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DEGREE-THREE SPIN HURWITZ NUMBERS

JUNHO LEE

Gunningham (2012) calculated all spin Hurwitz numbers in terms of com-
binatorics of the Sergeev algebra. Here we use a spin curve degeneration to
obtain a recursion formula for degree-three spin Hurwitz numbers.

Let D be a complex curve of genus h and N be a theta characteristic on D,
that is, N 2

= K D. The pair (D, N ) is called a spin curve of genus h with parity
p ≡ h0(N ) (mod 2). For i = 1, . . . , k, let mi

= (mi
1, . . . ,mi

`i
) be an odd partition

of d > 0, namely, all components mi
j are odd. Fix k points q1, . . . , qk in D and

consider degree-d maps f :C→ D from possibly disconnected domains C of Euler
characteristic χ that are ramified only over the fixed points q i with ramification
data mi . Observe that the Riemann–Hurwitz formula shows

(0-1) 2d(1− h)−χ +
k∑

i=1

(`(mi )− d)= 0,

where `(mi ) = `i is the length of mi . By the Hurwitz formula, the twisted line
bundle

(0-2) L f = f ∗N ⊗O

(∑
i, j

1
2(m

i
j − 1)x i

j

)
is a theta characteristic on C where f −1(q i )= {x i

j }1≤ j≤`i and f has multiplicity
mi

j at x i
j . We define the parity p( f ) of a map f by

(0-3) p( f )≡ h0(L f ) (mod 2).

Given odd partitions m1, . . . ,mk of d, the spin Hurwitz number of genus h and
parity p is defined as a (weighted) sum of (ramified) covers f satisfying (0-1) with
sign determined by the parity p( f ):

(0-4) H h,p
m1,...,mk =

∑
f

(−1)p( f )

|Aut( f )|
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Eskin, Okounkov, and Pandharipande [Eskin et al. 2008] calculated the genus h = 1
and odd parity spin Hurwitz numbers in terms of characters of the Sergeev group.
Gunningham [2012] calculated all spin Hurwitz numbers in terms of combinatorics
of the Sergeev algebra.

The trivial partition (1d) of d is a partition whose components are all 1. If
mk
= (1d), f has no ramification points over the fixed point qk and hence we have

(0-5) H h,p
m1,...,mk−1,(1d )

= H h,p
m1,...,mk−1 .

When all partitions mi
= (1d), denote the spin Hurwitz numbers (0-4) by H h,p

d .
These are dimension-zero local GW invariants GT loc,h,p

d of spin curve (D, N )
that give all dimension-zero GW invariants of Kähler surfaces with a smooth
canonical divisor; see [Kiem and Li 2007; 2011; Lee and Parker 2007; Maulik and
Pandharipande 2008]. For notational simplicity, we set H h,p

(3)0 = H h,p
3 and for k ≥ 1

write
H h,p
(3)k

for the spin Hurwitz numbers H h,p
(3),...,(3) with the same k partitions (3). Since there

are two odd partitions (13) and (3) of d = 3, by (0-5) it suffices to compute H h,p
(3)k

for k ≥ 0. The aim of this paper is to use a spin curve degeneration to obtain the
following recursion formula.

Theorem 0.1. If h = h1+ h2 and p ≡ p1+ p2 (mod 2), then, for k1+ k2 = k,

(0-6) H h,p
(3)k = 3!H h1,p1

(3)k1
· H h2,p2

(3)k2
+ 3H h1,p1

(3)k1+1 · H
h2,p2

(3)k2+1 .

One can use Theorem 0.1 and the result of [Eskin et al. 2008] to explicitly
compute the spin Hurwitz numbers of degree d = 3. In Proposition 7.1, we show
that

(0-7) H h,±
(3)k = 32h−2

[(−1)k2k+h−1
± 1],

where + and − denote the even and odd parities. When the degree d is 1 or 2, the
dimension-zero local GW invariants are given by the formulas

GT loc,h,±
1 =±1 and GT loc,h,±

2 =±2h−1
;

see Lemma 2.6 of [Lee 2013]. Since GT loc,h,p
d = H h,p

d as mentioned above, formula
(0-7) shows

GT loc,h,±
3 = 32h−2(2h−1

± 1).

This calculation is, in fact, the main motivation for the paper.
In Section 1, we express the degree-d spin Hurwitz numbers (0-4) in terms of

relative GW moduli spaces. We can then apply a degeneration method for a family
of curves D→1 where the central fiber D0 is a nodal curve and the general fiber
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Dλ (λ 6= 0) is a smooth curve. Section 2 describes the relative moduli space M0 of
maps f into the nodal curve D0. In Section 3, we show that the union over λ ∈1
of relative moduli spaces Mλ of maps into Dλ consists of connected components
Zm, f →1 containing f ∈M0. Here m is the ramification data of f over nodes of
D0 such that d − `(m) is even.

The (ordinary) Hurwitz numbers are sums of (ramified) maps modulo automor-
phism without sign. One can easily obtain a recursion formula for Hurwitz numbers
by counting maps in the general fiber of Zm, f → 1. For spin Hurwitz numbers,
one needs to calculate parities of maps induced from a fixed spin structure on the
family of curves D.

The novelty of our approach is to apply a Schiffer variation for the parity calcula-
tion. The space Zm, f is, in general, not smooth. In Section 4, we construct a smooth
model for Zm, f by Schiffer variation. In Section 5, we use the smooth model to
twist the pullback of the spin structure on D. When the degree d equals 3, the
partition m is odd, either (13) or (3). In this case, a suitable twisting immediately
yields a required parity calculation. We prove Theorem 0.1 in Section 6 and formula
(0-7) in Section 7.

