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THE SIEGEL–WEIL FORMULA FOR UNITARY GROUPS

SHUNSUKE YAMANA

We extend the Siegel–Weil formula for unitary groups of hermitian forms
over a skew field with involution of the second kind.

Introduction

The Siegel–Weil formula is an identity between an Eisenstein series and an integral
of a theta function. After Weil [1965] proved such an identity when both sides
of the identity are absolutely convergent, Kudla and Rallis [1988a; 1988b; 1994]
extended it for symplectic groups beyond the range of absolute convergence. Their
results were extended to almost all classical groups by several authors, of which
we mention the following sample: [Tan 1998; Ichino 2004; 2007; Gan and Takeda
2011; Yamana 2011; 2013; Gan 2000]. In this paper we discuss the last case that
has to be considered in the theory of classical dual pairs over a number field, namely,
unitary groups of hermitian forms over a skew field with involution of the second
kind.

Let E/F be a quadratic extension of number fields and D a division algebra
with center E , of dimension δ2 over E and provided with an antiautomorphism ρ

of order two under which F is the fixed subfield of E . Let A and AE be the rings
of adeles of F and E , respectively. Let W be a left D-vector space of dimension
2n with a nondegenerate skew hermitian form that has a complete polarization, and
V a right D-vector space of dimension m with a nondegenerate hermitian form.
Let G and H be the unitary groups of W and V , respectively.

Let αE denote the standard norm of A×E . A character of A×E is called principal
if it is a complex power of αE . We denote by P the maximal parabolic subgroup
of G that stabilizes a maximal isotropic subspace of W. Note that P has a Levi
decomposition P =MN with M 'GLn(D). For any unitary character χ of A×E /E×

and for any s ∈ C, we consider the representation I (s, χ)= IndG(A)
P(A) χα

s
E induced

from the character m 7→ χ(ν(m))αE(ν(m))s , where ν is the reduced norm viewed
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as a character of the algebraic group GLn(D) and the induction is normalized so
that I (s, χ) is naturally unitarizable when s is pure imaginary. For any holomorphic
section f (s) of I (s, χ), the Eisenstein series

E(g; f (s))=
∑

γ∈P(F)\G(F)

f (s)(γ g)

is absolutely convergent for <s > δn/2 and has a meromorphic continuation to the
whole s-plane. We denote by χ0 the restriction of χ to A×, by ρ(χ) the character
defined by ρ(χ)(x) = χ(xρ) for x ∈ A×E , and by εE/F the quadratic character of
A×/F× associated to the extension E/F . The following theorem was proven in
[Tan 1999] when δ = 1.

Theorem 1. Let f (s) be a holomorphic section of I (s, χ).

(1) If χρ(χ) is not principal, then E(g; f (s)) is entire.

(2) If χ = ρ(χ)−1, then the poles of E(g; f (s)) in <s > − 1
2 are at most simple

and can only occur in the set{
δ(n− j)

2

∣∣∣ j ∈ Z, 0≤ j < n, χ0
= ε

δ j
E/F

}
.

Fix a nontrivial additive character ψ of A/F and a character χV of A×E /E× such
that χ0

V = ε
δm
E/F . The group G(A)× H(A) acts on the Schwartz space S (V n(A))

of V n(A) via the Weil representation ωψ,V,χV
. Let S(V n(A)) be the subspace of

S (V n(A)) consisting of functions that correspond to polynomials in the Fock
model at every archimedean place of F .

The theta function associated to 8 ∈ S(V n(A)) is defined by

2(g, h;8)=
∑

x∈V n(F)

ωψ,V,χV
(g)8(h−1x)

for g ∈ G(A) and h ∈ H(A). By Weil’s criterion [1965], the integral

I (g;8)=
∫

H(F)\H(A)
2(g, h;8) dh

is absolutely convergent for all 8 either if r = 0 or if m − r > n, where r is the
dimension of a maximal totally isotropic subspace of V (F). When m ≤ n and
r > 0, the integral diverges in general, but extends uniquely to a G(A)-intertwining,
H(A)-invariant map on S(V n(A)) in light of the regularization introduced by Kudla
and Rallis [1994].

For 8 ∈ S(V n(A)) we define a section f (s)8 of I (s, χV ) by

f (s)8 (g)= |a(g)|s−s0ωψ,V,χV
(g)8(0),
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where g ∈ G(A), s0 = δ(m−n)/2 and the quantity |a(g)| is defined in the notation
section below.

Theorem 2. If m ≤ n or if m − r > n, then for all 8 ∈ S(V n(A)) the series
E(g; f (s)8 ) is holomorphic at s = s0 and

E(g; f (s)8 )|s=s0 = ~ I (g;8),

where

~ =

{
2 if m ≤ n,
1 if m− r > n.

Theorem 2 was proven in [Weil 1965] if m > 2n, and in [Tan 1998; Ichino 2004;
2007; Yamana 2011] if δ= 1. The proof requires only slight technical modifications
once all of the necessary local facts have been established. The group G(Fv) is
isomorphic to the quasisplit unitary group U (δn, δn) or an inner form of GL2δn(Fv),
depending on whether v remains prime or splits in E . The former case has already
been discussed in [Kudla and Sweet 1997; Ichino 2007; Lee and Zhu 1998], and
the latter case is discussed in Section 1. Coupled with the doubling method, the
Siegel–Weil formula relates the theory of theta liftings to the theory of automorphic
L-functions. We study the doubling zeta integral for inner forms of general linear
groups in the Appendix.

Notation

Let (D, E, F, ρ) be as in the introduction. The restriction of ρ to E , which we
denote also by ρ, is the nontrivial automorphism of E over F . For a matrix x with
entries in D, let x∗ = txρ be the conjugate transpose of x . If x is a square matrix,
then ν(x) and τ(x) stand for its reduced norm and reduced trace to E .

Fix a natural number n and put n′ = δn. Let W= D2n be a left D-vector space
with the skew hermitian form

〈x, y〉 = x J y∗, J =
( 0 1n

−1n 0

)
for x, y ∈W. Let V be a right D-vector space of dimension m equipped with a
nondegenerate hermitian form ( , ). We denote by G (resp. H ) the group of all
D-linear transformations of W (resp. V ) that leave 〈 , 〉 (resp. ( , )) invariant. Put
s0 = δ(m− n)/2.

