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HYPERBOLIC 3-MANIFOLDS

YOULIN LI AND JIMING MA

For a compact 3-manifold N with connected nonempty boundary, let 0 be
an admissible trivalent graph in ∂N that decomposes ∂N into a set of disks.
As an extension of small covers, from a (Z2)

3-coloring λ on ∂N −0, one can
get a closed 3-manifold Mλ that admits a locally standard (Z2)

3-action.
Suppose N is irreducible and atoroidal: say, a handlebody. We give a

combinatorial necessary and sufficient condition for a (Z2)
3-colorable pair

(N, 0) to admit a right-angled hyperbolic structure, which naturally in-
duces a hyperbolic structure on Mλ.

1. Introduction

In this note, we study polyhedral hyperbolic 3-manifolds admitting (Z2)
3-colorings

on their connected boundaries, which correspond to closed hyperbolic 3-manifolds
admitting locally standard (Z2)

3-actions.

(Z2)
3-colorings and locally standard (Z2)

3-actions. Small covers, or Coxeter orb-
ifolds, were studied in [Davis and Januszkiewicz 1991]. They are a class of
manifolds which admit locally standard (Z2)

n-actions, such that the orbit spaces
are n-dimensional simple polyhedra. The algebraic and topological properties
of a small cover are closely related to the combinatorics of the orbit polyhedron
and the coloring on its boundary. For example, the (mod 2) Betti number βi of a
small cover M agrees with hi , where h = (h0, h1, . . . , hn) is the h-vector of the
polyhedron.

Those manifolds admitting locally standard (Z2)
n-actions form a wider class

than small covers. In this paper, we focus on the 3-dimensional case.
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A standard representation of the (Z2)
3-action on R3 is the natural action defined

by

e1 : (x1, x2, x3) 7→ (−x1, x2, x3),(1-1)

e2 : (x1, x2, x3) 7→ (x1,−x2, x3),(1-2)

e3 : (x1, x2, x3) 7→ (x1, x2,−x3).(1-3)

The actions e1, e2 and e3 generate the group (Z2)
3. This action fixes the origin

of R3 such that its orbit space is the positive cone

R3
≥0 = {(x1, x2, x3) ∈ R3

| xi ≥ 0}.

Definition 1.1. An effective (Z2)
3-action on a 3-dimensional closed manifold M

is said to be locally standard if it locally looks like the standard representation
of (Z2)

3-action on R3. More precisely, if for each point x in M , there is a (Z2)
3-

invariant neighborhood Ux of x such that Ux is equivariantly homeomorphic to an
invariant open subset of the standard (Z2)

3-action on R3.

The orbit space of a locally standard (Z2)
3-action on a 3-dimensional closed

manifold M is a compact manifold N with corners. In other words, it is a 3-
dimensional compact manifold N with a graph 0 on ∂N . The graph 0 on ∂N
induces a cell decomposition on ∂N . The vertices of 0 are the image of fixed
points of the (Z2)

3-action, the (open) edges of 0 are the image of fixed points of
subgroups (Z2)

2 < (Z2)
3 and (open) components of ∂N −0 are the image of fixed

points of subgroups Z2 < (Z2)
3.

Definition 1.2. Let N be a 3-dimensional manifold with nonempty boundary, and
0 a trivalent graph in ∂N that gives a cell decomposition of ∂N . A (Z2)

3-coloring
is a map λ : ∂N −0→ (Z2)

3
− 0 such that λ( f1), λ( f2) and λ( f3) generate (Z2)

3

for each triple of faces f1, f2 and f3 sharing a common vertex.

Associated to a locally standard (Z2)
3-action on M , there is a canonical (Z2)

3-
coloring λ on ∂N −0 which colors each face f ∈ ∂N −0 by the element e ∈ (Z2)

3

that fixes f . For an i-dimensional cell f in the cell decomposition, i = 0, 1, 2,
we have a group G f ∼= (Z2)

3−i which is generated by the colorings in the faces
which are adjacent to f . The locally standard (Z2)

3-action on M induces a principal
(Z2)

3-bundle over N .
Conversely, by Lemma 3.1 of [Lü and Masuda 2009], from a (Z2)

3-coloring λ
on (∂N , 0) and a principal (Z2)

3-bundle over N , we can get a unique closed
3-manifold M . In particular, from a (Z2)

3-coloring λ and the trivial principal (Z2)
3-

bundle over N , we get a 3-manifold Mλ which depends only on the coloring λ. By
this we take eight copies of N , N×{α} for each α ∈ (Z2)

3, and construct a quotient
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space Mλ under the following gluing rule:

(1-4) (x, α1)∼ (y, α2)⇔

{
x = y, α1 = α2, if x lies in the interior of N ,
x = y, α1α

−1
2 ∈ G f , if x lies in a cell f.

