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STABLE FLAGS, TRIVIALIZATIONS
AND REGULAR CONNECTIONS

ELIE COMPOINT AND EDUARDO COREL

We study stalkwise modifications of a holomorphic vector bundle endowed
with a meromorphic connection on a compact Riemann surface. We in-
troduce the notion of Birkhoff–Grothendieck trivialization, in the case of
the Riemann sphere, and show that its computation corresponds to shortest
paths in some local affine Bruhat–Tits building. We use this to compute
how the type of a bundle changes under stalk modifications, and give several
corresponding algorithmic procedures. We finally deduce from these results
some applications to the Riemann–Hilbert problem.

Introduction

The motivation of this article originates in the Riemann–Hilbert problem on a
compact Riemann surface, and the present work follows it as a guideline. The
results presented herein are however not directly related to this problem. The reader
who is exclusively interested in new advances on the Riemann–Hilbert problem
will nevertheless find a couple of improvements on already known results. The real
interest of the present paper in the eyes of its authors consists in translating this
classical problem in a “new” setting (the setting of Bruhat–Tits buildings). In this
new context, the Riemann–Hilbert problem reveals new geometric objects (such as
Birkhoff–Grothendieck trivializations), whose study appears to be interesting by
itself, and seems also promising for the original problem.

The Riemann–Hilbert problem (RHP) has a long and distinguished history, not
even devoid of suspense, for it has been solved several times, using different tools,
in a seemingly complete and positive way. It was finally A. A. Bolibrukh, in a
celebrated series of papers at the beginning of the 1990s, who clarified the situation,
by rigorously defining (and exhibiting a counterexample to) the strongest version of
the RHP, thereby showing that people before him had either committed a mistake,
or solved in reality a weaker problem.
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The modern approach to the RHP was initiated by H. Röhrl in the 1950s, who
used the theory of vector bundles in a way that has been conserved since. First,
one constructs a vector bundle E outside the singular points, whose cocycle mimics
the monodromy. We call this the topological RH problem, since the monodromy
is so much encoded in the topology of the constructed bundle, that construction
of the required connection becomes essentially trivial. The second step consists
of extending the bundle (and the connection) to the singular points by means of
a local solution to the inverse monodromy problem. It has been exposed in great
generality in [Deligne 1970] how to extend a holomorphic vector bundle E, defined
over the complement of a divisor D and endowed with a holomorphic connection r
having a prescribed monodromy about D, into a logarithmic connection .E;r/ with
singularities on the divisor.

In this way, we get all logarithmic extensions of E with nonresonant residue
(the Deligne lattices). These two steps are sufficient to solve positively the weak
Riemann–Hilbert problem (i.e., with regular singularities). Note, however, that
in this second level, two different types of problems have been mixed. The con-
nection constructed is essentially unique up to meromorphic equivalence whereas
the holomorphic vector bundle setting already introduces much finer holomorphic
equivalence problems. This fact can contribute to explain some of the confusions
that have surrounded the precise formulation of the RHP.

The strong Riemann–Hilbert problem asks for a logarithmic bundle (with the
prescribed monodromy) which is moreover trivial. So, to solve the Riemann–Hilbert
problem in this way, one must modify the constructed Deligne bundle, over the
support of the singular divisor exclusively (to keep the singular set invariant), while
conserving its logarithmic character, until a trivial bundle is eventually found. Until
Bolibrukh’s celebrated counterexample [1990], it was widely acknowledged that
this was possible, and it is indeed so in several “generic” instances, although some
mistakes in the seemingly general solution by Plemelj had already been pointed out
(e.g., in [Treibich Kohn 1983]).

The counterexample found by Bolibrukh to the strong Riemann–Hilbert problem
requires the knowledge of all the logarithmic extensions of a regular connection, in
order to prove that none is trivial. Despite the production of both counterexamples
and sufficient conditions for a positive answer, no general necessary and sufficient
conditions for the solubility of the strong Riemann–Hilbert problem have been
given in terms of the monodromy representation only, except for the remarkable
case of an irreducible representation [Bolibrukh 1990; Kostov 1992].

As already stated, the strong Riemann–Hilbert problem admits a solution if and
only if the stalks of the Deligne bundle over the singular set can be replaced by
logarithmic lattices in such a way that the resulting bundle is trivial. To tackle this
problem, one should be able to
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(a) determine the set of all logarithmic lattices above a given point, and

(b) get a criterion for the triviality of the modified bundle.

Problem (a) can be considered classical, in the sense that it has been repeatedly
solved, under different guises, going back as far as [Gantmacher 1959], and including
[Levelt 1961; Babbitt and Varadarajan 1983; Bolibrukh 1990; Sabbah 2002]. In
this paper, we give a complete description of the logarithmic lattices in terms
of flags stabilized under the action of the residue of the connection; in a way,
our contribution is to make the solution to problem (a) given in [Sabbah 2002]
completely explicit and effective. We also give a partial answer to problem (b).
In the case of P1.C/, the type of a vector bundle gives such a triviality criterion.
In our approach, starting with the Deligne bundle D, we perform a modification
of a finite number of stalks, resulting in the bundle Dmod. The question is then to
compute the type of the modified bundle Dmod. Generalizing a result by Gabber and
Sabbah (Proposition 28), we show how to determine the type of Dmod from the type
of D. Thus, problem (b) is reduced to computing the type of the Deligne bundle.
In a second step, we show that this problem in turn is reduced to the well-known
problem of connection matrices.

With these problems in mind, we introduce and study in this paper the notion of
Birkhoff–Grothendieck trivialization of a bundle E, which is a pointwise modification
of E such that

(i) the resulting bundle F is holomorphically trivial, and

(ii) the relative elementary divisors of the stalks give the type of the bundle E.

The paper is organized as follows. In a first section, we define the category in
which we will work, and what we precisely mean by “modifying a bundle over one
or several points”. In a second part, we describe the geometry on the local lattices in-
volved. We describe this geometry in terms of the affine Bruhat–Tits building of SLn.

The third part contains the main results of the paper. We use the previously
introduced setting to give an effective method to compute how the type of an arbitrary
bundle E is modified under certain pointwise modifications. This algorithm can also
be applied to compute the type of the bundle E. This third section concludes with
a generalization of an essential result originally due to Bolibrukh, the permutation
lemma, for which we provide an interesting geometric interpretation. This result
allows us to give a quite complete insight into the structure of Birkhoff–Grothendieck
trivializations, which we sum up as follows.

Theorem 1. Let ƒ0 be the set of pointwise modifications over x 2 P1.C/ of a
bundle E that give a trivial bundle. Then M 2 ƒ0 is a Birkhoff–Grothendieck
trivialization of E if and only if M realizes the minimum of the canonical metric
between Ex and ƒ0 in the local affine Bruhat–Tits building of SLn at x.
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The fourth section gives the complete description of the set of logarithmic lattices
in terms of flags which are stable under the action of the residue of the connection
on the Deligne bundle1.

In the last part, we use these tools for study of the Riemann–Hilbert problem.
After recalling the construction of the classical Röhrl–Deligne bundle, we give a
very short proof of Plemelj’s theorem on the Riemann–Hilbert solubility. This well-
known result becomes an immediate consequence of the geometrical interpretations
of the permutation lemma and the set of logarithmic lattices. We describe all
trivializations of the Deligne bundle over an arbitrary point, and we give a concise
proof of the Bolibrukh–Kostov theorem on the solvability of Riemann–Hilbert in
the irreducible case. Finally, we give algorithmically effective procedures that allow
to search the space of weak solutions.

1. Holomorphic vector bundles

Let X be a compact Riemann surface and let � WE!X be a holomorphic vector
bundle of rank n. The sheaf E of holomorphic sections of E is a locally free
sheaf of OX -modules of the same rank n, where OX denotes as usual the sheaf of
holomorphic functions on X . There is a well-known equivalence between these
two categories. However, this equivalence does not hold for subobjects of the same
rank. Therefore we will privilege the sheaf-theoretical formulation.

Meromorphic connections. Let DD
Pp

iD1
mixi be a positive divisor on X . Let OD

be the sheaf of meromorphic functions on X having pole orders bounded by D,
and jDj D fx1; : : : ;xpg be the support of D. For any finite set S D fy1; : : : ;ytg,
let .S/D y1C � � �Cyt .

Let r WE!E˝OX
�1

X
.D/ be a meromorphic connection with singular divisor D

on a vector bundle E of rank n. Sometimes for simplicity we’ll just say “connection”
for the pair .E;r/. If we assume that D is the smallest possible (as we will do), then
the Poincaré rank of r at x 2X is the integer px.r/Dmax.0;mx � 1/. We will
omit r whenever possible. If px D 0, the sheaf E is said to be logarithmic at x. Let
SD jDj be the singular, and Slog D fx 2 S j px D 0g the logarithmic singular sets
of r. If Slog ¤∅, then one can define the residue map Resr 2 End.E=E�.Slog//.
We will specify in parentheses the bundle if necessary.

The meromorphic bundle. Let MX be the sheaf of meromorphic functions on X and
let VD E˝OX

MX be the sheaf of meromorphic sections of E. A meromorphic
connection r on E has a canonical extension to V. Since the sheaf E can be

1Independently, P. Boalch [2011] has taken a similar view on local logarithmic lattices, in terms of
stable filtrations and Bruhat–Tits buildings, albeit on the more general setting of a complex reductive
group. Restricting to GLn and SLn enables us to give however more explicit formulæ; see Sections 3.2
and 3.3.
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embedded into V, we consider from now on the set

HD
˚
F� V

ˇ̌
F

loc:
' On

X

	
of holomorphic vector bundles of V. Each such bundle F 2 H is automatically
endowed with a meromorphic connection induced by r. For simplicity, we won’t
make any notational difference between all these connections.

We say that F 2H is trivial if F' On
X

, or, equivalently, if F is generated by its
global sections, and quasitrivial if there exists a line bundle L such that F˝OX

L

is trivial. Let H0 � H be the subset of trivial holomorphic bundles in V. The
following result is well known (e.g., [Sabbah 2002, p. 134]).

Lemma 2. Let F 2 H0 be a trivial holomorphic vector bundle in .V;r/. The
space F.X /D �.X;F/ of global sections is a C-vector space of dimension n. For
any logarithmic singularity s 2 Slog.F/, the residue ResF

s r induces a well-defined
endomorphism  s 2 EndC.F.X //.

Stalks and lattices. For F2H, the stalk Fx at any x 2X is a free .OX /x-submodule
of rank n (or lattice) of Vx , which is a vector space of dimension n over .MX /x .
Let Ox D

1.OX /x be the formal completion of .OX /x , and Kx D Frac.Ox/ its field
of fractions. Similarly, the formal completion cFx D Fx˝.OX /x Ox is a lattice in
the vector space Vx D Vx ˝.MX /x Kx . This operation is harmless, as ƒ 7! yƒ is
a bijection between the sets of lattices in Vx and Vx (cf. [Malgrange 1996]). We
define an equivalence relation �x on H as

F�x
zF if and only if FjX nfxg D zFjX nfxg:

For simplicity, we will drop the index x as soon as no ambiguity can arise. Let ƒx

be the set of lattices in Vx . Any coset ŒF� of H= �x can be identified with the
set ƒx , by identifying F0 2 ŒF� with its formal stalk cF0x 2 ƒx at x. Since X is
compact, two vector bundles E, F 2H have equal stalks outside a finite set.

Lemma 3. Let E 2 H be a holomorphic vector bundle. For any family of formal
lattices Mx 2 ƒx for x in a discrete set S, there exists a unique vector bundle
EM 2H such that

.EM /x D

�
Ex if x 62 S;

Mx \Vx if x 2 S:

Conversely, for any F2H, there exists a discrete set S and a family .Mx 2ƒx/x2S

of lattices such that FD EM . If E is endowed with a meromorphic connection r,
there is a canonical extension rM of rjX nS as a meromorphic connection on EM .
In particular, a bundle E 2 H is completely determined by its coset ŒE� 2 H= �x

and the lattice cEx 2ƒx .
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The sheaf V is trivial (as a meromorphic bundle), and the group G of (mero-
morphic) automorphisms of the space �.X;V/ is isomorphic to GLn.C.X //. Let
ƒ0

x Dƒx\H0 be the set of trivial bundles in the coset ƒx . The subgroup Gx �G

of automorphisms of �.X;V/ that leave ƒ0
x globally invariant is called the group

of monopole gauge transforms at x. Each element of Gx sends a trivial sheaf F to
a trivial sheaf zF such that FjX nfxg D zFjX nfxg. An element of Gx modifies at most
the stalk Fx .

2. Lattices and the affine building of SLn

2.1. Flags and filtrations. Let V be a vector space over a field K of characteristic 0.
Given a flag F of vector spaces 0DF0�F1�� � ��FsDV , with length jF jDs and
signature �.F /D .n1; : : : ; ns/ where ni D dimK.Fi=Fi�1/, a map u 2 EndK.V /

stabilizes the flag F if u.Fi/ � Fi for all 0 6 i 6 jF j. Let Fl.V / denote the set
of flags of V , and Flu.V / the subset of flags that are stabilized by u. A flag F 0 is
transversal to F if jF 0j D jF j D s and F 0i ˚Fs�i D V for 16 i 6 s. In this case,
the signature of F 0 is equal to ��D .ns; : : : ; n1/. The left action of the permutation
group Sn on a sequence aD .a1; : : : ; an/ is given by �aD .a�.1/; : : : ; a�.n// for
� 2 Sn. Let si be the transposition .i; i C 1/ exchanging i and i C 1. The set
S D fs1; : : : ; sn�1g makes .Sn;S/ into a Coxeter group of type An�1.

Let .e/ be a basis of V , and let � D .n1; : : : ; ns/ be a signature. Let F � .e/ be the
flag with elements F�i .e/Dhe1; : : : ; e�i

i where �i D n1C� � �Cni . The basis .e/ is
said to be adapted to F if any element of the flag is spanned by a subfamily of .e/,
strictly adapted if F D F� .e/, and transversal to F if Fi ˚he�iC1; : : : ; eni D V

for all i . The parabolic subgroup stabilizing a flag F (for the action on a strictly
adapted basis) is the subgroup WF D hsi j i 2 Ii of Sn generated by the generators
corresponding to the missing dimensions I D Œn�nfdimK Fi j 1 6 i 6 ng. These
properties depend in fact only on the K-vector subspaces spanned by the vectors
of .e/. The opposite flag F �.e/ is then defined as the unique flag transversal to F

for which .e/ is adapted. This last notion does not even depend on the order in
which the vectors of .e/ are taken. A flag F 0 is transversal to F if and only if
there is a basis .e/ of V strictly adapted to F such that F 0 D F �.e/. A K-frame is
an unordered set ˆD fL1; : : : ;Lng of one-dimensional K-vector subspaces of V

such that L1C � � �CLn D V . The notions defined in the previous paragraph make
sense for a frame (with a fixed order on the lines for some of them). The relative
position �.F ;F 0/ 2 Sn of two flags F and F 0 is the2 permutation � 2 Sn such that

2Strictly speaking, � is only unique when both flags are complete. Otherwise, we shall a bit
imprecisely consider � either as its double coset in WF 0�WF modulo the parabolic subgroups
attached to F and F 0, or to the unique minimal length representative of this coset (or possibly even to
any such representative).
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there exists a basis .e/ strictly adapted to F for which .�e/D .e�.1/; : : : ; e�.n// is
strictly adapted to F 0.

Similarly, a flag S of length s in Œn� D f1; : : : ; ng is an increasing sequence
S W S0 D ∅ � S1 � � � � � Ss D Œn� of subsets of Œn�, whose signature is the
sequence �.S / D .n1; : : : ; ns/ where ni D jSi j � jSi�1j. For a given signature
� D .n1; : : : ; ns/, the standard ascending flag S%.�/ of signature � is the flag
composed of initial segments of Œn� of lengths n1C � � �C ni for 16 i 6 s.

Given a sequence DD .d1; : : : ; dn/2Zn, let D% be the sequence of the elements
of D arranged in increasing order. Define the ascendent flag S%.D/ of D as the
sequence of subsets of indices corresponding to blocks of equal elements of D%.
Let also .Zn/% denote the set of nondecreasing integer sequences. Finally, let

(1) D ŠD0 if D% D .D0/%:

We denote with a & symbol all similarly defined descending quantities. Note that
D&Dw0.D

%/ where the permutation w0D .n; n�1; : : : ; 1/ is the largest element
of Sn in the Bruhat order.

We further define DC ` D .d1C `; : : : ; dnC `/, D0 D D �min D 2 Nn and
D0 D max D �D 2 Nn. Let Tr D D

Pn
iD1 di and �D D max D �min D, and

finally

kDk D

nX
jD1

�
dj �

Tr D

n

�2

and i.D/D

nX
jD1

.max D� dj / 2 N:

We list some useful and obvious properties in the following lemma.

Lemma 4. For D 2 Zn and ` 2 Z, we have

(i) �.DC `/D�D and i.DC `/D i.D/,

(ii) �.�D/D�D and i.�D/D i.D0/D
Pn

jD1.dj �min D/,

(iii) i.D/C i.D0/D n�D.

An F -admissible sequence is an integer sequence whose ascending flag is equal
to the standard ascendent flag of signature �.F /D .n1; : : : ; ns/; in more concrete
terms, an integer sequence

D D . d1; : : : ; d1„ ƒ‚ …
n1 times

; d2; : : : ; d2„ ƒ‚ …
n2 times

; : : : ; ds; : : : ; ds„ ƒ‚ …
ns times

/ with d1 < � � �< ds:

Let Zn.F / be the set of integer F -admissible sequences, and let

„.V /D f.F ;D/ jF 2 Fl.V / and D 2 Zn.F /g

be the set of F -filtrations of V .
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2.2. Lattices. In the remainder of the section, we fix a point x 2 X and a coset
ƒ2H=�x . We drop the index x for simplicity. The field KD2.MX /x is local, and
endowed with the discrete valuation v D ordx , whose valuation ring and maximal
ideal we denote by O and m. Let V be the K-vector space Vx ˝.MX /x K of
dimension n.

Let L.u/ denote the free O-module spanned by a family .u/ of vectors in V . An
O-module M 2 V is a lattice if there exists a K-basis .e/ of V such that M DL.e/.
Let

vƒ.x/Dmaxfk 2 Z jx 2mkƒg

be the natural valuation of V induced by ƒ. For any lattices M � ƒ in V , we
define the interval ŒM; ƒ� as

ŒM; ƒ�D fN 2ƒ jM �N �ƒg:

Let �ƒ Wƒ!ƒDƒ=mƒ'Cn denote the canonical surjection on the quotient
module.

Elementary divisors. Let z be a uniformizing parameter of K. For any two latticesƒ
and M in V , there exists a unique increasing sequence of integers d1 6 � � �6 dn

(the elementary divisors of M in ƒ) and an O-basis .e1; : : : ; en/ of ƒ such that
.zd1e1; : : : ; z

dnen/ is a basis of M . Such a basis .e/ is called a Smith basis of ƒ
for M . We will write them dƒi .M / if we want to specify the respective lattices,
and we put

EDƒ.M / D
�
dƒ1 .M /; : : : ; dƒn .M /

�
:

Note that dƒ
1
.M /D vƒ.M / and EDƒ.zkM /D EDƒ.M /C k. Let also

Mƒ D z�vƒ.M /M and �ƒ.M /D dimC Mƒ=mƒ:

If P 2 GLn.K/ is a basis change from ƒ to M , the sequence EDƒ.M / D

.d1; : : : ; dn/ can be computed in the following manner. For a subset I � Œn� of
cardinality jI j, let SI D

P
i2I si , and for jI j D jJ j D k, let PI;J denote the

.I;J /-submatrix of P . The sequence .d1; : : : ; dn/ satisfies

(2) dk D ek � ek�1 where ek D min
jI jDjJ jDk

fv.det PI;J /g and e0 D 0:

It is convenient to be a bit more lax in the definition, and allow the elementary
divisors to appear in another order. To avoid ambiguities, we will specify that .e/
is an ascending Smith basis of ƒ for M , if the vectors in .e/ are ordered according
to EDƒ.M /%.

We say that a matrix P is D-parabolic if Pij ¤ 0) di 6 dj for 1 6 i; j 6 n.
For any commutative ring R, put GD.R/ for the group of D-parabolic matrices of
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GLn.R/. The subgroup of GLn.O/ that acts on the set of Smith bases of ƒ for M

is the subgroup of GD-parabolic matrices

GD D fP 2 GLn.O/ j v.Pij /> di � dj g:

Being GD-parabolic is stronger than D-parahoric, which only stabilizes the induced
D-flag in ƒ=mƒ, and weaker than D-parabolic, which stabilizes a K-flag of
signature �.D/. For any sequence DD .d1; : : : ; dn/, let zD be the diagonal matrix
diag.zd1 ; � � � ; zdn/. We will frequently use the following type of diagram:

ƒ W .e/
zD
//

P
��

M W ."/

QP
��

ƒ W .e0/
zD
// M W ."0/

which means that .e/ and .e0/ are two Smith bases ofƒ for M . Note that in this case
P 2 GLn.O/ is GD-parabolic. Since GD.C/� GD holds, the obvious factorization
P DP0PI of a lattice gauge P 2GLn.O/ into a constant term P0DP .0/2GLn.C/

and a term PI D I C zU with U 2 gln.O/ tangent to I satisfies the property

P 2 GD () .P 2GD.C/ and PI 2 GD/:

We can therefore usually assume that P is tangent to I . Note that this also holds
for a right factorization P D P 0

I
P0.

