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ELLIPTIC ALIQUOT CYCLES OF FIXED LENGTH

NATHAN JONES

Silverman and Stange define the notion of an aliquot cycle of length L for a
fixed elliptic curve E over Q, and conjecture an order of magnitude for the
function which counts such aliquot cycles. In the present note, we combine
heuristics of Lang–Trotter with those of Koblitz to refine their conjecture
to a precise asymptotic formula by specifying the appropriate constant. We
give a criterion for positivity of the conjectural constant, as well as some
numerical evidence for our conjecture.

1. Introduction

Let E be an elliptic curve over Q and fix a positive integer L ≥ 2. In analogy
with the classical notion of an aliquot cycle, Silverman and Stange [2011] define
an L-tuple (p1, p2, . . . , pL) of distinct positive integers to be an aliquot cycle of
length L for E if each pi is a prime number of good reduction for E ,

p1 = |E(FpL )| and pi+1 = |E(Fpi )| for all i ∈ {1, 2, . . . , L − 1},

which may be more succinctly written as

(1) pi+1 = |E(Fpi )| for all i ∈ Z/LZ.

When L = 2, an aliquot cycle is also referred to as an amicable pair for E . As
observed in [Silverman and Stange 2011, Remark 1.5], there is an intimate connec-
tion between aliquot cycles for E and elliptic divisibility sequences, which relate
to generalizations of classical index divisibility questions about Lucas sequences
(see also [Gottschlich 2012], which studies some distributional aspects of elliptic
divisibility sequences).

It is of interest to know how common such aliquot cycles are, so we presently
consider the function which counts aliquot cycles of fixed length for a fixed elliptic
curve E over Q. More precisely, define an aliquot cycle (p1, p2, . . . , pL) to be
normalized if p1 =min{pi : 1≤ i ≤ L}, and then write

πE,L(x) :=
∣∣{p1 ≤ x : ∃ a normalized aliquot cycle (p1, p2, . . . , pL) for E

}∣∣.
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The behavior of πE,L(x) for large x depends heavily on whether or not E has
complex multiplication (CM), as the following conjecture indicates.

Conjecture 1.1 (Silverman–Stange). Let E be an elliptic curve over Q and L ≥ 2 a
fixed integer, and assume that there are infinitely many primes p such that |E(Fp)|

is prime. Then, as x→∞, one has

πE,L(x)


�

√
x

(log x)L if E has no CM,

∼ AE
x

(log x)2
if E has CM and L = 2,

where the implied constants in � are both positive and depend only on E and L ,
and AE is a positive constant.

Remark 1.2. We may interpret the case L = 1 of (1) as describing primes p1 for
which p1 = |E(Fp1)|. Such primes are called anomalous primes and have been
considered in [Mazur 1972]. The asymptotic count for anomalous primes up to x is
a special case of a conjecture of Lang and Trotter [1976].

Silverman and Stange [2011] focus on the intricacies of the CM case, proving that
if E has CM, jE 6= 0 and L ≥ 3, then any normalized aliquot cycle (p1, p2, . . . , pL)

for E must have p1 < 5 (so, in particular, πE,L(x) = O(1)). The case jE = 0 is
apparently more complicated, and no proof is given that πE,L(x) = O(1) when
jE = 0 and L > 3.

In this note, we refine Conjecture 1.1 to an asymptotic formula in the non-CM
case. Heuristics will be developed which lead to the following conjecture.

Conjecture 1.3. Let E be an elliptic curve over Q without complex multiplication
and L ≥ 2 a fixed integer. Then there is a nonnegative real constant CE,L ≥ 0
(see (5) below) so that, as x −→∞,

πE,L(x)∼ CE,L

∫ x

2

1
2
√

t(log t)L
dt.

Remark 1.4. It is possible for the constant CE,L to be zero, in which case the limit
limx→∞ πE,L(x) is provably finite. Thus, in case CE,L = 0, let us interpret the
above asymptotic to mean that limx→∞ πE,L(x) <∞.

Remark 1.5. By integration by parts, one has∫ x

2

1
2
√

t(log t)L
dt =

√
x

(log x)L + O
( √

x
(log x)L+1

)
.

Thus, Conjecture 1.3 is consistent with Conjecture 1.1. In practice, the error term∣∣∣∣πE,L(x)−CE,L

∫ x

2

1
2
√

t(log t)L
dt
∣∣∣∣



ELLIPTIC ALIQUOT CYCLES OF FIXED LENGTH 355

E x = 106 x = 108 x = 1010 x = 1012 x = 1013

E1 : y2
+ y = x3

− x 0 1 16 115 332
E2 : y2

= x3
+ 6x − 2 0 5 32 208 564

E3 : y2
= x3
− 3x + 4 0 0 0 0 0

Table 1. Values of πE,2(x).

should be smaller than
∣∣∣πE,L(x)−CE,L

√
x

(log x)L

∣∣∣, just as in the case of the prime
number theorem.

Consider Table 1, which lists the values of πE,2(x) for a few non-CM curves E
and various magnitudes x . Note that πE2,2(x) is larger than πE1,2(x). This difference
is explained by the associated constants appearing in Conjecture 1.3. Indeed, a
computation shows that

CE2,2

CE1,2
≈ 1.714.

Also note that πE3,2(1013)= 0. The additional fact that∣∣{p≤1012
: p is of good reduction for E3 and |E3(Fp)| is prime

}∣∣=715, 698, 540

indicates that there probably are infinitely many primes p for which |E3(Fp)| is
prime, in which case the above data suggests that E3 might be a counterexample
to Conjecture 1.1. We will later see that CE3,2 = 0, and that E3 is indeed a
counterexample, assuming a conjecture of Koblitz on the primality of |E(Fp)|.