Then it is easy to see Mλ is a closed 3-manifold. In this paper, we only consider
closed 3-manifolds associated to (Z2)

3-colorings and trivial principal (Z2)
3-bundles

over N .
A simple example is that if we consider a coloring of the four faces of a tetrahe-

dron by e1, e2, e3, e1+e2+e3, respectively, then from the above construction, we get
the closed orientable 3-manifold RP3. A tetrahedron admits a unique right-angled
spherical structure, and the spherical structures on eight copies of the tetrahedron,
when glued together, give rise to the unique spherical structure on RP3. This point
of view is applied in this paper.

There are many works on manifolds with locally standard (Z2)
3-actions. For

example, 3-dimensional small covers are studied in [Lü 2009; Lü and Yu 2011]. Six
operations on small covers were defined in [Lü and Yu 2011], which topologically
behave well, such that every 3-dimensional small cover is obtained from the two
simple small covers RP3 and S1

×RP2 by a sequence of these operations. It should
be noted that the operations in [Lü and Yu 2011] give many disks in a simple convex
polygon P , which intersects the 1-skeleton of P in at most four points but which
is not vertex-linking or edge-linking. So the preimage of these disks are essential
spheres or essential tori in the small cover M in general, and hence M does not
admit a geometric structure [Scott 1983].

Polyhedral hyperbolic 3-manifolds. Andreev [1971] (see also [Roeder et al. 2007])
gives a complete characterization of compact hyperbolic polyhedra in dimension 3
with nonobtuse angles. The boundary of a compact hyperbolic polyhedron inherits a
natural cell decomposition. The 1-skeleton of the cell decomposition is a graph 0 on
the boundary of the 3-ball, and a dihedral angle is also given on each edge of 0 from
the hyperbolic structure. Andreev’s theorem is given in terms of a set of conditions
on the dihedral angles. Besides its beauty, Andreev’s theorem is also essential in
the proof of Thurston’s geometrization theorem for Haken 3-manifolds. The natural
question is, given a cell decomposition of the boundary of the 3-ball, and a weight
αe ∈ (0, π) attached to each edge e of the cell decomposition, whether there is
a compact hyperbolic polyhedron in H3 realizing this cell decomposition whose
dihedral angles coincide with the attached weights. This question is still open now.

A clever approach for working with compact hyperbolic polyhedra having arbi-
trary dihedral angles is to express necessary and sufficient conditions for existence
of a given polyhedron in terms of its polar dual in the de Sitter space; see [Hodgson
and Rivin 1993]. For a generalization of Andreev’s result to ideal and hyper-ideal
hyperbolic polyhedra, see [Rivin 1996; Bao and Bonahon 2002]. Hyperbolic
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structures on topologically more complicated 3-manifold N with boundary are also
studied. See [Schlenker 2002; 2003; 2005; 2006, Fillastre and Izmestiev 2009;
2011; Guéritaud 2009].

Suppose N is a compact 3-manifold with connected and nonempty boundary. In
this note, we consider the right-angled hyperbolic structures on N with compressible
boundary.

Given a graph 0 in ∂N , we call it admissible if the lift 0̃ of 0 in the universal
cover of N , say Ñ , gives a cell decomposition of ∂ Ñ such that each of its 2-cells has
a closure homeomorphic to a disk, and each pair of such two disks shares at most one
edge in 0̃. A right-angled hyperbolic realization of (N , 0) is a complete compact
hyperbolic manifold N ∗ with right-angled polyhedral boundary (i.e., modeled on
the orthogonal intersection of two half-spaces with totally geodesic boundaries
in H 3 and having finite volume), endowed with a homeomorphism to N that sends
the nonsmooth points of N ∗ precisely to the points of 0. The nonsmooth points
of N ∗ will be called the singular locus of this structure. From the homeomorphism
between N ∗ and N , 0 is also called the singular locus for this hyperbolic realiza-
tion. We will call such a structure on N ∗ a hyperbolic structure with right-angled
polyhedral boundary on N . Hence these kinds of hyperbolic structures on N look
locally like compact convex right-angled hyperbolic polyhedra in H 3.

