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ON 4-MANIFOLDS, FOLDS AND CUSPS

STEFAN BEHRENS

We study simple wrinkled fibrations, a variation of the simplified purely
wrinkled fibrations of Williams (Geom. Topol. 14:2 (2010), 1015–1061), and
their combinatorial description in terms of surface diagrams. We show
that simple wrinkled fibrations induce handle decompositions of their total
spaces which are very similar to those obtained from Lefschetz fibrations.
The handle decompositions turn out to be closely related to surface dia-
grams and we use this relationship to interpret some well known operations
on 4-manifolds in terms of surface diagrams. This, in turn, allows us classify
all closed 4-manifolds which admit simple wrinkled fibrations of genus one,
the lowest possible fiber genus.

1. Introduction

After the pioneering work of Donaldson [1999] and Gompf [1999] on symplectic
4-manifolds and Lefschetz fibrations and of Auroux, Donaldson and Katzarkov on
near-symplectic 4-manifolds [Auroux et al. 2005], the study of singular fibration
structures on smooth 4-manifolds has received considerable attention in the research
literature. Among the highlights in the field have been existence results for so called
broken Lefschetz fibrations over the 2-sphere on all closed, oriented 4-manifolds
[Akbulut and Karakurt 2008; Baykur 2008; Gay and Kirby 2007; Lekili 2009]
as well as a classification of these maps up to homotopy [Lekili 2009; Williams
2010]. Furthermore, the classical observation that Lefschetz fibrations over the
2-sphere are accessible via handlebody theory and can be described more or less
combinatorially in terms of collections of simple closed curves on a regular fiber
known as the vanishing cycles [Kas 1980; Gompf and Stipsicz 1999] was extended
to the broken Lefschetz setting in [Baykur 2009].

Our starting point is the work of Williams [2010], who introduced the closely
related notion of simplified purely wrinkled fibrations, proved their existence and
exhibited a similar combinatorial description of these maps — again by collections
of simple closed curves on a regular fiber — which he calls surface diagrams. It

MSC2010: primary 57M50; secondary 57R65.
Keywords: 4-manifolds, folds, cusps, simple wrinkled fibrations, simplified purely wrinkled

fibrations, broken Lefschetz fibrations, surface diagram.
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c3 c1

c2

c4

Figure 1. A surface diagram of S1
× S3 # S1

× S3 due to Hayano [2012].

follows that all smooth, closed, oriented 4-manifolds can be described by surface
diagrams; an example of such a diagram is shown in Figure 1. However, the
correspondence between simplified purely wrinkled fibrations and surface diagrams
has been somewhat unsatisfactory in that it usually involved arguments using broken
Lefschetz fibrations and the assumption that the fiber genus is sufficiently high.

It is one of our goals to provide a detailed and intrinsic account of this corre-
spondence and to clarify the situation in the lower-genus cases. Once this is done
we give some applications.

We now describe the contents of this paper in more detail. In Section 2 we begin
by recalling some preliminaries from the singularity theory of smooth maps and the
theory of mapping class groups of surfaces. This section is slightly lengthy because
we intend to use it as a reference for future work.

The following two sections form the technical core of this paper. In Section 3 we
introduce simple wrinkled fibrations over a general base surface; in the case when the
base is the 2-sphere our definition is almost equivalent to Williams’ simplified purely
wrinkled fibrations and our reason for introducing a new name is mainly to reduce
the number of syllables. We explain how the study of simple wrinkled fibrations
reduces to certain fibrations over the annulus which we call annular simple wrinkled
fibrations to which we associate twisted surface diagrams; roughly, such a diagram
consists of a closed, oriented surface 6, an ordered collection of simple closed
curves c1, . . . , cl ⊂6 and an orientation-preserving diffeomorphism µ :6→6

such that pairs of consecutive curves (ci and ci+1 for i < l, as well as µ(cl) and c1)
intersect transversely in one point. We prove the following:

Theorem 1.1. There is a bijective correspondence between annular simple wrinkled
fibrations up to equivalence and twisted surface diagrams up to equivalence.

For precise definitions we refer to Section 3. In the course of the proof we show
that annular simple wrinkled fibrations induce (relative) handle decompositions
of their total spaces which are, in fact, encoded in a twisted surface diagram
(Section 3B). These handle decompositions bear a very close resemblance with
those obtained from Lefschetz fibrations; the only difference appears in the framings
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of certain 2-handles. The section ends with an investigation of the ambiguities for
gluing surface bundles to the boundary components of annular simple wrinkled
fibrations.

In Section 4 we specialize to the case when the base surface is either a disk or a
sphere and recover Williams’ setting. Using our results about annular simple wrin-
kled fibrations we obtain a precise correspondence between Williams’ (untwisted)
surface diagrams and simple wrinkled fibrations over the disk (Proposition 4.1) and
the sphere (Corollary 4.2). In particular, our approach provides a direct way to
construct a simple wrinkled fibration from a given surface diagram circumventing
the previously necessary detour via broken Lefschetz fibrations.1

Next, we address the subtle question of which surface diagrams give rise to
simple wrinkled fibrations over the sphere and thus describe closed 4-manifolds.
Just as in the theory of Lefschetz fibrations, the key is to understand the boundary
of the associated simple wrinkled fibration over the disk. We show how to identify
this boundary with a mapping torus and describe its monodromy in terms of the
surface diagram. Unfortunately, it turns out that the boundary is much harder to
understand than in the Lefschetz setting.

We then go on to review the handle decompositions exhibited in Section 3 when
the base is the disk or the sphere and describe a recipe for drawing Kirby diagrams
for them. To complete the picture, we compare our decompositions with the ones
obtained via simplified broken Lefschetz fibrations.

In Sections 5 and 6 we give some applications. We show that certain substitutions
of curve configurations in surface diagrams correspond to cut-and-paste operations
on 4-manifolds. In particular, we give a surface diagram interpretation of blow-
ups and sum stabilizations, by which we mean connected sums with CP2, CP2

and S2
× S2. Using these we easily obtain a classification of closed 4-manifolds

which admit simple wrinkled fibrations with the lowest possible fiber genus.

Theorem 1.2. A smooth, closed, oriented 4-manifold admits a simple wrinkled
fibration of genus one if and only if it is diffeomorphic to kS2

× S2 or mCP2 #nCP2

where k,m, n ≥ 1.

Our result should be compared to [Baykur and Kamada 2010] and [Hayano 2011],
where the classification problem of genus-one simplified broken Lefschetz fibrations
is addressed but only partial solutions are achieved. However, it should also be noted
that their class of maps is strictly larger than that of genus-one simple wrinkled
fibrations and it is thus conceivable that the classification is more complicated.

Section 7 closes this paper by highlighting what we consider as some of the main
problems in the field and by outlining some related developments.

1By now this can be considered as a special case of [Gay and Kirby 2012], which appeared while
we were writing this paper.
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Conventions. By default, all manifolds are smooth, compact and orientable; all
maps are smooth and all diffeomorphisms preserve orientations. Given a submani-
fold S⊂M we denote by νS (respectively ν̄S) an open (respectively closed) tubular
neighborhood of S and whenever we speak of neighborhoods of submanifolds we
usually mean tubular neighborhoods. For induced orientations on boundaries we use
the outward normal first convention and, in order to coherently orient regular fibers
of maps between oriented manifolds, we use the fiber first convention. Exceptions
to these rules will be explicitly stated and we reserve the right to sometimes restate
some of the conditions for emphasis.

2. Preliminaries

To fix some terminology, let f : M → N be a smooth map with differential
d f : T M→ T N . A critical point or singularity of f is a point p ∈M such that d f p

is not surjective. The set of critical points, called the critical locus of f , will be
denoted by

C f :=
{

p ∈ M | rk d f p < dim N
}
⊂ M.

The image of a critical point is called a critical value and the set of all critical
values is called the critical image of f .

As customary, we call the preimage of a point a fiber, usually decorated with the
adjectives regular or singular indicating whether or not the fiber contains singulari-
ties. Note that regular fibers are always smooth submanifolds with trivial normal
bundle.

Remark 2.1. The terms critical point and singularity are used synonymously and
somewhat inconsistently in the literature, even in standard references such as
[Golubitsky and Guillemin 1973]. We will adapt to this custom of arbitrariness and
also use both terms depending on which seems more appropriate. However, we
would like to stress that neither term indicates the failure of a map to be smooth
at a given point — all maps we consider are smooth — they just indicate irregular
behavior of the differential at that point as described above.

2A. Folds, cusps and Lefschetz singularities. As a warm-up, recall that a generic
map from any compact manifold to a 1-dimensional manifold has only finitely
many critical points on which it is injective and, moreover, all critical points are of
Morse type; that is, they are locally modeled on maps of the form

(x1, . . . , xn) 7→ −x2
1 − · · ·− x2

k + x2
k+1+ · · ·+ x2

n ,

where the number k is called the (Morse) index of the critical point. (We say that a
map f : Mm

→ N n is locally modeled around p ∈ M on f0 : R
m
→ Rn if there are

local coordinates around p and f (p) mapping these points to the origin such that
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the coordinate representation of f agrees with f0.) Maps whose critical points are
all of Morse type are called Morse functions.

A similar statement holds for maps to surfaces. For convenience we take the
source to be 4-dimensional from now on. In this setting the Morse critical points
are replaced by two other types of singularities known as folds and cusps which
can also be described in terms of local models. The model for a fold point is the
map R4

→ R2 given by the formula

(2-1) (t, x, y, z) 7→ (t,−x2
− y2
± z2)

and the cusps are locally modeled on

(2-2) (t, x, y, z) 7→ (t,−x3
+ 3t x − y2

± z2).

If the sign in either of the above expressions is positive (respectively negative), then
the singularity is called indefinite (respectively definite).

An easy calculation shows that the critical loci of the fold and cusp models
are given by { (r, 0, 0, 0) | r ∈ R } and { (r2, r, 0, 0) | r ∈ R }, respectively. As
a consequence, the critical image of a smooth map is a smooth 1-dimensional
submanifold near fold and cusp points. The critical images of both models are
shown in Figure 2. Note that the critical image is smoothly embedded in the
fold model whereas in the cusp case it is topologically embedded via a smooth
homeomorphism whose inverse fails to be smooth only at the cusp point.

It follows directly from the models that folds always come in 1-dimensional
families on which the map restricts to an immersion. We will usually be sloppy and
refer to such an arc of fold points in the source as well as their image in the target
as fold arcs. Furthermore, cusps are isolated in the critical locus in the sense that
there is a small neighborhood which contains no other cusps. However, cusps are
not isolated singularities. In fact, one can show that any cusp is surrounded by two
fold arcs, at least one of which is indefinite.

We can now state the normal form of generic maps from 4-manifolds to surfaces.

Figure 2. The critical images of the fold and cusp models.
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Theorem 2.2 (generic maps to surfaces). A generic smooth map from a 4-manifold
to a surface has only fold and cusp singularities, it is injective on the cusps and
restricts to an immersion of its critical locus with only transverse intersections
between fold arcs.

Results of this kind are common knowledge in singularity theory; precise ref-
erences for Theorem 2.2 are [Golubitsky and Guillemin 1973, Theorem 5.2] and
[Levine 1964, Theorem 1] (see also [Boardman 1967; Morin 1965]).

The preceding discussion shows, in particular, that the critical locus of a generic
map to a surface is a smooth 1-dimensional submanifold of the source.

Remark 2.3. Recently, these generic maps to surfaces have appeared under the
name Morse 2-functions in [Gay and Kirby 2011a; 2011b; 2012].

In what follows we only deal with indefinite singularities. So from now on, when
we speak of folds and cusps, we always mean the indefinite ones.

Figure 2 contains some further decorations which we will now explain. Both
folds and cusps are intimately related to 3-dimensional Morse–Cerf theory. The
fold models a trivial homotopy of a Morse functions with one critical point (of
index two) on the vertical slices. This means that the model restricted to a small arc
transverse to the fold locus is a Morse function with one critical point of index one
or two, depending on the direction. The arrows in the picture indicate the direction
in which the index is two. Note that the topology of the fibers of either side of a
fold arc is necessarily different.

Similarly, the cusp is also a homotopy of Morse functions on the vertical slices,
although a nontrivial one. It models the cancellation of a pair of critical points of
index one and two. The arrows indicate the index two direction of the fold arcs
adjacent to the cusp.

For the moment, this is all we have to say about folds and cusps. Another
important type of singularity which has its roots in (complex) algebraic geometry
is the Lefschetz singularity and its local model is given in complex coordinates by

L : C2
→ C, (z, w) 7→ zw.

At this point it becomes important whether the charts that we use to model the map
are orientation-preserving. Indeed, the use of orientation-reversing charts for the
Lefschetz model produces so called achiral Lefschetz singularities which are not
compatible with complex geometry; in orientation-preserving coordinates achiral
Lefschetz singularities can be modeled by (z, w) 7→ z̄w which is not holomor-
phic. We will thus always use orientation-preserving charts to model singularities
whenever the source or target are oriented. Note that this is no restriction for folds
and cusps since both models admit an orientation-reversing diffeomorphism which
leaves the map invariant.
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As stated in the introduction, maps with (indefinite) fold, cusp and Lefschetz
singularities have been prominently featured in the research literature over the past
decade. Unfortunately, different authors have used different names for various types
of maps and there is yet no commonly accepted terminology in the field. For the
purpose of this paper we use this:

Definition 2.4. Let f : X → B be a surjective map from an oriented 4-manifold
to an oriented surface, with critical locus C f . Assume that all intersections in the
critical image are transverse intersections of fold arcs and C f is transverse to the
boundary of X . We call

(a) a wrinkled fibration if C f contains only indefinite folds and cusps,

(b) a (broken) Lefschetz fibration if C f contains only Lefschetz singularities (and
indefinite folds),

(c) a broken fibration if C f contains only indefinite folds, cusps and Lefschetz
singularities.

We will usually refer to X as the total space and to B as the base of f .

If f : X→ B is a broken fibration, then ∂X ∩ C f is either empty or consists of
finitely many fold points and it follows from the fold model that f restricts to a
circle valued Morse function over each boundary component of B.

The regular fibers of f are orientable surfaces and our conventions determine
an orientation. We will usually assume that ∂X = f −1(∂B) so that the fibers are
closed surfaces.

It is quite useful to think of broken fibrations as singular families of surfaces
parametrized by the base. More precisely, the images of the folds and cusps cut
the base into several regions which may or may not contain Lefschetz singularities.
Each regular fiber is an orientable surface whose topological type depends only on
the region that it maps into. One thus decorates the base with the topological type
of the fibers over each region together with some information about what happens
to a fiber if one crosses a fold arc (the fold vanishing cycles corresponding to the
little arrows we have indicated above, see Definition 3.11) or runs into a Lefschetz
singularity (the Lefschetz vanishing cycle). Under certain circumstances this data
is enough to determine the map as we will see later on; see also [Gay and Kirby
2012].

We finish this section with a short review of the homotopy classification of
broken fibrations over S2 that was mentioned in the introduction. An important
contribution of Lekili [2009] is that he showed how to pass back and forth between
broken Lefschetz fibrations and wrinkled fibrations via two local homotopies, i.e.,
homotopies supported in arbitrarily small balls. As portrayed in Figure 3 one can
wrinkle a Lefschetz point into an indefinite triangle (that is, an indefinite circle with
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Figure 3. Wrinkling (left) and unsinking (right) a Lefschetz singularity.

three cusps) and one can exchange a cusp for a Lefschetz singularity; this move is
sometimes called unsinking a Lefschetz point from a fold. (Moreover, he showed
that these modifications work equally well with achiral Lefschetz singularities which,
together with the results of [Gay and Kirby 2007], proves the existence of broken
Lefschetz fibrations.) As a consequence, one can translate questions about broken
fibrations into questions about wrinkled fibrations which are accessible by means of
singularity theory. For example, there is a structural result similar to Theorem 2.2
for generic homotopies between wrinkled fibrations. The basic building blocks
include isotopies of the base and total space and three types of modifications (and
their inverses) that are realized by local homotopies: the birth/death, the merge and
the flip. Figure 4 shows their effect on the critical image. In general, such a generic
homotopy will pass through maps with definite singularities. However, the main
theorem in [Williams 2010], which was conjectured in [Lekili 2009], states that
indefinite singularities can, in fact, be avoided. In other words, any two homotopic
wrinkled fibrations are homotopic through wrinkled fibrations.

birth merge

flip

Figure 4. The basic local homotopies.

Remark 2.5. It has become common to refer to an application of any of these
modifications as moves performed on a broken fibration; this terminology is due
to [Lekili 2009]. It is important to note that most of these moves are not strictly
reversible in the following sense. If the critical image of a given broken fibration
exhibits the left configuration in any of the pairs, it is always possible to replace
it by the one on the right. However, it might not be possible to go into the other
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direction. The only exception is the birth. In all other cases some extra conditions
are needed to go from right to left. This is indicated in our pictures with shaded
arrows. For further details we refer to [Lekili 2009].

Remark 2.6. There is some disagreement in the literature about which direction in
the second pair in Figure 4 should be called merge and which inverse merge. To avoid
this decision we simply speak of merging cusps and merging folds, respectively.

2B. Surfaces and simple closed curves. As we pointed out, the regular fibers of
broken fibrations are surfaces and these fibers will be our main focus later on. The
theory of surfaces and mapping class groups is yet another field of mathematics
with many different conventions and, in the author’s experience, it can be confusing
to decide whether a statement in some reference actually applies to a situation at
hand. For this reason we give very precise definitions, deliberately risking to be
overly precise.

By a surface6 we mean a compact, orientable, 2-dimensional manifold, possibly
with boundary and some marked points in the interior. A simple closed curve in 6
is a closed, connected, 1-dimensional submanifold of 6 that does not meet the
boundary or the marked points. We usually consider simple closed curves up to
ambient isotopy in 6 relative to ∂6 and the marked points and will not make a
notational distinction between a simple closed curve and its isotopy class. Note
that according our definition simple closed curves are unoriented objects. However,
from time to time it will be convenient to choose orientations on them in order to
speak of their homology classes.

The geometric intersection number of two simple closed curves a, b ⊂6 is

i(a, b) :=min {#(α ∩β) | α ∼ a, β ∼ b, α t β} ∈ N,

where the signs ∼ and t indicate isotopy and transverse intersection. If the curves
as well as the surface are oriented, then we also have an algebraic intersection
number which is obtained by a signed count of intersections after making the curves
transverse. Equivalently, this number can be described as

〈a, b〉 := 〈[a], [b]〉6 := 〈[a], [b]〉H1(6) ∈ Z,

where the bracket on the right side denotes the intersection form on H1(6). (In the
present paper homology is always taken with integer coefficients.)

Note that the algebraic intersection number is alternating and depends only on
the homology classes of the oriented simple closed curves while the geometric inter-
section number is symmetric and depends on the isotopy classes. Both intersection
numbers have the same parity and satisfy the inequality

(2-3) | 〈a, b〉 | ≤ i(a, b).
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We say that a and b are geometrically dual (respectively algebraically dual) if their
geometric (respectively algebraic) intersection number is one.

A simple closed curve a ⊂ 6 is called nonseparating if its complement is
connected, otherwise it is called separating. Note that a simple closed curve is
separating if and only if it is null-homologous (with either orientation) and thus
simple closed curves that have geometric or algebraic duals are automatically
nonseparating.

Diffeomorphisms of surfaces. Let us now turn to diffeomorphisms of surfaces. Let
Diff+(6, ∂6) denote the set of orientation-preserving diffeomorphisms that restrict
to the identity on ∂6 and preserve the set of marked points. The mapping class
group of 6 is defined as

Mod(6) := π0(Diff+(6, ∂6), id).

Given a simple closed curve a⊂6 there is a well defined mapping class τa ∈Mod(6)
called the (right-handed) Dehn twist about a. Similarly, any simple arc r ⊂6 that
connects two distinct marked points gives rise to a half twist τ̄r ∈Mod(6).

It is well known that Mod(6) is generated by the collection of Dehn twist and
half twists, where the latter are only needed in the presence of marked points.
On the other hand, mapping classes can be effectively studied by their action on
(isotopy classes of) simple closed curves. In particular, it is desirable to understand
the effect of Dehn twists on simple closed curves. While this can be tricky, the
situation simplifies significantly on the level of homology classes.

Proposition 2.7 (Picard–Lefschetz formula). Let 6 be a surface, a ⊂6 a simple
closed curve and let x ∈ H1(6). Then for any orientation on a we have

(2-4) (τ k
a )∗x = x + k 〈[a], x〉 [a].

In particular, if b is an oriented simple closed curve, then

(2-5) [τ k
a (b)] = [b] + k 〈[a], [b]〉 [a].

Proof. See [Farb and Margalit 2011, Proposition 6.3] �

Remark 2.8. The Picard–Lefschetz formula is particularly useful for the torus
since, in that case, mapping classes are completely determined by their action on
homology.

Another useful tool is the change of coordinates principle, which roughly states
that any two configurations of simple closed curves on a surface with the same
intersection pattern can be mapped onto each other by a diffeomorphism. We will
only use the following special cases. For details we refer to [Farb and Margalit
2011, Chapter 1.3].
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Proposition 2.9 (change of coordinates principle). If a, b ⊂ 6 is a pair of non-
separating simple closed curves, then there exists some φ ∈ Diff+(6, ∂6) such
that φ(a)= b. Furthermore, if a, b and a′, b′ are two pairs of geometrically dual
curves, then there is some φ ∈ Diff+(6, ∂6) such that φ(a)= a′ and φ(b)= b′.

Mapping tori and their automorphisms. Given a surface 6 and a diffeomorphism
µ : 6 → 6, possibly not orientable or orientation-preserving, we can form the
mapping torus

6(µ) :=
(
6×[0, 1]

)
/
(
(x, 1)∼ (µ(x), 0)

)
which is a 3-manifold that fibers over S1 ∼= [0, 1]/{0, 1} in the obvious way. If
6 is oriented and µ is orientation-preserving, then our conventions stated in the
introduction induce an orientation on 6(µ). All surface bundles over S1 can be
described as mapping tori. Indeed, if a 3-manifold fibers over S1, then one chooses
a fiber and a lift of a vector field that determines the orientation of S1 and the return
map of the flow of this vector field induces a diffeomorphism of the fiber which is
usually called the monodromy.

Let Y be an oriented 3-manifold that fibers over the circle via a map f : Y → S1.
An automorphism of (Y, f ) is an orientation- and fiber-preserving diffeomorphism
of Y . We denote the group of automorphisms by Aut(Y, f ) or simply by Aut(Y )
when the fibration is clear from the context. If we identify Y with a mapping torus,
say 6(µ), then we obtain a description of Aut(Y ) in terms of diffeomorphisms
of 6. Indeed, any element φ ∈ Aut(6(µ)) can be considered as a path (φt)t∈[0,1]

in Diff+(6) connecting some element φ0 ∈Diff+(6) to φ1=µ
−1φ0µ. In particular,

φ0 must be isotopic to µ−1φ0µ and thus represents an element of CMod(6)(µ), the
centralizer in Mod(6) of (the mapping class represented by)µ. Elaborating on this
observation one arrives at the conclusion that

(2-6) π0
(

Aut(Y )
)
∼= π0

(
Aut(6(µ))

)
∼= CMod(6)(µ)nπ1(Diff(6), id),

where the multiplication on the right side is given by

(g, σ ) · (h, τ )=
(
h ◦ g, (g−1τg) ∗ σ

)
.

This means that there are essentially two types of automorphism of mapping tori:
the ones that are constant on the fibers coming from CMod(6)(µ) and the ones
coming from π1(Diff(6), id) that vary with the fibers and restrict to the identity
on the reference fiber. However, it turns out that for most surfaces there are no
nonconstant automorphisms.

Theorem 2.10 [Earle and Eells 1969]. If 6 is a closed, orientable surface without
marked points, the group π1(Diff(6), id) is isomorphic to Z2, Z⊕Z, or the trivial
group, depending on whether the genus g equals 0, 1, or more than 1.
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Hence, as soon as the genus of the fiber of a mapping torus is at least two, all
automorphisms are isotopic (through automorphisms) to constant ones.

Remark 2.11. It is important not to confuse the group Aut(Y ) with the group of
all (orientation-preserving) diffeomorphisms of Y . A general diffeomorphism will
not even be isotopic to a fiber-preserving one!

Theorem 2.10 has many important consequences, of which we only highlight one.

Corollary 2.12. Let P→ S2 be a surface bundle with closed fibers of genus g.

(1) If g = 0, then P is diffeomorphic to S2
× S2 or CP2 # CP2.

(2) If g = 1, then P is diffeomorphic to T 2
× S2, S1

× S3 or S1
× L(n, 1).

(3) If g ≥ 2, then P is diffeomorphic to 6g × S2

Proof. For the genus-one case see [Baykur and Kamada 2010, Lemma 10]. The
other cases are well known. �

3. Simple wrinkled fibrations over general base surfaces

Without further ado we introduce the main objects of study in this paper.

Definition 3.1. Let X be a 4-manifold and B a surface, both oriented. A simple
wrinkled fibration with total space X and base B is wrinkled fibration w : X→ B
with the following additional properties:

(1) ∂X = w−1(B).

(2) Cw ∩ ∂X =∅.

(3) Cw is nonempty, connected, and contains a cusp.

(4) w is injective on Cw.

(5) All fibers of w are connected.

The genus of w is the maximal genus among all regular fibers. Finally, two
simple wrinkled fibrations w : X → B and w′ : X ′→ B ′ are equivalent if there
are orientation-preserving diffeomorphisms φ̂ : X → X ′ and φ̌ : B → B ′ such
that w′ ◦ φ̂ = φ̌ ◦w.

A neighborhood of the critical image of a simple wrinkled fibration is shown in
Figure 5. Before we continue we make some remarks about the definition.

Remark 3.2. Simple wrinkled fibrations over S2 are, in essence, the same as
Williams’ simplified purely wrinkled fibrations, with two minor differences. On
the one hand we do not put restrictions on the fiber genus, but on the other we
require the presence of cusps. Both conditions can always be achieved by applying
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Figure 5. A neighborhood of the critical image of a simple wrin-
kled fibration.

Figure 6. The base diagrams during a flip-and-slip move. (The
pictures show the complement of a disk in the lower-genus region
of the original fibration.)

a flip-and-slip move (see next remark) and are thus not restrictive. Moreover, the
“simple wrinkled fibrations without cusps” are easily classified (see Example 3.7),
so one does not lose too much by excluding them.

Remark 3.3. Given a simple wrinkled fibration over S2 there is an important
homotopy to another such simple wrinkled fibration which has become known as a
flip-and-slip move. Its effect on the base diagram is shown in Figure 6. One first
perform two flips on the same fold arc and then chooses an isotopy of the total space
(the slip) during which the critical image undergoes the changes demonstrated in
the picture. A flip-and-slip increases the fiber genus by one and introduces four
new cusps.

Remark 3.4. In spite of the lengthy definition, simple wrinkled fibrations are
arguably the simplest possible maps from 4-manifolds to surfaces, at least as far
as their singularity structure is concerned. As will be explained in detail it is
this simplicity which makes it possible to give nice combinatorial descriptions of
4-manifolds.

Given the rather specialized nature of simple wrinkled fibrations one might
wonder whether they actually exist. This is indeed the case and we begin by giving
some simple constructions.
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Example 3.5 (surface bundles). Let π : X→ B be a surface bundle over a surface B
with closed fibers of genus g. Then we can perform a birth homotopy on π to
obtain a simple wrinkled fibration of genus g+1 with two cusps.

Example 3.6 (Lefschetz fibrations). If f : X→ B is a Lefschetz fibration (possi-
bly achiral) with closed fibers of genus g, then after wrinkling all the Lefschetz
singularities we obtain a number of disjoint circles with three cusps in the critical
image. By suitably merging cusps we can turn this configuration into a single circle
resulting in a simple wrinkled fibration of genus g+ 1.

Example 3.7 (the case without cusps). This example includes the broken Lefschetz
fibration on S4 from [Auroux et al. 2005] that was mentioned in the introduction.
Let � be a cobordism from 6g to 6g−1 together with a Morse function µ :�→ I
with exactly one critical point of index two. Then µ×id :�×S1

→ I×S1 is a stable
map with one circle of indefinite folds which fails to be a simple wrinkled fibration
only because it does not have any cusps. Nevertheless, we can use �× S1 to build
wrinkled fibrations over S2 by suitably filling in the two boundary components
with 6g × D2 and 6g−1× D2 such that the fibration structures on the boundary
extends. Using the handle decomposition from [Baykur 2009] it is easy to see that
this construction produces the following total spaces: P # S1

× S3 where P is any
6g−1-bundle over S2 and, if g = 1, S4 and some other manifolds with finite cyclic
fundamental group; see [Baykur and Kamada 2010; Hayano 2011]. Having built
these maps one can then apply a flip-and-slip to obtain honest simple wrinkled
fibrations. In particular, S4 carries a simple wrinkled fibration of genus two.

These examples show that simple wrinkled fibrations can be considered as a
common generalization of surface bundles and (achiral) Lefschetz fibrations. The
vastness of this generalization is indicated by the following remarkable theorem.

Theorem 3.8 [Williams 2010]. Let X be a closed, oriented 4-manifold. Then any
map X→ S2 is homotopic to a simple wrinkled fibration of arbitrarily high genus.

Remark 3.9. Williams’ proof builds on the results of [Gay and Kirby 2007] which,
in turn, depends on deep theorems in 3-dimensional contact topology. This some-
what unnatural dependence could be removed by refining the singularity theory
based approach of [Baykur 2008] to produce maps which are injective on their
critical locus.

Williams [2010] introduced a combinatorial description of simple wrinkled
fibrations over S2 in terms of what he calls surface diagrams. We will generalize
his construction to the setting of general base surfaces.

Let w : X → B be a simple wrinkled fibration. The discussion in Section 2A
shows that the critical locus Cw ⊂ X is a smoothly embedded circle and that
w restricts to a topological embedding of Cw into B. Furthermore, the critical
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image w(Cw) separates B into two components. Indeed, if the complement were
connected, then all regular fibers would be diffeomorphic. But according to the fold
model, the topology of the fibers on the two sides of a fold arc must be different. In
fact, since we require that all fibers are connected, the genus on one side has to be
one higher than on the other side. We will call the two components of B \w(Cw)
the higher- and lower-genus regions.

We would like to understand more precisely how the topology of the fibers
changes across the critical image. A reference path for w is an oriented, embedded
arc R ⊂ B that connects a point p+ in the higher-genus region to a point p− in
the lower-genus region and intersects w(Cw) transversely in exactly one fold point.
Then the reference fibers 6±(R) := w−1(p±) over the reference points p± are
closed, oriented surfaces.

Lemma 3.10. A reference path R⊂ B induces a nonseparating simple closed curve
c(R)⊂6+(R) which depends only on the isotopy class of R relative to its reference
points and the cusps.

Definition 3.11. The curve c(R) ⊂ 6+(R) is called the (fold) vanishing cycle
associated to R.

Proof. The fold model implies that w−1(R) is a cobordism from 6+(R) to 6−(R)
on which w restricts to a Morse function with exactly one critical point of index 2.
Thus w−1(R) is diffeomorphic to 6+(R)×[0, 1] with a (3-dimensional) 2-handle
attached along a simple closed curve in 6+(R)×{1} which is canonically identified
with a simple closed curve c(R)⊂6+(R). �

Next, let us look at what happens around the cusp. Let R1 and R2 be two
reference paths for w with common reference points and assume that their interiors
are disjoint. We call R1 and R2 adjacent if their union R1 ∪ R2 bounds a disk in B
that contains exactly one cusp.

