ≥ 0,
Ric(Z , Z)≥ k〈Z , Z〉 if c < 0,

for a positive constant k and for all Z ∈ T1,0. Then the first nonzero eigenvalue
of Lc, |c| ≤ n, must satisfy

λc
1 ≥

n+ |c|
n+ 1

k.

Moreover, when c = n, the operator Ln is just the Kohn Laplacian: Ln =�b.

Corollary 1.7. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that

Ric(Z , Z)≥ k〈Z , Z〉
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for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n = 1. Then the first nonzero eigenvalue of the Kohn
Laplacian �b must satisfy

λn
1 ≥

2nk
n+ 1

.

When c = 0, the operator L0 is just the sublaplacian 1b; i.e., L0 =1b.

Corollary 1.8. Let (M, J, θ) be a closed pseudohermitian (2n+ 1)-manifold. Sup-
pose that [

Ric−
n+ 1

2
Tor
]
(Z , Z)≥ k〈Z , Z〉

for a positive constant k and for all Z ∈ T1,0. In addition we assume the Paneitz
operator P0 is nonnegative if n = 1. Then the first nonzero eigenvalue of the
sublaplacian 1b must satisfy

λ0
1 ≥

nk
n+ 1

.

Further, we study the case when a sharp lower bound estimate of Lc, |c| ≤ n, is
achieved in Section 4.

Proposition 1.9. Under the same conditions as in Theorem 1.5, if we assume the
first nonzero eigenvalue of Lc, 0< |c| ≤ n, satisfies

λc
1 =

n+ |c|
n+ 1

k,∫
Aαβϕcαϕcβ = 0(1-3)

for a corresponding eigenfunction ϕc of Lc with respect to λc
1 and with

∫
〈ϕc, ϕc〉=1,

then the eigenfunction ϕc will satisfy

(1-4)
∫
|∂bϕc|

2
=

n(n+ c)
2(n2+ c2)

λc
1 and

∫
|∂bϕc|

2
=

n(n− c)
2(n2+ c2)

λc
1;

thus we also have∫
〈1bϕc, ϕc〉 =

n2

n2+ c2λ
c
1 and

∫
i〈Tϕc, ϕc〉 =

c
n2+ c2λ

c
1.

Letting c→ 0+, we see that
∫
|∂bϕc|

2
=
∫
|∂bϕc|

2
=

1
2λ

0
1 and

∫
i〈Tϕc, ϕc〉 = 0

for c = 0. When c = n, from (1-4), we get that ∂bϕn = 0 and thus �bϕn = 0. This
implies that the corresponding eigenfunction ϕn of Ln =�b with respect to λn

1 will
also satisfy

1bϕn =
nk

n+ 1
ϕn.

This yields that ϕn achieves a sharp lower bound for the first nonzero eigenvalue of
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the sublaplacian1b. Furthermore, it can be showed the pseudohermitian torsion Aαβ
of M is zero; thus (M, J, θ) is the standard pseudohermitian (2n + 1)-sphere
(S2n+1, Ĵ , θ̂ ) (see [Chang and Wu ≥ 2013] for details).

2. Basic materials

Let us give a brief introduction to pseudohermitian geometry (see [Lee 1988] for
more details). Let (M, ξ) be a (2n+ 1)-dimensional, orientable, contact manifold
with contact structure ξ , dimR ξ = 2n. A CR structure compatible with ξ is an
endomorphism J : ξ → ξ such that J 2

=−1. We also assume that J satisfies the
following integrability condition: if X and Y are in ξ , then so is [J X, Y ]+[X, JY ],
and J ([J X, Y ] + [X, JY ]) = [J X, JY ] − [X, Y ]. A CR structure J can extend
to C⊗ ξ and decomposes C⊗ ξ into the direct sum of T1,0 and T0,1, which are
eigenspaces of J with respect to i and−i , respectively. A pseudohermitian structure
compatible with ξ is a CR structure J compatible with ξ together with a choice of
contact form θ . Such a choice determines a unique real vector field T transverse
to ξ , called the characteristic vector field of θ , such that θ(T ) = 1 and LT θ = 0
or dθ(T, · )= 0. Let {T, Zα, Z ᾱ} be a frame of TM⊗C, where Zα is any local frame
of T1,0, Z ᾱ = Zα ∈ T0,1 and T is the characteristic vector field. Then {θ, θα, θ ᾱ},
which is the coframe dual to {T, Zα, Z ᾱ}, satisfies

dθ = ihαβ̄θ
α
∧ θ β̄

for some positive definite hermitian matrix of functions (hαβ̄). Actually we
can always choose Zα such that hαβ̄ = δαβ ; hence, throughout this paper, we
assume hαβ̄ = δαβ .