Similar to all results above, it is interesting to give a kind of characterization of
hyperbolic structures with right-angled polyhedral boundary on N . Since all the
dihedral angles are right-angled, an easy argument shows that the graph 0 defined
above must be trivalent.

It is well known that most 3-manifolds are hyperbolic 3-manifolds [Thurston
1982]. So it is interesting to consider locally standard (Z2)

3-actions on closed
hyperbolic 3-manifolds. It is natural to ask which closed hyperbolic 3-manifold
admits a locally standard (Z2)

3-action. The orbit space of a locally standard (Z2)
3-

action is a compact manifold N with a coloring λ in ∂N . If (N , 0) admits a
right-angled hyperbolic structure, then it is easy to see that M is hyperbolic. A pair
(N , 0) admits a unique right-angled hyperbolic structure. However, it may admit
many different colorings. Each coloring, together with a principle (Z2)

3-bundle
over N , gives a manifold with a locally standard (Z2)

3-action. So these give many
different hyperbolic manifolds of the same volume. [Inoue 2008] gives a very clear
description of right-angled hyperbolic polyhedra from this point of view.

The most interesting case is that N is a handlebody, or the simplest one, a 3-ball.

Main result. Suppose 0 is an admissible graph in ∂N . For a vertex v of 0, we
take a small closed regular neighborhood B of v in N , then B intersects N − int B
in a disk Dv. We call Dv a vertex-linking disk. It intersects 0 in three points. The
preimage of a vertex-linking disk in Mλ is a sphere which bounds a 3-ball in Mλ for
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a (Z2)
3-coloring λ. For an edge e of 0, we also take a small closed neighborhood B

of e in N ; then B intersects N − int B in a disk De. We call De an edge-linking
disk. It intersects 0 in four points. The preimage of an edge-linking disk in Mλ is a
torus (or a Klein bottle) which bounds a solid torus (or a solid Klein bottle) in Mλ.
We say a properly embedded disk D in the 3-manifold N intersects 0 efficiently
if ∂D and 0 are in general position and there is no bigon in ∂N − (∂D∪0). In this
note we always assume a disk D intersects with 0 efficiently.

Our main result is the following:

Theorem 1.3. Let N be an irreducible, atoroidal and compact 3-manifold with
connected nonempty boundary, and 0 be an admissible trivalent graph in ∂N which
gives a cell decomposition of ∂N , such that (∂N , 0) admits a (Z2)

3-coloring. Then
(N , 0) realizes a right-angled hyperbolic structure if and only if every properly
embedded disk D in N has |D ∩0| ≥ 5, except when D is a vertex-linking disk or
an edge-linking disk. Moreover, the realization is unique up to isometry.

Remark 1.4. In practice, much attention has been paid to the right-angled hy-
perbolic structures on handlebodies. They are irreducible, atoroidal and compact
3-manifolds with connected nonempty boundaries. So Theorem 1.3 can be applied
to the handlebody case.

Remark 1.5. There are two canonical ways to study polyhedral hyperbolic structure
on 3-manifold M : Alexandrov’s method and the variational method; see, for
example, [Fillastre and Izmestiev 2011]. Our approach in this note uses the doubling
trick. A (Z2)

3-coloring helps us find a closed 3-manifold on which we can apply
the geometrization theorem.

2. Preliminaries

If (N , 0) admits a right-angled hyperbolic structure, then 0 is admissible, and each
of its 2-dimensional faces is a right-angled hyperbolic n-polygon. So n ≥ 5.

Definition 2.1. Let 0∗ be the dual graph of 0 in ∂N . A k-circuit is a simple closed
curve C in 0∗ consisting of k successive edges of 0∗ which is contractible in ∂N .
A circuit is elementary if it bounds a disk D in ∂N and there is exactly one vertex V
of 0 that lies in D. A k-circuit is prismatic if the endpoints of all the edges of 0
which intersect C are distinct.

Obviously, there is a one-to-one correspondence between edges of 0 and those
of 0∗.

