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ON THE CLASSIFICATION OF STABLE SOLUTIONS TO
BIHARMONIC PROBLEMS IN LARGE DIMENSIONS

JUNCHENG WEI, XINGWANG XU AND WEN YANG

We give a new bound on the exponent for nonexistence of stable solutions to
the biharmonic problem 12u = u p in Rn, where u > 0, p > 1, and n ≥ 20.

1. Introduction

Of concern is the biharmonic equation

(1-1) 12u = u p, u > 0 in Rn

where n ≥ 5 and p > 1. Set

(1-2) 3u(ϕ) :=

∫
Rn
|1ϕ|2dx − p

∫
Rn

u p−1ϕ2dx for all ϕ ∈ H 2(Rn).

The Morse index ind(u) of a classical solution to (1-1) is defined as the maximal
dimension of all subspaces of H 2(Rn) such that 3u(ϕ) < 0 in H 2(Rn) \ {0}. We
say u is a stable solution to (1-1) if 3u(ϕ)≥ 0 for any test function ϕ ∈ H 2(Rn);
that is, if the Morse index is zero.

In the first part of the paper, we obtain the following classification result on
stable solutions of (1-1).

Theorem 1.1. Let n≥ 20 and 1< p< 1+ 8p∗

n−4
. Then (1-1) has no stable solutions.

Here p∗ stands for the smallest real root greater than n−4
n−8

of the algebraic
equation

512(2−n)x6
+4(n3

−60n2
+670n−1344)x5

−2(13n3
−424n2

+3064n−5408)x4

+2(27n3
−572n2

+3264n−5440)x3
−(49n3

−772n2
+3776n−5888)x2

+4(5n3
−66n2

+288n−416)x−3(n3
−12n2

+48n−64)= 0.
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Some remarks are in order. Let us recall that for the second-order problem

(1-3) 1u+ u p
= 0 u > 0 in Rn, p > 1,

Farina gave a complete classification of all finite Morse index solutions. The main
result of [Farina 2007] is that no stable solution exists to (1-3) if either n≤ 10, p> 1
or n ≥ 11, p < pJ L . Here pJ L denotes the Joseph–Lundgren exponent [Gui et al.
1992]. On the other hand, a stable radial solution exists for p ≥ pJ L .

For the fourth-order case, the nonexistence of positive solutions to (1-1) is shown
if p < n+4

n−4 , and all entire solutions are classified if p = n+4
n−4 . See [Lin 1998; Wei

and Xu 1999]. When p> n+4
n−4 , radially symmetric solutions to (1-1) are completely

classified in [Ferrero et al. 2009; Gazzola and Grunau 2006; Guo and Wei 2010].
The radial solutions are shown to be stable if and only if p≥ p′J L and n≥ 13, where
p′J L stands for the corresponding Joseph–Lundgren exponent (see [Ferrero et al.
2009; Gazzola and Grunau 2006]). In the general nonradial case, Wei and Ye [Wei
and Ye 2010] showed the nonexistence of stable or finite Morse index solutions
when either n ≤ 8, p > 1 or n ≥ 9, p ≤ n

n−8 . In dimensions n ≥ 9, a perturbation
argument is used to show the nonexistence of stable solutions for p < n

n−8 + εn for
some εn > 0. However, no explicit value of εn was given. The proof of Wei and Ye
[2010] follows an earlier idea of Cowan, Esposito and Ghoussoub [2010] in which
a similar problem in a bounded domain was studied. Theorem 1.1 gives an explicit
value on εn for n ≥ 20.

In the second-order case, the proof of Farina uses basically the Moser iterations:
namely multiply (1-3) by the power of u, like uq , q > 1. Moser iteration works
because of the following simple identity∫

Rn
uq(−1u)=

4q
(q + 1)2

∫
Rn
|∇u

q+1
2 |

2,∀u ∈ C1
0(R

n).

In the fourth-order case, such equality does not hold, and in fact we have∫
Rn

uq(12u)=
4q

(q + 1)2

∫
Rn
|1u

q+1
2 |

2
− q(q − 1)2

∫
Rn

uq−3
|∇u|4,∀u ∈ C2

0(R
n).

The additional term
∫

Rn uq−3
|∇u|4 makes the Moser iteration argument difficult

to use. Wei and Ye [2010] used instead the new test function −1u and showed
that

∫
R2 |1u|2 is bounded. Thus the exponent n

n−8 is obtained. In this paper, we
use the Moser iteration for the fourth-order problem and give a control on the term∫

Rn uq−3
|∇u|4 (Lemma 2.3). As a result, we obtain a better exponent n

n−8 + εn

where εn is explicitly given. As far as we know, this seems to be the first result for
Moser iteration for a fourth-order problem.
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In the second part of this paper, we show that the same idea can be used to
establish the regularity of extremal solutions to

(1-4)


12u = λ(u+ 1)p, λ > 0 in �,
u > 0 in �,
u =1u = 0 on ∂�,

where � is a smooth and bounded convex domain in Rn .
For problem (1-4), it is known [Berchio and Gazzola 2005] that for p > n+4

n−4
there exists a critical value λ∗ > 0 depending on p > 1 and � such that

• If λ ∈ (0, λ∗), (1-4) has a minimal and classical solution which is stable;

• If λ= λ∗, a unique weak solution, called the extremal solution u∗ exists for
(1-4);

• No weak solution of (1-4) exists whenever λ > λ∗.

