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Dedicated to Konrad Schmüdgen on the occasion of his 65th birthday

In this paper we prove a strong Hahn–Banach theorem: separation of dis-
joint convex sets by linear forms is possible without any further conditions
if the target field R is replaced by a more general real closed extension field.
From this we deduce a general Positivstellensatz for ∗-algebras, involving
representations over real closed fields. We investigate the class of group
algebras in more detail. We show that the cone of sums of squares in the
augmentation ideal has an interior point if and only if the first cohomol-
ogy vanishes. For groups with Kazhdan’s property (T), the result can be
strengthened to interior points in the `1-metric. We finally reprove some
strong Positivstellensätze by Helton and Schmüdgen, using our separation
method.

1. Introduction

In this article we combine techniques from real algebraic geometry, convex geometry,
and the unitary representation theory of discrete groups to address various problems
that arise in the emerging field of noncommutative real algebraic geometry [Schmüd-
gen 2009]. Classical results — like Artin’s solution of Hilbert’s 17th problem —
strive for a characterization of natural notions of positivity in terms of algebraic
certificates. For example, Artin proved that every polynomial in n variables that
is positive at every point on Rn must be a sum of squares of rational functions.
Much later, Schmüdgen [1991] proved that a strictly positive polynomial on a
compact semialgebraic set must be a sum of squares of polynomials plus defining
inequalities. More recently, similar questions were asked in a noncommutative
context. Typically, the setup involves a ∗-algebra A and a family of representations F.
The question is now: Is every self-adjoint element of A that is positive (semi)definite
in every representation in F necessarily of the form

∑
i a∗i ai for some ai ∈ A?

It turned out — similar to the more classical commutative case — that the cone
62 A =

{∑
i a∗i ai | ai ∈ A

}
⊂ A is an interesting object of study in itself. Natural
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questions are: Is 62(A)∩ (−62 A) = {0}? Is 62 A closed in a natural topology?
Does it contain interior points, in the finest locally convex topology, say?

A point q is called an algebraic interior point of a cone C if the cone intersects
each line through q in an open interval around q. A point is an algebraic interior
point if and only if it is an interior point in the finest locally convex topology (see
[Cimprič et al. 2011, Proposition 1.3], for example). The question for interior
points of cones has the following motivation. If a cone C has an (algebraic) interior
point q , then for every point a ∈ C∨∨ from the double dual, one has a+ εq ∈ C for
all ε > 0 (see [loc. cit.] for a proof of this well known fact). Using the standard
Gelfand–Naimark–Segal construction, this yields the following Positivstellensatz
for unital ∗-algebras:

Theorem. Assume that q is an interior point of the cone 62 A. If a = a∗ ∈ A is
positive semidefinite in each ∗-representation of A, then a+εq ∈62 A for all ε > 0.

Our first main result is a different Positivstellensatz (Theorem 3.12): we prove
that each element from a real reduced unital ∗-algebra that is positive in every
generalized representation is necessarily in 62 A. The notion of a generalized
representation involves an extension of the standard real and complex numbers to
more general real- and algebraically closed fields.

A natural and vast class of examples of ∗-algebras is given by complex group
algebras C[0] of discrete countable groups. We study the cones 62C[0] and
62ω(0) in more detail, where ω(0)⊂ C[0] denotes the augmentation ideal; see
Section 4. The situation for ω(0) is much more complicated, as the study is closely
related to questions about first cohomology with unitary coefficients.We prove that
62ω(0) has an interior point if and only if H1(0,C)= 0. The cone 62ω(0) has
an interior point in the `1-metric if 0 has Kazhdan’s property (T), and the converse
holds if H2(0,C) = 0 (see Section 5). In Section 6, we analyze the situation for
free groups more closely and reprove theorems of Schmüdgen and Helton.

Along the way we prove some new and powerful separation theorems in Sections
2 and 3. The Hahn–Banach separation theorems for convex sets only apply if
additional conditions on the involved sets are imposed; sets have to be closed or
have to have nonempty interior, etc. We can remove all additional assumptions
at the expense of enlarging the target R to some real closed extension of the real
numbers; see Theorem 2.1.

2. A real closed separation theorem for convex sets

Throughout, we will work with various real closed fields R and always assume that
R⊂ R. The following is a first general separation theorem for convex cones.

Theorem 2.1. Let V be an R-vector space, C ⊂ V a convex cone and x 6∈ C. Then
there exist a real closed field R containing R and an R-linear functional ϕ : V → R
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such that
ϕ(x) < 0 and ϕ(y)≥ 0 for all y ∈ C.

We can even ensure ϕ(y) > 0 for all y ∈ C \ (C ∩−C). Also, R depends only on V ,
not on x or C.