We write P for the stabilizer in G of the maximal isotropic subspace of W

defined by the vanishing of all but the last n coordinates. Let

Hern = {x ∈Mn(D) | x∗ = x}
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be the F-subvariety of n × n hermitian matrices. The group G has a maximal
parabolic subgroup P = MN given by

M =
{

m(a)=
(

a 0
0 (a−1)∗

) ∣∣∣ a ∈ GLn(D)
}
,

N =
{

n(b)=
(

1n b
0 1n

) ∣∣∣ b ∈ Hern

}
.

Let K be the standard maximal compact subgroup of G(A). For any character χ
of A×E /E×, the representation I (s, χ)= In′(s, χ) is realized on the space of right
K -finite functions f (s) : G(A)→ C satisfying

f (s)
(
m(a)n(b)g

)
= χ(ν(a))αE(ν(a))s+n′/2 f (s)(g)

for all a ∈ GLn(D(A)), b ∈ Hern(A) and g ∈ G(A). We define |a(g)| by writing
g= pk ∈G(A)with p=m(a)n(b)∈ P(A) and k ∈K , and taking |a(g)|=αE(ν(a)).

1. Degenerate principal series representations

For each place v of F , let Fv be the v-completion of F and set Ev = E ⊗F Fv and
Dv = D⊗F Fv. A division algebra D with center E admits an involution of the
second kind if and only if Dv is isomorphic to Mδ(Ev) whenever v remains prime
in E , and Dv is isomorphic to a direct sum of mutually opposite simple algebras
whose centers are Fv whenever v splits in E (see [Scharlau 1985, Theorem 10.2.4]).

In the local setting we will depart slightly from our previous notation. Fix a
place v of F and suppress it from the notation. Thus E is a quadratic étale algebra
over the local field F , D an algebra whose center is E , ρ an involution of D
whose restriction to E is the nontrivial automorphism of E over F , V a free right
D-module of rank m, and ( , ) : V × V → D an F-bilinear map satisfying the
following conditions:

• for a, b ∈ D and x, y ∈ V ,

(x, y)ρ = (y, x), (xa, yb)= aρ(x, y)b;

• (x, V )= 0 implies that x = 0.

Let H be the unitary group of V . Let G = {g ∈ GL2n(D) | g Jg∗ = J }. For any
quasicharacter χ of E×, let I (s, χ) be the analogous local induced representation of
G. By Morita context, it is enough to consider the case where the triple (D, E, ρ)
belongs to the following two types:

• D = E is a quadratic extension of F and ρ generates Gal(E/F);

• D= D⊕ Dop, E = F⊕ F and (x, y)ρ = (y, x), where D is a division algebra
central over F and Dop is its opposite algebra.
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The rank of D as a module over E is a square of a natural number that will be
denoted by δ. Note that n′ = δn remains intact after the change in notation.

We fix a nontrivial additive character ψ of F and a character χV of E× that
satisfies χ0

V = ε
δm
E/F . Then G× H acts on the Schwartz space S (V n) via the Weil

representation ωψ,V,χV
. Note that it depends on the data ψ , ( , ) and χV (compare

[Kudla 1994]). When F is a p-adic field, put S(V n) =S (V n). When F = R or
C, let g be the complexified Lie algebra of G and S(V n) the subspace of S (V n)

that corresponds to the space of polynomials in the Fock model of ωψ,V,χV
. In the

archimedean case we only consider admissible representations of the pair (g, K ),
although we will allow ourselves to speak of a representation of the group G. We
write R(V, χV )= Rn′(V, χV ) for the image of the intertwining map

S(V n)→ I (s0, χV ), 8 7→ f (s0)
8 (g)= ωψ,V,χV

(g)8(0).

We extend f (s0)
8 to the standard section f (s)8 of I (s, χV ).

We discuss the case E = F ⊕ F . Put

e1 = (1, 0), e2 = (0, 1), V1 = V e1, V2 = V e2.

We regard V1 as a right D-module and V2 as both a right Dop-module and a
left D-module. Since (Vi , Vi ) = 0 for i = 1, 2, the spaces V1 and V2 are paired
nondegenerately against each other by ( , ), and so an antiisomorphism

 : End(V1, D)→ End(V2, Dop)

is defined by

(ax, y)= (x,  (a)y), a ∈ End(V1, D), x ∈ V1, y ∈ V2.

We obtain

H =
{
(a,  (a)−1) ∈ GL(V1, D)×GL(V2, Dop)

∣∣ a ∈ GL(V1, D)
}
.

Thus projection onto the first or second factor induces an isomorphism of H onto
GL(V1, D) or GL(V2, Dop), respectively. For any nonnegative integer j we write
G ′j = GL j (D). Observe that

G = {(g, J−1 tg−1 J )| g ∈ G ′2n}.

Through projection onto the first factor, we identify H with G ′m , G with G ′2n , and
P = MN with

M =
{(

a 0
0 d

) ∣∣∣ a, d ∈ GLn(D)
}
, N =

{(
1n b
0 1n

) ∣∣∣ b ∈Mn(D)
}
.
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We write ν = ν j for the reduced norm of M j (D) and τ for the reduced trace of
M j (D). Let αF (x)= |x |F denote the normalized absolute value of x ∈ F×. When
we write χ = (χ1, χ2), the representation I (s, χ) is translated to

I (s, χ)= Ind
G ′2n
P

(
(χ1α

s
F ) ◦ νn � (χ2α

s
F )
−1
◦ νn

)
.

If E = F ⊕ F , then since χV is of the form (µ,µ−1), we may assume that
χV = 1 by twisting, and we write I (s)= I (s, 1) and R(V )= R(V, 1). The Weil
representation ω j,k of the dual pair (G ′j ,G ′k) can be taken to be the action on
S (Mk, j (D)) given by

ω j,k(a, b)φ(x)= αF (ν j (a))δk/2αF (νk(b))−δ j/2φ(b−1xa)

for a ∈ G ′j and b ∈ G ′k . Note that the integral

(φ, φ′)=

∫
Mk, j (D)

φ(u)φ′(u) du, φ, φ′ ∈S (Mk, j (D))

defines a G ′j × G ′k invariant positive definite hermitian form on ω j,k . The two
models of the Weil representation ω2n,m ' ωψ,V,1 are related by the partial Fourier
transform

(1-1) Fφ(x, y)=
∫

Mm,n(D)
φ((x, z))ψ(−τ(z ty)) dz

for x ∈Mm,n(D) and y ∈Mm,n(Dop). In the p-adic case we write O for the maximal
compact subring of D and put Kn = GLn(O ). In the archimedean case we set

Kn = {g ∈ G ′n |
tḡg = 1n},

denoting the conjugate transpose of x ∈Mn(D) by tx̄ , where ·̄ denotes the complex
conjugate or the quaternion conjugate. We denote by f (s)0 a unique section of I (s)
that is identically 1 on K2n .