Lemma 3.12. Let R1 and R2 be adjacent reference paths. Then the vanishing
cycles c(R1) and c(R2) in 6+ :=6+(R1)=6+(R2) are geometrically dual.

Proof. As in the proof of Lemma 3.10 the preimages w−1(Ri ), i = 1, 2, are
both cobordisms from 6+ to 6−, each consisting of a 2-handle attachment along
c(Ri ). By reversing the orientation of R1 we can consider w−1(R1) as a cobordism
from 6− to 6+, now consisting of a 1-handle attachment. In this process the former
attaching sphere of the 2-handle c(R1) becomes the belt sphere of the 1-handle.

Gluing w−1(R1) and w−1(R2) together along 6+ gives a cobordism from 6− to
itself consisting of a 1-handle attachment followed by a 2-handle attachment. Now
recall that a cusp models the death (or birth) of a canceling pair of Morse critical
points. Hence, the attaching sphere of the 2-handle, which is c(R2), intersects the
belt sphere of the 1-handle, which is c(R1), in a single point. �
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Looking a bit ahead, our strategy will be to choose suitable collections of
reference paths and to study simple wrinkled fibrations in terms of the induced
collection of vanishing cycles. The only obstacle for doing so is the possibly
complicated topology of the base surface. But this can easily be overcome by
cutting the base into three pieces

B = B+ ∪ A∪ B−

where A is a regular neighborhood of the critical image of w (diffeomorphic to an
annulus) and B± are the closures of the complement of A. The subscript in B±
indicates whether the surface is contained in the higher- or lower-genus region.
Note that w restricts to surface bundles over B± and, although complicated, these
form a rather well studied class of objects. Thus the interesting new part of w is
the restriction w−1(A)→ A which is a simple wrinkled fibration over an annulus
whose critical image is boundary parallel.

Definition 3.13. A simple wrinkled fibration w : W → A over an annulus A is
called annular if its critical image is boundary parallel.

So in order to understand simple wrinkled fibrations over any base surface, it is
enough to understand annular simple wrinkled fibrations and this is where twisted
surface diagrams (see Definition 3.20 below) enter the picture. The remainder of
this section is devoted to the proof of Theorem 1.1 stated in the introduction.

Remark 3.14. Gay and Kirby [2012] have published a result that contains Theorem
1.1 as a special case. Although their methods are somewhat similar to ours we feel
that our approach is of independent interest.

We will split the proof of the theorem into the two obvious parts. The first part is
the subject of Section 3A (see Proposition 3.25) where we show how assign twisted
surface diagrams to annular simple wrinkled fibrations. The second part that shows
how to build annular simple wrinkled fibrations from twisted surface diagrams is
treated in Section 3C (see Proposition 3.31). In between, we will see in Section 3B
that, just as Lefschetz fibrations, annular simple wrinkled fibrations are directly
accessible via handlebody theory.

3A. Twisted surface diagrams of annular simple wrinkled fibrations. Consider
an annular simple wrinkled fibration w : W → A. We denote by ∂+A and ∂−A
the boundary components of the base annulus A contained in the higher- and
lower-genus regions, respectively, and we let

∂±W = w−1(∂±A).

We equip ∂+A and ∂+W with the opposite boundary orientation, so that W is an
oriented cobordism from ∂+W to ∂−W .
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Figure 7. A reference system for an annular simple wrinkled fibration.

Definition 3.15. Let w : W → A be an annular simple wrinkled fibration. A
reference system for w is a collection of reference paths R= {R1, . . . , Rl} for w
(where l is the number of cusps) such that

(1) all reference paths have the same reference points p± ∈ ∂±A,

(2) the interiors of the arcs are pairwise disjoint,

(3) with respect to the orientations on ∂±A the arcs leave ∂+A and enter ∂−A in
order of increasing index (see Figure 7) and

(4) each fold arc is hit by exactly one of the Ri .

Remark 3.16. Condition (3) might need some further explanation. Assume that we
have a collection of properly embedded arcs in a surface which all hit the boundary
in the same point and are otherwise disjoint near that boundary component. If the
boundary component is oriented, then there is a well defined notion of order for
the arcs which can be described as follows. We take a small half disk around the
boundary point and orient the boundary of this half disk so that it agrees with the
orientation of the boundary component of the surface. For a generic choice of half
disk each arc will intersect the boundary of the half disk transversely in one point
and the order of these intersection points is easily seen to be independent of the
choice of half disk.

As before, we denote the reference fibers by 6± :=6±(R)= w−1(p±). Using
the reference fibers we can write ∂±W as mapping tori

∂±W ∼=6±(µ±)

where µ± ∈Mod(6±) is the monodromy of w over ∂±A (in the positive direction).
We will refer to µ+ and µ− as the higher and lower monodromies of w.
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R

S

R

S′

Figure 8. Swinging an arc around a boundary component.

Lemma 3.17. Let w : W → A be an annular simple wrinkled fibration together
with a reference system R= {R1, . . . , Rl} and let ci = c(Ri )⊂6+. For i < l the
vanishing cycles ci and ci+1 are geometrically dual, and so are µ+(cl) and c1.

In the proof we need the following construction. Let B be an oriented surface
and let R and S be two properly embedded arcs in B which hit a boundary compo-
nent ∂i B ⊂ ∂B transversely in the same point such that S enters ∂i B after R (as
explained in Remark 3.16) and whose interiors are disjoint. As indicated in Figure 8
we can modify S by moving its endpoint along ∂i B resulting in a new arc S′ which
enters ∂i B before R and whose interior is still disjoint from R. We will say that S′

is obtained from S be swinging once around ∂i B. (Note that swinging around ∂i B is
not the same as performing a boundary parallel Dehn twist since such Dehn twists
are supported in the interior of B and fix a collar neighborhood of the boundary.
In particular, they cannot change the order of arcs at the boundary and, moreover,
in Figure 8 a boundary parallel Dehn twist applied to S would produce an arc that
intersects R in its interior.)

Proof of Lemma 3.17. The first statement follows from Lemma 3.12 since for i < l
the reference paths Ri and Ri+1 are clearly adjacent. For the second statement we
first swing Rl once around the boundary of A so that the resulting reference path R′l
is adjacent to R1 and thus c(R′l) is geometrically dual to c(R1). Next we observe
that R′l is homotopic to Rl precomposed with the boundary curve. Thus the parallel
transport along R′l is the composition of the parallel transport along Rl and the
higher-genus monodromy. In particular, we have c(R′l)= µ+(cl). �

Remark 3.18. Note that in the above proof we did not actually need the whole
reference system but only the parts of the arcs contained in the higher-genus region.

Let us isolate the combinatorial structure encountered in the above lemma.

Definition 3.19. Let 6 be a surface. A circuit (of length l) on 6 is an ordered
collection of simple closed curves 0 = (c1, . . . , cl) such that any two adjacent
curves ci and ci+1 are geometrically dual for i < l. A switch for 0 is a mapping
class µ ∈Mod(6) such that µ(cl) and c1 are geometrically dual. We say that 0 is
closed if cl and c1 are geometrically dual, that is, if the identity works as a switch.
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Definition 3.20. A twisted surface diagram is a triple S= (6, 0,µ) where 6 is a
closed, oriented surface, 0 is a circuit in 6 and µ ∈Mod(6) is a switch for 0. In
the case that 0 is a closed circuit and µ= id, we simply speak of surface diagrams
and shorten the notation to S= (6, 0) or sometimes even (6; c1, . . . , cl).

Remark 3.21. Note that our definition of surface diagrams is slightly different from
Williams’ original definition [2010]. Indeed, Williams requires that surface diagrams
are induced from simple wrinkled fibrations over the sphere so that the associated
annular simple wrinkled fibration has trivial higher and lower monodromies while
we only require trivial higher monodromy. The reason for our deviance is that we
would like to have an abstract definition of (twisted) surface diagram that does not
depend on any relation to simple wrinkled fibrations. However, it turns out that
the trivial lower monodromy condition for an annular simple wrinkled fibration is
not easy to state in terms of its twisted surface diagrams (see Section 4A for the
untwisted case) and we find it more appropriate to consider it as an extra condition.

Remark 3.22. There is no restriction on the intersections of nonadjacent curves
in a circuit. Circuits in which nonadjacent curves are disjoint, so called chains of
curves, are well known objects in the theory of mapping class groups of surfaces
where they play an important role.

Remark 3.23. Sometimes it will be convenient to choose orientations on the curves
in a circuit 0 = (c1, . . . , cl) in order to speak of their homology classes. If the
ambient surface is oriented, we always choose orientations such that the intersection
of ci and ci+1, i < l, has positive sign.

With this terminology we can rephrase Lemma 3.17 as stating that an annular
simple wrinkled fibration w :W → A together with a reference system R induces
a twisted surface diagram

Sw,R := (6+, 0w,R, µ+)

where the higher monodromy works as a switch.
Not surprisingly, the twisted surface diagrams constructed in Lemma 3.17 depend

on the choice of the reference system. To understand this dependence we observe
that a reference system is uniquely determined (up to isotopy relative to the boundary
and the cusps) by specifying the first reference path — this follows directly from the
definition. Furthermore, it is easy to see that any two reference paths which have
the same reference points and hit the same fold arc become isotopic after suitably
swinging around the boundary components of A.

Now let R= {R1, . . . , Rl} and S = {S1, . . . , Sl} be two reference systems with
common reference points and let Sk hit the same fold arc as R1. As in the proof
of Lemma 3.17 we successively swing the arcs Sl, Sl−1, . . . , Sk once around each
boundary component to obtain a new reference system S ′ in which the first reference
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path hits the same fold arc as R1. Now, by further swinging all of S ′ simultaneously,
but this time independently around the boundary components, we can match the
two first reference paths and thus the whole reference systems.

Let us analyze the effect of this matching procedure on the twisted surface
diagram. For brevity of notation let S= (6, 0,µ) be the twisted surface diagram
associated to an annular simple wrinkled fibration w : W → A together with a
reference system R. Since the surface 6 and the switch µ only depend on the
reference points, only the circuit 0= (c1, . . . , cl) will be affected by swinging some
reference paths. Moreover, note again that the vanishing cycles ci only depend on
the part of the reference paths contained in the higher-genus region. Thus swinging
around the lower-genus boundary does not change the circuit.

Now, as we have already observed, if we swing the last reference path in R once
around both boundary components, we obtain a new reference system R′, which
induces the circuit

0[1]µ :=
(
µ(cl), c1, . . . , cl−1

)
.

This operation of going from S to S[1] := (6, 0[1]µ , µ) makes sense in the abstract
setting of twisted surface diagrams and we call it (and its obvious inverse) switching.
Note that if the higher monodromy µ is trivial, then switching simply amounts to a
cyclic permutation of the vanishing cycles.

Since we can relate any two reference systems for a given annular simple wrinkled
fibration by suitably swinging reference paths, we see that the twisted surface
diagram is well defined up to switching.

Next we want to compare the twisted surface diagrams of two equivalent annular
simple wrinkled fibrations as in the commutative diagram below.

X

w

��

φ̂ // X ′

w′

��
A

φ̌ // A′

If R is a reference system for w, then R′ := φ̌(R) is a reference system for w′.
Let S= (6, 0,µ) and S′= (6′, 0′, µ′) be the associated twisted surface diagrams.
Then φ̂ induces an orientation-preserving diffeomorphism φ :6→6′ and clearly
the higher monodromies satisfy µ′ = φµφ−1. It is also easy to see that

0′ = φ(0) :=
(
φ(c1), . . . , φ(cl)

)
where, as usual, 0 = (c1, . . . , cl). Again, the effect of an equivalence of annular
simple wrinkled fibrations makes sense for abstract twisted surface diagrams and
we say that S and S′ are diffeomorphic via φ.
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Combining this with switching we end up with the following definition.

Definition 3.24. Two twisted surface diagrams S and S′ called equivalent if, for
some integer k, S′ is diffeomorphic to S[k].

Summarizing this section so far, we have proved the first half of Theorem 1.1:

Proposition 3.25. To an annular simple wrinkled fibration w : W → A we can
assign a twisted surface diagram

Sw = (6+, 0w, µ+)

which is well defined up to equivalence. Moreover, equivalent annular simple
wrinkled fibrations have equivalent twisted surface diagram.

Remark 3.26. We would like to point out that it is very convenient that only the
equivalence class of the surface diagram plays a role. Indeed, in order to actually
visualize the twisted surface diagram of an annular simple wrinkled fibration one
has to identify the higher-genus reference fiber with some model surface and there
is no canonical way to do so. However, any two such identifications will differ by a
diffeomorphism of the model surface and thus be equivalent. So we can safely forget
about the choice of identification whenever we are only interested in the equivalence
class of the simple wrinkled fibrations or the diffeomorphism type of its total space.

3B. Handle decompositions for annular simple wrinkled fibrations. As a next
step we relate the twisted surface diagrams associated to annular simple wrinkled
fibrations to the topology of their total spaces. We will see that the situation is very
similar to Lefschetz fibrations.

Proposition 3.27. Let w :W → A be an annular simple wrinkled fibration. Then
W has a relative handle decomposition on ∂+W with one 2-handle for each fold arc.
Such a handle decomposition is encoded in any twisted surface diagram for w.

In the following we will refer to the 2-handles associated to the fold arcs as fold
handles.

Proof. The rough idea is to parametrize A by S1
×[0, 1] such that the composition

ofw and the projection p : S1
×[0, 1]→[0, 1] becomes a Morse function. We equip

S1
×[0, 1] with coordinates (θ, t) and refer to the direction in which t increases as

right. We say that a parametrization κ : A→ S1
×[0, 1] is w-regular if the critical

image Cκ := κ ◦w(Cw) is in the following standard position:

• All cusps point to the right.

• Each Rθ := {θ} × [0, 1] meets Cκ in exactly one point, either in a cusp or
transversely in a fold point.

• The projection p restricted to Cκ has exactly one minimum on each fold arc.
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We claim that for any w-regular parametrization κ , the map

pκ := p ◦ κ ◦w :W → [0, 1]

is a Morse function. Clearly, the critical points of pκ are contained in Cw. Thus we
have to understand how the projection p interacts with the critical image Cκ . By
the standard position assumption there are three ways how a level set St := S1

×{t}
can intersect Cκ (see Figure 9):

a) St intersects Cκ transversely in a fold point,

b) St meets Cκ in a cusp and the fold arcs surrounding the cusp are on the left
side of St or

c) St is tangent to a fold arc which is located on the right side of St . We will
refer to this phenomenon as a left tangency.

Figure 9. Level sets intersecting the critical image.

It turns out that only the left tangencies contribute critical points of pκ . In fact,
from the models for the fold and cusp we immediately see that pκ is modeled on
the compositions

(3-1) (t, x, y, z) 7→ (t,−x3
+ 3t x − y2

+ z2) 7→ t

in case of a cusp intersection and

(3-2) (t, x, y, z) 7→ (t,−x2
− y2
+ z2) 7→ ±t

for a transverse fold intersection (the sign depends on how the fold and cusp models
are embedded) which shows that these are regular points of pκ .

It remains to treat the concave tangencies. These occur precisely at the minima
of pκ |Cκ . This minimum can be modeled by t 7→ t2 and it is easy to see that pκ is
modeled on

(3-3) (t, x, y, z) 7→ (−x2
− y2
+ z2
+ t2)
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which is a Morse critical point of index 2. By assumption there is exactly one
concave tangency for each fold arc and, using the correspondence between Morse
functions and handle decompositions, we obtain the desired handle decomposition.

In order to understand how the fold handles are attached, consider the arcs

Ri := Rθi ⊂ S1
×[0, 1],

where θ1, . . . , θl ∈ S1 is a sequence of numbers ordered according to the orientation
of S1 (for example, the l-th roots of unity). The w-regular parametrization κ can
be chosen in such a way that each Ri is a reference path for precisely one fold
arc and Cκ is contained in the open annulus S1

× (ε, 1− ε) for some ε > 0. For
each Ri we obtain a vanishing cycle ci in the fiber of w over (θi , 0) ∈ ∂+A and the
local model for folds implies that the fold handles are attached to ∂+W × [0, ε]
along the vanishing cycles ci pushed off into the fiber over (θi , ε) with respect to
the canonical framing induced by the fiber.

The relation to twisted surface diagrams now becomes obvious. There is a
canonical way to turn the reference paths 21, . . . ,2l into a reference system by
fixing 21 and successively sliding the endpoints of the remaining arcs along the
boundary onto 21 against the orientation. Thus the vanishing cycles record the
attaching curves of the fold handles. �

Remark 3.28. The above proposition is one of the reasons why we require the
presence of cusps in the critical loci of simple wrinkled fibrations. If there were no
cusps, then it would not be possible to avoid right tangencies which would corre-
spond to 3-handles instead of 2-handles. Thus the presence of cusps guarantees that
the total spaces of annular simple wrinkled fibrations are (relative) 2-handlebodies.

Remark 3.29. The observation that fold tangencies correspond to Morse critical
points was also made by Gay and Kirby [2011a] in their more general setting of
Morse 2-functions. The fact that the real part of the Lefschetz model is also a Morse
function allows to include Lefschetz singularities in the discussion. Proceeding this
way, one can recover Baykur’s result [2009] about handle decompositions from
broken Lefschetz fibrations.

Remark 3.30. The reader familiar with Lefschetz fibrations will have noticed the
strong resemblance of the handle decompositions described above with the ones
induced by Lefschetz fibrations. In fact, the handle decompositions have exactly
the same structure except that the fold handles are attached with respect to the fiber
framing while the framing of the Lefschetz handles differs by −1.

3C. Annular simple wrinkled fibrations from twisted surface diagrams. Using
the handle decompositions exhibited in the previous section as a stepping stone we
can now build annular simple wrinkled fibrations out of twisted surface diagrams
and thus complete the proof of Theorem 1.1.
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Figure 10. Building a simple wrinkled fibration from a surface
diagram. Bold curves represent the critical image, and dashed
curves the reference path.

Proposition 3.31. A twisted surface diagram S= (6, 0,µ) determines an annular
simple wrinkled fibration wS : WS→ S1

× [0, 1] with higher-genus fiber 6 and
higher monodromy µ.

Proof. To make the construction of wS more transparent we begin with some
preliminary considerations. One important ingredient is the mapping cylinder 6(µ)
with its canonical fibration p :6(µ)→ S1

= [0, 1]/{0, 1} in which we identify 6
with the fiber over 0∼ 1. We will also need a collection of arcs R= {R1, . . . , Rl}

in S1
× [0, 1] that will serve as a reference system for wS; see Figure 10(a). To

construct these let r : [0, 1] → [0, 1] be a smooth function that has the constant
value 1 on the interval

[1
3 ,

2
3

]
, satisfies r(0)= r(1)= 0 and is strictly increasing for

t ≤ 1
3 and strictly decreasing for t ≥ 2

3 . If the length of 0 is l, then for i = 1, . . . , l
we let θi := (i − 1)/c and define

Ri :=
{(
θir(t), t

)
/∼

∣∣ t ∈ [0, 1] ⊂ S1
×[0, 1]

}
.

We can now give the construction of WS and wS in three steps.

Step 1: We begin by taking the product W1 := 6(µ)× [0, 1
3 ] and define a map

w1 :W1→ S1
×[0, 1

3 ] by sending (x, t) to (p(x), t).

Step 2: Next, we construct W2 by attaching 2-handles to W1 in the following way.
Let 0= (c1, . . . , cl). Using the arc Ri ⊂ S1

×[0, 1] described above we can parallel
transport the curve ci ⊂6 to the fiber of w1 over

(
θi ,

1
3

)
. We attach a 2-handle to

the resulting curve with respect to the fiber framing.
This choice of framing allows us to extend w1 over each 2-handle. Indeed, we

can consider attaching the i-th (4-dimensional) 2-handle as a 1-parameter family
of 3-dimensional 2-handle attachments parametrized by a small neighborhood
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of (θi , 1) in S1
×{1}. (Of course, these neighborhoods are pairwise disjoint.) For

each point θ in such a neighborhood, the restriction of w1 to the θ -ray {θ}×
[
0, 1

3

]
extends to a Morse function (with one critical point of index 2) over a slightly
longer ray, say {θ}×

[
0, 2

3

]
, in the standard way. Using these 1-parameter families

of Morse functions we can extend w1 to map from W2 to an annulus with “bumps”
on one side, as shown in Figure 10(b), and this map has an arc of indefinite folds
on each bump. We can then smooth out the bumps by standard techniques from
differential topology to obtain a map w2 :W2→ S1

×
[
0, 2

3

]
in which each 2-handle

attachment has created an arc of indefinite folds whose endpoints hit the boundary
of W2 transversely in the component that was affected by the handle attachment, as
in Figure 10(c); let us call this component ∂2W2.

Step 3: For the final step we first note that the restriction of w2 over S1
× {

2
3} is

a circle valued Morse function with a pair of critical points of index 1 and 2 for
each fold arc of w2. The crucial observation is that the condition that 0 is a circuit
with switch µ implies that all these pairs of critical points cancel! Thus there is a
standard homotopy, which we parametrize by

[ 2
3 , 1

]
, from w2|∂2W2 to a submersion

that realizes this cancellation. We let

WS :=W2 ∪∂2W2 ∂2W2×
[ 2

3 , 1
]

and extend w2 over the newly added collar of ∂2W2 by tracing out the homotopy
to obtain a map wS :WS→ S1

×[0, 1]. This last step removes all critical points
from the boundary in exchange for an interior cusp for each canceling pair. Clearly
wS is an annular simple wrinkled fibration with base diagram as in Figure 10(d).

Note that WS is diffeomorphic to W2 and thus has the same relative handle
decomposition. Moreover, it follows directly from the construction that R is a
reference system for wS with S as its twisted surface diagram. �

In order to finish the proof of Theorem 1.1 we have to show that equivalent
twisted surface diagrams give equivalent annular simple wrinkled fibrations. Recall
that an equivalence of surface diagrams is a combination of two things: switching
and a diffeomorphism. We will treat these separately.

Lemma 3.32. If S and S′ are diffeomorphic, then wS and wS′ are equivalent.

Proof. Let S= (6, 0,µ), S′= (6′, 0′, µ′) and let φ :6→6′ be a diffeomorphism
such that 0′ = φ(0) and µ′ = φµφ−1. We will extend φ to a diffeomorphism
φ̂ :WS→WS′ which fits in the commutative diagram

WS

wS %%

φ̂ // WS′

wS′yy
S1
×[0, 1]
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This will be done by going through the steps in the proof of Proposition 3.31. Let
Wi and W ′i , i = 1, 2, denote the 4-manifolds built in each step.

From the identity µ′ = φµφ−1 we deduce that φ induces a fiber-preserving
diffeomorphism 6(µ)→6′(µ′). Taking the product with the identity, we obtain
φ̂1 :W1→W ′1.

In the second step, where the 2-handles are attached to the curves in 0, we simply
note that φ̂1 maps the attaching regions into each other and can thus be extended
over the 2-handles to φ̂2 :W2→W ′2. Note that the smoothing of the bumpy annulus
does not cause any trouble since it does not involve the total space.

For the third step observe that, given a homotopy from w2|∂2W2 to a submersion,
we can push it forward via φ̂2|∂2W2 to obtain such a homotopy for w′2|∂2W ′2 . �

Lemma 3.33. If S is a twisted surface diagram, then wS and wS[1] are equivalent.

Proof. If we take the canonical reference system for wS and swing the last reference
path once around the boundary, we obtain a reference system that induces S[1].
Thus wS and wS[1] are essentially the same annular simple wrinkled fibration. �

3D. Gluing ambiguities. Recall that simple wrinkled fibrations over arbitrary base
surfaces can be obtained from annular ones by gluing suitable surface bundles to
the boundary components. To be precise, let w0 : W → A be an annular simple
wrinkled fibration and let π± : Y±→ B± be surface bundles over surfaces B± such
that there are boundary components C±⊂ B± and fiber-preserving diffeomorphisms

ψ± : π
−1
±
(C±)→ ∂±W.

Then we can form a simple wrinkled fibration

w : Y+ ∪ψ+ W ∪ψ− Y− −→ B+ ∪C+ A∪C− B−.

Of course, different choices of gluing diffeomorphisms may lead to inequivalent
simple wrinkled fibrations. If we fix a pair ψ± of gluing maps, then we can obtain
any other such pair by composing with automorphisms (in the sense of Section 2B)
of the boundary fibrations w0 : ∂±W → S1. Obviously, isotopic gluing maps give
rise to equivalent simple wrinkled fibrations and the gluing ambiguities are a priori
parametrized by

π0
(
Aut(∂+W, w)

)
×π0

(
Aut(∂−W, w)

)
.

However, it turns out that the first factor can be eliminated.

Lemma 3.34. Let w :W → A be an annular simple wrinkled fibration. Then any
fiber-preserving diffeomorphism of ∂+W extends to a self-equivalence of w.

Proof. By Theorem 1.1 we can assume that w is built from a twisted surface
diagram S= (6, 0,µ) such that ∂+W =6(µ). According to (2-6) there are two
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Figure 11. The relevant regions for extending nonconstant automorphisms.

types of automorphisms of 6(µ), the constant ones coming from CMod(6)(µ) and
the nonconstant ones originating from π1(Diff(6), id). The statement that constant
automorphisms of ∂+W extend to self-equivalences of w is just a reformulation of
Lemma 3.32. Thus it remains to treat the nonconstant ones.

By Theorem 2.10 these only occur when 6 has genus one; we can thus assume
that 6 = T 2. A refinement of Theorem 2.10 states that the map

(3-4) π1
(
Diff(T 2), id

)
→ π1(T 2, x),

which sends an isotopy to the path traced out by a base point x ∈ T 2 during that
isotopy, is an isomorphism; see [Earle and Eells 1969]. Note the first two curves
in 0, say c1 and c2, generate the fundamental group of T 2. Hence, we only have to
extend the automorphisms coming from generators of π1

(
Diff(T 2), id

)
that map

to c1 and c2 in (3-4). If we parametrize the torus by S1
× S1
⊂C2 such that S1

×{1}
maps to c1 and {1}× S1 maps to c2, then such generators are given by

hc1
t (ξ, η) := (e

2π i tξ, η) and hc2
t (ξ, η) := (ξ, e2π i tη) (t ∈ [0, 1])

and we denote the corresponding automorphisms of 6(µ) by

ϕi (x, t) :=
(
hci

t (x), t
)
.

In order to extend ϕi to WS we take one step back and homotope the path hci to
be constant outside the interval where the 2-handle corresponding to ci is attached.
These intervals (times [0,1]) are highlighted in Figure 11. Outside the preimage of
the regions shown in Figure 11 we can simply extend ϕi as the identity. In these
region, observe that hci

t fixes ci setwise at all times, it just rotates it more and more
as t increases. It is easy to see that these rotations can be extended across the
2-handles in a way that respects the fibration structure. �

Remark 3.35. The genus-one case of Example 3.7 shows that this Lemma does
not hold in the absence of cusps. The above proof breaks down at the point where
we need the vanishing cycles to generate the fundamental group.
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4. Simple wrinkled fibrations over the disk and the sphere

We now leave the general theory behind and focus on untwisted surface diagrams,
that is, pairs S= (6, 0) where 0 is a closed circuit in 6, which we refer to simply
as surface diagrams from now on. This will not lead to confusion since we will not
encounter any twisted diagrams anymore.

By the results of the previous section, a surface diagram S corresponds to an
annular simple wrinkled fibration whose higher-genus boundary component has
trivial monodromy. In fact, the higher-genus boundary of wS :WS→ S1

×[0, 1]
as constructed in Proposition 3.31 is canonically identified with the trivial fibra-
tion 6× S1. We can thus fill this boundary component with 6× D2 using some
fiber-preserving diffeomorphism of6×S1 to obtain a simple wrinkled fibration over
the disk. We denote the fibration obtain by gluing with the identity bywS : ZS→D2

or, by a slight abuse of notation, simply by ZS with the map to the disk implicitly
understood. Since the boundary of the disk is contained in the lower-genus region,
we refer to such fibrations as descending simple wrinkled fibrations (over the disk).
According to Lemma 3.34, different gluing diffeomorphisms give rise to simple
wrinkled fibrations equivalent to ZS. We have thus established the following:

Proposition 4.1. There is a bijective correspondence between the respective equiv-
alence classes of (untwisted) surface diagrams and descending simple wrinkled
fibrations over the disk.

To make the connection to simple wrinkled fibrations over S2, recall that by
construction the boundary of ZS fibers over the circle. For the moment, let us
say that S has trivial monodromy if this boundary fibration is trivial (this will
be made more precise in Definition 4.4 below). In this situation we can close off
to a simple wrinkled fibration over S2 by proceeding as above. More precisely,
for a fixed boundary fiber 6′ in ZS we can choose a fiber-preserving diffeomor-
phism ϕ :6′× S1

→ ∂ZS and fill the boundary of ZS with a copy of 6′×D2. The
result is a closed 4-manifold Xϕ

S= ZS∪ϕ6
′
×D2 equipped with a simple wrinkled

fibration over S2 which we denote bywϕS. Unfortunately, this gluing process is more
delicate. The main problem is that there is no canonical choice for ϕ; moreover, if
the genus of 6′ is low, then different choices can lead to inequivalent fibrations.
Combining Proposition 4.1 with the discussion in Section 3D and Theorem 2.10
leads to the cleanest possible statement:

Corollary 4.2. Let g > 0 be a positive integer.

(1) For g ≥ 3 there is a one-to-one correspondence between equivalence classes of
genus g surface diagrams with trivial monodromy and genus g simple wrinkled
fibrations over S2.
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(2) For g = 2 (respectively g = 1) the set of equivalence classes of genus g
simple wrinkled fibrations over S2 with equivalent surface diagrams admits a
transitive action of Z⊕Z (respectively Z2).

Recall that, according to Theorem 3.8, we can obtain all closed, oriented, smooth
4-manifolds from surface diagrams by the above process. It is thus of great interest
to understand which surface diagrams have trivial monodromy and actually describe
closed 4-manifolds. The following example indicates that most surface diagrams
will not have trivial monodromy.

Example 4.3. Let 6 be a closed, orientable surface together with a mapping
class φ ∈Mod(6). Then any factorization of µ into positive Dehn twists yields a
Lefschetz fibration over the disk whose boundary can be identified with the mapping
torus 6(φ)= (6×[0, 1])/(x, 1)∼ (φ(x), 0). As in Example 3.6 we can turn this
Lefschetz fibration into a descending simple wrinkled fibration without changing
the boundary. Thus any surface bundle over the circle (with closed fibers) bounds
some descending simple wrinkled fibration over the disk and any mapping class
can be realized as the monodromy of a surface diagram.

In fact, the situation is very similar to the theory of Lefschetz fibrations. Any
word in positive Dehn twists (or, equivalently, a finite sequence of simple closed
curves) on a closed, oriented surface determines a Lefschetz fibration over the disk,
the boundary fibers over the circle with monodromy being given by the product of
the Dehn twists; and if this monodromy is trivial, one can close off to a Lefschetz
fibration over S2. Just as an arbitrary product of Dehn twists will not be isotopic to
the identity, so will a surface diagram not give rise to a simple wrinkled fibration
over S2. The advantage of the Lefschetz setting is the direct control over the
boundary.

4A. The monodromy of a surface diagram. In order to obtain a more intrinsic
description of the boundary of ZS in terms of S we need a little detour. Let a, b⊂6
be a pair of simple closed curves in a surface6 that intersect transversely in a single
point. We denote by 6a and 6b the surfaces obtained by surgery on the curves a
and b, respectively. To be concrete, we fix tubular neighborhoods νa and νb and
consider6a (respectively6b) as the result of filling in the two boundary components
of 6 \νa (respectively 6 \νb) with disks. We can assume that ν(a∪b) := νa∪νb
is diffeomorphic to a once punctured torus — for convenience we also assume
that it has a smooth boundary in 6. Observe that 6 \ ν(a ∪ b) has one boundary
component and is contained in both 6a and 6b as a subsurface. Furthermore, the
closure of νb\νa (respectively νa \νb) is a disk in 6a (respectively 6b). It follows
that, up to isotopy, there is a unique diffeomorphism

κa,b :6a→6b
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which restricts to the identity on 6 \ ν(a ∪ b). Furthermore, we can assume that
κa,b maps b \ νa onto a \ νb.

