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ASYMPTOTIC L4 NORM OF
POLYNOMIALS DERIVED FROM CHARACTERS

DANIEL J. KATZ

Littlewood investigated polynomials with coefficients in {−1, 1} (Littlewood
polynomials), to see how small their ratio of norms ‖ f ‖4/‖ f ‖2 on the unit
circle can become as deg f →∞. A small limit is equivalent to slow growth
in the mean square autocorrelation of the associated binary sequences of
coefficients of the polynomials. The autocorrelation problem for arrays and
higher dimensional objects has also been studied; it is the natural general-
ization to multivariable polynomials. Here we find, for each n > 1, a fam-
ily of n-variable Littlewood polynomials with lower asymptotic ‖ f ‖4/‖ f ‖2

than any known hitherto. We discover these through a wide survey, infea-
sible with previous methods, of polynomials whose coefficients come from
finite field characters. This is the first time that the lowest known asymptotic
ratio of norms ‖ f ‖4/‖ f ‖2 for multivariable polynomials f (z1, . . . , zn) is
strictly less than what could be obtained by using products f1(z1) · · · fn(zn)

of the best known univariate polynomials.

1. Introduction

1A. History and main result. Littlewood [1966; 1968] pioneered the study of the
L4 norm on the complex unit circle of polynomials whose coefficients lie in {−1, 1},
and in particular wanted to know how small their ratio of norms ‖ f ‖4/‖ f ‖2 can
become as deg f →∞. He suspected, based on calculations of Swinnerton-Dyer,
that this ratio could be made to approach 1 asymptotically, but the smallest limiting
ratio he could find was 4

√
4/3 for the Rudin–Shapiro polynomials [Littlewood 1968].

The L4 norm is of particular interest since it serves as a lower bound for the L∞

norm and is easier to calculate than most other Lr norms. Erdős [1957, Problem 22;
1962] had conjectured that ‖ f ‖∞/‖ f ‖2 is bounded away from 1 for nonconstant
polynomials with complex coefficients of unit magnitude. This was disproved in
[Kahane 1980], but the modified problem where we restrict to coefficients in {−1, 1}
remains open [Newman and Byrnes 1990], and would be solved if one could prove
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that ‖ f ‖4/‖ f ‖2 is bounded away from 1 as deg f →∞. Polynomials in one or
more variables with coefficients in {−1, 1} and small ‖ f ‖4/‖ f ‖2 are equivalent to
binary sequences and arrays (that is, those that simply list the coefficients of the
polynomials) with low mean square aperiodic autocorrelation. Such sequences and
arrays are important in the theory of communications1 [Golay 1977] and statistical
physics [Bernasconi 1987]. Accordingly, we define a Littlewood polynomial in n
variables to have the form

f (z1, . . . , zn)=

s1−1∑
j1=0

· · ·

sn−1∑
jn=0

f j1,..., jn z j1
1 · · · z

jn
n ,

with coefficient f j1,..., jn in {−1, 1}, and our Lr norm for f (z1, . . . , zn) is

‖ f ‖r =
(

1
(2π)n

∫ 2π

0
· · ·

∫ 2π

0

∣∣ f
(
exp(iθ1), . . . , exp(iθn)

)∣∣r dθ1 · · · dθn

)1/r

.

Note that ‖ f ‖22 = s1 · · · sn for our Littlewood polynomial.
For univariate Littlewood polynomials, the lowest asymptotic ratio of norms
‖ f ‖4/‖ f ‖2 found by Littlewood himself [1968] was 4

√
4/3 for the Rudin–Shapiro

polynomials. Two decades later, this was improved to 4
√

7/6 by Høholdt and Jensen
[1988], using modifications of Fekete polynomials. Over two decades later still, in
[Jedwab et al. 2013b], another modification was shown to yield further improvement:

Theorem 1.1 (Jedwab, Katz, Schmidt). There is a family of univariate Littlewood
polynomials that, as deg f →∞, has ‖ f ‖4/‖ f ‖2→ B1, the largest real root of
27x12

− 498x8
+ 1164x4

− 722, which is less than 4
√

22/19.

Prior to this paper, for each n, the lowest known asymptotic ‖ f ‖4/‖ f ‖2 for
n-variable Littlewood polynomials

f (z1, . . . , zn) (in the limit as degz1
f, . . . , degzn

f →∞)

was simply the n-th power of the lowest known ratio for univariate polynomi-
als, based on the fact that if f (z1, . . . , zn) = f1(z1) · · · fn(zn), then ‖ f ‖r =
‖ f1‖r · · · ‖ fn‖r . For bivariate Littlewood polynomials, Schmidt [2011] obtained an
asymptotic ‖ f ‖4/‖ f ‖2 of

√
7/6 in this way (via Høholdt and Jensen’s univariate

polynomials mentioned above), and foresaw the possibility that the asymptotic
‖ f ‖4/‖ f ‖2 could be lowered to B2

1 , contingent upon the conjecture that was later
established as Theorem 1.1. In this paper, we show that one can do better than
this product construction, even when based on the best univariate polynomials now
known (those of Theorem 1.1).

1In this milieu, results are expressed in terms of the merit factor, defined as ‖ f ‖42/(‖ f ‖44−‖ f ‖42).
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Theorem 1.2. For each n>1, there is a family of n-variable Littlewood polynomials
f (z1, . . . , zn) which, as degz1

f, . . . , degzn
f →∞, has ‖ f ‖4/‖ f ‖2 tending to a

value strictly less than Bn
1 .

The lowest known asymptotic ‖ f ‖4/‖ f ‖2 for n-variable Littlewood polynomials
is an algebraic number depending on n, and is specified precisely in Section 1C
after we define in Section 1B the polynomials that are involved.2

1B. Character polynomials. The polynomials used in [Høholdt and Jensen 1988],
[Jedwab et al. 2013b], and the current paper to break previous records for the lowest
known asymptotic ‖ f ‖4/‖ f ‖2 are all character polynomials, that is, polynomials
whose coefficients are given by characters of finite fields. The L4 norms of character
polynomials have already been studied extensively [Høholdt and Jensen 1988;
Jensen and Høholdt 1989; Jensen et al. 1991; Bömer and Antweiler 1993; Borwein
2002; Borwein and Choi 2000; 2002; Jedwab 2005; Høholdt 2006; Jedwab and
Schmidt 2010; Schmidt 2011], but it took the new methods of this paper to discover
and verify the properties of the polynomials of our Theorem 1.2.

The interrelation between the additive and multiplicative structures of finite fields
endow character polynomials with their remarkable qualities: the coefficients of an
additive character polynomial are obtained by applying an additive character of a
finite field to its nonzero elements arranged multiplicatively (listed as successive
powers of a primitive element), while the coefficients of a multiplicative character
polynomial are obtained by applying a multiplicative character of a finite field to its
elements arranged additively (as Z-linear combinations of the generators, arrayed
in a box whose dimensionality equals the number of generators). Thus an additive
character polynomial has the form

(1) f (z)=
∑
j∈S

ψ(α( j + t))z j ,

where ψ : Fq → C is a nontrivial additive character, the support S is a set of the
form {0, 1, . . . , s− 1}, the translation t is an element of Z, and the arrangement α
is a group epimorphism from Z to F∗q . A multiplicative character polynomial has
the form

(2) f (z1, . . . , ze)=
∑

j=( j1,..., je)∈S

χ(α( j + t)) z j1
1 · · · z

je
e ,

where e is a positive integer, χ is a nontrivial complex-valued multiplicative char-
acter of Fq = Fpe with p prime, the support S is S1×· · ·× Se with each Sk a set of

2Gulliver and Parker [2005] have also studied ‖ f ‖4/‖ f ‖2 for multivariable Littlewood polynomi-
als, but in a very different limit: they let the number of variables tend to infinity while keeping the
degree in each variable less than or equal to one.
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the form {0, 1, . . . , sk − 1}, while the translation t = (t1, . . . , te) is in Ze, and the
arrangement α is a group epimorphism from Ze to Fq . We always extend nontrivial
multiplicative characters to take 0 to 0.