For higher degree d≥ 4, the partition m may not be odd! A new parity calculation
is needed. In [Lee and Parker 2012], we generalized the recursion formula (0-6) for
higher-degree spin Hurwitz numbers by employing additional geometric analysis
arguments for parity calculations.

1. Dimension zero relative GW moduli spaces

In this section, we express the spin Hurwitz numbers (0-4) in terms of dimension-
zero relative GW moduli spaces. We follow the definitions of [Ionel and Parker
2003] for the relative GW theory.

Let D be a smooth curve of genus h and let V = {q1, . . . , qk
} be a fixed set

of points on D. Given partitions m1, . . . ,mk of d, a degree-d holomorphic map
f : C→ D from a possibly disconnected curve C is called V -regular with contact
vectors m1, . . . ,mk if f −1(V ) consists of

∑
`(mi ) contact marked points x i

j (1≤
j ≤ `(mi )) with f (x i

j ) = q i such that f has ramification index (or multiplicity)
mi

j at x i
j . Two V -regular maps ( f,C; {x i

j }) and ( f̃ , C̃; {x̃ i
j }) are equivalent if they

are isomorphic, that is, there is a biholomorphism σ : C→ C̃ with f̃ ◦ σ = f and
σ(x i

j )= x̃ i
j for all i, j . The relative moduli space

(1-1) MV
χ,m1,...,mk (D, d)

consists of equivalence classes of V -regular maps ( f,C; {x i
j }) with the Euler char-

acteristic χ(C)= χ and with contact vectors m1, . . . ,mk . Since no confusion can
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arise, we regard a point in the space (1-1) as a V -regular map ( f,C; {x i
j }). For

simplicity, we often write a V -regular map ( f,C; {x i
j }) simply as f .

The (formal) complex dimension of the space (1-1) is given by the left side of
the Riemann–Hurwitz formula (0-1):

(1-2) 2d(1− h)−χ −
k∑

i=1

(d − `(mi )).

Suppose this dimension is zero. Then, for each V -regular map ( f,C; {x i
j }) in (1-1),

forgetting the contact marked points x i
j gives a (ramified) cover f that is ramified

only over fixed points q i and satisfies (0-1). The automorphism group Aut( f )
of a (ramified) cover f consists of automorphisms σ ∈ Aut(C) with f ◦ σ = f .
The automorphism group Aut( f, V ) of a V -regular map ( f,C; {x i

j }) consists of
automorphisms σ ∈ Aut( f ) with σ(x i

j )= x i
j for all i, j .

For a partition m of d, let Aut(m) be the subgroup of symmetric group S`(m)
permuting equal parts of the partition m.

Lemma 1.1. Let m1, . . . ,mk be as above and suppose the dimension (1-2) is zero.

(a) If mi
= (1d) for some 1≤ i ≤ k, Aut( f, V ) is trivial for all f in (1-1).

(b) If m1, . . . ,mk are all odd partitions,

H h,p
m1,...,mk =

1∏k
i=1 |Aut(mi )|

∑ (−1)p( f )

|Aut( f, V )|

where the sum is over all f in (1-1) and p( f ) is the parity (0-3).

Proof. Let ( f,C; {x i
j }) be a V -regular map in (1-1) and σ ∈Aut( f, V ). If mi

= (1d),
the set of branch points B of f is a subset of V \ {q i

} and the restriction of σ to
C \ f −1(B) is a covering transformation that fixes contact marked points x i

1, . . . , x i
d .

Noting f −1(B) is finite, we conclude that σ is an identity map on C . This proves
(a).

As mentioned above, forgetting contact marked points x i
j gives a (ramified)

cover f satisfying (0-1). Conversely, given a (ramified) cover f satisfying (0-1),
one can mark a point over q i with ramification index mi

j as a contact marked
point x i

j . Such marking gives V -regular maps ( f,C; {x i
j }) in

∏k
i=1 |Aut(mi )| ways.

Observe that ( f,C; {x i
j }) and ( f,C; {σ(x i

j )}) are isomorphic for each σ ∈ Aut( f )
and that Aut( f, V ) is a normal subgroup of Aut( f ). Consequently, the quotient
group G =Aut( f )/Aut( f, V ) acts freely on the set of V -regular maps ( f,C; {x i

j })

obtained by the (ramified) cover f . Its orbits give
∏k

i=1 |Aut(mi )|/|G| points (that
is, equivalence classes of V -regular maps) in the space (1-1), each of which has the
same automorphism group Aut( f, V ). Now (b) follows from counting maps with
the parity of map modulo automorphisms. �
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2. Maps into a nodal curve

Let D0 = D1 ∪ E ∪ D2 be a connected nodal curve of (arithmetic) genus h with
two nodes p1 and p2 such that, for i = 1, 2, E = P1 meets Di at node pi and Di

has genus hi with h1+ h2 = h. In this section, we consider maps into D0 that are
relevant to our subsequent discussion.

Below, we fix d , h, χ , and odd partitions m1, . . . ,mk of d so that the Riemann–
Hurwitz formula (0-1) holds, or equivalently, the dimension formula (1-2) is zero.
For each partition m of d , consider the product space

Pm=MV1
χ1,(1d ),m1,...,mk1 ,m

(D1, d)×MV0
χ0,m,(1d ),m(E, d)×MV2

χ2,m,mk1+1,...,mk ,(1d )
(D2, d)

where

V1={qk+1,q1,. . .,qk1, p1
}, V0={p1,qk+2, p2

}, V2={p2,qk1+1,. . .,qk,qk+3
}

and

(2-1) χ1+χ0+χ2− 4`(m)= χ.

For simplicity, let M1
m,M0

m , and M2
m denote the first, second, and third factors of Pm .