Now let S= (6; c1, . . . , cl) be a surface diagram and consider the associated
simple wrinkled fibration wS : ZS→ D2. Then each adjacent pair of curves ci

and ci+1 fits the above situation and we thus get a collection of diffeomorphisms

κci ,ci+1 :6ci →6ci+1 .

Moreover, it follows from the definition of surface diagrams that the composition

µS := κcl ,c1 ◦ κcl−1,cl ◦ · · · ◦ κc1,c2

maps 6c1 to itself and it is easy to see that its isotopy class does not depend on any
of the implicit choices involved in its definition.

Definition 4.4. The mapping class µS ∈Mod(6c1) represented by the composition
above is called the monodromy of S.

This name is justified by the following lemma.

Lemma 4.5. Let S= (6, 0) be a surface diagram. Then the boundary fibration
(∂ZS, wS) can be identified with the mapping torus 6c1(µS).

Proof. By the construction of wS its fiber over the origin is naturally identified
with 6. Furthermore, recall that the annular fibration associated to S is equipped
with a reference system whose reference paths we can naturally extend from the
annulus to the disk by connecting them to the origin. The result is a collection
of reference paths R1, . . . , Rl from the origin to the boundary of the disk and we
denote its endpoints by θ1 . . . , θl ∈ S1. Observe that such a reference path, say Ri ,
gives rise to an identification of the fiber over θi with the surface 6ci obtained from
surgery on ci where ci is the vanishing cycle associated to Ri .

Now consider the region in the base bounded by two adjacent reference paths Ri

and Ri+1. Using a suitable notion of parallel transport we see that the preimage
of this region contains a trivial bundle with fiber 6 \ ν(ci ∪ ci+1). In particular,
the parallel transport along the boundary segment from θi to θi+1 restricts to the
identity on the complement of ν(ci ∪ ci+1) and thus must be isotopic to κci ,ci+1 and
the claim follows. �

It is also possible to describe the monodromy in terms of the original surface 6.
This takes us on another small detour. Let a ⊂6 be a nonseparating simple closed
curve in a surface 6 and let Mod(6, a) denote the subgroup of Mod(6) consisting
of all elements that fix a up to isotopy. Recall that there is a short exact sequence

(4-1) 1−→ 〈τa〉 −→Mod(6, a)
cuta
−→Mod(6 \ a)−→ 1
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where we consider 6 \a as a twice punctured surface (see [Farb and Margalit 2011,
Chapter 3] and also [Ivanov 1992, Section 7.5] for a proof that cuta is well defined).
The complement 6 \ a can be related to the surgered surface 6a as follows. In 6a

there is an obvious pair of points, namely the centers of the surgery disks. If we
denote by6∗a the surface obtained by marking these points, then6\a is canonically
identified (at least up to isotopy) with 6∗a and thus Mod(6 \ a) is canonically
isomorphic to Mod(6∗a ). Hence, we can define the surgery homomorphism

8a :Mod(6, a)→Mod(6a)

as the composition

Mod(6, a)

8a

,,
cuta

// Mod(6 \ a)
∼=

// Mod(6∗a ) forget
// Mod(6a)

where the last map is induced by forgetting the marked points in 6∗a .
Applying this to surface diagram we obtain the following.

Lemma 4.6. Let S= (6; c1, . . . , cl) be a surface diagram. Then

µ̃S := ττcl (c1) ◦ ττcl−1 (cl ) ◦ ττc1 (c2) ∈Mod(6)

is contained in Mod(6, c1) and satisfies 8c1(µ̃S)= µS.

Proof. Since ci and ci+1 are geometrically dual, the mapping class ττcl−1 (cl ) has a
representative T ∈Diff+(6) that maps ci to ci+1 (as a set). The claim then follows
from the observation that the diagram

6

ττci (ci+1)

��

6 \ ci

T
��

oo // 6∗ci

κci ,ci+1

��
6 6 \ ci+1oo // 6∗ci+1

commutes up to isotopy. �

The above makes it interesting to study the map 8c1 and its kernel.

Lemma 4.7. Let a ⊂ 6 be a nonseparating simple closed curve. The group
Mod(6, a) is generated by elements of the form τc and 1a,b := (τaτb)

3, where
i(a, c)= 0 and i(a, b)= 1.

We refer to the mapping classes 1a,b as 1-twists. Note that 1-twists are defined
for arbitrary pairs of geometrically dual curves and do not have to involve the
curve a in the above Lemma.

Proof. It follows from the short exact sequence (4-1) that we can obtain a generating
set for Mod(6, a) by lifting a generating set for Mod(6 \ a) and adding the Dehn
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twist about a. As a generating set for Mod(6 \ a) we can take the collection Dehn
twists and so called half-twists about simple arcs connecting the two punctures.
Then the Dehn twists in Mod(6 \a) have obvious lifts in Mod(6) and it is easy to
see that each half-twist lifts to a 1-twist. �

Corollary 4.8. The kernel of 8a : Mod(S, a) → Mod(6a) contains the Dehn
twist τa as well as all 1-twists involving a.

The expert will have noticed that the mapping class µ̃S in Lemma 4.6 is simply
the monodromy of the boundary of the Lefschetz part of the simplified broken
Lefschetz fibration obtained from wS by unsinking all the cusps. Of course, there
are many different lifts of µS to Mod(6). For example, it follows from the braid
relations for the pairs of adjacent curves that

µ̃S = τ
−c
c1
(τcl τc1)(τcl−1τcl ) . . . (τc1τc2)

= τ−2c
c1

(τcl τc1τcl )(τcl−1τcl τcl−1) . . . (τc1τc2τc1)

and since τc1 is contained in the kernel of 8c1 we obtain two other choices. To
illustrate these mapping class group techniques we produce some examples of
surface diagrams with trivial monodromy.

Example 4.9. Given a not necessarily closed circuit 0= (c1, . . . , cl) in an oriented
surface6 we can form a closed circuit D0 := (c1, . . . , cl−1, cl, cl−1, . . . , c2) which
we call the double of 0. We claim that the surface diagram DS := (6, D0) has
trivial monodromy. For convenience let us write τi = τci . As explained above the
monodromy of DS can be lifted to Mod(6) as

µ= (τ2τ1τ2) . . . (τl−2τl−1τl−2)(τl−1τlτl−1)(τlτl−1τl)(τl−1τl−2τl−1) . . . (τ1τ2τ1)

= (τ2τ1τ2) . . . (τl−2τl−1τl−2)1cl−1,cl (τl−1τl−2τl−1) . . . (τ1τ2τ1).

Our goal is to factor this expression into a sequence of 1-twists involving c1. The
key observation is that

(τl−2τl−1τl−2) 1cl−1,cl (τl−1τl−2τl−1)

= (τl−2τl−1τl−2) 1cl−1,cl (τl−2τl−1τl−2)

= (τl−2τl−1τl−2) 1cl−1,cl (τl−2τl−1τl−2)
−1 1cl−2,cl−1

=1τl−2τl−1τl−2(cl−1),τl−2τl−1τl−2(cl ) 1cl−2,cl−1

=1cl−2,τl−2τl−1τl−2(cl ) 1cl−2,cl−1 .

Applying this repeatedly we eventually obtain

µ=1c1,δl1c1,δl−1 . . . 1c1,δ2,
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where δk := τ1τ2τ1 . . . τk−2τk−1τk−2(ck). Hence, the monodromy of DS is trivial
by Corollary 4.8.

It is also possible to show that DS has trivial monodromy by directly construct-
ing a simple wrinkled fibration over S2. This construction will also justify our
terminology. The key observation is that, even if 0 is not closed, the ideas in the
proof of Proposition 3.31 can be used to build a wrinkled fibration over the disk.

Indeed, by attaching 2-handles to 6× D2 along the fiber framed curves ci in
boundary fibers ordered according to the orientation of S1 we obtain a 4-manifold
with boundary P0 together with a map to the disk which has an arc of folds for each
2-handle and each arc gives rise to a pair of Morse critical points on the boundary.
As in the third step of the proof of Proposition 3.31 we can trade pairs of critical
points on the boundary coming from ci and ci+1, i < l, for cusps in the interior.
What remains is a wrinkled fibration on P0 over the disk with two critical points on
the boundary, one coming from c1 and the other from cl . Of course, if 0 is closed,
then P0 is diffeomorphic to ZS where S= (6, 0), but the corresponding map to
the disk is different.

If we apply this construction to the reversed circuit 0 = (cl, . . . , c1), then we
obtain another 4-manifold P0 and it is easy to see that the self-diffeomorphism
of 6× D2 which sends (p, x) to (p,−x) induces an orientation-preserving diffeo-
morphism from P0 to P0 . We thus obtain a wrinkled fibration on P0 and the identity
map of ∂P0 provides an orientation-reversing and fiber-preserving diffeomorphism
of the boundary fibrations on P0 and P0 . Hence, the fibrations on P0 and P0 give
rise to a wrinkled fibration over S2 on the double D P0 = P0 ∪id P0 which turns
out to be a simple wrinkled fibration with surface diagram DS.

4B. Drawing Kirby diagrams. In this section we show how to translate surface
diagrams into Kirby diagrams of the associated simple wrinkled fibrations. For the
necessary background we refer the reader to [Gompf and Stipsicz 1999]. Throughout,
we use Akbulut’s dotted circle notation for 1-handles to avoid ambiguities for
framing coefficients.

Descending simple wrinkled fibrations. Let wS : ZS→ D2 be a descending simple
wrinkled fibration of genus g with surface diagram S= (6g; c1, . . . , cl). Recall
that the associated handle decomposition of Z is obtained from (some handle
decomposition of) 6g × D2 by attaching 2-handles along ci ⊂6g ×{θi } with the
fiber framing where θ1, . . . , θl ∈ S1 are ordered according to the orientation on S1.
So in order to draw a Kirby diagram for ZS we need to find a diagram for 6× D2

in which the fibers of the boundary should be as clearly visible as possible.
A convenient choice is the diagram shown in Figure 12 which is induced from

the obvious handle decomposition of 6g with one 0-handle, 2g 1-handles and one
2-handle. One fiber of 6g × S1, which we identify with 6g, is clearly visible and
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Figure 12. A diagram for 6g × D2 where fiber and blackboard
framing agree. The red curves show a basis for H1(6g).

the canonical generators a1, b1, . . . , ag, bg for H1(6g) are also indicated. We have
chosen the orientations such that 〈ai , bi 〉6g = 1. Another advantage of this picture
is that the fiber framing agrees with the blackboard framing. One minor drawback
is that the picture does not immediately show all fibers of 6g × S1 but only an
interval worth of them (just thicken the surface a little). However, this is actually
enough for our purposes since we only need the fibers over the interval [θ1, θl] ⊂ S1.
To get the orientations right we require that the orientation of the fiber agrees with
the standard orientation of the plane and, according to the “fiber first convention”,
the positive S1-direction points toward the reader.

With this understood, it is easy to locate the attaching curves of the fold handles in
the diagram and it remains to determine their framing coefficients. More generally,
we can describe the linking form of the link corresponding to the fold handles.
It should be no surprise that the framing and linking information in the diagram
depends on our choice of the handle decomposition for 6g.

Let c⊂6g be a simple closed curve. After choosing an orientation its homology
class [c] ∈ H1(6) can be expressed as

[c] =
g∑

i=1

(
nai (c) ai + nbi (c) bi

)
.

We identify 6g with 6g × {0} and, by a slight abuse of notation, we continue to
denote the canonical push-off of c to 6g ×{z}, z ∈ D2, by c.

Lemma 4.10. For a simple closed curve c⊂6g×{θ}, θ ∈ [θ1, θl]⊂ S1, the framing
coefficient of the fiber framing in Figure 12 is given by

(4-2) fr(c)=
g∑

i=1

nai (c)nbi (c).
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Figure 13. An intersection in a surface diagram and its crossing
in the Kirby diagram.

Furthermore, if c ⊂ 6g × {θ} and c′ ⊂ 6g × {θ
′
} are two oriented simple closed

curves, with θ, θ ′ ∈ [θ1, θl], their linking number in Figure 12 is

(4-3) lk(c, c′)= 1
2 sgn(θ − θ ′)〈c, c′〉+ 1

2

g∑
i=1

(
nai (c)nbi (c

′)+ nai (c
′)nbi (c)

)
,

where 〈c, c′〉 is the algebraic intersection number of c and c′ in 6g and sgn denotes
the sign of a real number.

Proof. First observe that c ⊂ 6g × {θ} can be isotoped off the 2-handle of 6g

so that it becomes completely visible in Figure 12 and, since the fiber framing
and blackboard framing agree, its framing coefficient is given by its writhe in the
diagram — the signed count of crossings with some chosen orientation. From the
way the diagram is drawn it is clear that each crossing is caused by c running over ai

and bi for some i and that their signed sum is given by the right side of (4-2).
The statement about linking numbers follows from a similar count of crossings.

Recall that the linking number of two oriented knots can be computed from any link
diagram as half of the signed number of crossings. The second term on the right
side of (4-3) arises just as above. However, the first term deserves some explanation.
Each (transverse) intersection point of c and c′ in 6g contributes a crossing in the
diagram. Now, the sign of the crossing depends on two things: the sign of the
intersection point and the information which strand is on top in the diagram. From
Figure 13 we see that the contribution of each crossing is exactly as in (4-2). �

Remark 4.11. Formula (4-3) can be used to obtain a description of the intersection
form of the 4-manifold ZS using only the data in S. Also, since (4-3) only depends
on the homology classes of the curves in S, so do the intersection form and, in partic-
ular, the signature of ZS. We will return to this observation in a future publication.

The diagrams of simple wrinkled fibrations derived from Figure 12 are good
for abstract reasoning, however, in practice it is convenient to start with a cleaner
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Figure 14. A cleaner diagram of 6g × D2.

diagram for 6g × D2 such as the one shown in Figure 14. In this picture, the fiber
appears as the boundary sum of regular neighborhoods of the basis curves

{
a′i , bi

}g
i=1

which, in turn, appear as meridians to the dotted circles. The framing coefficient of
the fiber framing for simple closed curves on a fiber in Figure 14 can be computed
as follows. It is not hard to see that Figure 14 is obtained from Figure 12 by a
sequence of 1-handle slides and an isotopy of the 2-handle and vice versa. Note
that these moves do not change the framing coefficients of any other 2-handles that
might have been around. Moreover, during the moves, the b-curves remain fixed,
while the a-curves undergo some changes. When pulling a′i in Figure 14 back to
Figure 12 one obtains a representative for the element

[a1, b1] ∗ · · · ∗ [ai−1, bi−1] ∗ ai ∈ π1(6g)

where [x, y] = xyx−1 y−1. The important observation is that while this curve is
not isotopic to ai it does represent the same homology class. As a consequence,
formula (4-2) can be used for Figure 14 with ai replaced by a′i .

Closing off and the last 2-handle. Recall that our motivation comes from Williams’
theorem that all closed, oriented 4-manifolds admit simple wrinkled fibrations
over S2. We have seen that these can be described (up to equivalence) by surface
diagrams with trivial monodromy and we have already mentioned that it is in general
not easy to check whether the monodromy of a given surface diagram is trivial. But
the situation is even worse. Say that we know for some reason that a given surface
diagram has trivial monodromy and let us also assume that the genus is at least
three so that there are no gluing ambiguities. Even in this case it is not clear at all
how the surface diagram encodes the information to complete the Kirby diagram.

To be more precise, let w : X→ S2 be a simple wrinkled fibration with surface
diagram S. Let ν6− be a neighborhood of a lower-genus fiber and let Z := X \ν6−.
Then w restricts to a descending simple wrinkled fibration on Z and ∂Z can be
identified with 6−× S1 so that S must have trivial monodromy. We can draw a
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Kirby diagram for Z as described in the previous section and to complete it to a
diagram for X we have to understand how to glue ν6− back in.

We can choose a handle decomposition for ν6− with one 0-handle, 2g(6−)
1-handles and one 2-handle. Turning this upside down results in a relative handle
decomposition on ∂Z ∼= 6− × S1 with one 2-handle, 2g(6−) 3-handles and a
4-handle. The general theory tells us that the 3- and 4-handles attach in a standard
way once we know how to attach the 2-handle. Unfortunately, it turns out to be
rather difficult to locate this last 2-handle in the Kirby diagram for Z .

Our knowledge about the last 2-handle is a priori limited to the following ob-
servation. If we identify ν6− with 6−× D2, then the attaching curve of the last
2-handle corresponds to {p}× ∂D2 for some p ∈6−. In particular, we see that it
must be attached along a section of the boundary fibration (∂Z , w).

Remark 4.12. Given a surface diagram S with trivial monodromy there is a general
method for finding possible last 2-handles for ZS which is not very conceptual
but still useful in some situations. One considers a Kirby diagram for ZS as a
surgery diagram for ∂ZS and performs (3-dimensional) Kirby moves until the
fibration structure is clearly visible as 6− × S1. In such a diagram it is easy to
locate attaching curves for possible last 2-handles which one can then pull back to
the original diagram by undoing the moves and dragging the curves along. This
strategy also works for Lefschetz fibrations as discussed in [Gompf and Stipsicz
1999, Chapter 8.2].

Just as in the Lefschetz case, the situation becomes easier if one knows that ZS

can be closed off to a fibration over S2 which admits a section. The proof of the
following lemma is the same as in the Lefschetz case and we refer the reader to
[Gompf and Stipsicz 1999].

Lemma 4.13. Let w : X → S2 be a simple wrinkled fibration with surface dia-
gram S. Ifw admits a section of self-intersection k, then the last two handle appears
in the diagram for ZS as a k-framed meridian of the 2-handle corresponding to the
fiber. Furthermore, if S is a surface diagram and a meridian as above can be used
to attach the last 2-handle, then the corresponding simple wrinkled fibration admits
a section of self-intersection k.

In order to illustrate Remark 4.12 and Lemma 4.13 as well as our method of
drawing Kirby diagrams we give an example which is also a warm-up for the next
section.

Example 4.14. Let a, b⊂6g be a geometrically dual pair of simple closed curves.
We claim that S= (6g; a, τb(a), b) is a surface diagram for 6g−1× S2 # CP2. We
can assume that a and b are the standard generators a1 and b1 in Figure 14 and
Figure 15 shows the final Kirby diagram. In order to see how we got there let us first
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Figure 15. Manifolds with surface diagram (6g; a, τb(a), b).

ignore all the blue components. What is left is just the Kirby diagram for ZS. The
framings on the fold handles can either be computed using Lemma 4.10 (together
with Proposition 2.7) or by hand (the curve is simple enough to draw a parallel
push-off in the fiber direction and compute the linking number). We now perform
the obvious handle moves: using the meridians to the two 1-handles on the left
we first unlink the −1-framed fold handle (corresponding to τb(a)) to obtain a
−1-framed unknot isolated from the rest of the diagram, then we unlink the black
2-handle (corresponding to the fiber) and finally cancel the 1-handles and their
meridians. Obviously, the thus obtained diagram shows 6g−1 × D2 # CP2 and
the boundary is clearly visible as 6g−1× S1. Moreover, it is easy to see that the
last 2-handle can be attached along a 0-framed meridian to the fiber 2-handle and
the resulting manifold is 6g−1× S2 # CP2 as claimed. Finally, since we attached
the last 2-handle in a region that was not affected by the Kirby moves it will not
change when we undo the moves again and we arrive at Figure 15. Lemma 4.13
then tells us that the corresponding simple wrinkled fibration will have a section of
self-intersection zero.

Note that for g ≥ 3 any other choice for the last 2–handle that might have
been possible leads to an equivalent fibration whose total space is diffeomorphic
to 6g−1× S2 # CP2. In the lower-genus cases there are more options. However, in
any case one will end up with a blow-up of some surface bundle over S2.

4C. Relation to broken Lefschetz fibrations. Let w : X→ B be a simple wrinkled
fibration. After trading all the cusps for Lefschetz singularities by applying Lekili’s
unsinking modification we obtain a broken Lefschetz fibration

βw : X→ B

with one round singularity, smoothly embedded in the base, and all its Lefschetz
points on the higher-genus side. If the base is the sphere or the disk, then βw is a
simplified broken Lefschetz fibration in the sense of [Baykur 2009] and thus induces
another handle decomposition of X .
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In order to relate these two handle decompositions, let us briefly review how a
simplified broken Lefschetz fibration β : X→ B gives rise to a handle decomposi-
tions. Much in the spirit of simple wrinkled fibrations one chooses a reference point
in the higher-genus region together with a collection of disjointly embedded arcs
L1, . . . , Lk, R ⊂ B, where k is the number of Lefschetz singularities, emanating
from the reference point such that each L i ends in a Lefschetz point and R passes
through the round singularity once. Such a system of arcs is known as a Hurwitz
system for β. The arcs in a Hurwitz system then give rise to simple closed curves
in the reference fiber 6 to which we shall refer to as the Lefschetz vanishing
cycles λ1, . . . , λk ⊂6 and the round vanishing cycle ρ. A handle decomposition
of X is then given as follows:

• Start with 6× D2.

• Going around S1, attach a Lefschetz handle along the λi pushed off into fibers
over S1 (that is, 2-handles with framing −1 with respect to the fiber framing).

• Attach a round 2-handle along ρ.

The round 2-handle decomposes into a 2-handle and a 3-handle such that the 3-
handle goes over the 2-handle geometrically twice and the 2-handle is attached
along ρ with respect to the fiber framing. (For more details see [Baykur 2009].)

Now let w : X→ B be a simple wrinkled fibration and let βw be the associated
simplified broken Lefschetz fibration. Given a reference system R = {Ri } for w
with associated surface diagram (6, 0) there is a canonical Hurwitz system for βw.
Since the unsinking homotopy is supported near the cusps we can assume that the
nothing happens around the reference paths. Now observe that the arcs Ri cut the
higher-genus region into triangles each containing a single Lefschetz singularity
of βw. Thus, up to isotopy, there is a unique arc L i in the triangle bounded by Ri

and Ri+1 going from the reference fiber to the Lefschetz singularity and for the
round singularity we take the arc R= R1. According to Lekili [2009], the vanishing
cycles of βw with respect to this Hurwitz system are given by

λi = τci (ci+1) and ρ = c1.

We can go from the handle decomposition induced by βw to the one induced by w
using the following handlebody interpretation of the (un)sinking deformation.

Assume that we have a Lefschetz singularity next to a fold arc that is sinkable,
that is, the Lefschetz and fold vanishing cycles intersect in one point. (In other
words, it is the resulting of unsinking a cusp.) In terms of handle decompositions
the situation before and after the sinking process is locally described in Figure 16.
(These handle decompositions have already appeared in a disguised form in [Lekili
2009].) Clearly, both pictures describe a 4-ball and they are related by an obvious
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Figure 16. A Lefschetz singularity before and after sinking. (The
Lefschetz 2-handle on the left runs over both 1-handles. One readily
checks that it is correctly framed.)

2-handle slide. Indeed, to go from (a) to (b) one has to slide the Lefschetz handle
over the fold handle in such a way that it unlinks from the lower 1-handle. Note
that his handle slide is compatible with the fibration structures in the sense that the
attaching curves stay on the fibers. Moreover, it mysteriously adjusts the framings
exactly as needed.

Remark 4.15. Although the handle slide described above seems to be a correct
interpretation of Lekili’s (un)sinking deformation it is a priori not obvious why this
should be true. In fact, the deformation is a combination of wrinkling, merging
and flipping (see [Lekili 2009, Figure 8]) and does not seem very atomic. On the
other hand, the handle slide is an atomic modification of the handlebodies. It would
be interesting to see a 1-parameter family of Morse functions associated with the
(un)sinking deformation that would exhibit the handle slide.

This shows that, if we start we the handle decomposition of βw, then sliding λ1

over ρ = c1 produces a fiber framed attaching curve λ′1 which is isotopic to c2.
Successively sliding λi over λ′i−1 ∼ ci results in fiber framed attaching curves λ′i
isotopic to ci+1. Altogether we end up with fiber framed curves λ′1, . . . , λ

′

l, ρ. The
final observation is that λ′l is isotopic to ρ= c1 and can be unlinked and isolated from
the rest of the diagram to form a zero framed unknot which cancels the 3-handle
coming from the round singularity. What we are left with is the decomposition
associated to w.

5. Substitutions

Let S= (6, 0) be a surface diagram and let 3 be a subcircuit of 0. If 3′ is any
circuit that starts and ends with the same curves as 3, then we can build a new
surface diagram (6, 0′) where 0′ is obtained by replacing 3 with 3′. We call
this operation a substitution of type (3|3′). Similar substitution techniques for
Lefschetz fibrations are studied in [Endo and Gurtas 2010; Endo et al. 2011].
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Passing to the associated simple wrinkled fibrations one can ask how such a
substitution affects the total spaces. In the following we treat two instances in
which this question can be answered. Our main tools are the handle decompositions
exhibited in the previous section.

Let Z be a compact 4-manifold, possibly with nonempty boundary. Recall that
the operations of taking connected sums with CP2 and62

×S2 (taken in the interior
of Z ) are commonly known as blow-up and sum stabilization. We will be slightly
more general and also call connected sums with CP2 blow-ups and connected sums
with CP2#CP2, the twisted S2-bundle over S2, sum stabilizations. For convenience,
we let

Sk :=

{
S2
× S2 for k even,

CP2 # CP2 for k odd,

and note that Sk is described by the (0, k)-framed Hopf link.

Lemma 5.1 (blow-ups and sum stabilizations). Let S= (6, 0) be a surface dia-
gram and let S′ be obtained from S by a substitution of type

(5-1)
(
a, b | a, τ±1

b (a), b
)
.

Furthermore, let S′′ be obtained by a substitution of type

(5-2)
(
a, b | a, b, τ k

b (a), b
)
.

Then ZS′ is diffeomorphic to the blow-up ZS #∓CP2 and ZS′′ is diffeomorphic to
the sum stabilization ZS # S−k .

Of course, any substitution is reversible so that whenever a surface diagram
contains a configuration of the form (a, τ±1

b (a), b) or (a, b, τ k
b (a), b) the associated

4-manifold must be a blow-up or sum stabilization, respectively. We will call these
blow-up (respectively sum stabilization) configurations.

Proof. By switching we can assume that 0 = (. . . , a, b), so 0′(. . . , a, τ±1
b (a), b)

and 0′′ = (. . . , a, b, τ k
b (a), b). Figure 17 shows the relevant parts of the handle

decompositions of the associated 4-manifolds. The shaded ribbons indicate the
regions that contain all the other fold handles. Note that the curves a and b appear
as 0-framed meridians to the dotted circles.

In the case of ZS′ we can use the meridians to unlink the curve corresponding
to τ±b (a) resulting in an unknot with framing ∓1 which is isolated from the rest of
the diagram. Furthermore, the rest of the diagram agrees with the diagram for ZS

and the claim follows.
The argument for ZS′′ is almost the same. Again, by sliding over the meridians

we can isolate the curves corresponding to b and τ k
b (a) from the rest of the diagram.

This time we obtain a (0,−k)-framed Hopf link that represents a copy of S−k . �
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Figure 17. The relevant parts of the handle decompositions of ZS,
ZS′ and ZS′′ . All 2-handles without framing coefficient are 0-
framed.

Proposition 5.2. Let S, S′ and S′′ be as in Lemma 5.1.

(1) All three diagrams have the same monodromy.

(2) If S has trivial monodromy so that ZS closes off to a closed 4-manifold X ,
then ZS′ closes off to X #∓CP2 and ZS′′ closes off to X # Sk .

(3) Any closed 4-manifold obtained from S′ (resp. S′′) is a blow-up (resp. sum
stabilization) of a manifold obtained from S.

Proof. The first statement follows directly from Lemma 5.1 since connected sums
with closed manifold (taken in the interior) do not change the boundary.

For the other statements, observe that if one knows how to apply the method
from Remark 4.12 for S, then one also knows it for S′ and S′′, and vice versa. �

Another instance where a substitution corresponds to a well known cut-and-paste
operation was observed in [Hayano 2012, Lemma 6.13]. Assume that a surface
diagram S contains a curve c ⊂6. If d ⊂6 is geometrically dual to c, then one
can perform a substitution of type (c | c, d, c) and Hayano shows that if S′ denotes
the resulting surface diagram, then ZS′ is obtained from ZS by a surgery on the
curve δ ⊂6 ⊂ ZS with respect to its fiber framing, that is, the framing induced by
the its canonical framing in 6 together with the framing of 6 in ZS as a regular
fiber of wS : ZS→ D2.

One immediately notices that our sum-stabilization substitution is a special
case of this construction. However, it also paves the way for the following minor
generalization of the surgery substitution which captures not only the fiber framed
surgery but also the one with the opposite framing. (Recall that an embedded circle
in an orientable 4-manifold always has trivial normal bundle and there are exactly
two framings, since π1(SO(3))∼= Z2.)
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Figure 18. Hayano’s surgery substitution: neighborhoods with
vanishing cycle c (left) and vanishing cycles c, d, c (right).

Lemma 5.3. Let S and S′ be two surface diagrams with the same underlying
surface 6 and let c, d ⊂ 6 be a geometrically dual pair of simple closed curves.
If S′ is obtained from S by a substitution of type (c | c, τ k

c (d), c), then ZS′ is
obtained from ZS by a surgery on d ⊂ 6 ⊂ X with respect to the fiber framing
when k is even and the opposite framing when k is odd.

Proof. As in Hayano’s proof, it is enough to work in a neighborhood of c∪d which
we can assume to be a punctured torus. Using our handle decomposition instead of
the ones from broken Lefschetz fibrations, the effect of Hayano’s surgery substitu-
tion, that is, the case when k = 0, looks as in Figure 18, where c (respectively d)
appears as the meridian of the upper (respectively lower) 1-handle. To obtain
the other even cases, observe that in Figure 18, right, we can slide the 2-handle
corresponding to d once over each 2-handle corresponding to c in the same direction.
Depending on the direction this changes the framing coefficient by ±2 and one
readily checks that the resulting diagram shows a neighborhood with vanishing
cycles (c, τ∓2

c (d), c). Repeating this trick one can obtain all configurations with
even k and they will all describe the fiber framed surgery on d .

As shown in [Gompf and Stipsicz 1999, Example 8.4.6] the surgery with the
opposite framing can be realized by inserting a pair of a Lefschetz vanishing cycle
and an achiral Lefschetz vanishing cycle which are both parallel to d . But Figure 19
shows that the result is the same as a substitution of type (c | c, τ−1

c (d), c) which
corresponds to k = −1. Moreover, the arguments for shifting the value of k by
multiples of 2 works just as in the fiber framed case. �

Using Lemma 5.3, the sum stabilization can be interpreted as performing surgery
on a null-homotopic curve with either of its framing. Indeed, as d one takes one of
the adjacent vanishing cycles of c in S which is clearly null-homotopic in ZS.

It would be interesting to interpret other cut-and-paste operations on 4-manifolds
as substitutions in surface diagrams. For example, it is reasonable to expect such



300 STEFAN BEHRENS

Figure 19. Surgery with the opposite framing.

an interpretation for certain rational blow downs which can be described in terms
of Lefschetz fibrations; see [Endo et al. 2011]. However, we settle for blow-ups
and sum stabilizations in this paper.