Lemma 2.2. Suppose 0 is admissible. If C is a 3-circuit which is not prismatic,
then C is isotopic to the boundary of a vertex-linking disk. If 0 contains no
prismatic 3-circuit, and C is a 4-circuit which is not prismatic, then C is isotopic to
the boundary of an edge-linking disk.
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Proof. The proof is similar to the proofs of Lemmas 1.2 and 1.3 of [Roeder
et al. 2007], by which we have that, if C is a nonprismatic 3-circuit, then it is an
elementary circuit. So it is isotopic to the boundary of a vertex-linking disk. If 0
contains no prismatic 3-circuit, then every nonprismatic 4-circuit C separates off
exactly two vertices of 0 from the remaining vertices of 0, which in turn implies
that C is isotopic to the boundary of an edge-linking disk. Actually, the authors of
[Roeder et al. 2007] proved this for any graph in S2. Since 0 is admissible, their
arguments can be extended verbatim in the general case. �

We give a proposition on the orientability of a 3-manifold Mλ with a locally
standard (Z2)

3-action and trivial principal (Z2)
3-bundle.

Proposition 2.3. Suppose N is a compact orientable connected 3-manifold with
connected boundary. Then, for a (Z2)

3-coloring λ on (∂N , 0), Mλ is orientable if
and only if there is a basis {e1, e2, e3} of (Z2)

3, such that the image of λ is contained
in {e1, e2, e3, e1+ e2+ e3}.

Proof. For small covers, this proposition has been proved in Theorem 1.7 of
[Nakayama and Nishimura 2005]. Recall that Mλ is determined by the coloring λ
and the trivial principal (Z2)

3-bundle over N . So Mλ is obtained by gluing eight
copies of (N , λ), and Mλ is orientable if and only if H3(Mλ,Z)= Z. To calculate
H3(Mλ,Z), we only need to consider the 3-cells and 2-cells in a cellular decompo-
sition of Mλ, which is induced by a cellular decomposition of (N , 0). Note that ∂N
is connected, so the arguments of the proof of Theorem 1.7 of [Nakayama and
Nishimura 2005] hold in our case word-by-word. �

3. Proof of Theorem 1.3

Proof of the necessity part of Theorem 1.3. Suppose (N , 0) realizes a right-angled
hyperbolic structure. If D ⊂ N is a properly embedded disk which intersects 0
efficiently, and is not vertex-linking or edge-linking, then by Gauss–Bonnet theorem,
we have |D ∩0| ≥ 5. So the necessity part of Theorem 1.3 follows. �

Proof of the sufficiency part of Theorem 1.3 in the case that Mλ is orientable.
Recall that a closed orientable 3-manifold M is irreducible if every embedded 2-
sphere S in M bounds a 3-ball; otherwise M is reducible. An embedded 2-sphere S
which does not bound a 3-ball in M is called essential. A closed irreducible
orientable 3-manifold M is atoroidal if every embedded torus T in M bounds a
solid torus; otherwise M is toroidal. An embedded torus T which does not bound
a solid torus is essential in M . See [Hempel 1976] or [Jaco 1980].

We need the equivariant sphere theorem of Meeks, Simon, and Yau [Meeks et al.
1982], but the reformulation by Dunwoody [1985] is more convenient for us.
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Theorem 3.1. Let G be a finite group that acts on a closed orientable 3-manifold M
by homeomorphisms. Suppose M has a G-equivariant triangulation. If there exists
an essential 2-sphere S in M , then there exists an essential 2-sphere S1 in M which
is in general position with respect to the triangulation, such that g(S1) = S1 or
g(S1)∩ S1 =∅ for every g ∈ G.

We also need the following equivariant torus theorem; see [Freedman et al. 1983;
Jaco and Shalen 1979; Johannson 1979].

Theorem 3.2. Let G be a finite group which acts on a closed 3-manifold M by
homeomorphisms. Suppose M is irreducible, orientable and contains an essential
torus. Then either M is Seifert-fibered, or M contains a G-equivariant essential
torus.

First, we show the following lemmas.

Lemma 3.3. Mλ is irreducible.

Proof. We give a triangulation T of N , such that the graph 0 is contained in the
1-skeleton of T. So the triangulation T induces a triangulation of Mλ.