Lemma 2.1. If Pm 6=∅, the spaces M1
m,M0

m , and M2
m have dimension zero. Con-

sequently, χ0 = 2`(m) and d − `(m) is even.

Proof. Each Mi
m (0≤ i ≤ 2) has nonnegative dimension by the Riemann–Hurwitz

formula. The formula (2-1) and our assumption that the dimension (1-2) is zero
thus imply that each Mi

m has dimension zero. The dimension formulas for M0
m

and Mi
m (i = 1, 2) then show that χ0 = 2`(m) and d − `(m) is even because

d − `(mi )=
∑
(mi

j − 1) is even for all 1≤ i ≤ k. �

Let |A| denote the cardinality of a set A.

Lemma 2.2. |M0
m | =

d! |Aut(m)|∏
m j

.

Proof. Let f ∈ M0
m . Since χ0 = 2`(m), the domain of f is a disjoint union of

smooth rational curves E j for 1 ≤ j ≤ `(m), and each restriction f j = f |E j has
exactly one contact marked point over pi (i = 1, 2) with multiplicity m j , so f j has
degree m j .

Consequently, forgetting contact marked points of maps in M0
m gives exactly one

map (as a cover) with automorphism group of order |Aut(m)|
∏

m j . Here the factor
|Aut(m)| appears because we can relabel maps f j in |Aut(m)| ways and the factor∏

m j appears because each restriction map f j (as a cover) has an automorphism
group of order m j . We then argue as in the proof of Lemma 1.1. �
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For each ( f1, f0, f2)∈Pm , by identifying contact marked points over pi
∈Di
∩E

(i = 1, 2), one can glue the domains of fi and f0 to obtain a map f : C → D0

with χ(C) = χ . For notational convenience, we often write the glued map f as
f = ( f1, f0, f2). Denote by

(2-2) Mm,0

the space of such glued maps f = ( f1, f0, f2). Contact marked points are labeled,
but nodal points of C are not labeled. Thus, we have the following.

Lemma 2.3. Pm is a cover of Mm,0 of degree |Aut(m)|2.

3. Limiting and gluing

Following [Ionel and Parker 2004], this section describes limiting and gluing
arguments under a degeneration of target curves. Let D0 = D1 ∪ E ∪ D2 be the
nodal curve with fixed points q1, . . . , qk+3 as in Section 2. In Section 4, we
construct a family of curves together with k+ 3 sections:

(3-1)

D

ρ

��
1

Qi

BB

Here the total space D is a smooth complex surface, 1⊂C is a disk with parameter
λ, the central fiber is D0, the general fiber Dλ (λ 6= 0) is a smooth curve of genus h,
and Qi (0)= q i for 1≤ i ≤ k+3. By Gromov’s convergence theorem, a sequence of
holomorphic maps into Dλ with λ→ 0 has a map into D0 as a limit. For notational
simplicity, for λ 6= 0 we set

(3-2) Mλ =MVλ
χ,m1,...,mk+3(Dλ, d), where Vλ = {Q1(λ), . . . , Qk+3(λ)},

and denote the set of limits of sequences of maps in Mλ as λ→ 0 by

(3-3) lim
λ→0

Mλ.

Lemma 3.1 shows that limit maps in (3-3) lie in the union of spaces (2-2), namely,

(3-4) lim
λ→0

Mλ ⊂
⋃
m

Mm,0

where the union is over all partitions m of d with d − `(m) even.
Conversely, by the gluing theorem of [Ionel and Parker 2004], the domain of

each map in Mm,0 can be smoothed to produce maps in Mλ for small |λ|. Shrinking
1 if necessary, for λ ∈ 1, one can assign to each fλ ∈Mλ a partition m of d by
(3-4). Let Mm,λ be the set of all pairs ( fλ,m). For each f ∈Mm,0, let

(3-5) Zm, f →1



DEGREE-THREE SPIN HURWITZ NUMBERS 405

be the connected component of
⋃
λ∈1 Mm,λ→1 that contains f , and let

(3-6) Zm, f,λ

denote the fiber of (3-5) over λ ∈1. It follows that, for λ 6= 0,

(3-7) Mλ =
⊔

f ∈Mm,0

Zm, f,λ.

For f = ( f1, f0, f2) ∈Mm,0 where m = (m1, . . . ,m`), let yi
j be the node mapped

to pi at which fi and f0 have multiplicity m j . The gluing theorem shows that one
can smooth each node yi

j in m j ways to produce
(∏

m j
)2 maps in Zm, f,λ, so

(3-8) |Zm, f,λ| =
(∏

m j
)2

(λ 6= 0).

In order to prove (3-4), we use the following fact on stable maps. An irreducible
component of a stable holomorphic map f is a ghost component if its image
is a point. Write the domain of f as Cg

∪ C where Cg is a connected curve
whose irreducible components are all ghost components. Then the stability of f
implies that

(3-9) χ(Cg)− `g
− n ≤−1

where `g
= |Cg

∩C | and n is the number of marked points on Cg.

Lemma 3.1. Let Mr and Mm,0 be as above. Then we have

lim
λ→0

Mλ ⊂
⋃
m

Mm,0

where the union is over all partitions m of d with d − `(m) even.