Proof. Let us first assume that V is finite-dimensional. We construct a complete
flag of subspaces V = H1 ⊃ H2 ⊃ · · · ⊃ Hn = C ∩−C , starting with V = H1,
in the following way. By the standard separation theorem for convex sets (see
for example Theorem 2.9 in [Barvinok 2002]), we choose a nontrivial R-linear
functional ϕi : Hi → R such that ϕi (y) ≥ 0 for all y ∈ C ∩ Hi and ϕi (x) ≤ 0 (if
x ∈ Hi ). We then define Hi+1 := Hi ∩ {ϕi = 0} and iterate the process. We finally
extend each ϕi in any way to V . Now let R be a proper real closed extension field
of R. Choose positive elements

1= ε1 > ε2 > · · ·> εn−1 > 0

from R such that k ·εi < εi−1 for all k ∈R. For example, ε2 can be any infinitesimal
element with respect to R, which exists since R is a proper extension of R; the
following εi can be taken as powers of ε2.

Then define
ϕ := ε1ϕ1+ · · ·+ εn−1ϕn−1.

One checks that ϕ has the desired properties. This proves the claim in the case of
finite dimension.

In the general case, consider the set S of all finite-dimensional subspaces H
of V . For each H ∈S, choose ϕH : H→R, separating x from C ∩H as desired (if
x ∈ H ). Extend ϕH in any way to V . Now let ω be an ultrafilter on S, containing
the sets {H ∈ S | y ∈ H} for all y ∈ V . Consider the linear functional ϕ : V → Rω,
ϕ(v)= (ϕH (v))H∈S. Here Rω denotes the ultrapower of R with respect to ω. One
checks that ϕ separates x from C as desired, by the theorem of Łos (see for example
Theorem 2.2.9 in [Prestel and Delzell 2001]). �

Remark 2.2. In the usual way, one can now also deduce that any two convex
disjoint sets in a vector space can be separated as above with a real-closed valued
affine functional.

It turns out that we can also extend functionals quite often if we allow for an
extension of the real closed field.

Theorem 2.3. Let V be an R-vector space, C ⊆ V a convex cone, and H ⊆ V a
subspace. Assume (C + H)∩−(C + H)= H. Then for any real closed extension
field R of R and any R-linear functional ϕ : H → R with ϕ ≥ 0 on C ∩ H , there is
a real closed extension field R′ of R and an R-linear functional ϕ : V → R′ with
ϕ ≥ 0 on C and ϕ = ϕ on H. We can even ensure ϕ(y) > 0 for all y ∈ C \ H.
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Proof. We apply Theorem 2.1 to the convex cone C + H in V and obtain a real
closed field R̃ and an R-linear functional ψ : V→ R̃ with ψ = 0 on H and ψ(y)> 0
for a ∈ C \ H . By amalgamation of real closed fields, we can assume without loss
of generality that R= R̃. Finally, let R′ be a real closed extension field of R that
contains an element δ > R. Extend ϕ to an R-valued functional on V and set

ϕ := ϕ+ δ ·ψ.

It is clear that ϕ coincides with ϕ on H and also that ϕ(y) > 0 for all y ∈C \H . �

We will improve upon the separation results in the case of certain ∗-algebras in
the next section.

3. Completely positive separation

Throughout this section, let A be a C-algebra with involution ∗, not necessarily
unital. We consider the cone of sums of hermitian squares

62 A =
{ n∑

i=1

a∗i ai
∣∣ n ∈ N, ai ∈ A

}
contained in the real vector subspace of hermitian elements

Ah
= {a ∈ A | a∗ = a}.

If b ∈ Ah
\ 62 A, we find an R-linear functional ϕ : Ah

→ R, into some real
closed extension field R of R, such that ϕ(b) < 0, ϕ(a∗a) ≥ 0 for all a ∈ A, by
Theorem 2.1. We can extend ϕ uniquely to a C-linear functional ϕ : A→ R[i]
fulfilling ϕ(a∗) = ϕ(a). We will denote the algebraically closed field R[i] by C
from now on.

The condition ϕ(a∗a) ≥ 0 for all a ∈ A is called positivity of ϕ. We would
now like positive and real-closed valued functionals to fulfill the Cauchy–Schwarz
inequality

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b)

for all a, b ∈ A. However, this is not true in general, as the next example shows.

Example 3.1. Let A = C[t] be the univariate polynomial ring; ∗ is coefficientwise
conjugation. The cone 62 A equals the cone of nonnegative real polynomials.
Consider the functional

ϕ : R[t] → R, p 7→ p(0)+ εp′′(0),

where ε ∈ R is positive and infinitesimal with respect to R. One checks that ϕ is
positive, but for a = 1+ t2 and b = 1, we have

|ϕ(a∗b)|2 = 1+ 4ε+ 4ε2 > 1+ 4ε = ϕ(a∗a)ϕ(b∗b).
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Example 3.2. The last example can be modified to even fulfill ϕ(a∗a) > 0 if a 6= 0.
Indeed, let 1= ε0 > ε1 > ε2 > · · ·> 0 be a sequence of elements from R, such that
R·εi <εi−1 for all i . Then the linear mapping p 7→

∑
∞

i=0 εi · p(2i)(0) is well-defined
and strictly positive in the desired sense. If we further assume R · ε2 < ε

2
1 , then the

same argument as in Example 3.1 shows that the Cauchy–Schwarz inequality is not
fulfilled.

Definition 3.3. A C-linear functional ϕ : A → C with ϕ(a∗) = ϕ(a) is called
completely positive if for all m ∈ N, the componentwise defined function

ϕ(m) : Mm(A)→Mm(C)

maps sums of hermitian squares to positive semidefinite matrices.