The Levi form 〈 , 〉 is the Hermitian form on T1,0 defined by

〈Z ,W 〉 = −i
〈
dθ, Z ∧W

〉
.

We can extend 〈 , 〉 to T0,1 by defining 〈Z ,W 〉 = 〈Z ,W 〉 for all Z , W ∈ T1,0. The
Levi form induces naturally a Hermitian form on the dual bundle of T1,0, also
denoted by 〈 , 〉, and hence on all the induced tensor bundles.

The pseudohermitian connection of (J, θ) is the connection ∇ on TM⊗C (and
extended to tensors) given in terms of a local frame Zα ∈ T1,0 by

∇Zα = ωαβ ⊗ Zβ, ∇Z ᾱ = ωᾱ β̄ ⊗ Z β̄, ∇T = 0,

where ωαβ are the 1-forms uniquely determined by the following equations:

dθβ = θα∧ωαβ + θ ∧ τβ, τα ∧ θ
α
= 0, ωα

β
+ωβ̄

ᾱ
= 0.
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We can write τα = Aαβθβ with Aαβ = Aβα . The curvature of the Webster–Stanton
connection, expressed in terms of the coframe {θ = θ0, θα, θ ᾱ}, is

5β
α
=5β̄

ᾱ = dωβα −ωβγ∧ωγ α,

50
α
=5α

0
=50

β̄
=5β̄

0
=50

0
= 0.

Webster showed that 5β
α can be written as

5β
α
= Rβαρσ̄ θρ∧ θ σ̄ +Wβ

α
ρθ
ρ
∧ θ −W α

βρ̄θ
ρ̄
∧ θ + iθβ ∧ τα − iτβ ∧ θα,

where the coefficients satisfy

Rβᾱρσ̄ = Rαβ̄σ ρ̄ = Rᾱβσ̄ρ = Rρᾱβσ̄ , Wβᾱγ =Wγ ᾱβ .

We will denote components of covariant derivatives with indices preceded by
comma; thus write Aαβ,γ . The indices {0, α, ᾱ} indicate derivatives with respect
to {T, Zα, Z ᾱ}. For derivatives of a function, we will often omit the comma, for
instance, ϕα = Zαϕ, ϕαβ̄ = Z β̄ Zαϕ − ωαγ (Z β̄)Zγϕ, ϕ0 = Tϕ for a (smooth)
function ϕ. Let the Cauchy–Riemann operator ∂b be defined locally by ∂bϕ = ϕαθ

α ,
and let ∂b be the conjugate of ∂b. For a function ϕ, the subgradient ∇b is defined
locally by ∇bϕ = ϕ

αZα+ϕαZ ᾱ . The sublaplacian 1b, the Kohn Laplacian �b, and
the Folland–Stein operator Lc on functions are defined by

1bϕ =−(ϕα
α
+ϕα

α), �bϕ = (1b+ inT )ϕ, Lcϕ = (1b+ icT )ϕ.

The Webster–Ricci tensor and the torsion tensor on T1,0 are defined by

Ric(X, Y )= Rαβ̄XαY β̄,

Tor(X, Y )= i
∑
α,β

(
Aᾱβ̄X ᾱY β̄ − AαβXαY β

)
,

where X = XαZα, Y = Y β Zβ , Rαβ̄ = Rγ γ αβ̄ . The Webster scalar curvature is
R = Rαα = hαβ̄Rαβ̄ .

3. Proof of Theorem 1.5

Let (M, J, θ) be a closed pseudohermitian (2n+1)-manifold. In this section, we can
obtain lower bound estimates for the first nonzero eigenvalue of the Folland–Stein
operator Lc, |c| ≤ n, on a closed pseudohermitian (2n+ 1)-manifold.