Lemma 1.1. If E = F ⊕ F , then R(V ) contains f (s0)
0 .

Proof. In the p-adic case, we let φ j,k be the characteristic functions of M j,k(O ). In
the archimedean case we let

φ j,k(x)= e−πTrF/R(τ (
tx̄ x)),

assuming that ψ( · )= e2π
√
−1TrF/R( · ). Put 8= Fφ2n,m . Then f (s0)

8 is nonzero and
right invariant under K2n . �

The local intertwining operator is defined analogously by

M(s, χ) f (s)(g)=
∫

Hern(F)
f (s)(Jn(b)g) db.
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We define holomorphic sections and standard sections similarly. We write χ0 for
the restriction of χ to F×. Put

a(s, χ)= an′(s, χ)=
n′∏

j=1

L
(
2s− j + 1, χ0

· ε
n′+ j
E/F

)
,

b(s, χ)= bn′(s, χ)=
n′∏

j=1

L
(
2s+ j, χ0

· ε
n′+ j
E/F

)
.

A normalized intertwining operator M∗(s, χ) is defined by setting

M∗(s, χ)= a(s, χ)−1 M(s, χ).

Lemma 1.2. The operator M∗(s, χ) is entire.

Proof. When E/F is a quadratic extension of p-adic fields, Lemma 1.2 is proven
in Proposition 3.2 of [Kudla and Sweet 1997]. The proof is completely analogous
when E/F = C/R. Note that Proposition 3A.6 of the same work applies also to
this case by a global consideration, namely, by applying (24) of [Lapid and Rallis
2005] with base field Q and S = {∞}.

We suppose that E = F ⊕ F . For φ ∈S (Mn(D)) we define a section f (s)φ of
I (s, χ) by requiring that supp( f (s)φ )⊂ PJ N and f (s)φ (g)= φ(b) if g = Jn(b) for
b∈Hern(F). As explained in [Piatetski-Shapiro and Rallis 1987b; Kudla and Sweet
1997], all we have to do is to show that the ratio a(s, χ)−1 M(s, χ) f (s)φ (J ) is entire.
One can easily observe that

M(s, χ) f (s)φ (J )= Z G J
(

2s−
n′

2
, φ, χ0

◦ νn

)
,

where the right-hand side is the zeta integral studied in [Weil 1974; Godement and
Jacquet 1972] (see the Appendix). Our claim follows at once, as the Godement–
Jacquet L-factor

LG J
(

2s−
n′− 1

2
, χ0
◦ νn

)
divided by the factor a(s, χ) is entire. �

For β ∈Hern(F), let ψβ be the character of N defined by ψβ(n(b))=ψ(τ(βb)).
Notice that τ(βb) ∈ F . The Fourier transform of a Schwartz function f ∈S (N )
is defined by

f̂ (β)=
∫

N
f (u)ψβ(u) du.
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For each integer j ≤ n′, we define the subvariety Her j
n of Hern(F) by

Her j
n =

{
β ∈Mn(E)

∣∣ tβρ = β, rankEβ ≤ j
}
,(E 6' F ⊕ F)

Her j
n =

{
(β, tβ) ∈Mn(D)⊕Mn(Dop)

∣∣ δ(rankDβ)≤ j
}
.(E = F ⊕ F)

Definition 1.3. We say that a representation π of G has rank at most j if f ∈S (N )
acts by zero on π whenever f̂ vanishes on Her j

n . We say that π is of rank j if in
addition j is a multiple of δ and π does not have rank less than j .

For any H -module π , we write πH for the maximal quotient of π on which H
acts trivially. Let Hr be a split hermitian space of dimension 2r , that is, Hr has a
D-basis consisting of 2r elements ei , fi such that

(ei , e j )= ( fi , f j )= 0, (ei , f j )= δi j .

Proposition 1.4. Assume that m ≤ n. Let U = V ⊕Hn−m .

(1) R(V, χV ) is irreducible and unitarizable.

(2) R(V, χV ) is isomorphic to S(V n)H .

(3) If E/F is a quadratic extension of p-adic fields, then R(V, χV ) is of rank m.

(4) R(U, χV ) has a unique irreducible quotient that is isomorphic to R(V, χV ).

(5) M∗(−s0, χV ) maps R(U, χV ) onto R(V, χV ).

(6) b(s, χV )M
∗(s, χV ) f (s)8 is holomorphic at s = s0 for every 8 ∈ S(V n).

Proof. When D = E , these results are known (see [Li 1989; Mœglin et al. 1987;
Kudla and Sweet 1997; Lee and Zhu 1998; Yamana 2011]). We may suppose that
E = F ⊕ F and δ > 1.

For 0≤ i ≤ k, let Pk
i = Mk

i N k
i be the maximal parabolic subgroup of G ′k given

by

Pk
i =

{(
a b
0 d

)
∈ G ′k

∣∣∣ a ∈ G ′k−i , b ∈Mk−i,i (D), d ∈ G ′i

}
,

P̄k
i its opposite parabolic subgroup, and ri the representation of G ′i ×G ′i on S (G ′i )

given by

ri (g1, g2)φ(g)= φ(g−1
2 gg1), (φ ∈S (G ′i ), g, g1, g2 ∈ G ′i ).