The regularity of the extremal solution of problem (1-4) at λ = λ∗ has been
studied in [Cowan et al. 2010; Wei and Ye 2010], where it was shown that the
extremal solution is bounded provided n ≤ 8 or p< n

n−8+εn , n ≥ 9 (εn very small).
Here, we also give a explicit bound for the exponent p in large dimensions and our
second result is the following.

Theorem 1.2. The extremal solution u∗ of (1-4) when λ= λ∗ is bounded provided
that n ≥ 20 and 1< p < 1+ 8p∗

n−4 , where p∗ is defined as above.

As n → +∞, the value εn is asymptotically 8
√

8/3/(n− 8)3/2 and thus the
upper bound for p has the expansion

(1-5) 1+
8

n− 8
+

8
√

8/3
(n− 8)3/2

+ O
(

1
(n− 8)2

)
.

On the other hand, for radial solutions, the Joseph–Lundgren exponent [Gui et al.
1992] has the following asymptotic expansion

(1-6) 1+
8

n− 8
+

16
(n− 8)3/2

+ O
(

1
(n− 8)2

)
.

In this paper, we have only considered fourth-order problems with power-like
nonlinearity. Other kinds of nonlinearity, such as exponential and negative powers,
also appear in many applications; see [Cowan et al. 2010]. However, our technique
here yields no improvements of results of that reference in the case of exponential
and negative nonlinearities.

This paper is organized as follows. We prove Theorem 1.1 and Theorem 1.2
respectively in Section 2 and Section 3. Some technical inequalities are given in
the Appendix.
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2. Proof of Theorem 1.1

Lemma 2.1. For any ϕ ∈ C4
0(R

n) with ϕ ≥ 0, any γ > 1 and ε > 0 an arbitrary
small number, we have∫

Rn
(1(uγϕγ ))2 ≤

∫
Rn
((1uγϕγ )2+ ε|∇u|4ϕ2γ u2γ−4

+Cu2γ
‖∇

4(ϕ2γ )‖),(2-1) ∫
Rn
(1(uγϕγ ))2 ≥

∫
Rn
((1uγϕγ )2− ε|∇u|4ϕ2γ u2γ−4

−Cu2γ
‖∇

4(ϕ2γ )‖),(2-2) ∫
Rn
((uγ )i j )

2ϕ2γ
≤

∫
Rn
((uγϕγ )i j )

2
+ ε

∫
Rn
|∇u|4u2γ−4ϕ2γ(2-3)

+C
∫

Rn
u2γ
‖∇

4(ϕ2γ )‖,

where C is a positive number that only depends on γ and ε, and ‖∇4(ϕ2γ )‖ is
defined by

‖∇
4(ϕ2γ )‖2 = ϕ−2γ

|∇ϕγ |4+ |ϕγ (12ϕγ )| + |∇2ϕγ |2.

In the following, unless said otherwise, the constant C always denotes a positive
number which may change term by term but only depends on γ, ε.

Proof. Since ϕ is compactly supported, we can use integration by parts without
considering the boundary terms. First, by direct calculation, we get

(2-4) (1(uγϕγ ))2 = [(1uγ )ϕγ ]2+ 4∇uγ∇ϕγ1ϕγ uγ + 4∇uγ∇ϕγ1uγϕγ

+ 4(∇uγ∇ϕγ )2+ 21uγ uγ1ϕγϕγ + u2γ (1ϕγ )2.

We now need to deal with the third and fifth terms on the right side of this equality,
up to the integration of both sides.

For the third term, we have∫
Rn
1uγ∇uγ∇ϕγϕγ =−

∫
Rn
(uγ )i (uγ )i j (ϕ

γ ) jϕ
γ

−

∫
Rn
(uγ )i (uγ ) j (ϕ

γ )i jϕ
γ
−

∫
Rn
(uγ )i (uγ ) j (ϕ

γ ) j (ϕ
γ )i ,

where fi = ∂ f/∂xi and fi j = ∂
2 f/∂x j∂xi . (Here and in the sequel, we use the

Einstein summation convention, so for example ∂i (ui u jϕ j )=
∑

1≤i, j≤n ∂i (ui u jϕ j ).)
The first term on the right side of the previous equation can be estimated as

2
∫

Rn
(uγ )i (uγ )i j (ϕ

γ ) jϕ
γ
=

∫
Rn
∂ j ((uγ )i (uγ )i (ϕγ ) jϕ

γ )−

∫
Rn
((uγ )i )2(ϕγ ) j jϕ

γ

−

∫
Rn
((uγ )i )2(ϕγ ) j (ϕ

γ ) j .
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Combining these two equalities, we get

2
∫

Rn
1uγ∇uγ∇ϕγϕγ =−

∫
Rn
∂ j
(
(uγ )i (uγ )i (ϕγ ) jϕ

γ
)

−

∫
Rn

2(uγ )i (uγ ) j (ϕ
γ )i jϕ

γ
−

∫
Rn

2(uγ )i (uγ ) j (ϕ
γ ) j (ϕ

γ )i

+

∫
Rn
((uγ )i )2(ϕγ ) j jϕ

γ
+

∫
Rn
((uγ )i )2(ϕγ ) j (ϕ

γ ) j .