Remark 1.6. The heuristics which lead to Conjecture 1.3 are in the style of Koblitz
and Lang–Trotter, whose conjectures have been proven “on average over elliptic
curves E” (see [Balog et al. 2011; David and Pappalardi 1999]). It might be
interesting to see if one could also prove an average version of Conjecture 1.3.

1.1. Positivity of CE,L and a directed graph GE . In the interest of characterizing
the non-CM elliptic curves which have infinitely many aliquot cycles of length L ,
we will state a graph-theoretic criterion for positivity of CE,L . Recall that a di-
rected graph G is a pair (V,E), where V = V(G) is an arbitrary set of vertices
and E = E(G) ⊆ V×V is a subset of directed edges. The sequence of vertices
(v1, v2, v3, . . . , vn) is a closed walk of length n if and only if (vi , vi+1)∈E for each
i ∈ Z/nZ = {1, 2, 3, . . . , n}. Note that closed walks may have repeated vertices.
For instance, if (v, v) ∈ E for some vertex v (i.e., if G has a loop at a vertex v),
then G has closed walks of any length.

We will associate to an elliptic curve E a directed graph GE . First, consider the
n-th division field Q(E[n]) of E , obtained by adjoining to Q the x and y-coordinates
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of the n-torsion E[n] of a given Weierstrass model of E . The extension Q(E[n])
is Galois over Q, and once we fix a basis over Z/nZ of E[n], we may view

(2) Gal(Q(E[n])/Q)⊆ GL2(Z/nZ).

We will now attach to Gal(Q(E[n])/Q) a directed graph GE(n). Viewing Galois
automorphisms as 2× 2 matrices via (2), the vertex set V(n) of our graph GE(n) is

V(n) :=
{
(t, d)∈Z/nZ×(Z/nZ)× :∃g∈Gal(Q(E[n])/Q) with tr g= t, det g=d

}
.

We define the set E(n)⊆V(n)×V(n) of directed edges by declaring that (v1, v2)∈

E(n) if and only if d1+ 1− t1 = d2, where vi = (ti , di ) ∈ V(n).
Let m E denote the torsion conductor of E , which is defined as the smallest

positive integer m for which

Gal(Q(E[n])/Q)= π−1(Gal(Q(E[gcd(m, n)])/Q)
)

for all n ∈ Z>0,

where π : GL2(Z/nZ)→ GL2(Z/ gcd(m, n)Z) is the canonical projection. (The
existence of a torsion conductor m E for a non-CM elliptic curve E is a celebrated
theorem of Serre [1972].) Finally, we define the directed graph GE to be the above
graph at level m E :

GE := GE(m E).

The following version of Conjecture 1.3 states a criterion for positivity of CE,L

in terms of the directed graph GE .

Conjecture 1.7. Let E be an elliptic curve over Q without complex multiplication
and L ≥ 2 a fixed integer. Suppose that the directed graph GE has a closed walk of
length L . Then there are infinitely many aliquot cycles of length L for E . More
precisely, there is a positive constant CE,L > 0 so that, as x −→∞,

πE,L(x)∼ CE,L

∫ x

2

1
2
√

t(log t)L
dt.

Remark 1.8. If GE does not have a closed walk of length L , then CE,L = 0 and
there are at most finitely many aliquot cycles of length L for E (see Proposition 2.6).

In Section 2, we will write down the constant CE,L explicitly as an “almost Euler
product” and discuss its positivity in terms of the graph GE . In Section 3, we will
develop the heuristics which lead to Conjecture 1.3. In Section 4, we will provide
some numerical evidence for Conjecture 1.3 by examining the order of magnitude

of πE,L(x)−CE,L

∫ x

2

1
2
√

t(log t)L
dt for various elliptic curves E and L ∈ {2, 3}.
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2. The constant

We now describe in detail the constant CE,L . The next lemma allows us to interpret
(1) in terms of the Frobenius automorphisms1 FrobQ(E[n])(pi ) ∈ Gal(Q(E[n])/Q)
attached to the various primes pi . Recall the trace of Frobenius ap(E) ∈ Z, which
satisfies the equation

|E(Fp)| = p+ 1− ap(E)

as well as the Hasse bound

(3) |ap(E)| ≤ 2
√

p.

Lemma 2.1 [Serre 1968, IV-4–IV-5]. For any positive integer n and any prime p
of good reduction for E which does not divide n, p is unramified in Q(E[n]) and,
for any Frobenius automorphism FrobQ(E[n])(p) ∈ Gal(Q(E[n])/Q), we have

tr(FrobQ(E[n])(p))≡ ap(E) mod n and det(FrobQ(E[n])(p))≡ p mod n.

For any subset G ⊆ GL2(Z/nZ), define

GL
ali-cycle :=

{
(g1, g2, . . . , gL) ∈GL

: ∀i ∈ Z/LZ, det(gi+1)= det(gi )+1− tr(gi )
}
.

Note that, by Lemma 2.1, if (p1, p2, . . . , pL) is an aliquot cycle of length L for E ,
then

(4)
(
FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . . ,FrobQ(E[n])(pL)

)
∈ Gal(Q(E[n])/Q)L

ali-cycle.