We now define the Fekete polynomials and their modifications used in [Høholdt
and Jensen 1988] and [Jedwab et al. 2013b]. For an odd prime p, the p-th Fekete
polynomial is a multiplicative character polynomial using the quadratic character
(Legendre symbol) over the prime field Fp, support S={0, 1, . . . , p−1}, translation
t=0, and arrangement α : Z→Fp given by reduction modulo p. Fekete polynomials
are themselves the subject of many fascinating studies linking number theory and
analysis [Fekete and Pólya 1912; Pólya 1919; Montgomery 1980; Baker and
Montgomery 1990; Conrey et al. 2000; Borwein et al. 2001; Borwein and Choi
2002].

The polynomials used in [Høholdt and Jensen 1988] to obtain asymptotic
‖ f ‖4/‖ f ‖2 of 4

√
7/6 have the same character, support, and arrangement, but the

translations t are chosen such that t/p→ 1/4 as p→∞, and any coefficient of 0
(arising from the extended multiplicative character) is replaced with 1 to obtain
Littlewood polynomials. To obtain asymptotic ‖ f ‖4/‖ f ‖2 less than 4

√
22/19, we

used in [Jedwab et al. 2013b] a different limit for t/p, and allowed the support
S = {0, 1, . . . , s−1} to be of size other than p, and in fact let s/p tend to a number
slightly larger than 1 as p→∞.

The families of character polynomials used here are based on similar asymptotics:
we say that a family { fι}ι∈I of additive character polynomials is size-stable to mean
that if we write Fqι and Sι for the field and support of fι, then {qι : ι ∈ I } is infinite
and |Sι|/(qι−1) tends to a positive real number σ (called the limiting size) as qι→∞.
Likewise, we say that a family of e-variable multiplicative character polynomials
{ fι}ι∈I is size-stable to mean that if we write Fqι = Fpe

ι
and Sι = Sι,1× · · · × Sι,e

for the field and support of fι, then the set of primes {pι : ι ∈ I } is infinite and
for each k ∈ {1, . . . , e}, the ratio |Sι,k |/pι tends to a positive real number σk as
qι→∞. We call σ1, . . . , σe the limiting sizes. And we say that a family of e-variable
multiplicative character polynomials { fι}ι∈I is translation-stable to mean that if
we write Fqι = Fpe

ι
and tι = (tι,1, . . . , tι,e) for the field and translation of fι, then

the set of primes {pι : ι ∈ I } is infinite and for each k ∈ {1, . . . , e}, the ratio tι,k/pι
tends to a real number τk as qι→∞. We call τ1, . . . , τe the limiting translations.

1C. Subsidiary results. We discovered the polynomials of Theorem 1.2 via a
survey, enabled by the methods presented in this paper, of the asymptotic L4 norms
of both additive and multiplicative character polynomials. Quadratic multiplicative
characters behave differently than nonquadratic ones, so we treat them separately:
we have quadratic families in which every character is quadratic, and nonquadratic
families in which none is. We then have three theorems: one for additive characters
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and two for the different types of multiplicative characters, and we express our
limiting norms in terms of the function

(3) �(x, y)=
∑
n∈Z

max(0, 1− |xn− y|)2,

which is defined and continuous on {(x, y) ∈ R2
: x 6= 0}.

Theorem 1.3. Let { fι}ι∈I be a size-stable family, with limiting size σ , of additive
character polynomials over fields {Fqι}ι∈I .

(i) As qι→∞, we have

‖ fι‖44
‖ fι‖42

→−
2
3σ + 2�

( 1
σ
, 0
)
.

(ii) This limit is globally minimized if and only if σ is the unique root in
(
1, 1+ 9

64

)
of x3
− 12x + 12.

Theorem 1.4. Let { fι}ι∈I be a size-stable family, with limiting sizes σ1, . . . , σe, of
e-variable nonquadratic multiplicative character polynomials over fields {Fqι}ι∈I .

(i) As qι→∞, we have

‖ fι‖44
‖ fι‖42

→−
2e

3e

e∏
j=1

σi + 2
e∏

j=1

�
( 1
σ j
, 0
)
.

(ii) This limit is globally minimized if and only if σ1, . . . , σe all equal the unique
root in (1, 1+ 3e+1/22e+4) of

x3e
−

3e

2e−3 (x − 1)(3x2
− 4x + 2)e−1.

Theorem 1.5. Let { fι}ι∈I be a size- and translation-stable family, with limiting
sizes σ1, . . . , σe and limiting translations τ1, . . . , τe, of e-variable quadratic multi-
plicative character polynomials over fields {Fqι}ι∈I .

(i) As qι→∞, we have

‖ fι‖44
‖ fι‖42

→−
2e+1

3e

e∏
j=1

σi + 2
e∏

j=1

�
( 1
σ j
, 0
)
+

e∏
j=1

�
( 1
σ j
, 1+

2τ j

σ j

)
.

(ii) This limit is globally minimized if and only if σ1, . . . , σe all equal the unique
root in (1, 1+ 3e+1/22e+3) of

x3e
−

3e

2e−2 (x − 1)(3x2
− 4x + 2)e−1

−
3e

22e (2x − 1)2e−1,

and τ j ∈ {
1
4(1− 2σ j )+ n/2 : n ∈ Z} for each j ∈ {1, . . . , e}.
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These new theorems are much more general than the compositum of all previous
results on the limiting ratio of L4 to L2 norm for character polynomials [Høholdt
and Jensen 1988; Jensen and Høholdt 1989; Jensen et al. 1991; Borwein and
Choi 2000; Schmidt 2011; Jedwab et al. 2013a; 2013b], and reveal for the first
time the full functional form of the asymptotic ratio of norms as it depends on
choice of character, limiting size, and limiting translation, thus enabling us to find
multivariable Littlewood polynomials with lower asymptotic ‖ f ‖4/‖ f ‖2 than any
known hitherto.

For each e ≥ 1, let Ae (resp., Be) be the minimum asymptotic ratio of norms
for a family of e-variable nonquadratic (resp., quadratic) character polynomials, as
described in Theorem 1.4(ii) (for Ae) and Theorem 1.5(ii) (for Be). Note that A1

is also the minimum asymptotic ratio of norms achievable by a family of additive
character polynomials as described in Theorem 1.3(ii). Rational approximations
of B4

1 , B4
2 , . . . , B4

5 are obtained later in Lemma 7.1, and if desired, a computer
may be used to obtain more accurate approximations of values of various Ae

and Be. For each e ≥ 1, Be is to date the lowest known asymptotic ‖ f ‖4/‖ f ‖2
for a family of e-variable Littlewood3 polynomials f (z1, . . . , ze) in the limit as
degz1

f, . . . , degze
f →∞. For e = 1, this recapitulates Corollary 3.2 of [Jedwab

et al. 2013b], while for e > 1, the ratio obtained here is strictly lower than any
found to date. Until now, the smallest known asymptotic ratio has been whatever
can be obtained from the best univariate polynomials and the product construction
‖ f (z1) · · · f (ze)‖r = ‖ f (z)‖er , and so we are claiming that Be < Be

1 for every
e > 1. This will give our main result, Theorem 1.2, but in fact we prove something
more general: one always obtains a lower asymptotic ratio of norms with a single
optimal family of quadratic character polynomials than one does using the product
construction with two or more families of character polynomials (which could draw
coefficients from {−1, 1} or a larger set, depending on the characters involved).

Theorem 1.6. For each e ≥ 1, let Ae (resp., Be) be the minimum asymptotic
ratio of L4 to L2 norm achievable by families of e-variable nonquadratic (resp.,
quadratic) multiplicative character polynomials, as described in Theorem 1.4(ii)
(resp., Theorem 1.5(ii)).

Then Be < Ae for every e ≥ 1 and Be1+e2 < Be1 Be2 for every e1, e2 ≥ 1.

1D. Organization of this paper. To prove Theorems 1.3–1.5, we first establish
a general theorem for obtaining the L4 norm of a polynomial from its Fourier
interpolation in Section 3, after setting down notational conventions in Section 2.
Our general theorem reduces the problem of computing L4 norms of character

3Quadratic character polynomials are not always Littlewood because the extended quadratic
character χ has χ(0)= 0, so we replace each coefficient of 0 thus produced with a 1, and Corollary A.3
shows that this has no effect on the asymptotic ratio of norms.
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polynomials to a pair of calculations (one for additive and one for multiplicative
characters) involving Gauss sums, which are presented in Section 4. We use these
in Section 5 to prove Theorems 1.3(i), 1.4(i), and 1.5(i). These respectively imply
Theorems 1.3(ii), 1.4(ii), and 1.5(ii), but showing this demands delicate arguments
which are sketched in Section 6. We prove Theorem 1.6 in Section 7. Some
technical results used in Sections 5 and 6 are collected and proved in the Appendix.

