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A quandle is a self-distributive algebraic structure that appears in quasi-
group and knot theories. For each abelian group A and c ∈ A, we define a
quandle G(A, c) on Z3× A. These quandles are generalizations of a class of
nonmedial Latin quandles defined by V. M. Galkin, so we call them Galkin
quandles. Each G(A, c) is connected but not Latin unless A has odd or-
der. G(A, c) is nonmedial unless 3A = 0. We classify their isomorphism
classes in terms of pointed abelian groups and study their various proper-
ties. A family of symmetric connected quandles is constructed from Galkin
quandles, and some aspects of knot colorings by Galkin quandles are also
discussed.

1. Introduction

Sets with certain self-distributive operations called quandles have been studied
since the 1940s in various areas. They have been studied, for example, as an
algebraic system for symmetries [Takasaki 1943], as quasigroups [Galkin 1988],
and in relation to modules [Nelson 2003]. The fundamental quandle was defined
in a manner similar to the fundamental group [Joyce 1982; Matveev 1982], which
made quandles an important tool in knot theory. Algebraic homology theories for
quandles were defined [Carter et al. 2003b; Fenn et al. 1995] and developed and
investigated ([Litherland and Nelson 2003; Mochizuki 2011; Niebrzydowski and
Przytycki 2009; 2011; Nosaka 2011], for example), and extensions of quandles by
cocycles have been studied [Andruskiewitsch and Graña 2003; Carter et al. 2003a;
Eisermann 2007b] and applied to various properties of knots and knotted surfaces
(see [Carter et al. 2004] and references therein).

Before algebraic theories of extensions were developed, Galkin [1988] defined a
family of quandles that are extensions of the 3-element connected quandle R3, and
we call them Galkin quandles. Even though the definition of Galkin quandles is a
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special case of a cocycle extension described in [Andruskiewitsch and Graña 2003],
they have curious properties such as the explicit and simple defining formula, close
connections to dihedral quandles, and the fact that they appear in the list of small
connected quandles.

In this paper, we generalize Galkin’s definition and define a family of quandles
that are extensions of R3, characterize their isomorphism classes, and study their
properties. The definition is given in Section 3 after a brief review of necessary
materials in Section 2. Isomorphism classes are characterized by pointed abelian
groups in Section 4. Various algebraic properties of Galkin quandles are investigated
in Section 5, and their knot colorings are studied in Section 6.

2. Preliminaries

In this section we briefly review some definitions and examples of quandles. More
details can be found, for example, in [Andruskiewitsch and Graña 2003; Carter
et al. 2004; Fenn et al. 1995].

A quandle X is a set with a binary operation (a, b) 7→ a ∗ b satisfying the
following conditions.

(Idempotency) For any a ∈ X , a ∗ a = a.(1)

(Invertibility) For any b, c ∈ X ,(2)
there is a unique a ∈ X such that a ∗ b = c.

(Right self-distributivity) For any a, b, c ∈ X ,(3)
we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

A quandle homomorphism between two quandles X, Y is a map f : X→ Y such
that f (x∗X y)= f (x)∗Y f (y), where ∗X and ∗Y denote the quandle operations of X
and Y , respectively. A quandle isomorphism is a bijective quandle homomorphism,
and two quandles are isomorphic if there is a quandle isomorphism between them.

Typical examples of quandles include the following.

• Any nonempty set X with the operation x ∗ y= x for any x, y ∈ X is a quandle
called the trivial quandle.

• A group X = G with the operation of n-fold conjugation, a ∗b= b−nabn , is a
quandle.

• Let n be a positive integer. For a, b ∈ Zn (integers modulo n), define

a ∗ b ≡ 2b− a (mod n).

Then ∗ defines a quandle structure called the dihedral quandle Rn . This set
can be identified with the set of reflections of a regular n-gon with conjugation
as the quandle operation.
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• Any Z[T, T−1
]-module M is a quandle with a∗b= T a+(1−T )b for a, b∈M .

This is called an Alexander quandle. An Alexander quandle is also regarded
as a pair (M, T ), where M is an abelian group and T ∈ Aut(M).

Let X be a quandle. The right translation Ra : X→ X by a ∈ X is defined by
Ra(x)= x∗a for x ∈ X . Similarly, the left translation La is defined by La(x)=a∗x .
Then Ra is a permutation of X by Axiom (2). The subgroup of Sym(X) generated
by the permutations Ra , a ∈ X , is called the inner automorphism group of X and
is denoted by Inn(X). We list some definitions of commonly known properties of
quandles below.

• A quandle is connected if Inn(X) acts transitively on X .

• A Latin quandle is a quandle such that for each a ∈ X , the left translation La

is a bijection. That is, the multiplication table of the quandle is a Latin square.

• A quandle is faithful if the mapping a 7→Ra is an injection from X to Inn(X).

• A quandle X is involutory, or a kei, if the right translations are involutions:
R2

a = id for all a ∈ X .

• The operation ∗̄ on X defined by a ∗̄ b =R−1
b (a) is a quandle operation, and

(X, ∗̄) is called the dual quandle of (X, ∗). If (X, ∗̄) is isomorphic to (X, ∗),
then (X, ∗) is called self-dual.

• A quandle X is medial if (a∗b)∗(c∗d)= (a∗c)∗(b∗d) for all a, b, c, d ∈ X .
It is also called abelian. It is known and easily seen that every Alexander
quandle is medial.

A coloring of an oriented knot diagram by a quandle X is a map C :A→ X from
the set of arcs A of the diagram to X such that the image of the map satisfies the
relation depicted in Figure 1 at each crossing. More details can be found in [Carter
et al. 2004; Eisermann 2007a], for example. A coloring that assigns the same
element of X for all the arcs is called trivial, and otherwise nontrivial. The number
of colorings of a knot diagram by a finite quandle is known to be independent of the
choice of a diagram, and hence is a knot invariant. A coloring by a dihedral quandle
Rn for a positive integer n > 1 is called an n-coloring. If a knot is nontrivially
colored by a dihedral quandle Rn for a positive integer n > 1, then it is called
n-colorable. In Figure 2, a nontrivial 3-coloring of the trefoil knot (31 in a common
notation in a knot table [Cha and Livingston 2011]) is indicated. This is presented

x

y

x ∗ y

Figure 1. A coloring rule at a crossing.
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Figure 2. Trefoil as the closure of σ 3
1 .

in a closed braid form. Each crossing corresponds to a standard generator σ1 of the
2-strand braid group, and σ 3

1 represents three crossings together as in the figure.
The dotted line indicates the closure; see [Rolfsen 1976] for more details of braids.

The fundamental quandle is defined in a manner similar to the fundamental group
[Joyce 1982; Matveev 1982]. A presentation of a quandle is defined in a manner
similar to groups as well, and a presentation of the fundamental quandle is obtained
from a knot diagram (see, for example, [Fenn and Rourke 1992]), by assigning
generators to arcs of a knot diagram, and relations corresponding to crossings.
The set of colorings of a knot diagram K by a quandle X is then in one-to-one
correspondence with the set of quandle homomorphisms from the fundamental
quandle of K to X .

3. Definition and notation for Galkin quandles

Let A be an abelian group, also regarded naturally as a Z-module. Let µ : Z3→ Z,
τ : Z3→ A be functions. These functions µ and τ need not be homomorphisms.
Define a binary operation on Z3× A by

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
, x, y ∈ Z3, a, b ∈ A.

Proposition 3.1. For any abelian group A, the operation ∗ defines a quandle
structure on Z3× A if µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0.

Galkin [1988, p. 950] gave this definition for A=Zp. The proposition generalizes
his result to any abelian group A. For the proof, we examine the axioms.

Lemma 3.2. (A) The operation is idempotent — that is, it satisfies Axiom (1) — if
and only if (µ(0)− 2)a = 0 for any a ∈ A, and τ(0)= 0.

(B) The operation as a right action is invertible — that is, it satisfies Axiom (2).

Proof. Direct calculations. �
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Lemma 3.3. The operation ∗ on Z3×A is right self-distributive — that is, it satisfies
Axiom (3) — if and only if µ, τ satisfy the following conditions for any X, Y ∈ Z3

and b, c ∈ A:

µ(−X)b = µ(X)b,(4) (
µ(X + Y )+µ(X − Y )

)
c = (µ(X)µ(Y ))c,(5)

τ(X + Y )+ τ(Y − X)= τ(X)+ τ(−X)+µ(X)τ (Y ).(6)

Proof. Right self-distributivity, that is,

((x, a) ∗ (y, b)) ∗ (z, c)= ((x, a) ∗ (z, c)) ∗ ((y, b) ∗ (z, c))

for x, y, z ∈ Z3 and a, b, c ∈ A, is satisfied if and only if

µ(x − y)b = µ(y− x)b,

µ(2y− x − z)c =
(
−µ(x − z)+µ(y− x)µ(y− z)

)
c,

−τ(x − y)+ τ(2y− x − z)=−τ(x − z)+µ(y− x)τ (y− z)+ τ(y− x).