If Mλ is reducible, then by the equivariant sphere theorem, there is a (Z2)
3-

equivariant sphere S which is essential in Mλ. We denote S ∩ N ×{1} by A, which
is a compact surface with nonempty boundary if A 6=∅. We may assume A 6=∅,
otherwise we can use the (Z2)

3-action to find another (Z2)
3-invariant sphere S′

which has nonempty intersection with N ×{1}. Since A is obtained from S by the
(Z2)

3-action and S is connected, A is connected.
Since S is in general position with respect the triangulation of Mλ, A is in general

position with respect to the triangulation of ∂N , in particular, with respect to 0. So
there is a cell decomposition of ∂A: for each face f of ∂N −0, f ∩ A is an edge
in ∂A. Moreover, the coloring on ∂N −0 now induces a coloring on ∂A, which
we denote by λA, and S is obtained from copies of A by the gluing rule from λA.

By Definition 1.2, the colorings on any two adjacent edges of ∂A are different.
So we have a subgroup G of (Z2)

3 which has index 1 or 2 in (Z2)
3, such that for

any g ∈ G we have g(S)= S, and for any h ∈ (Z2)
3
−G we have h(S)∩ S =∅.

In other words, S is obtained by gluing 4 or 8 copies of A, and the edges in ∂A
contribute a 4-valence graph in S. So χ(S)=m(χ(A)− E/2+ E/4)= 2, where E
is the number of edges in ∂A, and m = 4 or 8. If m = 4, then E = 2 and χ(A)= 1.
So A is a disk with ∂A consisting of 2 edges. This is impossible by the assumption
in Theorem 1.3. If m= 8, then E = 3 and χ(A)= 1. So A is a disk with ∂A consists
of 3 edges. Moreover, we have that ∂A∩ f is connected for each face f . Suppose
otherwise; i.e., suppose that ∂A∩ f consists of at least two arcs. We have an edge
e of 0 which intersects A such that the two sides of e both are in the face f . Then
when we lift ∂N to the universal cover Ñ . The closure of the lifting f̃ of the face f



426 YOULIN LI AND JIMING MA

is not a disk, contradicting the assumption that 0 is admissible. So ∂A is a 3-circuit.
Thus, by the assumption and Lemma 2.2, A is a vertex-linking disk in N . The
preimage of a vertex-linking disk in Mλ is a sphere which bounds a 3-ball in Mλ.
This contradicts the assumption that S is essential in Mλ. So Mλ is irreducible. �

Lemma 3.4. If Mλ is a toroidal Seifert manifold, then there is an essential torus
in Mλ which is (Z2)

3-equivariant.

Proof. Suppose e1, e2 and e3 are three orientation-reversing involutions which gener-
ate the (Z2)

3-action. Since Mλ admits orientation-reversing involutions, according
to Theorems 8.2 and 8.5 of [Neumann and Raymond 1978], Mλ is Seifert-fibered
with Euler number 0; i.e., Mλ contains horizontal incompressible surfaces which
are transversal to each fiber. In other words, Mλ is a surface bundle over S1

with horizontal incompressible surfaces as surface fibers. We already proved in
Lemma 3.3 that Mλ is irreducible, so the Euler characteristic of the base orbifold
of Mλ is negative or zero. Thus Mλ admits the geometries H 2

×R or E3. We refer
the readers to [Scott 1983] for the details about these two geometries.

For each i = 1, 2, 3, Fix(ei ) contains no nonorientable closed surfaces since the
nonorientable closed surfaces are one-sided in Mλ. According to [Meeks and Scott
1986], for each i = 1, 2, 3, ei is isotopic to an isometry. So Fix(ei ) consists of some
totally geodesic, and hence incompressible, closed surfaces in Mλ.

If Mλ admits the H 2
×R geometry, then it has unique Seifert fibration structure.

So each homeomorphism sends regular fibers to regular fibers. Then, among Fix(e1),
Fix(e2) and Fix(e3), at least two of them, say Fix(e1) and Fix(e2), consist of vertical
essential tori, and e3 keeps each regular fiber invariant and reverses its orientation.
By the definition of (Z2)

3-action, Fix(e1) ∩ Fix(e2) 6= ∅, and Fix(e1) intersects
Fix(e2) transversely. Choose a torus component T in Fix(e1) which intersects
Fix(e2) nontrivially. For any point p ∈ T , we have e1e2(p)= e2e1(p)= e2(p). So
e2(T ) ⊂ Fix(e1). Thus we have that either e2(T ) = T or e2(T )∩ T = ∅. By the
assumption T ∩Fix(e2) 6=∅, we have e2(T )= T . Moreover, e3(T )= T . Hence T is
invariant by e1, e2 and e3, and hence is invariant by each element of the group (Z2)