2. Notation and conventions

For the rest of this paper p is a prime, and q = pe with e a positive integer. For
any group 0, we use 0̂ to denote the group of characters from 0 into C: thus F̂q is
the group of additive characters from Fq to C and F̂∗q the group of multiplicative
characters from F∗q to C. We extend any nontrivial χ ∈ F̂∗q so that χ(0)= 0.

To write the multiplicative character polynomial (2) compactly, we use the
convention that if j = ( j1, . . . , je)∈Ze, the notation z j is a shorthand for z j1

1 · · · z
je
e .

To make it easier to speak about supports of character polynomials (1) and (2), we
call a finite set of consecutive integers a segment, and a finite Cartesian product
of segments a box. If S is a subset of Zn and t ∈ Zn , then S+ t is the translated
subset {s+ t : s ∈ S}.

3. L4 norms via the Fourier transform

If 0 is a finite abelian group and {Fg}g∈0 is a family of complex numbers, then for
any η ∈ 0̂, we have the Fourier transform

F̂η =
∑
g∈0

Fgη(g),

with inverse

Fg =
1
|0|

∑
η∈0̂

F̂ηη(g).

We express the L4 norm in terms of the Fourier interpolation.

Theorem 3.1. Let 0 be a finite abelian group, {Fg}g∈0 a family of complex numbers,
n a positive integer, and π ∈ Hom(Zn, 0). For any η ∈ 0̂, let η ′ ∈ Ẑn be η ◦π . If
U is a finite subset of Zn and F(z)=

∑
u∈U Fπ(u)zu

∈ C[z1, . . . , zn], then

‖F‖44 =
1
|0|5

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ,µ,ν∈0̂

κ ′(a)λ′(b)µ ′(c)ν ′(d)H(κ, λ, µ, ν),

where
H(κ, λ, µ, ν)=

∑
ξ∈0̂

F̂ξκ F̂ξλ F̂ξµ F̂ξν .
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Proof. By the definition of the L4 norm, we have

‖F‖44 =
∑

a,b,c,d∈U
a+b=c+d

Fπ(a)Fπ(b)Fπ(c)Fπ(d),

and thus, using the inverse Fourier transform,

‖F‖44 =
1
|0|4

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ,µ,ν∈0̂

F̂κ F̂λ F̂µ F̂νκ ′(a)λ′(b)µ ′(c)ν ′(d).

Since we are summing κ over all 0̂, we can replace κ by ξκ for any given ξ ∈ 0̂,
and also do likewise with λ, µ, ν to obtain

‖F‖44 =
1
|0|4

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ,µ,ν∈0̂

F̂ξκ F̂ξλ F̂ξµ F̂ξνκ ′(a)λ′(b)µ ′(c)ν ′(d)

where we have omitted mention of the resulting factor of ξ ′(a)ξ ′(b)ξ ′(c)ξ ′(d),
which equals 1 in view of the constraint in the first summation. Now sum ξ over 0̂
and divide by |0| = |0̂| to finish. �

We apply this general theorem to additive and multiplicative character polynomi-
als in two corollaries below. Such polynomials have Gauss sums as their Fourier
coefficients, so for any ψ ∈ F̂q and χ ∈ F̂∗q , we define the Gauss sum associated
with ψ and χ to be

G(ψ, χ)=
∑
a∈F∗q

ψ(a)χ(a).

Corollary 3.2. If f (z) is an additive character polynomial with character ψ ∈ F̂q ,
support S, translation t , and arrangement α, then

‖ f ‖44 =
1

(q−1)5
∑

a,b,c,d∈S+t
a+b=c+d

∑
κ,λ,µ,ν∈F̂∗q

κ ′(a)λ′(b)µ ′(c)ν ′(d)H(κ, λ, µ, ν)

where for any η ∈ F̂∗q , we let η ′ ∈ Ẑ be η ◦α, and

H(κ, λ, µ, ν)=
∑
ξ∈F̂∗q

G(ψ, ξκ)G(ψ, ξλ)G(ψ, ξµ)G(ψ, ξν).

Proof. Our additive character polynomial f (z)=
∑

s∈S ψ(α(s+ t))zs has the same
Lr norms as F(z) = zt f (z) =

∑
u∈S+t ψ(α(u))z

u , so take 0 = F∗q , Fg = ψ(g),
n = 1, π = α, and U = S + t in Theorem 3.1, and note that for η ∈ F̂∗q we have
F̂η = G(ψ, η). �
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Corollary 3.3. If f (z) is a multiplicative character polynomial with character
χ ∈ F̂∗q , support S, translation t , and arrangement α, then

‖ f ‖44 =
1
q5

∑
a,b,c,d∈S+t

a+b=c+d

∑
κ,λ,µ,ν∈̂Fq

κ ′(a)λ′(b)µ ′(c)ν ′(d)H(κ, λ, µ, ν)

where for any η ∈ F̂q , we let η ′ ∈ Ẑe be η ◦α, and

H(κ, λ, µ, ν)=
∑
ξ ∈̂Fq

G(ξκ, χ)G(ξλ, χ)G(ξµ, χ)G(ξν, χ).

Proof. Our multiplicative character polynomial f (z)=
∑

s∈S χ(α(s+ t))zs has the
same Lr norms as F(z)= zt f (z)=

∑
u∈S+t χ(α(u))z

u , so take 0= Fq , Fg =χ(g),
n = e, π = α, and U = S + t in Theorem 3.1, and note that for η ∈ F̂q we have
F̂η = G(η, χ). �

The key to L4 norms is then the evaluation of the sums H(κ, λ, µ, ν) in the
above two corollaries, which we take up in the next section.

4. Two propositions on summations of Gauss sums

Here we estimate the values of the summations H that appear in Corollaries 3.2
and 3.3. We begin with some basic facts about Gauss sums, which are proved in
Theorems 5.11 and 5.12 of [Lidl and Niederreiter 1997].

Lemma 4.1. If ψ ∈ F̂q and χ ∈ F̂∗q , then

(i) G(ψ, χ)= q − 1 if both characters are trivial,

(ii) G(ψ, χ)= 0 if ψ is trivial and χ is not,

(iii) G(ψ, χ)=−1 if χ is trivial and ψ is not,

(iv) |G(ψ, χ)| =
√

q if both characters are nontrivial, and

(v)
∑

a∈F∗q
ψ(ba)χ(a)= χ(b)G(ψ, χ) for any b ∈ F∗q .

We first estimate the summation H appearing in Corollary 3.2.

Proposition 4.2. Let ψ be a nontrivial character in F̂q , and κ, λ, µ, ν ∈ F̂∗q . If

H =
∑
ξ∈F̂∗q

G(ψ, ξκ)G(ψ, ξλ)G(ψ, ξµ)G(ψ, ξν),

M =
{
(q − 1)3 if {κ, λ} = {µ, ν},
0 otherwise,

then |H −M | ≤ (q − 1)q
√

q.
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Proof. First we consider the case where {κ, λ} = {µ, ν}, wherein

H =
∑
ξ∈F̂∗q

|G(ψ, ξκ)|2|G(ψ, ξλ)|2.

One can work out from parts (iii) and (iv) of Lemma 4.1 that H = (q − 2)q2
+ 1 if

κ = λ= µ= ν and H = (q− 3)q2
+ 2q otherwise. Thus H −M = (q− 1)(q− 2)

or 1− q .
Now we consider the case where {κ, λ} 6= {µ, ν}, wherein

H =
∑
ξ∈F̂∗q

∑
w,x,y,z∈F∗q

ψ(w+ x − y− z)ξ(wxy−1z−1)κ(w)λ(x)µ(y)ν(z)

= (q − 1)
∑

w,x,y,z∈F∗q
wx=yz

ψ(w+ x − y− z)κ(w)λ(x)µ(y)ν(z).