This is seen by equating the coefficients of b and c and the constant term. For the
equivalence of the first equation with (4), set X = x − y. For the equivalence of
the second with (5), set X = y− x and Y = z− y. For the equivalence of the last
with (6), set X = y− x and Y = y− z. �

Proof of Proposition 3.1. Assume the conditions stated. By Lemma 3.2, Axioms (1)
and (2) are satisfied under the specifications µ(0) = 2, µ(1) = µ(2) = −1, and
τ(0)= 0.

If X = 0 or Y = 0, then (5) (together with (4)) becomes a tautology. If X−Y = 0
or X + Y = 0, then (5) reduces to µ(2X)+ 2 = µ(X)2, which is satisfied by the
above specifications. For R3, if X + Y 6= 0 and X − Y 6= 0, then either X = 0 or
Y = 0. Hence (5) is satisfied. For (6), it is checked similarly, for the two cases
[X = 0 or Y = 0] and [X − Y = 0 or X + Y = 0]. �

Definition 3.4. Let A be an abelian group. The quandle defined by ∗ on Z3× A by
Proposition 3.1,

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
, x, y ∈ Z3, a, b ∈ A,

with µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0, is called the Galkin quandle and
denoted by G(A, τ ).

Since τ is specified by the values τ(1)= c1 and τ(2)= c2 where c1, c2 ∈ A, we
also denote it by G(A, c1, c2).

Example 3.5. The Galkin quandle G(Z2, 0, 1) is Z3×Z2 as a set with the quandle
operation defined as above with µ(0)= 2, µ(1)=µ(2)=−1, τ(0)= τ(1)= 0, and
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τ(2)= 1. Thus, (0, 1)∗(1, 0)= (2,−1+µ(2)0+τ(2))= (2, 0) and (2, 0)∗(1, 1)=
(0, 0+µ(1)1+ τ(1))= (0, 1), for example.

Lemma 3.6. For any abelian group A and c1, c2 ∈ A, the quandles G(A, c1, c2)

and G(A, 0, c2− c1) are isomorphic.

Proof. Let c= c2−c1. Define η :G(A, c1, c2)→G(A, 0, c), as a map on Z3×A, by
η(x, a)= (x, a+β(x))where β(0)=β(1)=0 and β(2)=−c1. This η is a bijection,
and we show that it is a quandle homomorphism. We compute η((x, a) ∗ (y, b))
and η(x, a) ∗ η(y, b) for x, y ∈ Z3 and a, b ∈ A.

If x= y, then µ(x−y)=2 and τ(x−y)=0 for both G(A, c1, c2) and G(A, 0, c),
so that

η((x, a) ∗ (x, b))= η(x, 2b− a)= (x, 2b− a+β(x)),

η(x, a) ∗ η(x, b)= (x, a+β(x)) ∗ (x, b+β(x))=
(
x, 2(b+β(x))− (a+β(x))

)
= (x, 2b− a+β(x)),

as desired.
If x− y = 1 ∈ Z3, then µ(x− y)=−1 for both G(A, c1, c2) and G(A, 0, c) and

τ(x − y)= c1 for G(A, c1, c2) but τ(x − y)= 0 for G(A, 0, c), so that

η((x, a)∗ (y, b))= η(2y− x,−a−b+ c1)= (2y− x,−a−b+ c1+β(2y− x)),

η(x, a)∗η(y, b)= (x, a+β(x))∗ (y, b+β(y))

=
(
2y− x, −(a+β(x))− (b+β(y))

)
.

The two expressions are equal if and only if β(x)+β(y)+β(2y− x)=−c1, which
is true since x 6= y implies that exactly one of x, y, 2y− x is 2 ∈ Z3.

If x− y = 2 ∈ Z3, then µ(x− y)=−1 for both G(A, c1, c2) and G(A, 0, c) and
τ(x − y)= c2 for G(A, c1, c2) but τ(x − y)= c2− c1 = c for G(A, 0, c), so that

η((x, a)∗ (y, b))= η(2y− x,−a−b+ c2)= (2y− x,−a−b+ c2+β(2y− x)),

η(x, a)∗η(y, b)= (x, a+β(x))∗ (y, b+β(y))

=
(
2y− x,−(a+β(x))− (b+β(y))+ c2− c1

)
=
(
2y− x,−a−b−β(x)−β(y)+ (c2− c1)

)
,

and again these are equal for the same reason as above. �

Notation. Since, by Lemma 3.6, any Galkin quandle is isomorphic to G(A, 0, c)
for an abelian group A and c ∈ A, we denote G(A, 0, c) by G(A, c) for short.

Any finite abelian group is a product Zn1×· · ·×Znk , where the positive integers
n j satisfy n j |n j+1 for j = 1, . . . , k−1. In this case, any element c ∈ A is written in
a vector form [c1, . . . , ck], where c j ∈ Zn j . Then the corresponding Galkin quandle
is denoted by G(A, [c1, . . . , ck]).
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Remark 3.7. We note that the definition of Galkin quandles induces a functor. Let
Ab0 denote the category of pointed abelian groups; its objects are pairs (A, c),
where A is an abelian group and c ∈ A, and its morphisms f : (A, c)→ (B, d)
are group homomorphisms f : A→ B such that f (c)= d. Let Q be the category
of quandles consisting of quandles as objects and quandle homomorphisms as
morphisms.

Then the correspondence (A, c)
F
7→ G(A, c) defines a functor F : Ab0→Q. It

is easy to verify that if a morphism f : (A, c)→ (B, d) is given, then the mapping
F( f )(x, a)= (x, f (a)) with (x, a) ∈ G(A, c)= Z3× A is a homomorphism from
G(A, c) to G(B, d) and satisfies F(g f )= F(g)F( f ) and F(id(A,c))= idG(A,c).

Remark 3.8. A reader will wonder to what extent Definition 3.4 of a Galkin quandle
can be generalized. We tried several generalizations. For example, if one attempts
to replace 3 by an arbitrary prime p in Definition 3.4, then Lemma 3.3 still holds.
In this case for p > 3, we prove in Lemma 5.14 that µ(x)= 2 for all x ∈ Zp, and
computer experiments indicate that one almost always obtains a quandle if and
only if τ = 0, in which case the quandle obtained is simply a product of dihedral
quandles. We have also attempted to replace −x + 2y by the Alexander quandle
operation t x + (1− t)y in both the left and right coordinates, but have neither been
successful in finding interesting new quandles, nor been able to prove that no such
generalizations exist. We note that if a generalization for p > 3 exists, then any
such quandles will be less dense than Galkin quandles, since multiples of 3 are
more numerous than multiples of p when p > 3.

4. Isomorphism classes

In this section we classify isomorphism classes of Galkin quandles.

Lemma 4.1. Let A be an abelian group, and let h : A→ A′ be a group isomorphism.
Then Galkin quandles G(A, τ ) and G(A′, hτ) are isomorphic as quandles.

Proof. Define f : G(A, τ ) → G(A′, hτ), as a map from Z3 × A to Z3 × A′,
by f (x, a) = (x, h(a)). This f is a bijection, and we show that it is a quandle
homomorphism by computing f ((x, a)∗(y, b)) and f (x, a)∗ f (y, b) for x, y ∈Z3

and a, b ∈ A:

f ((x, a) ∗ (y, b))= f (2y− x,−a+µ(x − y)b+ τ(x − y))

=
(
2y− x, h(−a+µ(x − y)b+ τ(x − y))

)
,

f (x, a) ∗ f (y, b)= (x, h(a)) ∗ (y, h(b))

=
(
2y− x,−h(a)+µ(x − y)h(b)+ hτ(x − y)

)
.

The equality f ((x, a) ∗ (y, b))= f (x, a) ∗ f (y, b) follows from the facts that h is
a group homomorphism and µ(x − y) is an integer. �
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Lemma 4.2. Let c, d, n be positive integers. If gcd(c, n) = d, then G(Zn, c) is
isomorphic to G(Zn, d).

