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HARMONIC MAPS ON DOMAINS WITH
PIECEWISE LIPSCHITZ CONTINUOUS METRICS

HAIGANG LI AND CHANGYOU WANG

We study harmonic maps (�, g) → (N, h), where � ⊂ Rn is a bounded
domain divided into two pieces, the Riemannian metric g is Lipschitz in
each piece, and (N, h) is a closed Riemannian submanifold of Rk. We prove
the partial regularity of stationary harmonic maps, and the global Lips-
chitz and piecewise C1,α-regularity of weakly harmonic maps from (�, g)
to manifolds (N, h) that support convex distance square functions.

1. Introduction

Throughout this paper we assume that �=�+ ∪�− ∪0 is a bounded domain of
Rn decomposed into two subdomains �+ and �− by a C1,1-hypersurface 0, and
that g is a piecewise Lipschitz metric on �, satisfying g ∈ C0,1(�+)∩C0,1(�−)

and discontinuous at every x ∈ 0. For example, let �= B1 ⊂ Rn be the unit ball,
0 = B1 ∩ {x = (x ′, 0) ∈ Rn

}, and

ḡ(x)=
{

g0 if x ∈ B+1 = {x
n > 0} ∩ B1,

kg0 if x ∈ B−1 = {x
n < 0} ∩ B1,

where g0 is the standard metric on Rn and k (6= 1) is a positive constant. Let
(N , h) ↪→ Rk be an l-dimensional, smooth compact Riemannian manifold without
boundary, isometrically embedded in the Euclidean space Rk .

Motivated by the recent studies on elliptic systems arising from composite
materials (see [Li and Nirenberg 2003]) and the periodic homogenization theory in
calculus of variations (see [Avellaneda and Lin 1987] and [Lin and Yan 2003]), we
are interested in the regularity issue of harmonic maps from (�, g) to (N , h).

In order to describe the problem, let’s recall some notations. Throughout this
paper, we use the Einstein convention for summation. For the metric g= gi j dx i dx j ,
let (gi j )= (gi j )

−1, and dvg =
√

g dx(=
√

det (gi j ) dx) be the volume form of g.
For 1< p <+∞, define the Sobolev space

W 1,p(�, N )=
{
u :�→Rk

∣∣ u(x)∈N a.e. x ∈�, E p(u, g)=
´
�
|∇u|pg dvg<∞

}
,
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where

|∇u|2g ≡ gi j
〈
∂u
∂xi

,
∂u
∂x j

〉
is the energy density of u with respect to g, and 〈 · , · 〉 denotes the inner product in
Rk . Denote W 1,2(�, N ) by H 1(�, N ). Now let’s recall the definition of stationary
harmonic maps.

Definition 1.1. A map u ∈ H 1(�, N ) is called a (weakly) harmonic map if it is a
critical point of E2( · , g), i.e., if u satisfies

(1-1) 1gu+ A(u)(∇u,∇u)g = 0 in �

in the sense of distributions. Here

1g =
1
√

g
∂

∂xi

(
√

ggi j ∂

∂x j

)
is the Laplace–Beltrami operator on (�, g), A( · )( · , · ) is the second fundamental
form of (N , h) ↪→ Rk , and A(u)(∇u,∇u)g = gi j A(u)(∂u/∂xi , ∂u/∂x j ).

Definition 1.2. A (weakly) harmonic map u ∈ H 1(�, N ) is called a stationary
harmonic map if, in addition, it is a critical point of E2( · , g) with respect to the
following domain variations:

(1-2)
d
dt

∣∣∣∣
t=0

ˆ
�

∣∣∇ut
∣∣2
g dvg = 0, with ut(x)= u

(
Ft(x)

)
,

where F(t, x) := Ft(x) ∈C1
(
[−δ, δ],C1(�,�)

)
, for some small δ > 0, is a family

of diffeomorphisms that satisfies

(1-3)


F0(x)= x for x ∈�,

Ft(x)= x for (x, t) ∈ ∂�×[−δ, δ],

Ft
(
�±

)
⊂�± for t ∈ [−δ, δ].

In particular, Ft(0)⊂ 0 for 0≤ t ≤ δ.

It is readily seen that any minimizing harmonic map from (�, g) to (N , h) is a
stationary harmonic map. Definition 1.2 implies that a stationary harmonic map on
(�, g) is a stationary harmonic map on (�±, g). Since g ∈ C0, 1(�±), we can see
that u satisfies an energy monotonicity inequality on �±. We will show in Section 2
that a stationary harmonic map on (�, g) also satisfies an energy monotonicity
inequality in 0 under the condition (1-4) below.

The first result is concerned with the (partial) Lipschitz and (partial) piecewise
C1,α-regularity of stationary harmonic maps. In this context, we are able to extend
the well-known partial regularity theorem of stationary harmonic maps on domains



HARMONIC MAPS ON DOMAINS WITH PIECEWISE LIPSCHITZ METRICS 127

with smooth metrics, due to Hélein [2002], Evans [1991], and Bethuel [1993]. More
precisely:

Theorem 1.1. Let u ∈H 1(�, N ) be a stationary harmonic map on (�, g). Suppose
that g satisfies the following jump condition on 0 for n ≥ 3: for any x ∈ 0, there
exists a positive constant k(x) 6= 1 such that

(1-4) lim
y∈�+
y→x

g(y)= k(x) lim
y∈�−
y→x

g(y).

There exists a closed set 6 ⊂�, with H n−2(6)= 0, such that u ∈ Liploc(�\6, N ),
and for some 0< α < 1, u ∈ C1,α

loc

(
(�+ ∪0) \6, N

)
∩C1,α

loc

(
(�− ∪0) \6, N

)
.

The jump condition is needed for both energy monotonicity inequalities for u
and the piecewise C1,α-regularity of u.

We point out that in dimension n = 2, since the energy monotonicity inequality
automatically holds for H 1-maps, Theorem 1.1 holds for any weakly harmonic
map from domains of piecewise C0,1-metrics, i.e., any weakly harmonic map
on domains with piecewise Lipschitz continuous metrics satisfying (1-4) is both
Lipschitz continuous and piecewise C1,α for some 0< α < 1.

Weakly harmonic maps from domains with smooth metrics into Riemannian
manifolds may not enjoy partial regularity properties in dimensions n ≥ 3; see
[Rivière 1995]. Here we consider weakly harmonic maps on domains with piece-
wise Lipschitz continuous metrics into a Riemannian manifold (N , h), on which
d2

N ( · , p) is convex for p ∈ N . Such Riemannian manifolds N include those with
nonpositive sectional curvatures and geodesic convex balls in Riemannian manifolds.
In particular, we extend the classical regularity theorems on harmonic maps on
domains with smooth metrics, due to [Eells and Sampson 1964] and [Hildebrandt
et al. 1977].

Theorem 1.2. Let g satisfy the conditions of Theorem 1.1. Assume that on the
universal cover (Ñ , h̃) of (N , h),1 the square of distance function d2

Ñ
( · , p) is convex

for any p ∈ Ñ . If u ∈ H 1(�, N ) is a weakly harmonic map, then u ∈ Liploc(�, N ),
and for some 0< α < 1, u ∈ C1,α

loc (�
+
∪0, N )∩C1,α

loc (�
−
∪0, N ).