Next, let φ(x) := 2
π

√
1− x2 be the distribution function of Sato–Tate, which

(assuming E has no CM) conjecturally2 satisfies

lim
x→∞

∣∣{p ≤ x : ap(E)
2
√

p ∈ I ⊆ [−1, 1]
}∣∣

|{p ≤ x}|
=

∫
I
φ(x) dx .

In other words, φ is the density function of ap(E)/2
√

p, viewed as a random
variable. Denote by φL := φ ∗ φ ∗ · · · ∗ φ the L-fold convolution of φ with itself,

1The Frobenius automorphism in

Gal(Q(E[n])/Q)

attached to an unramified rational prime p is only defined up to conjugation in Gal(Q(E[n])/Q).
Here and throughout the paper, we understand FrobQ(E[n])(p) to be any choice of such a Frobenius
automorphism.

2Assuming E has nonintegral j-invariant, the Sato–Tate conjecture is now a theorem of L. Clozel,
M. Harris, N. Shepherd-Barron, and R. Taylor (see [Taylor 2008] and the references therein).
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which (again assuming the Sato–Tate conjecture) is the density function of the
random variable

L∑
i=1

api (E)
2
√

pi
,

provided the various terms api (E)/2
√

pi are “statistically independent.” Since the
primes p1, p2, . . . , pL belonging to an aliquot cycle must be close to one another
(i.e., within ≈ L

√
t of one another where p1 ≈ t , by the Hasse bound (3)), we

are really assuming statistical independence in short intervals of the various terms
api (E)/2

√
pi . Finally, for a positive integer k, put

nk :=
∏
p≤k

pk .

In Section 3, we will develop heuristics which predict Conjecture 1.3, with

(5) CE,L :=
φL(0)

L
· lim

k→∞

nL
k

∣∣Gal(Q(E[nk])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[nk])/Q)L
∣∣ .

2.1. The constant as a product. We will presently prove the following proposition,
which gives a more explicit expression of CE,L as a convergent Euler product. Recall
that m E denotes the torsion conductor of E , i.e., the smallest positive integer m for
which

Gal(Q(E[n])/Q)= π−1(Gal(Q(E[gcd(m, n)])/Q)
)

for all n ∈ Z>0,

where π : GL2(Z/nZ)→ GL2(Z/ gcd(m, n)Z) is the canonical projection.

Proposition 2.2. For a positive integer k, let nk :=
∏

p≤k pk . Then one has

lim
k→∞

nL
k

∣∣Gal(Q(E[nk])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[nk])/Q)L
∣∣

=
mL

E

∣∣Gal(Q(E[m E ])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[m E ])/Q)L
∣∣ ·

∏
l-m E

l L
∣∣GL2(Fl)

L
ali-cycle

∣∣∣∣GL2(Fl)L
∣∣ .

Furthermore,

(6) 0<
l L
∣∣GL2(Fl)

L
ali-cycle

∣∣∣∣GL2(Fl)L
∣∣ = 1+ OL

(
1
l2

)
,

so the infinite product
∏
l-m E

l L
∣∣GL2(Fl)

L
ali-cycle

∣∣∣∣GL2(Fl)L
∣∣ converges absolutely.

The proof of Proposition 2.2 involves the following two lemmas.
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Lemma 2.3. Let n1 and n2 be relatively prime positive integers, and pick any
subgroups G1 ⊆ GL2(Z/n1Z) and G2 ⊆ GL2(Z/n2Z). Then, viewing G1×G2 ⊆

GL2(Z/n1n2Z), one has

(G1×G2)
L
ali-cycle = (G1)

L
ali-cycle× (G2)

L
ali-cycle.

Proof. Let ι : GL2(Z/n1Z)×GL2(Z/n2Z)→ GL2(Z/n1n2Z) be the isomorphism
of the Chinese remainder theorem, and set G := ι(G1 × G2). For each L-tuple
(gi )i ∈ GL , we have

det gi+1 ≡ det gi + 1− tr gi (mod n1n2) for all i ∈ Z/LZ

⇐⇒

{
det gi+1 ≡ det gi + 1− tr gi (mod n1)

det gi+1 ≡ det gi + 1− tr gi (mod n2)

}
for all i ∈ Z/LZ.

This implies the conclusion of Lemma 2.3. �

Lemma 2.4. Let n be a positive integer and n′ any multiple of n such that, for
every prime number l, l | n′⇒ l | n. Let π :GL2(Z/n′Z)→GL2(Z/nZ) denote the
canonical projection and let G ⊆ GL2(Z/nZ) be any subgroup. Then one has

(7)
(n′)L

∣∣(π−1(G))L
ali-cycle

∣∣
|π−1(G)L |

=
nL
∣∣GL

ali-cycle

∣∣
|GL |

.

Proof. By induction, it suffices to check the case n′ = ln, where l is some prime
dividing n. In this case, since |π−1(G)| = l4

|G|, (7) is equivalent to

(8)
∣∣(π−1(G))L

ali-cycle

∣∣= l3L
∣∣GL

ali-cycle

∣∣,
which we now show. Fix an element g = (g1, g2, . . . , gL) ∈ GL

ali-cycle, and note that
any element g′ ∈ π−1(g) has the form

g′ = (g′1, g′2, . . . , g′L)=
(
g̃1(I +n A1), g̃2(I +n A2), . . . , g̃L(I +n AL)

)
∈ π−1(g),

where for each i , g̃i is any fixed lift to GL2(Z/ lnZ) of gi , and Ai ∈ M2×2(Fl) is
arbitrary. We will presently determine the exact conditions on the Ai which force
(g′1, g′2, . . . , g′L) ∈ (π