Rewriting this equality we have

(2-5) 4
∫

Rn
1uγ∇uγ∇ϕγϕγ = 2

∫
Rn
|∇uγ |21ϕγϕγ + 2

∫
Rn
|∇uγ |2|∇ϕγ |2

− 4
∫

Rn
(uγ )i (uγ ) j (ϕ

γ )i jϕ
γ
− 4

∫
Rn
〈∇uγ ,∇ϕγ 〉2.

For the fifth term on the right side of (2-4) we have

(2-6)
∫

Rn
1uγ uγ1ϕγϕγ = −

∫
Rn

uγ 〈∇uγ ,∇(1ϕγ )〉ϕγ

−

∫
Rn
〈∇uγ ,∇ϕγ 〉uγ1ϕγ −

∫
Rn
|∇uγ |21ϕγϕγ .

Combining (2-4), (2-5) and (2-6), one obtains

(2-7)
∫

Rn
(1(uγϕγ ))2−

∫
Rn
(1uγ )2ϕ2γ

= 2
∫

Rn
|∇uγ |2|∇ϕγ |2− 4

∫
Rn
ϕγ (∇2ϕγ (∇uγ ,∇uγ ))

+

∫
Rn

u2γϕγ12(ϕγ )− 2
∫

Rn
u2γ (1ϕγ )2.

Now by the Young equality, for any ε > 0, there exists a constant C = C(γ, ε)
such that

|∇uγ |2|∇ϕγ |2 ≤
ε

4
|∇uγ |4u−2γϕ2γ

+C |∇ϕγ |4u2γϕ−2γ

and
|ϕγ (∇2ϕγ (∇uγ ,∇uγ ))| ≤

ε

8
|∇uγ |4u−2γϕ2γ

+Cu2γ
|∇

2ϕγ |2.

Thus by (2-7), together with the two estimates above, one gets∣∣∣∣∫
Rn
(1(uγϕγ ))2−

∫
Rn
(1uγ )2ϕ2γ

∣∣∣∣≤ ε ∫
Rn
|∇uγ |4u−2γϕ2γ

+6C
∫

Rn
u2γ
‖∇

4ϕγ ‖2.

The estimates (2-1) and (2-2) follow from this easily.
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Next we observe that |∇2uγ |2ϕ2γ
=
[ 1

21|∇uγ |2 − 〈∇uγ ,∇1uγ 〉
]
ϕ2γ . Thus

up to the integration by parts, with the help of (2-5) and the estimates we just
proved, the estimate (2-3) also follows by noticing the identity

∫
Rn (1(uγϕγ ))2 =∫

Rn |∇
2(uγϕγ )|2. The proof of Lemma 2.1 is thus completed. �

Let us return to the equation

(2-8) 12u = u p, u > 0 in Rn.

Fix q = 2γ − 1> 0 and γ > 1. Let ϕ ∈ C∞0 (R
n). Multiplying (2-8) by uqϕ2γ and

integration by parts, we obtain

(2-9)
∫

Rn
1u1(uqϕ2γ )=

∫
Rn

u p+qϕ2γ .

For the left side of (2-9), we have:

Lemma 2.2. For any ϕ ∈ C∞0 (R
n) with ϕ ≥ 0, for any ε > 0 and γ with q defined

above, there exists a positive constant C depends on γ, ε such that

(2-10)
∫

Rn

γ 2

q
1u1(uqϕ2γ )≥

∫
Rn
(1uγϕγ )2−

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖

−

∫
Rn
(γ 2(γ − 1)2+ ε)u2γ−4

|∇u|4ϕ2γ .

Proof. First, by direct computations, we obtain

1u1(u2γ−1ϕ2γ )=1u
(
(2γ − 1)u2γ−21uϕ2γ

+ 2(2γ − 1)u2γ−2
∇u∇(ϕ2γ )

+ (2γ − 1)(2γ − 2)u2γ−3
|∇u|2ϕ2γ

+ u2γ−11ϕ2γ ),
(1uγϕγ )2 = γ 2u2γ−2(1u)2ϕ2γ

+ γ 2(γ − 1)2u2γ−4
|∇u|4ϕ2γ

+ 2(γ − 1)γ 2u2γ−3
|∇u|21uϕ2γ .

Combining these two identities, we get

(2-11)
γ 2

q
1u1(uqϕ2γ )= (1uγϕγ )2+2γ 2u2γ−21u∇u∇ϕ2γ

+
γ 2

q
u2γ−11u1ϕ2γ

− γ 2(γ − 1)2u2γ−4
|∇u|4ϕ2γ .

For the term u2γ−21u∇u∇ϕ2γ , we have

u2γ−21u∇u∇ϕ2γ
= ∂i (u2γ−2ui u j (ϕ

2γ ) j )− (2γ − 2)u2γ−3(ui )
2u j (ϕ

2γ ) j

− u2γ−2ui ui j (ϕ
2γ ) j − u2γ−2ui u j (ϕ

2γ )i j .
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We can regroup the term u2γ−2ui ui j (ϕ
2γ ) j as

2u2γ−2ui ui j (ϕ
2γ ) j = ∂ j (u2γ−2(ui )

2(ϕ2γ ) j )− (2γ − 2)u2γ−3u j (ui )
2(ϕ2γ ) j

− u2γ−2(ui )
2(ϕ2γ ) j j .