Proof. If A = Zn , then Aut(A) = Z∗n = units of Zn , and the divisors of n are
representatives of the orbits of Z∗n acting on Zn . �

Thus we may choose the divisors of n for the values of c for representing
isomorphism classes of G(Zn, c).

Corollary 4.3. If A is a vector space (elementary p-group), then there are exactly
two isomorphism classes of Galkin quandles G(A, τ ).

Proof. If A is a vector space containing nonzero vectors c1 and c2, then there is a
nonsingular linear transformation h of A such that h(c1)= c2. That G(A, 0) is not
isomorphic to G(A, c) if c 6= 0 follows from Lemma 4.5. �

For distinguishing isomorphism classes, cycle structures of the right action are
useful, and we use the following lemmas.

Lemma 4.4. For any abelian group A, the Galkin quandle G(A, τ ) is connected.

Proof. Recall that the operation is defined by the formula

(x, a) ∗ (y, b)=
(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
,

with µ(0)= 2, µ(1)= µ(2)=−1, and τ(0)= 0. If x 6= y, then (x, a) ∗ (y, b)=
(2y− x,−a− b+ ci )= (z, c), where i = 1 or 2 and x, y ∈ Z3 and a, b ∈ A. Note
that {x, y, 2y− x} = Z3 if x 6= y. In particular, for any (x, a) and (z, c) with x 6= z,
there is (y, b) such that (x, a) ∗ (y, b)= (z, c).

For any (x, a1) and (x, a2) where x ∈Z3 and a1, a2 ∈ A, take (z, c)∈Z3×A such
that z 6= x . Then there are (y, b1), (y, b2) such that x 6= y 6= z and (x, a1)∗(y, b1)=

(z, c) and (z, c) ∗ (y, b2)= (x, a2). Hence G(A, τ ) is connected. �

Lemma 4.5. The cycle structure of a right translation in G(A, τ ), where τ(0) =
τ(1)= 0 and τ(2)= c, consists of 1-cycles, 2-cycles, and 2k-cycles, where k is the
order of c in the group A.

Since isomorphic quandles have the same cycle structure of right translations,
G(A, c) and G(A, c′) for c, c′ ∈ A are not isomorphic unless the orders of c and c′

coincide.

Proof. Let τ(0) = 0, τ(1) = 0, and τ(2) = c. Then by Lemma 4.4, the cycle
structure of each column is the same as the cycle structure of the right translation
by (0, 0), that is, of the permutation f (x, a)= (x, a) ∗ (0, 0)= (−x,−a+ τ(x)).

We show that this permutation has cycles of length only 1, 2 and twice the order
of c in A. Since f (0, a)= (0,−a) for a ∈ A, a 6= 0, we have f 2(0, a)= (0, a), so
that (0, a) generates a 2-cycle, or a 1-cycle if 2a = 0. Now from f (1, a)= (2,−a)
and f (2, a)= (1,−a+ c) for a ∈ A, by induction it is easy to see that for k > 0,



CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS 39

f 2k(1, a)= (1, a+kc) and f 2k(2, a)= (2, a−kc). In the case of (1, a), a 6= 0, the
cycle closes when a+ kc= a in A. The smallest k for which this holds is the order
of c, in which case the cycle is of length 2k. A cycle beginning at (2, a) similarly
has this same length. �

Proposition 4.6. Let n be a positive integer. Let A=Zn and ci , c′i ∈Zn for i = 1, 2.
Two Galkin quandles G(A, c1, c2) and G(A, c′1, c′2) are isomorphic if and only if
gcd(c1− c2, n)= gcd(c′1− c′2, n).

Proof. If gcd(c1−c2, n)= gcd(c′1−c′2, n), then they are isomorphic by Lemmas 3.6
and 4.2. The cycle structures are different if gcd(c1− c2, n) 6= gcd(c′1− c′2, n) by
Lemma 4.5, and hence they are not isomorphic. �

Remark 4.7. The cycle structure is not sufficient for noncyclic groups A. For
example, let A= Z2×Z4. Then G(A, [1, 0]) and G(A, [0, 2]) have the same cycle
structure for right translations, with cycle lengths {2, 2, 4, 4, 4, 4} in a multiset
notation, yet they are known not to be isomorphic. (In the notation of Example 4.12
below, G(A, [1, 0])= C[24, 29] and G(A, [0, 2])= C[24, 31].) We note that there
is no automorphism of A carrying [1, 0] to [0, 2].

More generally, the isomorphism classes of Galkin quandles are characterized as
follows.

Theorem 4.8. Suppose A, A′ are finite abelian groups. Two Galkin quandles
G(A, τ ) and G(A′, τ ′) are isomorphic if and only if there exists a group isomor-
phism h : A→ A′ such that hτ = τ ′.

One implication in the proof of Theorem 4.8 is Lemma 4.1. For the other, first
we prove the following two lemmas. We will use a well known description of the
automorphisms of a finite abelian group, which can be found in [Hillar and Rhea
2007; Ranum 1907].

Lemma 4.9. Let A be a finite abelian p-group and let f : p A → p A be an
automorphism. Then f can be extended to an automorphism of A.

Proof. Let A = Z
n1
p1 × · · ·×Z

nk
pk . Then

(7) f


px2
...

pxk


= P

px2
...

pxk

 ,
x2
...

xk

 ∈ Z
n2
p2 × · · ·×Z

nk
pk ,

where

(8) P =


P22 P23 · · · P2k

pP32 P33 · · · P3k
...

...
...

pk−2 Pk2 pk−3 Pk3 · · · Pkk

 ,
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Pi j ∈Mni×n j (Z), det Pi i 6≡ 0 (mod p). Entries of the vectors are elements of finite
groups as specified, and entries of the block matrices are integers. Define g : A→ A
by

g




x1

x2
...

xk


=

[
I

P

]
x1

x2
...

xk

 ,


x1

x2
...

xk

 ∈ Z
n1
p1 ×Z

n2
p2 × · · ·×Z

nk
pk .

Then g ∈ Aut(A) and g|p A = f . �

Lemma 4.10. Let A be a finite abelian p-group and let a, b ∈ A \ p A. If there
exists an automorphism f : p A→ p A such that f (pa)= pb, then there exists an
automorphism g : A→ A such that g(a)= b.

Proof. Let A = Z
n1
p1 × · · ·×Z

nk
pk and let f be defined by (7) and (8). Write

a =

a1
...

an

 , b =

b1
...

bn

 , ai , bi ∈ Z
ni
pi .

Since f (pa)= pb, we have

p

P

a2
...

an

−
b2
...

bn


= 0,

that is,

(9) P

a2
...

an

−
b2
...

bn

=
 pc2

...

pk−1ck

 , ci ∈ Z
ni
pi , 2≤ i ≤ k.

Case 1. Assume that

a2
...

an

 ∈ p A. Then by (9),

b2
...

bn

 ∈ p A. So a1 6= 0 and b1 6= 0.

Then we have  pc2
...

pk−1ck

=
 pQ2

...

pk−1 Qk

 a1

for some Qi ∈Mni×n1(Z) with 2≤ i ≤ k. Also, there exists P11 ∈Mn1×n1(Z) such
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that det P11 6≡ 0 (mod p) and P11a1 = b1. Let g ∈ Aut(A) be defined by

g




x1

x2
...

xk


=


P11 0
−pQ2
...

−pk−1 Qk

P




x1

x2
...

xk

 , xi ∈ Z
ni
pi .

Then g(a)= b.

Case 2. Assume that

a2
...

an

 /∈ p A. Then there exists 2≤ s ≤ k such that as /∈ pZ
ns
ps .

Then we have  c2
...

pk−2ck

=
 Q2

...

pk−2 Qk

 as

for some Qi ∈Mni×ns (Z) with 2≤ i ≤ k. Put

Q =

0 · · · 0 Q2 0 · · · 0
...

...
...

...
...

0 · · · 0 pk−2 Qk 0 · · · 0

 ,
where the (i, j) block is of size ni × n j and Q2 is in the (1, s) block. Then

Q

a2
...

ak

=
 c2

...

pk−2ck

 .
Also, there exist U ∈Mn1×(n2+···+nk)(Z) such that

U

a2
...

ak

= b1− a1.

Now define g ∈ Aut(A) by

g




x1

x2
...

xk


=

[
I U
0 P − pQ

]
x1

x2
...

xk

 , xi ∈ Z
ni
pi .

Then g(a)= b. �
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Proof of Theorem 4.8. We assume that |3A′| ≤ |3A|. Since G(A′, c′) is connected,
there exists an isomorphism φ : G(A, c)→ G(A′, c′) such that φ(0, 0) = (0, 0).
Write

φ(x, a)= (α(x, a), β(x, a)), (x, a) ∈ Z3× A.