First we need the following Bochner formula for the Kohn Laplacian [Chanillo
et al. 2012, Equation (2.8)]).
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Lemma 3.1. For any complex-valued function ϕ, we have

(3-1) −
1
2
�b
∣∣∂bϕ

∣∣2 =∑
α,β

(
ϕαβϕαβ +ϕαβϕαβ

)
+Ric

(
(∇bϕ)C, (∇bϕ)C

)
−

1
2n

〈
∂bϕ, ∂b�bϕ

〉
−

n+ 1
2n

〈
∂b�bϕ, ∂bϕ

〉
−

1
n

〈
Pϕ, ∂bϕ

〉
+

n− 1
n

〈
Pϕ, ∂bϕ

〉
,

where (∇bϕ)C = ϕ
αZα is the corresponding complex (1, 0)-vector field of ∇bϕ.

First we derive some useful identities which we need in the proof of Theorem 1.5.
Let ϕ be a smooth complex-valued function on M . By integrating the Bochner
formula (3-1), we have

(3-2) 0=
∫ ∑

α,β

(
ϕαβϕαβ +ϕαβϕαβ

)
−

n+ 2
2n

∫ 〈
�bϕ,�bϕ

〉
+

2− n
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C, (∇bϕ)C

)
.

We also have

(3-3)
∫ ∑

α,β

ϕαβϕαβ =

∫ ∑
α,β

∣∣∣∣ϕαβ − 1
n
ϕγ

γ hαβ

∣∣∣∣2+ 1
4n

∫ 〈
�bϕ,�bϕ

〉
=

n− 1
n

∫
(P0ϕ)ϕ+

1
4n

∫ 〈
�bϕ,�bϕ

〉
.

Here we used the following divergence formula [Graham and Lee 1988] for the
trace-free part of ϕαβ :

Bαβϕ = ϕαβ −
1
n
ϕγ

γ hαβ .

That is, (
Bαβϕ

)(
Bαβϕ

)
= ϕαβ

(
Bαβϕ

)
=
(
ϕαBαβϕ

)
,β −

n− 1
n

ϕαPαϕ

=
(
ϕαBαβϕ

)
,β −

n− 1
n

(ϕPαϕ),α +
n− 1

n
(P0ϕ)ϕ.

Then we integrate both sides to get

(3-4)
∫ ∑

α,β

∣∣Bαβϕ∣∣2 = n− 1
n

∫
(P0ϕ)ϕ.

Taking together the two formulas (3-2) and (3-3), we get

(3-5)
n+1
4n

∫ 〈
�bϕ,�bϕ

〉
=

∫ ∑
α,β

ϕαβϕαβ+
1
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C,(∇bϕ)C

)
.
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By taking complex conjugate to (3-5) and replacing ϕ by ϕ, one obtains

(3-6)
n+1
4n

∫ 〈
�bϕ,�bϕ

〉
=

∫ ∑
α,β

ϕαβϕαβ+
1
n

∫
(P0ϕ)ϕ+

∫
Ric

(
(∇bϕ)C,(∇bϕ)C

)
.

From the formula (1-1), we have

(3-7) 4
∫
(P0ϕ)ϕ =

∫ 〈
(1b+ inT )(1b− inT )ϕ− 2nQϕ, ϕ

〉
=

∫ 〈
�bϕ,�bϕ

〉
− 2n

∫
〈Qϕ, ϕ〉.

By (1-1), we can also obtain

(3-8) 4
∫
(P0ϕ)ϕ =

∫ 〈
�bϕ,�bϕ

〉
− 2n

∫ 〈
Qϕ, ϕ

〉
.

Proof of Theorem 1.5. Let ϕc be an eigenfunction of the Folland–Stein operator Lc,
c ∈R with |c| ≤ n, with respect to the first nonzero eigenvalue λc

1; i.e., Lcϕc = λ
c
1ϕc.

When 0≤ c ≤ n, from (3-6) and (3-7) for

Lc =
n+ c

2n
�b+

n− c
2n

�b,

we have

1
2

∫ 〈
�bϕc,Lcϕc

〉
=

n+c
4n

∫ 〈
�bϕc,�bϕc

〉
+

n−c
4n

∫ 〈
�bϕc,�bϕc

〉
=

n+c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2−c

n+1

∫
(P0ϕc)ϕc

+
n+c
n+1

∫
Ric

(
(∇bϕc)C, (∇bϕc)C

)
+

n−c
2

∫ 〈
Qϕc, ϕc

〉
=

n+c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2−c

n+1

∫
(P0ϕc)ϕc

+
n+c
n+1

∫ [
Ric−

(n−c)(n+1)
2(n+c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
,

where we used the equation∫ 〈
Qϕc, ϕc

〉
=−

∫
Tor
(
(∇bϕc)C, (∇bϕc)C

)
,

since
∫
〈Qϕc, ϕc〉 is real, and thus

∫
〈Qϕc, ϕc〉=2

∫
i Aαβϕcαϕcβ =−2

∫
i Aαβϕcαϕcβ .