Therefore we get

(2-12) 2u2γ−21u∇u∇ϕ2γ
= 2∂i (u2γ−2ui u j (ϕ

2γ ) j )− ∂ j (u2γ−2(ui )
2(ϕ2γ ) j )

− (2γ − 2)u2γ−3(ui )
2u j (ϕ

2γ ) j + u2γ−2(ui )
2(ϕ2γ ) j j

− 2u2γ−2ui u j (ϕ
2γ )i j .

For the last three terms on the right side of (2-12), applying Young’s inequality, we
get

|u2γ−3(ui )
2u j (ϕ

2γ ) j | ≤
ε

6γ 2(γ − 1)
u2γ−4

|∇u|4ϕ2γ
+Cu2γ

‖∇
4(ϕ2γ )‖,

|u2γ−2(ui )
2(ϕ2γ ) j j | ≤

ε

6γ 2 u2γ−4
|∇u|4ϕ2γ

+Cu2γ
‖∇

4(ϕ2γ )‖,

|u2γ−2ui u j (ϕ
2γ )i j | ≤

ε

6γ 2 u2γ−4
|∇u|4ϕ2γ

+Cu2γ
‖∇

4(ϕ2γ )‖.

These three inequalities and (2-12) imply

(2-13)
∫

Rn
2γ 2u2γ−21u∇u∇ϕ2γ

≥−
ε

2

∫
Rn

u2γ−4
|∇u|4ϕ2γ

−C
∫

Rn
u2γ
‖∇

4(ϕ2γ )‖.

Similarly we get

(2-14)
∫

Rn

γ 2

q
u2γ−11u1ϕ2γ

≥−
ε

2

∫
Rn

u2γ−4
|∇u|4ϕ2γ

−C
∫

Rn
u2γ
‖∇

4(ϕ2γ )‖.

Inequality (2-10) follows from (2-11), (2-13) and (2-14). �

As a result of (2-1) and (2-10), we have

(2-15)
∫

Rn

γ 2

q
1u1(uqϕ2γ )≥

∫
Rn
(1(uγϕγ ))2−

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖

−

∫
Rn
(γ 2(γ − 1)2+ ε)u2γ−4

|∇u|4ϕ2γ .

Next we estimate the most difficult term,
∫

Rn u2γ−4
|∇u|4ϕ2γ , in (2-15). This is

the key step in proving Theorem 1.1.

Lemma 2.3. If u is the classical solution to the biharmonic equation (2-8), and ϕ
is defined as above, then for any sufficiently small ε > 0, we have the following
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inequality

(2-16)
( 1

2 − ε
) ∫

Rn
u2γ−4

|∇u|4ϕ2γ
≤

2
γ 2

∫
Rn
(1(uγϕγ ))2+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖

−

∫
Rn

4
(4γ − 3+ p)(p+ 1)

u2γ+p−1ϕ2γ .

Proof. It is easy to see that

(2-17)
∫

Rn
u2γ−4

|∇u|4ϕ2γ
=

1
γ 4

∫
Rn

u−2γ
|∇uγ |4ϕ2γ ,

and

(2-18)
∫

Rn
u−2γ
|∇uγ |4ϕ2γ

=

∫
Rn

u−2γ
|∇uγ |2∇uγ∇uγϕ2γ

=

∫
Rn
−∇u−γ |∇uγ |2∇uγϕ2γ

=

∫
Rn

u−γ |∇uγ |21uγϕ2γ
+

∫
Rn

u−γ∇(|∇uγ |2)∇uγϕ2γ

+

∫
Rn

u−γ |∇uγ |2∇uγ∇ϕ2γ ,

where in the last step we used integration by parts. For the first term in the last part
of this equality, we have∫

Rn
u−γ |∇uγ |21uγϕ2γ

= γ 3
∫

Rn
((γ − 1)u2γ−4

|∇u|4ϕ2γ
+ u2γ−3

|∇u|21uϕ2γ ).

Substituting this into (2-18) and combining with (2-17), we obtain

(2-19)
∫

Rn
u2γ−4

|∇u|4ϕ2γ
=

∫
Rn

1
γ 3 u−γ∇(|∇uγ |2)∇uγϕ2γ

+

∫
Rn

u2γ−3(|∇u|2)1uϕ2γ
+

∫
Rn

1
γ 3 u−γ (|∇uγ |2)∇uγ∇ϕ2γ .