Define t : Z3→ Z by

t (x)=
{

1 if x = 2,
0 if x 6= 2,

so that for (x, a), (y, b) ∈ Z3× A, the operation on G(A, c) is written by

(x, a) ∗ (y, b)=
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
.

Then φ((x, a) ∗ (y, b))= φ(x, a) ∗φ(y, b) is equivalent to

(10) α
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−α(x, a)−α(y, b),

(11) β
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−β(x, a)+µ

(
α(x, a)−α(y, b)

)
β(y, b)+ t

(
α(x, a)−α(y, b)

)
c′.

Claim 1. The map α(0, · ) : A→ Z3 is a homomorphism.

Proof. Setting x = y = 0 in (10), we have

(12) α(0,−a+ 2b)=−α(0, a)−α(0, b).

Setting b = 0 in (12), we have

(13) α(0,−a)=−α(0, a).

By the symmetry of the right-hand side of (12), we also have

(14) α(0,−a+ 2b)= α(0,−b+ 2a), a, b ∈ A.

Now we have

α(0, a+ b)= α(0, a− b+ 2b)

= α(0,−b+ 2(b− a)) (by (14))

= α(0, b− 2a)

=−α(0,−b)−α(0,−a) (by (12))

= α(0, a)+α(0, b) (by (13)). �

Claim 2. There exists u ∈ Z3 such that

(15) α(x, a)= α(0, a)+ ux, (x, a) ∈ Z3× A.
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Proof. Setting x = 1 and y = 0 in (10), we have

(16) α(−1,−a− b)=−α(1, a)−α(0, b).

Setting b = 0 in (16) gives

(17) α(−1,−a)=−α(1, a).

Letting a = 0 in (16) and using (17), we get

(18) α(1, b)= α(0, b)+α(1, 0), b ∈ A.

Equations (16) and (13) also imply that

(19) α(−1,−b)= α(0,−b)−α(1, 0), b ∈ A.

Let u = α(1, 0). Then

α(x, a)= α(0, a)+ ux, (x, a) ∈ Z3× A. �

Claim 3. α(0, c)= 0.

Proof. Substituting (15) in (10), we get

(20) α
(
0,−a+µ(x − y)b+ t (x − y)c

)
=−α(0, a)−α(0, b).

Setting x − y = 2, we have α(0, c)= 0. �

The rest of the proof of Theorem 4.8 is divided into two cases according to
whether u is zero or nonzero in (15).

Case A. Assume u = 0 in (15).
We have α(x, a) = α(0, a) for all (x, a) ∈ Z3× A. We write α(a) for α(0, a).

Then (11) becomes

(21) β
(
−x − y,−a+µ(x − y)b+ t (x − y)c

)
=−β(x, a)+µ

(
α(a− b)

)
β(y, b)+ t

(
α(a− b)

)
c′.

Step A-1. We claim that c = 0.
Equation (21) with x = 1, y = 0, a = b = 0 yields

β(−1, 0)=−β(1, 0),

and with x =−1, y = 0, a = b = 0, it yields

β(1, c)=−β(−1, 0).

Thus β(1, c) = β(1, 0). Since α(1, c) = 0 = α(1, 0), we have φ(1, c) = φ(1, 0).
Thus c = 0.

Step A-2. We claim that c′ = 0.
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The homomorphism α : A→Z3 must be onto. (Otherwise φ is not onto.) Choose
d ∈ A such that α(d)=−1. Equation (21) with x = y = 0, a = d, b = 0 gives

β(0,−d)=−β(0, d)+ c′,

and with x = y = 0, a =−d , b = 0, it gives

β(0, d)=−β(0,−d).

Therefore c′ = 0.

Step A-3. Now (21) becomes

(22) β
(
−x − y,−a+µ(x − y)b

)
=−β(x, a)+µ

(
α(a− b)

)
β(y, b).

Setting y = 0 and b = 0 in (22), we have

(23) β(−x,−a)=−β(x, a).

Step A-4. We claim that β(0, · ) : 3A→ A′ is a one-to-one homomorphism.
Note that 3A ⊂ kerα. Let a, b ∈ 3A, and x =−1, y = 1 in (22). We have

(24) β(0,−a− b)=−β(−1, a)+ 2β(1, b).

Setting b = 0 and a = 0, respectively, in (24) and using (23), we have

β(0,−a)=−β(−1, a)+ 2β(1, 0)= β(1,−a)+ 2β(1, 0),(25)

β(0,−b)=−β(−1, 0)+ 2β(1, b)= β(1, 0)+ 2β(1, b).(26)

Setting a = b = 0 in (24), we have

(27) 3β(1, 0)= 0.

Combining (24)–(27), we have

β(0,−a− b)= β(0,−a)+β(0,−b).

If a ∈ 3A such that β(0, a)= 0, then φ(0, a)= (0, 0), so a = 0. Thus

β(0, · ) : 3A→ A′

is one-to-one.

Step A-5. We claim that β(0, 3b) ∈ 3A′ for all b ∈ A.
Let x = y = 0 and a =−b in (22). We have

β(0, 3b) =−β(0,−b)+µ(α(−2b))β(0, b)

= β(0, b)+µ(α(b))β(0, b)

≡ 0 (mod 3A′) (since µ(α(b))≡−1 (mod 3)).



CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS 45

Step A-6. Now β(0, · ) : 3A→ 3A′ is a one-to-one homomorphism. It is therefore
an isomorphism, since |3A′| ≤ |3A|. Since |A| = |A′|, we have A ∼= A′. We are
done in Case A.

Case B. Assume u 6= 0 in (15).
By the proofs of Lemma 4.5 above and Proposition 5.11 below, the map (x ′, a′) 7→

(−x ′, a′ − t (−x ′)c′) is an isomorphism from G(A′, c′) to G(A′,−c′). Thus we
may assume u = 1 in (15). We have α(x, a)= α(0, a)+ x for all (x, a) ∈ Z3× A.

Step B-1. We claim that β(0, · ) : kerα(0, · )→ A′ is a one-to-one homomorphism.
In (11) let a, b ∈ kerα(0, · ) and x =−1, y = 1. We have

(28) β(0,−a− b)=−β(−1, a)−β(1, b).

Equation (28) with a =−b yields

(29) β(−1,−b)=−β(1, b).

So

(30) β(0,−a− b)= β(1,−a)−β(1, b).

Letting b = 0 and a = 0 in (30), respectively, we have

β(0,−a)= β(1,−a)−β(1, 0),

β(0,−b)= β(1, 0)−β(1, b).

Thus
β(0,−a)+β(0,−b)= β(1,−a)−β(1, b)

= β(0,−a− b) (by (30)).

If a ∈ kerα(0, · ) such that β(0, a) = 0, then φ(0, a) = (0, 0), so a = 0. Hence
β(0, · ) : kerα(0, · )→ A′ is one-to-one.

Step B-2. We claim that β(0, 3a) ∈ 3A′ for all a ∈ A.
Setting x = y = 0 in (11), we have

(31) β(0,−a+ 2b)=−β(0, a)+µ
(
α(0, a− b)

)
β(0, b)+ t

(
α(0, a− b)

)
c′

≡−β(0, a)−β(0, b)+ t
(
α(0, a− b)

)
c′ (mod 3A′).

By (31),

β(0, 3a)= β
(
0,−a+ 2(2a)

)
≡−β(0, a)−β(0, 2a)+ t

(
α(0,−a)

)
c′ (mod 3A′)

and

β(0, 2a)= β(0, 0+ 2a)≡−β(0, a)+ t (α(0,−a))c′ (mod 3A′).

Thus β(0, 3a)≡ 0 (mod 3A′).
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Step B-3. By the argument in Step A-6, β(0, · ) : 3A→ 3A′ is an isomorphism and
A ∼= A′.

Step B-4. We claim that β(0, c)= c′.
Equation (11) with x = 1, y =−1, a = b = 0 yields

β(0, c) =−β(1, 0)−β(−1, 0)+ c′

= c′ (by (29)).

Step B-5. Now we complete the proof in Case B. Write A = A1⊕ A2 and A′ =
A′1 ⊕ A′2, where neither |A1| nor |A′1| is a multiple of 3, and |A2| and |A′2| are
powers of 3. Write c= c1+c2, where c1 ∈ A1, c2 ∈ A2. Then c1 ∈ A1⊂ kerα(0, · ),
so c2 = c− c1 ∈ kerα(0, · ). Since β(0, · ) : kerα(0, · )→ A′ is a homomorphism,
we have

c′ = β(0, c1)+β(0, c2)= c′1+ c′2,

where c′1 = β(0, c1) ∈ A′1 and c′2 = β(0, c2) ∈ A′2. By Step B-3, β(0, · ) : A1→ A′1
is an isomorphism. So it suffices to show that there is an isomorphism f : A2→ A′2
such that f (c2)= c′2.