Sometimes, we will find it more convenient to consider the elementary divisors
with their multiplicities. In this case, we will put d1; : : : ;ds for the distinct ele-
mentary divisors of M in ƒ and let ni be their respective multiplicities. The set
Œn�D f1; : : : ; ng of indices of ordinary (simple) elementary divisors is partitioned
into the subsets Ij corresponding to a single value of the elementary divisors:

Ij D f16 `6 n j d` D dj g for 16 j 6 s:

2.3. Relative flag of a lattice. Any lattice M induces a natural flag in ƒDƒ=mƒ.
For any k 2 Z, let

Mk D .m
�kM \ƒ/Cmƒ 2 Œmƒ;ƒ�:

Lemma 5. Let ƒ, M be lattices in V . Let d1; : : : ;ds be the distinct elementary
divisors of M in ƒ. The flag in ƒ

Fƒ.M / W 0� �ƒ.Md1
/� � � � � �ƒ.Mds

/�ƒ

has signature �.EDƒ.M //.

Proof. Let .e/ be a basis of elementary divisors of ƒ for M , and I D f1 6 i 6
njdi 6kg. Then Mk admits .u/ as basis where uiD ei if i 2 I and uiD zei if i … I .
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The spaces Mk are thus embedded lattices, all belonging to the interval Œmƒ;ƒ�,
so they take at most nC 1 different values. Their images M k D �ƒ.Mk/ in the
quotient space ƒ form a flag Fƒ.M /, and it is clear that M k�1 ¨ M k if and
only if k is an elementary divisor of M . If d1; : : : ;ds are the distinct elementary
divisors of M in ƒ, with multiplicities ni , the subset of indices corresponding to dj

can be written as

Ij D Œn1C � � �C nj ; n1C � � �C njC1� 1�:

The lattices Mk , M` coincide if and only if there exists i such that di 6 k; `<diC1

(with the conventions d0 D �1 and dsC1 D C1). Therefore the flag Fƒ.M /

has exactly length s, and its signature is equal to the sequence .n1; : : : ; ns/. �
The components of Fƒ.M / can be indexed either as M di

, by the value of the
elementary divisor di to which it is attached (if known), or as M i , by its index in
the flag (here i). In this latter case, we will also use the notation Fƒi .M /. It will
hopefully be always clear which convention we are using.

Lemma 6. Let ƒ, M , N be lattices in V . Let D D EDƒ.M /% and D0 D

EDƒ.N /%. If either

(i) there exists a common Smith basis for ƒ, M and N , or

(ii) the flags Fƒ.N / and Fƒ.M / are transverse,

then we have
EDM .N /ŠD0� �D;

where �D�.Fƒ.N /;Fƒ.M // is the relative position of the induced flags inƒ=mƒ.

A similar formula holds for the descending sequences D&, but with w0�w0

instead of � .

Proof. We summarize the setting by means of the following scheme:

ƒ W .e/
zS%

//

P
��

M W ."/

QP
��

ƒ W .e0/
zT%

// M W ."0/

If there is an apartment containing ƒ, M , N , then one can assume that P is a
permutation matrix, namely …��1 . In the second case, it is possible to choose P D

…w0
.ICzU /with U 2gl.O/. Let QDICzU . Then we have QPij DQij ztj�snC1�i .

According to formula (2), we have d1 Dmin16i;j6n.v.Pij /C tj � snC1�i/. The
minimum of tj � snC1�i is attained for .i; j / D .1; 1/, and by assumption we
have v.P11/D 0. Therefore, we get d1 D t1� sn. Let us prove by induction that
di D ti � snC1�i for all i . Assume that ei D Tf1;:::;ig�SfnC1�i;:::;ng for i 6 k � 1.
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Formula (2) yields ek DminjI jDjJ jDkfv.det PI;J /CTJ �.w0S/I g. The minimum
for TJ � .w0S/I is attained for I D J D f1; : : : ; kg, while by assumption the
principal minor PI;I has valuation 0. Hence ek D TŒk�� .w0S/Œk� and thus dk D

ek � ek�1 D tk � snC1�k for all k. �

For a flag F D .Fi/16i6s of K-vector spaces, and a lattice ƒ, let Fƒ D

.F \ƒ/=mƒ be the flag ..Fi \ƒ/=mƒ/16i6s induced in ƒ=mƒ. The following
result is easily established.

Lemma 7. Let F and F 0 be two K-flags of V . For any basis .e/, adapted for F

and F 0, one has

�.F ;F 0/D �.Fƒ;F
0
ƒ/; where ƒD L.e/:

2.4. The affine building of SL.V /. For this section, good references are [Garrett
1997; Ronan 1989], and especially [Abramenko and Brown 2008]. The affine
building Bn naturally attached to SL.V / is the following .n � 1/-dimensional
simplicial complex. Two lattices ƒ and M are homothetic if there exists ˛ 2K�

such that M D ˛ƒ. Let Œƒ� be the homothety class of the lattice ƒ in V . Two
classes L and L0 are adjacent if and only if there exist representatives ƒ of L

and M of L0 such that mƒ �M � ƒ. Consider a graph whose vertices are the
homothety classes of lattices in V , and edges connect all adjacent vertices. The
affine building Bn is the flag simplicial complex associated with this graph, or in
other terms, its clique complex. A simplex A is a set fL1; : : : ;Lkg of mutually
adjacent vertices, and the face relation B 6A is defined by the inclusion B �A of
these sets.

Lemma 8. Let L, L0, L00 be vertices in Bn. If L0 and L00 are adjacent, then for
any representatives ƒ 2 L, M 2 L0 and N 2 L00, the flags Fƒ.M / and Fƒ.N /

are compatible (in the sense that their components are all pairwise comparable). In
particular, a maximal simplex C induces a complete flag in ƒ=mƒ.

Proof. One can find representativesƒ2L, M 2L0 and N 2L00, and a basis .e/ ofƒ
such that M DL.zDe/ and N DL.zD0e/, and that D0�D2f0; 1gn. Indeed, let .u/
be a basis of M=mM which is adapted to both flags F M .ƒ/ and F M .N /. There
exists a lifting ."/ of .u/ in M which is a Smith basis of M for ƒ. Since M and N

are adjacent, any lifting of .u/ is a Smith basis for N . Then .e/D .zEDM .ƒ/"/ is
a common Smith basis of ƒ for M and N . By definition of adjacency, one can
ensure that the representatives satisfy mM � N �M ; that is, D0 �D 2 f0; 1gn.
Let now Ik D f1 6 i 6 n j di 6 kg and I 0

k
D f1 6 i 6 n j d 0i 6 kg. Then we have

Ik�1 � I 0
k
� Ik for all i . Since Fƒ.M / is spanned by the subfamilies .ei/i2Ik

for k 2 Z, the claim follows. �



294 ELIE COMPOINT AND EDUARDO COREL

Simplices and chambers. A maximal simplex, or chamber in Bn, is an n-chain C

of vertices L0; : : : ;Ln�1 with representatives ƒi for 06 i 6 n� 1 satisfying

mƒ0 �ƒ1 � � � � �ƒn�1 �ƒ0:

A basis .e/ is a fundamental basis for C at Li if

L.iCj/mod n D ŒL.e1; : : : ; ej ; zejC1; : : : ; zen/� for 06 j 6 n� 1:

Lemma 9. The set of chambers which contain a given vertex L is in bijection with
the set of complete flags in ƒ=mƒ with ƒ 2 L. A basis .e/ is fundamental for C

at L if and only if its image in ƒ=mƒ is strictly adapted to the flag Fƒ.C /.

A (partial) flag F in ƒ=mƒ can be lifted (by ��1
Œƒ�

) to a uniquely defined simplex
in Bn containing the vertex LD Œƒ�.

Definition 10. The graph-theoretic distance, canonical metric and index on Bn are
defined, respectively, by

d.L;L0/D�
�
EDƒ.ƒ0/

�
; d.L;L0/D



EDƒ.ƒ0/


; ŒL WL0�D i

�
EDƒ.ƒ0/0

�
for any representatives ƒ, ƒ0 of L, L0.

Note that d.L;L0/D�vƒ.ƒ
0/� vƒ0 .ƒ/ also holds, and that these three maps

are indeed symmetric. The d metric makes the geometric realization of Bn into a
CAT(0) space [Abramenko and Brown 2008, Theorem 11.16, p. 555].

Apartments. Let ˆD fd1; : : : ; dng be a K-frame of V . The set

Aˆ D fƒD `1C � � �C `n j `i is a lattice in dig

of lattices spanned over multiples of the vectors in ˆ induces a simplicial subcom-
plex in the affine building Bn called the apartment spanned by ˆ. For any lattice
ƒ 2ƒ, a ƒ-basis of the apartment Aˆ is a collection .e/D .e1; : : : ; en/ of vectors
such that ei spans di and vƒ.ei/D 0. Such a family is unique up to permutation
and to multiplication of each ei by a scalar �i 2 O�. The lattice is an element of
the apartment Aˆ if and only if the family .e/D .e1; : : : ; en/ is actually a basis of
the lattice ƒ. Equivalently, and without reference to a basis, this means that

ƒD

nM
iD1

ƒ\ di :

In the general case, the lattice ƒˆ D
Ln

iD1ƒ\ di is the largest sublattice of ƒ in
the apartment Aˆ. The homothety class Lˆ D Œƒˆ� is therefore the closest point
projection of LD Œƒ� on Aˆ, and the map

�ˆ W Bn!Aˆ

ƒ 7!ƒˆ
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is the retract onto Aˆ.

Galleries and type. Two chambers C and C 0 are adjacent if they share n�1 vertices
in common (a so-called panel). A gallery � from C to C 0 of length `.�/D ` is
a sequence of chambers � D .C0 D C;C1; : : : ;C` D C 0/ such that Ci is adjacent
to CiC1. The gallery distance is defined as

`.C;D/Dminf`.�/ j� is a gallery from C to Dg:

The vertices in the building Bn can be labelled by Z=nZ, which we assume given
from now on. Let S D fs0; : : : ; sn�1g. The affine Weyl group W of the building
then has a presentation

W D hS j s2
i D 1 and .sisiC1/

3
D 1i;

where the indices are understood modulo n. Every chamber has exactly one vertex
labelled i , that we denote Mi.C /, for every i 2 Z=nZ. Two chambers are called
i-adjacent when their common panel precisely does not contain those vertices
labelled i . Two i-adjacent chambers C and C 0 are then said to have W -distance
ı.C;C 0/ D si . If � D .C;C1; : : : ;Ct�1;C

0/ is any gallery from C to C 0 lying
inside an apartment, the W -distance ı.C;C 0/ is defined as the product

ı.C;C 0/D ı.C;C1/ � � � ı.Ct�1;C
0/:

There is a bijection between minimal galleries between C and C 0 and minimal
length decompositions of the W -distance ı.C;C 0/ 2W into products of generators
in S . Let Zn

0
be the set of n-tuples of integers summing to 0. A labelling of the

vertices by Z=nZ induces an isomorphism

W
�
' Sn ÌZn

0 given by
�
�.si/ D ..i; i C 1/; 0/ for 16 i 6 n;

�.s0/D ..1; n/; .1; 0; : : : ; 0;�1//:

Let ı D ı.C;C 0/ be the W -distance between two chambers C and C 0. Let
L DM0.C / and L0 DM0.C

0/ be the respective unique vertices of type 0 of C

and C 0. Then �.ı/D .�;K/ is the unique couple such that there exists a fundamental
basis .e/ of C at L for which .zK e� /D .z

k1e�.1/; : : : ; z
kne�.n// is a fundamental

basis of C 0 at L0.

Walls. Let .e/ be a basis of V , and let A be the apartment spanned by .e/. In
the basis .e/, any lattice L in A can be represented by a unique (up to an integer
multiple of .1; : : : ; 1/) n-tuple .x1.L/; : : : ;xn.L// 2 Zn. The set H of walls of V

for W is the set of hyperplanes

(3) H
.k/
i;j D fx 2 Rn

jxi �xj D kg for 16 i < j 6 n and k 2 Z:

Define the corresponding half-spaces
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H
.k/C
i;j D fx 2 Rn

jxi �xj > kg;

H
.k/�
i;j D fx 2 Rn

jxi �xj 6 kg:

For a hyperplane H 2H and a simplex A, let

�H .A/D

8<:
C if A�HCnH�;

� if A�H�nHC;

0 if A�HC\H�:

A wall H separates the simplices A and B if �H .A/�H .B/ D � for the usual
sign product rule. Any simplex A is completely defined by its sign sequence
.�H .A//H2H. However, there is only a finite number of them which are relevant
(i.e., whose defining equations or inequalities are not redundant). If we define
the fundamental chamber as C0 D .L0; : : : ;Ln�1/, where Li D ŒL.e1; : : : ; ei ;

zeiC1; : : : ; zen/�, the (essential) walls of C0 are the hyperplanes H
.0/

i;.i mod n/C1

for 16 i 6 n, and its sign sequence is

�
H
.k/

i;.i mod n/C1

.C0/D

�
C for 16 i 6 n� 1 and k 6 0 or i D n and k > 0;

� for 16 i 6 n� 1 and k > 0 or i D n and k 6 0:

Definition 11. Let A, B be simplices in Bn. The gallery distance `.A;B/ is defined
as minA6C;B6D `.C;D/.

Lemma 12. For two simplices A, B we have

`.A;B/D jfH 2H j �H.A/�H.B/D�gj:

If AD Œƒ� and B D ŒM � are vertices, we have

`.A;B/D
X

16i<j6n

max.0; dj � di � 1/; where .d1; : : : ; dn/D EDƒ.M /%:

Proof. The first assertion is known (see [Abramenko and Brown 2008, p. 32]). Take
a basis .e/ of V where A has coordinates a and B coordinates b. The description (3)
of walls shows that A and B are separated by H

.k/
i;j if and only if ai � aj 6 k � 1

and bi � bj > k C 1. Taking for .e/ a Smith basis of ƒ for M gives a D 0 and
b D .d1; : : : ; dn/. The result is then a straightforward count. �

2.5. Forms. For L 2 Bn, let L D ƒ=mƒ ' Cn for ƒ 2 L. This definition is
independent of the choice ofƒ as there is a canonical isomorphism betweenƒ=mƒ
and mkƒ=mkC1ƒ for any k. For L0 2Bn, let N be the unique representative of L0

such that vƒ.N /D 0, and define

(4) �L.L
0/D .N Cmƒ/=mƒ 2L:

The map �L induces an isomorphism of simplicial complexes between the link lk.L/
of LD Œƒ� and the set E of chains of linear subspaces of L. A form in a latticeƒ is
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a C-vector subspace Y of ƒ spanned by an O-basis .e/ of ƒ. For any x 2ƒ, there
is a unique representative xY of the coset xCmƒ in Y . This induces a well-defined
isomorphism

�Y W Y
'
�!ƒ=mƒ:

We will say that Y �ƒ is a Smith form for M if there is a basis of Y which is a
Smith basis of ƒ for M .

Lemma 13. Let ƒ be a lattice in V and Y be a form in ƒ.

(i) For any basis .e/ of the lattice ƒ, there exists a unique C-basis .eY / of the
form Y whose image in ƒ=mƒ coincides with the image of .e/. We call .eY /

the Y -basis of .e/.

(ii) Given a filtration .F ;D/ in „.ƒ=mƒ/, there exists a unique lattice M D

LY .F ;D/ such that Fƒ.M / D F and EDƒ.M / D D that admits a Smith
basis in Y .

(iii) For any lattice M such that d.ƒ;M /D 1, let .e/ a basis of ƒ=mƒ respecting
�ƒ.M /DM=mƒ. Then the Y -basis .eY / is a Smith basis for M .

Proof. The basis ."/ obtained by putting "i D .ei/Y D �
�1
Y
.�ƒ.ei// obviously

satisfies the conditions of (i). For any C-basis .e/ of Y which respects the flag F ,
put M D

Ln
iD1 zdi ei . Let . Qe/ be another basis of Y and QM D

Ln
iD1 zdi Qei . The

matrix of the change of basis from .zDe/ to .zD Qe/ is equal to P D zDC z�D , where
C 2 GLn.C/ is the matrix of the change of basis from .e/ to . Qe/. By definition
of the parabolic subgroup PF , one has zDC z�D 2 GLn.O/() C 2 PF ; hence
M D QM if and only if .e/ and . Qe/ both respect the flag F . Note that the gauge
from the basis .e/ to its Y -basis is always of the form P D I C zU 2 GLn.O/. Let
W D �ƒ.M / and let

T D

�
0r 0

0 In�r

�
be the elementary divisors of MƒD z�vƒ.M /M with respect toƒ. Assume that .e/
satisfies the assumptions of (iii). Then the Y -basis .eY / is obtained by a gauge
P D I C zU 2 GLn.O/. Putting

U D

�
U11 U12

U21 U22

�
;

we have

Y W .eY /
tT
// Mƒ

zvƒ.M /I// M

ƒ W .e/

ICtU

OO

zT
// Mƒ

QU2GLn.O/

OO
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since
zU D z�T .ICzU /zT

D

�
IrCzU11 z2U12

U21 In�rCzU22

�
:

The basis .eY / is therefore indeed a Smith basis of ƒ for M . �
For any two forms Y and zY in ƒ, the set of gauges between bases of Y and zY is

an element of the double coset GLn.C/nGLn.O/=GLn.C/. Let z be a uniformizing
parameter. With the convention that degz P D 1 if P 2 GLn.O/ngl.CŒz�/, the
following definition makes sense.

Definition 14. Let Y , zY be two forms in ƒ. Define the z-distance as

ız.Y; zY /Dmin.degz P; degz P�1/ 2 N[f1g

for any gauge P from a basis of Y to a basis of zY .

Lemma 15. If t D d.ƒ;M /, then for any form Y of ƒ, and any uniformizing
parameter z, there exists a Smith form zY for M at a z-distance ız.Y; zY /6 t � 1.

Proof. There exists a Smith form Y 0 ofƒ for M . Let P DP0CP1zC� � � 2GLn.O/

be a gauge corresponding to a basis change from Y to Y 0. Let P DP0C� � �CPkzk

for some k > 0, and let zY be the form obtained by this gauge transformation, as
explained in the following scheme:

QY

zD

��

Y
P //Poo Y 0

zD

��
M M

Q
oo

We have QD z�DP�1PzD D . zPij zdj�di /, where zP D P�1P . By construction,
we have zP D P�1.P � .P � P // D I C zkC1U with U 2 gl.O/. As soon as
k > t � 1, we have Q 2 GLn.O/; hence the form zY is a Smith form for M . �

2.6. Shortest paths and elementary splittings. A shortest path is a path � in Bn

such that for any vertices L, L0 2 � , the length of the path between L and L0

induced by � is equal to d.L;L0/. For a path � D .L0; : : : ;Lt / in Bn, and
a representative ƒ0 2 L0, let the ƒ0-normalized sequence of � be the unique
sequence of lattices ƒi 2Li such that vƒ0

.ƒi/D 0.

Lemma 16. Let ƒ, M 2ƒ. The ƒ-normalized sequence .ƒ;ƒ1; : : : ; ƒt DMƒ/

of a shortest path from Œƒ� to ŒM � satisfies ƒ�ƒ1 � � � � �ƒt � ztƒ.

Proof. Let � D .ƒDƒ0; ƒ1; : : : ; ƒt�1;M Dƒt / be a path of minimal length t ,
and let us prove thatƒ�ƒ1� � � ��ƒt by induction on t . For t D 1, this is the very
definition of adjacency in Bn. Assuming that the claim is established for any pair of
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lattices at distance 6 t �1, we have M �ƒ�ƒ1 � � � � �ƒt�1 for the normalized
sequence of � . Since ƒt�1 and M are adjacent, there exists a unique k 2 Z such
that zkƒt�1 �M � zkC1ƒt�1. We know that d.ƒ;ƒt�1/D t �1, and hence we
have ƒ�ƒt�1 � zt�1ƒ; therefore we get

zkƒ� zkƒt�1 �M � zkC1ƒt�1 � ztCkƒ:

If k > 0, then vƒ.M /> k > 0, which was excluded by assumption. But if k < 0,
then d.ƒ;M / < t , which is also excluded. Thus we have k D 0, and the claim is
proved. �

The following result explains how to construct some shortest paths algebraically.