6. Manifolds with genus-one simple wrinkled fibrations

In this section we prove Theorem 1.2. Our strategy is to use Proposition 5.2
to construct some genus-one simple wrinkled fibrations and then show that this
construction gives all such fibrations.

We begin with the construction of genus-one simple wrinkled fibrations over S2.
As before, we denote by Sk the closed 4-manifolds described by the (0, k)-framed
Hopf link and we define a family of manifolds

(6-1) Xklmn = Sk # l(S2
× S2) # mCP2 # nCP2, k ∈ {0, 1} , l,m, n ≥ 0.

Note that these are precisely the manifolds in Theorem 1.2. Recall that Sk is an S2-
bundle over S2. By performing a birth on a suitable bundle projection Sk→ S2 we
obtain a simple wrinkled fibration with two cusps. We can then use Proposition 5.2
to add the other summands at will. Thus, in order to prove Theorem 1.2, it remains
to show the following.

Proposition 6.1. Let w : X → S2 be a simple wrinkled fibration of genus one.
Then X is diffeomorphic to some Xklmn described in (6-1).

Remark 6.2. The reason for our small reformulation of Theorem 1.2 is that, while
the original formulation is cleaner, the new one is more in tune with the structure
of the proof.

The key to the proof of Proposition 6.1 is the simple nature of simple closed curves
on the torus. Indeed, the two facts that two oriented simple closed curves on the torus
are isotopic if and only if they are homologous and that the (absolute value of the)
algebraic and geometric intersection numbers agree allow us to transfer the whole
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discussion of genus 1 surface diagrams into the homology group H1(T 2)∼= Z⊕Z

simply by choosing orientations on the curves. Building on this observation we
obtain the following result about the structure of genus-one surface diagrams.

Lemma 6.3. Any closed circuit on the torus of length at least three contains blow-up
or sum stabilization configurations (as described in Lemma 5.1).

Proof. Let 0 = (c1, . . . , cl) be a (not necessarily closed) circuit on the torus of
length c ≥ 3. As usual, we choose an arbitrary orientation on c1 and orient the
remaining curves by requiring that 〈ci , ci+1〉 = 1 for i < l so that we can consider
each ci as an element of H1(T 2).

We first observe that, since any two adjacent curves in 0 are algebraically dual,
they form a basis of H1(T 2). In particular, for i ≥ 3 we can write

ci = ki ci−1− ci−2, ki ∈ Z

where the coefficient of ci−2 determined by our convention that 〈ci−1, ci 〉 = 1.
This shows that if we denote by σi := 〈c1, ci 〉 the algebraic intersection number
between c1 and ci , then we obtain a recursive formula

(6-2) σi = kiσi−1− σi−2

for i ≥ 3 with initial values σ1 = 0 and σ2 = 1. At this point we note that 0 is
closed if and only if |σl | = 1.

We claim that if |ki | ≥ 2 for all i ≥ 3, then |σi+1|> |σi | for all i . This follows
inductively since |σ2|> |σ1| and from (6-2) we get

|σi+1| = |ki+1σi − σi−1| ≥
∣∣|ki+1||σi | − |σi−1|

∣∣ = |ki+1||σi | − |σi−1| > |σi |,

where we have used the reverse triangle inequality, the induction hypothesis and
the assumption that |ki+1| ≥ 2. As a consequence, we see that if 0 is closed, then
we must have |ki | ≤ 1 for some i ≥ 3.

Assume first that ki = ±1. To keep the notation transparent we momentarily
rename the relevant curves to

(6-3) (ci−2, ci−1, ci )=: (a, ξ, b).

By assumption, b =±ξ − a and thus ξ =±(a+ b) and the orientation convention
shows that 〈a, b〉=±1. By invoking the Picard–Lefschetz formula (Proposition 2.7)
we obtain

τ±1
a (b) = b±〈a, b〉 a = a+ b = ±ξ,

which, after forgetting the orientations again, reveals the excerpt of 0 shown in (6-3)
as a blow-up configuration.

A similar argument exhibits a sum-stabilization configuration in the remaining
case when ki = 0. The details are left to the reader. �
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The proof of Proposition 6.1, and thus of Theorem 1.2, is now very easy.

Proof of Proposition 6.1. Any genus-one simple wrinkled fibration over S2 is
obtained by closing off a manifold ZS associated to a surface diagram S= (T 2, 0).
Moreover, any such diagram S can be closed off since the mapping class group
of the lower-genus fiber is trivial. By Lemma 6.3 and Proposition 5.2(3) we can
successively split off summands of the form ±CP2 and Sk until the remaining
surface diagram, say S0 has a circuit of length two. It is easy to see that ZS0 is the
trivial disk bundle S2

×D2. (Either by drawing a Kirby diagram or by observing that
any simple wrinkled fibration with two cusps is homotopic to a bundle projection.)
Thus there are exactly two ways to close off the fibration, producing a summand of
the form S0 ∼= S2

× S2 or S1 ∼= CP2 # CP2. �

7. Concluding remarks

The theory of simple wrinkled fibrations and surface diagrams is still in a very early
stage and at this point it raises more questions then it provides answers. We would
like to point out what we consider as some of the major problems in the subject as
well as to indicate some further developments.

7A. Closed 4-manifolds. The ultimate goal is to use surface diagrams to study
closed 4-manifolds. Unfortunately, it turns out that most surface diagrams do not
describe closed manifolds since they have nontrivial monodromy and it is usually a
hard problem to determine whether a given surface diagram has trivial monodromy.
The following is thus of great interest.

Problem 7.1. Find at least necessary conditions for a surface diagram to have trivial
monodromy that are easier to check.

The next major problem was already mentioned on page 292. If a surface diagram
of sufficiently high genus is known to have trivial monodromy, then it determines
a unique closed 4-manifold together with a simple wrinkled fibration over S2 by
closing off the associated fibration over the disk. However, for practical purposes
the information on how to close off is encoded too implicitly in the surface diagram.
For example, by simply looking at the surface diagram it not at all clear how to
answer the following very reasonable questions about the corresponding simple
wrinkled fibration over S2:

• Does the fibration have a section?

• What can be said about the homology class of the fiber? Is it trivial, primitive,
torsion, . . . ?

• What is the fundamental group, homology, etc. of the total space?
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What is missing is one more piece of information which is roughly the (framed)
attaching curve of the last 2-handle. One can also reformulate this issue in terms of
mapping class groups (see [Hayano 2012], for example).

Problem 7.2. Find a practical method to determine the missing piece of information
from a surface diagram with trivial monodromy.

7B. Higher-genus fibrations. The fact that any (achiral) Lefschetz fibration can be
turned into a simple wrinkled fibration of one genus higher suggests the philosophy
that simple wrinkled fibrations of a fixed genus might behave similarly as (achiral)
Lefschetz fibrations of one genus lower.

This analogy works rather well for the lowest possible fiber genera. Indeed, our
result about genus-one simple wrinkled fibrations looks very similar to the (rather
trivial) classification of genus zero (achiral) Lefschetz fibrations, the latter being
blow-ups of either S2

× S2 or CP2 # CP2.
Following this train of thought one might hope to be able to say something useful

about the classification of genus two simple wrinkled fibrations over S2 but one
should expect to be lost as soon as the genus is three or higher. However, it is
nonetheless conceivable that part of the classification scheme that works in the
genus-one case might carry over to higher-genus fibrations, as we will now explain.

Let S= (6; c1, . . . , cl) be a surface diagram and assume that for some 2< k < l
the curve ck is geometrically dual to c1. Then there is an obvious way to decom-
poseS into the two smaller surface diagrams (6; c1, . . . , ck) and (6; c1, ck, . . . , cl).
Repeating this process we eventually obtain a decomposition of S into a collection of
surface diagrams with the property that no pair of nonadjacent curves has geometric
intersection number one. Let us call such a surface diagram irreducible.

In terms of the simple wrinkled fibration associated to S the above decomposition
of S should correspond to merging the fold arcs that induce c1 and ck . (As shown
in [Lekili 2009], the necessary and sufficient condition for a fold merge is exactly
that the vanishing cycles of the fold arcs are geometrically dual.) The result is a
wrinkled fibration that naturally decomposes as a boundary fiber sum of the two
simple wrinkled fibrations associated to the parts of the decomposition of S.

This suggests that any descending simple wrinkled fibration over the disk nat-
urally decomposes into a boundary fiber sum of irreducible fibrations where we
call a simple wrinkled fibration irreducible if its surface diagram is irreducible.
Consequently, the classification of descending simple wrinkled fibrations splits into
two parts: the classification of irreducible fibrations and understanding the effect of
boundary fiber sums.

The genus-one classification fits into this scheme as follows. Our arguments
show that the only irreducible surface diagrams of genus-one are given by the
blow-up configurations (a, τ±1

a (b), b) and the sum-stabilization configurations
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(a, b, τ k
b (a), b) for k 6= 1. Using the handle decompositions it is easy to identify

the corresponding manifolds. (They are the connected sum of S2
× D2 with either

±CP2, S2
×S2 or CP2#CP2.) Furthermore, the boundary fiber sums are performed

along spheres and are thus easy to understand.

Making these arguments precise requires an understanding of the effect of merg-
ing folds and cusps on surface diagrams.

7C. Uniqueness of surface diagrams. Given the fact that all closed 4-manifolds
can be described by surface diagrams, it is natural to ask for a set of moves to relate
different surface diagrams that describe the same manifold, similar to the situation
of 3-manifolds and Heegaard diagrams.

A first step in this direction was taken by Williams [2011] who relates the surface
diagrams of homotopic simple wrinkled fibrations over S2 of genus at least three.
He shows that any two homotopic simple wrinkled fibrations can be connected by
a special homotopy that is made up of four basic building blocks. These building
blocks are simple enough to understand their effect on the initial surface diagram
(see also [Hayano 2012]).

So far this is completely analogous to the 3-dimensional context. A new phenom-
enon in the 4-dimensional context is that two simple wrinkled fibrations on a given
4-manifold are not necessarily homotopic. The structure of the set π2(X) := [X, S2

]

of homotopy classes of maps from a closed 4-manifold to the 2-sphere — also known
as the second cohomotopy set of X — is described in [Kirby et al. 2012] (see also the
references therein). Our results show that an equivalence class of surface diagrams
for X determines an orbit of the action of the diffeomorphism group of X on π2(X).
This action is usually neither trivial, as shown by the two projections of S2

× S2

which are interchanged by flipping the factors, nor transitive since the action of the
diffeomorphism group on the second homology group preserves divisibility. Thus,
reparametrizing a surface diagram can change the homotopy class of its simple
wrinkled fibration but one cannot expect to obtain all homotopy classes in this way.

A general method for relating broken fibrations in different homotopy classes is
the projection move mentioned in [Williams 2010] but it is not at all obvious how
to interpret this procedure in terms of surface diagrams. Altogether, the problem of
relating surface diagram with nonhomotopic fibrations is still wide open.
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THIN r-NEIGHBORHOODS OF EMBEDDED GEODESICS
WITH FINITE LENGTH AND NEGATIVE JACOBI OPERATOR

ARE STRONGLY CONVEX

PHILIPPE DELANOË

In a complete Riemannian manifold, an embedded geodesic γ with finite
length and negative Jacobi operator admits an r-neighborhood Nr(γ) with
radius r > 0 small enough such that each pair of points of Nr(γ) can be
joined by a unique geodesic contained in Nr(γ) where it minimizes length
among the piecewise C1 paths joining its endpoints.

Introduction

Let M be a connected complete Riemannian manifold; let d denote its Riemannian
distance function [do Carmo 1992]. A connected subset S ⊂ M with nonempty
interior S◦ is called strongly convex for a pair of points (p, q) ∈ S × S if there
exists a unique geodesic path t ∈ [0, 1] → γ(t) ∈ M such that γ(0)= p, γ(1)= q
and γ(t) ∈ S◦ for t ∈ (0, 1), with γ length-minimizing among piecewise C1 paths
from p to q in S. The subset S is just called strongly convex if it is so for each pair
(p, q) ∈ S× S.

Definition 0.1. Let S⊂M be a strongly convex subset. For each pair (p, q)∈ S×S,
the length of the geodesic path joining p to q with interior in S◦ is called the inner
distance from p to q in S, denoted by dS(p, q).

It is quite natural to endow a strongly convex subset S⊂M with its inner distance
function dS . The latter is nothing but the length metric associated with the metric
space (S, d|S) [Gromov 1981].

Since Whitehead’s landmark paper [1932], it has been known that small enough
balls in M are strongly convex. Moreover, if B is such a ball, its inner distance
function dB coincides with the restriction of d to B× B [Kobayashi and Nomizu
1996; Cheeger and Ebin 2008; Aubin 1998; do Carmo 1992; Klingenberg 1995].
In the flat torus Rn/Zn , if the radius of a ball B belongs to the interval

( 1
4 ,

1
2

)
,

the reader can check that B remains strongly convex but dB no longer coincides
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with d|B×B . Here, we would like to construct a general family of examples of
strongly convex subsets S ⊂ M such that dS 6≡ d|S×S .

The notion of extended distance function used in [Figalli et al. 2012] is similar
in spirit to that of inner metric; could it guide us toward an example? Let us recall
its definition. If t ∈ [0, 1] → γ(t) ∈ M is an embedded geodesic without conjugate
points, the map Id× exp : TM → M × M induces a diffeomorphism 9γ from a
neighborhood U of

(
γ(0), (dγ/dt)(0)

)
in TM to a neighborhood W of (γ(0), γ(1))

in M×M . The extended distance function dγ of [Figalli et al. 2012] is then defined
in W by dγ (p, q) = |V |p where 9γ (p, V ) = (p, q). It is called so because, if γ
contains no cut point, shrinking W if necessary, it satisfies dγ (p, q)≡ d(p, q). In
this setting, we would like to know whether a thin enough tube about the geodesic γ
must be strongly convex. Anytime it is, one may identify dγ with the restriction
to W of the inner distance function of the tube; in particular, the function dγ satisfies
in effect the distance axioms.

By a tube about γ is meant a closed subset of M containing γ([0, 1]), with
nonempty interior and each point of which admitting a unique nearest point in
γ([0, 1]); moreover, if p 7→ p⊥γ denotes the nearest-point map, the geodesic from p
to p⊥γ should meet γ([0, 1]) orthogonally. Finally, the lateral boundary of the tube
is given by the equation d(p, p⊥γ )= r , where r > 0 is a small real number called
the radius of the tube.

We are thus willing to study the question: under which conditions must a tube
about an embedded geodesic be strongly convex?

First of all, indeed, we should restrict to geodesics without conjugate points
(at least in their interior) since, by the Morse index theorem, they would not be
minimizing otherwise [Milnor 1963]. To proceed further, let us take examples. In
the domain of the unit sphere of R3 given by 06 longitude<π and−r6 latitude6r
with r small, we see that the geodesic joining two points with equal latitude close
enough to r does not stay in that domain. But if we look at a similar domain about
the interior equator of a torus of revolution in R3 and pick two points as above, the
geodesic joining them does stay in the domain. So, a curvature assumption should
be made along a geodesic before we can expect the strong convexity of a tube about
it, and positive curvature rules out strong convexity.

Eventually, we will show that a tube Tr (γ0) with small enough radius r about a
geodesic γ0 with negative Jacobi operator is essentially strongly convex. Specifically,
we will prove the following result:

Theorem 0.2. Let γ0 : s ∈[0, `0]→γ0(s)∈M be an embedded unit-speed geodesic
with negative Jacobi operator. Given ς > 0, there exists %> 0 such that, if r ∈ (0, %),
the tube Tr (γ0) is strongly convex for each pair (p, q) ∈ Tr (γ0)× Tr (γ0) of points
satisfying either |s(p⊥γ0

)−s(q⊥γ0
)|>ς , or s(p⊥γ0

) and s(q⊥γ0
) belong to the subinterval
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[ς, `0−ς ]. Furthermore, if M has dimension 2, the result holds with ς = 0 provided
we except the boundary pairs (p, q) lying in the same end (s = 0 or s = `0) of the
tube.

In this statement, we allow the geodesic γ0 to contain cut points. For instance,
if the image of γ0 is contained in the curve {x2

+ y2
= 1, z = 0} viewed as the

interior equator of a torus of revolution in R3, we allow its length `0 to belong
to the interval [0, 2π). In this context, the inner distance function for which we
are looking appears well approximated by the pseudometric defined in the tube
by d̂(p, q)= |s(p⊥γ0

)− s(q⊥γ0
)|, at least for the pairs (p, q) ∈ Tr (γ0)× Tr (γ0) such

that d̂(p, q)� r . Accordingly, our proof will split in two parts; let us provide a
rough outline of it.

Case 1: For d̂(p, q) less than a suitable positive constant c independent of r as
r ↓ 0, there exists a unique minimizing geodesic t ∈ [0, 1] → γ(t) ∈ M from p
to q , so we only have to prove the inclusion γ((0, 1))⊂ (Tr (γ0))

◦. We do it using a
one-parameter family of geodesics λ ∈ [0, 1] → cλ interpolating between c0 given
by t ∈ [0, 1] → γ0

(
ts(q⊥γ0

)+ (1− t)s(p⊥γ0
)
)

and c1 = γ . For λ small, we certainly
have cλ((0, 1))⊂ (Tr (γ0))

◦. We must rule out the possibility that cλ(t) first touches
the boundary of Tr (γ0) for some t ∈ (0, 1). If n = 2, it could happen but on the
lateral part of ∂Tr (γ0) because the ends of Tr (γ0) are totally geodesic. If n > 2,
the pinching s[(cλ(t))⊥γ0

] ∈ (0, `0) is obtained relying on the assumption (ignored
elsewhere in the proof) that d̂(p, q)> ς or s(p⊥γ0

) and s(q⊥γ0
) lie in [ς, `0−ς ]. As

for the lateral part of Tr (γ0), the estimate d
(
cλ(t), (cλ(t))⊥γ0

)
< r (unless p = q)

follows from a maximum principle for geodesics shown to hold in Tr (γ0) due to
our curvature assumption.

Case 2: d̂(p, q) > c. Here, we must work harder, shrink r > 0 and show that,
if t ∈ [0, 1] → γ(t) ∈ M is a geodesic from p to q ranging in Tr (γ0), its Jacobi
operator should stay, like the one of γ0, negative. Moreover, we infer from the latter
property that γ must be minimizing and unique. We are thus left with proving the
very existence of γ . It will be done by a tricky connectedness argument, fixing p,
letting q vary in the tube and using the parameter z = d̂(p, q) ∈ [c, `0] itself.
The openness part of that argument is based on the invertibility of d(expp)(γ̇(0)),
which holds due to the curvature property of γ ; the closedness part relies on the
aforementioned maximum principle.

Can one find a quicker proof? We did not. With Theorem 0.2 and its proof at
hand, it becomes easy to obtain a full strong convexity result if, instead of the tube
Tr (γ0), we consider the closure of the r-neighborhood of γ0, that is, the subset
Nr (γ0) = {m ∈ M, d(γ0([0, `0]),m) 6 r}. In this way, we get the main result of
the paper, namely:
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Corollary 0.3 (main result). Let γ0 : s ∈ [0, `0] → γ0(s) ∈ M be an embedded
unit-speed geodesic with negative Jacobi operator. There exists % > 0 such that the
subset Nr (γ0)⊂ M is strongly convex for r ∈ (0, %).

The paper is organized as follows: the next two sections are devoted to preliminary
tools for the proof, general properties of thin tubes are recorded in Section 1 and
further ones under our curvature assumption in Section 2, the proof of Theorem 0.2
itself is given in Section 3, and that of Corollary 0.3, in Section 4.

1. Properties of a thin tube about an embedded geodesic

Throughout this section, we use the setting of Theorem 0.2 but drop the assumption
made on the Jacobi operator of the geodesic γ0.

1A. Fermi map, cylinders and Gauss lemma. Let us recall how the tube Tr (γ0)

can be precisely defined [Aubin 1998; Gray 2004]. The geodesic γ0 extends
uniquely as a geodesic embedding of an interval I = (−ε, `0+ ε) with ε small. We
consider the map

(V, s) ∈ V⊥0 × I → E0(V, s)= exp⊥γ0(s)
(‖γ0(V )) ∈ M,

where we have denoted by V⊥0 the subspace of Tγ0(0)M orthogonal to the velocity
vector V0 = (dγ0/ds)(0), by ‖γ0(V ) the vector field along γ0 obtained by parallel
transport of the vector V and by exp⊥γ0(s)

the restriction of the exponential map to
‖
γ0(V0)(s)⊥. The differential of E0 at (0, s) is given by

(δV, δs) ∈ V⊥0 ×R→ d E0(0, s)(δV, δs)=
dγ0

ds
(s)δs+‖γ0(δV )(s) ∈ Tγ0(s)M;

it is an isomorphism since orthogonality is preserved by parallel transport. From the
inverse function theorem [Lang 2002] and the compactness of [0, `0] (or bounded
length of γ0), we infer1 the existence of a real R > 0 such that, setting |V | for the
norm of a vector V and B⊥(0, R) = {V ∈ V⊥0 , |V | 6 R}, the map E0 induces a
diffeomorphism from a neighborhood of B⊥(0, R)×[0, `0] onto a neighborhood of
its image. Let us fix such a radius R once for all. For r 6 R, we denote by Tr (γ0)

the image by E0 of B⊥(0, r)× [0, `0] and call it the tube about γ0 with radius r
[Gray 2004]. We set p 7→ F0(p)= (v⊥0 (p), z(p)) for the inverse of the mapping
E0 and refer to it as the Fermi map along γ0. We call z(p) the height of the
point p relative to γ0 and the subsets E top

R (γ0) = {p ∈ TR(γ0), z(p) = `0} and
Ebot

R (γ0) = {p ∈ TR(γ0), z(p) = 0}, respectively, the top and bottom ends of the

1Full details are given in Section 1D for a construction encompassing the present one.
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tube. If p ∈ TR(γ0), the unit-speed geodesic

s ∈ [0, |v⊥0 (p)|] → E0

(
s
v⊥0 (p)

|v⊥0 (p)|
, z(p)

)
is the unique minimizing geodesic from γ0 to p; its length rγ0(p)= |v

⊥

0 (p)| is thus
equal to d(γ0, p). For short, that geodesic will be denoted by s 7→ [γ0, p](s) ∈
TR(γ0), and the function rγ0 itself simply by r unless a confusion may occur. We
let Nγ0(p), or just N (p) if no confusion, denote the velocity vector d[γ0, p]/ds
evaluated at s = d(γ0, p). The unit vector field p 7→ N (p) is defined in the open
subset of the tube TR(γ0) where r(p)> 0, that is, outside the geodesic γ0; moreover,
it is readily seen to satisfy dz(N )= 0, dr(N )= 1 and ∇N N = 0, with ∇ the Levi-
Civita connection. If r ∈ (0, R], we set Cr (γ0) = {p ∈ TR(γ0), r(p) = r} for the
cylinder of radius r about γ0, sometimes called the lateral part of the boundary of
the tube Tr (γ0). The outward unit normal to that cylinder at p ∈ Cr (γ0) is nothing
but N (p) due to the generalized Gauss lemma according to which the gradient of
the function r and the vector field N coincide [Gray 2004, pp. 26–28]. The identity
N = grad r will be central for us. It yields the following identity, recorded here for
later use, valid at each p ∈ TR(γ0) such that r(p) > 0:

(1) (g−dr2)(V,W )=(g−dr2)(5⊥N (V ),5
⊥

N (W )) for all (V,W )∈Tp M×Tp M,

where we have set 5⊥N (V )= V − g(V, N )N for the orthogonal projection of Tp M
onto N (p)⊥; in other words, if we write TM =RN⊕N⊥ on {r> 0}, the generalized
Gauss lemma implies that the metric g splits into the sum of dr2 along RN and
(g− dr2) along N⊥.

Finally, i ∈ (0,∞] will stand for the injectivity radius of TR(γ0), that is, for
the minimum of the distance from a point p to its cut locus as p varies in TR(γ0)

[do Carmo 1992, pp. 267–273]. For each r ∈ (0, R], the injectivity radius of Tr (γ0)

will thus be at least equal to i. If M is compact, i is finite, but i=∞ if M is the
hyperbolic space, for instance.

1B. Fermi charts and related notions. Let n=dim M . Given an orthonormal basis
{e1, . . . , en} of Tγ0(0)M with en = (dγ0/ds)(0), let us assign to each p ∈ TR(γ0)

the n-tuple x = (x̃, xn) ∈ Bn−1(0, R) × [0, `0], where Bn−1(0, R) denotes the
closure of the ball of radius R in the Euclidean space Rn−1, given by x(p) =
(x1, . . . , xn−1, xn) if and only if v⊥0 (p) =

∑n−1
α=1 xαeα and z(p) = xn . The map

x : TR(γ0)→ Bn−1(0, R)×[0, `0] so defined is called a Fermi chart along the em-
bedded geodesic γ0. (In 1922, while a PhD student at the Scuola Normale Superiore
in Pisa, motivated by the study of the equivalence principle in general relativity,
Enrico Fermi was the first to consider such local coordinates, which he used along
timelike paths; see [Gray and Vanhecke 1982, p. 217] and references therein.)
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We see from this construction that y = (ỹ, yn) is another such chart if and
only if yn

= xn and there exists an orthogonal transformation R ∈ O(n− 1) such
that ỹ =Rx̃ . The calculations which we will perform in the tube TR(γ0) will be
invariant (or tensorial) with respect to change of Fermi charts. We will freely use
the local Euclidean metric eγ0 =

∑n
i=1(dx i )2 (just denoted by e, unless confusing)

and the affine structure inherited from its (flat) Levi-Civita connection Dγ0 = D.
The latter will be convenient to identify distinct tangent spaces and hence view
vectors tangent to TR(γ0) at distinct points as belonging to the same vector space.
We will also view the Christoffel symbols 0k

i j (x) of our original (global) connection
∇ as the components in the chart x of the local tensorial difference (∇ − D).

In the Fermi chart x , the components of the metric tensor g satisfy gi j (0, xn)=δi j ,
dgi j (0, xn) = 0, so the Christoffel symbols vanish at (0, xn), meaning that g is
osculating to e along γ0. We set ‖ · ‖ for the norm associated to the Euclidean
metric e and θ0=min ‖U‖61620=max ‖U‖, where U runs over all unit2 tangent
vectors at points of TR(γ0). For each p ∈ TR(γ0), setting ρ(x) =

√∑n−1
α=1(xα)2,

we have r(p) = ρ(x(p)). The geodesic ray t ∈ [0, 1] → E0(tv⊥0 (p), z(p)) ∈ M
reads t 7→ R(t) = (t x1, . . . , t xn−1, xn) with x = x(p); being constant, its speed
is equal to ρ(x), so the unit vector field N reads N (p) = ν(x(p)) with ν(x) =
(1/ρ)(x)

∑n−1
α=1 xα ∂/∂xα.

If W =
∑n

i=1 W i ∂/∂x i
∈ Tp M , we may view W as a constant vector field in

TR(γ0), in other words, extend it to TR(γ0) by Dγ0 parallelism, a notion well
defined in any Fermi chart along γ0. Following [Gray 2004, p. 21], let us call any
such vector field a Fermi field (here, with respect to γ0). Given a point p ∈ TR(γ0)

and vector field Z on TR(γ0), we may similarly consider the Fermi field Z(p),
thinking of it as Z frozen at p. Among Fermi fields, one may distinguish those
with W n

= 0 from those writing Z = Zn∂/∂xn (sometimes called axial). For later
use, we record the brackets identities

(2)
[
ν,

∂

∂xn

]
= 0 and

[
ν, ρ

∂

∂xα

]
=
∂ρ

∂xα
ν for all α < n.

Finally, it will be convenient to consider on TR(γ0) the field of projections 50 =∑n−1
α=1 dxα ⊗ ∂/∂xα, which is the constant (or Fermi) extension of the orthogonal

projection of Tγ0(0)M onto V⊥0 .

1C. Estimates for geodesics in a thin tube. Beforehand, let us recall a classical
result, namely: there exists a continuous function p ∈ M→ χ(p) ∈ (0,∞] called
the convexity radius, which is smaller than the injectivity radius, such that, for each
% ∈ (0, χ(p)), the Riemannian ball B(p, %) is strongly convex [Cheeger and Ebin
2008, pp. 103–105; Klingenberg 1995, pp. 84–85; Whitehead 1932]. For r > 0

2Here and below, to be understood for the metric g, unless otherwise specified.
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small, we may thus consider the function r 7→ χγ0(r) = min{χ(p), p ∈ Tr (γ0)},
which is nonincreasing. We set c= χγ0(R) and stress that c6 i. Our first estimate
is an upper bound on the length of the geodesics contained in the tube TR0(γ0) with
R0 =min(R, c/3).

Proposition 1.1. If γ : [0, `]→γ(s)∈TR0(γ0) is a unit-speed geodesic,3 its length `
is bounded above by L0, with L0 = `0+ 2R if i=∞, and L0 = 2(`0+ c) if c<∞.

Proof. If i=∞, the geodesic γ is minimizing and unique in M . But we can join
its endpoints p = γ(0), q = γ(`) by a geodesic path broken twice, namely, first by
going along the geodesic ray from p to γ0(z(p)), next by going from γ0(z(p)) to
γ0(z(q)) along γ0, then by going along the geodesic ray from γ0(z(q)) to q. The
total length of that broken path must be larger than ` and it is, indeed, at most equal
to L0 = `0+ 2R.

If c<∞, for each ε > 0 small enough, the triangle inequality satisfied by the
Riemannian distance on M shows that we can cover the tube TR0(γ0) by N open balls
of radius r = c− ε, successively centered at the points γ0(0), γ0(r), γ0(2r), . . . ,
γ0((N − 1)r), γ0(`0), with N = [`0/c] + 1. Now, the length of the restriction of
the geodesic γ to each ball is bounded above by 2r and, letting ε ↓ 0, we obtain
`6 2Nc. �

Using a Fermi chart along γ0, setting R1 =
9
10 R0, we can readily find a positive

constant c1 such that, for each p∈TR1(γ0), the following estimates hold at x= x(p):

(3) ‖g− e‖6 c1ρ
2(x), ‖∇ − D‖6 c1ρ(x).

The purpose of our next proposition is twofold. On the one hand, it provides
a radius under which the geodesics contained in a tube about γ0 and longer than
a given length δ > 0 keep moving axially in a single direction; in particular, they
must be embedded, like γ0. On the other hand, it provides an estimate describing
how C0-close to γ0 a geodesic should be in order to get C1-close to it.

Proposition 1.2. Fixing δ ∈ (0, L0), let r1 > 0 be given by

r2
1

(
c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2)
= 1.

For each r ∈ (0,min(R1, r1)) and each unit-speed geodesic s ∈ [0, `] → γ(s) ∈
Tr (γ0) with length `> δ, the axial component dγn/ds of the velocity cannot vanish.
Moreover, the following estimate holds:

(4)
∥∥∥∥εdγ

ds
−

∂

∂xn

∥∥∥∥6 (4
`
+ c1`2

2
0

)
ργ +

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2 )
ρ2
γ ,

3Throughout the paper, ` denotes the length of γ which may vary; it should be written `(γ), of
course, but we will stick to the short notation ` instead.
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where ργ stands for maxσ∈[0,`] ρ(γ(σ )) and ε = ±1, according to the sign of
dγn/ds.

Proof. Before proving the first assertion we require an estimate; namely, letting
s ∈ [0, `] → γ(s) ∈ TR1(γ0) be a unit-speed geodesic, we have

(5)
∥∥∥∥50

dγ
ds
(s)
∥∥∥∥6 (4

`
+ c1`2

2
0

)
ργ for all s ∈ [0, `].