First assume c2 ∈ 3A2. Then c′2 ∈ 3A′2. By Lemma 4.9, the isomorphism
β(0, · ) : 3A→ 3A′ can be extended to an isomorphism f : A2→ A′2 and we are
done.

Now assume that c2 ∈ A2 \ 3A2. We claim that c2 ∈ A′2 \ 3A′2. Assume to the
contrary that c′2 ∈ 3A′2. By Step B-3, there exists d ∈ A2 such that β(0, 3d)= c′2 =
β(0, c2). By Step B-1, c2 = 3d , which is a contradiction.

Note that β(0, · ) : 3A2→ 3A′2 is an isomorphism and

β(0, 3c2)= 3β(0, c2) (by Step B-1)

= 3c′2.

By Lemma 4.10, there exists an isomorphism f : A2→ A′2 such that f (c2)= c′2. �

Remark 4.11. The numbers of isomorphism classes of order 3n, from n = 1 to
n = 100, are as follows: 1, 2, 2, 5, 2, 4, 2, 10, 5, 4, 2, 10, 2, 4, 4, 20, 2, 10, 2, 10, 4,
4, 2, 20, 5, 4, 10, 10, 2, 8, 2, 36, 4, 4, 4, 25, 2, 4, 4, 20, 2, 8, 2, 10, 10, 4, 2, 40, 5,
10, 4, 10, 2, 20, 4, 20, 4, 4, 2, 20, 2, 4, 10, 65, 4, 8, 2,10, 4, 8, 2, 50, 2, 4, 10, 10, 4,
8, 2, 40, 20, 4, 2, 20, 4, 4, 4, 20, 2, 20, 4, 10, 4, 4, 4, 72, 2, 10, 10, 25.

In [Clark and Hou 2013] it is shown that the number N (n) of isomorphism
classes of Galkin quandles of order n is multiplicative, that is, if gcd(n,m) = 1,
then N (nm) = N (n)N (m), so it suffices to find N (qn) for all prime powers qn .
Clark and Hou established that

N (qn)=
∑

0≤m≤n

p(m)p(n−m),
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where p(m) is the number of partitions of the integer m. In particular, N (qn) is
independent of the prime q. The sequence n 7→ N (qn) appears in the On-Line
Encyclopedia of Integer Sequences [Sloane 2011] as sequence A000712.

Example 4.12. In [Vendramin 2011], connected quandles are listed up to order 35.
For a positive integer n > 1, let q(n) be the number of isomorphism classes of
connected quandles of order n. For a positive integer n > 1, if q(n) 6= 0, then we
denote by C[n, i] the i-th quandle of order n in their list (1<n≤35, i=1, . . . , q(n)).
We note that q(n)= 0 for n = 2, 14, 22, 26, and 34 (for 1< n ≤ 35). The quandle
C[n, i] is denoted by Qn,i in [Vendramin 2012] (and they are left-distributive in that
work, so the matrix of C[n, i] is the transpose of the matrix of Qn,i ). Isomorphism
classes of Galkin quandles are identified with those in their list in Table 1.

The 4-digit numbers to the right of each row in Table 1 indicate the numbers of
knots that are colored nontrivially by these Galkin quandles, out of total 2977 knots
in the table [Cha and Livingston 2011] with 12 crossings or less. See Section 6 for
more on this.

5. Properties of Galkin quandles

In this section, we investigate various properties of Galkin quandles.

Lemma 5.1. The Galkin quandle G(A, τ ) is Latin if and only if |A| is odd.

Proof. To show that it is Latin if n is odd, first note that R3 is Latin. Suppose that
(x, a) ∗ (y, b)= (x, a) ∗ (y′, b′). Then we have the equations

−x + 2y =−x + 2y′,(32)

−a+µ(x − y)b+ τ(x − y)=−a+µ(x − y′)b′+ τ(x − y′).(33)

From (32) it follows that y= y′, and it follows from (33) thatµ(x−y)b=µ(x−y)b′.
Now since |A| is odd, the left module action of 2 on A is invertible, and hence b= b′.
If |A| is even, there is a nonzero element b of order 2, and hence (0, 0) ∗ (0, b)=
(0, 0) ∗ (0, 0), so the quandle is not Latin. �

Lemma 5.2. Any Galkin quandle is faithful.

Proof. We show that if (x, a) ∗ (y, b) = (x, a) ∗ (y′, b′) holds for all (x, a), then
(y, b)= (y′, b′). We have y = y′ immediately. From the second factor

−a+µ(x − y)b+ τ(x − y)=−a+µ(x − y)b′+ τ(x − y),

we have µ(x − y)b = µ(x − y)b′ for any x . Pick x such that x 6= y; then we have
µ(x − y)=−1, and hence b = b′. �

Lemma 5.3. If A′ is a subgroup of A and c′ is in A′, then G(A′, c′) is a subquandle
of G(A, c′).

Proof. Immediate. �
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Lemma 5.4. Any Galkin quandle G(A, τ ) consists of three disjoint subquandles
{x}× A for x ∈ Z3, and each is a product of dihedral quandles.

Proof. Immediate. �

We note the following somewhat curious quandles from Lemma 5.4: For a
positive integer k, G(Zk

2, [0, . . . , 0]) is a connected quandle that is a disjoint union
of three trivial subquandles of order 2k .

Lemma 5.5. The Galkin quandle G(A, τ ) has R3 as a subquandle if and only if
τ = 0 or 3 divides |A|.

Proof. If A is any group and τ = 0, then (x, 0) ∗ (y, 0) = (2y − x, 0) for any
x, y ∈ Z3, so that Z3 × {0} is a subquandle isomorphic to R3. If 3 divides |A|,
then A has a subgroup B isomorphic to Z3. In the subquandle {0} × B, we have
(0, a)∗(0, b)= (0,−a+2b) for a, b∈ B, so that {0}×B is a subquandle isomorphic
to R3.

Rig Galkin N.C. Rig Galkin N.C.notation notation notation notation

C[ 6, 1] G(Z2, [0]) 1084 C[24,28] G(Z8, [4]) 1084
C[ 6, 2] G(Z2, [1]) 1084 C[24,29] G(Z2×Z4,[1,0],[1,2]) 1084
C[ 9, 2] G(Z3, [0]) 1084 C[24,30] G(Z2×Z4,[0, 0]) 1084
C[ 9, 6] G(Z3, [1]) 1084 C[24,31] G(Z2×Z4,[0, 2]) 1084
C[12, 5] G(Z4, [2]) 1084 C[24,32] G(Z8, [1]) 1051
C[12, 6] G(Z4, [0]) 1084 C[24,33] G(Z2×Z4,[0,1],[1,1]) 1051
C[12, 7] G(Z4, [1]) 1051 C[24,38] G(Z2×Z2×Z2,[0,0,1]) 1084
C[12, 8] G(Z2×Z2, [0,0]) 1084 C[24,39] G(Z2×Z2×Z2,[0,0,0]) 1084
C[12, 9] G(Z2×Z2, [1,0]) 1084 C[27, 2] G(Z3×Z3, [0, 0]) 1084
C[15, 5] G(Z5,[1]) 1440 C[27,12] G(Z9, [3]) 1084
C[15, 6] G(Z5,[0]) 1512 C[27,13] G(Z9, [0]) 1084
C[18, 1] G(Z2×Z3, [0,0]) 1084 C[27,23] G(Z3×Z3, [1,0]) 1084
C[18, 4] G(Z2×Z3, [1,0]) 1084 C[27,55] G(Z9, [1]) 1084
C[18, 5] G(Z2×Z3, [1,1]) 1084 C[30,12] G(Z2×Z5, [0,1]) 1440
C[18, 8] G(Z2×Z3, [0,1]) 1084 C[30,13] G(Z2×Z5, [0,0]) 1512
C[21, 7] G(Z7, [1]) 1339 C[30,14] G(Z2×Z5, [1,1]) 1440
C[21, 8] G(Z7, [0]) 1386 C[30,15] G(Z2×Z5, [1,0]) 1512
C[24,26] G(Z8, [2]) 1071 C[33,10] G(Z11, [0]) 1260
C[24,27] G(Z8, [0]) 1084 C[33,11] G(Z11, [1]) 1220

Table 1. Galkin quandles in the Rig table [Vendramin 2011]. The
columns headed N.C. show the number of knots with at most 12
crossings that can be nontrivially colored by the quandle.
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Conversely, let S={(x, a), (y, b), (z, d)} be a subquandle of G(A, c) isomorphic
to R3. Note that the quandle operation of R3 is commutative, and the product of
any two distinct elements is equal to the third. We examine two cases.