The idea for the proof of Theorem 1.1 is motivated in [Evans 1991] and [Bethuel
1993]. However, there are several new technical difficulties:

(i) Establishing an almost energy monotonicity inequality for stationary harmonic
maps in (�, g). This is achieved by observing that an exact monotonicity
inequality holds at any x ∈ 0, see Section 2 below.

1Here the covering map 5 : Ñ → N is a Riemannian submersion.
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(ii) Establishing a Hodge decomposition in L p(B,Rn), for any 1< p <+∞, on
a ball B = Br (0), equipped with certain piecewise continuous metrics g. More
precisely, we need to show that the solution of

∂

∂xi

(
ai j

∂v

∂x j

)
= div f in B,

v = 0 on ∂B

enjoys a W 1,p-estimate: for any 1< p <+∞,

‖∇v‖L p(B) ≤ C‖ f ‖L p(B)

provided that (ai j ) ∈C(B±)∩C(Bδ) for some δ > 0, is uniformly elliptic, but
is discontinuous on ∂B+ \ Bδ, where Bδ =

{
x ∈ B : dist(x, ∂B) ≤ δ

}
. This

follows from a recent theorem in [Byun and Wang 2010; Dong and Kim 2010];
see also [Dong and Kim 2011a; 2011b] and Section 3 below.

(iii) Employing the moving frame method to establish the decay estimate in suitable
Morrey spaces under a smallness condition, analogous to [Ishizuka and Wang
2008]. To obtain Lipschitz and piecewise C1,α-regularity, we compare the har-
monic map system with an elliptic system with piecewise constant coefficients
and perform a hole-filling argument, similar to [Giaquinta and Hildebrandt
1982].

The paper is organized as follows. In Section 2, we derive an almost energy
monotonicity inequality. In Section 3, we show the global W 1,p (1 < p <∞)
estimate for elliptic systems with certain piecewise continuous coefficients, and a
Hodge decomposition theorem. In Section 4, we adapt the moving frame method of
[Hélein 2002] and [Bethuel 1993] to establish an ε-Hölder continuity. In Section 5,
we establish both Lipschitz and piecewise C1,α regularity for Hölder continuous
harmonic maps. In Section 6, we consider harmonic maps into manifolds supporting
convex distance square functions and prove Theorem 1.2.

2. Energy monotonicity inequality

This section is devoted to the derivation of energy monotonicity inequalities for
stationary harmonic maps from (�, g) to (N , h).

Theorem 2.1. Under the same assumptions as in Theorem 1.1, there exist C > 0
and r0 > 0, depending only on �, 0, and g, such that if u ∈ W 1,2(�, N ) is a
stationary harmonic map on (�, g), then for any x0 ∈�, there holds

(2-1) s2−n
ˆ

Bs(x0)

|∇u|2g dvg ≤ eCrr2−n
ˆ

Br (x0)

|∇u|2g dvg

for all 0< s ≤ r ≤min{r0, dist(x0, ∂�)}.
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Since g ∈ C0,1(�±), there are C > 0 and r0 > 0 such that (2-1) holds for any
x0 ∈�

± and 0< s ≤ r ≤min{r0, dist(x0, ∂�
±)}; see [Hélein 2002]. In particular,

(2-1) holds for any x0 ∈ � \ 0
r0 and 0 < s ≤ r ≤ min{r0, dist(x0, ∂�)}, where

0r0 = {x ∈ � : dist(x, 0) ≤ r0} is the r0-neighborhood of 0. To show (2-1) for
x0 ∈ 0

r0 , it suffices to consider the case x0 ∈ 0.
It follows from the assumption on 0 and g that there exists r0 > 0 such that

for any x0 ∈ 0 there exists a C1,1-diffeomorphism 80 : B1 → Br1(x0), where
r1 =min{r0, dist(x0, ∂�)}, such that{

80(B±1 )=�
±
∩ Br1(x0),

80(01)= 0 ∩ Br1(x0), where 01 = {x ∈ B1 : xn = 0}.

Define ũ(x)= u(80(x)) and g̃(x)=8∗0(g)(x) for x ∈ B1. Then it is readily seen
that g̃ is piecewise C0,1, with 0 as its discontinuity set, and satisfies (1-4) on 01.
(In fact, since

8∗0(g)i j (x)= gkl(80(x))
∂8k

0

∂xi
(x)

∂8l
0

∂x j
(x),

condition (1-4) implies that

lim
y∈�+
y→x

8∗0g(y)= k(80(x)) lim
y∈�−
y→x

8∗0g(y)

for any x ∈01.) It is also easy to see that, if u : (Br1(x0), g)→ (N , h) is a stationary
harmonic map, so ũ : (B1, g̃)→ (N , h).

Thus we may assume that � = B1, that g is a piecewise C0,1-metric which
satisfies (1-4) on the set of discontinuity 01, and that u : (B1, g)→ (N , h) is a
stationary harmonic map. It suffices to establish (2-1) in B1/2. We first derive a
stationarity identity for u.

Proposition 2.2. Let u ∈ W 1,2(B1, N ) be a stationary harmonic map on (B1, g).
Then

(2-2)
ˆ

B1

(
2gi j

〈
∂u
∂xk

,
∂u
∂x j

〉
Y k

i − |∇u|2g div Y
)
√

g dx

=

ˆ
B1

∂

∂xk

(√
ggi j)Y k

〈
∂u
∂xi

,
∂u
∂x j

〉
dx

for all Y = (Y 1, . . . , Y n−1, Y n) ∈ C1
0(B1,Rn) satisfying

(2-3) Y n(x)


≥ 0 for xn > 0,
= 0 for xn

= 0,
≤ 0 for xn < 0,

where Y k
i = ∂Y k/∂xi and div Y =

∑n
i=1 ∂Y i/∂xi .
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Proof. Let Y ∈ C1
0(B1,Rn) satisfy (2-3). Then there exists δ > 0 such that Ft(x)=

x + tY (x), t ∈ [−δ, δ], is a family of diffeomorphisms from B1 to B1 satisfying
the condition (1-3). Hence

0=
d
dt

∣∣∣∣
t=0

ˆ
B1

∣∣∇u(Ft(x))
∣∣2
g dvg

=
d
dt

∣∣∣∣
t=0

(ˆ
B+1

∣∣∇u(Ft(x))
∣∣2
g dvg +

ˆ
B−1

∣∣∇u(Ft(x))
∣∣2
g dvg

)
.