−1(G))L
ali-cycle. First, since (g1, g2, . . . , gL) ∈ GL

ali-cycle, we
must have

(9) gi (mod l) /∈ {0, I } for each i ∈ Z/LZ

and furthermore, the quantity

γi :=
det g̃i+1− det g̃i − 1+ tr g̃i

n
∈ Fl

is well-defined. One checks that

(10) det g′i+1 ≡ det g′i + 1− tr g′i mod ln

⇐⇒ γi ≡− det gi+1 · tr Ai+1+ det gi · tr Ai − tr(gi Ai ) mod l.
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The condition on the right-hand side is (affine) linear in the coefficients of Ai+1

and Ai . We consider the linear transformation

T : F4L
l ' M2×2(Fl)

L
→ FL

l ,

given by

(Ai )
L
i=1 7→

(
− det gi+1 · tr Ai+1+ det gi · tr Ai − tr(gi Ai )

)L
i=1.

In light of (10), the condition (8) will follow from the surjectivity of the above
linear transformation, which we now verify. Writing coordinates as

gi =:

(xi yi
zi wi

)
and Ai =:

(ai bi
ci di

)
,

we have

T((Ai ))=
(
(det gi−xi )ai+(det gi−wi )di−yi ci−zi bi−det gi+1ai+1−det gi+1di+1

)
.

By (9), at least one of det gi − xi , det gi −wi , yi and zi must be nonzero modulo l,
and so

T
(
{0}×· · ·×{0}×M2×2(Fl)×{0}×· · ·×{0}

)
={0}×· · ·×{0}×Fl×{0}×· · ·×{0},

where the nonzero entries correspond to the same index i . In particular, the linear
transformation in question is surjective and we have verified (8), finishing the proof
of Lemma 2.4. �

Proof of Proposition 2.2. Choose k large enough so that m E | nk , and write
nk = n(1)k ·n

(2)
k , where n(1)k is divisible by primes dividing m E and gcd(m E , n(2)k )= 1.

By definition of m E , we then have

Gal(Q(E[nk])/Q)' π
−1(Gal(Q(E[m E ])/Q)

)
×

∏
lk
‖nk

l -m E

GL2(Z/ lkZ),

where π : GL2(Z/n(1)k Z)→ GL2(Z/m E Z) is the canonical projection. By Lem-
mas 2.3 and 2.4, we have

nL
k

∣∣Gal(Q(E[nk])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[nk])/Q)L
∣∣

=
mL

E

∣∣Gal(Q(E[m E ])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[m E ])/Q)L
∣∣ ·

∏
l | nk
l -m E

l L
∣∣Gal(Q(E[l])/Q)L

ali-cycle

∣∣∣∣Gal(Q(E[l])/Q)L
∣∣ .

Taking the limit as k→∞, we arrive at the product representation of CE,L stated
in Proposition 2.2. We leave the verification of (6) as an exercise. �
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2.2. Positivity of the constant. We will now discuss the positivity of CE,L . The
following corollary of Proposition 2.2 is immediate.

Corollary 2.5. One has

CE,L > 0 ⇐⇒ Gal(Q(E[m E ])/Q)
L
ali-cycle 6=∅.

We will now prove the following proposition, which allows one to deduce
Conjecture 1.7 from Conjecture 1.3.

Proposition 2.6. For any non-CM elliptic curve E over Q, one has

(11) CE,L > 0 ⇐⇒ GE has a closed walk of length L .

Furthermore, if GE has no closed walks of length L , then there are only finitely
many aliquot cycles (p1, p2, . . . , pL) of length L for E.

Proof. First we prove (11). By Corollary 2.5, we are reduced to showing that

(12) Gal(Q(E[m E ])/Q)
L
ali-cycle 6=∅ ⇐⇒ GE has a closed walk of length L .

The mapping
Gal(Q(E[m E ])/Q)→ V(GE),

g 7→ (tr g, det g)

induces a mapping Gal(Q(E[m E ])/Q)
L
ali-cycle−→{closed walks of length L in GE }.

Thus, if Gal(Q(E[m E ])/Q)
L
ali-cycle 6= ∅ then GE has a closed walk of length L .

Conversely, suppose GE has a closed walk (v1, v2, v3, . . . , vL) of length L . Recall
that V= Z/m E Z× (Z/m E Z)× and write vi = (ti , di ). Choosing any element gi ∈

Gal(Q(E[m E ])/Q) with tr gi = ti and det gi = di , we have then constructed an ele-
ment (g1, g2, . . . , gL)∈Gal(Q(E[m E ])/Q)

L
ali-cycle, so Gal(Q(E[m E ])/Q)

L
ali-cycle 6=

∅. By Corollary 2.5, we conclude the proof of (11).
To see why the nonexistence of closed walks of length L in GE implies that

limx→∞ πE,L(x) <∞, note that, by (12), one has Gal(Q(E[m E ])/Q)
L
ali-cycle =∅.

But then (4) implies that limx→∞ πE,L(x) <∞, and the proof of Proposition 2.6 is
complete. �

3. Heuristics

We will construct a probabilistic model in the style of [Koblitz 1988] and [Lang and
Trotter 1976]. We shall call the L-tuple (p1, p2, . . . , pL) of distinct prime numbers
an aliquot sequence of length L for E if it satisfies

pi+1 = |E(Fpi )| for all i ∈ {1, 2, . . . L − 1}.