Case 1. x = y = z. In this case we have

(x, a) ∗ (x, b)= (x,−a+ 2b)= (x, d),

(x, b) ∗ (x, a)= (x,−b+ 2a)= (x, d).

Hence we have −a+ 2b =−b+ 2a, so that 3(a− b)= 0. If there are no elements
of order 3 in A, then we have a− b = 0, and so b = a. This is a contradiction to
the fact that S contains 3 elements, so there is an element of order 3 in A; hence 3
divides |A|.

Case 2. x, y and z are all distinct (if two are distinct then all three are). In this case
consider S = {(0, a), (1, b), (2, d)}. Now we have

(2, d) ∗ (0, a)= (1,−d − a+ c)= (1, b),

(0, a) ∗ (2, d)= (1,−a− d)= (1, b).

Hence we have −d − a+ c =−a− d , so that c = 0, and we have τ = 0. �

Lemma 5.6. The Galkin quandle G(A, τ ) is left-distributive if and only if 3A = 0,
that is, every element of A has order 3.

Proof. Let τ(1)= c1, τ (2)= c2. Let a = (0, 0), b= (0, α) and c= (1, 0) for α ∈ A.
Then we get a ∗ (b ∗ c)= (1, α− c2+ c1) and (a ∗b)∗ (a ∗ c)= (1,−2α− c2+ c1).
If these are equal, then 3α = 0 for any α ∈ A.

Conversely, suppose that every element of A has order 3. Then we have µ(x)a=
2a for any x ∈ Z3, a ∈ A. Then one computes

(34) (x, a)∗[(y, b)∗ (z, c)] =
(
x ∗ (y ∗ z),−a+b+c−τ(y− z)+τ(x− y ∗ z)

)
,

(35) [(x, a) ∗ (y, b)] ∗ [(x, a) ∗ (z, c)]

=
(
(x ∗ y) ∗ (x ∗ z),−a+ b+ c− τ(x − y)− τ(x − z)+ τ(x ∗ y− x ∗ z)

)
.

If all x, y, z are distinct, then x − y = 1 or x − y = 2, and x ∗ y = z, x ∗ z = y,
y ∗ z = x . If x − y = 1, then z = x + 1 and y− z = 1, x − z = 2, and one computes
that (34) = (−x + y+ z,−a+b+ c− c1)= (35). If x − y = 2, then one computes
(34)= (−x+ y+z,−a+b+c−c2)= (35). The other cases for x, y, z are checked
similarly. �

Proposition 5.7. The Galkin quandle G(A, τ ) is Alexander if and only if 3A = 0.

Proof. If G(A, τ ) is Alexander then it is left-distributive, and hence Lemma 5.6 im-
plies 3A= 0. Conversely, suppose 3A= 0. Then A=Zk

3 for some positive integer k,
and is an elementary 3-group. By Corollary 4.3, there are two isomorphism classes,
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G(Zk
3, [0, . . . , 0]) and G(Zk

3, [0, . . . , 0, 1]). The quandle G(Z3, 1) = C[9, 6] is
isomorphic to Z3[t]/(t + 1)2 by a direct comparison. Hence the two classes are
isomorphic to the Alexander quandles Rk

3 and Rk−2
3 ×Z3[t]/(t + 1)2, respectively.

�

Proposition 5.8. The Galkin quandle G(A, c) is medial if and only if 3A = 0.

Proof. We have seen that if 3A= 0, then G(A, c) is Alexander and hence is medial.
Suppose 3b 6= 0 for some b ∈ A. Then consider the products

X =
(
(0, 0) ∗ (1, b)

)
∗
(
(1, 0) ∗ (0, 0)

)
=
(
−1, b− τ(−1)

)
,

Y =
(
(0, 0) ∗ (1, 0)

)
∗
(
(1, b) ∗ (0, 0)

)
=
(
−1,−τ(−1)− 2b

)
.

Since 3b 6= 0, we have X 6= Y and so G(A, c) is not medial. �

Remark 5.9. The fact that the same condition appeared in Lemma 5.6 and Propo-
sitions 5.7 and 5.8 is explained as follows. Alexander quandles are left-distributive
and medial. It is easy to check that, for a finite Alexander quandle (M, T ) with
T ∈ Aut(M),

(M, T ) is connected ⇐⇒ (1−T ) is an automorphism of M ⇐⇒ (M, T ) is Latin.

It was also proved by Toyoda [1941] that a Latin quandle is Alexander if and only if
it is medial. As noted by Galkin, G(Z5, 0) and G(Z5, 1) are the smallest nonmedial
Latin quandles and hence the smallest non-Alexander Latin quandles.

We note that medial quandles are left-distributive (by idempotency). We show in
Theorem 5.10 that any left-distributive connected quandle is Latin. This implies,
by Toyoda’s theorem, that every medial connected quandle is Alexander and Latin.
The smallest Latin quandles that are not left-distributive are the Galkin quandles of
order 15.

It is known that the smallest left-distributive Latin quandle that is not Alexander
is of order 81. This is due to V. D. Belousov. See, for example, [Pflugfelder 1990;
Galkin 1988, Section 5].

Theorem 5.10. Every finite left-distributive connected quandle is Latin.

Proof. Let (X, ∗) be a finite, connected, and left-distributive quandle. For each
a ∈ X , let Xa = {a ∗ x : x ∈ X}.

Step 1. We claim that |Xa| = |Xb| for all a, b ∈ X . For any a, y ∈ X , we have

|Xa| = |Xa ∗ y| =
∣∣{(a ∗ x) ∗ y : x ∈ X}

∣∣= ∣∣{(a ∗ y) ∗ (x ∗ y) : x ∈ X}
∣∣= |Xa∗y|.

Since X is connected, we have |Xa| = |Xb| for all a, b ∈ X .

Step 2. Fix a ∈ X . If |Xa| = |X |, by Step 1, Xb = X for all b ∈ X and we are
done. So assume |Xa|< |X |. Clearly, (Xa, ∗) is a left-distributive quandle. Since
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(X, ∗) is connected and x 7→ a∗x is an onto homomorphism from (X, ∗) to (Xa, ∗),
(Xa, ∗) is also connected. Using induction, we may assume that (Xa, ∗) is Latin.

Step 3. For each y ∈ Y , we claim that Xa∗y = Xa . In fact,

Xa∗y ⊃ (a ∗ y) ∗ Xa

= Xa (since Xa is Latin).

Since |Xa∗y| = |Xa|, we must have Xa∗y = Xa .

Step 4. Since (X, ∗) is connected, by Step 3, Xb = Xa for all b ∈ X . Thus
X =

⋃
b∈X Xb = Xa , which is a contradiction. �

Proposition 5.11. Any Galkin quandle is self-dual, that is, isomorphic to its dual.

Proof. The dual quandle structure of G(A, τ )= G(A, c1, c2) is written by

(x, a) ∗̄ (y, b)=
(
x ∗̄ y,−a+µ(y− x)b+ τ(y− x)

)
for (x, a), (y, b) ∈ G(A, τ ). Note that µ(x − y) = µ(y − x) and τ(y − x) = c−i

if τ(x − y)= ci for any x, y ∈ X and i ∈ Z3. Hence its dual is G(A, c2, c1). The
isomorphism is f : Z3× A→ Z3× A, defined by f (x, a)= (−x, a). �

Corollary 5.12. A Galkin quandle G(A, c1, c2) is involutory (kei) if and only if
c1 = c2 ∈ A.

Proof. A quandle is a kei if and only if it is the same as its dual, that is, the identity
map is an isomorphism between the dual quandle and itself. Hence this follows
from Proposition 5.11. �

A good involution [Kamada 2007; Kamada and Oshiro 2010] ρ on a quandle
(X, ∗) is an involution ρ : X→ X (a map with ρ2

= id) such that x ∗ρ(y)= x ∗̄ y
and ρ(x ∗ y) = ρ(x) ∗ y for any x, y ∈ X . A quandle with a good involution is
called a symmetric quandle. A kei is a symmetric quandle with ρ = id (in this case
ρ is said to be trivial). Symmetric quandles have been used for unoriented knots
and nonorientable surface-knots.