Proof. Let f be a limit map in (3-3). The domain C of f can be written as

(3-10) C = C1 ∪C0 ∪C2 ∪

( k+3⋃
i=1

Cg
i

)
∪Cg

∪ C̃g

where C0 maps to E , C1 and C2 map to D1 and D2, Cg
i is the union of all ghost

components over q i , where i = 1, . . . , k+3, Cg is the union of all ghost components
over points in D0 \ (V1 ∪ V0 ∪ V2), and C̃g is the union of all ghost components
over {p1, p2

}. Let f j = f |C j for j = 0, 1, 2. Observe that f j is V j -regular because
C j has no ghost components. Let m̂i be a contact vector over q i , m̃1 and m̃2 be
contact vectors of f1 and f2 over p1 and p2, and m̃0;1 and m̃0;2 be contact vectors
of f0 over p1 and p2. The Riemann–Hurwitz formulas for f0, f1, and f2 give

(3-11)
2∑

j=0

χ(C j )≤ 2d(1− h)+
k+3∑
i=1

(`(m̂i )− d)+
2∑

i=1

(`(m̃i )+ `(m̃0;i )).
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For i = 1, . . . , k + 3, let `i = |C1 ∪C0 ∪C2 ∩Cg
i | and let ni be the number of

marked points on Cg
i . Since all marked points are limits of marked points, we have

(3-12) `(m̂i )= `(mi )− ni + `i .

For j = 0, 1, 2, let ˜̀ j = |C j ∩ C̃g
|. Counting the number of nodes mapped to p1

and p2 shows

(3-13)
2∑

i=1

(`(m̃i )− ˜̀i )=

2∑
i=1

|Ci ∩C0| =

2∑
i=1

`(m̃0;i )− ˜̀0.

Let `g
= |C1 ∪C0 ∪C2 ∩Cg

|. Since χ(C)= χ , by (3-10) and (3-13) we have

(3-14) χ =

2∑
j=0

χ(C j )+

k+3∑
i=1

(χ(Cg
i )− 2`i )+χ(Cg)− 2`g

+χ(C̃g)− ˜̀−

2∑
i=1

(`(m̃i )+ `(m̃0;i )),

where ˜̀ = ˜̀0+ ˜̀1+ ˜̀2. By our assumption that formula (0-1) holds, it follows from
(3-11), (3-12), and (3-14) that

(3-15) χ ≤ χ +

k+3∑
i=1

(χ(Cg
i )− `i − ni )+χ(Cg)− 2`g

+χ(C̃g)− ˜̀.

Noting that Cg and C̃g have no marked points, by (3-9) and (3-15), we conclude
that the domain C of f has no ghost components. Consequently,

• f j is V j -regular for j = 0, 1, 2,

• m̃i
= m̃0;i for i = 1, 2 (see Lemma 3.3 of [Ionel and Parker 2004]) and m̂i

=mi

for i = 1, . . . , k+ 3.

In particular, the equality in (3-11) holds; otherwise we have a strict inequality in
(3-15). So, we have χ(C0) = `(m̃1)+ `(m̃2). But χ(C0) ≤ 2 min{`(m̃1), `(m̃2)}.
It follows that

• C0 has `(m̃1)= `(m̃2) connected components E j with χ(E j )= 2 for all j ,

• m̃1
j = deg( f0|E j )= m̃2

j for all j , that is, m̃1
= m̃2.

It follows that the Euler characteristics of C0, C1, and C2 satisfy (2-1) by (3-14).
Therefore, f ∈Mm,0 for m = m̃1

= m̃2 and d − `(m) is even by Lemma 2.1. �

4. Smooth model by Schiffer variation

A Schiffer variation of a nodal curve (compare [Arbarello et al. 2011, p. 184]) is
obtained by gluing deformations uv = λ near nodes with the trivial deformation
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away from nodes. In this section, we use the method of Schiffer variation to
construct a smooth model for the space Zm, f in (3-5), which has several branches
intersecting at f unless m is trivial.

In this section, we fix an odd partition m = (n`), that is, m = (m1, . . . ,m`) with

(4-1) m1 = · · · = m` = n, where n = d/` is odd.

Let f = ( f1, f0, f2) be a map in Mm,0 in (2-2). As described in Section 2, the
central fiber of ρ : D→1 is the nodal curve D0 = D1 ∪ E ∪ D2 with two nodes
p1
∈ D1 ∩ E and p2

∈ D2 ∩ E where E = P1. The domain of f is a nodal curve

C = C1 ∪C0 ∪C2, where C0 =
⋃̀
j=1

E`,

with 2` nodes, such that, for i = 1, 2 and j = 1, . . . , `,

• f −1(pi ) consists of the ` nodes yi
j ∈ Ci ∩ E j ,

• Ci is smooth and f |Ci = fi has ramification index m j = n at the node yi
j ,

• E j = P1 and f |E j = f0|E j : E j → E has ramification index m j = n at the
node yi

j .

The following is the main result of this section.

Proposition 4.1. Let f be as above. Then, for each vector ζ = (ζ 1
1 , ζ

2
1 , . . . , ζ

1
` , ζ

2
` ),

where ζ i
j is an nth root of unity, there are a family of curves ϕζ : Cζ → 1, with

smooth total space Cζ , over a disk 1 (with parameter s) and a holomorphic map
Fζ : Cζ → D satisfying:

(a) the central fiber Cζ,0 = C and the restriction map Fζ |C = f ;

(b) the general fiber Cζ,s (s 6= 0) is smooth and, for λ= sn
6= 0,

(4-2)
⋃
ζ

{ fζ,s} = Zm, f,λ,

where the union is over all ζ , fζ,s = Fζ |Cζ,s and Zm, f,λ is the space (3-6).

Proof. The proof consists of four steps.