Proposition 17. Let L, L0 2 Bn, and let t D d.L;L0/. For k 2 N, let Lk D

Œƒ0 Cmkƒ�, and Mk D Œƒ\mk�tƒ0 �, where ƒ 2 L and ƒ0 2 L0 are such that
vƒ.ƒ

0/D 0. Then d.Lk ;LkC1/D 1 for 06 k 6 t � 1 and Lt DL0. The paths

�min.L;L
0/D .L0;L1; : : : ;Lt / and �max.L;L

0/D .M0;M1; : : : ;Mt /

are shortest paths from L to L0, respectively called the min- and the max-shortest
path from L to L0. For any ƒ-normalized sequence .N0 Dƒ;N1; : : : ;Nt DM /

of a shortest path � 0 from L to L0, one has

Li �Ni �Mi for 06 i 6 t:

Proof. The existential part of the lemma is easy to verify by using Smith bases of the
representatives ƒ 2L and M 2L0, and is left to the reader. First note that the min-
and max-shortest paths are in correspondence under the duality map ƒ 7!ƒ� D

homK .ƒ;O/, so we only need to prove claims on one type of path. Note that the
shortest path interval is symmetric. Indeed, letting �.L0;L/D .L0

0
;L0

1
; : : : ;L0t /,

we have Lk D ŒMƒC zkƒ� and L0
t�k
D ŒƒM C zt�kM �. By definition we have

ƒMCzt�kMDz�vM.ƒ/ƒCz�vM.ƒ/�vƒ.M /�kMDz�vM.ƒ/�k
�
zkƒCz�vƒ.M /M

�
:

Therefore L0
t�k
DLk .

Now we turn to the proof of ƒi DM Cmiƒ�Ni �ƒ\m
i�tM DMi for the

shortest path � 0 D .N0; : : : ;Nt /, which we will prove by induction on the distance
t D d.L;L0/. For convenience, let any path .Œƒ�DL0;L1; : : : ;Lt�1; ŒM �DLt /

be represented by its ƒ-normalized sequence .ƒ;ƒ1; : : : ; ƒt�1; ƒt D M / of
latticesƒi 2Li such that vƒ.ƒi/D0. The claim is obvious for tD1. Let us assume
it holds for any shortest path between pairs of vertices in Bn whose distance is at
most t �1. Suppose then that d.ƒ;M /D t . Let ƒDƒ0 �ƒ1 � � � � �ƒt�1 �M

be the min-shortest path fromƒ to M and letƒ�ƒ0
1
� � � � �ƒ0

t�1
�M represent

the path � of minimal length. By assumption, d.ƒ;ƒ0
t�1
/ D t � 1, therefore
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we have ƒ � ƒ0
t�1
� zt�1ƒ, and by definition, we have ƒt�1 DM C zt�1ƒ.

Therefore, we get

ƒt�1\ƒ
0
t�1 D .M C zt�1ƒ/\ƒ0t�1

DM C .zt�1ƒ\ƒ0t�1/ .because M �ƒ0t�1/

DM C zt�1ƒ .since zt�1ƒ�ƒ0t�1/

Dƒt�1:

Thusƒt�1�ƒ
0
t�1

holds. On the other hand, Mt�1Dƒ\m
�1M is by construction

the largest lattice containing M , contained in ƒ and adjacent to M . Therefore
ƒt�1 �ƒ

0
t�1
�Mt�1. By the induction assumption, the claim is established. �

If D D .d1; : : : ; dn/ are the elementary divisors of Mƒ in ƒ, then the lattices
ƒk on the (normalized) min-shortest path from ƒ to M have elementary divisors
Dk D .min.d1; k/; : : : ;min.dn; k// in ƒ. The differences �k DDk �Dk�1 are
the intermediate elementary divisors as explained in the following:

(5) ƒ
z�1 // ƒ1

z�2 // ƒ2
// � � �

z�t�1 // ƒt�1
z�t // Mƒ

zvƒ.M /
// M:

Let for simplicity I D .1; : : : ; 1/ and `I D .`; : : : ; `/.

Definition 18. For D D .d1; : : : ; dn/ 2 Zn, let v Dmin D, let t Dmax D and

Di D
�
min.d1� v; i/; : : : ;min.dn� v; i/

�
for 16 i 6 t:

The elementary splitting of D is the unique decomposition DD�0C�1C� � �C�t

where �0 D vI 2 Zn and �k DDk �Dk�1 2 f0; 1g
n for 16 k 6 t .

We write �i.D/ if we need to specify the sequence D. The next straightforward
lemma is left to the reader.

Lemma 19. Let EDƒ.M / D �0 C �1 C � � � C �t be the elementary splitting
of EDƒ.M / for ƒ, M 2 ƒ. Then we have �0 D vƒ.M /I and the following
statements hold:

(i) ıi D Tr�i D �M .ƒi/, where ƒi 2 �min.ƒ;M / as in (5).

(ii) �i.EDM .ƒ//D I ��d�iC1.EDƒ.M // for 16 i 6 t . In other terms,

EDM .ƒ/D .�t � vƒ.M //I C .I ��t /C � � �C .I ��1/

is the elementary splitting of EDM .ƒ/.

(iii) Let AD Œƒ� and B D ŒM �. The gallery distance `.A;B/ is given by

`.A;B/D

t�1X
iD1

.n� ıi/ıiC1:
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Note that the sequence ı1; : : : ; ıt is nonincreasing, and that we also have

ıi D jf16 j 6 n j dj > i C vƒ.M /gj:

3. Birkhoff–Grothendieck trivializations

The central result in the theory of holomorphic vector bundles on P1.C/ is the
Birkhoff–Grothendieck theorem, which states that any such bundle is isomorphic
to a direct sum of line bundles. In this section, we take X D P1.C/, and we
investigate what properties of the vector bundle can be retrieved by considering
only the Bruhat–Tits building at a point x 2X .

3.1. The Birkhoff–Grothendieck property. According to Lemma 3, a holomorphic
vector bundle E 2H is completely described by the coset ƒD ŒE� 2H=�x and the
lattice ƒD Ex 2ƒ. Let us take up the notations of Section 2 again. Let V denote
the formalized meromorphic stalk cVx and let B be the corresponding Bruhat–Tits
building. Let B0 D fŒM � jEM is trivialg be the subset of trivializing lattices of B.

Note 20. Strictly speaking, L2B0 contains exactly one lattice M 2L such that the
extension EM is trivial. Any other QM 2L gives a quasitrivial vector bundle E

QM .
There is no real need to make the difference, since one gets a trivial bundle by
simply tensoring with a line bundle.

Lemma 21. B0 ¤∅ for any x 2X and ƒ 2H=�x .

The existence of an analytic trivialization outside of an arbitrary point is a very
general result on holomorphic bundles over complex analytic manifolds. This
much more restrictive algebraicity statement follows easily from the Birkhoff–
Grothendieck theorem.

Proof. Let E 2 ƒ be a representative of the coset ƒ. Let X � D Xnfxg, and
� a neighborhood of x. The Birkhoff–Grothendieck theorem implies that there
exists a sequence of integers .a1; : : : ; an/ 2 Zn, and linearly independent sections
�1; : : : ; �n 2 �.X

�;E/ and z�1; : : : ; z�n 2 �.�;E/ such that z�i D z�ai�i for a local
coordinate z at x. The section �i admits therefore a meromorphic extension at x,
that we still denote �i . The trivial bundle F 2 H0 spanned by .�1 : : : ; �n/ is a
trivialization of E at x as required. �

We say that any such bundle F is a Birkhoff–Grothendieck trivialization of E at x.
We’ll often write BG for short. Let BGx.E/�H0 for the set of BG trivializations
of E at x. Note that any F 2 BGx.E/ corresponds uniquely to a decomposition
of E as a direct sum of line subbundles (a BG decomposition)

(6) ED

nM
iD1

Li :
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Note 22. A line bundle on P is characterized by its degree. Recall that, for any
decomposition (6), if the integers ai D deg Li satisfy a1 > � � � > an, then the
sequence T .E/D .a1; : : : ; an/ is unique and called the type of E.

In the case where the coset ŒE�Dƒ 2H=�x is fixed, we write

BG.ƒ/D fM 2ƒ0
jEM

2 BGx.E/g;

and T .ƒ/ instead of T .E/. The global sections F.X / of a trivial bundle F 2 ŒE�

induce, by taking stalks at x, a form YM in the corresponding lattice M DFx 2ƒ,
that we call the global form of M . The link between the Birkhoff–Grothendieck
theorem and the algebraic structure of the local lattices is then given by the following
straightforward characterization.

Lemma 23. The trivial lattice M is in BG.ƒ/ if and only if there exists a Smith
basis .e/ of M with respect to ƒ that is simultaneously a C-basis of the global
form YM of M .

In this case, the basis .e/ will be called a BG basis for ƒ. We state now the
following result separately for further reference.

Proposition 24. Let E 2H be a holomorphic vector bundle. For any BG trivializa-
tion F of E at any x 2P1.C/, the type T .E/ of the bundle E is equal to the sequence
of elementary divisors EDƒ.M / of the stalk M D Fx with respect to ƒ D Ex

(viewed as lattices in Vx).

The BG trivializations of a bundle E are as a rule not unique, nor is any trivializa-
tion of E necessarily BG. One of the aims of this section is to prove the following
local characterization of BG trivializations. Recall that the Bruhat–Tits building is
endowed with three distance maps: the graph-theoretical distance d , the canonical
metric d and the gallery distance ` (which is actually a pseudodistance on the
vertices).

Theorem 25. Let ƒD Ex . Let �lex be the lexicographic, and �lexrev the reverse
lexicographic orderings on Zn. Then we have:

(i) T .E/Šmin� lexfEDƒ.M /& jM 2ƒ0g Dmax� lexrevfEDƒ.M /& jM 2ƒ0g.

(ii) If M 2ƒ0 then the following conditions are equivalent:

(a) M 2 BG.ƒ/;
(b) EDƒ.M /Š T .E/;
(c) d.ƒ;M /Dmin QM2ƒ0 d.ƒ; QM /;
(d) `.ƒ;M /Dmin QM2ƒ0 `.ƒ; QM /.

(iii) Moreover, if M 2 BG.ƒ/ then d.ƒ;M /Dmin QM2ƒ0 d.ƒ; QM /.
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In other terms, in the set of elementary divisors on ƒ0 with respect to Ex , ordered
by decreasing values, the minimum by direct lexicographic ordering coincides with
the maximum by reverse lexicographic ordering, and this value is exactly the
type T .E/. Moreover, any trivial lattice having T .E/ as elementary divisors is a
BG trivialization of E. Finally, the BG trivializations of a lattice ƒ are exactly
the geodesic projections of ƒ onto ƒ0 for both metrics d and `. This result will
be proved in two steps: Section 3.2 is dedicated to proving the first item and the
implications (a)) (b), (c), (d), (iii), and Section 3.3 to the converse implications.

3.1.1. Monopoles and BG trivializations. Recall from Section 1 that the group
of monopole gauge transforms at x sends a trivial sheaf F to a trivial sheaf zF
such that FjX nfxg D zFjX nfxg. This group is described by the group of unimodular
polynomial matrices GLn.CŒT �/, that is, matrices of the form

P D P0CP1T C � � �CPkT k where 9˛ 2 C�; det P D ˛:

More precisely, assuming that x D 0, a matrix … is a monopole at x if and only
…D P .1=z/ with P 2 GLn.CŒX �/ and z is the standard coordinate on P1.C/.

A trivial bundle F 2 H0 is a trivialization of E 2 H at x if any basis .�/ D
.�1; : : : ; �n/ of global sections of F spans the stalk Ey over the local ring OyD.OX/y
for every y ¤ x. Any other basis of meromorphic sections .z�/ spans a trivializa-
tion zF of E at x if and only if the gauge … from .�/ to .z�/ is a monopole at x. In
particular, since the group of units of CŒX � is C�, a line bundle L admits a unique
trivialization Lx at x.

Lemma 26. Two BG bases for ƒ are related by a �T .ƒ/-parabolic monopole
gauge.

Proof. Consider two BG trivializations M , QM of ƒ, as in the following diagram,
where D D T .ƒ/:

ƒ

P

��

zD
// YM

…

��
ƒ

zD
// Y QM

Since v.Pij / > 0, the gauge … satisfies v.…ij / > dj � di . Therefore …ij D 0 as
soon as dj > di , which means that … is (�D)-parabolic. �

According to the previous section, F is a BG trivialization of E at x if there
exists a basis .�/D .�1; : : : ; �n/ of global sections of F and an integer sequence
D D .d1; : : : ; dn/, such that .e/D .t�d1�1; : : : ; t

�dn�n/ spans the stalk Ex over
the local ring O D .OX /x , where t is a local coordinate at x. This coordinate t

can be arbitrarily chosen, since the local behavior of E only depends on the local
ring O. If we choose as coordinate t a meromorphic function on X , then the sections



304 ELIE COMPOINT AND EDUARDO COREL

.e/D .t�d1�1; : : : ; t
�dn�n/ form a basis of global (meromorphic) sections of V.

The OX -module zF spanned by .e/ in this case does coincide with E at x, and differs
from it at most on the support of the divisor of the function t .

When X D P1.C/, we can obviously find a function t with divisor .t/D x�y

for any arbitrary point y ¤ x, that we call a global coordinate at x. In this case,
the bundle zF is a BG trivialization of E at y. It is clearly independent of the
global basis .�/ of F, which is defined up to a .�D/-parabolic constant matrix
C 2GLn.C/, and of the specific meromorphic function t , which is only defined up to
a nonzero constant. We call ty.F/D zF the transport at y of the BG trivialization F

of E at x.
Understood otherwise, this is the description of a nontrivial bundle E by means

of two trivial bundles F and zF coinciding outside fx;yg, and glued along the
cocycle g D tD , where .t/D x�y.

3.1.2. The Harder–Narasimhan flag. The Harder–Narasimhan filtration HN.E/
of E over P1.C/ can be obtained (see [Sabbah 2002, p. 65]) from a BG decom-
position E D

Ln
iD1 Li of E as a direct sum of line bundles Li ' O.ai/ of the

appropriate degree, by
Fk.E/D

M
ijai >k

Li :

Locally, the Harder–Narasimhan filtration can be described as follows. Let .e/ be a
BG basis for ƒD Ex . The Harder–Narasimhan flag HNƒ of V D Vx defined by

(7) Fk
D

M
ijai >k

Kei

is independent of the BG basis for ƒ. For a lattice M , define the residual HN flag

H M
ƒ D .HNƒ\M /=mM and, for simplicity, Hƒ

DHƒ
ƒ :

Lemma 27. Let ƒ 2ƒ and let HNƒ be the HN flag of V .

(i) If M 2 BG.ƒ/, then HM
ƒ
D FM .ƒ/, hence Hƒ is transversal to Fƒ.M /.

(ii) Conversely, for any flag F 0 which is transversal to Hƒ, there exists M 2BG.ƒ/
such that Fƒ.M /D F 0.

Proof. Let T D T .ƒ/D diag.a1In1
; : : : ; asIns

/ with ai > aiC1 be the type of the
lattice ƒ, so that

ƒ
zT

�!M

sends the basis .e/ of ƒ into the global basis ."/ D zT .e/ of YM . Let �i DP
16k6i ni , and let generically x denote the class modulo m of a vector x. The i -th

component of the flag H M
ƒ

is spanned by ."1; : : : ; "�i
/, so H M

ƒ
DF M .ƒ/ indeed
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holds. Conversely, the .n�iC1/-th component of Fƒ.M / is FiDhe�iC1; : : : ; eni

while the i -th component Hi of Hƒ satisfies Hi D he1; � � � ; e�i
i; hence both flags

are transversal to each other. Any other BG trivialization QM is obtained from ."/

by a monopole gauge transform … such that P D zT…z�T 2 GLn.O/. According
to Lemma 26, … is block-upper-triangular with respect to the blocks of equal
elements of T , hence so is P . Let P 2 GT .C/. If z is a global coordinate, the
matrix z�T PzT is a monopole. The orbit of ."/ under the set of the constant
T -parabolic matrices covers the set of all flags in E which are transversal to the
image of HN.E/x in E. �

For any BG trivialization F of E at x, let Y D �.X;F/ be the C-vector space
of global sections of F. The Harder–Narasimhan filtration HN.E/ also induces
a canonical filtration HNƒ.Y / of C-vector spaces of Y . To avoid defining new
concepts, we will also refer to this filtration as the Harder–Narasimhan filtration
of Y . Note that it depends solely on the lattice ƒ 2ƒ.

3.2. Modification of the type. We wish to answer algebraically the following ques-
tion: “what does the type of E become when the stalk Ex Dƒ at x is replaced by
another lattice zƒ?” It turns out that the question can be very explicitly answered
when the lattice zƒ is not too far from ƒ, namely at distance 1 in the graph-theoretic
distance of the Bruhat–Tits building. The following proposition generalizes a result
of Gabber and Sabbah.

Proposition 28. Let E '
Ln

iD1 O.ai/ be a holomorphic vector bundle on X D

P1.C/, with a1 > � � � > an, and let x 2 X . Let zƒ 2 ƒx be a lattice such that
mxEx �

zƒ� Ex . Let E D Ex=mxEx be the local fiber at x, let

H WH0 D 0�H1 � � � � �Hs DE

be the residual HN flag in E, and W D zƒ=mxEx the image of zƒ. Assume that the
type of E is written as

aD . a1; : : : ; a1„ ƒ‚ …
n1 times

; a2; : : : ; a2„ ƒ‚ …
n2 times

; : : : ; as; : : : ; as„ ƒ‚ …
ns times

/:

Then the modified bundle FD E
zƒ has type

QaD . a1; : : : ; a1„ ƒ‚ …
m1 times

; a1� 1; : : : ; a1� 1„ ƒ‚ …
n1�m1 times

; : : : ; as; : : : ; as„ ƒ‚ …
ms times

; as � 1; : : : ; as � 1„ ƒ‚ …
ns�ms times

/

where mi D dimC Hi \W � dimC Hi�1\W .

Proof. This is explained in the following scheme. Let ƒ D Ex , and let t be a
local coordinate at x (that we assume without loss of generality to be 1). Let
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D D diag.a1; : : : ; an/ be the elementary divisors of the BG trivialization M in ƒ
(or, in this case, the type of E).

(8) YM W .y/
t�DP0tD

// Y QM W . Qy/

ƒ W .e/

tD

OO

P0 //

�

��

."/

tD

OO

tT
// . Qe/ W Qƒ

tD�T
ee

E Dƒ=tƒ W .e/
P0 // .u/ WW

ˆ�1
ƒ

99

Let .e/ be a basis of ƒ, such that .�/D .tDe/ is a basis of the form YM . Under
the canonical projection � W ƒ! E D ƒ=tƒ, the HN filtration of ƒ descends
to a flag of C-vector spaces H W 0 D H0 � � � � � Hs D E, and the quotient
basis .e/ is a basis respecting this flag. Let tƒ � zƒ � ƒ be the new lattice,
and let W � E be the subspace it is projected upon by � . Let .u/ be a basis
respecting both W and the flag H , and let P0 be a change of basis from .e/ to
.u/. Consequently, the matrix P0 belongs to the parabolic subgroup PH stabilizing
the flag H ; therefore it is block-upper-triangular, with blocks given by the equal
elements among the ai . Define now the basis ."/ of ƒ as the image of .e/ under
the constant gauge P0. Here is where d.ƒ; zƒ/ 6 1 is important: the basis ."/ is
a Smith basis of zƒ (this would be not necessarily true if the lattices were further
apart). Let T D diag.t1; : : : ; tn/ be the diagonal matrix such that tiD 0 if �."i/2W

and ti D 1 otherwise. Then . Qe/D tT ."/ is a basis of zƒ. Let now .z"/D tD."/ be
the basis of zM deduced from ."/. The matrix of the basis change from zƒ to zM
corresponding to the bases .�/ and .z"/ is equal to QD t�DP0tD D .P0/ij tdj�di .
Now, since P0 2 PH , we have .P0/ij D 0 whenever di � dj < 0. Therefore this
gauge QD 1

tk Qk C � � �CQ0 is a Laurent polynomial in t with only nonpositive
terms, where moreover Q0 2 GLn.C/. Since X D P1.C/, it is possible to choose
as local coordinate at1 a meromorphic function with divisor .1/� .0/, namely
t D 1=z. Accordingly, Q is a polynomial in z, whereas det QD det P0 2C�. Hence
Q 2GLn.CŒz�/ is a monopole gauge. Since .�/ was a basis of global meromorphic
sections of E, then .z"/ also is. Therefore zM 2B0 is a trivializing lattice. Moreover,
zM is a BG trivialization of both E and FD E

zƒ, because the basis .z"/ is a Smith
basis for ƒ and zƒ. Therefore, we can explicitly compute the new elementary
divisors of zƒ in zM , which are given by the matrix D�T . Summing up, we see that
the change of lattice has subtracted 1 from all the elementary divisors corresponding
to the vectors of the basis ."/ whose image under � do not fall into the subspace W .
We obtain the Harder–Narasimhan filtration of the modified bundle by reordering
the type by decreasing values. �
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Proposition 28 generalizes the construction given by Sabbah based on an idea of
O. Gabber in [Sabbah 2002, Proposition 4.11] (where only the case where W is
one-dimensional is tackled). This result is independent of the valuation of zƒ, and
can thus be formulated as follows.