In the archimedean case the representation I (s) is studied extensively in [Lee 2007;
Sahi 1995; Zhang 1995]. From their results we know the module structure of I (s0)

and the set of K -types of each of its irreducible constituents, which combined with
the technique explained in [Kudla and Rallis 1990a] prove (1), (2). We consider the
nonarchimedean case. By Lemma 3.III.2 of [Mœglin et al. 1987], the representation
ω2n,m has a filtration

0⊂ Sm ⊂ · · · ⊂ S1 ⊂ S0 = ω2n,m
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with successive quotients

Si/Si+1 ' Ind
G ′2n×G ′m
P2n

i ×P̄m
i
µi ,

where µi is the representation of P2n
i × P̄m

i on S (G ′i ) given by

µi (p, p′)φ = αF
(
ν(a)m−iν(a′)i−2nν(d)m−i+2nν(d ′)i−m−2n)δ/2ri (d, d ′)φ,

where

p =
(

a b
0 d

)
∈ P2n

i , p′ =
(

a′ 0
c′ d ′

)
∈ P̄m

i , φ ∈S (G ′i ).

Let 1 j denote the trivial representation of G ′j . For 0 ≤ i < m and an admissible
representation π of G ′2n , the Frobenius reciprocity gives

HomG ′2n×G ′m

(
Si/Si+1, π ⊗1m

)
' HomM2n

i ×Mm
i

(
(π∨)N 2n

i
⊗ δ

1/2
Pm

i
, µ∨i

)
,

where δPm
i

is the modulus function on Pm
i and (π∨)N 2n

i
is the normalized Jacquet

module of π∨ associated to P2n
i . Since the quasicharacters of G ′m−i do not match,

the space above is zero. Thus (Si/Si+1)G ′m = 0, so that the natural map (Sm)G ′m →

(ω2n,m)G ′m is surjective. If χ is a quasicharacter of G ′m and if a distribution T on
S (G ′m) transforms according to χ under the action of e×G ′m , that is,

T (rm(e, h) f )= χ(ν(h))T ( f )

for all h ∈ G ′m , then there is a constant c ∈ C such that

T ( f )= c
∫

G ′m

f (h)χ(ν(h)) dh, f ∈S (G ′m)

(see Lemma 3.II.3 of [Mœglin et al. 1987]). It follows that

(Sm)G ′m ' Ind
G ′2n
P2n

m
(12n−m ⊗ 1m).

Since Ind
G ′2n
P2n

m
(12n−m ⊗1m) is irreducible as a representation of G ′2n induced from a

unitary representation [Sécherre 2009], we have

(ωψ,V,1)H ' Ind
G ′2n
P2n

m
(12n−m ⊗1m).

Thus the map from (ωψ,V,1)H to R(V ) is injective. This proves (1), (2).
In the p-adic case, Theorem 5.1 of [Mínguez 2009] tells us that I (s0) has a

unique irreducible subrepresentation, which is R(V ), and hence I (−s0) has a unique
irreducible quotient. We refer to [Lee 2007] for the archimedean analogue. From
Lemma 1.1 we can infer that f (−s0)

0 generates I (−s0). It follows that I (−s0) =

R(U ). The proof of (4) is complete.



244 SHUNSUKE YAMANA

To prove (5), (6), it suffices to check that b(s)M∗(s) f (s)0 (resp. M∗(s) f (s)0 ) are
holomorphic and nonzero at s = s0 (resp. s = −s0) in light of [Kudla and Rallis
1988a, Proposition 4.9]. Let φ0=φn,n ∈ S(Mn(D)) be as in the proof of Lemma 1.1.
Define φ1 ∈ S(Mn,2n(D)) by φ1(x, y)= φ0(x)φ0(y). The sections F(s)φ1

and F(s)
φ̂1

are
defined in the Appendix. Since F(s)φ1

is right K -invariant, so is F(s)
φ̂1

by Lemma A.1.
From Propositions 10.7 and 10.8 of [Weil 1974], we know

F(s)φ1
= F(s)φ1

(e) · f (s)0 = Z G J
(

2s+
n′

2
, φ0, 1

)
· f (s)0 = f (s)0

n∏
j=1

ξ(2s+ δ j)

up to multiplication by exponential factors, where ξ(s)= ζ(s) in the p-adic case,
and ξ(s)= Γ (s) in the archimedean case. Observe that

F(−s)
φ̂1
= Z G J

(
−2s+

n′

2
, φ̂0, 1

)
· f (s)0

= (−1)n(δ−1)γ G J
(

2s−
n′− 1

2
,1n, ψ

)
Z G J

(
2s−

n′

2
, φ0, 1

)
· f (s)0 .

Substituting these into the equality in Lemma A.1, we get

(1-2) M(s) f (s)0 = f (−s)
0

n∏
j=1

ξ(2s− δ j + δ)
ξ(2s+ δ j)

.

Now we can easily conclude our proof. �

2. Proof of Theorem 1

Back to the global setup, we write A for the space of automorphic forms on G(A).
For β ∈ Hern(F) and A ∈A , let

Aβ(g)=
∫

Hern(F)\Hern(A)

A(n(b)g)ψ(−τ(βb)) db, g ∈ G(A)

denote the β-th Fourier coefficient of A. The following lemma can be proven in
exactly the same way as in [Kudla and Rallis 1990b; Tan 1999].

Lemma 2.1. Let f (s) be a holomorphic section of I (s, χ) and β ∈ Hern(F) with
ν(β) 6= 0.

(1) b(s, χ)Eβ(g; f (s)) is holomorphic in <s >− 1
2 .

(2) If m ≥ n and β is represented by V (F), then Eβ(g; f (s)8 ) can be made nonzero
at s = s0 for a suitable choice of 8 ∈ S(V n(A)).

(3) If χρ(χ) is not principal, then E(g; f (s)) is entire.
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(4) If χ = ρ(χ)−1, then the poles of E(g; f (s)) in <s > − 1
2 are at most simple

and can only occur in the set{n′− j
2

∣∣∣ j ∈ Z, 0≤ j < n′, χ0
= ε

j
E/F

}
.

(5) If χ0
= εn′+1

E/F , then E(g; f (s))|s=0 is identically zero.

Definition 2.2. For each integer l ≤ n, we say that A ∈A has rank δl if Aβ = 0
when rankDβ > l, but Aβ 6= 0 for some β of rank l. When π is a representation of
G(A) realized on a subspace of A , we say that π has rank at most δl if all functions
in π have rank at most δl.

We call A singular if it has rank less than δn. The following lemma can be
proven in the same way as in the proof of [Howe 1981, Lemma 2.4].