Remark 3.4. It is easily seen that a positive C-linear functional ϕ : A→ C with
ϕ(a∗)= ϕ(a) is always completely positive.

Example 3.5. The functionals from Examples 3.1 and 3.2 are positive, but not
completely positive. Indeed, with a = 1+ t2 and

M =
( 1 a

0 0

)
,

we find that
ϕ(2)(M∗M)=

( 1 ϕ(a)
ϕ(a∗) ϕ(a∗a)

)
is not positive semidefinite, since its determinant is negative in R.

Lemma 3.6. A C-linear functional ϕ : A→ C with ϕ(a∗) = ϕ(a) is completely
positive if and only if the C-linear extension

id⊗ϕ : C⊗C A→ C

is positive.

Proof. The condition that id⊗ϕ is positive is

0≤ (id⊗ϕ)
(( m∑

j=1

z j ⊗ a j

)∗( m∑
j=1

z j ⊗ a j

))

= (id⊗ϕ)
(∑

j,k

z j zk ⊗ a∗j ak

)
=

∑
j,k

z j zk ·ϕ(a∗j ak)

for all m ∈ N, z j ∈ C, a j ∈ A. But this just means that the matrix (a∗j ak) j,k is
mapped to a positive semidefinite matrix under ϕ(m). Since every sum of hermitian
squares in Mm(A) is a finite sum of such rank-one squares, this proves the claim. �
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Corollary 3.7. If ϕ : A → C is completely positive, then it fulfills the Cauchy–
Schwarz inequality

|ϕ(a∗b)|2 ≤ ϕ(a∗a)ϕ(b∗b)

for all a, b ∈ A.

Proof. Either consider the positive and C-linear extension id⊗ϕ to C⊗C A and use
the standard proof for the inequality, or apply ϕ(2) to the sum of hermitian squares( a b

0 0

)∗( a b
0 0

)
=

( a∗a a∗b
b∗a b∗b

)
,

and use that the obtained matrix is positive semidefinite. �

Remark 3.8. We see from the last proof that in fact only the 2-positivity of ϕ is
needed for the Cauchy–Schwarz inequality.

Corollary 3.9. Let A be a C-algebra with involution and R a real closed field that
contains R. Let ϕ : A→C be a completely positive C-linear functional that satisfies
ϕ(a∗)= ϕ(a) for all a ∈ A. The gauge ‖a‖ϕ := ϕ(a∗a)1/2 satisfies

‖λ · a‖ϕ = |λ| · ‖a‖ϕ

and
‖a+ b‖ϕ ≤ ·‖a‖ϕ +‖b‖ϕ.

Proof. The first assertion is obvious. Let’s compute

‖a+ b‖2ϕ = ϕ((a+ b)∗(a+ b))

= ϕ(a∗a)+ϕ(a∗b)+ϕ(b∗a)+ϕ(b∗b)

≤ ‖a‖2ϕ +‖b‖
2
ϕ + 2|ϕ(a∗b)|

≤ ‖a‖2ϕ +‖b‖
2
ϕ + 2‖a‖ϕ‖b‖ϕ

= (‖a‖ϕ +‖b‖ϕ)2.

This proves the claim. �

It turns out that separation from the cone of sums of hermitian squares can often
be done with a completely positive functional.

Definition 3.10. Let A be a C-algebra with involution, not necessarily unital. Then
A is called real reduced if

∑
i a∗i ai = 0 implies ai = 0 for all i and ai ∈ A.

Theorem 3.11. Let A be a C-algebra with involution that is real reduced. Let
b ∈ Ah

\62 A. Then there is real closed extension field R of R and a completely
positive C-linear functional ϕ : A→ C with ϕ(a∗)= ϕ(a) such that

ϕ(b) < 0 and ϕ(a∗a) > 0 for a ∈ A \ {0}.
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Proof. For any finite-dimensional subspace H of A, denote by

62 H =
{∑

i

a∗i ai
∣∣ ai ∈ H

}
the set of sums of hermitian squares of elements from H . It is well known that
62 H is a closed convex cone in a finite-dimensional subspace of Ah . This follows
from the fact that A is real reduced, using for example the approach from [Powers
and Scheiderer 2001, Lemma 2.7]. It also follows that 62 H is salient, that is, it
fulfills

62 H ∩−62 H = {0}.

So for each such H , there is an R-linear functional ϕH : Ah
→ R with

ϕH (b) < 0 and ϕH (a∗a) > 0 for all a ∈ H \ {0}.

Let S be the set of all finite-dimensional subspaces H of A, equipped with an
ultrafilter ω containing all sets {H ∈ S | c ∈ H} for c ∈ A. Define

ϕ : Ah
→ Rω, ϕ(a) := (ϕH (a))H∈S .