Corollary 29. Let ƒ, zƒ 2 ƒ, and let H D .HNƒ \ƒ/=mƒ be the residual HN
flag and F D Fƒ.zƒ/ D .0 � W � ƒ=mƒ/ the flag induced by zƒ in ƒ=mƒ. If
d.ƒ; zƒ/D 1, then we have

T .zƒ/Š T .ƒ/&� �
�
EDƒ.zƒ/%

�
where � 2 �.F ;H / represents the relative position of F and H . Actually, one can
even say, putting zH D .HN zƒ\ƒ/=mƒ, that

T .zƒ/& D �.H ; zH /T .ƒ/&� �.F ; zH /
�
EDƒ.zƒ/%

�
:

Proof. With the notations of the diagram (8), the basis . Qy/ is a common BG basis for
ƒ and zƒ. Therefore, the HN flags are spanned in . Qy/ over K by the flags of indices
S&.D/ and S&.D�T /, respectively. By applying any representative of the coset
�.H ; zH / to D �T , one gets T .zƒ/&. Therefore, T .zƒ/& D �.H ; zH /T .ƒ/& �

�.H ; zH /�.F ;H /.EDƒ.zƒ/%/. Take as representatives of the cosets �.H , zH /

and �.F ;H / their minimal length element (see, e.g., [Abramenko and Brown 2008,
Proposition 2.23, p. 83]). Since the quotient basis ."/ of ƒ=mƒ is adapted to the
three flags H , zH and F , we get �.H ; zH /�.F ;H /D �.F ; zH / [Abramenko and
Brown 2008, Lemma 5.55, p. 236]. �

Corollary 30. Let ƒ 2ƒ. Then we have

(i) BG.ƒ/¤∅,

(ii) for any adjacent lattice zƒ, we have BG.ƒ/\BG.zƒ/¤∅,

(iii) all the elements in a chamber of Bn have a common BG trivialization.

Proof. According to Proposition 28, if a lattice ƒ admits a BG trivialization, so
does M for any adjacent lattice M . However, according to Proposition 17, two
lattices are always connected by a path of adjacent lattices. Since a trivial lattice
is its own BG trivialization, the two first results are simultaneously established.
The third stems from the fact that any chamber appears as a complete flag in the
quotient space of any representative. According to Bruhat’s lemma, there is a
basis respecting simultaneously two flags, in this case the one corresponding to the
chamber and the one induced by the HN filtration. �

3.2.1. An algorithm to compute a Birkhoff–Grothendieck trivialization. Let x 2X ,
and let ƒD ŒE�x be the �x-equivalence class of E. Let ƒD Ex and M DFx 2ƒ

where F is an arbitrary trivialization of E at x. In this local setting, we “see” the
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global sections of F as the global form Y �M . An arbitrary trivialization of E is
not necessarily BG. The following result is easily established.

Lemma 31. Let M 2 BG.ƒ/. Then we have

(i) M 2 BG.zkƒ/ for k 2 Z,

(ii) M 2 BG.ƒ0/ for any lattice ƒ0 on the shortest path �min.ƒ;M /.

Proposition 28 allows to construct effectively from an arbitrary trivialization M a
BG one, by following shortest paths in the Bruhat–Tits building from M to Ex . The
following result shows how to start the construction. We can assume that vM .ƒ/D0.

Lemma 32. Let M 2ƒ0 be a trivial lattice in Bn. For any lattice ƒ 2ƒ such that
d.ƒ;M / D 1, we have M 2 BG.ƒ/. More precisely, let Y �M be the global
form of M . For any basis .e/ respecting W Dƒ=mM , the Y -basis .eY / is a Smith
basis for ƒ.

Proof. Assume that .e/ satisfies the assumptions of the lemma. Then, accord-
ing to Lemma 13, the Y -basis .eY / is a Smith basis of M for ƒ. Since it is a
basis of the global form of M , the result follows, and in particular, the Harder–
Narasimhan filtration of the corresponding bundle is equal to the Y -lifting of the
flag .0�W �M=mM /. �

If there existed a Smith basis of M for ƒ which spanned simultaneously YM ,
the lattice M would be a BG trivialization of ƒ, and the sequence EDƒ.M / would
represent the type of E.

Theorem 33. Let ƒ 2ƒD ŒE�, and let M 2ƒ0 be an arbitrary trivial lattice. Let
EDƒ.M /D�0C� � �C�t be the elementary splitting of EDƒ.M /. There exists a
sequence of permutations wk 2 Sn such that the type T .ƒ/ satisfies

T .ƒ/Š�0Cw1�1Cw2�2C � � �Cwt�t :

Proof. We prove the result first on the sequence D D EDM .ƒ/ D �EDƒ.M /.
Let � D .M DM0;M1; : : : ;Mt DƒM / be (a normalized representative of) the
min-shortest path from ŒM � to Œƒ�. Let D D EDM .ƒM / D .k1In1

; : : : ;ksIns
/

where 0D k1 < � � �< ks D t . Consider the elementary splitting of D

(9) D D�1C � � �C�t where �i D .0n�mi
; Imi

/

for a nonincreasing sequence .mi/. Recall that

Dk D�1C � � �C�k D EDM .Mk/:

Let .e/ be a Smith basis of M for ƒ, and let .e.k// D zDk .e/ for 0 6 k 6 t

(with D0 D 0 by convention). The induced basis .e.k// of Ek D Mk=mMk

respects both flags F Mk .M / and F Mk .ƒ/. With the help of Proposition 28,
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we construct a BG trivialization QMkC1 of the k-th element Mk of the shortest
path � , which is simultaneously a BG trivialization of ƒM C mMk D ƒM C

m.ƒM CmkM /DMkC1.
Let us describe this in more detail. By assumption, there exists a BG basis .�/

of QMk for Mk . Let

T D ED QMk
.Mk/

% and T 0 D EDMk
.ƒM /%:

Let .y/D zT .�/ be the corresponding basis of Mk , and ."/ a Smith basis of Mk

for ƒM . The gauge U from .y/ to ."/ can be factored as

(10) U D U0.I C tU 0/ with U0 2 GLn.C/:

Since .�/ is a basis of the global form Y QMk
, the basis .y/ of E DMk=mMk is

strictly adapted to the HN flag

H .k/
D .HNMk

\Mk/=mMk :

Similarly, ."/ is strictly adapted to the flag F .k/ D F Mk .ƒM /. Let B be the
standard Borel subgroup of GLn.C/. By the Bruhat decomposition, the group
GLn.C/ is a disjoint union of double cosets:

GLn.C/D
a
w2W

BwB

where W is the Weyl group W DSn. The constant term U0 of the gauge U belongs
to only one such cell: let w 2 Sn be the label of the corresponding Schubert cell.
We have a decomposition U0DQPwQ0�1 with Q, Q0 2B, where Pw is the matrix
representation of the permutation w. Accordingly, the gauge transforms Q and Q0

respect, respectively, the flags H DH .k/ and F D F .k/. In the quotient space E,
we have:

E W .y/

U0

��

Q // E W .y0/

Pw
��

E W ."/
Q0 // E W ."0/

The gauge U0 represents geometrically the change of a basis that spans the Harder–
Narasimhan flag H to one that spans the flag F induced by ƒ; therefore w is a
representative of the relative position �.H ;F /.

Let T 0D�kC1C� � �C�t be the elementary splitting of T 0. Since ."/ respects the
flag F , it will in particular respect the trace of the first element MkC1DƒCmMk

of the shortest path �min.Mk ; ƒ/; therefore any lifting of ."/ will be a Smith basis
of MkC1 with elementary divisors �kC1. Put T 00 D T 0 ��kC1. The previous



310 ELIE COMPOINT AND EDUARDO COREL

scheme gets thus lifted to the following complete picture.

Y QMk
W .�/

tT

��

tT Qt�T

// Y QMkC1
W .� 0/

tT

��

tTCw�1�kC1

��
Mk W .y/

U

��

U0

��

Q // Mk W .y
0/

Pw

��

tw
�1�kC1 // MkC1

Pw

��
Mk W . Qy/

Q0 //

ICtU 0

��

Mk
t�kC1 //

ICtQ0�1U 0Q0

��

MkC1

QU2GLn.O/

��
Mk W ."/

Q0 //

tT 0

��

Mk W ."
0/

tT 0

��
tT 0

��

t�kC1 // MkC1

tT 00

��
ƒM ƒM ƒM

As a result, the elementary divisors of MkC1 with respect to the common BG
trivialization QMkC1 of Mk and MkC1 are not T C�kC1 (as with respect to QMk),
but T Cw�1�kC1; namely, the elements of �kC1 have been twisted according to
the permutation w�1 D �.F ;H / indexing the Bruhat cell that contains the matrix
U0 2GLn.C/. The resulting matrix zT D T Cw�1�kC1 is not necessarily ordered
by increasing values: therefore we cannot ensure that wkC1 D �.F ;H /, since
the ordered diagonal has the form �T C �w�1�kC1. According to Corollary 29,
however, we know that we can take

� D �.H Mk ;H
MkC1

Mk
/D �.HNMk

;HNMkC1
/:

Thus

zT% D �.HNMk
;HNMkC1

/T C �.H Mk ;H
MkC1

Mk
/�.F .k/;H Mk /�kC1:

Putting Tk D ED zMk
.Mk/

%, we get

(11) TkC1 D �.HNMk
;HNMkC1

/Tk C �
�
F Mk .ƒ/;H

MkC1

Mk

�
�kC1:

At the end of at most t steps, the lattice QMt is a BG trivialization of ƒM , and
thus of ƒ. We have zT D w1�1Cw2�2C � � �Cwt�t such that

QMt
z
zT
// ƒM

zvM .ƒ/
// ƒ:
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Since T .ƒ/D EDƒ. QMt /D� zT � vM .ƒ/, we get

T .ƒ/D��0�w1�1�w2�2� � � � �wt�t

D��0� tI Cw1.I ��1/C .I �w2�2/C � � �C .I �wt�t /

D .��0� tI/Cwt .I ��t /Cwt�1.I ��t�1/C � � �Cw1.I ��1/:

By Lemma 19, the result is established. Note that a similar relation holds for
EDM .ƒ/, and that if T .ƒ/D�0Cw1�1Cw2�2C� � �Cwt�t , then T .ƒk/D

�0CwkC1�kC1C � � � Cwt�t for the normalized elements ƒk of the shortest
path �min.ƒ;M /. �

We can even specify an actual (noneffective) formula for the permutations wi

appearing in T .ƒ/%D�0Cw1�1Cw2�2C� � �Cwt�t , attached to the shortest
path

ƒ
z�1 // ƒ1

z�2 // ƒ2
// � � �

z�t�1 // ƒt�1
z�t // Mƒ

z�0 // M I

namely,

wi D �.HNƒ1
;HNƒ/ � � � �.HNƒi�1

;HNƒi�2
/�
�
Fƒi .ƒ/;H

ƒi�1

ƒi

�
:

The formula cannot be reduced as in Corollary 29 since there is not necessarily an
apartment adapted for three such consecutive flags.

3.2.2. The abacus. Theorem 33 has a nice combinatorial interpretation in terms
of Young diagrams. For any integer sequence D D .d1; : : : ; dn/ 2 Zn, let D D

�0C� � �C�t be the elementary splitting of D. For wD .w1; w2; : : : ; wt /2 .Sn/
t ,

let w.D/ D �0 Cw1�1 Cw2�2 C � � � Cwt�t . The abacus of D is the set of
sequences

ab.D/D fA 2 Zn
j 9w 2 .Sn/

t ;AD w.D/g:

The name comes from the following analogy. Let Y .D/ be the Young diagram
with n rows whose respective lengths are the elements of D0 DD�min D 2 Nn,
assumed to be arranged in increasing order (rows of length 0 are included). Assume
from now on that min D D 0. Let d�i D jf1 6 j 6 n j dj > igj be the number
of boxes in the i-th column of Y .D/. The sequence D� D .d�

1
; : : : ; d�t / where

t Dmax D is the dual sequence of D. The elementary splitting of D is given by
�i D .0n�d�

i
; Id�

i
/. In view of Lemma 19, put

`.D/D

t�1X
iD1

.n� d�i /d
�
iC1:

Any sequence A in the abacus ab.D/ of D 2 Zn comes from a box diagram
obtained from Y .D/ by allowing to move some boxes only vertically inside the
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Figure 1. The Young diagram Y .D/ of the sequence D D

.0; 1; 1; 2; 4; 4/, and an element A D .2; 2; 2; 1; 2; 3/ 2 ab.D/,
featuring the moved boxes (in shades of gray), so that A% D

.1; 2; 2; 2; 2; 3/. The complement (thin gray line) corresponds
to the sequence D0 D .0; 0; 2; 3; 3; 4/, and the bijection from
Lemma 35, to reversing the arrows.

whole corresponding column of length n. The diagram thus obtained, that we call
an abacus diagram, can have nonadjacent boxes (as shown in Figure 1). For any
such diagram, the sequence .a1; : : : ; an/ of number of boxes contained in each of
the n rows is the required element of ab.D/.

Lemma 34. Let DD�1C� � �C�t be the elementary decomposition of D 2 .Zn/%,
and let AD w1�1C � � �Cwt�t 2 ab.D/. There exist w0

1
; : : : ; w0t 2 Sn such that

w01�1C � � �Cw
0
i�i D .w1�1C � � �Cwi�i/

% for all 16 i 6 d:

Proof. We proceed by induction on the number s of columns in Y .D/. Let Y

be the Young diagram for D D .d1; : : : ; dn/ and zY the one obtained from Y by
erasing the last column, i.e., corresponding to the sequence zT D .�1; : : : ; �t�1/.
Let zD D . Qd1; : : : ; Qdn/ be the associated sequence. Then we have di D

Qdi for
16 i 6 n�d�t and di D

QdiC1 for n�d�t C16 i 6 n. An element A2 ab.D/ given
by the permutations w D .w2; : : : ; wt / corresponds uniquely to the pair . zA; wt /

where zA 2 ab. zD/ is given by the restriction zw D .w2; : : : ; wt�1/.
The claim is clear for t D 1, so assume that it is established for any zD such that

� zD6 t�1. We have DD�1C� � �C�tD
zDC�t where zDD�1C� � �C�t�1 is the

elementary decomposition of zD. Let A 2 ab.D/ be described by the number ai of
boxes in the i -th row for 16 i 6n, and let zAD . Qa1; : : : ; Qan/ be the restriction of A to
the t�1 first columns. Let JDfi jaiD QaiC1g. Note that JDwt .fn�d�t C1; : : : ; ng/,
and thus jJj D d�t . According to the assumption, we can find w0

1
; : : : ; w0

t�1
such

thatw0
1
�1C� � �Cw

0
i�iD .w1�1C� � �Cwi�i/

% for all 16 i 6 t�1. In particular,
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we can assume that Qa1 6 � � � 6 Qan. If there exists an index i such that ai > aiC1

holds, then we have necessarily Qai D QaiC1 D aiC1 and ai D Qai C 1, so i 2 J

and i C 1 … J. Exchanging i and i C 1 will not change the resulting sequence A

when reordered, so one can avoid the inversion by putting w0t D .i; i C 1/wt , so
that i … J and i C 1 2 J instead. By repeating this procedure for all the inverted
indices, we get the claimed result for t . �

For an n� t rectangular matrix M D .Mi;j /, define the row sum vector

r.M /D .r1; : : : ; rt /; rj D

nX
iD1

Mi;j ;

and column sum vector

c.M /D .c1; : : : ; cn/; ci D

tX
jD1

Mi;j :

An element A 2 ab.D/ in the abacus of D can also be seen as a .0; 1/ rectangular
n� t matrix A D .Ai;j / where Ai;j D 1 whenever i 2 wj .fn� d�j C 1; : : : ; ng/

holds. This matrix A has row sum vector r.A/ D D�, and column sum vector
c.A/D A. Recall that for two sequences p D .p1; : : : ;pn/ and q D .q1; : : : ; qt /

having the same sum, one says that p dominates q when
Pk

iD1 qi 6
Pk

iD1 pi for
all integers k, where one completes the missing elements with 0. The following
lemma sums up the behavior of the quantities introduced in Section 2.1 under the
abacus transformations.

Lemma 35. Let D 2 Zn.

(i) The maps max, �, i , ` and k � k all attain their maximum over ab.D/ at D.
The map min attains its minimum at D.

(ii) For any sequence A 2 ab.D/, the following hold:

(a) max ADmax D () i.A/D i.D/,
(b) �AD�D () max ADmax D and min ADmin D,
(c) kAk D kDk () `.A/D `.D/ () A% DD%.

Moreover, the map A 7!max D�A is a bijection between ab.D0/ and ab.D0/.

Proof. We will only prove the claims about `.D/ and kDk, since the others are easily
derived from their definitions. Although the assertions are similar, the methods
of proof will be different. Let us start with `. Assume without loss of generality
that min D D 0. According to Lemma 34, one can also assume that ADA% holds.
Define the integers ki by induction as k1Da�

1
�d�

1
and kiDa�i �d�i Cki�1 for i >2.

Since A can be seen as a .0; 1/ matrix A with r.A/DD� and c.A/DA, the Gale–
Ryser theorem [Krause 1996] implies that c.A/� D A� dominates r.A/ D D�.
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Therefore
kX

iD1

d�i 6
kX

iD1

a�i

for all integers k. Hence ki > 0 for all i . Putting k0 D kt D 0, we then have
a�i D d�i � ki�1C ki for 16 i 6 d . According to the definition, we have

`.A/D

t�1X
iD1

.n�a�i /a
�
iC1 D

t�1X
iD1

.n�d�i Cki�1�ki/.d
�
iC1�kiCkiC1/

D

t�1X
iD1

.n�d�i /d
�
iC1C.ki�1�ki/.d

�
iC1�kiCkiC1/�.ki�kiC1/.n�d�i /

D `.D/�

t�1X
iD1

.ki�kiC1/.n�d�i Cd�iC1CkiC1�ki/:

After some algebraic manipulation, we get

`.A/�`.D/D�k1

�
n�d�1Cd�2 �k1Ck2�.d

�
3 �k2Ck3/

�
� � � �

t�2X
iD2

ki

�
d�iC1�kiCkiC1�.d

�
iC2�kiC1CkiC2/Cd�i�1�d�i

�
� � � �kt�1.d

�
t �kt�1CktCd�t�2�d�t�1/

D�k1.n�d�1Ca�2�a�3/ � � � �

t�2X
iD2

ki.a
�
iC1�a�iC2Cd�i�1�d�i /

� � � �kt�1.a
�
t Cd�t�2�d�t�1/:

Since both sequences .d�i / and .a�i / are nonincreasing, we get `.A/6 `.D/. More-
over, if `.A/D `.D/ holds, then all these terms must be zero. Let us prove then
by induction that ki D 0 for all i . If k1 ¤ 0, then one has n D d�

1
and a�

2
D a�

3
.

Since a�
1
> d�

1
, one must therefore have a�

1
D n, so k1 D 0 holds, and hence

we get d�
1
D a�

1
. Assume now that kj D 0 and a�j D d�j hold for j 6 i � 1.

If ki ¤ 0 then one has a�i > d�i and d�
i�1
D d�i (and a�

iC1
D a�

iC2
also). But

then d�
i�1
D d�i D a�

i�1
> a�i > d�i , so we have d�

i�1
D d�i D a�

i�1
D a�i . Thus

ki D a�i � d�i C ki�1 D 0, and so the result for ` is established.
Let us turn now to k � k. We can assume here that w1 D id. We proceed by

induction on the number t of columns in the Young diagram Y .D/. Like in the
proof of the previous result, the restricted column sequence T 0 D .�1; : : : ; �t�1/

corresponds to the Young diagram Y .D0/ of D0 D .d 0
1
; : : : ; d 0n/ with di D d 0i for

1 6 i 6 n� d�t and di D d 0i C 1 for n� d�t C 1 6 i 6 n. By the König–Huygens
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identity, we have

kDk D

nX
iD1

�
di �

Tr D

n

�2

D

nX
iD1

d2
i �

.Tr D/2

n

D

n�d�tX
iD1

.d 0i/
2
C

nX
iDn�d�t C1

.d 0i C 1/2�
.Tr D0C d�t /

2

n

D

nX
iD1

.d 0i/
2
�
.Tr D0/2

n
C d�t C 2

nX
iDn�d�t C1

d 0i �
2d�t Tr D0C .d�t /

2

n

D kD0kC d�t C 2d�t .t � 1/�
2d�t Tr D0C .d�t /

2

n
:

Let ADw.D/ 2 ab.D/ with w D .w2; : : : ; wt / and A0 Dw0.D0/ 2 ab.D0/ where
w0 D .w2; : : : ; wt�1/.