Lemma 2.3. Let π be a subrepresentation of A . For every integer l ≤ n the
following conditions are equivalent:

• π has rank at most δl;

• for every place v, G(Fv) acts on π by a representation of rank at most δl;

• for at least one place v, G(Fv) acts on π by a representation of rank at most δl.

In particular, if G(Fv) acts on π by a representation of rank at most j , then G(Fv)
acts on π by a representation of rank at most δ`, where `= [ j/δ].

For s ′ ∈ C with <s ′ >− 1
2 , the residue Ress=s′E(g; f (s)) depends only on f (s

′),
and f (s

′)
7→ Ress=s′E(g; f (s)) gives a G(A) intertwining map

A−1(s ′) : I (s ′, χ)→A .

Assume that χ = ρ(χ)−1, assume that j is an integer between 0 and n′, assume
that χ0

= ε
j
E/F , and assume that j is not divisible by δ. Let s ′ = (n′− j)/2. To

complete the proof of Theorem 1, it remains to prove that A−1(s ′) is zero. Fix a
finite inert place v of F . By Theorem 1.2 of [Kudla and Sweet 1997], Iv(s ′, χv)
has a unique irreducible submodule R and

Iv(s ′, χv)/R '
⊕

V0

R(V0, χv),

where V0 runs over all equivalence classes of hermitian spaces over Ev of dimension
j . Since the image of A−1(s ′) lies in the space of singular automorphic forms in
view of Lemma 2.1(1) and since R is nonsingular, the map A−1(s ′) factors through
the quotient

⊕
V0

R(V0, χv) at v. Proposition 1.4(3) shows that G(Fv) acts on the
image of A−1(s ′) by a representation of rank at most j . Put `= [ j/δ]. Lemma 2.3
shows that G(Fv) acts on the image of A−1(s ′) by a representation of rank at most
δ`. Since δ` < j , Proposition 1.4(3) forces A−1(s ′) to be zero.
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3. Proof of Theorem 2

Lemma 3.1. If m = n or if m−r > n, then for all8 ∈ S(V n(A)) and β ∈Hern(F)
with ν(β) 6= 0,

Eβ(g; f (s)8 )|s=s0 = ~ Iβ(g;8).

Proof. The proof can be carried out by the same technique as in that of [Ichino
2004, Proposition 6.2]. We omit the details. �

First we prove Theorem 2 in the case m−r > n. Ichino [2007] proved the special
case of this result for δ = 1 (compare [Kudla and Rallis 1988b; Yamana 2013]).
Many of the results there apply word for word in our general case.

If m > 2n, then E(g; f (s0)
8 ) converges absolutely and the stated identity was

proven by Weil [1965]. We may suppose that m≤2n. Fix80
=
⊗

v 8
0
v ∈ S(V n(A)).

By Theorem 10.6.2 of [Scharlau 1985], there is an inert place w of F such that
the Witt index rw of Vw satisfies rw < δ(r + 1), where Vw stands for the hermitian
space over Ew corresponding to V (Fw). Note that

δm− rw > δn.

We consider the G(Fw)-intertwining map

A−1,w : S(V n′
w )→A , 8w 7→ A−1(s0)( f (s0)

8 ),

where 8 =8w ⊗
(⊗

v 6=w8
0
v

)
. The invariant distribution theorem [Mœglin et al.

1987; Lee and Zhu 1998] asserts that A−1,w factors through the quotient R(Vw, χVw).
Lemma 2.1(1) shows that A−1,w(8w) is singular for every 8w ∈ S(V n′

w ). If w is
finite, then δm = 2rw+2 and δn= rw+1, and hence R(Vw, χVw) is irreducible and
nonsingular by [Kudla and Sweet 1997, Theorem 1.2], so that A−1,w must be zero. If
w is real and∇ is the element of the universal enveloping algebra of the complexified
Lie algebra of G(Fw) defined by (2.1) of [Ichino 2007], then ∇A−1,w(8w) = 0.
Since Proposition 2.2 of [Ichino 2007] asserts that ∇ f (s0)

8w
generates the submodule

R(Vw, χVw) for a suitable choice of8w, the map A−1,w must be zero. Consequently,
E(g; f (s)8 ) is holomorphic at s = s0 for every 8 ∈ S(V n(A)).

Next we consider the Kw-intertwining map

Aw : S(V n′
w )→A , 8w 7→ E(g; f (s)8 )|s=s0 − I (g;8),

where 8=8w⊗
(⊗

v 6=w8
0
v

)
. The image of Aw lies in the space of singular

automorphic forms by Lemma 3.1. We write Rw for the subspace of A spanned
by residues Ress=s0 E(g; f (s)), where f (s) is a holomorphic section of I (s, χV ) of
the form

f (s) = f (s)w ⊗
(⊗
v 6=w

f (s)
80
v

)
, f (s)w ∈ Iw(s, χVw).
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Then Aw induces a G(Fw)-intertwining map R(Vw, χVw)→A /Rw. The remaining
part of the proof continues as in Section 3 of [Ichino 2007]. �

Theorem 2 is demonstrated in [Yamana 2011], provided that δ = 1 and m ≤ n.
Since the proof in our general case can be done by the same technique, we shall
omit most of the details. We define the functions a(s, χ) and b(s, χ) by taking the
complete Hecke L-functions in place of the local abelian L-factors in the definition
of av(s, χv) and bv(s, χv). We define a normalized global intertwining operator by

M◦(s, χ)=
b(s, χ)
a(s, χ)

M(s, χ),

which is holomorphic in <s >−1
2 by Lemma 1.2 and (1-2).

Let C= {Wv} be a collection of local hermitian spaces of dimension m over Dv

such that Wv is isometric to V (Fv) for almost all v. We form a restricted tensor
product 5(C, χV )=

⊗
′

v Rn′(Wv, χVv ), which we can regard as a subrepresentation
of I (s0, χV ). The proof of the following result is completely analogous to that of
[Kudla and Rallis 1994, Theorem 3.1].

Proposition 3.2. Assume that m ≤ n. Then

dim HomG(A)(5(C, χV ),A )≤ 1.

If there is no global hermitian space with Wv as its completions, then

dim HomG(A)(5(C, χV ),A )= 0.