Now reparametrize the sum with w = uy and z = ux to obtain

H = (q − 1)
∑

u,x,y∈F∗q

ψ((u− 1)x)ψ((u− 1)y)κν(u)λν(x)κµ(y),

and since {κ, λ} 6= {µ, ν}, we can restrict to u 6= 1 without changing the value of the
summation. Then Lemma 4.1(v) tells us that when we sum over x and y, we obtain

H = (q − 1)G(ψ, κµ)G(ψ, λν)
∑

u 6=0,1

κλµν(u− 1)κν(u).

Now κλµν and κν cannot both be the trivial character since {κ, λ} 6= {µ, ν}. If
κλµν is trivial, then the sum over u is −1; if κν is trivial, the sum is −κλµν(−1);
otherwise, let ω be a generator of F̂∗q and we can write the sum over u as∑

u 6=0,1

ω((u− 1)aub)

for some nonzero a, b ∈ Z/(q − 1)Z, and use the Weil bound [Weil 1948; Lidl
and Niederreiter 1997, Theorem 5.41] to see that this sum is bounded in mag-
nitude by

√
q. We can use this fact, along with Lemma 4.1(iii), (iv), to see

that |H | ≤ (q − 1)q
√

q . �

Similarly, we estimate the summation H appearing in Corollary 3.3.

Proposition 4.3. Let χ be a nontrivial character in F̂∗q , and κ, λ, µ, ν ∈ F̂q . If

H =
∑
ξ ∈̂Fq

G(ξκ, χ)G(ξλ, χ)G(ξµ, χ)G(ξν, χ)
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and

M =


q3 if {κ, λ} = {µ, ν},
q3 if κ = λ, µ= ν, and χ is the quadratic character,
0 otherwise,

then |H −M | ≤ 3q2√q.

Proof. Let ε be the canonical additive character over Fq . Then for any η ∈ F̂q , there
is a unique y ∈ Fq such that η(z) = ε(yz) for all z ∈ Fq . Let a, b, c, d be chosen
so that κ(z)= ε(az), λ(z)= ε(bz), µ(z)= ε(cz), and ν(z)= ε(dz) for all z ∈ Fq .
Furthermore, we shall parametrize the sum of ξ over F̂q in the definition of H by
a sum over x ∈ Fq , and replace ξ(z) with ε(xz) wherever it occurs. Thus, in view
Lemma 4.1(v) and (ii), we have

H = |G(ε, χ)|4
∑
x∈Fq

χ((x + a)(x + b))χ((x + c)(x + d)),

and |G(ε, χ)| =
√

q by Lemma 4.1(iv). Let m be the order of χ . Then

H = q2
∑
x∈Fq

χ((x + a)m−1(x + b)m−1(x + c)(x + d)).

The magnitude of the Weil sum over x is bounded by 3
√

q unless the polynomial
(x+a)m−1(x+b)m−1(x+c)(x+d) is an m-th power in Fq [x]. (See [Weil 1948; Lidl
and Niederreiter 1997, Theorem 5.41].) It is an m-th power only if {a, b} = {c, d}
or if m = 2, a = b, and c = d, in which cases the Weil sum is either q − 1 (if
a = b = c = d) or q − 2 (if there are two distinct roots). �

5. Asymptotic L4 norm

We prove Theorems 1.3(i), 1.4(i), and 1.5(i) in this section, by using the propositions
from the previous section with Corollaries 3.2 and 3.3.

Proof of Theorems 1.4(i) and 1.5(i). Let χ be a nontrivial character in F̂∗q , let α be an
epimorphism from Ze to Fq , let t ∈Ze, and let S= S1×· · ·×Se be a box where each
S j is a nonempty segment of the form {0, 1, . . . , s j −1}. Recall from Section 2 our
notational convention that zs is shorthand for zs1

1 · · · z
se
e when s = (s1, . . . , se) ∈ Ze.

Let f (z) be the multiplicative character polynomial
∑

s∈S χ(α(s + t))zs . We
shall calculate ‖ f ‖44 first, and then investigate what happens asymptotically to this
quantity in the limits considered in Theorems 1.4(i) and 1.5(i). By Corollary 3.3,
we have

(4) ‖ f ‖44 =
1
q5

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ,µ,ν∈̂Fq

κ ′(a)λ′(b)µ ′(c)ν ′(d)H(κ, λ, µ, ν),
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where we let U = S+ t , and for any η ∈ F̂q , we let η ′ = η ◦α, and

H(κ, λ, µ, ν)=
∑
ξ ∈̂Fq

G(ξκ, χ)G(ξλ, χ)G(ξµ, χ)G(ξν, χ).

By Proposition 4.3, we can write H(κ, λ, µ, ν)=M(κ, λ, µ, ν)+N (κ, λ, µ, ν)with

M(κ, λ, µ, ν)=


q3 if {κ, λ} = {µ, ν},
q3 if κ = λ, µ= ν, and χ is the quadratic character,
0 otherwise,

and

(5) |N (κ, λ, µ, ν)| ≤ 3q2√q,

for all κ , λ, µ, ν ∈ F̂∗q .
If χ is nonquadratic, when we write out separately the contributions from M

and N to (4), we get ‖ f ‖44 = A+ B− D+ E , where

A = 1
q2

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ∈̂Fq

κ ′(c− a)λ′(d − b),

B = 1
q2

∑
a,b,c,d∈U
a+b=c+d

∑
κ,λ∈̂Fq

κ ′(d − a)λ′(c− b),

D = 1
q2

∑
a,b,c,d∈U
a+b=c+d

∑
κ∈̂Fq

1,

E = 1
q5

∑
κ,λ,µ,ν∈̂Fq

N (κ, λ, µ, ν)
∑

a,b,c,d∈U
a+b=c+d

κ ′(a)λ′(b)µ ′(c)ν ′(d).

Here A accounts for the value of M when (κ, λ)= (µ, ν), and B accounts for the
value of M when (κ, λ)= (ν, µ), while D corrects for the double counting by A
and B of the case κ = λ= µ= ν.

Note that A = B, and that A counts the number of (a, b, c, d) ∈ U 4 with
c−a=b−d ∈kerα. If we write a= (a1, . . . , ae), b= (b1, . . . , be), c= (c1, . . . , ce),
and d = (d1, . . . , de), then c−a ∈ kerα is equivalent to c1−a1 ≡ · · · ≡ ce−ae ≡ 0
(mod p), because α is an epimorphism from Ze to Fq = Fpe and so factors as
α = γ ◦ β, with β : Ze

→ (Z/pZ)e coordinate-wise reduction modulo p and
γ : (Z/pZ)e → Fq a group isomorphism. Now U = U1 × · · · × Ue with each
U j = {t j , t j +1, . . . , t j +|S j |−1}, so for each n ∈ Z, there are max(0, |S j |− p|n|)
ways for c j −a j to equal pn and the same number of ways for b j −d j to equal pn.
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So

A = B =
e∏

j=1

∑
n j∈Z

max(0, |S j | − p|n j |)
2.

On the other hand, q D counts the number of (a, b, c, d)∈U 4 with c−a= b−d ,
so by the same argument we just used (with modulus 1 instead of p),

q D =
e∏

j=1

∑
n j∈Z

max(0, |S j | − |n j |)
2,

from which we can compute

D =
e∏

j=1

(
2|S j |

3
+ |S j |

3p

)
.

Now we bound E via two bounds: our bound (5) on N , and a technical result,
Lemma A.1 in the Appendix, bounding the inner sum of E . We satisfy the condition
on α demanded by this lemma, since α = γ ◦β with β : Ze

→ (Z/pZ)e coordinate-
wise reduction modulo p and γ : (Z/pZ)e→ Fq a group isomorphism. With these
two bounds, we obtain

(6) |E | ≤ 3 · 64eq
√

q
e∏

j=1

max
(

1,
|S j |

p

)3 e∏
j=1

(1+ log p)3.