Set G t = F−1
t , for t ∈ [−δ, δ]. Direct calculations yield

d
dt

∣∣∣∣
t=0

ˆ
B±1

∣∣∇(u(Ft(x))
∣∣2
g dvg

=
d
dt

∣∣∣∣
t=0

ˆ
B±1

√
g(x + tY (x))gi j (x + tY (x))

〈
∂u
∂xk

,
∂u
∂xl

〉
× (x + tY (x))(δki + tY k

i )(δl j + tY l
j ) dx

=

ˆ
B±1

√
g(x)gi j (x)

〈
∂u
∂xk

,
∂u
∂xl

〉
(δki Y l

j + δl j Y k
i ) dx

+

ˆ
B±1

d
dt

∣∣∣∣
t=0

(
gi j (G t(x))

√
g(G t(x))J G t(x)

) 〈 ∂u
∂xi

,
∂u
∂x j

〉
dx

=

ˆ
B±1

(
2gi j

〈
∂u
∂xi

,
∂u
∂xl

〉
Y l

j − gi j
〈
∂u
∂xi

,
∂u
∂x j

〉
div Y

)
√

g dx

−

ˆ
B±1

∂

∂xk

(√
ggi j)Y k

〈
∂u
∂xi

,
∂u
∂x j

〉
dx,

where we have used the equalities

d
dt

∣∣∣
t=0

J G t(x)=− div Y,

d
dt

∣∣∣
t=0

G t(x)=−Y (x),

d
dt

∣∣∣
t=0

(
gi j (G t(x))

√
g(G t(x))

)
=−

∂

∂xk

(√
ggi j

)
Y k .

This completes the proof. �

Proposition 2.3. Let u ∈ W 1,2(B1, N ) be a stationary harmonic map on (B1, g).
There exists C > 0 such that:

(i) For any x0 = (x ′0, xn
0 ) ∈ B1/2 \ 01, there exists 0 < R0 ≤ min

{1
4 , |x

n
0 |
}

such
that

(2-4) r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg if 0< r ≤ R < R0.
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(ii) For any x0 ∈ B1/2,

(2-5) r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg if 0< r ≤ R ≤ 1
4 .

Proof. (i) By choosing Y ∈ C∞c (B
+

1 ,Rn) or Y ∈ C∞c (B
−

1 ,Rn), we conclude that
u is a stationary harmonic map on ( B+1 , g) and ( B−1 , g). Hence the monotonicity
inequality (2-4) holds; see [Hélein 2002].

(ii) Step 1. We first consider the case where x0 ∈01. Without loss of generality, we
can assume that x0 = (0′, 0). For ε > 0 and 0< r ≤ 1

2 , let Yε(x)= xηε(x), where
ηε(x)= ηε(|x |) ∈ C∞0 (B1) satisfies

(2-6) 0≤ ηε ≤ 1, η′ε ≤ 0, |η′ε | ≤
2
ε
, ηε(s)=

{
1 for 0≤ s ≤ r − ε,
0 for s ≥ r.

Then

(2-7) (Yε)
j
i = δi jηε(|x |)+ η′ε(|x |)

x i x j

|x |
.

Substituting Yε into the right side of (2-2), and using∣∣∣∣ ∂∂xk

(√
ggi j)∣∣∣∣≤ C for a.e. x ∈ B1 \01,

we have

(2-8)
∣∣∣∣ˆ

B1

∂

∂xk

(√
ggi j)Y k

ε

〈
∂u
∂xi

,
∂u
∂x j

〉
dx
∣∣∣∣≤ Cr

ˆ
Br

|∇u|2 dx

≤ Cr
ˆ

Br

|∇u|2g dvg.

Substituting (2-7) into the left side of (2-2), we obtain

(2-9)
ˆ

B1

(
2gi j

〈
∂u
∂x j

,
∂u
∂xk

〉
(Yε)ki − |∇u|2g div Yε

)
√

g dx

= (2− n)
ˆ

B1

|∇u|2gηε(|x |)
√

g dx −
ˆ

B1

|∇u|2g|x |η
′

ε(|x |)
√

g dx

+

ˆ
B1

2gi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx .

Define ḡ by

ḡ(x ′, xn)=

{
limy→0, yn≥0 g(y) if xn

≥ 0,
limy→0, yn<0 g(y) if xn < 0.

Then we have

(2-10) |g(x)− ḡ(x)| ≤ C |x | for all x ∈ B1.
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Further, by (1-4) we can assume

ḡ(x)=
{

g0 if xn
≥ 0,

kg0 if xn < 0 (k 6= 1).

Hence we can write

(2-11)
ˆ

B1

2gi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx = Iε + IIε .

where

Iε = 2
ˆ

B1

ḡi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx,

IIε = 2
ˆ

B1

(gi j
− ḡi j )

〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
η′ε(|x |)

√
g dx .

Since

ḡi j
〈
∂u
∂xi

,
∂u
∂xk

〉
xk x j

|x |
=

{
|x ||∂u/∂r |2 if xn

≥ 0,

(1/k)|x ||∂u/∂r |2 if xn < 0

is nonnegative in B1 and η′ε(|x |)≤ 0, we have Iε ≤ 0. For IIε , by (2-10) we have

(2-12) |IIε | ≤ Cr2
ˆ

Br

|∇u|2g |η
′

ε |(|x |) dvg.

Putting these estimates first into (2-11) and then into (2-9), and finally combining
(2-9) and (2-8) with (2-2), we obtain, after taking ε to zero,

(2-13) (2− n)
ˆ

Br

|∇u|2g dvg + r
ˆ
∂Br

|∇u|2g
√

g d H n−1

≥−C
(

r
ˆ

Br

|∇u|2g dvg + r2
ˆ
∂Br

|∇u|2g
√

gd H n−1
)
.

It is not hard to see that (2-13) implies

d
dr

(
eCrr2−n

ˆ
Br

|∇u|2g dvg

)
≥ 0,

so that (2-5) holds when x0 ∈ B1/2.

Step 2. To show (2-5) in the general case, it suffices to consider x0 ∈ B1/2 \01 such
that

|BR(x0)∩ B+1 |> 0 and |BR(x0)∩ B−1 |> 0.

For simplicity, assume x0 ∈ B−1 . We consider two cases:
Suppose d(x0, 01)= |xn

0 | ≥
1
4 R. Then:
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• If R ≥ r ≥ 1
4 R, it is easy to see that

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 4n−2 R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If 0< r < 1
4 R (≤ d(x0, 01)), we have BR/4(x0)⊂ B−1 , so (2-4) implies

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ eC R
( R

4

)2−n ˆ
BR/4(x0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

Suppose instead that d(x0, 01)= |xn
0 |<

1
4 R. Then:

• If R ≥ r ≥ 1
4 R, then

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 4n−2 R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If 0< r ≤ d(x0, 01)= |xn
0 |<

1
4 R, then by setting x̄0 = (x1

0 , . . . , xn−1
0 , 0) we

have

Br (x0)⊂ B|xn
0 |
(x0)⊂ B2|xn

0 |
(x̄0)⊂ BR/2(x̄0)⊂ BR(x0),

so that (2-5) yields

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ |xn
0 |

2−n
ˆ

B|xn
0 |
(x0)

|∇u|2g dvg

≤ 2n−2(2|xn
0 |)

2−n
ˆ

B2|xn
0 |
(x̄0)

|∇u|2g dvg

≤ 2n−2eC R
( R

2

)2−n
ˆ

BR/2(x̄0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

• If d(x0, 01) (= |xn
0 |)≤ r < 1

4 R, then we have

Br (x0)⊂ B2r (x̄0)⊂ BR/2(x̄0)⊂ BR(x0),
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so that (2-5) yields

r2−n
ˆ

Br (x0)

|∇u|2g dvg ≤ 2n−2(2r)2−n
ˆ

B2r (x̄0)

|∇u|2g dvg

≤ 2n−2eC R
( R

2

)2−n ˆ
BR/2(x̄0)

|∇u|2g dvg

≤ eC R R2−n
ˆ

BR(x0)

|∇u|2g dvg.