Next we are going to prove the special case of Theorem 2 in which m = n.
Let C= {V (Fv)}. Since Proposition 1.4(2) shows that the two intertwining maps
8 7→ E(g; f (s)8 )|s=0 and 8 7→ I (g;8) define elements of the space

HomG(A)(5(C, χV ),A ),

they must be proportional by Proposition 3.2. From Lemmas 2.1(2) and 3.1, they
are nonvanishing, and the constant of proportionality is determined to be 2. �

We now suppose that m < n. Let C′ be a collection of local hermitian spaces of
dimension 2n−m obtained by adding a split space of suitable dimension to C. By
Proposition 1.4(4) and (5), 5(C′, χV ) has a unique irreducible quotient 5(C, χV ),
and M◦(−s0, χV ) induces a nonzero intertwining map 5(C′, χV )→ 5(C, χV ).
The same reasoning as in Section 4 of [Yamana 2011] implies the following result:

Proposition 3.3. Suppose that m < n. Let f (s) be a standard section of I (s, χV )

such that f (s0) ∈5(C, χV ). Put h(−s)
= M◦(s, χV ) f (s).

(1) E(g; f (s)) is holomorphic at s = s0.
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(2) h(s) is holomorphic at s =−s0, h(−s0) ∈5(C′, χV ), and

Ress=−s0 E(g; h(s))=−Ress=s0

[
b(s, χV )

a(s, χV )

]
E(g; f (s))

∣∣
s=s0

.

Lemma 3.4. If m < n, then the image of the map A−1(−s0) lies in the space of
square integrable automorphic forms on G(A).

Proof. We use [Kudla and Sweet 1997, Proposition 6.2] and follow closely the
guideline of the proof of [Kudla and Rallis 1994, Proposition 4.6]. �

Proposition 3.5. If m < n, then the restriction of A−1(−s0) to 5(C′, χV ) is zero
unless C is the set of localizations of a global space, in which case it defines a
nonzero intertwining map 5(C, χV )→A .

Proof. The image of A−1(−s0) is completely reducible in view of Lemma 3.4.
Thus the restriction of A−1(−s0) to 5(C′, χV ) must factor through the unique
irreducible quotient 5(C, χV ). Proposition 3.2 shows that 5(C, χV ) makes no
contribution unless C comes from a global space. It remains to check that A−1(−s0)

is nonzero on 5(V, χV ). From Proposition 3.3(2) this amounts to proving that the
holomorphic value E(g; f (s)8 )|s=s0 is nonzero for a good choice of 8 ∈ S(V n(A)).

Let β0 ∈ Herm(F) with ν(β0) 6= 0. Put

β =

(
0 0
0 β0

)
∈ Hern(F), G0 =




1n−m

a b
1n−m

c d

 ∈ G

 .
Define80∈ S(V m(A)) by80(y)=8((0, y)) for y ∈V m(A). The nonvanishing can
be proven by considering the β-th Fourier coefficient of E(g; f (s)8 ) as in Section 6 of
[Yamana 2011] (compare Theorem 4.9 of [Kudla and Rallis 1994]). The exponents
of the n − m + 1 terms in this Fourier coefficient are distinct at s = s0, so that
there can be no cancellations among them. The first term is just the β0-th Fourier
coefficient of the central value of the Eisenstein series on G0(A) attached to the
standard section f (s)80

. Lemma 2.1(2) now completes our proof. �

Corollary 3.6. Suppose that m ≤ n. Let f (s) be a standard section of I (s, χV ) such
that f (s0) ∈5(C, χV ). If C cannot be the set of localizations of any global space,
then E(g; f (s))|s=s0 is identically zero.

Proof. Propositions 3.2, 3.3(2) and 3.5 prove this corollary. �

The regularized Siegel–Weil formula can be deduced from Propositions 3.2
and 3.5.
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Theorem 3.7. Assume that m < n. Then there is a nonzero constant c0 such that if
holomorphic sections f (s) of I (s, χV ) and 8 ∈ S(V n(A)) satisfy the relation

M◦(−s0, χV ) f (−s0) = f (s0)
8 ,

then we have

Ress=−s0 E(g; f (s))= c0 I (g;8).

Finally, we prove Theorem 2 when m < n. Applying Proposition 3.3(2) and
Theorem 3.7 to h(−s)

= M◦(s, χV ) f (s)8 , we see that

E(g; f (s)8 )|s=s0 = cI (g;8),

where c is independent of 8. One can prove that c = 2 in exactly the same manner
as in Section 6 of [Yamana 2011]. �

Appendix. Zeta integrals for GLn(D)

Let F be a local field of characteristic zero and D a division algebra central and of
dimension δ2 over F . We begin by reviewing the Godement–Jacquet construction
of the local factors of representations of G ′n = GLn(D). The Fourier transform
φ̂ ∈S (Mba(D)) of φ ∈S (Mab(D)) is defined by

φ̂(x)=
∫

Mab(D)
φ(y)ψ(τ(xy)) dy, x ∈Mba(D),

where the Haar measure dy is so chosen that∫
Mab(D)

φ̂( ty) dy = φ(0).

In the archimedean case S(Mab(D)) is the subspace of S (Mab(D)) as defined
on p. 115 of [Godement and Jacquet 1972], and in the p-adic case S(Mab(D))=
S (Mab(D)).

Let π be an irreducible admissible representation of G ′n . We write π∨ for its
admissible dual and denote the standard pairing on π∨ � π by 〈 , 〉. For s ∈ C,
φ ∈S (Mn(D)), ξ ∈ π and ξ∨ ∈ π∨ we set

Z G J (s, φ, ξ � ξ∨)=
∫

G ′n

〈π(g)ξ, ξ∨〉φ(g)|ν(g)|s+n′/2
F dg.

This integral converges in some half-plane and extends to a meromorphic function
on the whole s-plane satisfying

Z G J (−s, φ̂, ξ∨� ξ)= (−1)n(δ−1)γ G J (s+ 1
2 , π, ψ

)
Z G J (s, φ, ξ � ξ∨).
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Fix a pair χ = (χ1, χ2) of quasicharacters of F×. Recall χ0
= χ1χ2. We attach

a section s 7→ F
(s,χ)
φ to each φ ∈S (Mn,2n(D)) by setting

F
(s,χ)
φ (g)= χ1(ν(g))|ν(g)|

s+n′/2
F

∫
G ′n

φ((0, t)g)χ0(ν(t))|ν(t)|2s+n′
F dt.