Thus, an aliquot cycle of length L is an aliquot sequence of length L which
additionally satisfies p1 = |E(FpL )|. Suppose that (p1, p2, . . . , pL) is an aliquot
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sequence of length L for E . By substituting p2 = p1+1−ap1(E) into the equation
p3= p2+1−ap2(E), one finds that p3= p1+2−(ap1(E)+ap2(E)), and continuing
in this manner one obtains

(13) p1 = |E(FpL )| ⇐⇒

L∑
j=1

ap j (E)= L .

Thus, a given L-tuple (p1, p2, . . . , pL) of positive integers is an aliquot cycle of
length L for E if and only if the following conditions hold:

(1L ) the L-tuple (p1, p2, . . . , pL) is an aliquot sequence of length L for E ;

(2L ) one has
∑L

j=1 ap j (E)= L .

Consider the following condition, which generalizes condition (2L ) above by re-
placing L with an arbitrary fixed integer r :

(2′L ) one has
∑L

j=1 ap j (E)= r .

We now develop the heuristic “probability” that a given L-tuple (p1, p2, . . . , pL)

of positive integers satisfies (1L ) and (2′L ). First, we must gather some notation. Fix
a positive integer n and elements a, b ∈ Z/nZ. For any subset S ⊆GL2(Z/nZ), let

SN=a := {g ∈ S : det(g)+ 1− tr(g)= a} = {g ∈ S : det(I − g)= a},

Sdet=b
:= {g ∈ S : det(g)= b}, Sdet=b

N=a := SN=a ∩ Sdet=b.

Finally, for L ≥ 1 and G ⊆ GL2(Z/nZ), put

GL
ali-sequence :=

{
(g1, g2, . . . , gL) ∈ GL

:

for all i ∈ {1, 2, . . . , L − 1}, det(gi+1)= det(gi )+ 1− tr(gi )
}
.

Note that when L = 1, the defining conditions become empty and we have
GL=1

ali-sequence=G. For a general L≥1, note that any aliquot sequence (p1, p2,. . . , pL)

for E will satisfy(
FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . . ,FrobQ(E[n])(pL)

)
∈ Gal(Q(E[n])/Q)L

ali-sequence.

Finally, for a fixed integer r , define

GL ,
∑

tr= r
ali-sequence :=

{
(g1, g2, . . . , gL) ∈ GL

ali-sequence :

L∑
i=1

tr(gi )≡ r mod n
}
.

We will presently derive an expression for the probability

P(1L ),(2′L )(t) := Prob
(
(p1, p2, . . . , pL) satisfies (1L ) and (2′L ), given that p1 ≈ t

)
.
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Putting P(1L )(t) for the probability that (p1, p2, . . . , pL) satisfies (1L ) above, and
P

given (1L )

(2′L )
(t) for the conditional probability that (p1, p2, . . . , pL) satisfies (2′L ),

given that it satisfies (1L ), we have

(14) P(1L ),(2′L )(t)= P(1L )(t) ·P
given (1L )

(2′L )
(t).

In Section 3.1 below, we will derive the probability formula

(15) P(1L )(t)≈
nL−1
·
∣∣Gal(Q(E[n])/Q)L

ali-sequence

∣∣∣∣Gal(Q(E[n])/Q)L
∣∣ ·

1
(log t)L .

Following this, in Section 3.2, we will derive

(16) P
given (1L )

(2′L )
(t)≈ φL

(
r

2
√

t

)n ·
∣∣Gal(Q(E[n])/Q)L ,

∑
tr= r

ali-sequence

∣∣∣∣Gal(Q(E[n])/Q)L
ali-sequence

∣∣ · 1
2
√

t
.

Before deriving (15) and (16), we will now observe that, taken together, they
lead to Conjecture 1.3. Indeed, using (14), (15) and (16), one concludes

P(1L ),(2′L )(t)≈ φL

(
r

2
√

t

)
·

nL
∣∣Gal(Q(E[n])/Q)L ,

∑
tr= r

ali-sequence

∣∣∣∣Gal(Q(E[n])/Q)L
∣∣ ·

1
2
√

t(log t)L
.

Just as with (13), one verifies that, for each (g1, g2, . . . , gL)∈GL2(Z/nZ)L
ali-sequence,

one has

det(gL)+ 1− tr(gL)= det g1 ⇐⇒

L∑
i=1

tr(gi )≡ L mod n.

It follows that Gal(Q(E[n])/Q)L
ali-cycle =Gal(Q(E[n])/Q)L ,

∑
tr= L

ali-sequence. Thus, putting
r = L , n = nk and taking the limit as k→∞, one arrives at

P(1L ),(2L )(t)≈ φL

(
L

2
√

t

)
· lim

k→∞

nL
k

∣∣Gal(Q(E[nk])/Q)
L
ali-cycle

∣∣∣∣Gal(Q(E[nk])/Q)L
∣∣ ·

1
2
√

t(log t)L
.

Thus, using

πE,L(x)≈
1
L

∫ x

2
P(1L ),(2L )(t) dt,

one arrives at Conjecture 1.3. The reason for the extra factor of L in the denominator
above is that πE,L(x) counts normalized aliquot cycles, whereas the heuristic
probabilities above do not take normalization into account. Also, since L is fixed,
one verifies that the estimation φL(L/(2

√
t))≈φL(0) does not affect the asymptotic.
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3.1. The probability that ( p1, p2, . . . , pL) satisfies (1L). We will now derive a
refined probability formula which implies (15). Fix a vector a= (a2, a3, . . . , aL) ∈

((Z/nZ)×)L−1, and consider the probability

P a
(1L )
(t)

:=Prob
(
(p1, p2, . . . pL) satisfies (1L ) and for all i ∈{2, 3, . . . , L}, pi ≡ai mod n

)
and (for any subset G ⊆ GL2(Z/nZ)) the subset

GL , a
ali-sequence :=

{
(g1, g2, . . . , gL)∈GL

ali-sequence : for all i∈{2, 3, . . . , L}, det(gi )=ai
}
.