Then ϕ does the separation as desired. We consider the C-linear extension of ϕ
to A, and finally show that it is completely positive. The C-linear extension of ϕH

to A indeed maps a matrix (a∗i a j )i, j ∈Mn(A) to a positive semidefinite hermitian
matrix, at least if all ai ∈ H , as is easily checked (compare to Remark 3.4). Since
we can check positivity of the matrix (ϕ(a∗i a j ))i, j ∈Mn(R

ω
[i]) componentwisely

in Mn(R[i]), by the theorem of Łos, this finishes the proof. �

Throughout, we will take the freedom to consider ∗-representations of A on vector
spaces that carry a sesquilinear C-valued inner product, where C= R[i] for some
real closed field R⊃ R. We call these representations generalized representations.
For every completely positive functional ϕ : A→C, we can perform the usual GNS
construction to construct such a representation (see the proof of Theorem 6.1 below
for more technical details). The usual concepts of self-adjointness and positive
semidefiniteness of operators on such a vector space can be defined without any
problems. The first consequence is the following Positivstellensatz (compare to the
standard Positivstellensatz from the introduction):

Theorem 3.12. Let A be a real reduced ∗-algebra, and a ∈ Ah . Then a is positive
semidefinite in every generalized representation if and only if a ∈62 A.

Proof. If a /∈ 62 A, then there exists a completely positive map ϕ : A→ C such
that ϕ(a) < 0. Clearly, a will not be positive semidefinite in the generalized GNS
representation associated with ϕ. �
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Examples for real reduced ∗-algebras are group algebras C[0]. In Section 6, we
will see that for particular groups, the study of generalized representations of C[0]

can be reduced to the study of usual (finite-dimensional) unitary representations,
using Tarski’s transfer principle.

4. Sums of squares in the group algebra

Let 0 be a group and let C[0] denote the complex group algebra. A typical element
in C[0] is denoted by a =

∑
g agg, where only finitely many of the ag ∈ C are not

zero. In C[0] we identify C with C · e, where e denotes the neutral element of 0.
The group algebra comes equipped with an involution

(∑
g agg

)∗
:=
∑

g āgg−1 and
a trace τ : C[0]→C that is given by the formula τ

(∑
g agg

)
= ae. The faithfulness

of the trace shows that C[0] is real reduced. Let 62C[0] denote the set of sums
of hermitian squares in C[0]. The following appears for example as Example 3 in
[Cimprič 2009]:

Remark 4.1. ‖a‖21− a∗a ∈62C[0] for all a ∈ C[0], where ‖a‖1 =
∑

g |ag|.

Remark 4.2. From the identity

2‖a‖1 · (‖a‖1− a)= (‖a‖1− a)∗ (‖a‖1− a)+ (‖a‖21− a∗a)

for a ∈ C[0]h , we see that 1 is an algebraic interior point of the cone 62C[0] in
the real vector space C[0]h . That means 1+ εa ∈ 62C[0] for all a ∈ C[0]h and
sufficiently small ε > 0. In fact, the ε does only depend on ‖a‖1 here.

Remark 4.3. As explained in the introduction, for any element a ∈ C[0]h that
is positive semidefinite in each (usual) ∗-representation of C[0], one thus has
a+ ε ∈62C[0], for all ε > 0.

Remark 4.4. Since C[0] is real reduced and unital, the result of Theorem 3.12
holds here as well. So if a is positive semidefinite in each generalized representation,
then a ∈62C[0].

We now consider the augmentation homomorphism ε : C[0] → C, which is
defined by ε

(∑
g agg

)
=
∑

g ag. The augmentation ideal is

ω(0) := ker(ε)=
{

a ∈ C[0]
∣∣ ∑

g

ag = 0
}
.

We set c(g) := g − 1 and note that {c(g) | g ∈ 0 \ {e}} is a basis of ω(0). The
multiplication satisfies

c(g)c(h)= c(gh)− c(g)− c(h).
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We denote by ω2(0) the square of ω(0), that is, ω2(0)= spanC{ab | a, b ∈ ω(0)}.
Inside ω(0), we study the cone of sums of hermitian squares

62ω(0) :=
{∑

a∗i ai
∣∣ ai ∈ ω(0)

}
.

We are interested in interior points of this cone. Note that 62ω(0)⊂ ω2(0) and
ω(0)/ω2(0)= C⊗Z 0ab, where 0ab = 0/[0,0] and [0,0] denotes the subgroup
of 0 generated by commutators. Hence, if 0 has nontorsion abelianization, then
62ω(0) is contained in a proper subspace of ω(0). However, we will show below
that 62ω(0) always has an interior point in ω2(0)h .

Lemma 4.5. For any group 0, we have 62ω(0)=62C[0] ∩ω(0).

Proof. The inclusion 62ω(0) ⊂ 62C[0] ∩ω(0) is obvious. If
∑

i a∗i ai ∈ ω(0)

with ai ∈C[0], then
∑

i |ε(ai )|
2
= 0, and hence ε(ai )= 0 for all i . This proves the

converse inclusion. �

Remark 4.6. It turns out that we can always extend positive functionals ϕ on ω(0)
to positive functionals ϕ on C[0], at least if we allow for an extension of the real
closed field. Indeed, observe that(

62C[0] +ω(0)h
)
∩−

(
62C[0] +ω(0)h

)
= ω(0)h,

which follows immediately from an application of the augmentation homomorphism
ε. We can thus apply Theorem 2.3.