Now we divide ‖ f ‖44 = A+ B−D+ E by ‖ f ‖42 and consider the limit where each
|S j |/p→ σ j as q→∞, that is, consider what happens in a size-stable family of
polynomials. Another technical result, Lemma A.2, shows that we can replace the
denominator ‖ f ‖42 with |S|2 without changing the limit. Then recall the definition
(3) of �, and note that A/|S|2 and B/|S|2 tend to

∏e
j=1�(1/σ j , 0), that D/|S|2

tends to
( 2

3

)e ∏e
j=1 σ j , and that |E |/|S|2 tends to 0 in this limit.

If χ is quadratic, the proof is done in the same manner, except that there is
now a contribution from M in the case where κ = λ and µ = ν, and so we get
‖ f ‖44 = A+ B+C − 2D+ E , where A, B, D, and E are as defined above, and

C = 1
q2

∑
a,b,c,d∈U
a+b=c+d

∑
κ,µ∈̂Fq

κ ′(−a− b)µ ′(c+ d).

Note that we subtract D twice now because A, B, and C count the case where
κ = λ = µ = ν three times. C counts the number of (a, b, c, d) ∈ U 4 with
a + b = c + d ∈ kerα. Following the method we used to determine A, write
a = (a1, . . . , ae), b = (b1, . . . , be), c = (c1, . . . , ce), and d = (d1, . . . , de), and
note that a + b ∈ kerα is equivalent to a1 + b1 ≡ · · · ≡ ae + be ≡ 0 (mod p).
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Since U =U1× · · · ×Ue with each U j = {t j , t j + 1, . . . , t j + |S j | − 1}, there are
max(0, |S j |−|np−(2t j+|S j |−1)|) ways to obtain a j+b j = np with (a j , b j )∈U 2

j ,
and the same number of ways to obtain c j + d j = np with (c j , d j ) ∈U 2

j , so

C =
e∏

j=1

∑
n j∈Z

max
(
0, |S j | − |pn j − |S j | − 2t j + 1|

)2
,

and if we have both size- and translation-stability, then |S j |/p→ σ j and t j/p→ τ j

as q→∞, so that C/|S|2→
∏e

j=1�
(
1/σ j , 1+ 2τ j/σ j

)
. �

Proof of Theorem 1.3(i). The proof is the same, mutatis mutandis, as for the e = 1
case of Theorem 1.4(i), with the roles of Fq and F∗q exchanged. Corollary 3.2
and Proposition 4.2 replace Corollary 3.3 and Proposition 4.3, and Lemma A.2
becomes unnecessary as ‖ f ‖22 for an additive character polynomial f is always
precisely equal to the cardinality of the support of f . These, and other attendant
minor changes resulting from the exchange of Fq and F∗q , cause (5) to become
|N (κ, λ, µ, ν)| ≤ (q − 1)q

√
q , and (6) to become

|E | ≤ 64q
√

q max
(
1, |S|/(q − 1)

)3(1+ log(q − 1)
)3
,

and any other printed instance of p or q should be replaced with q − 1. �

6. Minimizing the asymptotic ratio of L4 to L2 norm

Here we prove Theorems 1.3(ii), 1.4(ii), and 1.5(ii) by finding the limiting sizes
and (for quadratic multiplicative character polynomials) the limiting translations
that globally minimize the ratio of the L4 to L2 norm.

Proof of Theorem 1.4(ii). In view of Theorem 1.4(i), we are trying to minimize the
limiting ratio of norms, given by the function

K (x1, . . . , xe)=−
2e

3e

e∏
j=1

xi + 2
e∏

j=1

8(x j ),

for x1, . . . , xe positive real numbers (the limiting sizes), where for positive x ,
we define

(7) 8(x)=�
(1

x
, 0
)
=

∑
n∈Z

max
(

0, 1− |n|
x

)2
,

which is differentiable for x 6= 0 and is C∞ for x 6∈ Z.

Step 1. We can assume that each x j > 1 because otherwise the partial derivative of
K with respect to x j would be negative.
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Step 2. We can assume that (x1, . . . , xe) ∈ (1, 3)e: indeed, Lemma A.6 shows that
K (x1, . . . , xe)≥8(x1) · · ·8(xe), and note that 8(x) is increasing for x > 1, that
8(1) = 1, 8(3) = 19

9 > 2, and K (1, . . . , 1) = 2−
( 2

3

)e
< 2. This proves that a

global minimum exists and lies in (1, 3)e: the closure of (1, 3)e is compact and K
is continuous thereupon.

Step 3. Suppose (σ1, . . . , σe) to be global minimizer of K . Then the partial
derivatives of K must vanish there, whence for each k ∈ {1, . . . , e}, we have
2u(σk)

∏e
j=1 U (σ j ) = 1, where u(x) = x8′(x)/8(x) and U (x) = 38(x)/(2x)

for x > 0.

Step 4. Then one can show that U (x) is strictly decreasing on [1, 3], with U (3)= 19
18 .

Thus we must have u(σk)≤
1
2 ·
( 18

19

)e
< 1

2 for all k ∈ {1, . . . , e}. Then examination of
u(x) shows that u(x) strictly increases from 0 to 1

2 for x ∈ [1, 2−
√

2/3], and then
u(x) > 1

2 for x ∈ (2−
√

2/3, 3). This then forces σ1 = · · · = σe < 2−
√

2/3< 6
5 .

Step 5. Now U (σ1) > U
( 6

5

)
> 9

7 , so this forces u(σ1) <
1
2 ·
( 7

9

)e
≤

7
18 , which in

turn forces σ1 <
8
7 . Then U (σ1) >U

( 8
7

)
> 4

3 , so this forces u(σ1) <
1
2 ·
( 3

4

)e. Since
u(x)≥ 8(x − 1)/3 for x ∈

[
1, 8

7

]
, this forces σ1 < 1+ 3e+1/22e+4.

Step 6. Now our problem is reduced to the single-variable minimization of

2(x)= K (x, . . . , x)=−
(2x

3

)e
+ 28(x)e

on the interval (1, 1+3e+1/22e+4). It is not hard to see that d2/dx vanishes if and
only if x3e

−(3e/2e−3)(x−1)(3x2
−4x+2)e−1 vanishes. Meanwhile d22/dx2> 0

on our interval: by computing its value and then dropping a nonnegative term, we
can see that d22/dx2 is at least

−e(e− 1)2
exe−2

3e + 8e 3−2x
x4 8(x)e−1

≥−e(e− 1)19e

24e + 2e > 0.

This proves that there is a unique minimum: the unique root ae of

x3e
−

3e

2e−3 (x − 1)(3x2
− 4x + 2)e−1

lying in (1, 1+ 3e+1/22e+4). �

Proof of Theorem 1.3(ii). This is accomplished exactly as the e = 1 case of the
proof of Theorem 1.4(ii) above, save that Lemma A.5 replaces Lemma A.6. �

Proof of Theorem 1.5(ii). In view of Theorem 1.5 (i), we are trying to minimize the
limiting ratio of norms, given by the function

(8) −
2e+1

3e

e∏
j=1

x j + 2
e∏

j=1

�
( 1

x j
, 0
)
+

e∏
j=1

�
( 1

x j
, 1+

2y j

x j

)
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for x1, . . . , xe positive real numbers (the limiting sizes) and y1, . . . , ye arbitrary
real numbers (the limiting translations).

Step 1. We invoke Lemma A.4(i) to see that we can confine our search to x1, . . . , xe

greater than or equal to 1
2 . For as long as x j ≤

1
2 , the lemma shows that we can

always arrange for y j to be such that �(x−1
j , 1+ 2x−1

j y j ) = 0, and we note that
�(x−1

j , 0)= 1 for all x j ∈
(
0, 1

2

]
. Thus we can increase x j to 1

2 to lower (8) through
the term −(2e+1/3e)

∏e
j=1 x j while keeping the other terms constant.

Step 2. Now we invoke Lemma A.4(ii) to see that for fixed x1, . . . , xe, we minimize
the last term of (8) if and only if we arrange that

y j ∈

{1−2x j

4
+

m
2
: m ∈ Z

}
for each j ∈ {1, . . . , e}. The problem is thus reduced to the minimization of

3(x1, . . . , xe)=−
2e+1

3e

e∏
j=1

x j + 2
e∏

j=1

8(x j )+

e∏
j=1

9(x j )

for x1, . . . , xe positive real numbers, where 8(x) is as defined in (7), and

9(x)=
∑
n∈Z

max
(

0, 1− |2n+1|
2x

)2

for x > 0. Note that 9 is differentiable for x 6= 0 and is C∞ for x 6∈ Z+ 1
2 .