For t D 1, the claim is clear, for kw.D/k D kDk and w.D/% D D for any
w 2 .St /

n. Assume then that for any diagram Y 0 D Y .D0/ with at most t � 1

columns, we have kA0k6 kD0k for A0 2 ab.D0/, and kA0k D kD0k if and only if
.A0/% DD0. Let Y D Y .D/ have t columns. Let A 2 ab.D/ be described by the
number ai of boxes in the i -th row for 16 i 6 n, and let A0 D .a0

1
; : : : ; a0n/ be the

restriction of A to the t � 1 first columns. Let again JD fi j ai D a0i C 1g. Then
one has

kAk D

nX
iD1

a2
i �

.Tr A/2

n
D

X
i2J

.a0i C 1/2C

nX
i…J

.a0i/
2
�
.Tr A0C d�t /

2

n

D

nX
iD1

.a0i/
2
�
.Tr A0/2

n
CjJjC 2

nX
i2J

a0i �
2d�t Tr A0C .d�t /

2

n

D kA0kC d�t �
2d�t Tr A0C .d�t /

2

n
C 2

nX
i2J

a0i :

By construction, we have Tr A0 D Tr D0, so, under the induction assumption, we
get

kAk6 kD0kCd�t �
2d�t Tr D0C .d�t /

2

n
C2

nX
i2J

a0iDkDkC2

�X
i2J

a0i�d�t .t�1/

�
:

Since a0i 6 t�1Dmax D0 holds by construction, and jJj D d�t , we get kAk6 kDk.
Moreover, kAk D kDk can only happen when a0i D t � 1 for i 2 J. In this case,
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we get

kA0k D kDk�

�
d�t C 2d�t .t � 1/�

2d�t Tr D0C .d�t /
2

n

�
D kD0k:

By the induction assumption, we have .A0/% DD0, and by the definition of J, we
get ai D a0iC1D d Dmax D for i 2 J. Therefore, we get d�t elements in A which
are equal to d , and hence A% DD. �

3.2.3. Local criteria for BG trivializations. In this section, we use the fact that the
type T .ƒ/ is an element of ab.EDƒ.M // for any trivial M 2ƒ0 to derive local
criteria satisfied by the BG trivializations. Let d.ƒ;ƒ0/DminM2ƒ0 d.ƒ;M /.

Lemma 36. Let ƒ 2ƒ be a lattice. For any M 2ƒ0, we have

d.ƒ;M /D d.ƒ;ƒ0/() vƒ.M /D max
QM2ƒ0

vƒ. QM / and vM .ƒ/D max
QM2ƒ0

v QM .ƒ/:

If M 2 BG.ƒ/, then ı.ƒ;M /Dmin QM2ƒ0 ı.ƒ; QM / for ı 2 fd;d ; `g.

Proof. Let ƒ0 3 QM
zD

�!ƒ represent the elementary divisors of an arbitrary trivial-
ization QM of ƒ. The BG algorithm of Section 3.2.1 can be applied to QM to obtain
M 2 BG.ƒ/, as in the following scheme, where AD w.D/ 2 ab.D/:

ƒ0 3 QM ƒ
zD
oo zA

// M 2 BG.ƒ/ :

By definition, we have T .ƒ/ Š A. By Lemma 35, for any QM 2 ƒ0, we have
vƒ. QM /Dmin D6min ADvƒ.M / and v QM .ƒ/D�max D6�max ADvM .ƒ/.
This holds for any trivial QM ; hence, for any BG trivialization M 2 BG.ƒ/, we get

vƒ.M /D max
QM2ƒ0

vƒ. QM / and vM .ƒ/D max
QM2ƒ0

.v QM .ƒ//:

On the other hand, we have, for any QM 2ƒ0,

d.ƒ; QM /D�vƒ. QM /�v QM .ƒ/>�vƒ.M /�vM .ƒ/Dd.ƒ;M / for M 2BG.ƒ/:

The rest in a direct consequence of Lemma 35. �
Proposition 37. Let ƒ 2ƒ. Then

T .ƒ/Dmax
�lex
fEDƒ.M /% jM 2ƒ0

g D min
�lexrev
fEDƒ.M /% jM 2ƒ0

g:

Proof. Let M 2 ƒ0, and let D D .d1; : : : ; dn/ D EDƒ.M /%. By Theorem 33,
there exists w D .w1; : : : ; wt / 2 .Sn/

t such that w.D/ Š T .ƒ/, and we can,
by Lemma 34, ensure that w.D/ D T .ƒ/%. Representing D as its Young dia-
gram Y .D/, the sequence T .ƒ/ is given by an abacus diagram A 2 ab.D/ derived
from Y .D/ by moving boxes vertically (downwards), and such that the number
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of boxes ti in row i weakly increases with the row index (i.e., tiC1 > ti). Then
we have d1 D vƒ.M / 6 t1 D max QM2ƒ0 vƒ. QM /. Suppose that d1 D t1, and
assume that d2 > t2 holds. Accordingly some boxes from the second row must be
lowered. Therefore, we necessarily have t1 > d1. This contradicts the maximality
assumption on vƒ.M /. Thus d2 6 t2, and so t2 D maxM2ƒ0;vƒ.M /Dt1

dƒ
2
.M /.

Let i D maxfj j dk D tk for k 6 j g and assume that diC1 > tiC1 holds. The
same argument holds and shows that diC1 6 tiC1. Therefore we have proved
that ti DmaxM2ƒ0;dƒ

k
.M /Dtk ;16k6i�1 dƒi .M /. A similar argument starting from

dn D�max vM .ƒ/ proves the second relation. �

This result establishes the first part of Theorem 25. The proof will be complete
when we prove that M is indeed a BG trivialization of ƒ if and only if M 2ƒ0

and EDƒ.M /Š T .ƒ/. This will be established in the next section.

3.3. The permutation lemma. In the previous section, we showed how to construct
a lattice M whose global form YM contains a Smith basis for a given lattice ƒ.
The following result allows us to give a fairly complete geometric view of the set
of BG trivializations. We recall that a principal minor of a matrix A 2 gln.C/ is a
minor AI;I where I � Œn� obtained by deleting rows and columns whose indices
are not elements of I .

Proposition 38 (permutation lemma). Let D D .d1; : : : ; dn/ 2 Zn be an integer
sequence and P 2 GLn.CŒŒt ��/ a lattice gauge.

(1) (Bolibrukh) There exist a permutation � 2 Sn and a lattice gauge QP 2
GLn.CŒŒt ��/ such that

…D t�DP�1t�D QP 2 GLn.CŒt
�1�/;

where tD D diag.td1 ; : : : ; tdn/ and �D D .d�.1/; : : : ; d�.n//.

(2) There exists moreover a lattice gauge Q 2 GLn.O/ such that tD…DQtD .

(3) Furthermore, one can choose � D 1 in item (1) if and only if all principal
minors of P .0/ indexed by the elements of the ascending flag D% are nonzero.

We will give a self-contained proof of this result, following for the first item, due
to Bolibrukh, the same lines as the proof of this lemma given in [Ilyashenko and
Yakovenko 2007]. Item (2) is, up to our knowledge, new, as well as the necessity
statement in (3) (sufficiency appears in the cited work). The proof proceeds by
induction, using the following simple lemma.

Lemma 39. Let d 6 n and

T D

�
Id 0

0 0n�d

�
:
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Let H D
�

A
C

B
D

�
2GLn.CŒŒt ��/ be a lattice gauge matrix, decomposed as a 2�2-block

matrix according to the blocks of T . If det A.0/¤ 0, then there exists a monopole
gauge matrix

…D

�
Id t�1 z…

0 In�d

�
with z… a constant matrix, such that zH D t�T HtT… is a lattice gauge matrix; that
is, zH 2 GLn.O/.

Proof. For simplicity, put M0 DM.0/ for a holomorphic matrix M . One checks
that putting z…D�A�1

0
B0, we have

zH D t�T HtT…D

�
A zB

tC zD

�
;

where
zB D t�1.BCA z…/ and zD DDCC z…:

By construction, the residue of zB is equal to B0 �A0A�1
0

B0 D 0, and hence zB
is holomorphic; therefore zH also is. To check that zH 2 GLn.O/, it is sufficient to
check the invertibility of

zH0 D

�
A0

zB0

0 D0�C0A�1
0

B0

�
:

By assumption A0 is invertible, and it is well-known that the Schur complement
D�CA�1B is invertible when

�
A B
C D

�
2 GLn.C/ and A both are so. �

Note that the upper-left block of H appears unchanged in zH . Note also that

H D tT…D

�
tId

z…

0 In�d

�
:

Geometrically, we can summarize the construction of Lemma 39 as the following
scheme.

ƒ
H //

tT

��

ƒ
tT

//

H
��

M

…
||

Qƒ
QH // Qƒ

We need two technical lemmata before giving the actual proof of the permutation
lemma. Let D denote the integer sequence

. d1; : : : ; d1„ ƒ‚ …
n1 times

; : : : ; ds; : : : ; ds„ ƒ‚ …
ns times

/
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with di > diC1. We say that a matrix H is strongly D-parabolic if it has the form

H D

0B@td1In1
� � � Pij

td2In2

:::

0 tds Ins

1CA ;
where Pij is a ni�nj polynomial matrix in t satisfying deg Pij <di and v.Pij />dj .

Lemma 40. Let H be strongly D-parabolic, and let

H 0 D

�
tIm

z…

0 In�m

�
;

where z… is a constant matrix and m 6 n1. Then the product HH 0 is strongly
D0-parabolic, where D0 D . d1C 1; : : : ; d1C 1„ ƒ‚ …

m times

; d1; : : : ; d1„ ƒ‚ …
n1�m times

; : : : ; ds; : : : ; ds„ ƒ‚ …
ns times

/.

Proof. Let D D . d2; : : : ; d2„ ƒ‚ …
n2 times

; : : : ; ds; : : : ; ds„ ƒ‚ …
ns times

/. The matrix H can be written as

H D

�
td1In1

P

0 H

�
;

where H is strongly D-parabolic, and P D .P2 � � � Ps/where the blocks Pi satisfy
deg Pi < d1 and v.Pi/> di . Then, if mD n1, the product HH 0 is simply

HH 0 D

�
td1C1In1

td1 z…CP

0 H

�
:

Otherwise, we split the matrices in 3� 3-blocks, as

HH 0 D

0@tmIm 0 P1

0 td1In1�m P2

0 0 H

1A0@tIm
z…1

z…2

0 In1�m 0

0 0 In�n1

1A
D

0@td1C1Im td1 z…1 td1 z…1CP1

0 td1In1�m P2

0 0 H

1A :
In both cases, we see that the product HH 0 is strongly D0-parabolic as requested. �

In the following lemma, we prove that the factorization in Proposition 38 exists
if and only if the condition on the minors of the constant term holds.

Lemma 41. Let P , Q 2 GLn.O/, and let

D D . d1; : : : ; d1„ ƒ‚ …
n1 times

; : : : ; ds; : : : ; ds„ ƒ‚ …
ns times

/
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with di > diC1. Assume that … D z�DPzDQ 2 gln.CŒŒ1=z��/. Decomposing a
matrix M in blocks Mi;j according to the multiplicities .n1; : : : ; ns/ of D, let

Pi D

0B@Pi;i � � � Pi;s

:::
: : :

:::

Ps;i � � � Ps;s

1CA and z…i D

0BB@
…
.0/
i;1
� � � …

.0/
i;s

:::
: : :

:::

…
.0/
s;1
� � � …

.0/
s;s

1CCA :
Then z…i has maximal rank if and only if Pi.0/; : : : ;Ps.0/ are all invertible.

Proof. We prove this result by induction. We put M D
P
`2Z M .`/z` for a formal

series matrix, with M .`/ D 0 when needed. Let Mi;.j Wk/ D .Mi;j � � � Mi;k/

for j 6 k, and Mi;� DMi;.1Ws/, and put further

zMj D

0BBBBB@
M
.0/

j ;�

M
.0/

jC1;�
:::

M
.0/
s;�

1CCCCCA and M
0.`/

j D

0BBBBB@
M
.`/

j ;�

M
.`Cdj�djC1/

jC1;�
:::

M
.`Cdj�ds/
s;�

1CCCCCA ;

so that

M
0.`/

j D

0@ M
.`/

j ;�

M
0.`Cdj�djC1/

jC1

1A :
Let LP D z�DPzD . By construction, we have LP D . LPi;j / where

LPi;j D Pi;j zdj�di D

X
`>0

P
.`/
i;j z`Cdj�di D

X
`>dj�di

P
.`Cdi�dj /

i;j z`:

Since…D LPQ holds, we have…i;�D
Ps

iD1
LPi;kQk;�, with Qk;�D

P
`>0 Q

.`/

k;�
z`.

After some algebra, we get

(12) …i;� D

X
t60

� sX
kD1

tX
`Ddk�di

P
.`Cdi�dk/

i;k
Q
.t�`/

k;�

�
zt since … 2 gln.CŒŒ1=z��/:

We will establish the main claim (MC) of the lemma by proving simultaneously
the following two additional results. If the assumption of the lemma holds, then we
have

(A) zQj is in the row span of z…j for i 6 j 6 s,

(B) for i 6 j 6 s and ` 6 dj�1 � dj � 1, there exists a matrix Xj` such that
Q
0.`/
j DXj`

zQj .
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Assume first that i D s. According to formula (12), we have

…s;� D

X
t60

� sX
kD1

tX
`Ddk�ds

P
.`Cds�dk/

s;k
Q
.t�`/

k;�

�
zt :

Since dk � ds > 0 for k ¤ s, we have that …s;� is a constant, and the formula
reduces to t D 0 and k D s; thus ….0/s;� D P

.0/
s;s Q

.0/
s;� . Since rk Q

.0/
s;� D ns , we get

rk….0/s;� D ns () det P .0/
s;s ¤ 0;

which establishes (MC) and (A) for i D s. For 0 < t < ds�1 � ds , formula (12)
reduces to

…
.t/
s;� D

tX
`D0

P .`/
s;s Q

.t�`/
s;� D 0

since ….t/ D 0 for t > 0. We can arrange all these equations into the large matrix
equation0BBBB@

P
.0/
s;s 0 � � � 0

P
.1/
s;s P

.0/
s;s

:::
:::

: : :
:::

P
.ds�1�ds�1/
s;s � � � � � � P

.0/
s;s

1CCCCA
0BBBB@

Q
.0/
s;�

Q
.1/
s;�
:::

Q
.ds�1�ds�1/
s;�

1CCCCAD
0BBB@
…
.0/
s;�

0
:::

0

1CCCA :

It follows easily that Q
.`/
s;� is then a left multiple of Q

.0/
s;� for 06 `6 ds�1�ds � 1,

and also for ` < 0, since Q
.`/
s;� D 0, which establishes the claim (B) for i D s.

Assume now that (MC), (A) and (B) hold for iC16 j 6 s and `6 dj�1�dj �1.
Formula (12) gives

…
.t/
j ;� D

sX
kD1

tX
`Ddk�dj

P
.`Cdj�dk/

j ;k
Q
.t�`/

k;�

D

X
`>0

sX
kD1

P
.`/

j ;k
Q
.tCdj�dk�`/

k;�
;

with the convention that Q.`/D0 when `<0. Considering exponents tDdi�djCm

for i 6 j 6 s and 06m6 di�1� di � 1, we get

…
.di�djCm/

j ;� D

X
`>0

sX
kDi

P
.`/

j ;k
Q
.mCdi�dk�`/

k;�

D

X
`>0

P
.`/

j ;.iWs/
Q
0.m�`/
i ;
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since k < i implies mC di � dk < 0. Therefore, we get

…
.di�djCm/

j ;�

D

X
`>0

P
.`/
j ;i Q

.m�`/
i;� CP

.`/

j ;.iC1Ws/
Q
0.mCdi�diC1�`/

iC1

D

mX
`D0

�
P
.`/

j ;i Q
.m�`/
i;� CP

.`/

j ;.iC1Ws/
Q
0.mCdi�diC1�`/

iC1

�
C

X
`>m

P
.`/

j ;.iC1Ws/
Q
0.mCdi�diC1�`/

iC1

D

mX
`D0

P
.`/

j ;.iWs/
Q
0.m�`/
i C

X
`>m

P
.`/

j ;.iC1Ws/
Q
0.mCdi�diC1�`/

iC1
:

According to the induction Q
0.mCdi�diC1�`/

iC1
is a left multiple of zQiC1 for ` >m,

so we have

(13) …
.di�djCm/

j ;� D

mX
`D0

�
P
.`/
j ;i � � � P

.`/
j ;s

�
Q
0.m�`/
i C Œ zQiC1� for i 6 j 6 s;

where we let, for notational simplicity, ADBC ŒQ� mean “there exists a matrix X

such that A�B DXQ”. Assume mD 0 first. The equation for j D i is then

(14) …
.0/
i;� D P

.0/
i;i Q

.0/
i;� C

�
P
.0/
i;iC1

� � � P
.0/
i;s

�
Q
0.di�diC1/

iC1
C Œ zQiC1�:

The remaining equations,

…
.di�dj /

j ;� DP
.0/

j ;i Q
.0/
i;�C

�
P
.0/

j ;iC1
� � � P

.0/
j ;s

�
Q
0.di�diC1/

iC1
CŒ zQiC1�D0; iC16j 6s;

can be rewritten as

P
.0/

iC1
Q
0.di�diC1/

iC1
D�

0BB@
P
.0/
iC1;i
:::

P
.0/

s;i

1CCAQ
.0/
i;�CŒ

zQiC1�; where P
.0/

iC1
D

0BB@
P
.0/

iC1;iC1
� � � P

.0/
iC1;s

:::
: : :

:::

P
.0/

s;iC1
� � � P

.0/
s;s

1CCA
is invertible by the induction assumption. Put

B D
�
P
.0/
i;iC1

� � � P
.0/
i;s

�
and C D

0BB@
P
.0/
iC1;i
:::

P
.0/
s;i

1CCA so that P
.0/
i D

 
P
.0/
i;i B

C P
.0/
iC1

!
:

Thus, we get

Q
0.di�diC1/

iC1
D�

�
P
.0/
iC1

��1
CQ

.0/
i;� CX zQiC1 DX 0 zQi I
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hence Q
0.0/
i is a left multiple of zQi . Moreover, substituting in (14), we get

(15) …
.0/
i;� D

�
P
.0/
i;i �B

�
P
.0/
iC1

��1
C
�
Q
.0/
i;� C Œ

zQiC1�:

By assumption zQiC1 is in the row space of0BB@
…
.0/
iC1;�
:::

…
.0/
s;�

1CCA :
Hence rk….0/i;� D ni if and only if rk

�
P
.0/
i;i � B

�
P
.0/
iC1

��1
C
�
Q
.0/
i;� D ni ; that is,

det
�
P
.0/
i;i �B

�
P
.0/
iC1

��1
C
�
¤ 0. This matrix is the Schur complement of

P
.0/
i D

 
P
.0/
i;i B

C P
.0/
iC1

!
;

which is invertible exactly when P
.0/
iC1

is. Therefore (MC) is established in general,
and by (15), zQi is in the row span of z…i , so claim (A) is proved. Similarly,
for a given 0 6 m 6 di�1 � di � 1, we can stack the remaining equations, (13),
corresponding to i 6 j 6 s,

…
.di�djCm/

j ;� D

mX
`D0

P
.`/

j ;.iWs/
Q
0.m�`/
i C Œ zQiC1�D 0;

to get the relation0BB@
…
.di�djCm/

i;�
:::

…
.di�djCm/
s;�

1CCAD mX
`D0

P
.`/
i Q

0.m�`/
i D

�
z…i if mD 0;

0 otherwise.

Putting for notational simplicity d D di�1� di , we finally get0BBBB@
P
.0/
i 0 � � � 0

P
.1/
i P

.0/
i

:::
:::

: : :
:::

P
.d�1/
s � � � � � � P

.0/
i

1CCCCA

0BBBBBB@
Q
0.0/
i

Q
0.1/
i
:::

Q
0.d�1/
i

1CCCCCCAD
0BBB@
…0i
0
:::

0

1CCCACŒ zQiC1� where …0iD

0BBB@
z…i

0
:::

0

1CCCA :

Accordingly, Q
0.`/
i is a left multiple of Q

0.0/
i for 0 6 ` 6 k � 1. Since we have

established that Q
0.0/
i is a left multiple of zQi , this ends the proof of claim (B). �
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Proof of Proposition 38. Assume for simplicity that D D diag.d1In1
; : : : ; dsIns

/

is written by blocks, and that d1 > d2 > � � � > ds . Then there exist mD d1 � ds

matrices T1; : : : ;Tm of the type

Ti D

�
Ibi

0

0 0n�bi

�
;

where every bi is equal to some n1C � � � C nti
for some decreasing sequence ti ,

such that D D T1C � � �CTm. Secondly, assume that all left-upper square blocks
of P .0/ of sizes bi are invertible. Letting P DH0, according to Lemma 39, there
exists a sequence of monopole matrices

…i D

�
Ibi

t�1 z…i

0 In�bi

�
with a constant matrix z…i , and a sequence of lattice gauge transforms Hi 2GLn.O/

such that

(16) HiC1 D t�Ti Hi t
Ti…i :

Let

H i D tTi…i D

�
tIbi

z…i

0 In�bi

�
:

It follows from Lemma 40 that H DH 1 � � �H m is strongly D-parabolic. It follows
then, as a remarkable consequence, that the diagonal matrix tD can be both factored
from the matrix H on the left as H D tD… with a monopole matrix …, and
simultaneously from the right as H DQtD with a lattice gauge Q2GLn.O/. Since
tDHdC1 D HH holds, we get on the one hand that t�DP�1tDHmC1 D … 2

GLn.CŒt
�1�/ as required for the first claim of the permutation lemma. However,

and this was not stated in [Bolibrukh 1990] or [Ilyashenko and Yakovenko 2007],
we also have the relation tD…DQtD , which yields the second claim.