Therefore (2-5) is proved in all cases. �

3. W1, p-estimate for elliptic equations with piecewise continuous coefficients

In this section, we will provide the global W 1,p-estimate for elliptic equations with
piecewise continuous coefficients. The proof is a slight modification of that of
[Dong and Kim 2010] (see also [Dong and Kim 2011a; 2011b]) or [Byun and
Wang 2010]. As a corollary, we will establish the Hodge decomposition theorem
(Theorem 3.2) for piecewise continuous metrics g, a crucial ingredient to prove
Theorem 1.1.

For a ball B = Br (0) ⊂ Rn , set Bε = {x ∈ B : dist(x, ∂B) ≤ ε} for ε > 0. Let
(ai j (x))1≤i, j≤n be bounded measurable, uniformly elliptic on B; i.e., there exist
0< λ≤3<+∞ such that

(3-1) λ|ξ |2 ≤ ai j (x)ξαi ξ
j
β ≤3|ξ |

2 a.e. x ∈ B for all ξ ∈ Rn.

Theorem 3.1. Assume (ai j ) satisfies (3-1), and there exists ε > 0 such that (ai j ) ∈

C
(
B±
)
∩ C (Bε) and is discontinuous on ∂B+ \ Bε . For p ∈ (1,+∞), let f ∈

L p(B,Rn). Then there exists a unique weak solution v ∈W 1,p
0 (B,Rn) to

(3-2)


∑
i, j

∂

∂xi

(
ai j

∂v

∂x j

)
=
∑

i

∂ fi
∂xi

in B,

u = 0 on ∂B,

that satisfies

(3-3) ‖∇v‖L p(B) ≤ C ‖ f ‖L p(B)

for some C > 0 depending only on p and (ai j ).

Proof. By (3-1), we see that for any δ > 0, there exists R = R(δ) > 0 such that
the coefficient function (ai j ) satisfies the (δ, R)-vanishing of codimension-one
conditions (2.5) and (2.6) of [Byun and Wang 2010, p. 2562]; see also [Dong and
Kim 2010; 2011a; 2011b]. In fact, we have

lim
r↓0

max
x0=(x ′0,x

n
0 )∈B

∥∥ai j (x ′, xn)− ai j (x ′0, xn)
∥∥

L∞(Br ((x ′0,x
n
0 )))
= 0.
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Therefore Theorem 3.1 follows directly from [Byun and Wang 2010, Theorem 2.2,
p. 2653]. �

As an immediate consequence of Theorem 3.1, we have the following Hodge
decomposition on B equipped with certain piecewise continuous metrics g.

Theorem 3.2. Let ḡ be a piecewise continuous metric on B such that ḡ is continuous
on B± and on Bδ for some δ > 0, and is discontinuous on ∂B+ \ Bδ . Then for any
p ∈ (1,+∞) and F = (F1, . . . , Fn) ∈ L p(B,Rn), there exist G ∈ W 1,p

0 (B) and
H ∈ L p(B,Rn) such that

(3-4) F =∇G+ H, divḡ H
(
:=

1
√

ḡ
∂

∂xi
(
√

ḡḡi j H j )

)
= 0 in B.

Further, there exists C = C(p, n, ḡ) > 0 such that

(3-5) ‖∇G‖L p(B)+‖H‖L p(B) ≤ C ‖F‖L p(B) .

Proof. For 1≤ i, j ≤ n, set ai j =
√

ḡḡi j on B. Then (ai j ) satisfies the conditions
of Theorem 3.1, so that there exists a unique solution G ∈W 1,p

0 (B) to

(3-6)


∂

∂xi

(
√

ḡḡi j ∂G
∂x j

)
=

∂

∂xi

(√
ḡḡi j F j

)
in B,

G = 0 on ∂B,

and
‖∇G‖L p(B) ≤ C

∥∥√ḡḡi j F j
∥∥

L p(B) ≤ C ‖F‖L p(B) .

Set H = F −∇G. Then we have

divḡ H =
1
√

ḡ
∂

∂xi

(√
ḡḡi j

(
F j −

∂G
∂x j

))
= 0 on B,

and
‖H‖L p(B1/2) ≤ ‖F‖L p(B1/2)+‖∇G‖L p(B) ≤ C ‖F‖L p(B) .

This completes the proof. �

4. Hölder continuity

In this section, we will prove that any stationary harmonic map on (B1, g), with
g ∈C0,1(B±1 ∪01), is Hölder continuous provided that

´
B1
|∇u|2g dvg is sufficiently

small. The idea is based on suitable modifications of the original argument in
[Bethuel 1993] (see also [Ishizuka and Wang 2008]), thanks to both the energy
monotonicity inequality and the Hodge decomposition theorem established in the
previous two sections. More precisely:
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Theorem 4.1. There exist ε0 > 0 and α0 ∈ (0, 1), depending only on n, g, such
that if the metric g ∈ C0,1(B±1 ∪ 01) satisfies the condition (1-4) on 01, and u ∈
W 1,2(B1, N ) is a stationary harmonic map satisfying

(4-1) r2−n
0

ˆ
Br0 (x0)

|∇u|2g dvg ≤ ε
2
0

for some x0 ∈ B1/2 and 0< r0 ≤
1
4 , then u ∈ Cα0(Br0/2(x0), N ), and

(4-2) [u]Cα0 (Br0/2(x0)) ≤ C(r0, ε0).

Proof of Theorem 4.1. The proof is based on suitable modifications of [Bethuel
1993; Ishizuka and Wang 2008]. First, observe that if x0 = (x ′0, xn

0 ) ∈ B±, it
follows from the monotonicity inequality (2-5) that we may assume (4-1) holds
for some 0 < r0 < |xn

0 |. Then the ε0-regularity theorem in [Bethuel 1993] (see
[Ishizuka and Wang 2008] for domains with C0,1metrics) implies that for some
0< α0 < 1, u ∈ Cα0(Br0/2(x0)) and (4-2) holds. Hence it suffices to consider the
case x0 = (x ′0, 0) ∈ 01/2. By translation and scaling, we may assume x0 = (0, 0)
and proceed as follows.

Step 1. As in [Bethuel 1993; Hélein 2002; Ishizuka and Wang 2008], we assume that
there exists an orthonormal frame on u∗TN |B1 . For 0<θ < 1

2 , to be determined later,
let {eα}lα=1 ⊂W 1,2(B2θ ,Rk) be a Coulomb gauge orthonormal frame of u∗TN |B2θ ;
that is,

(4-3)

divg(〈∇eα, eβ〉)= 0 in B2θ (1≤ α, β ≤ l),
l∑

α=1

ˆ
B2θ

|∇eα|2g dvg ≤ C
ˆ

B2θ

|∇u|2g dvg.

For 1≤ α ≤ l, consider 〈∇ ((u− u2θ )η) , eα〉, where u2θ =
ffl

B2θ
u is the average of

u on B2θ , and η ∈ C∞0 (B1) satisfies

0≤ η ≤ 1; η = 1 in Bθ ; η = 0 outside B7θ/4; |∇η| ≤
2
θ
.

Define the metric g̃ on B2θ by

g̃(x)= η(x)g(x)+ (1− η(x))g0(x), x ∈ B2θ .