The first term on the right side of (2-19) can be estimated as

(2-20) u−γ∇(|∇uγ |2)∇uγ = 2u−γ ((uγ )i j (uγ )i (uγ ) j )

≤ 2γ (uγ )i j (uγ )i j +
u−2γ

2γ
(uγ )i (uγ ) j (uγ )i (uγ ) j

= 2γ |∇2uγ |2+
u−2γ

2γ
|∇uγ |4.
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As a consequence, we have

(2-21)
∫

Rn

1
γ 3 u−γ∇(|∇uγ |2)∇uγϕ2γ

≤

∫
Rn

2
γ 2 |∇

2uγ |2ϕ2γ
+

∫
Rn

1
2γ 4 u−2γ

|∇uγ |4ϕ2γ

≤

∫
Rn

2
γ 2 |∇

2(uγϕγ )|2+
∫

Rn
Cu2γ

‖∇
4(ϕ2γ )‖+

∫
Rn

1+4γ 2ε

2γ 4 u−2γ
|∇uγ |4ϕ2γ

=

∫
Rn

2
γ 2 (1(u

γϕγ ))2+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖+

∫
Rn

1+4γ 2ε

2γ 4 u−2γ
|∇uγ |4ϕ2γ ,

where we used (2-3) in the last step.
For the second term on the right side of (2-19), applying estimate (2.3) from [Wei

and Ye 2010], that is, (1u)2 ≥ 2
p+1 u p+1, and the fact that 1u < 0 from Theorem

3.1 in [Wei and Xu 1999] or Theorem 2.1 in [Xu 2000], we have

(2-22)
∫

Rn
u2γ−3(|∇u|2)1uϕ2γ

≤ −

∫
Rn

√
2

p+1
u2γ−3+ p+1

2 (|∇u|2)ϕ2γ

=

∫
Rn

√
2

p+1

2γ − 2+ p+1
2

u2γ−2+ p+1
2 1uϕ2γ

+

∫
Rn

√
2

p+1

2γ − 2+ p+1
2

u2γ−2+ p+1
2 ∇u∇ϕ2γ .

Using the inequality −1u ≥
√

2
p+1

u
p+1

2 , we get

(2-23)
∫

Rn

√
2

p+1

2γ − 2+ 2
p+1

u2γ−2+ p+1
2 1uϕ2γ

≤−

∫
Rn

2
p+1

2γ − 2+ p+1
2

u2γ+p−1ϕ2γ .

On the other hand, for the second term on the right side of (2-22), we have∫
Rn

u2γ−2+ p+1
2 ∇u∇ϕ2γ

=−

∫
Rn

1
L

u2γ−1+ p+1
2 1ϕ2γ(2-24)

=−

∫
{x |1ϕ2γ>0}

1
L

u2γ−1+ p+1
2 1ϕ2γ

−

∫
{x |1ϕ2γ≤0}

1
L

u2γ−1+ p+1
2 1ϕ2γ ,

where the first equality follows from integration by parts and L = 2γ − 1+ p+1
2 .

As for the first term on the last part of (2-24), using the inequality

1u ≤−
√

2
p+1

u
p+1

2 < 0,
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we have √
p+1

2

L

∫
{x |1ϕ2γ>0}

u2γ−11u1ϕ2γ
≤−

∫
{x |1ϕ2γ>0}

1
L

u2γ−1+ p+1
2 1ϕ2γ .(2-25)

Similarly to the proof of Lemma 2.1, it is easy to get∣∣∣∣ ∫
{x |1ϕ2γ>0}

√
p+1

2

L
u2γ−11u1ϕ2γ

∣∣∣∣≤ε ∫
Rn

u2γ−4
|∇u|4ϕ2γ

+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖.

From this and (2-25), we have∣∣∣∣ ∫
{x |1ϕ2γ>0}

1
L

u2γ−1+ p+1
2 1ϕ2γ

∣∣∣∣≤ ε ∫
Rn

u2γ−4
|∇u|4ϕ2γ

+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖.

Similarly, we also obtain∣∣∣∣ ∫
{x |1ϕ2γ≤0}

1
L

u2γ−1+ p+1
2 1ϕ2γ

∣∣∣∣≤ ε ∫
Rn

u2γ−4
|∇u|4ϕ2γ

+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖.

From the last two inequalities and (2-24), we have

(2-26)
∣∣∣∣ ∫

Rn
u2γ−2+ p+1

2 ∇u∇ϕ2γ
∣∣∣∣≤ ε ∫

Rn
u2γ−4

|∇u|4ϕ2γ
+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖.

Combining (2-22), (2-23) and (2-26), we get the inequality

(2-27)
∫

Rn
u2γ−3

|∇u|21uϕ2γ
≤ ε

∫
Rn

u2γ−4
|∇u|4ϕ2γ

+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖

−

∫
Rn

4
(4γ − 3+ p)(p+ 1)

u2γ+p−1ϕ2γ .

Finally, we apply Young’s inequality to the third term on the right side of (2-19),
and get

(2-28)
∫

Rn

1
γ 3 u−γ (|∇uγ |2)∇uγ∇ϕ2γ

=

∫
Rn

u2γ−3
|∇u|2∇u∇(ϕ2γ )

≤ ε

∫
Rn

u2γ−4
|∇u|4ϕ2γ

+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖.