Indeed, if s ∈
[
0, `2

]
, we write, for all α ∈ {1, . . . , n− 1},

(`− s)
dγα

ds
(s)= γα(`)− γα(s)−

∫ `

s

∫ S

s

d2γα

dσ 2 (σ ) dσ d S,

while if s ∈
[
`
2 , `

]
, we write instead

s
dγα

ds
(s)= γα(s)− γα(0)−

∫ s

0

∫ S

s

d2γα

dσ 2 (σ ) dσ d S.

In either case, transforming the last term of the right-hand side by means of the
geodesic equation, recalling (3) and using the triangle and Schwarz inequalities,
we readily infer (5). Writing∣∣∣∣dγn

ds

∣∣∣∣= ∥∥∥∥dγ
ds

∥∥∥∥
√

1−
‖50 dγ/ds‖2

‖dγ/ds‖2
and

∥∥∥∥dγ
ds

∥∥∥∥=
√

1− (g− e)

(
dγ
ds
,

dγ
ds

)
,

the latter to be combined with (3), we get∣∣∣∣dγn

ds

∣∣∣∣> 1− c1ρ
2
γ2

2
0−

1
θ2

0

∥∥∥∥50
dγ
ds

∥∥∥∥2

;

hence, using (5), we obtain the important lower bound

(6)
∣∣∣∣dγn

ds
(s)
∣∣∣∣> 1−

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2 )
ρ2
γ for all s ∈ [0, `].

Recalling Proposition 1.1 and the assumption `> δ, this shows that dγn/ds cannot
vanish provided the radius r of the tube in which the geodesic ranges satisfies

r2
(

c12
2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2 )
< 1,

or else r ∈ (0,min(R1, r1)), as we assumed. The first part of Proposition 1.2 is thus
proved.

Moreover, letting now ε stand for the sign of dγn/ds, we have

|dγn/ds(s)| ≡ ε dγn/ds,
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so we readily get from (6) and the obvious inequality |dγn/ds| 6 ‖dγ/ds‖, the
pinching

−
1
2

c12
2
0ρ

2
γ 6 1− ε

dγn

ds
6

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2)
ρ2
γ .

Combined with (5) this yields (4), since∥∥∥∥εdγ
ds
(s)−

∂

∂xn

∥∥∥∥6 ∥∥∥∥50
dγ
ds
(s)
∥∥∥∥+ ∣∣∣∣εdγn

ds
(s)− 1

∣∣∣∣. �

Writing UM for the unit tangent bundle and Ends(TM) for the bundle of sym-
metric4 endomorphisms of TM , let us consider the map

(p,U ) ∈UM→ J(p,U )= Rp( · ,U )U ∈ Ends(TM),

where Rp stands for the Riemann curvature tensor at the point p ∈ M . It satisfies
g(V, J(p,U )W )≡ Sp(V,U,W,U ) where Sp stands for the sectional (or covariant
Riemann) curvature tensor of the metric g at the point p; it is thus, indeed, symmetric.
We denote by κ1(p,U )6 · · ·6 κn−1(p,U ) the eigenvalues (each repeated with its
multiplicity) of the nontrivial part of J(p,U ), namely of its restriction to U⊥. For
each α ∈ {1, . . . , n−1}, the map (p,U )∈UM→ κα(p,U )∈R is C1

loc [Kato 1995,
pp. 122–123], hence uniformly Lipschitz for p ∈ TR0(γ0). So there exists a constant
k0 such that, for each pair ((p,U ), (p′,U ′))∈UM2 with max(rγ0(p), rγ0(p

′))6 R0

and each α ∈ {1, . . . , n− 1}, the following uniform estimate holds:

(7)
∣∣κα(p,U )− κα(p′,U ′)∣∣6 k0

(
d(p, p′)+‖U −U ′‖

)
.

For each unit-speed geodesic σ ∈ [0, `] → γ(σ ) ∈ M , we write s 7→ Jγ (s) for
the pullback to [0, `] of the map J by the section

t 7→
(
γ(s),

dγ
dσ
(s)
)
∈UM

and call Jγ (s) the Jacobi operator along the geodesic γ at s. We further write
κ1
γ (s)6 · · ·6 κ

n−1
γ (s) for the eigenvalues of the restriction of Jγ (s) to dγ

dσ (s)
⊥ and

call them the Jacobi curvatures along γ at s.

Corollary 1.3. Given δ and r as in Proposition 1.2, set

k = k0

(
1+

4
δ
+ c1L02

2
0+

(
c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2)
r
)
.

For each unit-speed geodesic σ ∈ [0, `] → γ(σ ) ∈ Tr (γ0) with length ` > δ and

4Here, “unit” and “symmetric” refer to the Riemannian metric g, of course.
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each s ∈ [0, `], the following estimate holds:∣∣καγ (s)− κα0 (γn(s))
∣∣6 kργ for all α ∈ {1, . . . , n− 1},

where κ1
0 6 · · ·6 κ

n−1
0 stand for the Jacobi curvatures along γ0.

Proof. Fixing γ as stated, we may apply Proposition 1.2 to it. This yields an
estimate for ‖(dγ/dσ)(s)− ∂/∂xn

‖ which, combined with the estimate (7) read at
(p,U )=

(
γ(s), (dγ/dσ)(s)

)
and (p′,U ′)=

(
γ0(γ

n(s)), ∂/∂xn
)
, yields the desired

result. �

Corollary 1.3 shows in particular that, if the Jacobi operator along γ0 stays
definite, it must stay so (with the same signature) along geodesics longer than a
given length and contained in a tube about γ0 of small enough radius.

1D. Family of Fermi maps near γ0. For each unit-speed geodesic s ∈ [0, `] →
γ(s) ∈ TR1(γ0), let Iγ0(γ) ⊂ [0, `0] denote the axial image interval γn([0, `])
and T (γ0, γ), the shortest piece of tube about γ0 containing γ , equal to {m ∈
Tργ (γ0), xn(m)∈ Iγ0(γ)}. If such a geodesic γ is an embedding, when is it possible
to construct a Fermi map along it such that a point m ∈ T (γ0, γ) may stay outside
the corresponding tube about γ if and only if its height zγ (m) relative to γ satisfies
either zγ (m) < 0 or zγ (m) > `? When such a possibility occurs, we call (γ0, γ)-
exceptional the latter points and (γ0, γ)-accessible all other points of T (γ0, γ).
Sticking to the notations of Proposition 1.2, we will prove the following:

Proposition 1.4. For each δ ∈ (0, `0), there exists r2 ∈ (0,min(R1, r1)) such that,
for each unit-speed geodesic γ longer than δ and contained in Tr2(γ0), a Fermi map
can be constructed along γ with corresponding tube about γ containing the whole
of T (γ0, γ) but its (γ0, γ)-exceptional points.

We call family of Fermi maps near γ0 the map which assigns, to each unit-speed
geodesic γ as stated and each (γ0, γ)-accessible point m ∈ Tr2(γ0), the image of m
by the Fermi map along γ .

Proof. The idea is to use a suitable implicit function theorem argument along γ0.
Since it is absent from the literature, we will present it carefully. Let us fix δ ∈
(0, `0) and a unit-speed geodesic σ ∈ [0, `∗] → γ∗(σ ) ∈ Tr2(γ0), with `∗ > δ and
r2 ∈ (0,min(R1, r1)) to be chosen later. From Proposition 1.2, we know that γ∗

is an embedding. We can thus construct a tube T%(γ∗) about γ∗, for some radius
% > 0, as done for γ0 in Section 1A. We want ργ∗ 6 r2 small enough compared
to % such that the tube T%(γ∗) contains T (γ0, γ

∗) but its exceptional points. Can
we choose the radius r2 such that this property holds for every such geodesic γ∗?

First, we observe that the required property holds for γ∗ if and only if it holds for
the reversed geodesic γ∗rev, given by σ ∈ [0, `∗]→ γ∗rev(σ )= γ

∗(`∗−σ). Therefore,
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applying Proposition 1.2 to γ∗, we may assume with no loss of generality that
dγ∗n/dσ is positive.

Next, we note that the geodesic γ∗ is given by its Cauchy data

(p∗, u∗)=
(
γ∗(0),

dγ∗

dσ
(0)
)
∈UM

and its length `∗ ∈ [δ, L0], while the generic point m∗ of the tube T%(γ∗) is deter-
mined by its Fermi map image Fγ∗(m∗), namely by its height σ ∗= zγ∗(m∗)∈ [0, `∗]
and by the vector V ∗= v⊥γ∗(m

∗)∈ (u∗)⊥ such that |V ∗|6 % and Eγ∗(V ∗, σ ∗)=m∗.
Here, we have denoted by Eγ∗ : (u∗)⊥× (−ε, `∗+ ε)→ M (respectively, by v⊥γ∗)
the analogue for γ∗ of the map E0 (respectively, of the component v⊥0 ) defined for
γ0 at the beginning of Section 1A.

The resulting point (p∗, u∗, V ∗), the amalgam of the Cauchy data of γ∗ with
the Fermi component V ∗ = v⊥γ∗(m

∗) ∈ (u∗)⊥ of m∗, lies in the vector bundle
ker Tπ→UM , the kernel of the tangent map to the natural projection π :UM→M .
Sticking to the Fermi chart x along γ0, we use it to build a chart of ker Tπ near
(p∗, u∗, V ∗) by assigning to each neighboring point (p, u, V ) the (3n− 2)-tuple
(x1, . . . , xn, u1

0, . . . , un−1
0 , V 1

0 , . . . , V n−1
0 ) with x i

= x i (p) and uα0 , V α
0 defined

as follows. Firstly, for each tangent vector W ∈ Tp M , let W 0 ∈ Tp⊥0
M , with

p⊥0 = p⊥γ0
≡ γ0(x

n(p)), denote its (backward) parallel transport5 along the geodesic
ray [γ0, p], and W0 ∈ Tγ0(0)M , similarly from the latter now along γ0. We pause
to record a lemma (the proof of which is left as an easy exercise):

Lemma 1.5. If U is a unit tangent vector at p ∈ TR1(γ0) and U 0 stands for its par-
allel transport to the point γ0(x

n(p)) along the geodesic ray [γ0, p], the following
estimate holds:

‖U −U 0‖6 c120r
2(p).

Applying this lemma, combined with Proposition 1.2 and the triangle inequality,
to the vector u∗ ∈ Tp∗M , and recalling that ‖ · ‖ ≡ | · | along γ0, we infer the
estimate

(8) |u∗0− en|6 k1r2,

with

k1 =
4
δ
+ c1L02

2
0+

(
c120+ c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2 )
r1.

Here, we used the positivity assumption made above on (u∗)n . Taking r2 < 1/k1,
this estimate implies the positivity of (u∗0)

n . Back to the definition of the chart of

5Henceforth, with respect to the Levi-Civita connection ∇, unless otherwise specified.
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ker Tπ under elaboration, we take (p, u, V ) close enough to (p∗, u∗, V ∗) for un
0

to be still positive, and we define the uα0 ’s and V α
0 ’s by

n−1∑
α=1

uα0 eα =50u0,

n−1∑
α=1

V α
0 eα =50V0.

We recover the full parallel transported vectors u0, V0, by setting

un
0 =

√
1−

n−1∑
α=1
(uα0 )

2,

since |u0| = 1 and un
0 > 0, and

V n
0 =−

1
un

0

n−1∑
α=1

uα0 V α
0 ,

since V0⊥ u0. So (x i , uα0 , V α
0 ) is, indeed, a local chart of ker Tπ . Although heavier,

let us denote it rather by (x∗i , u∗α0 , V ∗α0 ) since we are now willing to move around
the geodesic γ∗ and the point m∗ ∈ T%(γ∗), hence to let the point (p∗, u∗, V ∗)
itself vary in ker Tπ near (p0, u0, V0)=

(
γ0(s0), (dγ0/ds)(s0), 0

)
with s0 ∈ [0, `0].

Deferring the completion of the present proof, we pause to set up an appropriate
implicit function theorem.

Implicit function theorem argument. In this section, the requirement that the geodesic
γ∗ be longer than δ will be unnecessary, thus ignored provisionally. Given s0∈[0, `0]

and σ0 ∈ [0, `0− s0], let the point (p∗, u∗, V ∗) ∈ ker Tπ be close to (p0, u0, V0)

and the real σ ∗ ∈R+ be close to σ0; let a further point m belong to Tr2(γ0). Setting
γ∗(σ )= expp∗(σu∗) and m∗ = Eγ∗(V ∗, σ ∗), consider the map

9(p∗, u∗, V ∗, σ ∗,m)= x(m∗)− x(m) ∈ Rn.

Using the chart (x∗i , u∗α0 , V ∗α0 ) for (p∗, u∗, V ∗) and the chart x i for m, let us denote
the local expression of 9 (respectively, x ◦ Eγ∗) by

9 i (x∗ j , u∗α0 , V ∗α0 , σ ∗, x j )= E i (x∗ j , u∗α0 , V ∗α0 , σ ∗)− x i .

At the point given by6 x∗α = 0, x∗n = s0, u∗α0 = 0, V ∗α0 = 0, σ ∗ = σ0, x α = 0,
xn
= s0+ σ0, we have

9 i((E0, s0), E0, E0, σ0, (E0, s0+ σ0)
)
= 0 for all i ∈ {1, . . . , n}

and

det
(

∂9 j

∂(V ∗α0 , σ ∗)

(
(E0, s0), E0, E0, σ0, (E0, s0+ σ0)

))
6= 0,

6Throughout with α ranging in {1, . . . , n− 1}.
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where E0 stands for the zero vector of Rn−1. The latter equation holds since

∂9 j

∂(V ∗α0 , σ ∗)
≡

∂E j

∂(V ∗α0 , σ ∗)

and d E j ((E0, s0), E0, E0, σ0) ≡ dx j
◦ d E0(0, s0 + σ0), where d E0(0, s0 + σ0) is an

isomorphism as seen in Section 1A. We are thus in position to apply the im-
plicit function theorem [Lang 2002]. There exists a real ε > 0 and a unique map
(x∗ j , u∗α0 , x j )→ F∗ = (V∗10 , . . . ,V∗n−1

0 , ς∗) such that, if

(9) ρ(x∗)6 ε, |x∗n−s0|6 ε, |50u∗0|6 ε, ρ(x)6 ε, |xn
−(s0+σ0)|6 ε,

the identities

9 i(x∗ j , u∗α0 ,V∗α0 (x
∗k, u∗α0 , xk), ς∗(x∗k, u∗α0 , xk), x j)

≡ 0 for all i ∈ {1, . . . , n}

are satisfied with
∑n−1

α=1(V
∗α
0 (x

∗k, u∗α0 , xk))2 and
∣∣ς∗(x∗k, u∗α0 , xk)−σ0

∣∣ small. By
construction, these identities imply m = m∗; in other words, the map

x j
→ F∗i (x∗ j , u∗α0 , x j )

is nothing but the expression of the Fermi map Fγ∗ along the geodesic γ∗(σ ) =
expp∗(σu∗) read in the Fermi chart x along γ0. Finally, let us stress that the real
ε > 0 occurring in (9) may be chosen so small that it becomes independent of the
pair of parameters (s0, σ0), because the latter lies in a compact subset of R2, namely
in the triangle of the positive quadrant given by s0+ σ0 6 `0. Henceforth, we fix
ε > 0 so.

Completion of the proof of Proposition 1.4. Back to the case of our previous geodesic
γ∗, supposed longer than δ and with positive axial component, we are now in position
to choose the radius r2 of the tube about γ0 in which γ∗ should lie. First of all,
we fix a point m ∈ T (γ0, γ

∗). So far, we have required r2 ∈ (0,min(R1, r1, 1/k1)).
Redoing the preceding implicit function theorem argument now with p∗ = γ∗(0),
s0 = xn(p∗), s0 + σ0 = xn(m), the first and fourth inequalities of (9) prompt us
to take r2 6 ε. Besides, we must further shrink r2 > 0 in order to keep γ∗ nearly
vertical so that the third inequality of (9) holds as well. From (8), we can do it
by taking r2 6 ε/k1, as easily verified. Altogether, if the geodesic γ∗ is longer
than δ ∈ (0, `0) with dγ∗n/dσ > 0 and if it is contained in the tube Tr2(γ0) with
r2 ∈ (0,min(R1, r1, ε/k1)), the triple(

x∗i = x∗i (γ∗(0)), u∗α0 = u∗α0

(
dγ∗

dσ
(0)
)
, x i
= x i (m)

)
satisfies the bounds (9). So we may consider its image by the local map F∗

precedingly constructed. In particular, it follows that the point m lies in a tube
about the embedded geodesic γ∗ if and only if its height zγ∗(m)= ς∗(x∗i , u∗α0 , x i )
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lies in the interval [0, `∗]. Since the point m was arbitrarily fixed in T (γ0, γ
∗), we

are done. �

1E. Second fundamental form of a cylinder. If n > 2, sticking to the notations
of Section 1A, let us study the second fundamental form of a cylinder Cr (γ0) of
small radius r about γ0.

Proposition 1.6. Given r ∈ (0,min(1, R)), a point p∈Cr (γ0) and a pair of vectors
(V,W )∈ TpCr (γ0)×TpCr (γ0), let us denote by IIp(V,W ) the second fundamental
form of the cylinder Cr (γ0) calculated at p on (V,W ). If we extend the vectors
V , W and N (p) as Fermi fields on TR(γ0) and set p⊥ = γ0(z(p)), the following
asymptotic expansion holds:

IIp(V,W )=−
1
r

g(50V,50W )(p⊥)+ r
(
S(V, N (p),W, N (p))(p⊥)

−
1
3 S(50V, N (p),50W, N (p))(p⊥)

)
+ O(r2),

where, again, S stands for the sectional curvature tensor.

Proof. By definition [Gray 2004, p. 33; do Carmo 1992, p. 128], we have
IIp(V,W ) = g(−∇V N ,W )(p) and, here, one may allow the vectors V , W to be
arbitrary in Tp M since N is a vector field defined outside Cr (γ0). Covariant differ-
entiation of the generalized Gauss lemma identity g(N , · )= dr on {r> 0}⊂ TR(γ0)

yields

(10) IIp(V,W )=−∇dr(V,W )(p).

More generally, for each pair of vector fields (A, B), we find ∇dr(A, B) =
g(A,∇B N )= g(B,∇A N ); hence also, using Lie brackets,

(11) 2∇dr(A, B)= N .g(A, B)+ g(A, [B, N ])+ g(B, [A, N ]),

since ∇ is torsionless. Taking a Fermi chart x along γ0 such that

x(p)= (r, 0, . . . , 0︸ ︷︷ ︸
n−2

, xn(p)),

let us calculate ∇dρ(r, 0, xn) using (11) with A and B equal to the ∂/∂x i . Note that
ν(r, 0, xn) = ∂/∂x1 and dρ(r, 0, xn) = dx1. From (1), we get g1i (r, 0, xn) = δ1i

and N · g(∂/∂x1, ∂/∂x i )(r, 0, xn)= 0. From (2), we find [∂/∂xn, ν](r, 0, xn)= 0
and [

∂

∂xα
, ν

]
(r, 0, xn)=

1
r

(
∂

∂xα
− δ1α

∂

∂x1

)
for all α < n;

in particular, [∂/∂x1, ν](r, 0, xn)= 0. Besides, for i , j ∈ {2, . . . , n}, we can derive
the local expressions of N .g(∂/∂x i , ∂/∂x j )(r, 0, xn)= (∂gi j/∂x1)(r, 0, xn) from
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the following Riemann-type formulas extended to the Fermi setting [Spivak 1979;
Delanoë and Ge 2010, Lemma 2]:

gab(x1, 0, . . . , 0︸ ︷︷ ︸
n−2

, xn)= δab−
1
3(x

1)2 Ra1b1( 0, . . . , 0︸ ︷︷ ︸
n−1

, xn)+ O((x1)3),

with a, b ∈ {2, . . . , n− 1}, and

(12)
gan(x1, 0, xn)=− 2

3(x
1)2 Ra1n1(0, xn)+ O((x1)3),

gnn(x1, 0, xn)= 1− (x1)2 Rn1n1(0, xn)+ O((x1)3),

where x1 stands for a small real parameter and Ri jkl for the components of the
sectional curvature tensor. Doing so, we obtain the expression

(13) ∇dρ(r, 0, xn)=

n−1∑
a=2

n−1∑
b=2

(
1
r
δab−

2
3r Ra1b1(0, xn)+ O(r2)

)
dxa
⊗ dxb

+

n−1∑
a=2

(
−r Ra1n1(0, xn)+ O(r2)

)
(dxa
⊗ dxn

+ dxn
⊗ dxa)

+
(
−r Rn1n1(0, xn)+ O(r2)

)
dxn
⊗ dxn.

The latter combined with (10) yields the proposition. �

Remark 1.7. For later use, we record here that, if n=2, recalling (1), the expansion
of the metric in the Fermi chart x becomes simply

g(x1, x2)= dx1
⊗ dx1

+
(
1− (x1)2K (0, x2)+ O((x1)3)

)
dx2
⊗ dx2,

where K stands for the Gauss curvature of M . Accordingly, still from (11), the
Hessian formula (13) becomes

∇dρ(r, x2)=
(
−r K (0, x2)+ O(r2)

)
dx2
⊗ dx2.

2. Further properties when the Jacobi operator is negative

From the properties established is the preceding section for a thin tube about the
geodesic γ0, we will now derive stronger ones by assuming that the operator Jγ0 is
negative, as done in Theorem 0.2. Specifically, using the notations of Corollary 1.3
and setting κ0=maxs∈[0,`0] κ

n−1
0 (s), our assumption means that κ0 < 0; henceforth,

it is implicitly made.

Proposition 2.1 (the second fundamental form stays definite). One can find a small
real r3>0 such that, for each p∈Tr3(γ0) with r= r(p) 6=0, the second fundamental
form of Cr (γ0) at the point p is negative definite.
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Proof. Let us take a Fermi chart x at the point p like the one used in the proof
of Proposition 1.6 and write with it the expression of IIp(V,W ) found in that
proposition, with V =W =

∑n
i=2 V i∂/∂x i

∈ TpCr (γ0). We find

(14) IIp(V, V )

=−
1
2r

n−1∑
a=2

(V a)2+
r
2

Rn1n1(0, xn)(V n)2

−
1
4r

(
n−1∑
a=2
(V a)2− 8r2

n−1∑
a=2

Ra1n1(0, xn)V a V n
− 2r2 Rn1n1(0, xn)(V n)2

)

−
1
4r

n−1∑
a=2

n−1∑
b=2

V a V b(δab−
8
3r2 Ra1b1(0, xn)

)
+ O(r2)

and the result readily follows from Rn1n1(0, xn)6 κ0 < 0, provided r is taken small
enough. �

Proposition 2.2 (geodesics obey a maximum principle). One can find a small
real r4 > 0 such that, for each geodesic path t ∈ [0, 1] → γ(t) ∈ Tr4(γ0), the
following inequality holds:

max
t∈[0,1]

r(γ(t))6max
(
r(γ(0)), r(γ(1))

)
.

Moreover, if r(γ(ϑ))=max
(
r(γ(0)), r(γ(1))

)
for some ϑ ∈ (0, 1), the path γ must

be constant.

Proof. Anytime t ∈ [0, 1] → γ(t) ∈ TR(γ0) is a geodesic, at each t ∈ [0, 1] such
that r(γ(t)) 6= 0, we have

d2

dt2

(
r(γ(t))

)
=∇dr(γ(t))

(
dγ
dt
,

dγ
dt

)
.

If n > 2, combining (13) with (14) written with V = dγ
dt , we infer that the second

derivative of the auxiliary real function t ∈ [0, 1]→ r(γ(t)) is nonnegative on [0, 1]
provided r(γ(t)) 6 r4 = r3. If n = 2, the same conclusion holds with r4 small
enough, due to Remark 1.7 read with K (0, x2)6 κ0 < 0. In any case, the maximum
principle [Protter and Weinberger 1967] implies the first part of the proposition.
Moreover, it yields r◦γ ≡ r(γ(ϑ))=: rϑ > 0; hence (dγ/dt)(t) ∈ Tγ(t)Crϑ (γ0) for
each t ∈ [0, 1]. From (10) and Proposition 2.1 combined with

d2

dt2

(
r(γ(t))

)
6 0,

we infer that dγ/dt ≡ 0, so γ must indeed be constant. �
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Before moving on to the next property, we state a lemma of independent interest.
(A reader parachuting to this point should understand it preceded by: “Let γ0 be an
embedded unit-speed geodesic with negative Jacobi operator.”)

Lemma 2.3. One can find a small real r5>0 such that the inequality g>dr2
γ0
+dz2

γ0

between quadratic forms holds at each point of {p ∈ Tr5(γ0), r(p) > 0}.

Proof. Take a point p as stated and a Fermi chart x along γ0 such that x(p) =
(r, 0, . . . , 0, xn). From Remark 1.7 read with K (0, x2) 6 κ0 < 0, the lemma
appears straightforward if n = 2. In higher dimensions, from (1) and the expansion
of gi j (x1, 0, xn) in (12), we infer that, for each vector V =

∑n
i=1 V i ∂/∂x i

∈ Tp M ,
the quadratic form (g − dr2

γ0
− dz2

γ0
)(p) applied to V can be expressed in the

chart x , up to O(r3) terms, as the sum of two quadratic polynomials in V , namely∑n−1
a,b=2

( 1
2δab−

1
3r2 Ra1b1(0, xn)

)
V a V b and

n−1∑
a=2

( 1
2 V 2

a −
4
3r2 Ra1n1(0, xn)V a V n)

− r2 Rn1n1(0, xn)(V n)2.

By taking r > 0 small enough, and using Rn1n1(0, xn) 6 κ0 < 0 for the second
polynomial, we can make each polynomial nonnegative. �

Proposition 2.4 (γ0 is minimizing). Take r5 > 0 as in Lemma 2.3. The length of
each piecewise C1 path t ∈ [0, 1] → c(t) ∈ M ranging in Tr5(γ0) with z(c(0))= 0
and z(c(1))= `0 must be at least equal to `0. Furthermore, if equality holds and
r ◦ c(t)= 0 for some t ∈ [0, 1] then c, reparametrized by an arc-length parameter
suitably shifted to avoid jumps7 on each subinterval of [0, 1] in the interior of
which c is C1 and dc/dt 6= 0, coincides with γ0.

Proof. Let c be a path as stated and x a Fermi chart along γ0. From Lemma 2.3,
the length of c satisfies

`>
∫ 1

0

√(
d
dt
(ρ ◦ c)

)2

+

(
dcn

dt

)2

dt.

Therefore, if
∫ 1

0

∣∣(d/dt)(ρ ◦c)
∣∣ dt 6= 0, we have `>

∫ 1
0 |dcn/dt | dt > `0 as asserted.

Moreover, if `=`0, we see that (d/dt)(ρ◦c)must vanish, hence also (ρ◦c) anytime
it does at some t ∈ [0, 1]. In that case, the images of c and γ0 coincide, so |dc/dt | =
‖dc/dt‖= |dcn/dt | and

∫ 1
0 |dcn/dt | dt = `0= cn(1)−cn(0)=

∫ 1
0 (dcn/dt) dt . The

latter equality implies that dcn/dt > 0, so the path c, reparametrized by arc length
as stated, must indeed coincide with γ0. �

7By taking the initial value of the parameter on a subinterval equal to (zero, of course, on the first
subinterval and elsewhere to) the final value of the parameter on the preceding subinterval.
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Proposition 2.5 (long geodesics have a negative Jacobi operator). Given δ > 0, we
can find r6 ∈ (0,min(R1, r1)] such that, for each r ∈ (0, r6) and each unit-speed
geodesic σ ∈ [0, `] → γ(σ ) ∈ Tr (γ0) with length `> δ, the Jacobi operator Jγ is
negative, or else maxs∈[0,`] κ

n−1
γ (s) < 0.

Proof. Let k = k(r) be the affine function of r defined in Corollary 1.3 and r+ be
the positive root of the quadratic equation rk(r)+ κ0 = 0; the proposition holds
with r6 =min(R1, r1, r+) by Corollary 1.3. �

Proposition 2.6 (each geodesic is minimizing). One can find a small real r7 > 0
such that, for each unit-speed geodesic s∈[0, `]→γ(s)∈M and each piecewise C1

path t ∈ [0, 1] → c(t) ∈ M , both ranging in Tr7(γ0) with c(0)= γ(0), c(1)= γ(`),
the length of c must be at least equal to `. Moreover, equality holds if and only if c,
reparametrized by a suitable arc length parameter on each subinterval of [0, 1] in
the interior of which c is C1 and dc/dt 6= 0, coincides with γ .

Proof. Let γ be a geodesic of length ` as stated. The proposition is obvious if ` < i.
If `> i, which we suppose in the proof, we may use Propositions 1.2 and 1.4 read
with δ = i; the radii r1 and r2 are understood accordingly and we take r7 6 r2. In
this situation, we know that γ is an embedding and there exists a Fermi chart xγ
along γ whose domain Tη(γ) contains T (γ0, γ) but the (γ0, γ)-exceptional points.

Our next task is the main one; namely, we must specify how the radius η of that
tubular domain can be controlled by r7. By inspecting the proof of Proposition 1.4,
we see (sticking to its notations, except for γ∗ now written γ , so m∗ = γ(0),
u∗ = (dγ/ds)(0)) that such a control amounts to a similar one on

∥∥V∗0(x
∗,50u∗0, x)

∥∥2
=

n∑
i=1

(
V∗i0 (x

∗,50u∗0, x)
)2
,

where x∗, 50u∗0, x satisfy the bounds (9) now read with ε = r7 and where V∗n0 has
to be defined by

V∗n0 =−
1

u∗n0

n−1∑
α=1

u∗α0 V∗α0 with u∗n0 =±

√
1−

n−1∑
α=1
(u∗α0 )

2.

Furthermore, as r7 ↓ 0, we know that
∑n−1

α=1(V
∗α
0 )

2 tends to zero. All we require is
thus a uniform positive lower bound on |u∗n0 |. Such a bound will follow from (6)
and Lemma 1.5. Indeed, the former combined with Proposition 1.1 implies here
that ∣∣∣∣dγn

ds

∣∣∣∣> 1−
(

c12
2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
r2

7 ,

which in turn yields |u∗n0 |> |dγ
n/ds| − c12

2
0r2

7 . Thus we get
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|u∗n0 |> 1−
(

2c12
2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
r2

7 .

Defining r1 > 0 by, say,

r2
1

(
2c12

2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
=

1
2
,

and taking r76 r1, we obtain |u∗n0 |>
1
2 . Now, it is clear that ‖V∗0(x

∗,50u∗0, x)‖ tends
to zero as r7 ↓ 0. Here, among the arguments of V∗0, we are given the first one, since
x∗= x(γ(0)); similarly for the second one, since50u∗0 is defined out of (dγ/ds)(0);
the sole variable is the third one, since x = x(m) with m ∈ T (γ0, γ) ∩ Tη(γ).
Moreover, using the aforementioned Fermi chart xγ , the identity

ρ(xγ )= ‖V∗0(x
∗,50u∗0, x)‖

holds. So ρ(xγ ) ↓ 0 as r7 ↓ 0, which shows that the implicit function theorem used
in the proof of Proposition 1.4 allows us to let η go to zero as r7 ↓ 0.

Besides, Proposition 2.5 read with δ = i implies that, if we take r7 < r6, the
Jacobi operator of γ is negative.

We conclude that there exists r7>0 small enough such that, if γ ranges in Tr7(γ0),
the radius η of the tube about γ provided by Proposition 1.4 may be taken small
enough such that Lemma 2.3 and Proposition 2.4 hold for the geodesic γ in Tη(γ).