For the third claim, the sufficiency of the minors condition has just been estab-
lished. For the converse, assume that we have the following diagram, which we have
completed with a monopole … and a lattice gauge Q such that z�DPzDQD…:

ƒ W .e/

P

��

zD
// YM �M

…

&&

ƒ W ."/
zD

// QM
Q // Y QM �

QM

Let QDQ0CQ1zC � � � 2 GLn.O/, and …D…0C � � �C…tz
�t 2 GLn.CŒz

�1�/.
Recall that if… is a monopole, then one must in particular have…02GLn.C/. Then
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Lemma 41 implies that such a factorization only exists if the matrix P0 satisfies
the condition on the minors. �

The following scheme sums up this construction.

ƒ
PDH0 //

tT1

��

ƒ
tT1 //

H 1

��

M1

…1

zz

tT2 // M2 � � � Mm�1
tTm

// Y �M

QM1

tT2

��

H1 // QM1

H 2

��

tT2 // M 2
2

…2

zz

tT3 // � � � � � �
tTm
// Y2 �M 2

m

QM2

tT3
��

H2 // QM2

H 3 ��

tT3 // M 3
3
� � � � � �

…3

zz

tTm
// Y3 �M 3

m

:::
:::

QMm�1

tTm

��

Hm�1 // QMm�1

H m

��

tTm
// Ym�1 �M m�1

m

…m

zz
QMm

Hm // QY � QMm

The first row corresponds to a min-shortest path � D .ƒ;M1; : : : ;M / from ƒ to
a given BG trivialization M . This path � is included in an apartment B, namely
the one spanned by a BG basis .e/ of ƒ corresponding to the trivialization M . By
definition, the apartment B goes through the global form Y of M . The gauge H�1

does not map the shortest path � onto anything special. However, if we call
ADH�1.B/ the image of the apartment spanned by .e/, the permutation lemma
tells us how to construct a shortest path � 0 in A whose end point is also a BG
trivialization of ƒ. Lemma 39 gives the step-by-step modification of the shortest
path � . Row i of the diagram corresponds indeed to a partial shortest path �i D

. QMi ;M
i
i ; : : : ;M

i
m/ whose end-point is a BG trivialization of the i -th element QMi

of the shortest path � 0 D .ƒ; QM1; : : : ; QMm/. Even if the end-point QMm is a BG
trivialization of ƒ, note that the apartment A does not contain the global form zY
of QMm, and that we still need the gauge transform Hm to obtain it.

3.3.1. Consequences of the permutation lemma. As stated in [Ilyashenko and
Yakovenko 2007], one can assume that � D id if all leading principal minors
of P are holomorphically invertible; that is, the corresponding minors of P .0/ are
nonzero. This condition can always be ensured by a permutation of the columns
of P . Actually, as stated in Proposition 38(3), it is sufficient that this condition
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holds only for the leading principal minors of orders n1, n1Cn2, . . . , n1C� � �Cns�1

of P .0/. We then say that P respects the minors condition with respect to D (or to
� D .n1; : : : ; ns/). Recall the following well-known result.

Lemma 42. Let P 2 GLn.C/, let .e/ be the standard basis of Cn and ."/ be the
column vectors of P . Then P respects the minors condition with respect to a
signature � if and only if .e/ is transversal to the flag F � ."/.

Definition 43. Let A be an apartment induced by the K-frame ˆ in V . Consider
ƒ 2A. Let H be the Harder–Narasimhan flag of ƒ in E Dƒ=mƒ. Let W � Sn

be the parabolic subgroup of Sn associated to H , and W 0 be the set of right
cosets W nSn. Let .e/ be a basis of ƒ in the frame ˆ whose image .e/ in E is
transversal to H . The integer

�ƒ.A/D jf� 2W 0 j �.e/ transversal to H gj

is independent of .e/ and is called the transversality index of A with respect to ƒ.

Theorem 44. Let E be a holomorphic vector bundle over X , and let ƒD Ex 2ƒ

be its stalk at x 2X .

(i) For any apartment A in the Bruhat–Tits building B at x such that Œƒ� 2 A,
there exists a BG trivialization of ƒ in A.

(ii) More precisely, the number of BG trivializations of ƒ in A is exactly

jA\BG.ƒ/j D �ƒ.A/:

Proof. Let .e/ be a BG basis of ƒ, and M 2 BG.ƒ/. Let ."/ be a basis of the
lattice ƒ which spans the apartment A. Since A is invariant under Sn, we can
assume that the matrix P 2GLn.O/ of the basis change from ."/ to .e/ has invertible
principal leading minors. According to the permutation lemma, there exists a matrix
QP 2 GLn.O/ such that

…D z�DP�1zD QP 2 GLn.CŒz
�1�/:

The gauge… sends the basis of global sections .�/D .zDe/ of the BG trivialization
of E, given at x by M , into a basis . Qe/ of QM . Since … is a monopole, the basis
. Qe/ is also a global basis of sections, but spans another trivializing bundle, namely
FD E

QM . Therefore the arbitrary apartment A spanned by ."/ indeed contains a
trivial bundle. Now the matrix H D zD… admits a right factorization H DQzD .
As a consequence, if we let .z"/ be the basis of ƒ obtained from .e/ by the matrix
Q, then zD.z"/ is also a basis of Y QM . The following scheme sums up the situation.
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ƒ W .z"/ zD

&&

ƒ W .e/

Q

OO

zD
// YM �M

… // Y QM �
QM

ƒ W ."/

P

OO

zD
// QM

QP

99

Therefore the lattice QM is also a BG trivialization of ƒ.
The monopole gauge … is block-upper-triangular according to D, and its block

matrices …ij satisfy

dj � di 6 v.…ij /6 deg…ij 6 0:

This means that… respects the Harder–Narasimhan filtration HNƒ of V correspond-
ing to the lattice ƒ. Conversely, the lattice gauge Q has a lower D-block-triangular
constant term Q0. Since z�DPQzD 2 GLn.O/, the matrix PQ has an upper D-
block-triangular constant term P0Q0. Therefore, if we put PD , P�

D
for the pair

of opposite D-parabolic standard subgroups of GLn.C/, the matrix P0 satisfies
P0 2 P�

D
PD . This means exactly that P satisfies the minors condition with respect

to D. If we permute the vectors of ."/ with � 2 Sn in such a way that D��1 ¤D,
the permutation lemma ensures that L.zD."� //¤ QM is again a BG trivialization
of ƒ. This establishes the second claim of the theorem. �
Corollary 45. For any apartment A 3 ƒ, there exists an ordered basis ."/ of A

and a BG basis .e/ of ƒ such that the gauge P from .e/ to ."/ has a lower block-
D-triangular unipotent constant term P0, and that the following picture holds.

ƒ W ."/
zD
// M

ƒ W .e/

PDP0Cz zU

OO

zD
// YM

PIDICzU

OO

The number of BG trivializations in A can hence be computed from a matrix
P0 2 GLn.C/ with a simple structure:

P0 D

0B@In1
� � � 0

:::
: : :

:::

Xij � � � Ins

1CA
as the number of permutations not leaving D invariant whose action on the columns
of P0 preserve the minors condition. The following result completes the proof of
Theorem 25.
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Corollary 46. Let ƒ 2ƒ and T D T .ƒ/.

(i) For any basis ."/ of ƒ, let QM D L.zT ."//. Then either QM 2 BG.ƒ/ or
QM …ƒ0.

(ii) For any flag F 0 in ƒ=mƒ transversal to HNƒ, and any form Y in ƒ, the
lattice QM D LY .F

0;T / is a BG trivialization of ƒ.

In particular, if M 2BG.ƒ/, then QM DLY .F
ƒ.M /;T /2BG.ƒ/ for any form Y

in ƒ.

Proof. For (i), if QM is trivial, then, by Lemma 41, the gauge from .e/ to ."/
satisfies the minors condition; hence QM is BG. According to Lemma 27, there
exists M 2 BG.ƒ/ such that F 0 D Fƒ.M /. Let .e/ be a Smith basis of ƒ for
M . The lattice QM is spanned by zT .eY / where .eY / is the Y -basis of .e/. The
gauge P from .e/ to .eY / has invertible principal minors, since it is tangent to I .
Item (ii) follows. �

The permutation lemma is a sort of converse to the Birkhoff–Grothendieck
theorem. It can also be seen as a lifting and factorization lemma. For a standard
parabolic subgroup P � GLn.C/, let

Zn
P D fD 2 Zn

j di < dj )Aij D 0 for all A 2 Pg:

Corollary 47. Let A2GLn.O/. Let P , P� be a pair of opposed standard parabolic
subgroups of GLn.C/. Then we have, for w 2 Sn,

A0 2 PwP�,

�
8D 2 Zn

P
; 9… 2 GLn.CŒz

�1�/; 9B 2 GLn.O/

such that AD zD…Bz�wD :

Moreover, if this holds, then B 2 G�D and … 2 OP hold, where OP stands here for
the subgroup of upper-D-triangular matrices of GLn.CŒz

�1�/.

This result means that there is a cell decomposition of GLn.O/ whose cells
(defined by the right-hand side of the previous relation) are mapped surjectively
(by the canonical surjection GLn.O/ ! GLn.C/) on the Schubert–Bruhat cells
of GLn.C/. Finally, a last consequence of Proposition 38 is that the lattices involved
in the Birkhoff–Grothendieck algorithm given in Section 3.2.1 can be taken inside
a single apartment.

Corollary 48. Letƒ2ƒ. For any M 2ƒ0, let �.M; ƒ/D .ƒ0DM; : : : ; ƒtDƒ/

be the min-shortest path from M to ƒ. For any apartment A 3ƒ, M , there exist
QM1; : : : ; QMt 2A\ƒ0 such that QMi 2 BG.ƒi/ for 16 i 6 t .

Proof. Since A 3ƒ;M , we have ƒi 2A for 16 i 6 t . By Theorem 44, any lattice
in A admits a BG trivialization in A. �
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4. Local meromorphic connections

Let DerC.K/ be the K-vector space of dimension one of C-derivations of K and
� D �1

C
.K/ the dual composed of differentials of K. The valuation v extends

naturally to these spaces by the formulæ v.#/ D v.f / and v.!/ D v.g/ if # D
fd=dz and ! D g dz for any uniformizing parameter z of K. The space � is
naturally filtered by the rank-one free O-modules �.k/D f! 2� j v.!/> �kg.

Let V be a K-vector space of finite dimension n and let �.V /D V ˝K �1
C
.K/.

We fix a meromorphic connection r on V . This is an additive map r W V !�.V /

satisfying the Leibniz rule

r.f v/D v˝ df Cf rv for all f 2K and all v 2 V:

For any basis .e/D .e1; : : : ; en/ of V , the matrix Mat.r; .e// of the connection r
in the basis .e/ is the matrix AD .Aij / 2Mn.�/ such that

rej D�

nX
iD1

ei ˝Aij for all j D 1; : : : ; n:

If the matrix P DMat.idV ; ."/; .e// 2GLn.K/ is the basis change from .e/ to any
other basis ."/, then the matrix of r in ."/ is given by the gauge transform of A:

(17) AŒP � D P�1AP �P�1dP:

For any derivation � 2Der.K=C/, the contraction of r with � induces a differential
operator r� on V . The connection r is regular whenever the set of logarithmic
lattices

ƒlog D fƒ 2ƒ j r.ƒ/�ƒ˝O�.1/g

is nonempty. For any logarithmic lattice ƒ 2 ƒlog, the connection r induces a
well-defined residue endomorphism Resƒr 2 EndC.ƒ=mƒ/. Note that, since the
set ƒlog is closed under homothety and module sums and intersections [Corel
2004, Lemma 2.5], it induces a path-convex subset of the Bruhat–Tits building:
if L, L0 2ƒlog, then every shortest path between L and L0 is a subset of ƒlog. This
applies in particular to both �max.L;L

0/ and �min.L;L
0/.

4.1. The Deligne lattice. As is well known, the choice of a matrix logarithm of the
monodromy corresponds to fixing a special lattice in the space V . More precisely,
let V r � V ˝K H be the C-vector space of horizontal sections on any Picard–
Vessiot extension H of K. Let g D gsgu 2 End.V r/ be the multiplicative Jordan
decomposition of the corresponding local monodromy map. Then the logarithm of
the unipotent part gu is canonically defined (by the Taylor expansion formula for
log.1Cx/), but there are several ways to define the logarithm of the semisimple
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part gs . Namely, one must fix a branch of the complex logarithm for every distinct
eigenvalue of gs .

A well known result (variously attributed to Deligne, Manin, . . . ) says that this
choice uniquely defines a lattice in V . In Deligne’s terms, for any section � of
C! C=Z, there is a unique logarithmic lattice �� such that the eigenvalues of the
residue map Res��r are in the image Im � of � . As a habit, one usually takes
Re.Im �/� Œ0; 1Œ. In fact, such a habit is not as arbitrary as it seems.

Proposition 49. Assume that the connection r admits an apparent singularity (i.e.,
the monodromy map is trivial). Then the matrix Mat.r; .e// is holomorphic if
and only if the lattice spanned by .e/ is equal to the Deligne lattice � attached to
Re.Im �/� Œ0; 1Œ.

Proof. Since the monodromy map is trivial, its normalized logarithm with respect
to � is 0. Hence, there is a basis of � where the connection has matrix 0. In any
other basis .e/ of �, the connection has matrix A D P�1dP with P 2 GLn.O/,
which is holomorphic. Let M be another lattice, and let .e/ be a Smith basis of �
for M . Then the matrix in a basis of M is given by the gauge equation

zAD z�DAzD
� z�Dd.zD/D .Aij zkj�ki /�D

dz

z
:

The nonzero diagonal terms of the matrix D of elementary divisors of M give
necessarily rise to a pole of order 1 in zA. Therefore, � is the only lattice where the
connection has a holomorphic matrix. �

As a result, we will call � the Deligne lattice of V .

4.1.1. Birkhoff forms. According to a very classical result (see, e.g., [Gantmacher
1959, p. 150]), if

�DMat.r; .e//D
X
k>0

Akzk dz

z

is the series expansion in z of the matrix of r in a basis .e/ of �, the gauge
P D

P
k>0 Pkzk 2 GLn.O/ defined recursively by

(18)
�

P0 D I;

Pk Dˆ
�1
A0;A0�kI

.Qk/; where Qk D
Pk

iD1 AiPk�i ;

transforms � into A0dz=z. Here we put ˆU;V .X / D XU � VX . Recall that
the map ˆU;V is an automorphism of gl.C/ when the spectra of U and V are
disjoint. The gauge P thus defined is uniquely determined; moreover, the set of
bases where r has matrix Ldz

z
where L 2 Mn.C/ is a constant matrix spans a

form ‡z of �, that we call the Birkhoff form of the Deligne lattice �. The gauge
transform P sends in fact the basis .e/ to its ‡z-basis, that we denote here for
simplicity by .ez/.
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As it results from the proof of Proposition 49, when the singularity is apparent,
the Birkhoff form is uniquely defined. Otherwise, however, the form ‡z depends
on the choice of the local coordinate z. Two Birkhoff forms are nevertheless
canonically isomorphic.

Lemma 50. Let z, t be two local coordinates, and let ˛ 2 O� such that z D ˛t .
Let Pz and Pt be the gauge transforms that send .e/ to .ez/ and .et /, respectively.
There is a unique gauge transform zP that sends .ez/ to .et /.

Proof. One has dz
z
D udt

t
with uD 1C �t˛

˛
where �t D t d

dt
. Put uD

P1
iD0 ui t

i .
Accordingly, the matrix of the connection in .ez/ satisfies

Mat.r; .ez//DA0

dz

z
DA0

� 1X
iD0

ui t
i

�
dt

t
:

There exists therefore a uniquely defined gauge transform zP D
P1

iD0
zPi t

i that
transforms the expression A0dz=z into A0dt=t , as explained in the following
scheme.

�
Pz //

Pt

��

A0
dz
z
D
P1

iD0 uiA0t i dt
t

zP

vv
A0

dt
t

The matrix series zP is determined recursively by the equations (18) applied to the
series

P1
iD0 A0ui t

i . The coefficients zPi are even polynomials in A0, defined by
the induction rule

zP0 D I; zPk D
1

k

kP
iD1

uiA0
zPk�i : �

4.2. Logarithmic lattices and stable flags. When two lattices ƒ, M are adjacent,
all the relevant information on M can be retrieved from the quotient M=mƒ. This
is also true in presence of a connection.

Lemma 51. Let ƒ 2ƒlog be a logarithmic lattice. For any adjacent lattice M 2

Œmƒ;ƒ�, we have M 2ƒlog if and only if M=mƒ is Resƒr-stable.

Proof. In any basis .e/ of ƒ such that the images of the first mD dim W vectors
span W DM=mƒ, the connection matrix � DMat.r; .e// has a residue of the
form

�
A B
0 C

�
2Mn.C/, where A 2Mm.C/. Putting T D diag.0m; In�m/, the basis

."/D zT .e/ spans M . It is then straightforward that the matrix z�T�zT �T dz
z

of r in ."/ has a simple pole. �
When the lattices are further apart, this correspondence fails. However, there

is also a complete description of the logarithmic lattices as follows. Let � be
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the Deligne lattice, and let ı� D Res�r be the residue C-endomorphism on
DD�=m�. Let ‡ be the Birkhoff form of� attached to a uniformizing parameter
z. Logarithmic lattices can then be characterized as stable flags (as already remarked
in [Sabbah 2002, Theorem III.1.1]).

Proposition 52. The set ƒlog of logarithmic lattices is in bijection with the sub-
set „0.‡/ of filtrations of ‡ which are stable under the residue, namely

„0.‡/D f.F ;D/ 2„.‡/ jF 2 Flı�g:

Proof. According to a classical, although not so well known, result (which can be
found for instance in [Babbitt and Varadarajan 1983; Bolibrukh 1990]), a lattice
ƒ 2ƒ is logarithmic if and only if

(i) there exists a basis .e/ of‡ such that .zDe/ is a basis ofƒ, with DDED�.ƒ/,

(ii) z�DLzD 2Mn.O/, where LDMat.rz d
dz
; .e//.

It results from (ii) that in this case, the matrix L is D-parabolic. Since the
flag F�.ƒ/ induced by ƒ on DD�=m� is spanned by the images of the basis
.e/ in D, it is stable under ı�. Conversely, it is simply a matter of computation to
show that any lattice in the ‡ -fiber of a ı�-stable flag of D is logarithmic. �

A difference between our result and Sabbah’s is that he only states this result
as an equivalence of categories between the set of stable filtrations of D and the
logarithmic lattices, whereas we give the explicit correspondence based on the
lifting of D to a Birkhoff form. Although it would seem that the previous result has
little value to effectively determine all logarithmic lattices, it is always possible to
determine them in finite terms.

Lemma 53. Let M 2 ƒlog and let .F ;D/ D …�.M /. Let Y be a form of �,
and let .e/ be a basis of Y respecting the flag F . Fix a coordinate z, and let
P D I CP1zC � � � be the gauge from .e/ to its ‡z-basis .ez/. Then the Laurent
polynomial gauge Q 2 gl.CŒz; z�1�/ defined by

QD .I C � � �CPd�1zd�1/zD ; where d D d.�;M /;

sends the basis .e/ of � to a basis of M .

Proof. This is an almost direct consequence of Lemma 15. �

Note that the polynomial gauge Q can be explicitly computed from formula (18).
On the other hand, one can also explicitly describe the set „0.‡/. For a linear map
f 2 End.Cn/, say that an apartment Aˆ is a diagonalizing apartment of f if the
frame ˆ is composed of eigenlines of f .
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Lemma 54. Let ı� D dC n be the additive Jordan decomposition of the residue
map ı� D Res�r. The pair .F ;D/ 2„.‡/ is an element of „0.‡/ if and only
if F admits a complete flag refinement OF such OF 2 Fln and there is a diagonalizing
apartment A for d that respects the flag OF .

Proof. F is ı-stable if and only if it is stable under both d and n. It is known that F

is stable under d if and only if every component Fi of F is a direct sum of d-stable
lines, and under n if and only if it admits a complete flag refinement OF 2 Fln. �

5. The Riemann–Hilbert problem

This problem is by now very well-known, so we will just state the necessary
notations and definitions, and refer to the classical paper of Bolibrukh [1990] and
to the account he gives of the construction of the Deligne bundle (see [Sabbah
2002; Ilyashenko and Yakovenko 2007] and also [André and Baldassarri 2001] for
a purely algebraic construction).

Let SDfs1; : : : ; spg be a prescribed set of singular points, z0 …S be an arbitrary
base point, and let � denote a representation

(19) � W �1.XnS; z0/! GLn.C/:

The Riemann–Hilbert problem asks informally for a linear differential system
having � as monodromy representation. In the terms used in this paper, it asks
for a regular meromorphic connection r with singular set S and monodromy �
on a holomorphic vector bundle E. If the bundle is required to be logarithmic
with respect to r one speaks of a weak solution to RH. In its strongest form,
the Riemann–Hilbert problem asks for a differential system Y 0 D A.z/Y having
simple poles on S as only singularities, and whose monodromy representation is
globally conjugate to �. This amounts to asking for a weak solution .E;r/ which
is moreover trivial.