Step 1. We first show how to construct the family of curves ρ : D→1 with k+ 3
sections. For i = 1, 2, a neighborhood of the node pi

∈ Di ∩ E can be regarded as
the union U i

∪ V i of the two disks

U i
= {ui

∈ C : |ui
|< 1} ⊂ Di and V i

= {vi
∈ C : |vi

|< 1} ⊂ E

with their origins identified. We may assume that the fixed points q1, . . . , qk+3 in
D0 described in (2-1) lie outside these sets. Consider the regions
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Ai
=
{
(ui , vi , λ) ∈U i

× V i
×1 : uivi

= λ
}
,

B =
2⋃

i=1
Gi
∪

[(
D0 \

2⋃
i=1
(U i
∪ V i )

)
×1

]
,

where

Gi
=
{
(ui , λ) ∈U i

×1 : |ui
|>

√
|λ|
}
∪
{
(vi , λ) ∈ V i

×1 : |vi
|>

√
|λ|
}
.

We obtain a smooth complex surface D by gluing A1, A2, and B0 using the maps

(4-3) Gi
→ Ai defined by (ui , λ)→

(
ui ,

λ

ui , λ
)

and (vi , λ)→
(
λ

vi , v
i , λ
)
.

Let ρ :D→1 be the projection to the last factor and define k+3 sections Qi of ρ
by

Qi (λ)= (q i , λ).

Step 2. We can similarly construct a family of curves over a 2`-dimensional
polydisk:

(4-4) ϕ2` : X→12` = {t = (t1
1 , t2

1 , . . . , t1
` , t2

` ) ∈ C2`
: |t i

j |< 1}.

For each node yi
j ∈ Ci ∩ E j , choose a neighborhood obtained from two disks

U i
j = {u

i
j ∈ C : |ui

j |< 1} ⊂ Ci and V i
j = {v

i
j ∈ C : |vi

j |< 1} ⊂ E j

by identifying the origins. Consider the regions

Ai
j =

{
(ui

j , ui
j , t) ∈U i

j × V i
j ×12` : ui

jv
i
j = t i

j
}
,

B2` =
⋃
i, j

Gi
j ∪

[(
C \

⋃
i, j
(U i

j ∪ V i
j )
)
×12`

]
,

where

Gi
j =

{
(ui

j , t) ∈U i
j ×12` : |ui

j |>
√
|t i

j |
}
∪
{
(vi

j , t) ∈ V i
j ×12` : |v

i
j |>

√
|t i

j |
}
.

We can then obtain a smooth complex manifold X of dimension 2`+ 1 by gluing⋃
Ai

j and B2` with the maps

(4-5) Gi
j → Ai

j defined by (ui
j , t)→

(
ui

j ,
t i

j

ui
j
, t
)

and (vi
j , t)→

( t i
j

vi
j
, vi

j , t
)
.

Let ϕ2` : X→1 be the projection to the factor t .

Step 3. Since fi and f0|E j have ramification index m j = n at yi
j , we may assume

(after coordinates change) that on U i
j and V i

j the map f can be written as

(4-6) U i
j →U i by ui

j → (ui
j )

n and V i
j → V i by vi

j → (vi
j )

n.
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For each i, j , define a map

(4-7) Gi
j → Gi by (ui

j , t)→ ((ui
j )

n, (t i
j )

n) and (ui
j , t)→ ((vi

j )
n, (t i

j )
n).

On the other hand, for each i, j , we have a map

(4-8) Ai
j → Ai defined by (ui

j , v
i
j , t)→ ((ui

j )
n, (vi

j )
n, (t i

j )
n).

These two maps (4-7) and (4-8) are glued together under the maps (4-3) and (4-5).
The glued map extends to a holomorphic map ft : Xt → Dλ if and only if

(4-9) (t1
1 )

n
= (t2

1 )
n
= · · · = (t1

` )
n
= (t2

` )
n
= λ.

There are n2` solutions t of (4-9) and the extension map ft is given by

(x, t)→ ( f (x), λ) on Xt −
⋃

Ai
j .

Step 4. For each vector ζ = (ζ 1
1 , ζ

2
1 , . . . , ζ

1
` , ζ

2
` ), where each ζ i

j is an nth root of
unity, define

δζ :1→12` by s→ (ζ 1
1 s, ζ 2

1 s, ζ 1
2 s, ζ 2

2 s, . . . , ζ 1
` s, ζ 2

` s).

The pullback δ∗ζX gives a family of curves:

(4-10)

Cζ = δ
∗

ζX //

ϕζ

��

X

ϕ2`

��
1

δζ // 12`

The central fiber is Cζ,0 = C and the general fiber Cζ,s (s 6= 0) is smooth. A
neighborhood of the node yi

j of C in Cζ can be viewed as

(4-11) Âi
j =

{
(ui

j , v
i
j , s) ∈ C3

: |ui
j |< 1, |vi

j |< 1, ui
jv

i
j = ζ

i
j s
}
.

It follows that the total space Cζ is a complex smooth surface. Noting δζ (s) is a
solution of (4-9) for λ= sn , we obtain a holomorphic map Fζ : Cζ → D given by

(4-12)
(ui

j , v
i
j , s)→ ((ui

j )
n, (vi

j )
n, sn) on Âi

j ,

(x, s)→ ( f (x), sn) on Cζ −
⋃

Âi
j .

Since the restriction Fζ |C = f by (4-6) and (4-12), it remains to show (4-2).
By our choice of fixed points q i on D0, each contact marked point x i

j of f lies in
Cζ −

⋃
Âi

j . Thus, by (4-12), the pullback F∗ζ Qi of the section Qi of ρ gives a
section X i

j of ϕζ given by X i
j (s)= (x

i
j , s). After marking the points X i

j (s) in Cζ,s ,
the restriction map

fζ,s = Fζ |Cζ,s : Cζ,s→ Dλ, where λ= sn
6= 0,
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has contact marked points X i
j (s) over Qi (λ) with multiplicity mi

j . This means that
fζ,s lies in the space Mλ in (3-2) for λ = sn . Therefore, noting that fζ,s → f as
s→ 0 and that |Zm, f,λ| = n2` by (3-8), we conclude (4-2). �

5. Spin structure and parity

The aim of this section is to use a spin structure on a family of nodal curves
[Cornalba 1989] to show the parity calculation in Proposition 5.4. Twisting a bundle
as in (5-6) is a key idea for parity calculation.