Then it is easy to see that

g̃ ≡ g on Bθ ; g̃ ≡ g0 outside B7θ/4; g̃ ∈ C(B±2θ )∩C(B2θ \ B7θ/4).

In particular, g̃ satisfies the conditions of Theorem 3.2. Hence, by Theorem 3.2, for
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1< p < n/(n− 1), there exist φα ∈W 1, p
0 (B2θ ) and ψα ∈ L p(B2θ ) such that

(4-4)
〈∇((u−u2θ )η), eα〉 = ∇φα+ψα, divg̃(ψα)= 0 in B2θ ,

‖∇φα‖L p(B2θ )+‖ψα‖L p(B2θ ) . ‖∇((u−u2θ )η)‖L p(B2θ ) . ‖∇u‖L p(B2θ ).

Since u satisfies the harmonic map equation (1-1), we have

(4-5) divg (〈∇u, eα〉)= gi j
∇i u〈∇j eα, eβ〉 eβ in B1.

Thus we obtain

(4-6) 1gφα = gi j
∇i u〈∇j eα, eβ〉 eβ in Bθ .

Decompose φα = φ
(1)
α +φ

(2)
α , where φ(1)α solves

(4-7)
{
1gφ

(1)
α = 0 in Bθ ,

φ
(1)
α = φα on ∂Bθ ,

and φ(2)α solves

(4-8)
{
1gφ

(2)
α = gi j

∇i u〈∇j eα, eβ〉 eβ in Bθ ,
φ
(2)
α = 0 on ∂Bθ .

Step 2: Estimation of φ(1)α . We will need the Morrey space defined, for arbitrary
E ⊂ Rn , by

M p,p(E) :=
{

f : E→R

∣∣∣ ‖ f ‖p
M p,p(E) := sup

Br (x)⊂Rn

{
r p−n

´
Br (x)∩E | f |

p dx
}
<+∞

}
.

It is well-known (see [Gilbarg and Trudinger 1983]) that φ(1)α ∈ Cα0(Bθ ) for some
α0 ∈ (0, 1), and for any 0< r ≤ θ/2,

(4-9)
[
φ(1)α

]p
Cα0 (Br/2)

. θ p−n
ˆ

Bθ
|∇φ(1)α |

p dx ≤ Cθ p−n
ˆ

B2θ

|∇u|p dx,

and

(4-10) (τθ)p−n
ˆ

Bτθ
|∇φ(1)α |

p
≤ Cτ pα0‖∇u‖M p,p(B1) for all 0< τ < 1,

Step 3: Estimation of φ(2)α . Denote by H1(Rn) the Hardy space on Rn and BMO(E)
the BMO space on E for any open set E⊂Rn . By (4.13) of [Ishizuka and Wang 2008,
p. 435], for p′ = p/(p− 1) > n, there exists h ∈W 1,p′

0 (Bθ ), with ‖∇h‖L p′ (Bθ ) = 1,
such that ∥∥∇φ(2)α ∥∥

L p(Bθ )
≤ C

ˆ
Bθ
〈∇φ(2)α ,∇h〉g dvg.
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Using (4-8), (4-4), and the duality between H1 and BMO, we show that

(4-11)
∥∥∇φ(2)α ∥∥

L p(Bθ )
≤ C

ˆ
Bθ

√
ggi j 〈
∇i u, 〈∇j eα, eβ〉

〉
(eβh) dx

=−C
ˆ

Bθ

√
ggi j
〈∇j eα, eβ〉∇i (eβh)u dx

≤ C
∥∥√ggi j

〈∇j eα, eβ〉∇i (eβh)
∥∥

H1(Rn)
[u]BMO(Bθ )

. ‖
√

ggi j
〈∇j eα, eβ〉‖L2(Bθ )‖∇(eβh)‖L2(Bθ )[u]BMO(Bθ )

. ‖∇u‖L2(B2θ )‖∇u‖M p,p(B1) · θ
n/p−n/2.

(Here, to go from the third line to the fourth, we used that h ∈W 1,p′
0 (Bθ ) and that

divg〈∇eα, eβ〉 vanishes in Bθ , so
√

ggi j
〈∇j eα, eβ〉∇i (eβh) ∈H1(Rn) and∥∥√ggi j

〈∇j eα, eβ〉∇i (eβh)
∥∥

H1(Rn)
≤ C

∥∥√ggi j
〈∇j eα, eβ〉

∥∥
L2(Bθ )

‖∇i (eβh)‖L2(Bθ ).

This last factor satisfies

‖∇(eβh)‖L2(Bθ ) ≤ ‖∇eβ‖L2(Bθ )‖h‖L∞(Bθ )+‖∇h‖L p(Bθ )θ
n/p−n/2

≤ Cθn/p−n/2,

since the Sobolev embedding implies (because p′ > n) that h ∈ C1−n/p′(Bθ ) and

‖h‖L∞(Bθ ) ≤ Cθ1−n/p′ .

Finally, the estimate [u]BMO(Bθ ) ≤ C‖∇u‖M p,p(B1) is a consequence of the Poincaré
inequality.)

Putting the estimates of φ(1)α and φ(2)α together, we obtain that, for all 0< τ < 1,

(4-12)
(
(τθ)p−n

ˆ
Bτθ
|∇φα|

pdx
)1/p

≤ C
(
τα0 + τ 1−n/pε0

)
‖∇u‖M p,p(B1).

Step 4: Estimation of ψα. Since divg̃(ψα)= 0 on B2θ , we have
ˆ

B2θ

|ψα|
2
g̃ dvg̃ =

ˆ
B2θ

〈ψα+∇φα, ψα〉g̃ dvg̃

=

ˆ
B2θ

〈
〈∇((u− u2θ )η), eα〉, ψα

〉
g̃ dvg̃

=−

ˆ
B2θ

(u− u2θ )η〈∇eα, ψα〉g̃ dvg̃

.
∥∥√g̃ g̃i j

∇i eαψ j
α

∥∥
H1 [(u− u2θ )η]BMO

. ‖ψα‖L2(B2θ )‖∇eα‖L2(B2θ ) [(u− u2θ )η]BMO

. ‖∇u‖L2(B2θ )‖ψα‖L2(B2θ )‖∇u‖M p,p(B1),
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where we have used the inequality

[(u− u2θ )η]BMO ≤ C [u]BMO(B2θ ) ≤ C ‖∇u‖M p,p(B1) .

This, combined with Hölder’s inequality, implies

(4-13)
(
θ p−n

ˆ
Bθ
|ψα|

p
)1/p

≤ Cε0 ‖∇u‖M p,p(B1) .