Lemma 4.7. Let R be a real closed extension field of R, and ϕ : ω(0) → C a
completely positive C-linear functional with ϕ(a∗)= ϕ(a) for all a ∈ ω(0). Then
for all s, h ∈ 0,∣∣ϕ(c(s)∗c(h))∣∣≤ 1

√
2
·
(
ϕ(c(s)∗c(s))+ϕ(c(h)∗c(h))

)
,

ϕ(c(sh)∗c(sh))≤ 2 ·
(
ϕ(c(s)∗c(s))+ϕ(c(h)∗c(h))

)
.

Proof. The first inequality is an application of the Cauchy–Schwarz inequality
(which is fulfilled by completely positive functionals) and the inequality λµ≤ (λ+
µ)2/2. For the second inequality, first apply the triangle identity from Corollary 3.9
to the equation

c(sh)= c(s)+ (c(s)c(h)+ c(h)) ,

together with the well-known inequality (a+ b)2 ≤ 2(a2
+ b2). Then use the easily

verified identity ‖c(s)c(h)+ c(h)‖2 = ‖c(h)‖2. �

Since 1 /∈ ω(0), we need to find a different candidate for an interior point of
62ω(0).
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Definition 4.8. Let S ⊂ 0 be a finite symmetric set, that is, S−1
= S. We define

the Laplace operator on S to be

1(S) := |S| −
∑
s∈S

s.

Remark 4.9. Note that for every finite symmetric set S ⊂ 0,

1(S)= 1
2 ·
∑
s∈S

c(s)∗c(s) ∈62ω(0).

Proposition 4.10. Let 0 be a group generated by a finite symmetric set S. Then
for any b ∈ ω2(0), there exists a constant C(b) ∈ R such that for any real closed
extension field R of R and any completely positive C-linear functional ϕ : ω(0)→C
with ϕ(a∗)= ϕ(a) for all a ∈ ω(0), one has

|ϕ(b)| ≤ C(b) ·ϕ(1(S)).

Proof. Every element b ∈ ω2(0) is a finite linear combination of c(g)∗c(h) for
g, h ∈ 0 \ {e}. This implies that |ϕ(b)| is bounded by a constant times

max
{
ϕ(c(s)∗c(s)) | s ∈ S

}
,

using Lemma 4.7 several times. However,

max
{
ϕ(c(s)∗c(s)) | s ∈ S

}
≤ 2 ·ϕ(1(S))

follows from Remark 4.9. This proves the claim. �

Theorem 4.11. Let 0 be a group with finite generating symmetric set S. Then for
every b ∈ ω2(0)h , there is a constant C(b) ∈ R such that

C(b) ·1(S)± b ∈62ω(0).

In particular, 1(S) is an inner point of the cone 62ω(0) in ω2(0)h . If

H1(0,C)= 0,

it is an inner point in ω(0)h .

Proof. In view of Proposition 4.10, we find that

C(b) ·1(S)± b

is nonnegative under each completely positive real-closed valued C-linear functional
ϕ on ω(0). In view of Theorem 3.12, this means that C(b) ·1(S)± b is a sum of
hermitian squares in ω(0). Note that we use that ω(0) is real reduced. Finally note
that H1(0,C)= 0 just means that ω2(0)= ω(0). �
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5. Groups with Kazhdan’s property (T)

We want to show that the constant C(b) from Theorem 4.11 can be chosen as a
fixed multiple of ‖b‖1, in case the group 0 has Kazhdan’s property.

Definition 5.1. Let 0 be a group and π : 0→U (H) a unitary representation on a
Hilbert space H .

(1) A 1-cocycle with respect to the unitary representation π is a map δ : 0→ H
such that for all g, h ∈ 0, we have δ(gh)= π(g)δ(h)+ δ(g).

(2) A 1-cocycle δ : 0→ H is called inner if δ(g) = π(g)ξ − ξ for some vector
ξ ∈ H .

Definition 5.2. A group has Kazhdan’s property (T) if every 1-cocycle with respect
to every unitary representation is inner.

We will use several results on Kazhdan groups, which can be found, for example,
in [Bekka et al. 2008]. It is well known that groups with Kazhdan’s property (T)
admit a finite generating set S, and that

ω2(0)= ω(0)

holds. It is also known that for a fixed finite symmetric and generating set S in
a Kazhdan group 0, there is some ε > 0 such that for any unitary representation
π : 0→U (H) without nonzero fixed vectors, one has

〈1(S)ξ, ξ〉 ≥ ε · ‖ξ‖2 for all ξ ∈ H.