5.1. The Röhrl–Deligne construction. We briefly recall H. Röhrl’s construction
(as presented, for instance, in [Bolibrukh 1990; Bolibrukh et al. 2006]). Let
UD .Ui/i2I be a finite open cover of X �DXnS by connected and simply connected
open subsets Ui � X � such that their intersection has the same property, and all
triple intersections are empty. Consider arbitrary points zi 2 Ui and zij 2 Ui \Uj ,
and paths 
i W z0! zi and 
ij W zi! zij , so that ıij D 
i
ij


�1
ji 


�1
j is a positively

oriented loop around zi having winding number 1. Then the cocycle g D .gij /

defined over U by the constant functions gij D �.Œıij �/ defines a flat vector bundle
F over X �. Define the connection r over Ui by the .0/ matrix in the basis of
sections corresponding to the cocycle g. The r-horizontal sections of F have by
construction the prescribed monodromy behavior. This solves what we called the
topological Riemann–Hilbert problem in our introduction.
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Now add a small neighborhood D of each singular point s 2S to the cover U, in
such a way that Dnfsg is covered by k pairwise overlapping sectors †1DD\Uj1

,
. . . , †k D D \Ujk

. On an arbitrarily chosen sector among the †i , say, †1, let
Qgs1 D zL where z is a local coordinate at s and

LD
1

2i�
log�.ı/;

normalized with eigenvalues having their real part in the interval Œ0; 1Œ. Since the
open subset †1 only intersects †2 and †k , the only necessary cocycle relations
to satisfy are Qgs2 D Qgs1g12 and Qgsk D Qgs1g1k , which we take as definition of the
cocycle elements Qgs2 and Qgsk . Define in this way the remaining elements of the
cocycle Qg on D \Uji

. By construction, the result defines a holomorphic vector
bundle D on the whole of X , and the connection r can be extended as Ldz

z
in the

basis of sections .�/ of D over D chosen to construct Qgs1. The pair .D;r/ is called
the Deligne bundle of �. This construction solves simultaneously the meromorphic
and the weak Riemann–Hilbert problem.

Note 55. The basis .�/ is, in our terms, a basis of the Birkhoff form attached to
the coordinate z at s.

5.2. Weak and strong solutions. The Riemann–Hilbert problem can be seen as
involving three different levels. The topological level is only governed by the
(analytic) monodromy around the prescribed singular set. The meromorphic level is
essentially based on the solution of the local inverse problem. The third one, that we
call holomorphic is global and asks for the existence of a trivial holomorphic vector
bundle. In fact, separating these three aspects is not so easy to do, because the
Röhrl–Deligne construction in fact yields a particular holomorphic vector bundle E

with a connection r that already respects the holomorphic prescribed behavior.
What makes the strong Riemann–Hilbert problem a difficult one is precisely this

third level. The local meromorphic invariants added to the topological solution of the
inverse monodromy specify up to meromorphic equivalence class the connection r
on X . In this respect, the natural category to state this construction is not the
category of holomorphic vector bundles with meromorphic connections, but the
meromorphic vector bundles, that is, pairs .V;r/ where V is locally (but in fact
globally) isomorphic to Mn

X
. This is why we call the second step meromorphic.

The Riemann–Hilbert problem with the given data solved here corresponds to the
very weak Riemann–Hilbert problem (as coined in [Sabbah 2002]): any subsheaf F

of locally free OX -modules contained in the (trivial) meromorphic bundle V is
endowed naturally with the connection r, and therefore is a holomorphic vector
bundle with a regular connection having the prescribed monodromy. As stated by
the next result (and otherwise well known), all solutions to the weak problem are
obtained as local modifications of the Deligne bundle.
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Proposition 56. Let z� W zE! X and zr W zE! zE˝O � be a weak solution to the
Riemann–Hilbert problem. Then there exist a finite set S �X , and local lattices Mx

for x 2 S such that the pair .zE; zr/ is holomorphically isomorphic to .DM ;r/.

The last step of the strong Riemann–Hilbert problem consists of searching the set
of holomorphic vector bundles endowed with the connection r for a bundle which
at the same time has the required holomorphic invariants and is holomorphically
trivial. A negative answer requires to know all the holomorphic vector bundles
with this prescribed logarithmic property. Note that up to this point, the discussion
presented in this section holds over an arbitrary compact Riemann surface.

5.2.1. Plemelj’s theorem. In 1908, the Slovenian mathematician J. Plemelj (see
[Plemelj 1964]) proved a first version of the strong Riemann–Hilbert problem, under
the assumption that at least one monodromy is diagonalizable. Whereas his first
proof used an analytic approach (Fredholm integrals) to construct the actual matrix
of solutions, to thence deduce the differential system and prove that it has only
simple poles, the general framework of vector bundles recalled so far allows to
establish this fact in an amazingly concise way.

Theorem 57 (Plemelj). If one of the elementary monodromy maps from represen-
tation � W �1.XnS; z0/! GLn.C/ is diagonalizable, then the Riemann–Hilbert
problem has a strong solution.

Proof. Let .D;r/ be the Röhrl–Deligne bundle attached to the representation �.
Let, say G D �.
 / around s 2 S, be diagonalizable. Let ‡ be a Birkhoff form at s,
and let .e/ be a basis of ‡ where G is diagonal. According to condition (ii) in
Section 4.2, the whole apartment A spanned by .e/ consists of logarithmic lattices,
whereas Theorem 44 implies that A contains a trivializing lattice M . The vector
bundle DM is therefore both logarithmic and trivial. �

Note 58. Here we have a solution by modifying the Deligne bundle only at one point.
Note that the lattice M corresponds to a BG trivialization of D (see Theorem 59
below). Also note that this result also holds replacing D with any other weak
solution to Riemann–Hilbert.

5.2.2. Trivializations of weak solutions. Let E be a weak solution of the Riemann–
Hilbert problem, and let F be a trivialization of E at x … S. In a global basis
of sections .e/ of the bundle F, the connection r is expressed by the matrix of
global meromorphic 1-forms �, which has a simple pole at every s 2 S, and an a
priori uncontrolled pole at x. Assuming for simplicity that x … S is the point at
infinity12 P1.C/, there exist matrices Ai 2Mn.C/ for 16 i 6 p and a matrix

B.z/D B0C � � �CBtz
t
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such that the connection has the matrix

�D

� pX
iD1

Ai

z� si
CB.z/

�
dz:

The most surprising consequence of the permutation lemma, as we state it, concerns
the analytic invariants of the weak solutions to the Riemann–Hilbert problem.

Theorem 59. Let E be a weak solution to the Riemann–Hilbert problem for �.
Then, for any x 62 S, there exists a BG trivialization F of E at x which is also
logarithmic at x. Let Y D �.X;F/ and let  s D ResF

s r 2 End.Y /.

(1) The map‰D
P

s2S  s D�Resxr is semisimple, and has integer eigenvalues,
which are equal to the type of the bundle E.

(2) The image of the Harder–Narasimhan filtration of E in Y is equal to the flag
induced by the eigenspaces of ‰ ordered by increasing values.

Proof. If x … S, the monodromy at x is trivial, and the stalk Ex of E coincides
with Dx . The Birkhoff form‡ of D (which is then unique) is equal to the space V r

of horizontal sections at x. All flags in DDDx=mxDx are stable under ResDxrD 0.
According to Corollary 46, the ‡ -lifting of the flag induced by any BG trivialization
of E at x is a logarithmic BG trivialization of E at x. In a global basis of sections .e/
of F, the connection has the matrix

A D
X

s2Snf1g

As

z� s
C

B

z�x

�
where B D�

P
s2S

As if x ¤1
�

D

X
s2S

As

z� s
if x D1… S;

since r has no other singularities outside S [ fxg. The eigenvalues of �B DP
s2S As are therefore equal to the type of E, and the Harder–Narasimhan filtration

is defined by the blocks of equal eigenvalues ordered by increasing values. �
As a consequence, we deduce the following new sufficient condition for the

solubility of the strong Riemann–Hilbert problem.

Corollary 60. Let E 2 H and let D be the Deligne lattice of .V;r/. Let x 2 X ,
such that Ex D Dx D �. Let D D �=mx�. Let F 2 BGx.E/, and M D Fx . If
the flag F�.M / induced in D is stable under ResDxr 2 End.D/, then there exists
zF 2 BGx.E/ which is moreover logarithmic at x.

Proof. Let QM be the ‡ -lifting of the flag F�.M /, where ‡ is a Birkhoff form of�.
According to Proposition 52, the lattice QM is logarithmic, and by the permutation
lemma, it is a BG trivializing lattice. Therefore, the bundle E

QM satisfies the
conclusions of the corollary. �
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At this point, we would like to sum up our findings about trivial bundles in the
following proposition.

Proposition 61. Let F 2 H0 be a trivial bundle in V, and let Y D F.X / be the
C-vector space of global sections. Let x 2 X , and E 2H such that F �x E. Let
moreover ƒD Ex and M D Fx .

(i) Y has a well-defined flag HNE induced by the Harder–Narasimhan filtration
of E.

(ii) If F2BGx.E/, then T .E/ŠEDƒ.M / and any Smith basis of Y forƒ ordered
according to K& is strictly adapted to HNE.

(iii) If F is additionally logarithmic at x, and the stalk Ex coincides with the
Deligne lattice Dx , then the type T .E/ is given by the integer parts of the
eigenvalues of the residue ResF

xr 2 End.Y /, that is, of the exponents of r
on F at x.

(iv) Finally, if E 2 RH� is moreover a weak solution to Riemann–Hilbert, thenX
x2X

ResF
xr D 0:

When .E;F/ satisfy (i) to (iv), we say that F is a good RH trivialization of E at x.

Let F be a good RH trivialization of E at x … S. Let .�/ be any basis of Y D

�.X;F/. In .�/, the connection has a matrix of the form (21). The identification
of Y to Cn by means of .�/ endows Cn with pC 1 linear maps  s for s 2 S� D

S [ fxg, that we can identify with the matrices zLs for s 2 S and �
P

s2S
zLs

for s D x. With these notations, we set the following definition.

Definition 62. The space Cn, endowed with the maps  s for s 2 S�, is called a
linear Fuchsian model of E.

With this notion, we can reduce some questions about vector bundles to linear
algebra statements. For instance we can give the following computable version
of a criterion due to Gabber for the reducibility of the triviality index originally
appearing in [Sabbah 2002, Corollary I.4.14], that we state here only for the case
of a logarithmic modification.

Corollary 63. Let E 2 RH� be a weak solution, and consider a linear Fuchsian
model at x … S, given by p matrices As for s 2 S such thatX

s2S

As D diag.t1In1
; : : : ; tsIns

/

where the integers ti satisfy ti > tiC1, in such a way that the flag HN is the flag
0 D F0 � F1 � � � � � Fs D Cn having signature .n1; : : : ; ns/ in the canonical
basis of Cn. There exists a weak solution E0 adjacent to E at s 2X and such that
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i.E0/ < i.E/ if and only if there exists an As-stable subspace W � Cn such that
W \F1 D .0/.

Proof. Let T D diag.t1In1
; : : : ; tsIns

/ D diag.t1; : : : ; tn/ be the type of E. We
have i.E/ D

Ps
iD1 ni.t1 � ti/. According to Proposition 28, any adjacent weak

solution E0 is given by an As-stable subspace W � Cn. For any basis .e/ of Cn

respecting the flag HN, the bundle E0 has type T 0 D T �K, where ki D 0 when
ei 2 W and ki D 1 otherwise; therefore i.E0/ D

Pn
iD1.max.ti � ki/ � ti C ki/

where ti represent the elements of T without multiplicities. Accordingly, we have

i.E/� i.E0/D

nX
iD1

.t1� ki �max.ti � ki//:

Now, if there exists i such that ti D t1 and ki D 0, then max.ti � ki/ D t1;
thus i.E/� i.E0/D

Pn
iD1�ki < 0 (because we exclude the trivial case W D Cn).

Otherwise we have max.ti�ki/D t1�1, and then i.E/�i.E0/D
Pn

iD1.1�ki/> 0.
Therefore E0 exists if and only if there exists W stable under some As such that
W \F1 D 0. �
Proposition 64. Let F be a BG trivialization of D at x … S. If there exists a flag F

in Y D F.X / which is transversal to HND, and is moreover stable under the action
of one of the maps  s for s 2 S, then the strong Riemann–Hilbert problem has a
solution, which moreover coincides with D outside s.

Proof. Let F be a flag of Y , which is stable under  s . Taking stalks at x of a
C-basis of F , we can see the flag F in DDDs=msDs . According to Lemma 27(ii),
there exists a BG trivialization E of D at x, whose image in D DDs=msDs is F .
Let .e/ be a BG basis of Ds with respect to Es . Consequently, its image in D
respects the flag F . Let ‡ be a Birkhoff form of Ds , and let .e‡ / be the ‡ -basis of
.e/. Since the gauge from .e/ to .e‡ / is tangent to I , the lattice M induced from
.e‡ / by the elementary divisors K of Es in ƒ is also a trivializing BG lattice for
D at s. However, the lattice M is also logarithmic, since by construction it induces
in D the  s-stable flag F , and moreover sits inside an apartment that contains the
Birkhoff form ‡ . Hence, the bundle DM is both trivial and logarithmic. �

We have represented the weak solutions to the Riemann–Hilbert problem as
points in a product of subvarieties of stable flags.

Theorem 65. Let D be the Deligne bundle, and F a BG trivialization at an apparent
singularity x … S. The set of weak solutions to the Riemann–Hilbert problem for �
is parametrized by the set

RH� D f.F s;Ds/s2S jF
s
2 Fl s

.Y /;Ds 2 Zn.F s/g;

where Y D F.X / and  s D ResF
s r 2 EndC.Y / for s 2 S.
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5.3. The type of the Deligne bundle. The strong version of the Riemann–Hilbert
problem would directly have a solution if the Deligne bundle were trivial. However,
this is not the case, unless all singular points are apparent, since the exponents
of r are normalized in such a way that their sum is nonnegative. This means
that the type of the Deligne bundle as a rule is not trivial. We have seen several
ways to characterize this nontriviality. The type characterizes the isomorphism
classes of holomorphic vector bundles, so it would seem possible to work with
this sole information. However, we are not in the right category to do so, since we
consider holomorphic bundles with an embedding in a meromorphic one, denoted
by V. This is the reason for which there are several trivial bundles in V. From
another point of view, it is not possible to determine on the sole basis of the sequence
T D .a1; : : : ; an/, what the effect of changing the stalk of D at x will be. Obviously
the geometry of the Harder–Narasimhan filtration will play a decisive role.

5.3.1. Trivializations of the Deligne bundle. Let us examine in further detail the
case of the Deligne bundle D. Let us say that ıi is an elementary generator of the
homotopy group GD�1.XnS; z0/, if ıi is a closed path based at z0, having winding
number C1 around the singularity si and 0 around the others. Let Gi D �.ıi/ and
Li D

1
2i�

log Gi , normalized as for the Deligne lattice. Let .�i/ be a basis of the
Birkhoff form ‡i at si described in Note 55, such that the connection has locally as
matrix �i DLi

dz
z

, on a neighborhood, say Di of si . On the other hand, let D0 be a
neighborhood of z0, and consider a basis .�0/ of the local Birkhoff form. According
to what precedes, .�0/ is a basis of local r-horizontal sections of D over D0. One
can moreover choose this basis in such a way that the monodromy of .�0/ around
si is exactly given by the matrix Gi .

Assume now for simplicity that x … S is the point at infinity12 P1.C/, and
let F be a trivialization of D at x. In a global basis of sections .e/ of the bundle F,
there exist matrices Bi 2Mn.C/ and a matrix

B.z/D B0C � � �CBtz
t and Ci 2 GLn.C/ for 16 i 6 p

such that the connection has the matrix

�D

� pX
iD1

C�1
i LiCi

z� si
CB.z/

�
dz:

Note 66. If the bundle F is moreover logarithmic at1— which can be achieved,
for example, by Plemelj’s theorem — then B D 0 and the residue at infinity, L1 D

�
Pp

iD1
C�1

i LiCi , is semisimple with integer eigenvalues (ssie). At the cost of a
(harmless) global conjugation, we can already assume that

L1 D diag.b1In1
; : : : ; bsIns

/ with b1 < � � �< bs:



340 ELIE COMPOINT AND EDUARDO COREL

Note that the sequence B D .b1In1
; : : : ; bsIns

/ coincides with the elementary
divisors of the stalk F1 in D1.

Definition 67. We say that .C1; : : : ;Cp/ 2 GLn.C/
p is a normalizing p-tuple for

� if
Pp

iD1
C�1

i LiCi is ssie for some (and therefore any) normalized logarithms
Li of the generators �.
i/ of the monodromy group.

Normalizing p-tuples always exist. Putting t as the coordinate 1=z at infinity,
the Taylor expansion of r at x D1 has then the nice expression

(20) �D�
X
k>0

pX
iD1

sk
i
zLi t

k dt

t
with zLi D C�1

i LiCi :

We have thus reduced the computation of the type of the Deligne bundle to the
computation of the matrices Ci (the so-called connection matrices, because they
connect the different local expressions of r on the local Birkhoff forms). It is
however well known that the computation of the connection matrices is difficult.
Any other trivialization of D at infinity is given by a monopole gauge (as coined
in [Ilyashenko and Yakovenko 2007]), namely a unimodular polynomial matrix
… 2 GLn.CŒz�/, that is, a matrix satisfying

…D P0CP1zC � � �CPkzk such that det….z/D cst 2 C�:

Proposition 68. Given a family of points s1; : : : ; sp 2 C and invertible matrices
C1; : : : ;Cp 2 GLn.C/, there exists a monopole gauge … 2 GLn.CŒz�/ such that
….si/D Ci for 16 i 6 p.

Proof. The group GLn.R/ on a ring is generated by transformations Tij .�/ D

I C�Eij where � 2R and Eij is the .i; j / element of the canonical basis of the
vector space gln. At the cost of introducing the trivial transformations Tij .0/D I ,
one can assume that all the matrices Ci can be expressed as a product of the same
transformations with different parameters:

Ci D T1.�
i
1/ � � �Ts.�

i
s/ with �i

t 2 C:

Define then �k 2 CŒz� such that �k.si/D �
i
k

for 1 6 i 6 p. By construction, the
product z…D T1.�1/ � � �Ts.�s/ 2 SLn.CŒz�/ indeed interpolates the matrices Ci at
the points si . �

As a consequence of this result, one can find a trivialization E at infinity of the
Deligne bundle such that the residues of the connection r are expressed in a basis
of Y D �.X;E/ as the actual matrices Li (and not conjugated to them). Although
the point at infinity of E is still an apparent singularity, we have no control on the
Poincaré rank of r at1.
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The results of this section also hold (with the adequate modifications) if the
apparent singularity is assumed to be located at z0 62 S[f1g. We will refer to the
trivialization E as an adapted trivialization of D at z0.

5.3.2. A Deligne–Simpson-type problem. We know that there exists a family of
invertible matrices .Ci/ such that

Pp
iD1

C�1
i LiCi is semisimple with integer eigen-

values and that these eigenvalues are equal to the type of the Deligne bundle. This
raises two questions:

(1) Does there exist a logarithmic trivialization of D for any such family .Ci/?

(2) If there exist several families with this property, how do we recognize those
that indeed give the type of the Deligne bundle?

This also raises an interesting computational problem akin to the well-known
Deligne–Simpson problem (see, e.g., [Crawley-Boevey 2003]). Let Ci be the
conjugacy class of Li D

1
2i�

log Gi under GLn.C/.

(DS) Determine all conjugates zLi 2Ci such that
Pp

iD1
zLiD diag.b1; : : : ; bn/2Zn.

5.4. The Bolibrukh–Kostov theorem. The most celebrated recent result on the
Riemann–Hilbert problem is the following fact, proved first independently by
A. Bolibrukh and V. Kostov.

Theorem 69 (Bolibrukh–Kostov). The strong Riemann–Hilbert problem is solvable
for any irreducible monodromy representation �.

We give first an algebraic proof of a classical result of Bolibrukh [Anosov and
Bolibrukh 1994, Proposition 4.2.1].

Proposition 70. If the representation � is irreducible, then for any weak solution
E 2 RH�, the type T .E/D .t1; : : : ; tn/ of E satisfies jti � tj j � ji � j j.p� 2/.