3.
So it is an essential torus which is (Z2)

3-equivariant.
If Mλ admits the E3 geometry, then according to Theorems 8.2 and 8.5 of

[Neumann and Raymond 1978], it is either the 3-torus T 3 or the Seifert manifold
with invariant {0; (2, 1), (2,−1), (2, 1), (2,−1)}. For the former case, we choose
a Seifert fibration structure which is fibred by all circles isotopic to the circles
in Fix(e1)∩ Fix(e2). Then we can apply the same argument as above to obtain a
(Z2)

3-equivariant essential torus. For the latter case, we fix the Seifert fibration
structure given before, and then all horizontal incompressible surfaces in Mλ are
isotopic essential tori. This is because Mλ has a unique structure of surface bundles
over S1, since its first Betti number is 1; see [Thurston 1986]. So we can still
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assume that both Fix(e1) and Fix(e2) consist of vertical essential tori, and e3 keeps
each regular fiber invariant and reverses its orientation. The same argument in the
previous paragraph still applies, and the same conclusion still holds. �

Lemma 3.5. Mλ is atoroidal.

Proof. By Theorem 3.2 and Lemma 3.4, if Mλ is toroidal, then there is a (Z2)
3-

equivariant essential torus T ⊂ Mλ.
Similar to the sphere case in Lemma 3.3, we also give a triangulation T of N .

We denote T ∩ N × {1} by A, which is nonempty, and is a compact connected
surface with nonempty boundary. Also, there is a cell decomposition of ∂A induced
from the triangulation of N .

Similar to the argument in the sphere case in Lemma 3.3, we have χ(T ) =
m(χ(A)− E/2+ E/4) = 0, where E is the number of edges in ∂A, and m is an
integer. So E = 4 and χ(A) = 1. Thus A is a disk with ∂A consists of 4 edges.
Moreover, ∂A∩ f is connected for each face f . Suppose otherwise; i.e., suppose
that ∂A∩ f consists of at least two arcs. When we lift ∂N to the universal cover Ñ ,
two of the four edges forming ∂A belong to the same face. If these two edges are
adjacent in ∂A, then by the same argument as in the proof of Lemma 3.3, we obtain
a contradiction. If these two edges are not adjacent in ∂A, then the lift of these
two arcs in the universal cover are identified. So in the universal cover, there are
two disks which share two distinct edges, contradicting the assumption that 0 is
admissible. Thus ∂A is a 4-circuit. Therefore, by the assumption and Lemma 2.2, A
is an edge-linking disk. The preimage of an edge-linking disk in Mλ is a torus (or a
Klein bottle) which bounds a solid torus (or a solid Klein bottle, which is impossible
since we assume Mλ is orientable in this subsection), so it is not essential. This
contradicts the assumption that T is essential. So Mλ is atoroidal. �

Lemma 3.6. Mλ is not a Seifert manifold.

Proof. Suppose Mλ is an orientable Seifert manifold with orientable base orbifold,
and Mλ is neither a lens space nor S3. Here the lens spaces don’t include S3 or
S2
× S1. By Theorem 8.2 of [Neumann and Raymond 1978] and its proof, if there

is an orientation-reversing involution on Mλ, then the Seifert invariant of Mλ is
{g; (a1, b1), (a1,−b1), (a2, b2), (a2,−b2), . . . , (at , bt), (at ,−bt)}, where g is the
genus of the base orbifold. Since Mλ is atoroidal, we have g = 0 and t = 1, and
hence Mλ is a lens space. This is a contradiction.

Suppose Mλ is an orientable Seifert manifold with nonorientable base orbifold,
and Mλ is not a lens space. By Theorem 8.5 of [Neumann and Raymond 1978] and
its proof, if there is an orientation-reversing involution on Mλ, then the Seifert in-
variant of Mλ is {k; (a1, b1), (a1,−b1), (a2, b2), (a2,−b2), . . . , (at , bt), (at ,−bt)},
where k is the genus of the nonorientable base orbifold. If t ≥ 1, then Mλ cannot be
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atoroidal. If t = 0, then Mλ is either reducible or toroidal. In both cases, we arrive
at contradictions.