Step 3. We can assume that each x j >
1
2 because otherwise the partial derivative of

3 with respect to x j would be negative.

Step 4. We can assume that x1, . . . , xe ∈ (
1
2 , 3): indeed, Lemma A.6 shows that

3(x1, . . . , xe)≥8(x1) · · ·8(xe), and note that 8(x) is nondecreasing for x > 1
2 ,

that 8
( 1

2

)
= 1, 8(3) = 19

9 > 2, and 3(1, . . . , 1) = 2− 2
( 2

3

)e
+
( 1

2

)e
< 2. This

proves that a global minimum exists and lies in
( 1

2 , 3
)e: the closure of

( 1
2 , 3

)e is
compact and 3 is continuous thereupon.

Step 5. Suppose that (σ1, . . . , σe) is a global minimizer of 3. Then the partial
derivatives of 3 must vanish there, whence

(9) u(σk)

e∏
j=1

U (σ j )+
1
2v(σk)

e∏
j=1

V (σ j )= 1,

where u(x) =
x8′(x)
8(x)

, U (x) =
38(x)

2x
, v(x) =

x9 ′(x)
9(x)

, and V (x) =
39(x)

2x
for

x > 1
2 .

Step 6. We can assume σ1, . . . , σe ∈ (1, 3): see (9) and note that u(x) = 0 for
x ∈

( 1
2 , 1

]
, 1

2v(x)V (x) < 1 for x ∈
( 1

2 , 1
]
, and V (x) < 1 for x ∈

( 1
2 , 3

)
.
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Step 7. It is not difficult to show that U (x) strictly decreases and V (x) strictly
increases on [1, 3] with U (3) = 19

18 and V (1) = 3
4 , and that 0 ≤ u(x) < 1 ≤ v(x)

for x ∈ [1, 3]. Thus (9) shows that we must have u(σk) <
( 18

19

)e
(1− 3e/22e+1) for

all k. This forces u(σk) <
7

10 for all k, and examination of the function u shows
that u(x)≥ 7

10 for x ∈
[ 5

2 , 3
]
, and so we must have σk <

5
2 for all k.

Now one can repeat the argument on the interval
[
1, 5

2

]
to show that every σk < 2,

then repeat it again on [1, 2] to show σk <
5
4 . Further repetitions give σk <

6
5 ,

σk <
13
11 , and σk <

7
6 . Since U (x) > 4

3 while v(x), V (x)≥ 0 for x ∈
(
1, 7

6

)
, we have

u(σk) <
( 3

4

)e for all k, and since u(x)≥ 8(x − 1)/3 for x ∈
[
1, 7

6

]
, this means that

σk < 1+ 3e+1/22e+3 for all k.

Step 8. So we have 1<σk <min
( 7

6 , 1+3e+1/22e+3
)

for all k. Consider the products
in (9): since each σ j ∈

(
1, 7

6

)
, we have

( 4
3

)e
<

e∏
j=1

U (σ j ) <
(3

2

)e
, while

( 3
4

)e
<

e∏
j=1

V (σ j ) <
( 7

8

)e
.

We now claim that for a given A ∈
[(4

3

)e
,
( 3

2

)e] and B ∈
[(3

4

)e
,
( 7

8

)e], there is at
most one solution x ∈

(
1, 7

6

)
to Au(x)+ 1

2 Bv(x)= 1, which will force σ1= · · ·=σe.
For if we set w(x)= Au(x)+ 1

2 Bv(x), we can show that w′(x) > 0 for x ∈
(
1, 7

6

)
:

on this interval, we have u(x)= 4(x − 1)/(3x2
− 4x + 2) v(x)= 2/(2x − 1), and

it is not difficult to show that u′(x) > 3
2 and v′(x) >−4, so that

w′(x) > 3
2 A− 2B ≥

( 3
2

)(4
3

)e
− 2

( 7
8

)e
> 0.

Step 9. Now our problem is reduced to the single-variable minimization of

T (x)=3(x, . . . , x)=−2(2x/3)e+ 28(x)e+9(x)e

for x ∈ (1, 1+ 3e+1/22e+3). It is not hard to see that dT/dx vanishes if and only if

x3e
−

3e

2e−2 (x − 1)(3x2
− 4x + 2)e−1

−
3e

22e (2x − 1)2e−1

does. Meanwhile we claim that the second derivative of T is strictly positive on
our interval: by dropping some nonnegative terms we see that

d2T
dx2 (x)≥−e(e− 1)2

e+1xe−2

3e + e 8(3−2x)
x4 8(x)e−1

+ e 3−4x
x4 9(x)e−1.

Thus for e = 1, the second derivative is at least (27− 20x)/x4, which is strictly
positive on our interval

(
1, 1+ 9

32

)
. For e = 2, we can use the fact that

0≤9(x)≤ 1≤8(x)
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on our interval
(
1, 1+ 27

128

)
to show that the second derivative is at least

−
16
9
+

54−40x
x4 ,

which is strictly positive on our interval. Finally, if e ≥ 3, we have

1+ 3e+1

22e+3 <
7
6
,

and so on our interval (1, 1+ 3e+1/22e+3) we have 8(3− 2x)/x4 > 20
7 , 8(x)≥ 1,

(3− 4x)/x4
≥−1, and 0≤9(x)≤ 1, so that

d2T
dx2 (x)≥−

8
9

( 7
9

)e−2e(e− 1)+ 13
7 e > 0.

This proves that there is a unique global minimum for this single-variable problem:
the unique root be of

x3e
−

3e

2e−2 (x − 1)(3x2
− 4x + 2)e−1

−
3e

22e (2x − 1)2e−1

lying in (1, 1+ 3e+1/22e+3). Thus we have found that global minima are obtained
precisely when σ1 = · · · = σe = be and τ j ∈ {

1
4(1 − 2be) + m/2 : m ∈ Z} for

each j ∈ {1, . . . , e}. �

7. Proof of Theorem 1.6

For Ae and Be as defined in Theorem 1.6, we first show that Be < Ae for each
e ≥ 1. Given the minimizing conditions described in Theorems 1.4(ii) and 1.5(ii),
it suffices to show that

−
2e+1

3e xe
+ 2�

(1
x
, 0
)e
+�

(1
x
,

1
2x

)e
<−

2e

3e xe
+ 2�

(1
x
, 0
)e
.

for x ∈
[
1, 3

2

]
. This follows if �(1/x, 1/2x) < 2x/3, or using the definition (3) of

�, if 4x3
− 12x2

+ 12x − 3> 0 for x ∈
[
1, 3

2

]
, which is routine to show.

Now we show that Be1+e2 < Be1 Be2 for any e1, e2 ≥ 1. We use a technical
Lemma 7.1 below, which provides bounds on the Be. It shows that if e1 ≥ 5 or
e2 ≥ 5, then Be1 Be2 >

4
√

2> Be1+e2 . So we may confine ourselves to the case where
1 ≤ e1 ≤ e2 ≤ 4. If we define B0 = 1, then the bounds in Lemma 7.1 also show
us that

B1
B0
>

B2
B1
>

B3
B2
>

B4
B3
>

B5
B4
.

Thus we note that Be1 Be2 > Be1−1 Be2+1. If e1+e2 > 5, we can repeat this argument
to show that Be1 Be2 is greater than Be1+e2−5 B5, which we have already shown to
exceed Be1+e2 . On the other hand, if e1+ e2 ≤ 5, repetition of the same argument
produces Be1 Be2 > B0 Be1+e2 = Be1+e2 .
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Lemma 7.1. For each e ≥ 1, let Be be the minimum asymptotic ratio of L4 to
L2 norm achievable by a family of e-variable quadratic multiplicative character
polynomials as described in Theorem 1.5(ii). Then

(i) 4
√

103/89< B1 <
4
√

22/19,

(ii) 4
√

86/65< B2 <
4
√

75/56,

(iii) 4
√

142/95< B3 <
4
√

116/77,

(iv) 4
√

100/61< B4 <
4
√

107/65,

(v) 4
√

7/4< B5 <
4
√

128/73, and

(vi) 4
√

7/4< Be <
4
√

2 for all e ≥ 6.