Step 5: Decay estimation of ∇u. Putting (4-12) and (4-13) together, we have that,
for some 0< α0 < 1,

(4-14)
(
(τθ)p−n

ˆ
Bτθ
|∇u|p

)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0)‖∇u‖M p,p(B1)

for any 0< τ < 1 and 0< θ < 1
2 . Now we claim that for some α0 ∈ (0, 1), we have

(4-15) ‖∇u‖M p,p(Bτ/4) ≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,n−p(B1)

for all 0< τ < 1. To show this, let Bs(y)⊂ Bτ/4. We divide into three cases:

(a) y ∈ Bτ/4 ∩ B± and s < |yn
|. As remarked at the beginning of the proof, for

some 0< α0 < 1 we have(
s p−n

ˆ
Bs(y)
|∇u|p

)1/p

≤ C
(

s
|yn|

)α0
(
|yn
|

p−n
ˆ

B|yn |(y)
|∇u|p

)1/p

≤ C
(

s
|yn|

)α0
(
(2|yn
|)p−n

ˆ
B2|yn |(y′,0)

|∇u|p
)1/p

≤ C
((
τ

2

)p−n
ˆ

Bτ/2(y′,0)
|∇u|p

)1/p

(since |yn
| ≤ τ/4)

≤ C(ε0+ τ
α0 + τ 1−n/pε0)‖∇u‖M p,p(B1) (by (4-14)).

(b) y ∈ Bτ/4 ∩ B± and s ≥ |yn
|. Then Bs(y)⊂ B|yn |+s(y′, 0)⊂ B2s(y′, 0). Hence(

s p−n
ˆ

Bs(y)
|∇u|p

)1/p

≤ 2n/p−1
(
(2s)p−n

ˆ
B2s(y′,0)

|∇u|p
)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,p(B1) (by (4-14)).

(c) y ∈ Bτ/4 ∩01, i.e., yn
= 0. Then it follows directly from (4-14) that(

s p−n
ˆ

Bs(y)
|∇u|p

)1/p

≤ C(ε0+ τ
α0 + τ 1−n/pε0) ‖∇u‖M p,p(B1) .

Combining (a), (b) and (c) together and taking the supremum over all Bs(y)⊂ Bτ/4,
we obtain (4-15).
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It is clear that by first choosing τ and then ε sufficiently small, we can arrange
that

‖∇u‖M p,p(Bτ/4) ≤
1
2 ‖∇u‖M p,p(B1) .

Iterating this inequality finitely many times yields that there exists α1 ∈ (0, 1) such
that for any x ∈ B1/4 and 0< r ≤ 1

2 , it holds

r p−n
ˆ

Br (x)
|∇u|p dx ≤ C r pα1 ‖∇u‖p

M p,p(B1)
.

This implies u ∈ Cα1(B1/2) by Morrey’s lemma. The proof is now completed. �

5. Lipschitz and piecewise C1,α-regularity

In this section, we will first establish Lipschitz and piecewise C1,α-regularity
for stationary harmonic maps on domains with piecewise C0, 1-metrics, under a
smallness condition of energy. Then we will prove Theorem 1.1.

Theorem 5.1. There exist ε0 > 0 and β0 ∈ (0, 1), depending only on n and g,
such that if the metric g ∈ C0,1(B±1 ∪01) satisfies the condition (1-4) on 01, and
u ∈W 1,2(B1, N ) is a stationary harmonic map on (B1, g) satisfying

(5-1) r2−n
0

ˆ
Br0 (x0)

|∇u|2g dvg ≤ ε
2
0

for some x0 ∈ B1/2 and 0 < r0 ≤
1
4 , then u ∈ C1,β0

(
Br0/2(x0) ∩ B±, N

)
, and

u ∈ C0,1
(
Br0/2(x0), N

)
.

Proof. The proof is based on the hole filling argument and the freezing coefficient
method. It is divided into two steps.

Step 1: u∈Cα(B3r0/4(x0), N ) for any 0<α<1. To see this, first recall Theorem 4.1
implies that there exists 0 < α0 <

2
3 such that u ∈ Cα0(B7r0/8(x0)) and for any

y ∈ B7r0/8(x0), it holds

(5-2) s2−n
ˆ

Bs(y)
|∇u|2 dx ≤ C

( s
r

)2α0
r2−n

ˆ
Br (y)
|∇u|2 dx, 0< s ≤ r <

r0

8
,

and

(5-3) oscBr (y)u ≤ Crα0, 0< r <
r0

8
.

For y ∈ B7r0/8(x0) and 0< r < r0/8, let v : Br (y)→ Rk solve

(5-4)
{
1gv = 0 in Br (y),
v = u on ∂Br (y).
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By the maximum principle and (5-3), we then have

oscBr (y)v ≤ osc∂Br (y)u ≤ Crα0 .

Moreover, since g ∈ C0,1(B±1 ∪ 01), it follows from [Li and Nirenberg 2003,
Theorem 1.1] that v ∈ C0,1

(
Br/2(y),Rk

)
and v ∈ C1,β

(
Br/2(y)∩ B±,Rk

)
for any

0< β < 1.
Multiplying (1-1) and (5-4) by u− v, subtracting one result from the other and

integrating over Br (y), we obtainˆ
Br (y)
|∇(u− v)|2 dx .

ˆ
Br (y)
|∇u|2|u− v|. rn−2+3α0 .

This, combined withˆ
Br/2(y)

|∇v|2 dx ≤ C‖∇v‖2L∞(Br/2(y))r
n,

implies (r
2

)2−n
ˆ

Br/2(y)
|∇u|2 dx ≤ C

(
‖∇v‖2L∞(Br/2(y)) r2

+ r3α0
)
≤ Cr3α0 .

This, combined with Morrey’s lemma, yields u ∈ C3α0/2(B7r0/8(x0)). Repeating
this argument, we can show that u ∈ Cα(B3r0/4(x0)) for any 0< α < 1, and

(5-5) r2−n
ˆ

Br (y)
|∇u|2 dx ≤ Cr2α for all y ∈ B3r0/4(x0), 0< r <

r0

4
.

Step 2: There exists 0< β0 < 1 such that u ∈ C1,β0
(
Br0/2(x0)∩ B±, N

)
. There are

two cases to consider:

Case I: x0 = (x ′0, xn
0 ) ∈ B±1 . We may assume 0< r0 < |xn

0 |, so that Br0(x0)⊂ B±.
For Br (x)⊂ Br0(x0), let v : Br (x)→ Rk solve

(5-6)
{
1gv = 0 in Br (x),
v = u on ∂Br (x).

Then by (5-5), for any 2
3 < α < 1,

(5-7)
ˆ

Br (x)
|∇(u− v)|2 dx ≤ C

ˆ
Br (x)
|∇u|2|u− v| dx ≤ C r3α+n−2.

Also, since g ∈ C0,1(Br0(x0)), we have for any 0< β < 1 that v ∈ C1,β(Br/2(x))
and

(5-8)
 

Bs(x)
|∇v− (∇v)Bs(x)|

2 dx ≤ C
( s

r

)2β
 

Br (x)
|∇u− (∇u)Br (x)|

2 dx,
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for < s ≤ r/2. (Here
ffl

E f = 1
|E |

´
E f dx .) Note that (5-8) also holds trivially for

r/2≤ s ≤ r . Combining (5-7) and (5-8) we obtain, for any 0< θ < 1, 
Bθr (x)

∣∣∇u− (∇u)Bθr (x)
∣∣2 dx

≤ 2
( 

Bθr (x)
|∇u−∇v|2 dx +

 
Bθr (x)

∣∣∇v− (∇v)Bθr (x)
∣∣2 dx

)
≤ C

(
θ2β

 
Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx + θ−nr3α−2

)
.