Now, we are in position to complete the proof of Proposition 2.6. Let c be a path
as stated. By the definition of T (γ0, γ), the smallness of r7 (hence of η) and the
property of Tη(γ) proved in Proposition 1.4, there exists a closed interval contained
in [0, 1] such that the restriction c̄ of c to this interval fulfills the assumption
of Proposition 2.4 (read in Tη(γ) instead of Tr5(γ0)). So we get the inequalities
L = length of c > length of c̄ > `= length of γ , which proves the first part of the
proposition. Moreover, if L = `, the images of the paths c and c̄ must coincide,
so c̄ shares with γ the same endpoints and the last part of Proposition 2.6 follows
from that of Proposition 2.4. �

Corollary 2.7 (each geodesic is uniquely determined by its endpoints). Take r7 > 0
as in Proposition 2.6. For each (p, q) ∈ Tr7(γ0)× Tr7(γ0), there exists at most
one unit-speed geodesic of γ : [0, `] → M entirely lying in Tr7(γ0) with γ(0)= p,
γ(`)= q.

Proof. We argue by contradiction. If two distinct unit-speed geodesics of M entirely
lying in Tr7(γ0) had the same endpoints, Proposition 2.6 would imply that the length
of each geodesic is at least equal to the length of the other; so the geodesics would
have equal length. Still by Proposition 2.6, the geodesics would thus coincide,
which is absurd. �
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3. Proof of Theorem 0.2

Reduction of the proof. We only have to prove the existence of a radius r > 0 such
that each pair of points of the tube Tr (γ0), located as stated in Theorem 0.2, can be
joined by a geodesic with interior lying in (Tr (γ0))

◦. Indeed, suppose we have done
so. Then, each such geodesic must be unique (by Corollary 2.7) and minimizing
among piecewise C1 paths sharing the same endpoints and lying in Tr (γ0) (by
Proposition 2.6), so the proof is complete.

Strategy. Fixing p ∈ Tr (γ0), let us consider the subsets

Z+p =
{
m ∈ Tr (γ0),m 6= p, z(m)> z(p) and, if z(p)= 0 or `0, z(m) 6= z(p)

}
,

Z−p =
{
m ∈ Tr (γ0),m 6= p, z(m)6 z(p) and, if z(p)= 0 or `0, z(m) 6= z(p)

}
.

Assuming z(p) < `0, we will prove Theorem 0.2 for q ∈ Z+p . Assuming z(p) > 0,
we would prove it similarly for q ∈ Z−p . Let us proceed to the proof itself. We
distinguish two cases.

Case 1: z(q)− z(p) < c/2. For λ ∈ [0, 1], set p⊥λ = [γ0, p](λr(p)) and q⊥λ =
[γ0, q](λr(q)). Take r < c/2. Then, for each λ ∈ [0, 1], the points p⊥λ and q⊥λ lie in
the Riemannian ball {m ∈M, d(m⊥0 ,m)<%} with center m⊥0 = γ0

( 1
2(z(p)+ z(q))

)
and radius % = c/2+ r < c. Hence there exists a unique minimizing geodesic
cλ : [0, 1] → M going from p⊥λ to q⊥λ and such that, for each t ∈ [0, 1], the map
λ ∈ [0, 1] → cλ(t) ∈ M is smooth. We must prove that c1((0, 1))⊂ (Tr (γ0))

◦. To
do so, let us argue by connectedness on the set

3=
{
λ ∈ [0, 1], cλ((0, 1))⊂ (Tr (γ0))

◦
}
.

By construction, 3 is nonempty (0 ∈ 3) and relatively open in [0, 1], so we
only have to prove that 3 is closed. Letting (λi )i∈N be a sequence of 3 and
λ∞ = limi→∞ λi ∈ [0, 1], it amounts to prove that cλ∞((0, 1)) ⊂ (Tr (γ0))

◦. By
continuity, the geodesic cλ∞ ranges in Tr (γ0). If cλ∞(θ)∈Cr (γ0) for some θ ∈ (0, 1),
Proposition 2.2 implies that cλ∞ is constant, so p⊥λ∞ = q⊥λ∞ . But the latter yields
p = q , contradicting the assumption q ∈ Z+p .

We are left with ruling out the following property:

(15) z(cλ∞(θ))= 0 or `0 for some θ ∈ (0, 1).

To do so, given δ > 0, we distinguish two subcases as stated in Theorem 0.2.

Subcase 1: n = 2. If (15) held, the vector (dcλ∞/dt)(θ) would necessarily belong
to ker dz \ {0}. But then, the geodesic t 7→ cλ∞(t) would stay for all t ∈ [0, 1] in
the end of the tube given by the equation z = z(cλ∞(θ)) because, when n = 2, the
latter is totally geodesic. We reach a contradiction, since we have assumed that
z(p) < `0 and, if z(p)= 0, z(q) 6= 0.
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Subcase 2: n > 2 and either |z(p)− z(q)| > ς or ς 6 z(p) 6 z(q) 6 `0 − ς . If
|z(p)− z(q)|> ς , the length `λ∞ of the geodesic cλ∞ must be bounded below by ς
due to Lemma 2.3. It follows that dcn

λ∞
/dt > 0 if r > 0 is taken small enough, due

to Proposition 1.2 read with δ = ς . So, in that case, the property (15) cannot hold.
If instead ς 6 z(p)6 z(q)6 `0− ς , with |z(p)− z(q)|< ς , the latter inequality
yields `λ∞ 6 ς + 2r , while the former pinching combined with Lemma 2.3 yields
`λ∞ > 2ς if (15) holds. In that case, we get the lower bound r > ς which is absurd,
provided r < ς . In either case, we conclude that (15) cannot occur for r > 0 small
enough.

Having proved that λ∞ ∈ 3, we conclude that 3 is closed and hence equal
to [0, 1]. In particular, 1 ∈3 so Case 1 is settled.

Case 2: z(q)− z(p)> c/2. Here, reading the constant r1 from Proposition 1.2 with
δ = c/2, we take r > 0 small as done in Proposition 2.5. Furthermore, we consider
the subset of the interval [z(p), `0] defined by

Z+p =
{
z∈[z(p), `0],∀m ∈Z+p , z(m)= z=⇒Tr (γ0) is strongly convex for (p,m)

}
.

By construction, if z∈Z+p , the whole interval [z(p), z]must lie in Z+p and, by Case 1,
we know that Z+p contains the interval

[
z(p), z(p)+ c/2

)
. In the next two lemmas,

we prove that Z+p is both closed and relatively open in [z(p), `0]. Granted it is, by
connectedness, it must coincide with [z(p), `0]; hence Theorem 0.2 is established
when z(p) < `0 and q ∈ Z+p . The proof when z(p) > 0 and q ∈ Z−p is similar. �

Lemma 3.1. The subset Z+p is closed.

Lemma 3.2. The subset Z+p is relatively open in [z(p), `0].

Proof of Lemma 3.1. Let (zi )i∈N be a sequence of Z+p ; set z= limi→∞ zi ∈ [z(p), `0].
We must prove that z ∈ Z+p , so we may assume with no loss of generality that z>
z(p)+c/2. Fix m∈Z+p satisfying z(m)= z and let (mi )i∈N be a sequence of Z+p such
that, for all i ∈N, z(mi )= zi and limi→∞mi =m. For each i ∈N, set t ∈ [0, 1]→
ci (t) ∈ M for the unique minimizing geodesic such that ci (0) = p, ci (1) = mi

and ci ((0, 1))⊂ (Tr (γ0))
◦. By Proposition 1.1, the sequence

(
(dci/dt)(0)

)
i∈N

is
bounded in Tp M ; it thus converges toward a vector V ∈ Tp M . By continuity of
the map expp : Tp M→ M , the geodesic t ∈ [0, 1]→ expp(tV ) ∈ M (let us denote
it by c) satisfies c(0) = p, c(1) = m and c([0, 1]) ⊂ Tr (γ0). For each t ∈ (0, 1),
Proposition 1.2 implies that z(c(t)) ∈ (z(p), z(m)) while, taking r 6 r4, we know
that r(c(t)) < r by Proposition 2.2, so the inclusion c((0, 1))⊂ (Tr (γ0))

◦ must hold.
Finally, by Proposition 2.6 and Corollary 2.7, the geodesic c must be minimizing
and unique in Tr (γ0). In other words, we have proved that Tr (γ0) is strongly convex
for (p,m). Since the point m is arbitrary, we conclude that z ∈ Z+p as desired. �
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Proof of Lemma 3.2. Pick z ∈ Z+p and m ∈ Z+p with z(m) = z. We may take
z ∈ [z(p)+ c/2, `0) without loss, due to Lemma 3.1. Let t ∈ [0, 1] → cm(t) ∈ M
be the geodesic such that cm(0) = p, cm(1) = m and cm((0, 1)) ⊂ (Tr (γ0))

◦.
By Proposition 2.5, the Jacobi operator of cm is negative. Therefore the tangent
map d(expp)

(
(dcm/dt)(0)

)
: Tp M→ Tm M is invertible [Aubin 1998, pp. 17–18;

do Carmo 1992, pp. 117, 149; Milnor 1963, pp. 98, 100]. The inverse function
theorem [Lang 2002] yields a real εm > 0 such that each point m′ lying in the
Riemannian ball B(m, εm) can be joined to the point p by a unique geodesic
t ∈ [0, 1] → cm′(t)= expp(tV ′) ∈ M with V ′ ∈ Tp M close to Vm = (dcm/dt)(0).
Possibly shrinking εm > 0, we take it such that z(p)+ c/46 z < `0 on B(m, εm).
Since the level set Tr (γ0)∩ {z = z} is compact, it can be covered by the union of
finitely many balls Bi = B(mi , εi ), i ∈ {1, . . . , N }, each constructed like the ball
B(m, εm). There exists θ > 0 such that the level set Tr (γ0)∩ {z = z+ θ} remains
covered by

⋃N
i=1 Bi .

Claim. The subset Z+p contains z+ θ .

The claim, provisionally taken for granted, implies that [z(p), z+ θ ] ⊂ Z+p , so
Lemma 3.2, indeed, holds. �

Proof of the claim. Pick m′ ∈ Z+p with z(m′)= z+ θ . There exists i ∈ {1, . . . , N }
such that m′ ∈ Bi . So m′ = expp(V

′) ∈ M for a unique vector V ′ ∈ Tp M close to
Vi = (dcmi /dt)(0). Moreover, there exists a unique geodesic path λ ∈ [0, 1] →
m(λ)∈M ranging in Bi such that m(0)=mi , m(1)=m′. Let λ∈[0, 1]→Vλ∈Tp M
be the corresponding path, derived (like V ′) from the inverse function theorem as
done above, such that expp(Vλ)≡m(λ). Set t ∈ [0, 1]→ γλ(t)∈M for the geodesic
path given by γλ(t) = expp(tVλ). From the pinching z(p)+ c/4 6 z(m(λ)) < `0

combined with Proposition 2.2, we know that m((0, 1))⊂ (Tr (γ0))
◦. Let us argue

by connectedness on the subset of the interval [0, 1] given by

L=
{
λ ∈ [0, 1], γλ((0, 1))⊂ (Tr (γ0))

◦
}
,

which is nonempty (0 ∈ L). The closedness of L can readily be established, arguing
as we did for that of Z+p . Let us focus on proving that L is relatively open in
[0, 1]. If λ ∈ L, the continuity of expp implies the existence of µ > 0 such that
γλ′([0, 1])⊂ T2r (γ0) for each λ′ ∈ (λ−µ, λ+µ)∩ [0, 1]. By Lemma 2.3, taking
2r 6 r5, we know that the length of the geodesic γλ′ is at least equal to c/4. By
Proposition 1.2 read in T2r (γ0) with δ = c/4, we can take r > 0 small enough such
that dγλ′/dt > 0; hence z(γλ′((0, 1])) ⊂ (z(p), `0). Furthermore, taking 2r 6 r4

and applying Proposition 2.2, we get r(γλ′(t)) < r for t ∈ (0, 1). It follows that
λ′ ∈ L; in other words, L is relatively open in [0, 1]. By connectedness, we get
L= [0, 1]. In particular, 1 ∈ L, from which we readily infer that m′ ∈Z+p . Since m′

is arbitrary, we conclude z+ θ ∈ Z+p , as claimed. �
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4. Proof of Corollary 0.3

The assumption made in Theorem 0.2 on the geodesic γ0 is an open condition.
Given a small real ς > 0, we can thus find r > 0 such that Theorem 0.2 holds
for the geodesic s ∈ [−r, `0 + r ] → γr (s) ∈ M defined as the extension of the
geodesic γ0 to the interval [−r, `0+ r ]. There still exists a Fermi map about the
extended geodesic γr ; let us stick to our preceding notations for this map. It is
important to note the inclusion

(16) Nr (γ0)⊂ Tr (γr )

which follows from those of B(γ0(0), r) and B(γ0(`0), r) in Tr (γr ) combined
with the identity Nr (γ0) ≡ Tr (γ0)∪ B(γ0(0), r)∪ B(γ0(`0), r). Given a pair of
points (p, q) in Nr (γ0), say, with z(p) 6 z(q), we must prove that Nr (γ0) is
strongly convex for (p, q). To do so, it suffices to construct a geodesic path from p
to q ranging in (Nr (γ0))

◦. Indeed, by (16) combined with Proposition 2.6 and
Corollary 2.7 applied in Tr (γr ), such a geodesic path will necessarily be minimizing
and unique in Nr (γ0). From Theorem 0.2 applied in Tr (γ0) ⊂ Nr (γ0), we only
have to treat the following two cases.

Case 1: z(q)−z(p)> ς and either z(p)< 0 or z(q)> `0. By Theorem 0.2, the tube
Tr (γr ) is strongly convex for (p, q). Let t ∈ [0, 1]→ γ(t)∈ M denote the geodesic
from γ(0) = p to γ(1) = q such that γ((0, 1)) ⊂ (Tr (γr ))

◦. We must prove that
γ((0, 1)) ⊂ (Nr (γ0))

◦. By Proposition 1.2, we know that d(z ◦ γ)/dt > 0 while,
by Proposition 2.2, we have r ◦ γ < r on (0, 1). We may assume with no loss of
generality the existence of T ∈ (0, 1) such that either z(γ(T ))= 0 or z(γ(T ))= `0.
If the former occurs, the restriction of γ to the subinterval [0, T ] is minimizing in
Tr (γr )∩ {−r 6 z 6 0} among piecewise C1 paths joining p to γ(T ). Besides, the
ball B(γ0(0), r) being strongly convex, there exists a unique minimizing geodesic
τ ∈ [0, 1]→ c(τ )∈M such that c(0)= p, c(1)= γ(T ), c((0, 1])⊂ (B(γ0(0), r))

◦.
By uniqueness and due to (16), these geodesics must coincide: c(τ )≡ γ(τT ). In
particular, we do have γ((0, T ])⊂ (B(γ0(0), r))

◦. Similarly, if the latter occurs, the
restriction of γ to the subinterval [T, 1] is minimizing in Tr (γr )∩{`0 6 z 6 `0+r}
among piecewise C1 paths joining γ(T ) to q . The ball B(γ0(`0), r) being strongly
convex, there exists a unique minimizing geodesic τ ∈ [0, 1] → c(τ ) ∈ M such
that c(0)= γ(T ), c(1)= q and c([0, 1))⊂ (B(γ0(`0), r))◦. Again, these geodesics
must coincide: c(τ ) ≡ γ(τ + (1− τ)T ). In particular, we do have γ([T, 1)) ⊂
(B(γ0(`0), r))◦. Case 1 is settled.

Case 2: z(q)− z(p) < ς and either z(p) < ς or z(q) > `0 − ς . Here, we may
assume that the points p and q lie in the closure of a strongly convex ball B and
argue as in Case 1 of the proof of Theorem 0.2, with Tr (γ0) now replaced by
Nr (γ0). Doing so, the present proof is reduced to ruling out the analogue of (15),
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namely the property

cλ∞(θ)∈
[
∂B(γ0(0), r)∩{z<0}

]
∪
[
∂B(γ0(`0), r)∩{z>`0}

]
for some θ ∈ (0, 1).

This can be done by observing that the geodesic t ∈ [0, 1] → cλ∞(t) ∈ M is
minimizing from p⊥λ∞ to q⊥λ∞ and by relying on the inclusion (16) combined with
the strong convexity of the balls B(γ0(0), r) and B(γ0(`0), r); we leave it as an
exercise.
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We obtain upper bounds for the eigenvalues of the Schrödinger operator
L = 1g + q depending on integral quantities of the potential q and a con-
formal invariant called the min-conformal volume. When the Schrödinger
operator L is positive, integral quantities of q appearing in upper bounds
can be replaced by the mean value of the potential q. The upper bounds we
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The Schrödinger operator. Let (M, g) be a compact Riemannian manifold of
dimension m and q ∈ C0(M). The eigenvalues of the Schrödinger operator L :=
1g + q acting on functions constitute a nondecreasing, semibounded sequence of
real numbers going to infinity:

λ1(1g + q)≤ λ2(1g + q)≤ · · · ≤ λk(1g + q)≤ · · · ↗∞.

The well-known Weyl law, which describes the asymptotic behavior of the eigen-
values of the Laplacian [Bérard 1986], can be easily extended to the eigenvalues of
Schrödinger operators on compact Riemannian manifolds:

(1) lim
k→∞

λk(1g + q)
(
µg(M)

k

)2/m

= αm,

where αm = 4π2ω
−2/m
m and ωm is the volume of the unit ball in Rm . This says

that the normalized eigenvalues λk(1g+q)(µg(M)/k)2/m asymptotically tend to a
constant depending only on the dimension. However, upper bounds of normalized
eigenvalues in general cannot be independent of geometric invariants and the
potential q; see [Colbois and Dodziuk 1994] or the introduction of [Hassannezhad
2011]. We shall obtain upper bounds for normalized eigenvalues depending on some
geometric invariants and integral quantities of the potential q . These upper bounds
are compatible with the asymptotic behavior in (1); that is, they tend asymptotically
to a constant depending only on the dimension as k goes to infinity.

Numerous articles have studied how the eigenvalues of L can be controlled
in terms of geometric invariants of the manifold and quantities depending on the
potential. From the variational characterization of eigenvalues, it is easy to see that

λ1(1g + q)≤
1

µg(M)

∫
M

q dµg.

For the second eigenvalue λ2(1g + q), El Soufi and Ilias [1992, Theorem 2.2]
obtained an upper bound in terms of the mean value of the potential q and a
conformal invariant:

(2) λ2(1g + q)≤ m
(

Vc([g])
µg(M)

)2/m

+

∫
M q dµg

µg(M)
,

where Vc([g]) is the conformal volume defined by Li and Yau [1982] which only
depends on the conformal class of g, denoted by [g].

For a compact orientable Riemannian surface (6γ , g) of genus γ , as a conse-
quence of inequality (2), they obtained the following inequality, where b c denotes
the floor function:

(3) λ2(1g + q)≤
8π

µg(6γ )

⌊
γ + 3

2

⌋
+

∫
6γ

q dµg

µg(6γ )
.
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For higher eigenvalues of Schrödinger operators, Grigor’yan, Netrusov and Yau
[Grigor’yan et al. 2004] proved a general and abstract result that can be stated
in the case of Schrödinger operators as follows. Given positive constants N and
C0, assume that a compact Riemannian manifold (M, g) has the (2, N )-covering
property (that is, each ball of radius r can be covered by N balls of radius r/2) and
µg(B(x, r))≤ C0r2 for every x ∈ M and every r > 0. Then, for every q ∈ C0(M),
we have (see [Grigor’yan et al. 2004, Theorem 1.2 (1.14)])

(4) λk(1g + q)≤
Ck+ δ−1

∫
M q+ dµg − δ

∫
M q− dµg

µg(M)
,

where δ ∈ (0, 1) is a constant which depends only on N , C > 0 is a constant which
depends on N and C0, and q± =max{| ± q|, 0}.

Moreover, if L is a positive operator, then we have (see [Grigor’yan et al. 2004,
Theorem 5.15])

(5) λk(1g + q)≤
Ck+

∫
M q dµg

εµg(M)
,

where ε ∈ (0, 1) depends only on N and C depends on N and C0.
The above inequalities in dimension two have a special feature as follows. Let

6γ be a compact orientable Riemannian surface of genus γ . Then, for every
Riemannian metric g on 6γ and every q ∈ C0(6γ ), we have (see [Grigor’yan et al.
2004, Theorem 5.4])

λk(1g + q)≤
Q(γ + 1)k+ δ−1

∫
6γ

q+dµg − δ
∫
6γ

q−dµg

µg(6γ )
,

where δ ∈ (0, 1) and Q > 0 are absolute constants.
Inequalities (4) and (5) are not compatible with the asymptotic behavior regarding

the power of k, except in dimension two. Yet, for surfaces, the limit of the above
upper bound for normalized eigenvalues depends on the genus γ as k goes to infinity.
Therefore, it is not compatible with (1).

We obtain upper bounds which generalize and improve the above inequalities
without imposing any condition on the metric and which are compatible with the
asymptotic behavior. Before stating our theorem, we need to recall the definition
of the min-conformal volume. For a compact Riemannian manifold (M, g), its
min-conformal volume is defined as follows (see [Hassannezhad 2011]):

V ([g])= inf{µg0(M) : g0 ∈ [g], Riccig0 ≥−(m− 1)}.

Theorem 1.1. There exist positive constants αm ∈ (0, 1), Bm , and Cm depending
only on m such that, for every compact m-dimensional Riemannian manifold (M, g),
every potential q ∈ C0(M), and every k ∈ N∗, we have
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(6) λk(1g + q)≤
α−1

m
∫

M q+ dµg −αm
∫

M q− dµg

µg(M)

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

In particular, when the potential q is nonnegative, one has

(7) λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

,

where Am = α
−1
m .

We also obtain upper bounds for eigenvalues of positive Schrödinger operators.
Note that the positivity of the Schrödinger operator L =1g + q implies that

∫
M q

is nonnegative, and q here may not be nonnegative. The following upper bound
generalizes inequalities (5) and (7).

Theorem 1.2. There exist constants Am > 1, Bm , and Cm depending only on m
such that if L = 1g + q with q ∈ C0(M) is a positive operator, then, for every
compact m-dimensional Riemannian manifold (Mm, g) and every k ∈N∗, we have

λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

Given the Schrödinger operator L =1g + q, for every ε > 0, the Schrödinger
operator L̃ =1g+q−λ1(L)+ε is positive and λk(L̃)= λk(L)−λ1(L)+ε. When
ε goes to zero, Theorem 1.1 leads to the following.

Corollary 1.3. Under the assumptions of Theorem 1.1, we get

λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ (1− Am)λ1(1g + q)

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

In the two-dimensional case, for a compact orientable Riemannian surface
(6γ , g) of genus γ , thanks to the uniformization and Gauss–Bonnet theorems,
one has V ([g]) ≤ 4πγ . Therefore, in compact orientable Riemannian surfaces,
one can replace the min-conformal volume by the topological invariant 4πγ in the
above inequalities.

Corollary 1.4. There exist absolute constants a ∈ (0, 1), A, and B such that, for
every compact orientable Riemannian surface (6γ , g) of genus γ , every potential
q ∈ C0(M), and every k ∈ N∗, we have

(8) λk(1g + q)µg(6γ )≤

∫
6γ

(aq+− a−1q−) dµg + Aγ + Bk.
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And if L is a positive operator,

λk(1g + q)µg(6γ )≤ a
∫
6γ

q dµg + Aγ + Bk.

An interesting application of Theorem 1.1 is the case of weighted Laplace
operators or Bakry–Émery Laplace operators.

Bakry–Émery Laplacian. Let (M, g) be a Riemannian manifold and φ ∈ C2(M).
The corresponding weighted Laplace operator 4φ is defined by

1φ =1g +∇gφ · ∇g.

This operator is associated with the quadratic functional
∫

M |∇g f |2e−φ dµg, that is,∫
M
1φ f he−φ dµg =

∫
M
〈∇g f,∇gh〉e−φ dµg.

This operator is an elliptic operator on C∞c (M)⊆ L2(e−φ dµg) and can be extended
to a selfadjoint operator with the weighted measure e−φ dµg. In this sense, it arises
as a generalization of the Laplacian. The weighted Laplace operator 1φ is also
known as the diffusion operator or the Bakry–Émery Laplace operator which is
used to study the diffusion process; see, for instance, the pioneering work of Bakry
and Émery [1985] or [Lott 2007; Lott and Villani 2009]. The triple (M, g, φ) is
called a Bakry–Émery manifold, where φ ∈ C2(M) and (M, g) is a Riemannian
manifold with the weighted measure e−φdµg; see [Lu and Rowlett 2012; Rowlett
2010]. The interplay between the geometry of M and the behavior of φ is mostly
taken into account by means of a new notion of curvature called the Bakry–Émery
Ricci tensor1, which is defined by

Ricciφ = Riccig +Hessφ.

Our aim is to find upper bounds for the eigenvalues of 1φ denoted by λk(1φ) in
terms of the geometry of M and of properties of φ.

Upper bounds for the first eigenvalue λ1(1φ) of complete noncompact Riemann-
ian manifolds have been recently considered in several works; see [Munteanu and
Wang 2012; Setti 1998; Su and Zhang 2012; Wu 2010; 2012]. These upper bounds
depend on the L∞-norm of ∇gφ and a lower bound of the Bakry–Émery Ricci
tensor.

Let (M, g, φ) be a complete noncompact Bakry–Émery manifold of dimension
m with Ricciφ ≥−κ2(m− 1) and |∇gφ| ≤ σ for some constants κ ≥ 0 and σ > 0.
Then we have, by [Su and Zhang 2012, Proposition 2.1] (see also [Munteanu and

1 The Bakry–Émery Ricci tensor Ricciφ is also referred to as the∞-Bakry–Émery Ricci tensor.
We denote Ricciφ and Hessφ by Ricciφ(M, g) and Hessg φ wherever any confusion might occur.
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Wang 2012; Wu 2010; 2012])

(9) λ1(1φ)≤
1
4((m− 1)κ + σ)2.

In particular, if Ricciφ ≥ 0, we have

(10) λ1(1φ)≤
1
4σ

2.

We consider compact Bakry–Émery manifolds and we present two approaches to
obtain upper bounds for the eigenvalues of the Bakry–Émery Laplace operator in
terms of the geometry of M and the properties of φ.

First approach. One can see that 1φ is unitarily equivalent to the Schrödinger
operator L=1g+

1
21gφ+

1
4 |∇gφ|

2; see, for example, [Setti 1998, p. 28]. Therefore,
as a consequence of Theorem 1.2, we obtain an upper bound for λk(1φ) in terms
of the min-conformal volume and the L2-norm of ∇gφ.

Theorem 1.5. There exist constants Am , Bm , and Cm depending on m ∈ N∗, such
that, for every m-dimensional compact Bakry–Émery manifold (M, g, φ), we have

λk(1φ)≤ Am
1

µg(M)
‖∇gφ‖

2
L2(M)+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

It is worth noticing that in full generality it is not possible to obtain upper bounds
which do not depend on φ; see, for instance, [Su and Zhang 2012, Section 2]. How-
ever, we will see that for compact manifolds with nonnegative Bakry–Émery Ricci
curvature we can find upper bounds which do not depend on φ (see Corollary 1.8).

In the two-dimensional case, as a result of Corollary 1.4, we obtain the following.

Corollary 1.6. There exist absolute constants a ∈ (0, 1), A, and B such that, for
every compact orientable Riemannian surface (6γ , g) of genus γ and every k ∈N∗,

λk(1φ)µg(6γ )≤ a‖∇gφ‖
2
L2(6γ )

+ Aγ + Bk.

Second approach. This approach is based on using the technique introduced in
[Hassannezhad 2011], which was successfully applied for the Laplace operator 1g

on Riemannian manifolds [Hassannezhad 2011, Theorem 1.1]. We obtain upper
bounds for eigenvalues of 1φ in terms of a conformal invariant. We also obtain a
Buser type upper bound for λk(1φ) (see Corollary 1.9).

Definition 1.1. Let (M, g, φ) be a compact Bakry–Émery manifold. We define the
φ-min-conformal volume as

(11) Vφ([g])= inf{µφ(M, g0) : g0 ∈ [g],Ricciφ(M, g0)≥−(m− 1)},

where µφ(M, g0) is the weighted measure2 of M with respect to the metric g0.

2For a Bakry–Émery manifold (M, g, φ), when µφ is the weighted measure with respect to the
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Note that up to dilations3 there is always a Riemannian metric g0 ∈ [g] such that
Ricciφ(M, g0)≥−(m− 1). We are now ready to state our theorem.

Theorem 1.7. There exist positive constants A(m) and B(m) depending only on
m ∈N∗ such that, for every compact Bakry–Émery manifold (M, g, φ) with |∇gφ|≤

σ , for some σ ≥ 0 and for every k ∈ N∗, we have

(12) λk(1φ)≤ A(m)max{σ 2, 1}
(

Vφ([g])
µφ(M)

)2/m

+ B(m)
(

k
µφ(M)

)2/m

.

If a metric g is conformally equivalent to a metric g0 with Ricciφ(M, g0) ≥ 0,
Vφ([g])= 0. Thus an immediate consequence of Theorem 1.7 is the following.

Corollary 1.8. There exists a positive constant A(m) depending only on m ∈ N∗

such that, for every compact Bakry–Émery manifold (M, g, φ) with Vφ([g]) = 0
and for every k ∈ N∗,

(13) λk(1φ)≤ A(m)
(

k
µφ(M)

)2/m

.

The above upper bound is similar to the upper bound for the eigenvalues of the
Laplacian in Riemannian manifolds (M, g) when V ([g])= 0; see [Korevaar 1993].

If Ricciφ(M) ≥ −κ2(m − 1) for some κ ≥ 0, then, for g0 = κ
2g, one has

Ricciφ(M, g0) ≥ −(m − 1) and Vφ([g]) ≤ µφ(M, g0) = κ
mµφ(M, g). Replacing

in inequality (12), we get a Buser type upper bound for the eigenvalues of the
Bakry–Émery Laplacian.

Corollary 1.9 (Buser type upper bound). There are positive constants A(m) and
B(m) depending only on m ∈ N∗ such that, for every compact Bakry–Émery mani-
fold (M, g, φ) with Ricciφ(M) >−κ2(m− 1) and |∇gφ| ≤ σ for some κ ≥ 0 and
σ ≥ 0, and for every k ∈ N∗, we have

λk(1φ)≤ A(m)max{σ 2, 1}κ2
+ B(m)

(
k

µφ(M)

)2/m

.

A weaker version of Corollary 1.9 can be proved directly by the classic idea
used by Buser [1979] and Li and Yau [1980]. We refer the reader to the appendix,
where we give a simple and direct proof.

Remark 1.1. All of the results mentioned above for compact manifolds are also
valid when one considers bounded subdomains of complete manifolds with the
Neumann boundary condition.

metric g, we simply denote the weighted measure of a measurable subset A of M by µφ(A) instead
of µφ(A, g).

3Note that Hessφ and Riccig do not change under dilations. If Ricciφ(M, g)≥−κ2(m− 1)g, for
all α > 0, Ricciφ(M, g0) := Ricciφ(M, αg)= Ricciφ(M, g)≥−κ2(m− 1)g =−(κ2/α)(m− 1)g0.
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2. Preliminaries and technical tools

Basic definitions. A capacitor is a pair of Borel sets (F,G) in a topological space
satisfying F  G.

We say that a metric space (X, d) satisfies the (κ, N ; ρ)-covering property if
each ball of radius 0< r ≤ρ can be covered by N balls of radius r/κ . We sometimes
call this the local covering property when ρ <∞.