Hence, if P0 is nonnegative and

[Ric−
(n− c)(n+ 1)

2(n+ c)
Tor]((∇bϕc)C, (∇bϕc)C)≥ k|∂bϕc|

2,
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we have

(3-9) λc
1

∫ ∣∣∂bϕc
∣∣2 = n+ c

n+ 1

∫ ∑
α,β

ϕcαβϕcαβ +
n+ 2− c

n+ 1

∫
(P0ϕc)ϕc

+
n+ c
n+ 1

∫ [
Ric−

(n− c)(n+ 1)
2(n+ c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
≥

n+ c
n+ 1

k
∫
|∂bϕc|

2,

which shows that λc
1 ≥

n+c
n+1 k.

When −n ≤ c < 0, from (3-5) and (3-8), the same computation shows that

1
2

∫ 〈
�bϕc,Lcϕc

〉
=

n+ c
4n

∫ 〈
�bϕc,�bϕc

〉
+

n− c
4n

∫ 〈
�bϕc,�bϕc

〉
=

n− c
n+ 1

∫ ∑
α,β

ϕcαβϕcαβ +
n+ 2+ c

n+ 1

∫
(P0ϕc)ϕc

+
n− c
n+ 1

∫ [
Ric−

(n+ c)(n+ 1)
2(n− c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
.

Thus, if P0 is nonnegative and

[Ric−
(n+ c)(n+ 1)

2(n− c)
Tor]((∇bϕc)C, (∇bϕc)C)≥ k|∂bϕc|

2,

we get

λc
1

∫
|∂bϕc|

2
=

n−c
n+1

∫ ∑
α,β

ϕcαβϕcαβ+
n+2+c

n+1

∫
(P0ϕc)ϕc

+
n−c
n+1

∫ [
Ric−

(n+c)(n+1)
2(n−c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
≥

n−c
n+1

k
∫
|∂bϕc|

2,

which implies that λc
1 ≥

n−c
n+1

k. This completes the proof of Theorem 1.5. �

4. Example and proof of Proposition 1.9

In this section, we calculate the eigenvalues of sublaplacian1b, Kohn Laplacian �b,
and the Folland–Stein operator Lc, |c|≤n, of the standard pseudohermitian (2n+1)-
sphere S2n+1. We show that the lower bound in Theorem 1.5 is sharp. We also
study the case when a sharp lower bound estimate of Lc, |c| ≤ n, is achieved.

Let S2n+1
=
{
(z0, z1, . . . , zn) |

∑n
j=0 z j z j=1

}
⊂Cn+1 with the induced CR struc-

ture from Cn+1 and the contact form θ= i
2(∂u−∂u)|S2n+1 where u=

(∑n
j=0 z j z j

)
−1

is a defining function. It can be shown that the pseudohermitian torsion is free and
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the Webster–Ricci tensor is given by Rαβ̄ = (n+ 1)hαβ̄ .
We write

∂ j =
∂

∂z j
, ∂ j =

∂

∂z j
(0≤ j ≤ n), ∂ jk = ∂ j∂k (0≤ j, k ≤ n),

and z = (z0, z1, . . . , zn), δ = (∂0, ∂1, . . . , ∂n). We let · denote the dot product.
Then, by the computation in Section 1 of [Geller 1980], we have

Lc = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ (n+ c)z · δ+ (n− c)z · δ,

where 1=
∑n

j=0 ∂ j∂ j is the standard Laplacian on Cn+1. In particular, we have

1b = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ n

(
z · δ+ z · δ

)
,

�b = 2
(
−1+

n∑
j,k=0

z j zk∂ j∂k

)
+ 2nz · δ.

If Y is a bigraded spherical harmonic of type (p, q) on Cn+1 (a harmonic poly-
nomial which is a linear combination in terms of the form zρzγ , where ρ, γ are
multiindices with |ρ| = p, |γ | = q), then LcY =

(
2pq + (n+ c)q + (n− c)p

)
Y.

Similarly,
1bY = (2pq + n(p+ q))Y, �bY = 2q(p+ n)Y.