For (3α− 2)/2< β0 < β, let 0< θ0 < 1 be such that Cθ2β
0 = θ

2β0
0 . Then

(5-9)
 

Bθ0r (x)

∣∣∇u−(∇u)Bθ0r (x)
∣∣2 dx ≤ θ2β0

0

 
Br (x)

∣∣∇u−(∇u)Br (x)
∣∣2 dx+Cr3α−2.

Iterating (5-9) m-times, m ≥ 1, yields

(5-10)
 

Bθm
0 r (x)

∣∣∇u− (∇u)Bθ0r (x)
∣∣2 dx

≤
(
θm

0
)2β0

 
Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx +C(θm

0 r)3α−2
m∑

j=1

θ
j (2β0−(3α−2))

0

≤ (θm
0 )

3α−2
(  

Br (x)

∣∣∇u− (∇u)Br (x)
∣∣2 dx +Cr3α−2

)
.

This clearly implies that ∇u ∈ C3α/2−1(Br0(x0)).

Case II: x0 = (x ′0, 0) ∈ 01. For simplicity, we assume x ′0 = 0. Define ḡ on B1 by

ḡ(x)=
{

lim t↓0+g(0′, t) if x ∈ B+1
lim t↑0−g(0′, t) if x ∈ B−1 .

Then we have

(5-11) |g(x)− ḡ(x)| ≤ C |x |, x ∈ B1.

Moreover, by suitable dilations and rotations of the coordinate system, (1-4) implies
that there exists a positive constant k 6= 1 such that

ḡ(x)= (1+ (k− 1)χB−1
(x))g0, x ∈ B1,

where χB−1
is the characteristic function of B−1 .

For 0< r < r0/2, let v : Br (0)→ Rk solve

(5-12)
{
1ḡv = 0 in Br (0),
v = u on ∂Br (0).



HARMONIC MAPS ON DOMAINS WITH PIECEWISE LIPSCHITZ METRICS 143

Then we have

oscBr (0)v ≤ oscBr (0)u ≤ Crα,
ˆ

Br (0)
|∇v|2 dx ≤ C

ˆ
Br (0)
|∇u|2 ≤ Crn−2+2α.

Multiplying (1-1) and (5-12) by u− v and integrating over Br (0), we obtainˆ
Br (0)
|∇(u− v)|2 dx

≤

ˆ
Br (0)

gi j (u− v)i (u− v) j
√

g dx

≤ C
ˆ

Br (0)
|∇u|2|u− v| dx +

ˆ
Br (0)
|
√

ggi j
−
√

ḡḡi j
||vi ||(u− v) j | dx

≤ C oscBr (0)v

ˆ
Br (0)
|∇u|2 dx +Cr2

ˆ
Br (0)
|∇v|2+

1
2

ˆ
Br (0)
|∇(u− v)|2 dx

≤ Crn−2+3α
+Crn+α

+
1
2

ˆ
Br (0)
|∇(u− v)|2 dx .

This implies

(5-13)
ˆ

Br (0)
|∇(u− v)|2 dx ≤ Crn−2+3α.

It is well-known that v ∈C∞
(
B±s (0)

)
for any 0< s < r . In fact, (5-12) is equivalent

to:

(5-14)
∂

∂xi

(
(1+ (kn/2

− 1)χB−1
)
∂v

∂xi

)
= 0 in Br (0),

we conclude

(i) ∂v/∂xn satisfies the jump property on 01:

lim
xn↓0+

∂v

∂xn
(x ′, xn)= kn/2 lim

xn↑0−

∂v

∂xn
(x ′, xn) for all (x ′, 0) ∈ 01 ∩ Br (0).

(ii) ∇αv ∈ C0(Br (0)) for any multiindex α = (α1, . . . , αn−1, 0).

(iii) ∇v ∈ L∞(Bs(0)) for any 0< s < r , and

(5-15) ‖∇v‖2L∞(Br/2(0)) ≤ Cr2−n
ˆ

Br (0)
|∇u|2.

For f : Br (0)→ Rk , set

(5-16) D̃ f :=
( ∂ f
∂x1

, . . . ,
∂ f
∂xn−1

, (1+ (kn/2
− 1)χB−1

)
∂ f
∂xn

)
,
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and denote by (D̃ f )s =
ffl

Bs(0)
D̃ f dx the average of D̃ f over Bs(0). Then, for any

0< β < 1,
 

Bs(0)

∣∣D̃v− (D̃v)s∣∣2 dx ≤ C
( s

r

)2β
 

Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx for all 0< s ≤ r.

Combining this with (5-13) yields, for any 0< θ < 1,
 

Bθr (0)

∣∣D̃u− (D̃u)θr
∣∣2 dx ≤ Cθ2β

 
Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx +Cθ−nr3α−2.

As in case I, iterations of this inequality yield, for any 0< s ≤ r ,
 

Bs(0)

∣∣D̃u− (D̃u)s
∣∣2 dx ≤ C

( s
r

)3α−2
 

Br (0)

∣∣D̃u− (D̃u)r
∣∣2 dx +Cs3α−2.

This, combined with case I, implies that for any Br (x)⊂ Br0(x0) and 0< s ≤ r ,
 

Bs(x)

∣∣D̃u− (D̃u)x,s
∣∣2 dx ≤ C

( s
r

)3α−2
 

Br (x)

∣∣D̃u− (D̃u)x,r
∣∣2 dx +Cs3α−2,

where (D̃u)x,s denotes the average of D̃u over Bs(x). It is readily seen that the
preceding inequality yields u ∈C1,3α/2−1(Br0/2(x0)∩ B±1 ) and u ∈C0,1(Br0/2(x0)).
This completes the proof. �

Proof of Theorem 1.1 . Define the singular set

6 =

{
x ∈� : lim

r→0
r2−n

ˆ
Br (x)
|∇u|2 dx ≥ ε2

0

}
.

Then by a covering argument we have H n−2(6)= 0; see [Evans and Gariepy 1992].
For any x0 ∈� \6, there exists 0< r0 < dist(x0, ∂�) such that

r2−n
0

ˆ
Br0 (x)
|∇u|2 dx ≤ ε2

0 .

Hence by Theorems 2.1, 4.1, and 5.1, we have

u ∈ C1,α(Br0/2(x0)∩�±, N ) and u ∈ C0,1(Br0/2(x0), N ),

for some 0< α < 1. In particular, we have

lim
r↓0

r2−n
ˆ

Br (x)
|∇u|2 dx = 0 for all x ∈ Br0/2(x0),

so that Br0/2(x0)∩6 =∅, i.e., 6 is closed. This completes the proof. �
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6. Harmonic maps to manifolds supporting convex distance square functions

In this section, we consider weakly harmonic maps u from (�, g), with g the
piecewise Lipschitz continuous metric as in Theorem 1.1, to (N , h), whose universal
cover (Ñ , h̃) supports a convex distance square function d2

Ñ
( · , p) for any p ∈ Ñ .

We will establish both the global Lipschitz continuity and piecewise C1,α-regularity
for such harmonic maps u. This can be viewed as a generalization of the well-known
regularity theorem of Eells and Sampson [1964] and Hildebrand, Kaul and Widman
[Hildebrandt et al. 1977].

The crucial step is the following theorem on Hölder continuity.