Proof. Assume here for simplicity that x D1… S, and consider again the setting
of Section 5.3.1. Let E be any weak solution to Riemann–Hilbert, and F be a
logarithmic BG trivialization of E at x. Let T D .t1; : : : ; tn/ be the type of E. In a
basis .e/ of global sections of F, there exist constant matrices zLa for a 2 S such
that the connection r has in .e/ the matrix

(21) �D
X
a2S

zLa

z� a
dz D�

d Qz

Qz

X
k>0

�k Qz
k with �k D

X
a2S

ak zLa and Qz D
1

z
:

By Proposition 49, the shearing Qz�T suppresses the singularity at x, since the
basis Qz�T .e/ spans the Deligne lattice. As a consequence, z�D QzT�.Qz/Qz�T CT d Qz

Qz

must satisfy v. z�/� 0. Therefore, the residue matrix B D�
P

a2S
zLa of � at x is

diagonal and equal to �T . We can assume further that

B D diag.b1In1
; : : : ; bsIns

/ with b1 D�t1 < � � �< bs D�ts
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where .t1In1
; : : : ; tsIns

/ represents the type of E with multiplicities. Partition any
matrix M according to the eigenvalue multiplicities of B, as .M`;m/ for 1�`;m�s.
Then the matrix of the connection can be rewritten by blocks as

z�`;m D�`;mt t`�tm CT
d Qz

Qz
D

�
�

X
j�0

�
.j/

`;m
QzjCt`�tm C ı`;mt`In`

�
d Qz

Qz
:

For each .`;m/ block, this series must have strictly positive valuation. The sumP
a2S
zLa D T imposes conditions on all blocks of the residues zLa, while when

` >m we get the following equations:

(22) �
.j/

`;m
D

X
a2S

aj . zLa/`;m D 0 for 0� j � tm� t` when ` >m:

For a fixed pair .`;m/, let k D max.0; tm � t`/, and let Xi 2 Cn`�nm be the
.`;m/-block of the matrix zLsi

, for 1� i � p. For 1� ˛ � n` and 1� ˇ � nm, let
v˛;ˇ 2 Cp be the vector constructed by taking the coefficient of index .˛; ˇ/ of Xi ,
for 1� i � p. Then, the equations (22) can be reformulated as

v˛;ˇ 2 ker Mk.s/ where Mk.s/D

0BBB@
1 � � � 1

s1 � � � sp

:::
:::

sk
1
� � � sk

p

1CCCA :
The matrix Mk.s/ is an upper-left submatrix of a Vandermonde matrix with

coefficients
s D .s1; : : : ; sp/ 2 Cp

n

[
i¤j

fxi ¤ xj g:

Since all the si are distinct, this matrix has always full rank. In particular, as soon
as tm� t` � p� 1, it has a null kernel, and so all the blocks Xi are zero. Due to
the ordering of the ti , we also have tm0 � t`0 > p� 1 for m0 6m and `0 > `; thus
all matrices zLa have a lower-left common zero block. If mD `C 1, this means
that the representation � is reducible. �

Proof of Theorem 69. Consider the Deligne bundle D and an arbitrary singularity
s 2 S. Put � D Ds and let F be a complete flag in �=m� which is stable
under ı D ResDs r. Let D D .0; d; 2d; : : : ; .n � 1/d/. By Proposition 52, the
lattice ƒ obtained by lifting the pair .F ;D/ in the z-Birkhoff form ‡ � � is
logarithmic. Let .e/ be a basis of ‡ respecting the flag F . Since the residue ı
is upper-triangular in .e/, and the elements of D are distinct, the elements of the
matrix �DMat.r; .zDe// outside the diagonal have valuation at least d . Hence
�D .AC zdU /dz

z
where A is diagonal and U holomorphic. By Theorem 44, the
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apartment A spanned by .e/ contains a Birkhoff–Grothendieck trivialization M

of ƒ, as in the following figure:

�
zD
// ƒ 2ƒlog

z
zD
// M 2 BG.ƒ/:

According to Proposition 70, the sequence zD satisfies � zD 6 .n� 1/.p � 2/,
while the Poincaré rank p of r on M satisfies pDmin.0;�v.z� zD�z

zD//. Since
v.z�

zD�z
zD/ > d �� zD holds, it is sufficient to impose d > .n� 1/.p � 2/ to

ensure that pD 0, that is, that the lattice M is logarithmic. Then DM is a strong
solution. �

The previous proof holds in fact for any representation � for which there exists
a constant R such that for any weak solution E of RH for �, the type of E satisfies
�T .E/ 6R. Finally, as a byproduct of the proof of Proposition 70, we have the
following result.

Corollary 71. Let zLi 2 Ci such that
Pp

iD1
zLi D diag.t1; : : : ; tn/ 2 Zn. Then

the sequence T D .t1; : : : ; tn/ represents the type of the Deligne bundle of the
monodromy representation � of the Fuchsian system (with singular locus S D

fs1; : : : ; spg � C)

Y 0 D

pX
iD1

zLi

z� si
Y

if and only if
Pp

iD1
s

j
i .
zLi/`;m D 0 holds for 0� j � km� k` and ` >m.

This gives a partial answer to our question (2) from Section 5.3.2. For any
explicit solution LD .L1; : : : ;Lp/ to the generalized Deligne–Simpson problem,
we can generate nontrivial explicit examples of Deligne bundles (and their Harder–
Narasimhan filtrations) corresponding to monodromy representations which are
locally conjugate to the original one. In the following section, we give the algorith-
mic procedures that can then be used to determine effectively if the corresponding
representation admits or not a strong solution to the Riemann–Hilbert problem.
Note that the equations in Corollary 71 show that the set of singular loci S for
which L corresponds to a logarithmic BG trivialization of a Deligne bundle is an
algebraic (projective) subvariety of Cpn

S
i¤j fxi D xj g.

5.5. Testing the solubility of the Riemann–Hilbert problem. In this section, we
apply the results of this paper to the experimental investigation of the solubility
of the Riemann–Hilbert problem. We present two ways to search the space of
weak solutions, which are completely effective (up to the known problem of con-
nection matrices): one that follows paths of adjacent logarithmic lattices, based
on Lemma 51, the other that uses the characterization as stable flags given in
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Proposition 52. Note that, if any (not necessarily logarithmic) trivial holomorphic
bundle of the meromorphic solution to Riemann–Hilbert is explicitly given, the
procedures that we present, coupled with classical Poincaré rank reduction methods,
implemented on a computer algebra system, allow to make the actual computations.
We however do not know if this bypasses the problem of the connection matrices.

Let D be the Deligne bundle of the representation �. Let x … S, and consider a
logarithmic BG trivialization F of D at x. Let Y D�.X;F/ and choose a basis .�/
of Y in which the residue matrix at x is equal to the diagonal that represents the
type of D:

Mat.ResF
xr; .�//D�D D diag.�k1In1

; : : : ;�ksIns
/ where k1 > � � �> ks:

In the basis .�/, the connection has a matrix of the form (21), and the Harder–
Narasimhan filtration is expressed as the flag HNY of signature .n1; : : : ; ns/ of Y .
Let V D �.X;V/ be the K-vector space of meromorphic sections of V, where
KD �.X;MX / is the field of meromorphic functions on X .

For s 2 S, let t be a coordinate at x with divisor .t/D x� s, and .z�/D t�D.�/.
Recall that t�1 is a coordinate at s. For clarity’s sake, we will put tx D t and
ts D t�1 when we are dealing with local sections. Let zFD ts.F/ be the transport
of F at s and zY D �.X; zF/. We regard Y and zY as sub-C-vector spaces of V ,
spanned respectively by the K-bases .�/ and .z�/ of V . The relation .z�/D t�D.�/

induces a well-defined fixed isomorphism between Y and zY .

Claim 72. The trivial bundle zF is a BG trivialization of D at s.

Claim 73. The flag HN zY is the flag of signature .n1; : : : ; ns/ spanned by .z�/.

Claim 74. The germ .�s/ of the global basis of Y at s is a local basis of Ds .

Indeed, we have the two dual schematic representations, where .�x/ W Ex means
that .�/ is a local basis of E at x and .�/ W Y means that .�/ is a global basis of the
form Y :

.z�x/ WDx

tD
x
�!.�/ W Y and .�s/ WDs

tD
s
�!.z�/ W zY :

5.5.1. Bolibrukh’s first counterexample. Bolibrukh’s first published counterexam-
ple is the 3� 3 system

(23) dX=dz DAX;

AD

0@0 1 0

0 z 0

0 0 �z

1A 1

z2
C

0B@0 1 0

0 �1
6

1
6

0 �1
6

1
6

1CA 1

zC1
C

0B@0 0 1

0 �1
2
�

1
2

0 1
2

1
2

1CA 1

z�1
C

0B@0 �1 �1

0 �1
3

1
3

0 �1
3

1
3

1CA 1

z�1
2

:

Let us show what the different notions introduced in the paper are in this case.
We consider the system (23) to be the expression of the connection r on a trivial
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bundle E, in a basis .�/ of global sections. The singular divisor is DD2�0C1�1C 1
2

and the matrices at 1, �1 and 1
2

are nilpotent. The point at infinity is not singular,
since, putting t D 1=z, we have

(24) �
1

t2
A

�
1

t

�
D

1

2

0@�1 0 �1

�1 0 1

1 0 1

1AC o.1/:

Therefore the stalks Ex for x 2 P1.C/nf0g coincide with the Deligne bundle D

of r: in the terms of Section 1, the bundle E is a trivialization of D at 0. However,
the singular point 0 is not an apparent singularity. The gauge P D diag.1; z; 1=z/
brings the system to the form

AŒP � D
1

z
zA0C

1

zC 1
zA�1C

1

z� 1
zA1C

1

z� 1
2

zA 1
2
CB

where

zA0 D

0@0 1 1

0 0 �1

0 0 0

1A zA�1 D
1

6

0@0 �6 0

0 �1 �1

0 �1 1

1A zA1 D
1

2

0@0 0 2

0 �1 1

0 �1 1

1A ;
zA 1

2
D

1

12

0@0 �6 �24

0 �4 16

0 �1 4

1A and B D
1

2

0@0 0 0

0 0 0

0 1 0

1A ;
The bundle F spanned by the global sections .� 0/D .�1; z�2; �3=z/ is trivial by
construction, and since all residues over S D f0; 1;�1; 1=2g are nilpotent, F is
a trivialization of D at 1. Moreover, the stalk D1 is spanned by .�1/, so the
germ of basis .� 01/ is a Smith basis of D1; hence F is actually a BG trivialization
of the Deligne bundle D at x D 1. In general, such a gauge can be found
explicitly by combining a Poincaré rank reducing method at all finite singularities
(e.g., Gérard–Levelt saturation [1973]) and the BG trivialization algorithm from
Section 3.2.1.

Accordingly, the type of the Deligne bundle is T DT .D/D .1; 0;�1/. However,
an apparent singularity of Poincaré rank 2 appears at 1; hence the BG trivial-
ization F is not logarithmic at1. To get one, we apply the permutation lemma
(Proposition 38). We reorder the basis at 1 as .z�/ D .�3; �1; �2/ according to
the decreasing elements of the type. Putting ƒ D D1 and M D F1, for any
lattice gauge Q 2 GL3.CŒŒt ��/, we can find P 0, zQ 2 GL3.CŒŒt ��/ and a monopole
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… 2 GL3.CŒz�/ as in the following diagram:

ƒ W .z"/ tT

&&

ƒ W .z�/

Q

��

P 0

OO

tT
// YM �M

… // Y QM �
QM

ƒ W ."/
tT

// QM

zQ
99

We will get a BG logarithmic trivialization if ."/ is a basis of the Birkhoff form
‡ of D1. Since1 is a regular point, the gauge Q is a holomorphic fundamental
matrix of solutions of the system (24). Lemma 15 ensures that we can actually
truncate Q at order �T � 1D 1; hence we can take

QD

0@1 0 0

0 1 0

0 0 1

1AC 1

2

0@�1 0 �1

�1 0 1

1 0 1

1A t:

The gauge P 0 is obtained as in the proof of Proposition 38:

P 0 D

0@1 0 � t
2

0 1 0

0 0 1

1A so that …D

0@1 0 � 1
2t

0 1 0

0 0 1

1A :
Finally, we get

AŒP 0tT � D
1

z
A0C

1

zC 1
A�1C

1

z� 1
A1C

1

z� 1
2

A 1
2
;

with A0 D

0@ 0 0 0

1 0 1

�1 0 0

1A ; A�1 D
1

24

0@2 0 �1

0 0 �24

4 0 �2

1A ;
A1 D

1

8

0@ 2 0 1

8 0 �4

�4 0 �2

1A and A 1
2
D

1

3

0@ 2 0 �1

�6 0 0

4 0 �2

1A :
This is a Fuchsian linear model of (23) at xD1, and we check that the eigenvalues
of

A0CA�1CA1CA 1
2
D

0B@1 0 �1
4

0 0 �1
2

0 0 �1

1CA
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give indeed the type of D. The residues As are all nilpotent with maximal rank;
hence there is a unique complete flag F .s/ which is stable by As . In the canonical
basis .e/ of C3, the Harder–Narasimhan filtration corresponds to the coordinate
flag

H W .0/� he1i � he1; e2i � C3

and we have

F .1/
D F . 1

2
/
W .0/� he2i � he2; e1C 2e3i � C3;

F .�1/
W .0/� he2i � he2; e1� 2e3i � C3;

F .0/
W .0/� he2i � he2; e3i � C3:

We see that no stable flag under any As is transversal to H , which is a necessary
condition to be a counterexample (by Proposition 64). However, the condition of
Corollary 63 is satisfied (at each s 2S), which means that there is an adjacent weak
solution E with strictly smaller default i.E/ < i.D/D 3.

5.5.2. Adjacent lattices. In this section, we consider a weak solution E 2 RH�.
In the following proposition, we describe a procedure which allows to read off
at an apparent singularity x … S, fixed once and for all, the effect on the weak
solution E of a change of logarithmic adjacent lattice at any singularity s 2S. More
precisely, let .�/ be a global basis of a logarithmic BG trivialization of E at x,
and � the matrix in Fuchsian form (21) of the connection r in .�/, whose residue
at x gives precisely the type of E. Let M be a logarithmic lattice at s that is adjacent
to Es . We determine explicitly a gauge transform …M which is a monopole at x,
such that �Œ…M � has again Fuchsian form (21). From its semisimple residue at x

we read directly the type of the modified bundle EM , equal to the eigenvalues,
and the Harder–Narasimhan filtration of EM , spanned by the eigenspaces ordered
by increasing values. This procedure is completely effective once the connection
matrices Cs that relate the local residue matrices Ls D

1
2i�

log Gs in the Birkhoff
form at s and the global residue matrices zLs D C�1

s LsCs in the basis .�/ have
been determined.

Let M be a lattice at s that is adjacent to Es . This lattice is uniquely characterized
by its image W DM=msEs , that can be seen as a sub-C-vector space W � Y . It
is logarithmic if and only if W is stable under the map ResE

sr.
According to Proposition 28, a BG trivialization of EM is obtained from a basis

of Es that simultaneously respects the space W and the flag HN. Moreover, we can
choose ."/ in the GLn.C/-orbit of .�/.

Claim 75. There exists a basis ."/ of Y such that tD
s ."/ spans a BG trivialization

of both E and EM at s.
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Claim 76. The matrix P 2 GLn.C/ of the basis change from .�/ to ."/ is .�D/-
parabolic.

Claim 77. The gauge t�D
s PtD

s D tD
x Pt�D

x is a monopole at s and an element
of GLn.Ox/.

.z�/ W zY
t�D
s PtD

s // .z"/ W Y 0

.�/ W Es

tD
s

OO

P //

�

��

."/ W Es

tD
s

OO

tT
s //

�

��

.� 0/ WM

tD�T
s

hh

E D Es=msEs
P // W

Claim 78. The basis .� 0/ generates M at s and Ey at y ¤ x.

Claim 79. The trivial bundle F0 spanned by .� 0/ is a BG trivialization of EM at x.

Claim 80. The gauge transform from .�/ to .� 0/ is PtT
s D Pt�T

x .

Claim 81. The Harder–Narasimhan filtration of EM is given by the flag of Y 0

spanned by .� 0/ according to D�T .

Indeed, the last arrow on the right implies that at x, we have

.z"x/ W Ex D EM
x

tD�T
x // .� 0/ W Y 0 where Y 0 � V is spanned over C by .� 0/:

Therefore the type of EM is, as expected, equal to D�T .

Proposition 82. Assume that S� C and x D1. Let E 2 RH� be a weak solution
to the Riemann–Hilbert problem. Let the connection r have a matrix � of the
form (21) in a basis .�/ of a logarithmic BG trivialization F of E at x. Then,
for any zLs-stable subspace Ws of Cn, there exists a computable monopole gauge
… 2 GLn.CŒz�/, a constant matrix P0 2 GLn.C/ and a diagonal matrix T with
only 0, 1 elements such that �ŒP0.z�s/T…� has again the form (21) corresponding
to the modification EM , where M is the lattice of Vs adjacent to Es canonically
defined by Ws .

Proof. We identify �.X;F/ with Cn by means of the basis .�/. The residue of r
at s is then equal to the matrix LD zLs of formula (21). A logarithmic adjacent
lattice M is uniquely defined by an L-stable subspace W � Cn. Let ."/ be a basis
respecting both W and the Harder–Narasimhan flag H , and let P 2 GLn.C/ be
the basis change from .�/ to ."/. Assume for simplicity that we have ordered
the vectors "1; : : : ; "n in such a way that if "i 2 Hk \W and "iC1 … W then
"iC1 … Hk . Let T D diag.t1; : : : ; tn/ be the diagonal integer matrix defined by
ti D 1 if and only if "i … W . With the simplifying assumption, the type of EM



STABLE FLAGS, TRIVIALIZATIONS AND REGULAR CONNECTIONS 349

is equal to D�T , including the ordering condition, and the Harder–Narasimhan
filtration is exactly obtained by putting together the groups of vectors corresponding
to equal values of D � T . Therefore the basis .� 0/ D .z � s/D�T ."/ spans a
BG trivialization F0 of EM at s, and it is simultaneously a global basis of V .
The transport tx.F

0/ is again a BG trivialization of EM at x, but it needs not
be logarithmic anymore. Since E is a weak solution, we have Ex D EM

x D Dx .
Therefore, there exists a lattice gauge transformation P D I CP1txCP2t2

x C � � �

which sends the basis .� 0/ into its ‡ -basis ."0/, where ‡ is the Birkhoff form at x.
The lattice M 0 spanned by tD�T

x .� 0/ is then necessarily logarithmic, according to
Lemma 15. We can effectively determine M 0 by truncating the gauge P at order
d.M 0;D/� 1D kn� k1� 2, and then applying Gantmacher’s classical recursive
formulæ (18). Then, the permutation lemma yields a monopole gauge transform …

at x so that the resulting trivialization F is both BG and logarithmic. In this last
basis, the connection has again the form (21), where the spectrum of the residue
at x gives the type of the modified logarithmic bundle EM . �

Proposition 56 implies that iterated applications of this procedure describe the
set of all weak solutions to the Riemann–Hilbert problem. The strong problem is
solvable if and only if one of the bundles F has a 0 residue at x in the orbit under
these transformations.

5.5.3. The general case. For an arbitrary weak solution E, we must start with
the Deligne bundle D, for we only have the complete description of the local
logarithmic lattices from the Deligne lattice. According to the description given
in Proposition 52, any logarithmic lattice Ns 2ƒs is given by an admissible pair
.F ;T / where F is a ResDs r-stable flag. If we put ourselves in the situation of
Section 5.5.2, and consider a logarithmic BG trivialization F of D at x, and identify
Y D �.X;F/ to Cn by means of the basis .�/, then the flag F can be viewed as
a flag in Cn stable under the matrix zLs . As exposed in Theorem 65, the bundle
E is then described by an element .F s;Ds/s2S 2 RH� such that F s 2 Fl s

.Y /

and Ds 2 Zn.F s/. In order to actually construct the lattice Ns , one should in
principle reach first a Birkhoff form ‡z in ƒ D Ds . Since the Deligne lattice is
nonresonant, it is possible to do so by a lattice gauge Ps tangent to the identity, as
described in Section 4.1.1. We know from Definition 14 that if we put dsD�Ds�1,
the local gauge Ps can be truncated to ts-degree ds , as remarked in the proof of
Proposition 82. Assume for simplicity that x D1… S. Taking Qs 2 GLn.C/ that
brings .�/ to a basis respecting F s , the local gauge can be written as

Ps DQs

�
I C � � �CP

.s/

ds
.z� s/ds

�
:

Take a rational interpolation Z 2 GLn.C.z// of the local gauges Ps to the
prescribed orders ds , and having only a singularity outside S at x (see, e.g., [van
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Barel et al. 1994]). The global basis of sections .z�/ whose matrix in .�/ is P

spans by construction a trivialization zF of E at x. Everything can be seen at x as
explained in the following scheme. Putting ƒDDx D Ex , we have

ƒ W .�x/
Z //

P

��

zY D �.X; zF/

…1

��
ƒ W ."/

Q

��

tD
x // Y QM

…2

��
ƒ W .Q"/

tD
x // Y 0

The effect of having changed the stalks over S is translated in a purely local
fashion by a change in the set ƒ0. Indeed, when ƒ represented the class of ŒD�x ,
the germ .�x/ was a diagonal shift of a global basis. In this scheme however, ƒ
represents the class ŒE�x , and we have now to apply the gauge Z, considered as
an element of GLn.C..tx///, to get a basis of global sections of zY D �.X; zF/.
The monopole …1 corresponds to the construction of a BG trivialization, as in
Section 3.2.1. The second gauge …2, which can be constructed by the enhanced
permutation lemma (Proposition 38), brings the system to an optional logarithmic
BG trivialization, where the system is again Fuchsian.
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