Symmetric quandles with nontrivial good involution have been hard to find. Other
than computer calculations, very few constructions have been known. In [Kamada
2007; Kamada and Oshiro 2010], nontrivial good involutions were defined on
dihedral quandles of even order, which are not connected. Infinitely many symmetric
connected quandles were constructed in [Carter et al. 2010] as extensions of odd
order dihedral quandles: For each odd 2n+1 (n ∈Z, n> 0), a symmetric connected
quandle of order (2n + 1)22n+1 was given that is not a kei. Here we use Galkin
quandles to construct more symmetric quandles.

Proposition 5.13. For any positive integer n, there exists a symmetric connected
quandle of order 6n that is not involutory.
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Proof. We show that if an abelian group A has an element c ∈ A of order 2,
then G(A, c) is a symmetric quandle. Note that G(A, c) is not involutory by
Corollary 5.12.

Define the map ρ : Z3× A→ Z3× A by ρ(x, a)= (x, a+ c), where c ∈ A is a
fixed element of order 2 and x ∈ Z3, a ∈ A. The map ρ is an involution. It satisfies
the required conditions, as we show below. For x, y ∈ Z3, we have

(x, a) ∗ ρ(y, b)= (x, a) ∗ (y, b+ c)

=
(
2y− x,−a+µ(x − y)(b+ c)+ τ(x − y)

)
,

(x, a)∗̄(y, b)=
(
2y− x,−a+µ(y− x)b+ τ(y− x)

)
,

where the last equality follows from the proof of Proposition 5.11. If x = y, then
µ(x − y)= 2= µ(y− x) and τ(x − y)= 0= τ(y− x), and the above two terms
are equal. If x 6= y, then µ(x − y)=−1= µ(y− x), and exactly one of τ(x − y)
and τ(y− x) is c and the other is 0, so that the equality holds.

Next we compute

ρ
(
(x, a) ∗ (y, b)

)
= ρ

(
2y− x,−a+µ(x − y)b+ τ(x − y)

)
=
(
2y− x,−a+µ(x − y)b+ τ(x − y)+ c

)
,

ρ(x, a) ∗ (y, b)= (x, a+ c) ∗ (y, b)

=
(
2y− x,−a− c+µ(x − y)b+ τ(x − y)

)
,

and these are equal. �

For the equations in Lemma 3.3, we have the following for Zp.

Lemma 5.14. Let p > 3 be a prime and let µ : Zp → Z be a function satisfying
µ(0)= 2 and

(36) µ(x + y)+µ(x − y)= µ(x)µ(y)

for any x, y ∈ Zp. Then µ(x)= 2 for all x ∈ Zp.

Proof. Let
S =

∑
x∈Zp

µ(x).

Summing (36) as y runs over Zp, we have 2S = Sµ(x). So if S 6= 0, we have
µ(x)= 2 for all x ∈ Zp. Hence we only need to prove that S 6= 0.

Assume to the contrary that S=0. Since µ(kx)µ(x)=µ((k+1)x)+µ((k−1)x),
it is easy to see by induction that

(37) µ(x)k = 1
2

∑
0≤i≤k

(k
i

)
µ((k− 2i)x).
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(Here we also use the fact that µ(−x) = µ(x), which follows from the fact that
µ(x − y)= µ(x)µ(y)−µ(x + y) is symmetric in x and y.) In particular,

µ(x)2p
=

1
2

∑
0≤i≤2p

(2p
i

)
µ(2(p− i)x).

Since
∑

x∈Zp
µ(x)= 0, we have

∑
x∈Zp

µ(x)2p
=

[
2+

(2p
p

)]
p.

Since µ(x)= µ
( x

2

)2
− 2, we have µ(x)=−2,−1, 2, 7, . . . .

Case 1. Assume that there exists 0 6= x ∈ Zp such that µ(x)≥ 7. Then[
2+

(2p
p

)]
p =

∑
x∈Zp

µ(x)2p
≥ 72p,

which is not possible.

Case 2. Assume that µ(x) ∈ {−2,−1, 2} for all x ∈ Zp. Let ai = |µ
−1(i)|. Since∑

x∈Zp
µ(x)= 0 and

∑
x∈Zp

µ(x)3 = 0, where the second equation follows from
(37), we have {

−2a−2− a−1+ 2a2 = 0,
−8a−2− a−1+ 8a2 = 0.

So a−1 = 0, that is, µ(x)=±2 for all x ∈ Zp. Then∑
x∈Zp

µ(x)≡ 2p ≡ 2 (mod 4),

which is a contradiction. �

6. Knot colorings by Galkin quandles

In this section we investigate knot colorings by Galkin quandles. Recall from
Lemma 5.4 that any Galkin quandle G(A, τ ) consists of three disjoint subquandles
{x}× A for x ∈ Z3, and each is a product of dihedral quandles. Also any Galkin
quandle has R3 as a quotient. Thus we look at relations between colorings by
dihedral quandles and those by Galkin quandles. For a positive integer n, a knot is
called n-colorable if its diagram is colored nontrivially by the dihedral quandle Rn .

First we present the numbers of n-colorable knots (for odd n) with 12 crossings
or less out of 2977 knots in the knot table from [Cha and Livingston 2011], for
comparison with Table 1. These are for dihedral quandles and their products that
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may be of interest and relevant for comparisons.

R3 : 1084, R5 : 670, R7 : 479, R11 : 285, R15 : 1512, R17 : 192,

R19 : 159, R21 : 1386, R23 : 128, R29 : 97, R31 : 87, R33 : 1260.

Remark 6.1. We note that many Rig Galkin quandles in Table 1 have the same
number (1084) of nontrivially colorable knots as the number of 3-colorable knots.
We make a few observations on these Galkin quandles.

By Lemma 5.5, a Galkin quandle has R3 as a subquandle if τ = 0 or 3 divides |A|,
and among Rig Galkin quandles with the number 1084, 17 of them satisfy this
condition. Hence any 3-colorable knot is nontrivially colored by these Galkin
quandles. The converse is not necessarily true: G(Z5, 0) has τ = 0 but has the
number 1512. See Corollary 6.5 for more on these quandles.

The remaining 7 Rig Galkin quandles with the number 1084 have C[6, 2] as a
subquandle:

C[12, 5], C[12, 9], C[24, 28], C[24, 29], C[24, 31], C[24, 38].

It was conjectured [Carter et al. 2010] that if a knot is 3-colorable, then it is
nontrivially colored by C[6, 2] (R̃3 in their notation). It is also seen that any
nontrivial coloring by C[6, 2] descends to a nontrivial 3-coloring via the surjection
C[6, 2] → R3, so if the conjecture is true, then any knot is nontrivially colored by
these quandles if and only if it is 3-colorable. See also Remarks 6.6 and 6.7.

The determinant of a knot is a well known knot invariant related to n-colorability;
see [Fox 1962; Rolfsen 1976] for example, for the definition.

Proposition 6.2. Let K be a knot with a prime determinant p > 3. Then K is
nontrivially colored by a finite Galkin quandle G(A, τ ) if and only if p divides |A|.

Proof. By Fox’s theorem [1962], for any prime p, a knot is p-colorable if and only
if its determinant is divisible by p. Let K be a knot with the determinant that is a
prime p > 3. Then K is p-colorable and not 3-colorable.

Let G(A, τ ) be any Galkin quandle and let C :A→G(A, τ ) be a coloring, where
A is the set of arcs of a knot diagram of K . By the surjection r : G(A, τ )→ R3,
the coloring C induces a coloring r ◦C :A→ R3. Since K is not 3-colorable, it is
a trivial coloring, and therefore C(A)⊂ r−1(x) for some x ∈ R3. The subquandle
r−1(x) for any x ∈ R3 is an Alexander quandle {x}× A with the operation

(x, a) ∗ (x, b)= (x, 2b− a),

so that it is a product of dihedral quandles {x} × A = Rq1 × · · · × Rqk for some
positive integer k and prime powers q j , j = 1, . . . , k (Lemma 5.4). It is known
that the number of colorings by a product quandle X1× · · ·× Xk is the product of
numbers of colorings by X i for i = 1, . . . , k. It is also seen that a knot is nontrivially
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colored by Rpk for a prime p if and only if it is p-colorable. Hence K is nontrivially
colored by {x}× A if and only if one of q1, . . . , qk is a power of p. �

A 2-bridge knot is a knot that can be put into a position with two maxima and
two minima with respect to some height function in space (see [Rolfsen 1976], for
example, for its definition and properties).