In case L = 1, the vector a ∈ ((Z/nZ)×)0 is nonexistent, and as before we interpret
the empty condition as G1, a

ali-sequence = G. Also note the decomposition

(17) GL , a
ali-sequence = GN= a2 ×Gdet= a2

N= a3
×Gdet= a3

N= a4
× · · ·×Gdet= aL−1

N= aL
×Gdet= aL .

Finally, note that if a1 6= a2, then GL , a1
ali-sequence ∩GL , a2

ali-sequence =∅, and so we have a
disjoint union

GL
ali-sequence =

⊔
a∈((Z/nZ)×)L−1

GL , a
ali-sequence.

For similar reasons, we have

P(1L )(t)=
∑

a∈((Z/nZ)×)L−1

P a
(1L )
(t).

Thus, (15) will follow from

(18) P a
(1L )
(t)≈

nL−1
·
∣∣Gal(Q(E[n])/Q)L , a

ali-sequence

∣∣∣∣Gal(Q(E[n])/Q)L
∣∣ ·

1
(log t)L ,

which we will now derive by induction on L .

Base case: L = 1. Suppose that p1 is a positive integer of size about t . One may
interpret the prime number theorem as the probabilistic statement that

P(1L=1)(t)= Prob(p1 is prime)≈
1

log t
,

which is base case L = 1 of (18).

Induction step. Assume now that (18) holds for some fixed L ≥ 1, and fix any
vector a = (a2, a3, . . . , aL+1) ∈ ((Z/nZ)×)L . Since the statement

(p1, p2, . . . , pL+1) satisfies (1L+1) and for all i ∈ {2, 3, . . . , L+1}, pi ≡ ai mod n
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is equivalent to

(p1, p2, . . . , pL) satisfies (1L ) and for all i ∈ {2, 3, . . . , L}, pi ≡ ai mod n,

pL+1 := pL + 1− apL (E) is prime, and pL+1 ≡ aL+1 mod n,

we see that

(19) P
(a2, a3, ..., aL , aL+1)

(1L+1)
(t)= P(a2, a3, ..., aL )

(1L )
(t) ·P(t),

where P(t) is the conditional probability that pL+1 := pL + 1− apL (E) is prime,
and that pL+1≡ aL+1 mod n, given that (1L ) holds. To estimate P(t), let us assume
that (1L ) holds. First note that, by the Hasse bound |ap(E)| ≤ 2

√
p, one has

pL+1 = p1+ L −
L∑

i=1

api (E) ∈
[

p1+ L − 2L
√

pmax, p1+ L + 2L
√

pmax
]
,

where pmax :=max{pi : i = 1, 2, . . . , L}. By induction we have pmax= t+OL(
√

t),
and so pL+1 ≈ t , with an error of OL(

√
t). Now, if pL+1 were a positive integer of

size about t selected independently of (p1, p2, . . . , pL), then

(20) Prob(pL+1 is prime and pL+1 ≡ aL+1 mod n)≈
1

ϕ(n) log t
,

by the prime number theorem in arithmetic progressions. If the positive integer pL+1

were chosen randomly and independently of the previous primes, then the probability
that pL+1≡aL+1 mod n would be 1/n. However, pL+1 is not chosen independently
of (p1, p2, . . . , pL); it is related to pL by the formula pL+1 = pL + 1− apL (E).
Thus, the congruence pL+1 ≡ aL+1 mod n is really the demand that

FrobQ(E[n])(pL) ∈ Gal(Q(E[n])/Q)N= aL+1 .

Since we assume that (1L ) holds, we know that FrobQ(E[n])(pL)∈GL2(Z/nZ)det= aL .
It is thus natural to multiply (20) by the correction factor∣∣Gal(Q(E[n])/Q)det=aL

N=aL+1

∣∣/∣∣Gal(Q(E[n])/Q)det=aL
∣∣

1/n
,

obtaining

(21) P(t)≈

∣∣Gal(Q(E[n])/Q)det=aL
N=aL+1

∣∣/∣∣Gal(Q(E[n])/Q)det=aL
∣∣

1/n
·

1
ϕ(n) log t

=
n
∣∣Gal(Q(E[n])/Q)det=aL

N=aL+1

∣∣
|Gal(Q(E[n])/Q)|

·
1

log t
.
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By (17), we may rewrite (18) as

Pa
(1L )
(t)≈ nL−1

·

∣∣Gal(Q(E[n])/Q)N=a2

∣∣∣∣Gal(Q(E[n])/Q)
∣∣ ·

( L−1∏
i=2

∣∣Gal(Q(E[n])/Q)det=ai
N=ai+1

∣∣∣∣Gal(Q(E[n])/Q)
∣∣

)

·

∣∣Gal(Q(E[n])/Q)det=aL
∣∣∣∣Gal(Q(E[n])/Q)

∣∣ ·
1

(log t)L .

Plugging this expression and (21) into (19), and using the fact that∣∣Gal(Q(E[n])/Q)det=aL
∣∣= ∣∣Gal(Q(E[n])/Q)det=aL+1

∣∣,
one concludes the induction step, completing the derivation of (18), and thus of (15).