This integral converges absolutely for sufficiently large<s. Observe that if φ belongs
to S(Mn,2n(D)), then F

(s,χ)
φ ∈ I (s, χ) (compare (1-1)). For ϕ ∈S (M2n,n(D)) we

define a section F
(s,χ)
ϕ of I (s, χ) to be

χ2(ν(g))−1
|ν(g)|−s−n′/2

F

∫
G ′n

ϕ
(

g−1
( t

0

))
χ0(ν(t))|ν(t)|2s+n′

F dt.

Lemma A.1. For each φ ∈ S(Mn,2n(D)),

M(s, χ)F(s,χ)φ =
(−1)n(δ−1)χ1(−1)n

′

γ G J
(

2s− n′−1
2

, χ0 ◦ νn, ψ
) F(−s,ρ(χ)−1)

φ̂
.

Proof. The case n = δ = 1 is discussed in Lemma 14.7.1 of [Jacquet 1972]. The
proof is substantially the same. For g ∈ G ′2n we put

9g(t)=
∫

Mn(D)
φ((t, x)g) dx

for t ∈Mn(D). Then

M(s, χ)F(s,χ)φ (g)

=

∫
Mn(D)

F
(s,χ)
φ

((
0 1n

1n 0

)(
1n x
0 1n

)
g
)

dx

= χ1
(
(−1)n

′

ν(g)
)
|ν(g)|s+n′/2

F

×

∫
Mn(D)

∫
G ′n

φ

((
0, t
)( 0 1n

1n x

)
g
)
χ0(ν(t))|ν(t)|2s+n′

F dt dx

= χ1
(
(−1)n

′

ν(g)
)
|ν(g)|s+n′/2

F

∫
Mn(D)

∫
G ′n

φ
(
(t, x)g

)
χ0(ν(t))|ν(t)|2s

F dt dx

= χ1(−1)n
′

χ1
(
ν(g)

)
|ν(g)|s+n′/2

F Z G J
(

2s−
n′

2
, 9g, χ

0
◦ νn

)
.

Since 9̂g(t)= |ν(g)|−n′
F φ̂

(
g−1

( t
0

))
,

χ1
(
ν(g)

)
|ν(g)|s+n′/2

F Z G J
(n′

2
− 2s, 9̂g, (χ

0
◦ νn)

−1
)
= F

(−s,ρ(χ)−1)

φ̂
.

Lemma A.1 follows from the functional equation of Z G J (s, φ, χ0
◦ νn). �
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Fix A ∈ GLn(D). For a section f (s) of I (s, χ), the integral

lA( f (s))=
∫

Mn(D)
f (s)

((
1n 0
x 1n

))
ψ(τ(Ax)) dx

converges absolutely for <s� 0. In the p-adic case, Karel [1979] has proven that
lA( f (s)) admits an entire analytic continuation to the whole s-plane and satisfies a
functional equation

lA ◦M(s, χ)= χ0(ν(A))−1
|ν(A)|−2s

F c(s, χ, ψ)lA

for some meromorphic function c(s, χ, ψ). The factor c(s, χ, ψ) is independent of
the choice of A. Analogous results are proven in the archimedean case in [Wallach
1988]. The normalization M†(s, χ) of M(s, χ) is defined so that

lA ◦M†(s, χ)= χ2(−1)n
′

χ0(ν(A))−1
|ν(A)|−2s

F lA.

Lemma A.2. For each 8 ∈ S(Mn,2n(D)),

M†(s, χ)F(s,χ)8 = χ2(−1)n
′

F
(−s,ρ(χ)−1)

8̂
.

Proof. It is enough to show that

lA
(
F
(−s,ρ(χ)−1)

8̂

)
= χ0(ν(A))−1

|ν(A)|−2s
F lA

(
F
(s,χ)
8

)
.

Take φ1, φ2 ∈ S(GLn(D)) and define 8 ∈ S(Mn,2n(D)) by 8(x, y)= φ̂1(x)φ2(y).
Then

lA
(
F
(s,χ)
8

)
=

∫
Mn(D)

F
(s,χ)
8

((
1n 0
x 1n

))
ψ(τ(Ax)) dx

=

∫
Mn(D)

∫
GLn(D)

8

((
0, t
)(1n 0

x 1n

))
χ0(ν(t))|ν(t)|2s+n′

F dtψ
(
τ(Ax)

)
dx

=

∫
GLn(D)

φ1(−At−1)φ2(t)χ0(ν(t))|ν(t)|2s
F dt.

Similarly, lA
(
F
(−s,ρ(χ)−1)

8̂

)
is equal to∫

Mn(D)

∫
GLn(D)

φ1(−t)φ̂2(−xt)χ0(ν(t))−1
|ν(t)|−2s+n′

F ψ(τ(Ax)) dt dx

=

∫
GLn(D)

φ1(−t)φ2(t−1 A)χ0(ν(t))−1
|ν(t)|−2s

F dt

= χ0(ν(A))−1
|ν(A)|−2s

F lA(F
(s,χ)
8 ).

Since both lA
(
F
(s,χ)
8

)
and lA

(
F
(−s,ρ(χ)−1)

8̂

)
are not identically zero for a suitable

choice of φ1 and φ2, the proof is complete. �
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The embedding i of G ′n ×G ′n into G ′2n is given by

(g1, g2) 7→ w1

(
g1 0
0 g2

)
w−1

1 , w1 =

(
2−1
· 1n −2−1

· 1n

1n 1n

)
.

Let π be an irreducible admissible representation of G ′n . For ξ ∈ π , ξ∨ ∈ π∨ and a
section f (s) of I (s, χ), we define the zeta integral by

Z(ξ � ξ∨, f (s))=
∫

G ′n

〈π(g)ξ, ξ∨〉 f (s)(i(g, e)) dg,

following [Piatetski-Shapiro and Rallis 1987a; Lapid and Rallis 2005]. This integral
converges absolutely for <s� 0 and extends to a meromorphic function in s that
satisfies the functional equation

Z
(
ξ � ξ∨,M†(s, χ) f (s)

)
= π(−1)γ

(
s+ 1

2 , π ×χ,ψ
)
Z(ξ � ξ∨, f (s)).