Corollary 6.3. For any positive integer n not divisible by 3 and any finite Galkin
quandle G(A, τ ), all 2-bridge knots with the determinant n have the same number
of colorings by G(A, τ ).

Proof. Let K be a two-bridge knot with the determinant n= pm1
1 . . . pm`

` (in the prime
decomposition form), where pi 6= 3 for i = 1, . . . , `, and let A = Rq1 × · · ·× Rqk

be the decomposition for prime powers, as a quandle. By Fox’s theorem [1962], for
a prime p, K is p-colorable if and only if p divides the determinant of K . Hence K
is pi -colorable for i = 1, . . . , ` and not 3-colorable. By the proof of Proposition 6.2,
the number of colorings by a Galkin quandle G(A, τ ) of K is determined by the
number of colorings by the dihedral quandles Rq j that are factors of A.

The double branched cover M2(K ) of the 3-sphere S3 along a 2-bridge knot
K is a lens space ([Rolfsen 1976], for example), and its first homology group
H1(M2(K ),Z) is cyclic. If the determinant of K is n, then it is isomorphic to Zn

([Lickorish 1997], for example). It is known [Przytycki 1998] that the number of
colorings by Rq j is equal to the order of the group

(
Z⊕ H1(M2(K ),Z)

)
⊗ Zq j ,

which is determined by n and q j alone. �

Example 6.4. Among knots with up to 8 crossings, the following sets of knots have
the same numbers of colorings by all finite Galkin quandles from Corollary 6.3:
{41, 51} (determinant 5), {52, 71} (7), {62, 72} (11), {63, 73, 81} (13), {75, 82, 83} (17),
{76, 84} (19), {86, 87} (23), {88, 89} (25), {812, 813} (29). See [Cha and Livingston
2011] for notations of knots in the table. This exhausts such sets of knots up to 8
crossings.

Computer calculations show that the set of knots up to 8 crossings with determi-
nant 9 is {61, 820}, and these have different numbers of colorings by some Galkin
quandles. The determinant was looked up at KnotInfo [Cha and Livingston 2011].

There are two knots (74 and 821, up to 8 crossings) with determinant 15. They can
be distinguished by the numbers of colorings by some Galkin quandles, according
to computer calculations.

Corollary 6.5. Let p be an odd prime. Then a knot K is nontrivially colored by the
Galkin quandle G(Zp, 0) if and only if it is 3p-colorable.

Proof. Suppose it is 3p-colorable; then it is nontrivially colored by R3p, which
is isomorphic to R3× Rp, so that it is either 3-colorable or p-colorable. If K is
3-colorable, then K is nontrivially colored by G(Z p; 0), since G(Z p; 0) has R3 as
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a subquandle by Lemma 5.5. If K is p-colorable, then K is nontrivially colored by
G(Z p; 0), since G(Z p; 0) has {0}× Rp as a subquandle by Lemma 5.4.

Suppose that a knot K is nontrivially colored by G(Zp, 0), where p is an odd
prime. If K is 3-colorable, then it is 3p-colorable, and we are done. By the proof of
Proposition 6.2, if K is not 3-colorable, then K is nontrivially colored by {x}× Rp,
where x ∈ Z3. Hence K is p-colorable, and so 3p-colorable. �

Remark 6.6. According to computer calculations, the following sets of Galkin
quandles (in the numbering of Table 1) have the same numbers of colorings for
all 2977 knots with 12 crossings or less. Thus we conjecture that it is the case for
all knots. If a Galkin quandle does not appear in the list, then it means that it has
different numbers of colorings for some knots, compared to other Galkin quandles.
The numbers of colorings are distinct for distinct sets listed below as well.{

C[6, 1],C[6, 2]
}
,
{
C[12, 5],C[12, 6]

}
,
{
C[12, 8],C[12, 9]

}
,{

C[18, 1],C[18, 4]
}
,
{
C[18, 5],C[18, 8]

}
,
{
C[24, 27],C[24, 28]

}
,{

C[24, 29],C[24, 30],C[24, 31]
}
,
{
C[24, 38],C[24, 39]

}
,{

C[30, 12],C[30, 14]
}
,
{
C[30, 13],C[30, 15]

}
.

We wish to acknowledge the use of the programs GAP [2008], Maple15 (Magma
package) [Maplesoft 2011], and Prover9 and Mace4 [McCune 2009] in our compu-
tations. Computational results are posted at [Clark and Yeatman 2011].

Remark 6.7. In contrast to the preceding remark, if we relax the requirement of
coloring the same number of times, and instead consider two quandles equivalent if
each colors the same knots nontrivially (among these 2977 knots), then we get the
following 4 equivalence classes:{
C[3,1],C[6,1],C[6,2],C[9,2],C[9,6],C[12,5],C[12,6],C[12,8],C[12,9],

C[18,1],C[18,4],C[18,5],C[18,8],C[24,27],C[24,28],C[24,29],C[24,30],

C[24,31],C[24,38],C[24,39],C[27,2],C[27,12],C[27,13],C[27,23],C[27,55]
}
,{

C[12,7],C[24,32],C[24,33]
}
,{

C[15,5],C[30,12],C[30,14]
}
,{

C[15,6],C[30,13],C[30,15]
}
.

Thus we conjecture that it is the case for all knots. Of these, the first family with
many elements consists of quandles with C[3, 1], C[6, 1] or C[6, 2] as a subquandle.
Hence, in fact, the conjecture about this family follows from the conjecture about
{C[6, 1],C[6, 2]} in the preceding remark.

Remark 6.8. Also in contrast to Remark 6.6, there exists a virtual knot K (see,
for example, [Kauffman 1999]) such that the numbers of colorings by C[6, 1] and
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C[6, 2] are distinct. A virtual knot K with the following property was given in
[Carter et al. 2010, Remark 4.6]: K is 3-colorable, but does not have a nontrivial
coloring by C[6, 2]. Since C[6, 1] has R3 as a subquandle, this virtual knot K has
a nontrivial coloring by C[6, 1]. Hence the numbers of colorings by C[6, 1] and
C[6, 2] are distinct for K . Thus we might conjecture that for any pair of nonisomor-
phic Galkin quandles, there is a virtual knot with different numbers of colorings.

Remark 6.9. For any finite Galkin quandle G(A, τ ), there is a knot K with a
surjection πQ(K )→ G(A, τ ) from the fundamental quandle πQ(K ). In fact, a
connected sum of trefoils can be taken as K as follows (see, for example, [Rolfsen
1976] for connected sum).

First we take a set of generators of G(A, τ ) as follows. Let A= Zn1×· · ·×Znk ,
where k, n1, . . . , nk are positive integers such that ni divides ni+1 for i = 1, . . . , k.
Let S = {(x, ei ) | x ∈ Z3, i = 0, . . . , k}, where e0 = 0 ∈ A and ei ∈ A (i = 1, . . . , k)
is an elementary vector [0, . . . , 0, 1, 0, . . . , 0] ∈ Zn1 × · · ·×Znk with a single 1 at
the i-th position. Note that Rn is generated by 0, 1 as 0 ∗ 1 = 2, 1 ∗ 2 = 3, and
inductively, i ∗ (i + 1)= i + 2 for i = 0, . . . , n− 2. Since {x}× A is isomorphic to
a product of dihedral quandles for each x ∈ Z3, S generates G(A, τ ).

For a 2-string braid σ 3
1 whose closure is trefoil (see Figure 2), we note that if

x 6= y ∈ Z3, then for any a, b ∈ A, the pair of colors (x, a), (y, b) ∈ G(A, τ ) at top
arcs extends to the bottom, that is, the bottom arcs receive the same pair. This can
be computed directly.

For the copies of the trefoil, we assign pairs [(0, e0), (x, ei )] as colors where
x = 1, 2 and i = 0, . . . k, and take connected sums on the portion of the arcs with
the common color (0, e0). Further we take pairs [(0, e j ), (1, e0)] for j = 1, . . . , k,
for example, and take connected sums on the arcs with the common color (1, e0),
to obtain a connected sum of trefoils with all elements of S used as colors, as
indicated in Figure 3. Such a coloring gives rise to a quandle homomorphism
πQ(K )→G(A, τ ) whose image contains generators S; hence it defines a surjective
homomorphism.
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(0,e0) (1,e0) (1,e1) (x,e j ) (2,ek)

(0,e1) (1,e0) (0,e2) (1,e0) (0,e j ) (1,e0) (0,e j ) (1,e0)

Figure 3. A coloring of a connected sum of trefoils.
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