Proof. By Section 6 of the proof of Theorem 1.5(ii) (see page 389), for each e ≥ 1
the quantity B4

e is the minimum of the function

T (x)=−2e+1

3e xe
+ 2�

(1
x
, 0
)e
+�

(1
x
,

1
2x

)e

on the interval (1, 1+3e+1/22e+3), upon which the second derivative of T is shown
to be positive. Thus if we can find x1, x2, x3 in this interval with x1 < x2 < x3 and
T (x2) <min(T (x1), T (x3)), then we will have shown that the minimizing value of
x lies in the interval (x1, x3). Then we can use B4

e ≤ T (x2) for our upper bound
and, by the monotonicity of �(1/x, 0) and �(1/x, 1/(2x)), we can use

B4
e >−

2e+1

3e xe
3 + 2�

( 1
x1
, 0
)e
+�

( 1
x1
,

1
2x1

)e

as a lower bound. We use this technique to prove bounds in (i)–(v). The calculations
done by hand are tedious, so here we simply state choices of the triple (x1, x2, x3)

that establish stricter bounds than the ones we claim above:

for B1 use
( 55

52 ,
128
121 ,

73
69

)
, for B2 use

( 18
17 ,

17
16 ,

16
15

)
, for B3 use

( 21
20 ,

20
19 ,

19
18

)
,

for B4 use
( 26

25 ,
25
24 ,

24
23

)
, and for B5 use

( 36
35 ,

35
34 ,

34
33

)
.

Henceforth assume that e ≥ 6, and let be be the unique value in the interval
(1, 1 + 3e+1/22e+3) such that T (be) = B4

e . Now note that �(1/x, 0) ≥ 1 and
�(1/x, 1/(2x))≥ 1

2 for x ≥ 1, and that 2be/3< (215
+ 37)/(3 · 214) < 1, so that

B4
6 >−2

(215
+37

3·214

)6
+ 2+ 1

26 >
7
4 ,

and if e ≥ 7, then

B4
e >−2

(215
+37

3·214

)7
+ 2> 7

4 .

This proves our lower bound on Be when e ≥ 6.
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To prove our upper bound on Be when e ≥ 6, write be = 1+ ce with 0< ce <

3e+1/22e+3, and use the definition (3) of � and the fact that 1/(1+ ce) > 1− ce to
estimate Be = T (be) as

B4
e <−

2e+1

3e + 2(1+ 2c2
e)

e
+

1
2e (1+ ce)

2e

≤−
2e+1

3e + 2+ 4ec2
e + 2e+3c4

e +
1
2e (1+ ce)

2e,

where the second inequality follows from a crude approximation with the binomial
expansion. Now note that

2e+3c4
e <

34e+4

27e+9 <
2e

6·3e and 4ec2
e < e 32e+2

24e+4 <
5·2e

4·3e ,

so that
B4

e < 2− 7
12
·

2e

3e +
1
2e (1+ ce)

2e,

which will imply B4
e < 2 if we can show that (3(1+ ce)

2/4)e ≤ 7
12 . Given that

ce ≤ 37/215 < 1
10 , the quantity being raised to the e-th power on the left hand side

is less than 1, so it suffices to show that (3( 11
10)

2/4)6 ≤ 7
12 . �

Appendix A: Proofs of auxiliary results

Here we collect, for the sake of completeness, technical results used in our proofs.
The first is a bound on a character sum used in the proofs of Theorems 1.3(i), 1.4(i),
and 1.5(i) in Section 5.

Lemma A.1. Let 0 be a finite abelian group, n a positive integer, and

π1, . . . , πn ∈ Hom(Z, 0)

such that imπ1 + · · · + imπn is the internal direct sum of imπ1, . . . , imπn in
0. Let π ∈ Hom(Zn, 0) with π(u1, . . . , un) = π1(u1) + · · · + πn(un) for all
(u1, . . . , un) ∈ Zn , and let U =U1× · · ·×Un be a box in Zn . Then

T =
∑

κ,λ,µ,ν∈0̂

∣∣∣∣ ∑
a,b,c,d∈U
a+b=c+d

κ(π(a))λ(π(b))µ(π(c))ν(π(d))
∣∣∣∣

is no greater than

64n
|0|4

n∏
j=1

max
(

1,
|U j |

|imπ j |

)3 n∏
j=1

(1+ log |imπ j |)
3.

Proof. Write K =
⊕n

j=1 imπ j , so that K̂ =
∏n

j=1 îmπ j . Each character of K
extends to [0 : K ] characters of 0, and for any η ∈ îmπ j , let η′ ∈ Ẑ be η ◦ π j ,
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so that

T = [0 : K ]4
n∏

j=1

∑
κ j ,λ j ,µ j ,ν j∈îmπ j

∣∣∣∣ ∑
a j ,b j ,c j ,d j∈U j
a j+b j=c j+d j

κ ′j (a j )λ
′

j (b j )µ
′

j (c j )ν
′

j (d j )

∣∣∣∣,
and so it suffices to prove the bound when n = 1 and π is surjective. In this case
0 is a finite cyclic group, which we identify with Z/mZ by identifying π(1) with
1 ∈ Z/mZ. Then we set εa = exp(2π ia/m) for every a ∈ Z/mZ, and note that 0̂
is the set of maps a 7→ εxa with x ∈ Z/mZ. Thus,

T =
∑

w,x,y,z∈Z/mZ

∣∣∣∣ ∑
a,b,c,d∈U
a+b=c+d

ε−wa−xb+yc+zd

∣∣∣∣.
U is a set of consecutive integers in Z, and note that translation of U does not
influence the magnitude of the inner sum in T , so without loss of generality, we
assume that U = {0, 1, . . . , |U | − 1}. Then reparametrize the outer sum in T with
x ′ = w− x , y′ = y−w, z′ = z−w, and w to obtain

T = m
∑

x ′,y′,z′∈Z/mZ

∣∣∣∣ ∑
a,b,c,d∈U
a+b=c+d

ε−x ′b+y′c+z′d

∣∣∣∣,
which is not more than 64m max(m, |U |)3(1+ log m)3 by [Jedwab et al. 2013b,
Lemma 2.2]. �

The next result is used in the proofs of Section 5 to understand the asymptotic
behavior of the L2 norm for multiplicative character polynomials.

Lemma A.2. Let { fι}ι∈I be a size-stable family of e-variable multiplicative charac-
ter polynomials with Fqι , Sι, tι, and αι the field, support, translation, and arrange-
ment, respectively, of fι for each ι ∈ I . Then there is a Q and an N such that for all
ι∈ I with qι≥ Q, we have |Sι ∩ (kerαι− tι)| ≤ N. Thus |Sι ∩ ker(αι− tι)|/|Sι|→ 0
and ‖ fι‖22/|Sι| → 1 as qι→∞.

Proof. Suppose that the limiting sizes for our size-stable family { fι}ι∈I of multiplica-
tive character polynomials are σ1, . . . , σe. For each ι∈ I , let χι be the character of fι,
so that fι(z)=

∑
s∈Sι χι(αι(s+ tι))zs , and let pι = qι1/e, which is the characteristic

of the field Fqι of fι. Since αι is an epimorphism, its restriction to each pι×· · ·× pι
cubical box in Ze is a bijection to Fqι , and by the definition of size-stability, there
is some Q such that for every qι ≥ Q, the support Sι = Sι,1 × · · · × Sι,e can be
covered with N =

∏e
j=1

(
bσ jc+ 1

)
such cubes, each of which contains one point

of kerαι− tι, so |Sι ∩ (kerαι− tι)| ≤ N . Since the family is size-stable, |Sι| →∞
as qι → ∞. The squared L2 norm of a polynomial is the sum of the squared
magnitudes of its coefficients, and χι(αι(s+ tι))= 0 for s ∈ Sι ∩ (kerαι− tι) while
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|χι(αι(s+ tι))| = 1 for all other s ∈ Sι. Thus ‖ fι‖22 = |Sιr (Sι ∩ (kerαι− tι))|, and
so ‖ fι‖22/|Sι| → 1 as qι→∞. �

Recall from footnote 3 of Section 1C that we sometimes wish to obtain a Little-
wood polynomial from a quadratic character polynomial f (z)=

∑
s∈S χ(α(s+t))zs ,

but f may have some coefficients equal to 0 because an extended nontrivial multi-
plicative character χ has χ(0)= 0. More generally, if χ is a nontrivial multiplicative
character (not necessarily quadratic), we may wish to obtain from f a polynomial
with coefficients of unit magnitude. So we replace the zero coefficient for each zs

such that s ∈ S ∩ (kerα− t) with a coefficient of unit magnitude. We may choose
each replacement coefficient independently of the others, and any polynomial g
resulting from such replacements is called a unimodularization of f . The following
corollary to Lemma A.2 shows that unimodularizing all the polynomials in a size-
stable family of multiplicative character polynomials does not affect asymptotic
ratio ‖ f ‖4/‖ f ‖2.