Lapid and Rallis [2005] demonstrated the special case of the following result for
δ = 1 in a different manner. It was pointed out by Wee Teck Gan [2012] that there
is a typo in [Lapid and Rallis 2005, (25)].

Proposition A.3. For any irreducible admissible representation π of G ′n and any
pair χ = (χ1, χ2) of quasicharacters of F×,

γ (s, π ×χ,ψ)= γ G J (s, π ⊗χ1, ψ)γ
G J (s, π∨⊗χ2, ψ).

Proof. Let F
(s,χ)
8 be the translate of F(s,χ)8 by the element w1 ∈ G ′2n . Then

Z
(
ξ � ξ∨,F

(s,χ)
8

)
=

∫
G ′n

〈π(g)ξ, ξ∨〉χ1(ν(g))|ν(g)|
s+n′/2
F

×

∫
G ′n

8

(
(0, t)w1

(
g 0
0 1n

))
χ0(ν(t))|ν(t)|2s+n′

F dt dg

=

∫
G ′n×G ′n

〈
(π ⊗χ1)(g)ξ, (π∨⊗χ2)(t)ξ∨

〉
|ν(gt)|s+n′/2

F 8(g, t) dg dt.

If 8(x, y) is of the form φ1(x)φ2(y), then the last integral is equal to〈
Z G J (s, π ⊗χ1, φ1)ξ, Z G J (s, π∨⊗χ2, φ2)ξ

∨
〉
.

Piatetski-Shapiro and Rallis [1987a] employ this relation to calculate the unramified
local zeta integrals.
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We can see by Lemma A.2 that

Z
(
ξ � ξ∨,M†(s, χ)F(s,χ)

8

)
= χ2(−1)n

′

∫
G ′n×G ′n

φ̂1(g)φ̂2(t)

× |ν(gt)|−s+n′/2
F

〈
(π ⊗χ1)(g−1)ξ, (π∨⊗χ2)(−t−1)ξ∨

〉
dg dt.

The stated relation follows upon combining these with the definitions of the gamma
factors. �

Let χ = 1. Put 1s(g)= f (s−n′/2)
0

(
w1

(
g

1n

))
for g ∈ G ′n . Note that

1s(k1gk2)= f (s−n′/2)
0

(
w1

(
k1gk2

1n

))
= f (s−n′/2)

0

(
i(k1, k1)w1

(
g

1n

)(
k2

k−1
1

))
=1s(g)

for k1, k2 ∈ Kn and g ∈ G ′n . An explicit formula for this function is obtained in
[Piatetski-Shapiro and Rallis 1987a, Proposition 6.4] in the case of symplectic or
split even orthogonal groups. One can deduce from their argument a formula of the
same type for the unit groups of simple algebras.

Lemma A.4. (1) If F is a p-adic field and g = k1dk2 with elements k1, k2 ∈ Kn

and d = diag[$ a1, . . . ,$ an ], where $ is a generator of the maximal ideal
of O, and we put q = |ν($)|−1

F , then

1s(g)= q−s
∑n

i=1 |ai |.

(2) Assume that F = R or C. Put t = [F : R]. If g = k1dk2 with k1, k2 ∈ Kn and
d = diag[d1, . . . , dn] with positive real numbers di , then

1s(g)= 2nδts
n∏

i=1

(d−1
i + di )

−δts .

Lemma A.5. If <s > δ(n− 1), then 1s belongs to L1(G ′n).
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Proof. Put σ =<s. We consider the p-adic case. Proposition 1.5.2 of [Casselman
1995] gives a positive constant c such that∫

G ′n

|1s(g)| dg ≤ c
∑

a1≥a2≥···≥an

q−σ
∑n

i=1 |ai |

n∏
j=1

qδ(n+1−2 j)a j

≤ c
n∏

j=1

∑
a j∈Z

q−σ |a j |+δ(n+1−2 j)a j

= c
n∏

j=1

(
1

1− qδ(n+1−2 j)−σ +
qδ(2 j−n−1)−σ

1− qδ(2 j−n−1)−σ

)
.

The archimedean case can be proven in the same way. �

Lemma A.6. If σ > 0, then the function z 7→1σ (zg) is integrable over the center
Z of G ′n for any g ∈ G ′n . Moreover, there exists a positive constant Aσ depending
only on σ such that, for every g ∈ G ′n ,∫

Z
1σ (zg) dz ≤ Aσ .

Proof. In the p-adic case,∫
Z
1σ (zg) dz =

∑
j∈Z

q−σ
∑n

i=1 |ai+δ j |
≤

∑
j∈Z

q−σ | j | =
1+ q−σ

1− q−σ
.

The proof for the archimedean case is completely analogous. �

Recall that π is called square integrable if it admits a unitary central character
and its matrix coefficients are square integrable modulo the center. For (s1, s2) ∈ C,
we write I (s1, s2)= I (0, (αs1

F , α
s2
F )).

Proposition A.7. If π is square integrable, <s1,<s2 > −δ/2 and f ∈ I (s1, s2),
then the integral defining Z(ξ � ξ∨, f ) is absolutely convergent.

Proof. Put σ = min{<s1,<s2}. Note that (αF ◦ ν2n)
s′
· f (s)0 ∈ I (s + s ′, s − s ′).

By Lemma A.4, we can majorize | f ((g, e))| by c f (σ )0 ((g, e)) for some positive
constant c. Our task is to check that for any σ >−δ/2,∫

G ′n

∣∣〈π(g)ξ, ξ∨〉∣∣1σ+n′/2(g) dg

is finite. Take a constant σ ′ so that 0< σ ′ < σ + δ/2. The square of this integral is
less than or equal to the product of the integrals∫

G ′n

12σ+n′−2σ ′(zg) dg
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and ∫
G ′n

∣∣〈π(g)ξ, ξ∨〉∣∣212σ ′(g) dg =
∫

Z\G ′n

∣∣〈π(ġ)ξ, ξ∨〉∣∣2 ∫
Z
12σ ′(zġ) dz dġ

=A2σ ′

∫
Z\G ′n

∣∣〈π(ġ)ξ, ξ∨〉∣∣2 dġ,

both of which are finite, the first by Lemma A.5 and the second by Lemma A.6. �
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