Theorem 6.1. Assume that the metric g is bounded measurable on �, i.e., there
exist two constants 0 < λ < 3 < +∞ such that λIn ≤ g(x) ≤3In for a.e. x ∈ �,
and the universal cover (Ñ , h̃) of (N , h) supports a convex distance square function
d2

Ñ
( · , p) for any p ∈ Ñ . If u ∈ H 1(�, N ) is a weakly harmonic map, then there

exists α ∈ (0, 1) such that u ∈ Cα(�, N ).

Proof. Here we sketch a proof that is based on modifications of that in [Lin
1997]. Similar ideas have been used by Evans in his celebrated work [1982] and
by Caffarelli [1982] for quasilinear systems under smallness conditions. First, by
lifting u :�→ N to a harmonic map ũ :�→ Ñ , we may assume (N , h)= (Ñ , h̃)
and d2

N ( · , p) is convex on N for any p ∈ N .
We first claim that

(6-1) 1gd2(u, p)≥ 0.

In fact, by the chain rule of harmonic maps (see [Jost 1991]), we have

1gd2(u, p)=∇ud2(u, p)(1gu)+∇2
u d2(u, p)(∇u,∇u)g.

Since 1gu ⊥ Tu N , ∇ud2(u, p) ∈ Tu N , the first term in the right side vanishes. By
the convexity of d2

N , the second term in the right side satisfies

∇
2
u d2(u, p)(∇u,∇u)g ≥ 0.

Since u ∈ H 1(�, N ), by suitably choosing p ∈ N and applying Poincaré inequality
and Harnack’s inequality, (6-1) implies u ∈ L∞loc(�, N ).

For a set E⊂N , let diamN E denote the diameter of E with respect to the distance
function dN ( · , · ). For any ball Br (x)⊂�, we want to show that u ∈ Cα(Br/2(x))
for some 0< α < 1. To do it, set Cr := diamN u(Br (x)). We may assume Cr > 0
(otherwise, u is constant on Br (x) and we are done). Now we want to show that
there exists 0< δ0 = δ0(N )≤ 1

2 such that

(6-2) diamN u(Bδ0r (x))≤ 1
2Cr .
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Since ur (y)= u(x+r y) : B1(0)→ N is a harmonic map (B1(0), gr ), with gr (y)=
g(x + r y), we may, for simplicity, assume x = 0 and r = 2. For any 0 < ε < 1

2 ,
since u(B1) ⊂ N is a bounded set, there exists m = m(ε) ≥ 1 such that u(B1) is
covered by m balls B1, . . . , Bm of radius εC1.

Claim. There exists sufficiently small ε > 0 such that u(B1/2) can be covered by at
most (m− 1) balls among B1, . . . , Bm .

To see this, let xi ∈ B1 such that Bi
⊂ B2ε C1(pi ), pi = u(xi ), for 1≤ i ≤m. Let

1 ≤ m′ ≤ m be the maximum number of points in {pi }
m
i=1 such that the distance

between any two of them is at least C1/32. Thus the sets BC1/16(pi ), for 1≤ i ≤
m′, cover u(B1). For convenience, set Ui = u−1

(
B N (pi ,C1/16)

)
, the notation

B N (x, R) referring to the ball in N with center x and radius R. We will show that
there exists i0 ∈ {1, . . . ,m′} such that

(6-3) 1
4C2

1 ≤ sup
x∈B2

d2
N (u(x), pi0)≤ C2

1 ,

and

(6-4) H n(Ui0 ∩ B1/2)≥ c0,

for some universal constant c0 > 0. Indeed, since B1/2 ⊂
m′⋃

i=1
Ui , we have

m′∑
i=1

H n(Ui ∩ B1/2)≥ H n(B1/2).

Hence there exists i0 ∈ {1, . . . ,m′} such that

H n(Ui ∩ B1/2)≥ c0 :=
1

m′
H n(B1/2).

This implies (6-4). Now (6-3) follows from the triangle inequality.
Next we define

f (x) := sup
z∈B1

d2
N (u(z), pi0)− d2

N (u(x), pi0), x ∈ B1.

It is clear that f ≥ 0 in B1, and (6-1) implies 1g f ≤ 0 in B1. By Moser’s Harnack
inequality, we have

inf
B1/2

f ≥ C
 

B1

f ≥ C
ˆ

B1/2

f ≥ C
ˆ

B1/2∩Ui0

f

≥ C
(
sup
B1

d2
N (u, pi0)− sup

B1∩Ui0

d2
N (u, pi0)

)
H n(B1/2Ui0

)
≥ C

( 1
4C2

1 −
1

256C2
1
)

c0 =: θ
2
0 C2

1
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for some universal constant θ0 > 0. This implies

(6-5) sup
z∈B1

dN (u(z), pi0)− sup
z∈B1/2

dN (u(z), pi0)≥ θ0C1 = (1− θ0)C1.

Now we argue that the claim follows from (6-5). For, otherwise, we would have
u(B1/2)∩ B2εC1(p j ) 6=∅ for all 1≤ j ≤ m. Let z0 ∈ B1 be such that

εC1+ dN (u(z0), pi0)≥ sup
B1

dN (u(z), pi0).

Since u(B1) ⊂
⋃m

i= B2εC1(pi ), there exists pi1 ∈ {p1, . . . , pm} such that u(z0) ∈

B2εC1(pi1). Since u(B1/2) ∩ B2εC1(pi1) 6= ∅, there exists z1 ∈ B1/2 such that
u(z1) ∈ B2εC1(pi1). Therefore we have dN (u(z1), u(z0)) ≤ 2εC1. Therefore we
have

sup
z∈B1

dN (u(z), pi0)− sup
z∈B1/2

dN (u(z), pi0)≤ εC1+ dN (u(z0), pi0)− dN (u(z1), pi0)

≤ εC1+ dN (u(z0), u(z1))≤ 3εC1.

This contradicts (6-5) if ε > 0 is chosen to be sufficiently small.
From this claim, we have either

(i) diamN u(B1/2)≤
1
2C1 — in which case (6-2) holds with δ0 =

1
2 — or

(ii) diamN u(B1/2) >
1
2C1.

Then we consider v(x)= u(x/2) : B1→ N and conclude:

• v is a harmonic map on (B1, g1/2), with the metric g1/2(x)= g(x/2).

•
1
2C1 < diamN v(B1)≤ C1.

• v(B1) is covered by at most m−1 balls B1, . . . , Bm−1 of radius εC1.

Thus the claim is applicable to v so that u(B1/4) = v(B1/2) can be covered by at
most m−2 balls among B1, . . . , Bm−1.

If diamN v(B1/2) ≤
1
2C1, we are done. Otherwise, we can repeat the above

argument. It is clear that the process can at most be repeated m times, and the
process will not be stopped at step k0 ≤ m unless diamN u(B2−k0 ) ≤

1
2C1. Thus

(6-2) is proven.
It is readily seen that iteration of (6-2) implies Hölder continuity. �

Proof of Theorem 1.2. First, by Theorem 6.1 and the argument from Section 4, we
can show that for some 0< α < 1,ˆ

Br (x)
|∇u|2 dx ≤ Crn−2+2α for all Br (x)⊂�.

Then we can follow the proof of (5-2) to show that u ∈C0,1(�)∩C1,α(�±∪0, N ).
�
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