Such ε is called a Kazhdan constant for S.
Let’s revisit the standard GNS representation in the context of ω(0). Let

ϕ : ω(0)→ C

be a positive linear functional with ϕ(a∗)= ϕ(a). We associate to ϕ a Hilbert space
as follows. We define on ω(0) a positive semidefinite sesquilinear form

〈a, b〉ϕ := ϕ(b∗a)

and set ‖a‖ϕ := 〈a, a〉1/2ϕ . Let N (ϕ) := {a ∈ ω(0) | ‖a‖ϕ = 0} and define
L2(ω(0), ϕ) to be the metric completion of ω(0)/N (ϕ) with respect to ‖ · ‖ϕ . We
denote the image of c(g) in L2(ω(0), ϕ) by δ(g) and denote by δ(0) their complex
linear span, which is dense by definition of L2(ω(0), ϕ)). It is standard that the left-
multiplication of ω(0) on itself extends to a homomorphism πϕ : ω(0)→ D(δ(0)),
where D(δ(0)) denotes the algebra of densely defined linear operators mapping
δ(0) into itself. Indeed, if a ∈ N (ϕ) and b ∈ ω(0), then ba ∈ N (ϕ) since

ϕ((ba)∗ba)= ϕ(a∗b∗ba)≤ ‖b‖21 ·ϕ(a
∗a),
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by Remark 4.1. Note that

πϕ(c(g))δ(h)= δ(gh)− δ(g)− δ(h).

Now we define a unitary representation πϕ of 0 on L2(ω(0), ϕ) by the rule

πϕ(g) := πϕ(c(g))+ 1L2(ω(0),ϕ).

Lemma 5.3. If ω2(0)= ω(0), then the representation πϕ has no fixed vectors.

Proof. Assume η ∈ L2(ω(0), ϕ) is a fixed vector. By definition of πϕ , this means
πϕ(c(g))η = 0 for all g ∈ 0. Hence,

0=
〈
πϕ(c(g−1))η, δ(h)

〉
ϕ
= 〈η, δ(gh)− δ(g)− δ(h)〉ϕ.

Since c(g)c(h) = c(gh)− c(g)− c(h), the vectors δ(gh)− δ(g)− δ(h) span the
image of ω2(0) in δ(0), and hence δ(0), since ω2(0)= ω(0). �

Note that the map g 7→ δ(g) satisfies

δ(gh)= πϕ(g)δ(h)+ δ(g),

and hence defines a 1-cocycle with respect to the representation πϕ . If 0 is a
Kazhdan group, then there exists � ∈ L2(ω(0), ϕ) such that

δ(g)= πϕ(g)�−�.

Proposition 5.4. Let 0 be a Kazhdan group with finite symmetric generating set
S and Kazhdan constant ε > 0. Then for every nonzero b ∈ ω(0)h , every real
closed extension field R of R, and every positive nontrivial C-linear functional
ϕ : ω(0)→ C with ϕ(a∗)= ϕ(a), one has

ε ·ϕ(b) < 2‖b‖1 ·ϕ(1(S)).

Proof. Let us first assume R= R and C= C. We do the GNS construction as just
described, and get some � ∈ L2(ω(0), ϕ) with δ(g)= πϕ(g)�−�, for all g ∈ 0.
We set

ϕ : C[0] → C, ϕ(a)= 〈πϕ(a)�,�〉

and compute

ϕ̄(c(h)∗c(g))=
〈
πϕ(c(g))�, πϕ(c(h))�

〉
ϕ
= 〈δ(g), δ(h)〉ϕ = ϕ(c(h)∗c(g)).

This shows that ϕ̄ and ϕ agree on ω2(0), and hence on ω(0). If we now do
the standard GNS construction with respect to ϕ, we see that there is a natural 0-
equivariant identification of L2(C[0], ϕ̄) and L2(ω(0), ϕ). Since the representation
πϕ has no fixed vectors, we get

ϕ(1(S))= ϕ(1(S))= 〈1(S)1, 1〉ϕ ≥ ε ·ϕ(1).
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Since ϕ is positive and nontrivial, it follows from Remark 4.2 that ϕ(1) > 0. So
finally, again using Remark 4.2, we find

ε ·ϕ(b)= ε ·ϕ(b)≤ ε · ‖b‖1 ·ϕ(1) < 2‖b‖1 ·ϕ(1(S)),

the desired result.
Now let R be arbitrary, and let ϕ : ω(0)→ C be positive and nontrivial. From

Theorem 4.11 it follows that ϕ(1(S)) > 0. So we can assume without loss of
generality that ϕ(1(S))= 1. Again from Theorem 4.11, we see that ϕ now only
takes values in O[i], where O is the convex hull of R in R. It is well known that O

is a valuation ring in R with maximal ideal m, and that O/m= R (see for example
[Prestel and Delzell 2001], especially the appendix on valued fields). The residue
map O→ O/m maps nonnegative elements to nonnegative elements. So if we
compose ϕ with the residue map on O[i], we get a positive linear functional to C.
Since we know that the desired strict inequality holds now, it was already valid
for ϕ. �

Theorem 5.5. Let 0 be a group with finite generating symmetric set S. Consider
the statements:

(1) 0 has Kazhdan’s property (T).

(2) 1(S) is an algebraic interior point of62ω(0) in the `1-metric of ω(0)h . More
precisely, there exists a constant ε > 0 such that for every b ∈ ω(0)h with
‖b‖1 = 1, we have

1(S)+ ε · b ∈62ω(0).

The following implications hold: (1) implies (2), and (2) implies (1) under the
additional assumption H2(0,C)= 0.

Proof. The implication (1) ⇒ (2) is a direct consequence of Theorem 3.11 and
Proposition 5.4. Let us now prove (2) ⇒ (1) under the additional assumption
H2(0,C)= 0. We first prove two lemmas.