We first introduce a spin structure on a family of nodal curves that is relevant to
our discussion. We refer to [Cornalba 1989] for the definition of spin structure and
more details. The relative dualizing sheaf ωρ of the family of curves ρ : D→1

in (3-1) is the canonical bundle KD on the total space D, since D is smooth and
K1 is trivial. For each λ 6= 0, the restriction KD|Dλ

is the canonical bundle K Dλ

on Dλ, and the restriction KD|D0 is the dualizing sheaf ωD0 of the nodal curve
D0 = D1∪ E ∪D2. As described in Section 4, D0 is locally given by uivi

= 0 near
each node pi in Di ∩ E for i = 1, 2. Then the local generators of ωD0 are dui/ui

and dvi/vi with a relation dui/ui
+ dvi/vi

= 0; see [Harris and Morrison 1998,
p. 82]. This implies the restriction ωD0 |Di = K Di ⊗O(pi ). On the other hand, 1/ui

is a local defining function for the divisor −E on D near pi . By restricting 1/ui to
Di , one can see that O(−E)|Di = O(−pi ). Consequently, for i = 1, 2,

(5-1) KD|Di ⊗O(−E)|Di = ωD0 |Di ⊗O(−pi )= K Di .

From Cornalba’s construction [1989, p. 570], there are a line bundle N→D and
a homomorphism 8 : N2

→ ωρ = KD satisfying the following.

• 8 vanishes identically on the exceptional component E and N|E = OE(1).

• Since 8|E ≡ 0, there is an induced homomorphism 8̂ : N2
→ KD⊗O(−E)

such that 8 is the composition of 8̂ with tensoring with η:

(5-2) 8 : N2 8̂
−→ KD⊗O(−E)

⊗η
−→ KD,

where η is a section of O(E) with zero divisor E . Then, for i = 1, 2, the
restriction

8̂|Di : (N|Di )
2
→ KD|Di ⊗O(−E)|Di = K Di

is an isomorphism so that the restriction Ni = N|Di is a theta characteristic
on Di .

• For each λ 6= 0, the restriction 8|Dλ
: (N|Dλ

)2→ K Dλ
is an isomorphism so

that the restriction Nλ = N|Dλ
is a theta characteristic on Dλ.

The pair (N,8) is a spin structure on ρ :D→1 and the restriction N|D0 is a theta
characteristic on the nodal curve D0.
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Remark 5.1. Atiyah [1971] and Mumford [1971] showed that the parity of a
theta characteristic on a smooth curve is a deformation invariant. Cornalba [1989,
Page 580] used the homomorphism 8 to extend Mumford’s proof to the case of
spin structure on a family of nodal curves. Thus, if p1, p2, and p are the parities of
N1, N2, and Nλ (λ 6= 0), we have

p ≡ p1+ p2 (mod 2).

Let ϕζ : Cζ → 1 be the family of curves in Proposition 4.1. Recall that the
central fiber of ϕζ is C = C1 ∪ C0 ∪ C2, where C0 =

⊔
j E j is a disjoint union

of ` exceptional components E j and Ci ∩ E j = {yi
j } for i = 1, 2 and 1 ≤ j ≤ `.

Similarly as for (5-1), by restricting local defining functions, we have

(5-3) O(±C0)|Ci = O
(
±
∑

j
yi

j

)
(i = 1, 2) and O(±C0)|Cζ,s = O (s 6= 0).

Since any fiber of ϕζ is a principal divisor on Cζ , O(C) = O and hence O(C0) =

O(−C1−C2). We also have

(5-4) O(±C0)|E j = O(∓(C1+C2))|E j = O(∓(y1
j + y2

j ))= O(∓2)(1≤ j ≤ `).

Let f = ( f1, f0, f2) and Fζ : Cζ → D be the maps in Proposition 4.1. The
ramification divisor RFζ

of Fζ has local defining functions given by the Jacobian
of Fζ , so (4-12) shows

(5-5) RFζ
= O(Xζ + (n− 1)C)= O(Xζ ),

where Xζ =
∑

i, j (m
i
j−1)X i

j and X i
j is the section of ϕζ defined in (4-12). Note that

(i) the ramification divisor of fi =Fζ |Ci (i = 1, 2) is R fi = Xζ |Ci +
∑

j (n−1)yi
j ;

(ii) the ramification divisor of fζ,s = Fζ |Cζ,s (s 6= 0) is R fζ,s = Xζ |Cζ,s .

Now, noting n is odd, we twist the pullback bundle F∗ζN by setting

(5-6) Lζ = F∗ζN⊗O
(

1
2 Xζ +

(n−1)
2

C0

)
.

The lemma below shows that the twisted line Lζ restricts to a theta characteristic
on each fiber of ϕζ , including the central fiber C .

Lemma 5.2. Let Lζ be as above. Then:

(a) Lζ |E j = O(1) for 1≤ j ≤ `.

(b) Lζ |C1 = L f1 , Lζ |C2 = L f2 and Lζ |Cζ,s = L fζ,s for s 6= 0, where L f1 , L f2 , L fζ,s
are the theta characteristics on C1, C2, Cζ,s defined by (0-2).
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Proof. Part (a) follows from (5-4) and the fact that each restriction map Fζ |E j has
degree n. Part (b) follows from (5-3), (i), and (ii). �

Observe that the relative dualizing sheaf ωϕζ is the canonical bundle KCζ since
Cζ is smooth. The Hurwitz formula and (5-5) thus imply that

(5-7) ωϕζ = KCζ = F∗ζ KD⊗O(Xζ ).