By (2-19), (2-21), (2-27) and (2-28), we finally obtain(1
2 − ε

) ∫
Rn

u2γ−4
|∇u|4ϕ2γ

≤
2
γ 2

∫
Rn
(1(uγϕγ ))2+

∫
Rn

Cu2γ
‖∇

4(ϕ2γ )‖

−

∫
Rn

4
(4γ − 3+ p)(p+ 1)

u2γ+p−1ϕ2γ . �
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By (2-9), (2-15) and (2-16), since the number ε is arbitrary small in those three
places, we have, for δ > 0 sufficiently small,

(2-29)
∫

Rn

(
1−4(γ−1)2−δ

)
(1(uγϕγ ))2

−

∫
Rn

(
γ 2

2γ−1
−

8γ 2(γ−1)2

(4γ−3+ p)(p+1)

)
u p+2γ−1ϕ2γ

≤

∫
Rn

Cδu2γ
‖∇

4(ϕ2γ )‖,

where Cδ is a positive constant that depends on δ only. Here, we need to require
1− 4(γ − 1)2 > 0, since we have assumed that γ > 1 in Lemma 2.1. So γ is
required be in

(
1, 3

2

)
. If we can choose δ small enough to make 1− 4(γ − 1)2− δ

positive, by the stability property of function u, we obtain

(2-30)
∫

Rn
(E − pδ)u p+qϕ2γ

≤

∫
Rn

Cδu2γ
‖∇

4(ϕ2γ )‖,

where E is defined to be

(2-31) E = p(1− 4(γ − 1)2)−
γ 2

q
+

8γ 2(γ − 1)2

(4γ − 3+ p)(p+ 1)
.

Now we take ϕ = ηm with m sufficiently large, and choose η a cut-off function
satisfying 0 ≤ η ≤ 1, η = 1 for |x | < R and η = 0 for |x | > 2R. By Young’s
inequality again, we have∫

Rn
u2γ
‖∇

4(ϕ2γ )‖ ≤ CδR−4
∫

Rn
u2γ η2γm−4(2-32)

≤ Cδ,εR−
4

1−θ

∫
Rn

u2η2γm− 4
1−θ + εCδ

∫
Rn

u2γ+p−1η2γm,

where Cδ,ε is a positive constant depends on δ and ε, and θ is a number such that
2(1− θ)+ (2γ + p− 1)θ = 2γ , so that 0 < θ < 1 for 2 < 2γ < 2γ + p− 1. By
(2-30) and (2-32), we get

(2-33) (E − pδ− εCδ)
∫

Rn
u p+2γ−1η2γm

≤ Cδ,εR−
4

1−θ

∫
Rn

u2η2γm− 4
1−θ .

Since θ is strictly less than 1 and will be fixed for given γ, p, we can choose m
sufficiently large to make 2γm− 4

1−θ > 0. On the other hand, if E > 0, we can find
small δ and then small ε, such that E − pδ− εCδ > 0. Therefore, by the definition
of function η and (2-33), we obtain

(2-34) (E − pδ− εCδ)
∫

BR

u p+2γ−1
≤ Cδ,εR−

4
1−θ

∫
B2R

u2.

By (2.10) of [Wei and Ye 2010], we have
∫

B2R

u2
≤ C Rn− 8

p−1 , as a result, the



506 JUNCHENG WEI, XINGWANG XU AND WEN YANG

left side of (2-34) is less equal than Cδ,εRn− 8
p−1−

4
1−θ , which tends to 0 as R tends

to ∞, provided the power n − 8
p−1 −

4
1−θ is negative, which is equivalent to

(p+2γ−1)>(p−1)n
4 according to the definition of θ . So, if (p+2γ−1)>(p−1)n

4
and E − pδ−Cδε > 0, we have u ≡ 0.

Thus, we have proved the nonexistence of stable solution to (2-8) if p satisfies
the condition (p+ 2γ − 1) > (p− 1) n

4 and E > 0 (for δ, ε are arbitrary small). By
Lemma A.2 in the Appendix, the power p can be in the interval ( n

n−8 , 1+ 8p∗
n−4).

Combining with Theorem 1.1 of [Wei and Ye 2010], we have proved Theorem 1.1,
that is, for any 1< p < 1+ 8p∗

n−4 , n ≥ 20, (2-8) has no stable solution.

3. Proof of Theorem 1.2

In proving Theorem 1.2, it is enough to consider stable solutions uλ to (1-4), since
u∗ = limλ→λ∗ uλ. Now we give a uniform bound for the stable solutions to (1-4)
when 0< d < λ < λ∗, where d is a fixed positive constant from (0, λ∗).

First, we need to analyze the solution near the boundary. Specifically, we need
the regularity of the stable solutions of the equation

(3-1)


12u = λ(u+ 1)p, λ > 0 in �,
u > 0 in �,
u =1u = 0 on ∂�.

near the boundary (as well as their derivatives; see remark after the next theorem).

Theorem 3.1. Let � be a bounded, smooth, and convex domain. There exists a
constant C (independent of λ, u) and small positive number ε, such that for stable
solutions u to (3-1) we have

(3-2) u(x) < C for all x ∈�ε := {z ∈� : d(z, ∂�) < ε}.

Proof. This result is well known. See [Guo and Wei 2009]. For the sake of
completeness, we include a proof here. By Lemma 3.5 of [Cowan et al. 2010], we
see that there exists a constant C independent of λ, u, such that

(3-3)
∫
�

(1+ u)p dx ≤ C.

We write (3-1) as 
1u+ v = 0, in �,
1v+ λ(1+ u)p

= 0, in �,
u = v = 0, in ∂�.