For any x ∈ X and 0≤ r ≤ R, we define the annulus A(x, r, R) as

A(x, r, R) := B(x, R) \ B(x, r)= {y ∈ X : r ≤ d(x, y) < R}.

Note that A(x, 0, R) = B(x, R). If F = A(x, r, R) and λ ≥ 1, we define λF :=
A(x, λ−1r, λR). For F ⊆ X and r > 0, we denote by Fr the r -neighborhood of F :

Fr
= {x ∈ X : d(x, F)≤ r}.

Here we state the key method that we use in order to obtain our results. This
method was introduced in [Hassannezhad 2011] and was inspired by two elaborate
constructions given in [Colbois and Maerten 2008; Grigor’yan et al. 2004]. It
leads to the construction of a “nice” family of capacitors, crucial to estimating the
eigenvalues of Schrödinger operators and Bakry–Émery operators via capacities.

Capacity on Riemannian manifolds. For each capacitor (F,G) in a Riemannian
manifold (M, g) of dimension m, we define the capacity and the m-capacity by

(14) capg(F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

2 dµg and cap(m)
[g] (F,G)= inf

ϕ∈T

∫
M
|∇gϕ|

m dµg,

respectively, where T=T(F,G) is the set of all functions ϕ ∈ C∞0 (M) such that
suppϕ ⊂ G, 0 ≤ φ ≤ 1, and ϕ ≡ 1 in a neighborhood of F . If T(F,G) is empty,
capg(F,G)= cap(m)

[g] (F,G)=+∞.

Proposition 2.1 ([Hassannezhad 2012, Theorem 1.2.1]; see also [Hassannezhad
2011]). Let (X, d, µ) be a metric measure space with a nonatomic Borel measure
µ satisfying the (2, N ; ρ)-covering property. Then, for every n ∈ N∗, there exists a
family of capacitors A= {(Fi ,Gi )}

n
i=1 with the following properties:

(i) µ(Fi )≥ ν := µ(X)/(8c2n), where c is a constant depending only on N.

(ii) The Gi are mutually disjoint.

(iii) The family A is such that either

(a) all the Fi are annuli with outer radii smaller than ρ and Gi =
2Fi , or

(b) all the Fi are domains in X and Gi = Fr0
i with r0 =

1
1600ρ.

As a consequence of this proposition, we have:
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Lemma 2.2. Let (Mm, g, µ) be a compact Riemannian manifold with a nonatomic
Borel measure µ. Then there exist positive constants c(m) ∈ (0, 1) and α(m)
depending only on the dimension such that, for every k ∈N∗, there exists a family
{(Fi ,Gi )}

k
i=1 of mutually disjoint capacitors with the following properties:

(I) µ(Fi ) > c(m)
µ(M)

k
.

(II) capg(Fi ,Gi )≤
µg(M)

k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

k
µg(M)

)2/m]
, with r0=

1
1600 .

Proof of Lemma 2.2. Take the metric measure space (M, dg0, µ), where g0 ∈ [g]
with Riccig0 ≥−(m−1) and dg0 is the distance associated to the Riemannian metric
g0. It is easy to verify that (M, dg0, µ) has the (2, N ; 1)-covering property, where
N is a constant depending only on the dimension [Hassannezhad 2011]. Therefore,
Proposition 2.1 implies that for every k ∈N∗ there is a family of 3k mutually disjoint
capacitors {(Fi ,Gi )}

3k
i=1 satisfying the following properties (see [Grigor’yan et al.

2004, Proposition 3.1] for more justification):

• µ(Fi ) > c(m)µ(M)/k, where c(m) ∈ (0, 1) is a positive constant depending
only on the dimension.

• Either

(a) all the Fi are annuli with outer radii smaller than 1 and cap(m)
[g] (Fi ,

2Fi )≤

Qm , where the constant Qm depends only on the dimension, and Gi =
2Fi ;

or
(b) all the Fi are domains in M and Gi = Fr0

i , where r0 =
1

1600 .

Hence, the family of {(Fi ,Gi )}
3k
i=1 has property (I). We now show that at least k

of the capacitors satisfy property (II). We first find an upper bound for the m-capacity
cap(m)
[g] (Fi ,Gi ). If all the Fi are annuli, we already have an estimate by property (a).

If the Fi are domains, one can define a family of functions ϕi ∈T(Fi ,Gi ), 1≤ i ≤3k,
such that |∇g0ϕi | ≤ 1/r0. Then

cap(m)
[g] (Fi ,Gi )≤

∫
M
|∇g0ϕi |

m dµg0 ≤
1

rm
0
µg0(Gi ).

Since G1, . . . ,G3k are mutually disjoint, there exist at least 2k of them so that
µg0(Gi ) ≤ µg0(M)/k. Similarly, there exist at least 2k sets (not necessarily the
same ones) such that µg(Gi )≤ µg(M)/k. Therefore, up to reordering, we assume
that the first k of them (that is, G1, . . . ,Gk) satisfy the inequalities

µg(Gi )≤ µg(M)/k and µg0(Gi )≤ µg0(M)/k.
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Hence, in general, there exist k capacitors (Fi ,Gi ), 1≤ i ≤ k, with

cap(m)
[g] (Fi ,Gi )≤ Qm +

1
rm

0

µg0(M)
k

.

The left side of this inequality is a conformal invariant. Now, taking the infimum
over g0 ∈ [g] with Riccig0 ≥−(m− 1), we get

cap(m)
[g] (Fi ,Gi )≤ Qm +

1
rm

0

V ([g])
k

.

Now, for every ε > 0, we consider plateau functions { fi }
k
i=1, fi ∈T(Fi ,Gi ), with∫

M
|∇g fi |

m dµg ≤ cap(m)
[g] (Fi ,Gi )+ ε.

Therefore,

(15) capg(Fi ,Gi )≤

∫
M
|∇g fi |

2dµg ≤

(∫
M
|∇g fi |

mdµg

)2/m(∫
M

1supp fi dµg

)1−2/m

≤
(
cap(m)
[g] (Fi ,Gi )+ ε

)2/m
µg(Gi )

1−2/m

≤

(
Qm +

1
rm

0

V ([g])
k
+ ε

)2/m

µg(Gi )
1−2/m

≤

[
Q2/m

m +
1
r2

0

(
V ([g])

k

)2/m

+ ε2/m
](
µg(M)

k

)1−2/m

.

where the last inequality is due to the well-known fact that

(a+ b)s ≤ as
+ bs

when a, b are nonnegative real numbers and 0< s ≤ 1. Letting ε tend to zero, we
obtain property (II). This completes the proof. �

Capacity on Bakry–Émery manifolds. In an analogous way, we define the capacity
in a Bakry–Émery manifold (M, g, φ). For each capacitor (F,G) in a Bakry–Émery
manifold (M, g, φ) of dimension m, the capacity and the m-capacity are defined as

(16) capφ(F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

2 dµφ and cap(m)φ (F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

m dµφ,

respectively, where T=T(F,G) is the set of all functions ϕ ∈ C∞0 (M) such that
suppϕ ⊂ G, 0 ≤ φ ≤ 1 and ϕ ≡ 1 in a neighborhood of F . If T(F,G) is empty,
capφ(F,G)= cap(m)φ (F,G)=+∞.

We prove a similar lemma below (Lemma 2.2). We first show that every compact
Bakry–Émery manifold satisfies the assumptions of Proposition 2.1. Thanks to a
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volume comparison theorem for Bakry–Émery manifolds, which we quote next, we
can show that such have the local covering property (see Lemma 2.4).

Theorem 2.3 (volume comparison theorem [Wei and Wylie 2009]). Let (M, g, φ)
be a compact Bakry–Émery manifold with Ricciφ ≥ α(m− 1). If ∂rφ ≥−σ with
respect to geodesic polar coordinates centered at x , then, for every 0< r ≤ R, we
have (assume R ≤ π/2

√
α if α > 0)

(17)
µφ(B(x, R))
µφ(B(x, r))

≤ eσ R v(m, R, α)
v(m, r, α)

,

and, in particular, letting r tend to zero yields

(18) µφ(B(x, R))≤ eσ Rv(m, R, α),

where v(m, r, α) is the volume of a ball of radius r in the simply connected space
form of constant sectional curvature α.

Lemma 2.4. Let (M, g, φ) be a compact Bakry–Émery manifold with Ricciφ ≥
−κ2(m − 1) and |∇gφ| ≤ σ for some κ ≥ 0 and σ ≥ 0. There exist constants
N (m)∈N∗ and ξ = ξ(σ, κ)> 0 such that (M, g, φ) satisfies the (2, N ; ξ)-covering
property. Moreover, there exists a positive constant C(m) such that, for every 0≤
r < R ≤ ξ and x ∈ M , the annulus A= A(x, r, R) satisfies cap(m)φ (A, 2A))≤C(m).

Proof. Take ξ = min{1/σ, 1/κ}. (Take ξ =∞ if σ = κ = 0.) We first show that
(M, µφ) has the doubling property for r < 4ξ , that is,

µφ(B(x, r))≤ cµφ(B(x, r/2)), 0< r < 4ξ,

for some positive constant c. From this, it is easy to deduce that (M, µφ) has
the (2, N ; ξ)-covering property, for example with N = c4. To prove the doubling
property, according to inequality (17) we have

µφ(B(x, r))
µφ(B(x, r/2))

≤ eσr v(m, r,−κ2)

v(m, r/2,−κ2)
= eσr v(m, κr,−1)

v(m, κr/2,−1)
.

Take r̃ := κr . Then, for 0< r < 4ξ = 4 min{1/σ, 1/κ}, we have

eσr v(m, κr,−1)
v(m, κr/2,−1)

≤ e4 v(m, r̃ ,−1)
v(m, r̃/2,−1)

≤ c(m),

where

c(m) := sup
r̃∈(0,4)

e4 v(m, r̃ ,−1)
v(m, r̃/2,−1)

.

Thus
µφ(B(x, r))
µφ(B(x, r/2))

≤ c(m) for every 0< r < ξ.

Therefore, (M, g, φ) has the (2, N ; ξ)-covering property for N = c4(m).
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To estimate the capacity of an annulus, we now follow the same argument as
in [Hassannezhad 2011, p. 3430]. Let A = A(x, r, R) and let f ∈ T(A, 2A) be
given by

(19) f (y)=


1 if y ∈ A(x, r, R),

2dg0(y, B(x, r/2))/r if y ∈ A(x, r/2, r) and r 6= 0,

1− dg0(y, B(x, R))/R if y ∈ A(x, R, 2R),

0 if y ∈ M \ A(x, r/2, 2R).

We have

|∇g0 f | ≤
{

2/r on B(x, r) \ B(x, r/2),

1/R on B(x, 2R) \ B(x, R).

Therefore,

cap(m)φ (A, 2A)≤
∫

M
|∇g f |mdµφ ≤

(2
r

)m
µφ(A(x,r/2,r))+

( 1
R

)m
µφ(A(x,R,2R))

≤

(2
r

)m
µφ(B(x, r))+

( 1
R

)m
µφ(B(x, 2R)).

Having inequality (18), we get

cap(m)φ (A, 2A)≤
(2

r

)m
eσrv(m, r,−κ2)+

( 1
R

)m
e2σ Rv(m, 2R,−κ2)

=

( 2
κr

)m
eσrv(m, κr,−1)+

( 1
κR

)m
e2σ Rv(m, 2κR,−1).

Take r̃ := κr and R̃ := κR. Then, for every 0< r < R ≤ 2ξ = 2 min{1/σ, 1/κ}, we
get

(20) cap(m)φ (A, 2A)≤
(

2
r̃

)m

e2v(m, r̃ ,−1)+
(

1

R̃

)m

e4v(m,2R̃,−1).

Setting C(m) to the supremum of the expression on the right side over r̃ , R̃ ∈ (0, 2)
completes the proof. �

Lemma 2.5. Let (Mm, g, φ) be a compact Bakry–Émery manifold with |∇gφ| ≤ σ

for some σ ≥ 0. There exist positive constants c(m) ∈ (0, 1) and α(m) depending
only on the dimension such that, for every k ∈N∗, there exists a family {(Fi ,Gi )}

k
i=1

of capacitors with the following properties:

(I) µφ(Fi ) > c(m)
µφ(M)

k
,

(II) capφ(Fi ,Gi ) ≤
µφ(M)

k

[
1
r2

0

(
Vφ([g])
µφ(M)

)2/m

+ α(m)
(

k
µφ(M)

)2/m ]
, where

1/r0 = 1600 max{σ, 1}.
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Proof. We consider the Bakry–Émery manifold (M, g, φ) as the metric measure
space (M, dg0, µφ) where g0 ∈ [g] with Ricciφ(M, g0)≥−(m− 1) and µφ is the
weighted measure with respect to the metric g. According to Lemma 2.4, this space
has the (2, N , ξ)-covering property with ξ =min{1/σ, 1}. Having Proposition 2.1
and Lemma 2.4, and following steps analogous to those in Lemma 2.2 we see,
for every k ∈ N∗, there exists a family of k mutually disjoint capacitors {Fi ,Gi }

satisfying the following properties:

• µφ(Fi )≥ c(m)µφ(M)/k, where c(m)∈ (0, 1) is a positive constant depending
only on the dimension, and µφ(Gi )≤ µφ(M)/k. Either

(a) all the Fi are annuli with outer radii smaller than ξ , Gi =
2Fi , and

cap(m)φ (Fi ,Gi )≤ C(m),

where C(m) is the constant defined in (20);
or
(b) all the Fi are domains in M , Gi = Fr0

i is the r0-neighborhood of Fi , and
cap(m)φ (Fi ,Gi )≤ r−2

0 Vφ([g])/k, with r0 = ξ/1600.

Hence, cap(m)φ (Fi ,Gi )≤C(m)+r−2
0 Vφ([g])/k. Now, for every ε > 0, we consider

a family of functions { fi }
k
i=1, fi ∈ T(Fi ,Gi ) such that∫

M
|∇g fi |

me−φ dµg ≤ cap(m)φ (Fi ,Gi )+ ε.

We repeat the same argument as before.

capφ(Fi ,Gi )≤

∫
M
|∇g fi |

2e−φdµg

≤

(∫
M
|∇g fi |

me−φdµg

)2/m(∫
M

1supp fi
e−φdµg

)1−2/m

≤

[
C(m)2/m

+
1
r2

0

(
Vφ([g])

k

)2/m

+ ε2/m
](
µφ(M)

k

)1−2/m

.

Having 1/r0 = 1600/ξ = 1600 max{σ, 1} and letting ε tend to zero, we obtain
property (II). This completes the proof. �

3. Eigenvalues of Schrödinger operators

In this section, we prove Theorems 1.1 and 1.2. The idea of the proof is to construct
a suitable family of test functions to be used in the variational characterization of
the eigenvalues. Due to the min-max Theorem, we have the following variational
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characterization for the eigenvalues of the Schrödinger operator L =1g + q:

λk(1g + q)=min
Vk

max
06= f ∈Vk

∫
M |∇g f |2 dµg +

∫
M f 2q dµg∫

M f 2 dµg
,

where Vk is a k-dimensional linear subspace of H 1(M) and µg is the Riemannian
measure corresponding to the metric g.

According to this variational formula, for every family { fi }
k
1=1 of disjointly

supported test functions, one has

(21) λk(1g + q)≤ max
i∈{1,...,k}

∫
M |∇g fi |

2 dµg +
∫

M f 2
i q dµg∫

M f 2
i dµg

.

The potential q ∈C0(M) is a signed function (notice that we can assume q ∈ L1(M)
as well). We define a signed measure σ associated to the potential q by

σ(A)=
∫

A
q dµg for every measurable subset A of X.

For any signed measure ν we write ν = ν+− ν−, where ν+ and ν− are the positive
and negative parts of ν, respectively. For any signed measure ν and 0≤ δ ≤ 1 we
define a new signed measure νδ as νδ := δν+− ν−.

Let µ and ν be two signed measures on M . Then, according to [Grigor’yan et al.
2004, Lemma 4.3], we have

(22) (µ+ ν)δ ≥ µδ + νδ.

Proof of Theorem 1.1. For a real number λ ∈ R define µλ := (λµg − σ)
+ as a

nonatomic Borel measure on M . We apply Lemma 2.2 to (M, g, µλ). Thus, for
every k ∈ N∗ and every λ ∈ R, there exists a family {(Fi ,Gi )}

2k
i=1 of 2k capacitors

satisfying properties (I) and (II) of Lemma 2.2.
From now on, we take λ := λk = λk(L). Property (I) yields

(λkµg − σ)
+(Fi )≥ c(m)

(λkµg − σ)
+(M)

2k
.

The measure (λkµg − σ)
− is also nonatomic. Since Gi are mutually disjoint, up to

reordering, the first k of them satisfy

(λkµg − σ)
−(Gi )≤

(λkµg − σ)
−(M)

k
, i ∈ {1, . . . , k}.

Therefore

(23) (λkµg − σ)
−(Gi )− (λkµg − σ)

+(Fi )

≤
(λkµg − σ)

−(M)
k

− c(m)
(λkµg − σ)

+(M)
2k

.
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For every ε > 0 and every 1≤ i ≤ k, we choose fi ∈ T(Fi ,Gi ) such that

(24)
∫

M
|∇g fi |

2 dµg ≤ capg(Fi ,Gi )+ ε.

Inequality (21) implies that there exists i ∈ {1, . . . , k} so that

λk

∫
M

f 2
i dµg ≤

∫
M
|∇g fi |

2 dµg +

∫
M

f 2
i q dµg.

Hence, having Lemma 2.2 and inequality (23), we get

(25) 0≤
∫

M
|∇g fi |

2 dµg −

∫
M

f 2
i (λk − q) dµg

≤ capg(Fi ,Gi )+ ε−

∫
M

f 2
i (λk − q) dµg

≤
µg(M)

2k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m ]
+ ε

+

∫
M

f 2
i (λk − q)− dµg −

∫
M

f 2
i (λk − q)+ dµg

≤
µg(M)

2k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m ]
+ ε

+
(λkµg − σ)

−(M)
k

− c(m)
(λkµg − σ)

+(M)
2k

.

We now estimate the last two terms of this inequality considering two alternatives.

Case 1. If λk = λk(L) is positive, then, applying (22) for the measure λkµg and
signed measure −σ with δ = c(m)/2, we get

(26)
c(m)

2
(λkµg − σ)

+(M)− (λkµg − σ)
−(M)

≥
c(m)

2
σ−(M)− σ+(M)+

c(m)
2
λkµg(M).

Substituting (26) in (25) and letting ε tend to zero gives

(27) λk ≤
(2/c(m))σ+(M)− σ−(M)

µg(M)

+
1

c(m)r2
0

(
V ([g])
µg(M)

)2/m

+
α(m)
c(m)

(
2k

µg(M)

)2/m

.

Case 2. If λk = λk(L) is nonpositive, applying (22) for the signed measures λkµg

and −σ with δ = c(m)/2 implies

c(m)
2
(λkµg − σ)

+(M)− (λkµg − σ)
−(M)≥

c(m)
2
σ−(M)− σ+(M)+ λkµg(M).
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Substituting this in (25) and letting ε go to zero gives

(28) λk ≤
σ+(M)− (c(m)/2)σ−(M)

µg(M)
+

1
2r2

0

(
V ([g])
µg(M)

)2/m

+
α(m)

2

(
2k

µg(M)

)2/m

.

Therefore, λk(L) is smaller than the sum of the right sides of inequalities (27) and
(28). We finally obtain inequality (6) with, for example, αm = c(m)/4. �

Proof of Theorem 1.2. We partly follow the spirit of’ the proof of [Grigor’yan et al.
2004, Theorem 5.15]. Take the metric measure space (M, g, µg). By Lemma 2.2,
for every k ∈ N ∗ there is a family of 2k disjoint capacitors {(Fi ,Gi )}

2k
i=1 that satisfies

properties (I) and (II) of Lemma 2.2. For every ε > 0, let { fi }
2k
i=1 be a family of

test functions with 2 fi ∈ T(Fi ,Gi ) and 4
∫

M |∇g fi |
2 dµg ≤ capg(Fi ,Gi )+ ε. We

claim that this family satisfies the following property:

(29)
2k∑

i=1

∫
M

f 2
i q dµg ≤

2k∑
i=1

∫
M
|∇g fi |

2 dµg +

∫
M

q dµg.

If we have inequality (29),

(30)
2k∑

i=1

∫
M
(|∇g fi |

2
+ f 2

i q) dµg ≤ 2
2k∑

i=1

∫
M
|∇g fi |

2 dµg +

∫
M

q dµg

≤ k max
i

capg(Fi ,Gi )+ kε+
∫

M
q dµg.

By the assumption,
∫

M(|∇g fi |
2
+ f 2

i q) dµg is positive for each 1≤ i≤2k. Therefore,
at least k of them (up to reordering we assume that it’s the first k) satisfy the
inequality

(31)
∫

M
(|∇g fi |

2
+ f 2

i q) dµg ≤max
i

capg(Fi ,Gi )+ ε+

∫
M q dµg

k
.

Inequality (31), together with the bounds of capg(Fi ,Gi ) and µg(Fi ) given in
Lemma 2.2 and properties (I) and (II), leads to

λk(L)≤max
i

∫
M |∇g fi |

2dµg+
∫

M f 2
i q dµg∫

M f 2
i dµg

≤
maxi capg(Fi ,Gi )+ε+(1/k)

∫
M q dµg

µg(Fi )

≤
1

c(m)r2
0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m

+
2kε

c(m)µg(M)
+

2
∫

M q dµg

c(m)µg(M)
.
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Hence we get the desired inequality as ε tends to zero. It remains to prove inequality
(29) which is proved in [Grigor’yan et al. 2004, Section 5]; however, for the reader’s
convenience we repeat the proof. We define the function h by the identity

(32)
2k∑

i=1

f 2
i + h2

= 1.

Since f1, . . . , f2k are disjointly supported and 0 ≤ fi ≤ 1/2, h ≥ 1/2. We now
estimate the left side of inequality (29).

(33)
∫

M

( 2k∑
i=1

f 2
i + h2

− h2
)

q dµg =

∫
M

q dµg −

∫
M

h2q dµg

≤

∫
M

q dµg +

∫
M
|∇h|2 dµg,

where the last inequality comes from the fact that the Schrödinger operator L is
positive. Identity (32) implies

−2h∇gh =−∇gh2
=

2k∑
i=1

∇g f 2
i = 2

2k∑
i=1

fi∇g fi .

Therefore,

(34) |∇gh|2 ≤ |2h∇gh|2 =
2k∑

i=1

|∇g f 2
i |

2
= 4

2k∑
i=1

| fi∇g fi |
2
≤

2k∑
i=1

|∇g fi |
2.

Combining inequalities (33) and (34) we get inequality (29). �

4. Eigenvalues of Bakry–Émery Laplace operators

In this section we consider eigenvalues of the Bakry–Émery Laplace operator 1φ
on a Bakry–Émery manifold (M, g, φ), where M is a compact m-dimensional
Riemannian manifold and φ ∈ C2(M). We denote the weighted measure on M by
µφ with

µφ(A)=
∫

A
e−φ dµg for every Borel subset A of M.

Proof of Theorem 1.5. As we mentioned in the introduction, one can see that
1φ = 1g +∇gφ · ∇g is unitarily equivalent to the positive Schrödinger operator
L =1g +

1
21gφ+

1
4 |∇gφ|

2. Therefore, Theorem 1.2 yields

λk(1φ)≤ Am
1

µg(M)

∫
M

(1
21gφ+

1
4 |∇gφ|

2) dµg

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.
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Now Stokes’ theorem implies that
∫

M 1gφ dµg = 0. This gives the result. �

For the proof of Theorem 1.7, we use the characteristic variational formula for
the Bakry–Émery Laplacian; see for example [Lu and Rowlett 2012, Proposition 1;
Rowlett 2010, Proposition 4].

(35) λk(1φ)= inf
Vk

sup
f ∈Vk

∫
M |∇g f |2e−φ dµg∫

M f 2e−φ dµg
,

where Vk is a k-dimensional linear subspace of H 1(M, µφ).

Proof of Theorem 1.7. According to Lemma 2.5, for k ∈ N∗ we have a family of k
capacitors satisfying properties (I) and (II). For every ε > 0, take fi ∈ T(Fi ,Gi ),
1≤ i ≤ k, so that ∫

M
|∇g fi |

2e−φdµg ≤ capφ(Fi ,Gi )+ ε.

Hence, the characteristic variational formula (35) gives

λk(1φ)≤max
i

∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤max

i

capφ(Fi ,Gi )+ ε

µφ(Fi )
.

Having the properties (I) and (II), we get

λk(1φ)≤ A(m)max{σ 2, 1}
(

Vφ([g])
µφ(M)

)2/m

+ B(m)
(

k
µφ(M)

)2/m

+
kε

c(m)µφ(M)
.

Letting ε go to zero, we get the desired inequality. �

Appendix: Buser type upper bound on Bakry–Émery manifolds

Here, we present a direct and simple proof of a weaker version of Corollary 1.9. The
idea behind this proof was used by Buser [1979, Satz 7], Cheng [1975], and Li and
Yau [1980] in the case of the Laplace–Beltrami operator. It is based on constructing
a family of balls as capacitors which will be the support of test functions. We can
successfully apply this idea in the case of the Bakry–Émery Laplace operator.

Theorem A.1 (Buser type upper bound). Let (M, g, φ) be a compact Bakry–Émery
manifold with Ricciφ(M) >−κ2(m− 1) and |∇gφ| ≤ σ for some κ ≥ 0 and σ ≥ 0.
There are positive constants A(m) and B(m) such that, for every k ∈ N∗,

λk(1φ)≤ A(m)max{σ, κ}2+ B(m)
(

k
µφ(M)

)2/m

.

To see that the above theorem is weaker than Corollary 1.9, consider the case
where Ricciφ(M, g) is nonnegative. Indeed, the upper bound in Theorem A.1 still
depends on σ while Corollary 1.9 provides an upper bound which depends only on
the dimension.
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Proof. Since Ricciφ(M) > −κ2(m − 1) and |∇gφ| ≤ σ , the comparison theorem
gives us the following inequalities for every 0 < r ≤ ξ = min{1/σ, 1/κ} (with
ξ =∞ if σ = κ = 0):

µφ(B(x, r))
µφ(B(x, r/2))

≤ eσr v(m, r,−κ2)

v(m, r/2,−κ2)
≤ sup

r∈(0,ξ)
eσr v(m, r,−κ2)

v(m, r/2,−κ2)
=: c1(m)

and

(36) µφ(B(x, r))≤ eσrv(m, r,−κ2)≤ sup
s∈(0,ξ)

eσ sv(m, s,−κ2)rm
=: c2(m)rm .

Given k ∈ N∗, let ρ(k) be the positive number defined by

ρ(k)= sup{r : there exist p1, . . . , pk ∈ M with dg(pi , p j ) > r for all i 6= j}.

We consider two cases.

Case 1. Let ρ(k) ≥ ξ . For every r < ξ , there are k points p1, . . . , pk with
B(pi , r/2) cap B(p j , r/2)=∅ for all i 6= j . For each i ∈ {1, . . . , k}, we consider
a plateau function fi ∈ T(B(pi , r/4), B(pi , r/2)), 1 ≤ i ≤ k, defined as in (19).
Then, for every 1≤ i ≤ k and every r < ξ ,∫

M |∇g fi |
2e−φ dµg∫

M f 2
i e−φ dµg

≤
16
r2

µφ(B(pi , r/2))
µφ(B(pi , r/4))

≤ c1(m)
16
r2 .

Therefore, letting r tend to ξ , one has∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ c1(m)

16
ξ 2 ≤ A(m)max{σ, κ}2.

Case 2. Let ρ(k) < ξ . Take r < ρ(k) very close to ρ(k). As in Case 1, there are k
points p1, . . . , pk with B(pi , r/2) cap B(p j , r/2)=∅ for all i 6= j . Repeating the
same argument, we get, for every 1≤ i ≤ k,∫

M |∇g fi |
2e−φ dµg∫

M f 2
i e−φ dµg

≤ c1(m)
16
r2 .

Therefore, for every 1≤ i ≤ k,∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ c1(m)

16
ρ(k)2

.

We now estimate ρ(k). Let ρ(k) < s < ξ and n be the maximal number of points
q1, . . . , qn ∈ M so that d(qi , q j ) > s for all i 6= j . Of course n ≤ k and because
of the maximality of n, the balls {B(qi , s)}ni=1 cover M . Hence, according to
inequality (36),
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µφ(M)≤
n∑

i=1

µφ(B(qi , s))≤ nc2(m)sm
≤ kc2(m)sm .

Thus, letting s tend to ρ(k), we get

1
ρ(k)2

≤ c2(m)2/m
(

k
µφ(M)

)2/m

.

Therefore, ∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ 16c1(m)c2(m)2/m

(
k

µφ(M)

)2/m

.

In conclusion, we obtain

λk(1φ)≤max
i

∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ A(m)max{σ, κ}2+B(m)

(
k

µφ(M)

)2/m

. �
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We recall and partially improve four versions of smooth, nonabelian gerbes:
Čech cocycles, classifying maps, bundle gerbes, and principal 2-bundles. We
prove that all four versions are equivalent, and so establish new relations
between interesting recent developments. Prominent partial results that we
prove are a bijection between the continuous and smooth nonabelian coho-
mology, and an explicit equivalence between bundle gerbes and principal
2-bundles as 2-stacks.
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1. Introduction

Let G be a Lie group and M be a smooth manifold. There are (among others) the
following four ways to say what a smooth G-bundle over M is:

(1) Čech 1-cocycles: an open cover {Ui } of M , and for each nonempty intersection
Ui ∩U j a smooth map gi j :Ui ∩U j → G satisfying the cocycle condition

gi j · g jk = gik .

(2) Classifying maps: a continuous map

f : M→BG

to the classifying space BG of the group G.

(3) Bundle 0-gerbes: a surjective submersion π : Y → M and a smooth map
g : Y ×M Y → G satisfying

π∗12g ·π∗23g = π∗13g,

where πi j : Y ×M Y ×M Y → Y ×M Y denotes the projection to the i-th and
j-th factors.

(4) Principal bundles: a surjective submersion π : P→ M with a smooth action
of G on P that preserves π , such that the map

P ×G→ P ×M P : (p, g) 7→ (p, p.g)

is a diffeomorphism.

It is well-known that these four versions of smooth G-bundles are all equivalent.
Indeed, (1) forms the smooth G-valued Čech cohomology in degree one, whereas
(2) is known to be equivalent to continuous G-valued Čech cohomology, which in
turn coincides with smooth G-valued Čech cohomology. Further, (3) and (4) form
equivalent categories, and isomorphism classes of the objects (3) are in bijection
with equivalence classes of the cocycles (1).

In this article we provide an analogous picture for smooth 0-gerbes, where 0
is a strict Lie 2-group. In particular, 0 can be the automorphism 2-group of an
ordinary Lie group G, in which case the term “nonabelian G-gerbe” is commonly
used. We compare the following four versions:

Version I: Smooth, nonabelian Čech 0-cocycles (Definition 3.6). These form
the classical, smooth groupoid-valued cohomology Ȟ1(M, 0) in the sense of
Giraud [1971] and Breen [1990, Chapter 4; 1994].

Version II: Classifying maps (Definition 4.4). These are continuous maps f :
M →B|0| to the classifying space of the geometric realization of 0; such
maps have been introduced and studied in [Baez and Stevenson 2009].
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Version III: 0-bundle gerbes (Definition 5.1.1). These have been developed
by Aschieri, Cantini and Jurčo [Aschieri et al. 2005] as a generalization of
the abelian bundle gerbes of Murray [1996]. Here we present an equivalent
definition by applying a higher categorical version [Nikolaus and Schweigert
2011] of Grothendieck’s stackification construction to the monoidal pre-2-stack
of principal 0-bundles.