This example shows that the lower bound in Theorem 1.5 is sharp.
Now we study the case when a sharp lower bound estimate for the first nonzero

eigenvalue of the Folland–Stein operator Lc, |c| ≤ n, on a pseudohermitian (2n+1)-
manifold M is achieved. We only consider the case when the constant c is nonneg-
ative. The same computation follows when c is negative.

First, from (3-9), we have the following observation.

Lemma 4.1. Under the same conditions as in Theorem 1.5, when the first nonzero
eigenvalue of Lc, 0≤ c ≤ n, satisfies

λc
1 =

n+ c
n+ 1

k,

then the corresponding eigenfunction ϕc will satisfy

ϕcαβ = 0 for all α, β,(4-1) [
Ric−

(n− c)(n+ 1)
2(n+ c)

Tor
](
(∇bϕc)C, (∇bϕc)C

)
= k

∣∣∂bϕc
∣∣2,(4-2)

P0ϕc = 0.(4-3)
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Proof of Proposition 1.9. The integral condition (1-3) says that∫
〈Qϕc, ϕc〉 = −2i

∫
Aαβϕcαϕcβ = 0,

and then by integration by parts, we obtain

(4-4)
∫ 〈

Qϕc, ϕc
〉
=

∫
〈ϕc, Qϕc〉 =

∫
〈Qϕc, ϕc〉 = 0.

From (1-1), one can see that

4P0 = [1b− i(n2/c)T ][1b+ icT ] −
1
2c

[
(2nc+ n+ c)Q+ (2nc− n− c)Q

]
.

Then, from (4-3) and (4-4), one obtains

0= 4
∫
(P0ϕc)ϕc = λ

c
1

∫ 〈
[1b− i(n2/c)T ]ϕc, ϕc

〉
=

1
2
λc

1

∫ 〈
[(1− n/c)�b+ (1+ n/c)�b]ϕc, ϕc

〉
= λc

1

∫ [
(1− n/c)|∂bϕc|

2
+ (1+ n/c)|∂bϕc|

2],
which is

(4-5) (n− c)
∫ ∣∣∂bϕc

∣∣2 = (n+ c)
∫
|∂bϕc|

2.

On the other hand, the equation Lcϕc = (1b+ icT )ϕc = λ
c
1ϕc yields

(4-6) λc
1 = λ

c
1

∫
〈ϕc, ϕc〉 =

∫
〈Lcϕc, ϕc〉

=
1

2n

∫ 〈[
(n+ c)�b+ (n− c)�b

]
ϕc, ϕc

〉
=

∫
(1+ n/c)

∣∣∂bϕc
∣∣2+ (1− n/c)|∂bϕc|

2.

The equations (1-4) follow from (4-5) and (4-6) easily. �
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REMARK ON
“MAXIMAL FUNCTIONS ON THE UNIT n-SPHERE”

BY PETER M. KNOPF (1987)

HONG-QUAN LI

Volume 129:1 (1987), 77–84

The article in question contains an important result on the behavior of the
Hardy–Littlewood maximal function MS n on the unit n-sphere, providing
a weak-type linear bound that has not been improved on in the intervening
decades. Unfortunately, the proof has a gap, since it relies on an incorrect
intermediate result (Lemma 3). We correct the proof by providing a sharper
lower bound for a trigonometry integral than the one used by Knopf.

1. Introduction

Let Sn�1 (n� 2) denote the unit sphere of dimension n� 1, i.e., the n� 1 dimen-
sional, simply connected Riemannian manifold of constant sectional curvature 1.
Let dSn�1 be the induced distance and �Sn�1 be the induced measure.

Consider the centered Hardy–Littlewood maximal function, MSn�1 , on Sn�1,
i.e.,

MSn�1f .x/D sup
0<r��

1

�Sn�1

�
BSn�1.x; r/

� Z
B

Sn�1 .x;r/

jf .y/j d�Sn�1.y/;

x 2 Sn�1; f 2L1.Sn�1/;

where BSn�1.x; r/ is the open ball with center x and radius r > 0.
In [Knopf 1987], the following theorem is presented:

Theorem 1.1. There exists a constant A> 0 such that

(1-1) kMSn�1kL1�!L1;1 �An for all n� 2:

The author is partially supported by the NSF of China (grant no. 11171070), NCET-09-0316 and
“The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning”.
MSC2010: 42B25, 43A85.
Keywords: Hardy–Littlewood maximal function, sphere.
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For other results concerning the estimates of type (1-1), see for example [Stein
and Strömberg 1983] in the setting of Rn, [Li 2009; Li and Qian 2011] in the
setting of H-type groups, [Li 2010] for Grushin operators, [Li and Lohoué 2012]
for the case of real hyperbolic spaces and [Naor and Tao 2010]. There is also a
bound of type

lim
n�!C1

kMCubekL1�!L1;1 DC1

about the centered maximal function associated to cubes in Rn; see [Aldaz 2011]
or [Aubrun 2009] for details.