Lemma 5.6. Let 0 be a group. There is an exact sequence as follows:

0→ H2(0,C)→ ω(0)⊗C[0] ω(0)→ ω(0)→ H1(0,C)→ 0.

Proof. It is well known that

ω(0)/ω2(0)= 0ab⊗Z C= H1(0,C).

This shows exactness at ω(0), and it remains to show exactness at ω(0)⊗C[0]ω(0).
Since 0→ ω(0)→ C[0] → C→ 0 is exact, we have

H2(0,C)= H1(0, ω(0))= TorC[0]
1 (C, ω(0)).
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Again, we get an exact sequence

TorC[0]
1 (C[0], ω(0))→TorC[0]

1 (C, ω(0))→ω(0)⊗C[0]ω(0)→C[0]⊗C[0]ω(0).

This finishes the proof, since TorC[0]
1 (C[0], ω(0))= 0. �

If 1(S) is an algebraic interior point of 62ω(0) in ω(0)h , then ω(0)= ω2(0),
that is, H1(0,C)= 0. Hence H2(0,C)= 0 ensures that the natural map

ω(0)⊗C[0] ω(0)→ ω(0)

is an isomorphism. This is what we are going to use.

Lemma 5.7. Let π : 0→U (H) be a unitary representation and let δ : 0→ H be
a 1-cocycle with respect to H. Then

ϕ(c(h)∗⊗ c(g)) := 〈δ(g), δ(h)〉

yields a well-defined positive linear functional on ω(0)= ω(0)⊗C[0] ω(0).

Proof. It is clear that (c(h)∗, c(g)) 7→ 〈δ(g), δ(h)〉 defines a bilinear map on ω(0),
that is, a linear map ϕ′ : ω(0)⊗C ω(0)→ C. We show that this map passes to
ω(0)⊗C[0] ω(0). Let g, h, k ∈ 0; then

ϕ′(c(h)∗k⊗ c(g))= ϕ′(c(h−1)k⊗ c(g))

= ϕ′
(
(c(h−1k)− c(k))⊗ c(g)

)
= ϕ′(c(k−1h)∗⊗ c(g))−ϕ′(c(k−1)∗⊗ c(g))

= 〈δ(g), δ(k−1h)〉− 〈δ(g), δ(k−1)〉

= 〈δ(g), π(k−1)δ(h)〉

= 〈π(k)δ(g), δ(h)〉

= 〈δ(kg), δ(h)〉− 〈δ(k), δ(h)〉

= ϕ′(c(h)∗⊗ c(kg))−ϕ′(c(h)∗⊗ c(k))

= ϕ′(c(h∗)⊗ kc(g)).

We can now understand ϕ′ as a linear map on ω(0) via the above isomorphism
to ω(0)⊗C[0] ω(0). Since a∗a corresponds to a∗⊗ a, one easily checks that ϕ is
positive on ω(0). �

We continue with the proof of Theorem 5.5. Condition (2) in Theorem 5.5 and
Lemma 5.7 imply that any 1-cocycle with respect to any unitary representation is
bounded. This is well known to imply Kazhdan’s property (T) for 0. �

Remark 5.8. It is not clear whether the condition H2(0,C)= 0 is necessary.
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There is an analogue of the implication (1)⇒ (2) in Theorem 5.5 in

`10 :=

{∑
g∈0

agg
∣∣ ∑

g∈0

|ag|<∞

}
.

We set ω10 := ω(0)
‖ · ‖1 and define

62,1ω(0) :=

{ ∞∑
i=1

a∗i ai
∣∣ ai ∈ ω[0],

∞∑
i=1

‖ai‖
2
1 <∞

}
and

62,1`1(0) :=

{ ∞∑
i=1

a∗i ai
∣∣ ai ∈ `

1
[0],

∞∑
i=1

‖ai‖
2
1 <∞

}
.

We note that ‖a‖1−a ∈62,1`1(0) for every hermitian element a ∈ `10. Indeed,

‖a‖1−a=
∑
g∈G

2|ag|−agg−āgg−1
=

∑
g∈G

(
|ag|

1/2
−

ag

|ag|
1/2 g

)∗(
|ag|

1/2
−

ag

|ag|
1/2 g

)
.

Hence, for ϕ : `10→ C, C-linear and positive on 62,1`10, |ϕ(a)| ≤ ‖a‖1 for all
a ∈ `10. A priori, there is no reason to assume that 62,1`10 or 62,1ω10 are closed
or have nontrivial interior. Nevertheless, our result shows:

Corollary 5.9. Let 0 be a Kazhdan group with finite generating symmetric set S
and Kazhdan constant ε. Then for every b ∈ ω1(0)h with ‖b‖1 = 1, we have

1(S)+ ε · b ∈62,1ω(0).

6. Group algebras of free groups

In this section, let 0 = Fn be the free group on n generators g1, . . . , gn or 0 =
F∞. Schmüdgen (private communication, 2011) has proven that an element
from the group algebra C[0] that is nonnegative under each finite-dimensional
∗-representation is a sum of squares. We demonstrate how his result can be reproved
with our real closed separation approach. The main idea of our proof is the same as
in Schmüdgen’s work. However, instead of a partial GNS construction, we use a
full GNS construction, but over a general real closed field. We then reduce to the
standard real numbers by Tarski’s transfer principle.