Our analysis has motivated the following conjecture, wherein

π
ali-sequence
E,L (x) :=

∣∣{p1 ≤ x : ∃ an aliquot sequence (p1, p2, . . . , pL) for E
}∣∣,

Cali-sequence
E,L := lim

k→∞

nL−1
k ·

∣∣Gal(Q(E[nk])/Q)
L
ali-sequence

∣∣∣∣Gal(Q(E[nk])/Q)L
∣∣ .

Conjecture 3.1. Let E be an elliptic curve over Q without complex multiplication
and L ≥ 2 a fixed integer. Then, as x −→∞, one has

π
ali-sequence
E,L (x)∼ Cali-sequence

E,L

∫ x

2

1
(log t)L dt.

Similarly to Proposition 2.6, one has

Cali-sequence
E,L > 0 ⇐⇒ GE has a (directed) walk of length L .

3.2. The conditional probability that ( p1, p2, . . . , pL) satisfies (2′
L). We will

now derive (16), completing the heuristic derivation of Conjecture 1.3. Suppose that
(p1, p2, . . . , pL) is an aliquot sequence of length L for E , i.e., that it satisfies (1L ).
What is the conditional probability that

∑L
i=1api (E) = r? In the case L = 1,

condition (1L ) is empty, and our question becomes identical to the Lang–Trotter
conjecture for fixed Frobenius trace. In what follows, we will develop a probabilistic
model in the same style as theirs.

Fixing a level n, the number fn(r, p) ≥ 0 will estimate the probability of the
event that

∑L
i=1api (E)= r , given that (p= p1, p2, . . . , pL) is an aliquot sequence

of length L for E . We will model the situation by assuming that the vector

(22)
(
FrobQ(E[n])(p1),FrobQ(E[n])(p2), . . .FrobQ(E[n])(pL)

)
∈ Gal(Q(E[n])/Q)L

ali-sequence

is randomly distributed according to counting measure, and we will assume that the
various api (E)/(2

√
pi ) are independent at infinity, i.e., that φL is the distribution
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function for their sum. We will also assume independence of the random variables∑L
i=1api (E)/(2

√
pi ) and (22). Finally, in order to simplify our model, we will

also regard all of the various primes pi as having the same size, namely p. These
considerations lead us to the following assumptions about the probabilities fn(r, p):

fn(r, p)= 0 if |r |> 2L
√

p,

fn(r, p)= φL

(
r

2
√

p

)
·

n
∣∣Gal(Q(E[n])/Q)L ,

∑
tr=r

ali-sequence

∣∣∣∣Gal(Q(E[n])/Q)L
ali-sequence

∣∣ · cp if |r | ≤ 2L
√

p,

where cp is some constant chosen so that
∑

r∈Z fn(r, p) = 1. Then, similarly to
[Lang and Trotter 1976, pp. 31–32], one concludes that cp ∼

1
2
√

p , as p→∞. This
leads to (16), completing the derivation of Conjecture 1.3.

4. Examples

We will now give some numerical evidence for Conjecture 1.3.

4.1. Elliptic curves with CE,L > 0. Table 2 and Table 3 display some data for four
elliptic curves. In each table, the column labeled “predicted” lists the approximate
values of

CE,L

∫ 1013

2

dt
2
√

t(log t)L
,

“actual” lists the values of πE,L(1013), and “% error” lists as a percentage the
approximate values of

CE,L

∫ 1013

2

dt
2
√

t(log t)L
−πE,L(1013)

CE,L

∫ 1013

2

dt
2
√

t(log t)L

.

The first and third curves were already considered in [Silverman and Stange 2011],
and are included here largely to show the contrast with the second curve. For each
of these curves, a detailed list of the aliquot cycles with p1 ≤ 1013 may be found in
an expanded version of this paper [Jones 2012].

E predicted actual % error

y2
+ y = x3

− x 318.98 332 −4.08%
y2
= x3
+ 6x − 2 546.78 564 −2.97%

y2
+ y = x3

+ x2 318.97 328 −2.83%
y2
+ xy+ y = x3

− x2 318.95 331 −3.78%

Table 2. Data on πE,2(1013) for various E .
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E predicted actual % error

y2
+ y = x3

− x 3.03 3 1.05%
y2
= x3
+ 6x − 2 12.59 12 4.66%

y2
+ y = x3

+ x2 3.04 2 34.10%
y2
+ xy+ y = x3

− x2 3.02 4 −32.48%

Table 3. Data on πE,3(1013) for various E .

The four elliptic curves E under consideration satisfy

(23)
[
GL2(Z/nZ) : Gal(Q(E[n])/Q)

]
≤ 2

for each n ≥ 1 (see [Serre 1972, pp. 309–311; Lang and Trotter 1976, p. 51]). As
shown in [Serre 1972, pp. 310–311], this is the smallest index that one can have for
general n when the elliptic curve E is defined over Q. We call any elliptic curve
E satisfying (23) a Serre curve. Serre curves are thus elliptic curves for which
Gal(Q(E[n])/Q) is “as large as possible for all n,” and it has been shown that,
when ordered by height, almost all elliptic curves are Serre curves (see [Jones 2010;
Radhakrishnan 2008]). One can show that for any Serre curve E , one has CE,L > 0.
In fact, if we define the constant CL by

CL :=
φL(0)

L
· lim

k→∞

nL
k

∣∣GL2(Z/nkZ)L
ali-cycle

∣∣∣∣GL2(Z/nkZ)L
∣∣ =

φL(0)
L
·

∏
l prime

l L
∣∣GL2(Fl)