Let !n�1 denote the area of the unit sphere of Rn; i.e., !n�1 D 2
�

n
2

�
�

n
2

� . Recall
that, for x 2 Sn�1, 0< t � 2,

S.x; t/D
˚
y 2 Sn�1

� Rn
I jx�yj � t

	
;

jS.x; t/j D �Sn�1.S.x; r//:

There exist some mistakes in [Knopf 1987]. For example, near the end of the
proof of Lemma 3, take

t D

q
2
�
1� n�

1
2

�
;

and we find that Lemma 3 is wrong. Knopf uses the estimate that

jS.x; t/j D !n�2

Z 2 arcsin.t=2/

0

sinn�2 u du� !n�2

Z 2 arcsin.t=2/

0

sinn�2 u cos u du;

which gives the lower bound

(1-2) jS.x; t/j �
c!n�1
p

n

�
t2

�
1�

t2

4

��n�1
2

for all 0< t �
p

2; n� 2:

This estimate is not sharp enough to obtain the desired result. In order to make
the proof in [Knopf 1987] effective, we need the sharper and sufficient lower
bound:

Lemma 1.2. There exists a constant c > 0 such that, for all n� 2 and 0< t �
p

2,
we have

(1-3) jS.x; t/j � c!n�1

�
n

�
1� t

s
1�

t2

4

�
C t

s
1�

t2

4

�� 1
2
�
t2

�
1�

t2

4

��n�1
2

:

More specifically, using the bound (1-3) instead of (1-2) in the proof of Knopf’s
Lemma 1 yields an improved result to replace Lemma 1:
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(1-4) MSn�1f .x/

� c max
�

sup
n
� 1

2 �t

�
p

2.1�n�1/

r
n
�
1� t

q
1� t2

4

�
C t

q
1� t2

4

t
u

��
1�

t2

2

�
x

�
;

n sup
0<t�n

� 1
2

u

��
1�

t
p

n

�
x

�
; u

�
n�1x

��
:

Using (1-4) instead of the original Lemma 1 estimate at the end of the proof of
Lemma 3 in [Knopf 1987] gives

(1-5) MSn�1f .x/

� c max
�

sup
n
� 1

2 �t

�
p

2.1�n�1/

r
n
�
1�t

q
1� t2

4

�
Ct

q
1� t2

4

t

�
1C

s
n ln

�
1�

t2

2

��1�
;

n sup
0<t�n

� 1
2

�
1C

s
n ln

�
1�

t
p

n

��1�
; 1C

p
n ln n

�
MT f .x/:

It is trivial to check that the right side of (1-5) is at most cnMT f .x/, and using
this inequality the rest of the original proof works and gives the correct result.

2. Proof of Equation (1-3)

For 0< t �
p

2, set r D 2 arcsin.t=2/; then

jS.x; t/j D

Z r

0

!n�2.sin s/n�2 ds D !n�2

Z sin r

0

yn�2 dyp
1�y2

�
!n�2
p

2

Z sin r

0

yn�2 dyp
1�y

D
!n�2
p

2
.sin r/n�1

Z 1

0

un�2

p
1�u sin r

du:

Observe thatZ 1

0

un�2

p
1�u sin r

du�

�
1�

1

n

�n�2 Z 1

1� 1
n

du
p

1�u sin r

D 2e.n�2/ ln.1� 1
n
/ 1

n

1
p

1� sin r C

q
1�

�
1� 1

n

�
sin r

> c
1
p

n

1p
n.1� sin r/C sin r

:

Then Stirling’s formula implies (1-3). �
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Remark. By (1-3), a simple computation then leads to

(2-1) jS.x; t/j � c!n�1 whenever
p

2.1� n�1/� t � 2 and n� 2:
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