Corollary A.3. Let { fι}ι∈I be a size-stable family of multiplicative character poly-
nomials over fields {Fqι}ι∈I , and let gι be a unimodularization of fι for each ι ∈ I .
If r is a real number with r ≥ 2 or if r =∞, then ‖ fι‖r/‖gι‖r → 1 as qι→∞.

Proof. If u ∈ C with |u| = 1 and if s = (s1, . . . , se) ∈ Ze, then Lr norm of
uzs
= uzs1

1 · · · z
se
e is 1. By Lemma A.2 there is an N and a Q such that whenever

qι ≥ Q, the two polynomials fι and gι differ by the sum of N or fewer such
monomials, and so by the Lr triangle inequality, the difference between ‖ fι‖r
and ‖gι‖r cannot be greater in magnitude than N . Now ‖gι‖r ≥ ‖gι‖2 =

√
|Sι| by

monotonicity of Lr norms and the fact that the squared L2 norm of a polynomial is
the sum of the squared magnitudes of its coefficients, and |Sι| →∞ as qι→∞ for
a size-stable family. �

The next result is used in Section 6 to find the limiting translations that globally
minimize the asymptotic ratio of L4 to L2 norm for quadratic character polynomials.

Lemma A.4. Let x be a fixed nonzero value in R and let y vary over R.

(i) If |x | ≥ 2, the function �(x, y), considered as a function of y, achieves a
global minimum value of 0 for y ∈

⋃
m∈Z[m|x |+1, (m+1)|x |−1] and for no

other value of y.

(ii) If 0< |x | ≤ 2, the function �(x, y), considered as a function of y, achieves a
global minimum value of

�
(

x, x
2

)
=

∑
n∈Z

max
(
0, 1−

∣∣(n+ 1
2

)
x
∣∣)2

for y ∈
{

x
(
m+ 1

2

)
: m ∈ Z

}
and for no other value of y.
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Proof. For part (i), note that all the terms of �(x, y) are nonnegative. Since
�(x, y)=�(−x, y), we may assume without loss of generality that x ≥ 2, and then
the term max(0, 1−|xn−y|)2 is nonvanishing if and only if (y−1)/x<n<(y+1)/x .
Thus we can obtain a global minimum value of 0 if we can arrange that no integer
lie in the interval ((y− 1)/x, (y+ 1)/x). If m is the greatest integer lying below
this interval (so that y ≥ mx + 1), then for the next integer m+ 1 to lie above the
interval, it is necessary and sufficient that y ≤ (m+ 1)x − 1.

For part (ii), it is clear from the definition (3) of � that �(−x, y) = �(x, y),
�(x,−y)=�(x, y), and �(x, y)=�(x, y+ x). So without loss of generality we
may restrict our attention to the case where 0< x ≤ 2 and 0≤ y ≤ x/2. In this case

�(x, y)=
∑

d(y−1)/xe≤n≤0

(y− 1− nx)2+
∑

0<n≤b(y+1)/xc

(y+ 1− nx)2,

and we reparametrize the sums to obtain

�(x, y)=
∑

0≤n≤b(1−y)/xc

(y− 1+ nx)2+
∑

0≤n≤b(1+y−x)/xc

(y− x + 1− nx)2,

and calculate
∂

∂y
�(x, y)=

∑
0≤n≤b(1−y)/xc

2(y− 1+ nx)+
∑

0≤n≤b(1+y−x)/xc

2(y− x + 1− nx)

= 2
⌊ y+1

x

⌋
(2y− x)+

∑
b(1+y−x)/xc<n≤b(1−y)/xc

2(y− 1+ nx),

because (1−y)/x is greater than or equal to (1+y−x)/x , and note for the remainder
of this proof that their difference is at most 1. Since 0 ≤ y ≤ x/2 ≤ 1, we can
see that both terms in the last expression for our partial derivative are nonpositive,
with the summation over n strictly negative if y < x − 1, and the other term is
strictly negative if x − 1≤ y < x/2. Thus our partial derivative is strictly negative
for 0≤ y < x/2, and so for our ranges of x and y values, the unique minimum is
obtained when y = x/2. �

The last two results are used in Section 6 to show that a large limiting size will
make the ratio of L4 to L2 norm large.

Lemma A.5. If { fι}ι∈I is a size-stable family, with limiting size σ , of additive
character polynomials over fields {Fqι}ι∈I , then

lim inf
qι→∞

‖ fι‖44
‖ fι‖42

≥�
( 1
σ
, 0
)
.

Proof. For each ι ∈ I , let fι have character ψι, support Sι, translation ti , and
arrangement αι, so that fι(z)=

∑
s∈Sι ψι(αι(s+ ti ))zs . When we confine the values
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of z to the complex unit circle, we have

fι(z)=
∑
s∈Sι

ψι(αι(s+ ti ))z−s .

We can consider fι(z) and fι(z) formally as elements of C[z, z−1
], and view ‖ fι‖44 as

the sum of the squared magnitudes of the coefficients of fι(z) fι(z). The coefficient
of zs in fι(z) fι(z) is ∑

u,v∈Sι
u−v=s

ψι(αι(u+ ti ))ψι(αι(v+ ti )).

Since αι is an epimorphism from Z to F∗qι , we see that ψι(αι(u+ti ))=ψι(αι(v+ti ))
whenever u ≡ v (mod qι − 1). Thus if s ≡ 0 (mod qι − 1), the coefficient of zs

in fι(z) fι(z) is equal to |Sι ∩ (s+ Sι)|. Since ‖ fι‖44 is the sum of the squared
magnitudes of the coefficients of fι(z) fι(z) while ‖ fι‖22 is the coefficient of z0 of
the same, we have

‖ fι‖44
‖ fι‖42

≥

∑
n∈Z |Sι ∩ (n(qι− 1)+ Sι)|2

|Sι|2
,

and then we note that |Sι ∩ (n(qι− 1)+ Sι)| =max(0, |Sι|− |n(qι− 1)|) and apply
the size-stability limit |Sι|/(qι− 1)→ σ as qι→∞. �

Lemma A.6. If { fι}ι∈I is a size-stable family, with limiting sizes σ1, . . . , σe, of
e-variable multiplicative character polynomials over fields {Fqι}ι∈I , then

lim inf
qι→∞

‖ fι‖44
‖ fι‖42

≥

e∏
j=1

�
( 1
σ j
, 0
)
.

Proof. For each ι ∈ I , let fι have character χι, support Sι ⊆ Ze, translation ti ∈ Ze,
and arrangement αι, so that fι(z1, . . . , ze)=

∑
s∈Sι χι(αι(s+ ti ))zs , where we write

zs for zs1
1 · · · z

se
e when s = (s1, . . . , se). Our proof runs the same as that of the

previous lemma for additive character polynomials once we replace ψι with χι,
but we must take care of the fact that χι(αι(s + ti )) = 0 when s ∈ −ti + kerαι;
otherwise, the coefficients are of unit magnitude. And of course the polynomials
are in e variables and the coefficients have periodicity p in each direction. Thus if
we define Vι = Sιr (−ti + kerαι) we have

‖ fι‖44
‖ fι‖42

≥

∑
n∈Ze |Vι ∩ (n pι+ Vι)|2

|Vι|2
,

but Lemma A.2 can be used to show that the ratio |Vι ∩ (n pι+ Vι)|/|Vι| has the
same limit as |Sι ∩ (n pι+ Sι)|/|Sι| as qι→∞. �
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