Suppose Mλ is a lens space. By the main result in [Kwun 1970], among all lens
spaces, only RP3 admits orientation-reversing involutions. Moreover, RP3 admits
exactly one orientation-reversing involution up to isotopies, and the set of fixed
points of this involution is an RP2, which has Euler characteristic 1. However,
according to the definition of locally standard (Z2)

3-action, for any nontrivial
element e ∈ (Z2)

3, its fixed point set Fix(e) is a union of k-polygons (k ≥ 5 by our
assumption), and each vertex in Fix(e) is adjacent to 4 edges. Let v be the number
of vertices in Fix(e). Then the number of edges in Fix(e) is 2v, and the number of
faces of Fix(e) is less than or equal to 4v/5. So the Euler characteristic of Fix(e)
is negative — a contradiction.

Suppose Mλ is the 3-sphere S3. From the fact that the orientation-preserving
mapping class group of S3 is trivial, we know S3 admits exactly one orientation-
reversing involution up to isotopy, and the set of fixed points of this involution
is an S2, which has Euler characteristic 2. Then similar to the argument in the
previous paragraph, we get a contradiction. So the lemma follows. �

By Lemmas 3.3, 3.5 and 3.6, Mλ is a closed, irreducible, and atoroidal manifold
which is not Seifert-fibered. So by Perelman’s proof of Thurston’s geometrization
theorem (see [Cao and Zhu 2006; Bessières et al. 2010; Kleiner and Lott 2008;
Morgan and Tian 2007]), Mλ is a hyperbolic 3-manifold. By [Dinkelbach and Leeb
2009], every smooth action of a finite group on a hyperbolic 3-manifold is conjugate
to an isometric action. Since each e ∈ (Z2)

3 is conjugate to an isometric involution,
its fixed point set is a totally geodesic surface in Mλ. Since (Z2)

3 is an Abelian
group, by elementary arguments for the isometric group of hyperbolic 3-space H 3,
all these totally geodesic surfaces intersect orthogonally. So the hyperbolic structure
on Mλ induces a hyperbolic structure on (N , 0). Conversely, each right-angled
hyperbolic structure on (N , 0) induces a hyperbolic structure on Mλ. By Mostow’s
rigidity theorem [1973], there is only one hyperbolic structure on Mλ. So the
right-angled realization of (N , 0) is unique. This ends the proof of Theorem 1.3 in
the case that Mλ is orientable. �

Proof of the sufficiency part of Theorem 1.3 in the case that Mλ is nonorientable.
Let π : M̃λ→ Mλ be the orientable double cover of Mλ, and τ be the covering
transformation of M̃λ. Note that τ is orientation-reversing. By the lifting theorem,
for each i , ei lifts to an action, say ẽi , on M̃λ such that ẽi (x0)= x0, where x0 ∈ M̃λ

projects to a vertex of 0 in ∂N .
We show that ẽi and ẽ j commute, for 1≤ i, j ≤ 3. It is easy to verify that ẽi ẽ j is

the lift of ei e j , and ẽ j ẽi is the lift of e j ei . Since ei e j = e j ei , and ẽi ẽ j (x0)= ẽ j ẽi (x0),
by the unique lifting property, ẽi ẽ j = ẽ j ẽi . We also show that τ and ẽi commute,
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for 1 ≤ i ≤ 3. It is easy to verify that both τ ẽi and ẽiτ are lifts of ei . So either
τ ẽi = ẽiτ or ττ ẽi = ẽiτ . The latter is ẽi = ẽiτ in fact, which is impossible. So
τ ẽi = ẽiτ . Therefore we have an action of (Z2)

4 on M̃λ.
If M̃λ is a toroidal Seifert manifold, then by Lemma 3.4, there is an essential

vertical torus T in M̃λ which is fixed by ẽ1, and is invariant by ẽi , for i = 2, 3.
For any point p ∈ T , we have ẽ1τ(p) = τ ẽ1(p) = τ(p). So τ(T ) ⊂ Fix(ẽ1).
Hence either τ(T )= T or τ(T )∩ T =∅. It is straightforward to verify that T is
(Z2)

4-equivariant.
Therefore, similar to the previous subsection, we can prove that M̃λ is irreducible

and atoroidal. Moreover, if M̃λ is an atoroidal Seifert manifold, then it must be S3

or RP3. The action of τ on M̃λ has no fixed points. However, as stated in the
previous subsection, any orientation-reversing involution on S3 or RP3 must have
fixed points. We arrive at a contradiction.

So M̃λ is hyperbolic. Similar to the arguments in the previous subsection, (N , 0)
admits a unique right-angled hyperbolic structure. �

4. Examples

In this section we give three examples.