Define a homomorphism

(5-8) 9̂ζ : L
2
ζ = F∗ζN2

⊗O(Xζ + (n− 1)C0)

→ F∗ζ (KD⊗O(−E))⊗O(Xζ + (n− 1)C0)

by 9̂ζ = F∗ζ 8̂⊗ Id, where 8̂ is the induced homomorphism in (5-2). Noting that
O(C)= O and O(D0)= O, by (4-12), we have

F∗ζO(−E)= F∗ζO(D1+ D2)= O(n(C1+C2))= O(−nC0).

Together with (5-7), this implies that the right side of (5-8) is KCζ ⊗O(−C0). Now
define a homomorphism 9ζ : L

2
ζ → KCζ to be the composition

(5-9) 9ζ : L
2
ζ

9̂ζ
−→ KCζ ⊗O(−C0)

⊗ξ
−→ KCζ ,

where ξ is a section of O(C0) with zero divisor C0.

Lemma 5.3. (Lζ , 9ζ ) is a spin structure on ϕζ : Cζ →1.

Proof. First, Lζ |E = O(1) by Lemma 5.2(a) and 9ζ vanishes identically on each
exceptional component E j , since ξ = 0 on C0 =

⊔
j E j . Second, since 8̂|Di is an

isomorphism, (5-3) and (i) show that, for i = 1, 2, the restriction

9̂|Ci = f ∗i (8̂|Di )⊗ Id : (Lζ |Ci )
2
= f ∗i N 2

i ⊗O(R fi )→ f ∗i K Di ⊗O(R fi )= KCi

is an isomorphism. Lastly, let λ = sn
6= 0. Since 8|Dλ

is an isomorphism, so is
8̂|Dλ

. Thus, by (5-3), (ii), and the facts KD|Dλ
= K Dλ

and O(−E)|Dλ
= O, the

restriction

9̂ζ |Cζ,s = f ∗ζ,s8̂|Dλ
⊗Id :(Lζ |Cζ,s )

2
= f ∗ζ,s N 2

λ⊗O(R fζ,s )→ f ∗ζ,s K Dλ
⊗O(R fζ,s )=KCζ,s

is an isomorphism. This implies that the restriction

9ζ |Cζ,s : (Lζ |Cζ,s )
2
→ KCζ |Cζ,s = KCζ ,s

is also an isomorphism. Therefore, we conclude that (Lζ , 9ζ ) is a spin structure
on ϕζ . �

The following is a key fact for the proof of Theorem 0.1.
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Proposition 5.4. Let f = ( f1, f0, f2) and fζ,s be maps in Proposition 4.1. Then,
for all s 6= 0,

(5-10) p( fζ,s)≡ p( f1)+ p( f2) (mod 2).

Proof. Since (Lζ , 9ζ ) is a spin structure on ϕζ , Cornalba’s proof, mentioned in
Remark 5.1, shows that, for all s 6= 0,

h0(Lζ |Cζ,s )≡ h0(Lζ |C1)+ h0(Lζ |C2) (mod 2).

This and Lemma 5.2(b) prove (5-10). �

6. Proof of Theorem 0.1

Proof. Fix a spin structure (N,8) on ρ : D→1 given in Section 5. Consider the
space Mm,0 in (2-2) where m is a partition of d = 3. In this case, by Lemma 2.1,
either m = (13) or m = (3). Note that both of them satisfy (4-1). Fix λ 6= 0 and
let f = ( f1, f0, f2) be a map in Mm,0. Then (4-2) and (5-10) show that, for all
fµ ∈ Zm, f,λ,

(6-1) p( fµ)≡ p( f1)+ p( f2) (mod 2).

Lemma 1.1 and (3-7) show that

(6-2) H h,p
(3)k = H h,p

(3)k ,(13)3

=
1

(3!)3

( ∑
f ∈M

(13),0

∑
fµ∈Z

(13), f,λ

(−1)p( fµ)+
∑

f ∈M(3),0

∑
fµ∈Z(3), f,λ

(−1)p( fµ)
)
.

By (3-8) and (6-1), (6-2) becomes

(6-3) H h,p
(3)k =

∑
f=( f1, f0, f2)∈M

(13),0

(−1)p( f1)+p( f2)

(3!)3
+

∑
f=( f1, f0, f2)∈M(3),0

32(−1)p( f1)+p( f2)

(3!)3
.

It then follows from Lemma 2.3 and (6-3) that

H h,p
(3)k =

∑
( f1, f0, f2)∈P

(13)

(−1)p( f1)+p( f2)

(3!)5
+

∑
( f1, f0, f2)∈P(3)

32(−1)p( f1)+p( f2)

(3!)3

=
1

(3!)3
∑

f1∈M1
(13)

(−1)p( f1)
∑

f2∈M2
(13)

(−1)p( f2)+
3

(3!)2
∑

f1∈M1
(3)

(−1)p( f1)
∑

f2∈M2
(3)

(−1)p( f2)

= 3!H h1,p1

(3)k1
· H h2,p2

(3)k2
+ 3H h1,p1

(3)k1+1 · H
h2,p2

(3)k2+1;

the second equality follows from Lemma 2.2 and the last from Lemma 1.1. �
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7. Calculation

Proposition 7.1. H h,±
(3)k = 32h−2

[(−1)k2k+h−1
± 1].

Proof. The proof consists of four steps.

Step 1. We first show the following facts which we use in the computation below.

Lemma 7.2. (a) H 0,+
(3)0 = H 0,+

3 =
1
3! , (b) H 0,+

(3)3 =−
1
3 , (c) H 1,+

(3)0 = H 1,+
3 = 2.