Theorem 6.1 (Schmüdgen). Let 0 = Fn be the free group on n generators. If
b ∈C[0]h is mapped to a positive semidefinite matrix under each finite-dimensional
∗-representation of C[0], then b ∈62C[0].

Proof. Assume that b /∈62C[0]. By Theorem 3.11, there is a real closed extension
field R of R and a completely positive C-linear functional ϕ : C[0] → C with
ϕ(a∗)= ϕ(a), such that ϕ(b) < 0. By Lemma 3.6, the canonical C-linear extension
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of ϕ to A = C⊗C C[0] is still positive, and we denote it again by ϕ. We apply the
usual GNS construction to A. We note that

N = {a ∈ A | ϕ(a∗a)= 0}

is a ∗-subspace of the C-vector space A, which follows from the Cauchy–Schwarz
inequality, as shown in Corollary 3.9. We denote the quotient space A/N by H ,
and note that

〈a+ N , c+ N 〉ϕ := ϕ(c∗a)

is a well-defined and positive definite C-valued sesquilinear form on H . We also
note that left-multiplication from C[0] on A is well-defined on H , as explained in
Section 5. So we have a C-linear ∗-representation

π : C[0] → L(H)

with 〈π(b)ξ, ξ〉ϕ < 0, where ξ = 1+ N .
Now let H ′ be a finite-dimensional ∗-subspace of H , containing the residue

classes of all words in the generators gi of length at most d , where d is the maximal
word length in b. We can choose an orthonormal basis v1, . . . vm of H ′, using the
usual Gram–Schmidt procedure over C. So there is an orthogonal projection map
p : H → H ′, defined as

p : h 7→
m∑

i=1

〈h, vi 〉vi .

Define
Mi := p ◦π(gi ) ∈ L(H ′).

It is easy to see that all Mi are contractions; thus the linear operators
√

1−M∗i Mi

and
√

1−Mi M∗i exist on H ′. Using Choi’s matrix trick [1980, Theorem 7], we
define

Ui :=

(
Mi

√
I −Mi M∗i√

I −M∗i Mi −M∗i

)
∈ L(H ′⊕ H ′).

The Ui are checked to be unitary operators, and thus yield a C-linear ∗-representation
π̃ of C[0] on H ′⊕H ′. Since the residue classes of all words occurring in b belong
to H ′, and by the definition of the Ui , we find

〈π̃(b)ξ ′, ξ ′〉H ′⊕H ′ = 〈π(b)ξ, ξ〉ϕ < 0,

where ξ ′ = (ξ, 0). Now finally, since H ′⊕ H ′ is finite-dimensional, the existence
of such a representation over C implies the existence over C, by Tarski’s transfer
principle. This finishes the proof. �

Remark 6.2. The proof becomes even simpler when considering the ∗-algebra of
polynomials in noncommuting variables C〈y1, . . . , yn, z1, . . . , zn〉 with y∗i = zi , or
C〈z1, . . . , zn〉 with z∗i = zi , instead of the group algebra of a free group. The reason
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is that one is not forced to make the matrices Mi unitary (only hermitian in the
second case). So Theorem 6.1 also holds for these polynomial algebras. This was
first proven by Helton [2002].

It is an interesting problem to study the class of groups 0 for which positivity
of a ∈ C[0] in every finite-dimensional unitary representation implies that a ∈
62C[0]. It is clear that in order for an analogous argument to work, 0 has to be
residually finite-dimensional in a very strong sense. Residual finite-dimensionality
of a group means that every unitary representation on a Hilbert space can be
approximated in the Fell topology by finite-dimensional representations; see [Brown
and Ozawa 2008] for details. If — more generally — every generalized unitary
representation of 0 on a Hilbert space can be approximated on finitely many vectors
by generalized finite-dimensional unitary representations, then everything works.
With additional work, this can be carried out for virtually free groups (Schmüdgen,
private communication).

Deep results of Scheiderer [2006] imply that the conclusion holds for Z2. By a
classical result [Rudin 1963], however, the group Z3 does not satisfy the desired
conclusion, and the same holds for every group containing Z3. This is also implied
by seminal work of Scheiderer [2000, Theorem 6.2], who showed that the existence
of positive elements that are not sums of squares under general assumptions in
dimension ≥ 3.

This shows that the theory of generalized unitary representations is fundamentally
different and new pathologies occur.

An intriguing and possibly manageable case is that of surface groups. Lubotzky
and Shalom [2004] showed that surface groups are residually finite-dimensional.
It is quite possible that their methods extend and lead to a resolution of the case of
surface groups.

Conjecture 6.3. Let 0 be a surface group. Every element a ∈C[0]h that is positive
semidefinite in every finite-dimensional unitary representation lies in 62C[0].

Similar questions can be studied if one allows the unitary representations to be
infinite-dimensional. Again, the only known obstruction is Z3

⊂ 0.
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