Example 4.1. The simplest way to construct a handlebody which admits right-
angled hyperbolic structure is from the Löbell polyhedron L(n) for n ≥ 5 (see, for
example, [Inoue 2008]). A Löbell polyhedron L(n) admits a right-angled hyperbolic
structure. Gluing two opposite n-gon faces of L(n), we get a solid torus admitting
right-angled hyperbolic structures, and whose boundary consists of 2n octagons.

For instance, from L(5), which is a dodecahedron, we can get three solid tori,
according to the twisting angle of gluing. All these solid tori satisfy Theorem 1.3.
It is easy to see that they admit (Z2)

3-colorings, but don’t admit one which satisfies
the orientability criterion in Proposition 2.3.

This kind of right-angled hyperbolic solid tori are “simple”, by which we mean
we can obtain a right-angled hyperbolic polyhedron by cutting along a totally
geodesic right-angled n-polygon P from the solid tori, where P intersects the
boundaries of the solid tori orthogonally.

Example 4.2. A hexagonal tessellation of R2 with a coloring is shown in Figure 1.
We assume that the diameter of a hexagon is 1. We take a Z2-action on R2, such
that its fundamental domain is a rectangle R whose vertical edges have length 4.5,
and whose horizontal edges have length 3

√
3. So there are six hexagons in each

horizontal layer and each vertical layer. Gluing the boundaries of R, we get a torus T .
We can show that any solid torus bounded by T with coloring shown in Figure 1

satisfies the orientability criterion in Proposition 2.3 as well as the assumption of
Theorem 1.3. So it admits a right-angled hyperbolic structure.
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Figure 1

We fix a homeomorphism from T to the boundary of a solid torus J , so it is
natural to ask whether the pair (J, 0) admits a right-angled hyperbolic structure.

It is easy to see that any essential simple closed curve C in this T intersects 0
in at least five points, and any curve C which bounds a disk D in T intersects 0
in at least five points, unless that D is a vertex-linking disk or an edge-linking disk.
So for any solid torus J which is bounded by T , (J, 0) realizes a right-angled
hyperbolic structure.

If the boundary of the unique essential disk in the solid torus J is the image of a
horizontal line, then the hyperbolic solid torus can be decomposed into three copies
of the Löbell polyhedron L(6) along three totally geodesic right-angled hexagons
in the solid torus. The same claim holds if the boundary of the unique essential disk
in the solid torus is the image of the straight lines which have angles π/3 or 2π/3
with the horizontal lines.

Except in these three cases, the right-angled hyperbolic structure cannot be
obtained by gluing two faces of a right-angled hyperbolic polyhedron by an isometry,
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Figure 2

so it is not “simple”. Suppose otherwise; then the totally geodesic right-angled
k-polygon P which decomposes J is in general position with 0, and so some faces
of ∂ J must be decomposed into a set of right-angled hyperbolic n-polygons by ∂P .
Note that n≥ 5, so if ∂P enters a face f of ∂ J−0, then it exits f from the opposite
edge of f from where it enters. It is easy to see that ∂P is the image of the lines
in R2 which have angles 0, π/3 or 2π/3 with the horizontal lines.

Example 4.3. The graph 0 decomposes the torus illustrated in Figure 2 [Chen
2009] into three hexagons, say f1, f2 and f3. We color fi by ei ∈ (Z2)

3 for
i = 1, 2, 3. There are two sets of disks in Theorem 1.3. The first one consists
of boundary parallel disks. The second one consists of essential disks, i.e., not
boundary parallel.

For any embedding of (T 2, 0) of Figure 2 into a solid torus J , the boundary
parallel disks satisfy the assumption of Theorem 1.3. So if we embed (T 2, 0) into
a solid torus J by a map f so that the unique essential disk D (up to isotopy)
intersects 0 in at least 5 points, then by Theorem 1.3, we get a right-angled
hyperbolic structure on (J, f (0)). Note that for a fixed embedding of 0→ T 2,
there are only finitely many isotopy classes of simple closed curves which intersect 0
in at most 4 points.

In general, if the pair (∂N , 0) admits a (Z2)
3-coloring and ∂N has genus at least

one, then it may admit many colorings for a re-embedding of 0 into ∂N . This in
turn induces many closed 3-manifolds from locally standard (Z2)

3-actions.
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