Proof. Consider the dimension-zero space MV
χ (P

1, 3) where V = ∅. The Euler
characteristic χ = 6 by (0-1), and hence the space contains only one map f :C→P1

where C is a disjoint union of three rational curves and |Aut( f )| = 3!. This shows
(a). Let ( f,C) be a map in the dimension-zero space MV

χ,(3),(3),(3)(P
1, 3). Then C

is a connected curve of genus one and the theta characteristic L f on C defined by
(0-2) is

L f = O(−2x1+ x2+ x3)= O(x1− 2x2+ x3)= O(x1+ x2− 2x3),

where x1, x2, and x3 are ramification points of f . This implies L3
f = O, and hence

L f = O because L2
f = L3

f = O. We have p( f )= 1. Therefore,

H 0,+
(3)3 =−H 0

(3)3 =−
1
3 ,

where H 0
(3)3 denotes the (ordinary) Hurwitz number, which is calculated by us-

ing the character formula; see [Okounkov and Pandharipande 2006, (0.10)]. By
Proposition 9.2 of [Lee and Parker 2007], the spin Hurwitz numbers H h,p

d are
the dimension-zero local invariants of spin curve that count maps from possibly
disconnected domains. Let GW h,p

d denote the dimension-zero local invariants of
spin curve that count maps from connected domains. Then H h,p

d and GW h,p
d are

related as follows:

1+
∑
d>0

H h,p
d td

= exp
(∑

d>0

GW h,p
d td

)
.

Now (c) follows from GW 1,+
1 =1, GW 1,+

2 =1/2, and GW 1,+
3 =4/3; see Section 10

of [Lee and Parker 2007]. �

Step 2. In this step, we compute H 1,−
(3)k . For a spin curve of genus one with trivial

theta characteristic. It follows from formula (3.12) of [Eskin et al. 2008] that

(7-1) H 1,−
(3)k = 2−k

[( f(3)(21))k − ( f(3)(3))k].

Here the central character f(3) can be written as

f(3) = 1
3 p3+ a2 p2

1 + a1 p1+ a0

for some ai ∈Q (0≤ i ≤ 2), and the supersymmetric functions p1 and p3 are defined
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by
p1(m)= d − 1

24 and p3(m)=
∑

j

m3
j −

1
240 ,

where m = (m1, . . . ,m`) is a partition of d . For k = 0, 1, (7-1) shows

(7-2) H 1,−
(3)0 = 0 and H 1,−

(3) =−3.

Lemma 7.2(b), (7-2), and formula (0-6) give H 1,−
(3)2 = 3H 1,−

(3) · H
0,+
(3)3 = 3. Together

with (7-1) and (7-2), this yields f(3)(21)=−4 and f(3)(3)= 2. From this and (7-1)
we have, for k ≥ 0,

(7-3) H 1,−
(3)k = (−1)k2k

− 1.

Step 3. In this step, we compute H h,+
(3)k for h = 0, 1. For k ≥ 1, (7-2) and formula

(0-6) give H 1,−
(3)k−1 = 3H 1,−

(3) · H
0,+
(3)k =−32 H 0,+

(3)k . Combining this with Lemma 7.2(a)
we obtain, for k ≥ 0,

(7-4) H 0,+
(3)k =−

1
32 ((−1)k−12k−1

− 1).

Lemma 7.2(c), (7-3), (7-4), and formula (0-6) show

H 2,+
(3)0 = 3!H 1,−

(3)0 · H
1,−
(3)0 + 3H 1,−

(3) · H
1,−
(3) = 27,

H 2,+
(3) = 3!H 1,−

(3)0 · H
1,−
(3) + 3H 1,−

(3) · H
1,−
(3)2 =−27,

H 2,+
(3)0 = 3!H 1,+

(3)0 · H
1,+
(3)0 + 3H 1,+

(3) · H
1,+
(3) = 24+ 3H 1,+

(3) · H
1,+
(3) ,

H 2,+
(3) = 3!H 1,+

(3)0 · H
1,+
(3) + 3H 1,+

(3) · H
1,+
(3)2 = 12H 1,+

(3) + 3H 1,+
(3) · H

1,+
(3)2 ,

H 1,+
(3)2 = 3!H 1,+

(3)0 · H
0,+
(3)2 + 3H 1,+

(3) · H
0,+
(3)3 = 4− H 1,+

(3) .

It follows that H 1,+
(3) =−1. Hence, Lemma 7.2(c), (7-4), and formula (0-6) give

(7-5) H 1,+
(3)k = 3!H 1,+

(3)0 · H
0,+
(3)k + 3H 1,+

(3) · H
0,+
(3)k+1 = (−1)k2k

+ 1.

Step 4. It remains to compute H h,p
(3)k for h ≥ 2. The formula (0-6) gives

H h,p
(3)k = 3!H h−1,p

(3)0 · H 1,+
(3)k + 3H h−1,p

(3) · H 1,+
(3)k+1 .

From this, we can deduce that, for h ≥ 2,

(7-6)
(

H h,p
(3)k

H h,p
(3)k+1

)
=

(
3!H 1,+

(3)k 3H 1,+
(3)k+1

3!H 1,+
(3)k+1 3H 1,+

(3)k+2

)(
H h−1,p
(3)0

H h−1,p
(3)

)

=

(
3!H 1,+

(3)k 3H 1,+
(3)k+1

3!H 1,+
(3)k+1 3H 1,+

(3)k+2

)(
3!H 1,+

(3)0 3H 1,+
(3)

3!H 1,+
(3) 3H 1,+

(3)2

)h−2( H 1,p
(3)0

H 1,p
(3)

)
.
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Therefore, (7-3), (7-5), and (7-6) complete the proof. �
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