L
ali-cycle

∣∣∣∣GL2(Fl)L
∣∣ ,

then for any Serre curve E one has that CE,L = CL · fL(1s f (E)), where 1s f (E)
denotes the square-free part of the discriminant of any Weierstrass model of E and
fL is a positive function which approaches 1 as |1s f (E)| approaches infinity. For
L = 2 one has

C2 =
φ2(0)

2
·

∏
l prime

l2
∣∣GL2(Fl)

2
ali-cycle

∣∣∣∣GL2(Fl)2
∣∣ =

8
3π2 ·

∏
l prime

l2(l4
− 2l3

− 2l2
+ 3l + 3)

[(l2− 1)(l − 1)]2

≈ 0.077088124,

whereas for L = 3 one has

C3 =
φ3(0)

3

∏
l prime

l3
∣∣GL2(Fl)

3
ali-cycle

∣∣∣∣GL2(Fl)3
∣∣

=
φ3(0)

3

∏
l prime

l3
[
l6
−3l5
−3l4
+14l3

+(3+χ(l))l2
−(19+3χ(l))l−10−3χ(l)

]
[(l2− 1)(l − 1)]3

≈ 0.019759298,
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E CE,2 CE,3 1s f (E)

y2
+ y = x3

− x ≈ 0.077093 ≈ 0.019841 37
y2
= x3
+ 6x − 2 ≈ 0.132151 ≈ 0.082365 −3

y2
+ y = x3

+ x2
≈ 0.077091 ≈ 0.019861 −43

y2
+ xy+ y = x3

− x2
≈ 0.077088 ≈ 0.019759 −53

Table 4. Values of CE,2, CE,3 and 1s f (E).

where χ(l)=
(
−3
l

)
denotes the character of conductor 3. Table 4 gives the values

of CE,2, CE,3 and 1s f (E) for each of the four curves under consideration. The
reason the second curve has a larger value of CE,L is that |1s f (E)| is smaller for
this curve than for the others.

4.2. An elliptic curve with CE,L = 0. We will now discuss briefly the elliptic curve

(24) E : y2
= x3
− 3x + 4

which was mentioned in the introduction, for which πE,L(x) ≡ 0 and whose as-
sociated graph GE contains no closed walks at all. We will presently describe the
Galois group Gal(Q(E[4])/Q), which is an index 4 subgroup of GL2(Z/4Z). First,
define the subgroup H(4)⊆ GL2(Z/4Z) by

H(4) :=
{(

1 0
0 1

)
,

(
0 1
−1 −1

)
,

(
−1 −1
1 0

)
,

(
−1 −1
0 1

)
,

(
1 0
−1 −1

)
,

(
0 1
1 0

)}
.

We then have

(25) Gal(Q(E[4])/Q)= H(4) ·
(

I + 2
{(

0 0
0 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)})
.

(To see that the right-hand expression defines a subgroup of GL2(Z/4Z), note that{(
0 0
0 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
⊆ M2×2(Z/2Z)

is closed under addition and under GL2(Z/2Z)-conjugation.)
Even though Gal(Q(E[2])/Q)= GL2(Z/2Z), Gal(Q(E[4])/Q) is a proper sub-

group of GL2(Z/4Z), and so one has 4 |m E . Furthermore, in this case the restriction
map Gal(Q(E[m E ])/Q)� Gal(Q(E[4])/Q) induces a graph morphism

(26) GE = GE(m E)� GE(4),

which is surjective in the sense that it carries the vertex set V(m E) onto V(4) and
likewise carries E(m E) onto E(4).

On the other hand, using (25), one finds that the directed graph GE(4) is:
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(27) (2, 1) (2,−1) (−1, 1) (0,−1)

Infinitely many primes p for which |E(Fp)| is prime. The non-CM case of a con-
jecture of Koblitz (see [Koblitz 1988] and also [Zywina 2011]) expresses (in our
terminology) that for any non-CM elliptic curve E , the existence of a single directed
edge in GE implies the existence of infinitely many primes p for which |E(Fp)| is
prime. Taking E to be the elliptic curve given by (24), we see by the surjectivity
of (26) together with (27) that GE contains at least one directed edge. Thus, assuming
Koblitz’s conjecture, there are infinitely many primes p for which |E(Fp)| is prime.

Finitely many aliquot cycles for E. Continuing with the example (24), by the surjec-
tivity of (26) together with (27), we see that GE contains no closed walks at all. By
Proposition 2.6, there are only finitely many aliquot cycles (p1, p2, . . . , pL) for E .
This particular example may be explained as follows. Whenever p2 = |E(Fp1)| for
some prime p1, we see from (27) that (tr(FrobQ(E[4])(p1)), det(FrobQ(E[4])(p1)))=

(−1, 1) (otherwise, |E(Fp1)| would be even). But then(
tr(FrobQ(E[4])(p2)), det(FrobQ(E[4])(p2))

)
∈ {(0,−1), (2,−1)},

in which case |E(Fp2)| must be even. One deduces that E has no aliquot cycles of
length L ≥ 2, and indeed no aliquot sequences of length L ≥ 3.

Remark 4.1. There is a modular curve X of level 4 and genus 0 with |X (Q)| =
∞, whose noncuspidal Q-rational points correspond to elliptic curves E ′ for
which −1E ′ is a perfect square. For almost all such elliptic curves E ′, one
may find an appropriate twist E of E ′ for which (25) holds, and thus for which
limx→∞ πE,L(x) <∞ for L ≥ 2. The elliptic curve (24) is one such example.
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