If we set f1(u, v) = v, f2(u, v) = λ(u + 1)p, we see that ∂ f1/∂v = 1 > 0 and
∂ f2/∂u = λp(u+ 1)p−1 > 0. Therefore, the convexity of �, Lemma 5.1 of [Troy
1981], and the moving plane method near ∂� (as in the appendix of [Guo and
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Webb 2002]) imply that there exist t0 > 0 and α which depends only on the domain
�, such that u(x − tν) and v(x − tν) are nondecreasing for t ∈ [0, t0], ν ∈ Rn

satisfying |ν| = 1 and (ν, n(x))≥ α and x ∈ ∂�. Therefore, we can find ρ, ε > 0
such that for any x ∈�ε := {z ∈� : d(z, ∂�) < ε} there exists a fixed-sized cone
0x (with x as its vertex) with

• meas(0x)≥ ρ,

• 0x ⊂ {z ∈� : d(z, ∂�) < 2ε}, and

• u(y)≥ u(x) for any y ∈ 0x .

Then, for any x ∈�ε, we have

(1+ u(x))p
≤

1
meas(0x)

∫
0x

(1+ u)p
≤

1
ρ

∫
�

(1+ u)p
≤ C.

This implies that (1+ u(x))p
≤ C , therefore u(x)≤ C . �

Remark. By classical elliptic regularity theory, u(x) and its derivatives up to fourth
order are bounded on the boundary by a constant independent of u. See [Wei 1996]
for more details.

We now turn to the proof of Theorem 1.2 proper, using the ideas of Section 2.
Multiplying (1-4) by (u+ 1)q and integrating by parts, we have

(3-4)
∫
�

λ(u+1)p+q
=

∫
�

12u(u+1)q =
∫
∂�

∂(1u)
∂n
+

∫
�

1(u+1)1(u+1)q .

Setting v = u+ 1, by direct calculation, we get∫
�

(1vγ )2 =

∫
�

γ 2v2γ−2(1v)2+

∫
�

γ 2(γ − 1)2v2γ−4
|∇v|4

+ 2
∫
�

γ 2(γ − 1)v2γ−31v|∇v|2,∫
�

1v1vq
=

∫
�

q(1v)2vq−1
+

∫
�

q(q − 1)|∇v|21vvq−2.

From these two equalities and (3-4) we obtain

(3-5)
∫
�

(
q
γ 2 (1v

γ )2− q(γ − 1)2|∇v|4v2γ−4
)
+

∫
∂�

∂(1v)

∂n
=

∫
�

λv p+q .

For the second term in (3-5), we have
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(3-6)
∫
�

|∇v|4v2γ−4

=
1
γ 4

∫
�

v−2γ
|∇vγ |4 =

1
γ 4

∫
�

|∇vγ |2∇vγ (−∇v−γ )

=
1
γ 4

∫
�

(
−∇
|∇vγ |2∇vγ

vγ
+
∇(|∇vγ |2)∇vγ

vγ
+
|∇vγ |21vγ

vγ

)
=

1
γ 4

∫
�

v−γ∇(|∇vγ |2)∇vγ + |∇vγ |21vγ −
1
γ

∫
∂�

v2γ−3
|∇v|2

∂v

∂n
.

A simple calculation yields

(3-7)
1
γ 4

∫
�

v−γ |∇vγ |21vγ =
γ − 1
γ

∫
�

v2γ−4
|∇v|4+

1
γ

∫
�

v2γ−3
|∇v|21v.

Substituting (3-7) into (3-6), we get

(3-8)
∫
�

|∇v|4v2γ−4

=

∫
�

v2γ−3
|∇v|21v+

1
γ 3

∫
�

v−γ∇(|∇vγ |2)∇vγ −

∫
∂�

|∇v|2
∂v

∂n
.

We now estimate the second term on the right side of (3-8). From the proof of
Lemma 2.3, together with the identity 1

21|∇v
γ
|
2
= |∇

2vγ |2+〈∇1vγ ,∇vγ 〉, we
have

(3-9)
1
γ 3

∫
�

v−γ∇(|∇vγ |2)∇vγ ≤
1
2

∫
�

|∇v|4v2γ−4
+

2
γ 2

∫
�

(1vγ )2

+
1
γ 2

∫
∂�

∂|∇vγ |2

∂n
−

2
γ 2

∫
∂�

(1vγ )
∂vγ

∂n
.

By (3-8) and (3-9), thanks to the convexity of the domain �, we get

(3-10)
1
2

∫
�

|∇v|4v2γ−4

≤

∫
�

v2γ−3
|∇v|21v+

2
γ 2

∫
�

(1vγ )2− (2γ − 1)
∫
∂�

|∇v|2
∂v

∂n
.

For the first term on the right side of (3-10), since v= u+1, we have 1v=1u < 0
by maximal principle, and the inequality

(3-11) 1v <−

√
2λ

p+1
v

p+1
2 < 0,

by Lemma 3.2 of [Cowan et al. 2010]. Thus∫
�

v2γ−3
|∇v|21v ≤

∫
�

−

√
2λ

p+ 1
v2γ−3+ p+1

2 |∇v|2.
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Moreover, we have∫
�

−

√
2λ

p+1
v2γ−3+ p+1

2 |∇v|2 = −

∫
�

√
2λ

p+1

2γ − 2+ p+1
2

∇(v2γ−2+ p+1
2 ∇v)

+

∫
�

√
2λ

p+1

2γ − 2+ p+1
2

v2γ−2+ p+1
2 1v.

For the second term on the right, using (3-11) again, we have

∫
�

√
2λ

p+1

2γ − 2+ p+1
2

v2γ−2+ p+1
2 1v ≤−

∫
�

2λ
p+1

2γ − 2+ p+1
2

v2γ+p−1.

Hence, we obtain

(3-12)
∫
�

v2γ−3
|∇v|21v ≤−

∫
∂�

√
2λ

p+1

2γ−2+ p+1
2

∂v

∂n
−

∫
�

2λ
p+1

2γ−2+ p+1
2

v2γ+p−1,

where we used v|∂� = u + 1|∂� = 1, for the boundary term in (3-4), (3-10) and
(3-12). By the remark after Theorem 3.1, we find that there exists a constant C (the
constant C appeared now and later in this section is independent of u), such that

(3-13)
∫
∂�

(
|∇u|2

∣∣∣∣∂u
∂n

∣∣∣∣+ ∣∣∣∣∂(1u)
∂n

∣∣∣∣+ ∣∣∣∣∂u
∂n

∣∣∣∣)≤ C.

Combining (3-5), (3-10), (3-12) and (3-13), we get(
1−4(γ−1)2

) ∫
�

(1(u+1)γ )2+
(

8λγ 2(γ − 1)2

(4γ + p− 3)(p+ 1)
−
λγ 2

q

)∫
�

(u+1)p+q
≤C.

If 1− 4(γ − 1)2 > 0 and

(3-14) p(1− 4(γ − 1)2)+
8γ 2(γ − 1)2

(4γ + p− 3)(p+ 1)
−
γ 2

q
> 0

and u is a stable solution to (1-4), we have(
p(1− 4(γ − 1)2)+

8γ 2(γ − 1)2

(4γ + p− 3)(p+ 1)
−

γ 2

2γ − 1

)∫
�

(u+ 1)p+q
≤

C
λ
.

This leads to u+ 1 ∈ L p+q .
If p+ q > (p− 1)n/4, then classical regularity theory implies that u ∈ L∞(�).
Therefore we have established the bound of extremal solutions of (1-4) if (3-14)

is satisfied and

p <
8γ + n− 4

n− 4
.
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By Lemma A.2 and Theorem 3.8 of [Wei and Ye 2010], we have proved that
the extremal solution u∗, the unique solution of (1-4) (where λ= λ∗), is bounded
provided that one of these conditions hold:

(1) If n ≤ 8, then p > 1.

(2) If 9≤ n ≤ 19, there exists εn > 0 such that for any 1< p < n
n−8 + εn .

(3) If n ≥ 20, then 1 < p < 1+ 8p∗
n−4 , where p∗ was defined immediately after

Theorem 1.1.

Appendix

In this appendix, we study the inequalities

(A-1) p(1− 4(γ − 1)2)−
γ 2

2γ − 1
+

8γ 2(γ − 1)2

(4γ − 3+ p)(p+ 1)
> 0

and

(A-2) p <
8γ + n− 4

n− 4
.

In order to get a better range for the power p from (A-1) and (A-2), we must study
the following equation obtained by letting p = 8γ+n−4

n−4 in (A-1):

(A-3)
8γ+n−4

n−4

(
1−4(γ−1)2

)
−

γ 2

2γ−1
+

8γ 2(γ−1)2(
4γ−3+ 8γ+n−4

n−4

)(8γ+n−4
n−4 +1

) = 0.

We need only consider the behavior of (A-3) for γ ∈
(
1, 3

2

)
. Through tedious

computations, we see that the equation at the bottom of page 495 is the simplified
form of (A-3). As a consequence, they have same roots in

(
1, 3

2

)
.

We denote the left side of (A-3) by h(γ ). Notice that if γ = n−4
n−8 , then p = n

n−8
and γ − 1= 4

n−8 . Hence

h
(n−4

n−8

)
=

8
n−8

(n4
− 18n3

− 56n2
+ 384n− 512).

In fact, if n = 20, then h
(4

3

)
= 512 > 0. On the other hand, it is also easy to see

that h( 3
2) < 0, while it is obvious that

(
4γ − 3+ 8γ+n−4

n−4

)(8γ+n−4
n−4 + 1

)
> 0 and

(2γ − 1) > 0 when γ ∈
( n−4

n−8 ,
3
2

)
. Therefore, by continuity, (A-3) possesses a root

in (n−4
n−8 ,

3
2). We denote the smallest root of (A-3) greater than n−4

n−8 by p∗. Once we
pick out a γ from the interval ( n−4

n−8 , p∗), h(γ ) is of course positive. By continuity,
we can find a small positive number δ such that the inequality

p(1− 4(γ − 1)2)−
γ 2

2γ − 1
+

8γ 2(γ − 1)2

(4γ − 3+ p)(p+ 1)
> 0
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holds when p ∈
( 8γ+n−4

n−4 − δ,
8γ+n−4

n−4

)
. So, we conclude that when γ runs in the

whole interval
( n−4

n−8 , p∗
)
, the power p can be in the whole interval

( n
n−8 , 1+ 8p∗

n−4

)
.

We summarize the result as follows:

Lemma A.2. When n ≥ 20, the range of p satisfying (A-1) and (A-2) equals( n
n−8 , 1+ 8p∗

n−4

)
, and this interval is not empty.
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