Version IV: Principal 0-2-bundles (Definition 6.1.5). These have been introduced
in [Bartels 2006]; their total spaces are Lie groupoids on which the Lie 2-group
0 acts in a certain way. Compared to Bartels’ definition, ours uses a stricter
and easier notion of such an action.

We prove that all four versions are equivalent, and follow the same line of arguments
as in the case of G-bundles outlined above:

• Baez and Stevenson have shown that homotopy classes of classifying maps of
Version II are in bijection with the continuous groupoid-valued Čech cohomol-
ogy Ȟ1

c(M, 0). We prove (Proposition 4.1) that the inclusion of smooth into
continuous Čech 0-cocycles induces a bijection

Ȟ1
c(M, 0)∼= Ȟ1(M, 0).

These two results establish the equivalence between our Versions I and II
(Theorem 4.6).

• 0-bundle gerbes and principal 0-2-bundles over M form bicategories. We
prove (Theorem 7.0.1) that these bicategories are equivalent, and so establish
the equivalence between Versions III and IV. Our proof provides explicit
2-functors in both directions.

• We prove the equivalence between Versions I and III by showing that nonabelian
0-bundle gerbes are classified by the nonabelian cohomology group Ȟ1(M, 0)
(Theorem 5.3.2).

The first aim of this paper is to simplify and clarify the notion of a nonabelian
gerbe. This concerns the notion of a 0-bundle gerbe (Version III), for which we
give a new, conceptually clear, and manifestly 2-categorical definition. It also
concerns the notion of a principal 2-bundle (Version IV), for which we provide a
new definition that is carefully balanced between generality and simplicity.

The second aim of this paper is to make it possible to compare and transfer
available results between the various versions. Indeed, none of the three equivalences
above is available in the existing literature. As an example why such equivalences
can be useful, we use Theorem 7.0.1 — the equivalence between 0-bundle gerbes
and principal 0-2-bundles — in order to carry two facts about 0-bundle gerbes over
to principal 0-2-bundles. We prove:
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(1) Principal 0-2-bundles form a 2-stack over smooth manifolds (Theorem 6.2.1).
This is a new and evidently important result, since it explains precisely in
which way one can glue 2-bundles from local patches.

(2) If 0 and � are weakly equivalent Lie 2-groups, the 2-stacks of principal 0-
2-bundles and principal �-2-bundles are equivalent (Theorem 6.2.3). This
is another new result that generalizes the well-known fact that principal G-
bundles and principal H -bundles form equivalent stacks, whenever G and H
are isomorphic Lie groups.

The two facts about 0-bundle gerbes (Theorems 5.1.5 and 5.2.2) on which these re-
sults are based are proved in an outmost abstract way: the first is a mere consequence
of the definition of 0-bundle gerbes that we give, namely via a 2-stackification
procedure for principal 0-bundles. The second follows from the fact that principal
0-bundles and principal �-bundles form equivalent monoidal pre-2-stacks, which
we deduce as a corollary of their description by anafunctors.

The present paper is part of a larger program. In a forthcoming paper, we address
the discussion of nonabelian lifting problems, in particular string structures. In a
second forthcoming paper we will present the picture of four equivalent versions in
a setting with connections, based on the results of the present paper. Our motivation
is to understand the role of 2-bundles with connections in higher gauge theories,
where they serve as “B-fields”. Here, two (nonabelian) 2-groups are especially
important, namely the string group [Baez et al. 2007] and the Jandl group [Nikolaus
and Schweigert 2011]. More precisely, string-2-bundles appear in supersymmetric
sigma models that describe fermionic string theories [Bunke 2011], while Jandl-2-
bundles appear in unoriented sigma models that describe, e.g., bosonic type-I string
theories [Schreiber et al. 2007].

This paper is organized as follows. In Section 2 we recall and summarize the
theory of principal groupoid bundles and their description by anafunctors. The rest
of the paper is based on this theory. In Sections 3–6 we introduce our four versions of
smooth 0-gerbes, and establish all but one equivalence. The remaining equivalence,
the one between bundle gerbes and principal 2-bundles, is discussed in Section 7.

2. Preliminaries

There is no claim of originality in this section. Our sources are [Lerman 2010;
Metzler 2003; Heinloth 2005; Moerdijk and Mrčun 2003]. A slightly different but
equivalent approach is developed in [Murray et al. 2012].

2.1. Lie groupoids and groupoid actions on manifolds. We assume that the reader
is familiar with the notions of Lie groupoids, smooth functors and smooth natural
transformations. In this paper, the following examples of Lie groupoids appear:
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Example 2.1.1. (a) Every smooth manifold M defines a Lie groupoid, denoted
by Mdis, whose objects and morphisms are M , and all of whose structure maps
are identities.

(b) Every Lie group G defines a Lie groupoid denoted by BG, with one ob-
ject, with G as its smooth manifold of morphisms, and with the composition
g2 ◦ g1 := g2g1.

(c) Suppose X is a smooth manifold and ρ : H × X→ X is a smooth left action
of a Lie group H on X . Then, a Lie groupoid X//H is defined with objects X
and morphisms H × X , and with

s(h, x) := x , t (h, x) := ρ(h, x) and idx := (1, x).

The composition is

(h2, x2) ◦ (h1, x1) := (h2h1, x1),

where x2 = ρ(h1, x1). The Lie groupoid X//H is called the action groupoid
of the action of H on X .

(d) Let t : H → G be a homomorphism of Lie groups. Then,

ρ : H ×G→ G : (h, g) 7→ (t (h)g)

defines a smooth left action of H on G. Thus, we have a Lie groupoid G//H .

(e) To every Lie groupoid 0 one can associate an opposite Lie groupoid 0op which
has the source and the target map exchanged.

We say that a right action of a Lie groupoid 0 on a smooth manifold M is a pair
(α, ρ) consisting of smooth maps α : M→ 00 and ρ : M α×t 01→ M such that

ρ(ρ(x, g), h)= ρ(x, g ◦ h), ρ(x, idα(x))= x and α(ρ(x, g))= s(g)

for all possible g, h ∈ 01, p ∈ 00 and x ∈ M . The map α is called anchor. Later
on we will replace the letter ρ for the action by the symbol ◦ that denotes the
composition of the groupoid. A left action of 0 on M is a right action of the
opposite Lie groupoid 0op. A smooth map f : M→ M ′ between 0-spaces with
actions (α, ρ) and (α′, ρ ′) is called 0-equivariant if

α′ ◦ f = α and f (ρ(x, g))= ρ ′( f (x), g).

Example 2.1.2. (1) Let 0 be a Lie groupoid. Then, 0 acts on the right on its
morphisms 01 by α := s and ρ := ◦ . It acts on the left on its morphisms by
α := t and ρ := ◦ .
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(2) Let G be a Lie group. Then, a right/left action of the Lie groupoid BG (see
Example 2.1.1(b)) on M is the same as an ordinary smooth right/left action
of G on M .

(3) Let X be a smooth manifold. A right/left action of Xdis (see Example 2.1.1(a))
on M is the same as a smooth map α : M→ X .

2.2. Principal groupoid bundles. We give the definition of a principal bundle in
exactly the same way as we are going to define principal 2-bundles in Section 6.

Definition 2.2.1. Let M be a smooth manifold, and let 0 be a Lie groupoid.

(1) A principal 0-bundle over M is a smooth manifold P with a surjective sub-
mersion π : P→ M and a right 0-action (α, ρ) that respects the projection π ,
such that

τ : P α×t 01→ P ×M P : (p, g) 7→ (p, ρ(p, g))

is a diffeomorphism.

(2) Let P1 and P2 be principal 0-bundles over M . A morphism ϕ : P1→ P2 is a
0-equivariant smooth map that respects the projections to M .

Principal 0-bundles over M form a category Bun0(M). In fact, this category is
a groupoid; i.e., all morphisms between principal 0-bundles are invertible. There
is an evident notion of a pullback f ∗P of a principal 0-bundle P over M along a
smooth map f : X→ M , and similarly, morphisms between principal 0-bundles
pull back. These define a functor

f ∗ : Bun0(M)→ Bun0(X).

These functors make principal 0-bundles a prestack over smooth manifolds. One
can easily show that this prestack is a stack (for the Grothendieck topology of
surjective submersions).

Example 2.2.2 (ordinary principal bundles). For G a Lie group, we have an equality
of categories

BunBG(M)= BunG(M);

i.e., Definition 2.2.1 reduces consistently to the definition of an ordinary principal
G-bundle.

Example 2.2.3 (trivial principal groupoid bundles). For M a smooth manifold and
f : M→ 00 a smooth map, P := M f×t 01 and π(m, g) := m define a surjective
submersion, and α(m, g) := s(g) and ρ((m, g), h) := (m, g◦h) define a right action
of 0 on P that preserves the fibers. The map τ we have to look at has the inverse

τ−1
: P ×M P→ P π×t 01 : ((m, g1), (m, g2)) 7→ ((m, g1), g−1

1 ◦ g2),
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which is smooth. Thus we have defined a principal 0-bundle, which we denote
by I f and which we call the trivial bundle for the map f . Any bundle that is
isomorphic to a trivial bundle is called trivializable.

Example 2.2.4 (discrete structure groupoids). For X a smooth manifold, we have
an equivalence of categories

BunXdis
(M)∼= C∞(M, X)dis.

Indeed, for a given principal Xdis-bundle P one observes that the anchor α : P→ X
descends along the bundle projection to a smooth map f : M → X , and that
isomorphic bundles determine the same map. Conversely, one associates to a
smooth map f : M→ X the trivial principal Xdis-bundle I f over M .

Example 2.2.5 (exact sequences). Let

(2.2-1) 1 // H
t // G

p // K // 1

be an exact sequence of Lie groups, and let 0 := G//H be the action groupoid asso-
ciated to the Lie group homomorphism t : H→G as explained in Example 2.1.1(d).
In this situation, p : G→ K is a surjective submersion, and

α : G→ 00 : g 7→ g and ρ : G α×t 01→ G : (g, (h, g′)) 7→ g′

define a smooth right action of 0 on G that preserves p. The inverse of the map τ
is

τ−1
: G×K G→ G α×t 01 : (g1, g2) 7→

(
g1, (t−1(g1g−1

2 ), g2)
)
,

which is smooth because t is an embedding. Thus, G is a principal 0-bundle over K .

Next we provide some elementary statements about trivial principal 0-bundles.

Lemma 2.2.6. A principal 0-bundle over M is trivializable if and only if it has a
smooth section.

Proof. A trivial bundle I f has the section

s f : M→ I f : x 7→ (x, id f (x)),

and so any trivializable bundle has a section. Conversely, suppose a principal
0-bundle P has a smooth section s : M→ P . Then, with f := α ◦ s,

ϕ : I f → P : (m, g) 7→ ρ(s(m), g)

is an isomorphism. �

The following consequence shows that principal 0-bundles of Definition 2.2.1
are locally trivializable in the usual sense.
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Corollary 2.2.7. Let P be a principal 0-bundle over M. Then, every point x ∈ M
has an open neighborhood U over which P has a trivialization: a smooth map
f :U → 00 and a morphism ϕ : I f → P|U .

Proof. One can choose U such that the surjective submersion π : U → P has a
smooth section. Then, Lemma 2.2.6 applies to the restriction P|U . �

We determine the Hom-set Hom(I f1, I f2) between trivial principal 0-bundles
defined by smooth maps f1, f2 : M → 00. To a bundle morphism ϕ : I f1 → I f2

one associates the smooth function g : M→ 01 which is uniquely defined by the
condition

(ϕ ◦ s f1)(x)= s f2(x) ◦ g(x)

for all x ∈ M . It is straightforward to see that:

Lemma 2.2.8. The above construction defines a bijection

Hom(I f1, I f2)→ {g ∈ C∞(M, 01) | s ◦ g = f1 and t ◦ g = f2},

under which identity morphisms correspond to constant maps and the composition
of bundle morphisms corresponds to the pointwise composition of functions.

Finally, we consider the case of principal bundles for action groupoids.

Lemma 2.2.9. Let X//H be a smooth action groupoid. The category BunX//H (M)
is equivalent to a category with:

• Objects: principal H-bundles PH over M together with a smooth, H-antiequi-
variant map f : PH → X ; i.e., f (p · h)= h−1 f (p).

• Morphisms: bundle morphisms ϕH : PH→ P ′H that respect the maps f and f ′.

Proof. For a principal X//H -bundle (P, α, ρ) we set PH := P with the given
projection to M . The action of H on PH is defined by

p ? h := ρ
(

p, (h, h−1
·α(p))

)
.

This action is smooth, and it follows from the axioms of the principal bundle P
that it is principal. The map f : PH → X is the anchor α. The remaining steps are
straightforward and left as an exercise. �

2.3. Anafunctors. An anafunctor is a generalization of a smooth functor between
Lie groupoids, similar to a Morita equivalence, and also known as a Hilsum–
Skandalis morphism. The idea goes back to [Bénabou 1973]; also see [Johnstone
1977]. The references for the following definitions are [Lerman 2010; Metzler
2003].

Definition 2.3.1. Let X and Y be Lie groupoids.
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(1) An anafunctor F : X → Y is a smooth manifold F , a left action (αl, ρl) of X
on F , and a right action (αr , ρr ) of Y on F such that the actions commute and
αl : F→ X0 is a principal Y-bundle over X0.

(2) A transformation between anafunctors f : F⇒ F ′ is a smooth map f : F→ F ′

which is X -equivariant, Y-equivariant, and satisfies α′l ◦ f =αl and α′r ◦ f =αr .

The smooth manifold F of an anafunctor is called its total space. Notice that
the condition that the two actions on F commute implies that each respects the
anchor of the other. For fixed Lie groupoids X and Y , anafunctors F : X → Y
and transformations form a category Ana∞(X ,Y). Since transformations are
in particular morphisms between principal Y-bundles, every transformation is
invertible so that Ana∞(X ,Y) is in fact a groupoid.

Example 2.3.2 (anafunctors from ordinary functors). Given a smooth functor
φ :X→Y , we obtain an anafunctor in the following way. We set F :=X0 φ×tY1 with
anchors αl : F→X0 and αr : F→Y0 defined by αl(x, g) := x and αr (x, g) := s(g),
and actions

ρl : X1 s×αl F→ F and ρr : F αr×t Y1→ F

defined by ρl( f, (x, g)) := (t ( f ), φ( f ) ◦ g) and ρr ((x, g), f ) := (x, g ◦ f ). In the
same way, a smooth natural transformation η : φ ⇒ φ′ defines a transformation
fη : F ⇒ F ′ by fη(x, g) := (x, η(x) ◦ g). Conversely, one can show that an
anafunctor comes from a smooth functor, if its principal 0-bundle has a smooth
section.

Example 2.3.3 (anafunctors with discrete source). For M a smooth manifold and 0
a Lie groupoid, we have an equality of categories

Bun0(M)=Ana∞(Mdis, 0).

Further, trivial principal 0-bundles correspond to smooth functors. In particular,
with Example 2.2.2 we have:

(a) For G a Lie group and M a smooth manifold, an anafunctor F : Mdis→ BG
is the same as an ordinary principal G-bundle over M .

(b) For M and X smooth manifolds, an anafunctor F : Mdis→ Xdis is the same as
a smooth map.

Example 2.3.4 (anafunctors with discrete target). For 0 a Lie groupoid and M a
smooth manifold, we have an equivalence of categories

C∞(00,M)0dis
∼=Ana∞(0,Mdis)

where C∞(00,M)0 denotes the set of smooth maps f :00→M such that f ◦s= f ◦t
as maps 01→M . The equivalence is induced by regarding a map f ∈C∞(00,M)0
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as a smooth functor f : 0→ Mdis, which in turn induces an anafunctor. Conversely,
an anafunctor F :0→Mdis is in particular an Mdis-bundle over 00, which is nothing
but a smooth function f : 00 → M by Example 2.2.4. The additional 0-action
assures the 0-invariance of f .

Example 2.3.5 (anafunctors between one-object Lie groupoids). Let G and H
be Lie groups, and let BG and BH be the associated one-object Lie groupoids
(Example 2.1.1(b)). Then, there is an equivalence of categories

Hom(G, H)//H ∼=Ana∞(BG,BH),

where the action of H on Hom(G, H) is by pointwise conjugation. The functor
which establishes this equivalence sends a smooth group homomorphism α :G→ H
to the evident smooth functor Fα : BG→ BH and converts this into an anafunctor
(Example 2.3.2). A morphism h : α1→ α2 is sent to the natural transformation
ηh : Fα1 → Fα2 whose component at the single object is the morphism h ∈ H . In
order to see that this is essentially surjective, it suffices to notice that the principal
H -bundle of any smooth anafunctor F : BG→ BH has a section. The proof that
the functor is full and faithful is straightforward.

For the following definition, we suppose X , Y and Z are Lie groupoids, and
F : X → Y and G : Y→ Z are anafunctors given by F = (F, αl, ρl, αr , ρr ) and
G = (G, βl, τl, βr , τr ).

Definition 2.3.6. The composition G ◦ F : X → Z is the anafunctor defined in the
following way:

(1) Its total space is
E := (F αr×βl G) /∼

where ( f, τl(h, g)) ∼ (ρr ( f, h), g) for all h ∈ Y1 with αr ( f ) = t (h) and
βl(g)= s(h).

(2) The anchors are ( f, g) 7→ αl( f ) and ( f, g) 7→ βr (g).

(3) The actions X1 s×α E→ E and E β×t Z1→ E are given, respectively, by

(γ, ( f, g)) 7→ (ρl(γ, f ), g) and (( f, g), γ ) 7→ ( f, τr (g, γ )).

Remark 2.3.7. Lie groupoids, anafunctors and transformations form a bicategory.
This bicategory is equivalent to the bicategory of differentiable stacks (also known
as geometric stacks) [Pronk 1996].

In this article, anafunctors serve two purposes. The first is that one can use con-
veniently the composition of anafunctors to define extensions of principal groupoid
bundles:
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Definition 2.3.8. If P : Mdis→ 0 is a principal 0-bundle over M , and 3 : 0→�

is an anafunctor, then the principal �-bundle

3P :=3 ◦ P : Mdis→�

is called the extension of P along 3.

Unwinding this definition, the principal �-bundle 3P has the total space

(2.3-1) 3P = (P α×αl 3) /∼

where (p, ρl(γ, λ))∼ (ρ(p, γ ), λ) for all p∈ P , λ∈3 and γ ∈01 with α(p)= t (γ )
and αl(λ) = s(γ ). Here α is the anchor and ρ is the action of P , and 3 =
(3, αl, αr , ρl, ρr ). The bundle projection is (p, λ) 7→ π(p), where π is the bundle
projection of P , the anchor is (p, λ) 7→ αr (λ), and the action is

(p, λ) ◦ω = (p, ρr (λ, ω)).

Extensions of bundles are accompanied by extensions of bundle morphisms. If
ϕ : P1→ P2 is a morphism between 0-bundles, a morphism 3ϕ :3P1→3P2 is
defined by 3ϕ(p1, λ) := (ϕ(p1), λ) in terms of (2.3-1). Summarizing, we have:

Lemma 2.3.9. Let M be a smooth manifold and3 :0→� be an anafunctor. Then,
extension along 3 is a functor

3 : Bun0(M)→ Bun�(M).

Moreover, it commutes with pullbacks and so extends to a morphism between stacks.

Next we suppose that t : H → G is a Lie group homomorphism, and G//H
is the associated action groupoid of Example 2.1.1(d). We look at the functor
2 : G//H→ BH which is defined by 2(h, g) := h. Combining Lemma 2.2.9 with
the extension along 2, we obtain:

Lemma 2.3.10. The category BunG//H (M) of principal G//H-bundles over a
smooth manifold M is equivalent to a category with:

• Objects: principal H-bundles PH over M together with a section of 2(PH ).

• Morphisms: morphisms ϕ of H-bundles so that 2(ϕ) preserves the sections.

The second motivation for introducing anafunctors is that they provide the
inverses to certain smooth functors which are not necessarily equivalences of
categories.

Definition 2.3.11. A smooth functor or anafunctor F : X → Y is called a weak
equivalence, if there exists an anafunctor G : Y→X together with transformations
G ◦ F ∼= idX and F ◦G ∼= idY .
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We have the following immediate consequence for the stack morphisms of
Lemma 2.3.9.

Corollary 2.3.12. Let 3 : 0→ � be a weak equivalence between Lie groupoids.
Then, extension of principal bundles along 3 is an equivalence 3 : Bun0(M)→
Bun�(M) of categories. Moreover, these define an equivalence between the stacks
Bun0(−) and Bun�(−).

Concerning the claimed generalization of invertibility, we have the following well-
known theorem; see [Lerman 2010, Lemma 3.34; Metzler 2003, Proposition 60].

Theorem 2.3.13. A smooth functor F :X → Y is a weak equivalence if and only if
the following two conditions are satisfied:

(a) It is smoothly essentially surjective: the map

s ◦ pr2 : X0 F0×t Y1→ Y0

is a surjective submersion.

(b) It is smoothly fully faithful: the diagram

X1
F //

s×t

��

Y1

s×t

��
X0×X0 F×F

// Y0×Y0

is a pullback diagram.

Remark 2.3.14. One can show that any smooth functor F : X → Y that is a weak
equivalence actually has a canonical inverse anafunctor.

2.4. Lie 2-groups and crossed modules. A (strict) Lie 2-group is a Lie groupoid 0
whose objects and morphisms are Lie groups, and all of whose structure maps are
Lie group homomorphisms. One can conveniently bundle the multiplications and
the inversions into smooth functors

m : 0×0→ 0 and i : 0→ 0.

Example 2.4.1. For A an abelian Lie group, we have that the Lie groupoid BA
from Example 2.1.1(b) is a Lie 2-group. The condition that A is abelian is necessary.

Example 2.4.2. Let t : H→G be a homomorphism of Lie groups, and let G//H be
the corresponding Lie groupoid from Example 2.1.1(d). This Lie groupoid becomes
a Lie 2-group if the following structure is given: a smooth left action of G on H by
Lie group homomorphisms, denoted by (g, h) 7→ gh, satisfying

t (gh)= gt (h)g−1 and t (h)x = hxh−1
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for all g ∈ G and h, x ∈ H . Indeed, the objects G of G//H already form a Lie
group, and the multiplication on the morphisms H ×G of G//H is the semidirect
product

(2.4-1) (h2, g2) · (h1, g1)= (h2
g2h1, g2g1).

The homomorphism t : H → G together with the action of G on H is called a
smooth crossed module. Summarizing, every smooth crossed module defines a Lie
2-group.

Remark 2.4.3. Every Lie 2-group 0 can be obtained from a smooth crossed module.
Indeed, one puts G := 00 and H := ker(s), equipped with the Lie group structures
defined by the multiplication functor m of 0. The homomorphism t : H → G is
the target map t : 01 → 00, and the action of G on H is given by the formula
gγ := idg · γ · idg−1 for g ∈ 00 and γ ∈ ker(s). These two constructions are inverse
to each other (up to canonical Lie group isomorphisms and strict Lie 2-group
isomorphisms, respectively).

Example 2.4.4. Consider a connected Lie group H , so that its automorphism
group Aut(H) is again a Lie group [Onishchik and Vinberg 1988]. Then, we
have a smooth crossed module (Aut(H), H, i, ev), where i : H → Aut(H) is the
assignment of inner automorphisms to group elements, and ev : Aut(H)× H→ H
is the evaluation action. The associated Lie 2-group is denoted by AUT(H) and is
called the automorphism 2-group of H .

Example 2.4.5. Let

1 // H
t // G

p // K // 1

be an exact sequence of Lie groups, i.e., an exact sequence in which p is a sub-
mersion and t is an embedding. The homomorphisms t : H → G and p : G→ K
define action groupoids G//H and K//G as explained in Example 2.1.1. The first
one is even a Lie 2-group: the action of G on H is defined by gh := t−1(gt (h)g−1).
This is well-defined: since

p(gt (h)g−1)= p(g)p(t (h))p(g−1)= p(g)p(g)−1
= 1,

the element gt (h)g−1 lies in the image of t , and has a unique preimage. The action
is smooth because t is an embedding. The axioms of a crossed module are obviously
satisfied.

If a Lie groupoid 0 is a Lie 2-group in virtue of a multiplication functor
m : 0×0→ 0, then the category Bun0(M) of principal 0-bundles over a smooth
manifold M is monoidal:
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Definition 2.4.6. Let P : Mdis→ 0 and Q : Mdis→ 0 be principal 0-bundles. The
tensor product P ⊗ Q is the anafunctor

Mdis
diag // Mdis×Mdis

P×Q // 0×0
m // 0.

Example 2.4.7. (a) Since trivial principal 0-bundles I f correspond to smooth
functors f : Mdis→ 0 (Example 2.3.3), it is clear that I f ⊗ Ig = I f g.

(b) Unwinding Definition 2.4.6 in the general case, the tensor product of two
principal 0-bundles P1 and P2 with anchors α1 and α2, respectively, and
actions ρ1 and ρ2, respectively, is given by

(2.4-2) P1⊗ P2 =
(
(P1×M P2) m◦(α1×α2)×t 01

)
/∼ ,

where

(2.4-3) (p1, p2,m(γ1, γ2) ◦ γ )∼ (ρ1(p1, γ1), ρ2(p2, γ2), γ )

for all p1 ∈ P1, p2 ∈ P2 and morphisms γ, γ1, γ2 ∈01 satisfying t (γi )=αi (pi )

for i = 1, 2 and s(γ1)s(γ2)= t (γ ). The bundle projection is

π̃(p1, p2, γ ) := π1(p1)= π2(p2),

the anchor is α̃(p1, p2, γ ) := s(γ ), and the 0-action is given by

ρ̃((p1, p2, γ ), γ
′) := (p1, p2, γ ◦ γ

′).

As a consequence of Lemma 2.3.9 and the fact that the composition of anafunctors
is associative up to coherent transformations, we have:

Proposition 2.4.8. For M a smooth manifold and 0 a Lie 2-group, the tensor
product

⊗ : Bun0(M)×Bun0(M)→ Bun0(M)

equips the groupoid of principal 0-bundles over M with a monoidal structure.
Moreover, it turns the stack Bun0(−) into a monoidal stack.

Notice that the tensor unit of the monoidal groupoid Bun0(M) is the trivial
principal 0-bundle I1 associated to the constant map 1 : M→ 00, or, in terms of
anafunctors, the one associated to the constant functor 1 : M→ 0.

A (weak) Lie 2-group homomorphism between Lie 2-groups (0,m0) and (�,m�)

is an anafunctor 3 : 0→� together with a transformation

(2.4-4)

0×0
m0 //

3×3

��

0

3

��

η

x�
�×� m�

// �
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satisfying the evident coherence condition. Under the equivalence with smooth
crossed modules (Remark 2.4.3), Lie 2-group homomorphisms correspond to so-
called butterflies [Aldrovandi and Noohi 2009]. A Lie 2-group homomorphism
is called weak equivalence, if the anafunctor 3 is a weak equivalence. Since
extensions and tensor products are both defined via composition of anafunctors, we
immediately obtain:

Proposition 2.4.9. Extension along a Lie 2-group homomorphism 3 : 0 → �

between Lie 2-groups is a monoidal functor

3 : Bun0(M)→ Bun�(M)

between monoidal categories. Moreover, these form a monoidal morphism between
monoidal stacks.

Since a monoidal functor is an equivalence of monoidal categories if it is an
equivalence of the underlying categories, Corollary 2.3.12 implies:

Corollary 2.4.10. For 3 : 0→� a weak equivalence between Lie 2-groups, the
monoidal functor of Proposition 2.4.9 is an equivalence of monoidal categories.
Moreover, these form a monoidal equivalence between monoidal stacks.

If we represent the Lie 2-group 0 by a smooth crossed module t : H → G as
described in Example 2.4.2, we want to determine explicitly what the tensor product
looks like under the correspondence of (G//H)-bundles and principal H -bundles
with antiequivariant maps to G; see Lemma 2.2.9.

Lemma 2.4.11. Let t : H → G be a crossed module and let P and Q be G//H-
bundles over M. Let (PH , f ) and (Q H , g) be the principal H-bundles together
with their H-antiequivariant maps that belong to P and Q, respectively, under the
equivalence of Lemma 2.2.9. Then, the principal H-bundle that corresponds to the
tensor product P ⊗ Q is given by

(P ⊗ Q)H = (P ×M Q) /∼ where (p ? h, q)∼
(

p, q ?
( f (p)−1

h
))

.

The action of H on (P⊗Q)H is [(p, q)]?h=[(p?h, q)], and the H-antiequivariant
map of (P ⊗ Q)H is [(p, q)] 7→ f (p) · g(q).

Similar to the tensor product of principal 0-bundles, the dual P∨ of a principal
0-bundle P over M is the extension of P along the inversion i : 0→ 0 of the 2-
group, P∨ := i(P). The equality m ◦(id, i)= 1 of functors M→0 induces a death
map d : P ⊗ P∨→ I1. We are going to use this bundle morphism in Section 5.2,
but omit a further systematical treatment of duals for the sake of brevity.
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3. Version I: groupoid-valued cohomology

We have already mentioned group-valued Čech 1-cocycles in the introduction. They
consist of an open cover U= {Ui }i∈I of M and smooth functions gi j :Ui ∩U j→G
satisfying the cocycle condition gi j · g jk = gik . Segal [1968] realized that this is
the same as a smooth functor

g : Č(U)→ BG

where BG denotes the one-object groupoid introduced in Example 2.1.1(b) and Č(U)
denotes the Čech groupoid corresponding to the cover U. It has objects

⊔
i∈I Ui

and morphisms
⊔

i, j∈I Ui ∩U j , and its structure maps are

s(x, i, j)= (x, i), t (x, i, j)= (x, j),

id(x,i) = (x, i, i) and (x, j, k) ◦ (x, i, j)= (x, i, k).

Analogously, smooth natural transformations between smooth functors Č(U)→ BG
give rise to Čech coboundaries. Thus the set [Č(U),BG] of equivalence classes of
smooth functors equals the usual first Čech cohomology with respect to the cover U.
The classical first Čech-cohomology Ȟ1(M,G) of M is hence given by the colimit
over all open covers U of M :

Ȟ1(M,G)= lim
−→

U

[Č(U),BG].

We use this coincidence in order to define the 0-th Čech cohomology with
coefficients in a general Lie groupoid 0:

Definition 3.1. If 0 is a Lie groupoid we set

Ȟ0(M, 0) := lim
−→

U

[Č(U), 0]

where the colimit is taken over all covers U of M and [Č(U), 0] denotes the set of
equivalence classes of smooth functors Č(U)→ 0.

Remark 3.2. The choice of the degree is such that Ȟ0(M, 0) agrees in the case
0 = Gdis (Example 2.1.1(a)) with the classical 0-th Čech-cohomology Ȟ0(M,G)
of M with values in G.

The geometrical meaning of the set is given in the following well-known theorem,
which can be proved, e.g., using Lemma 2.2.8.

Theorem 3.3. There is a bijection

Ȟ0(M, 0)∼= { Isomorphism classes of principal 0-bundles over M }.
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If 0 is not only a Lie 2-groupoid but a Lie 2-group one can also define a first
cohomology group Ȟ1(M, 0). Indeed, in this case one can consider the Lie 2-
groupoid B0 with one object, morphisms 00 and 2-morphisms 01. Multiplication
in 0 gives the composition of morphisms in B0. Let [Č(U),B0] denote the set of
equivalence classes of smooth, weak 2-functors from the Čech-groupoid Č(U) to
the Lie 2-groupoid B0. For the definition of weak functors see [Bénabou 1967].
Below we will determine this set explicitly.

Definition 3.4. For a 2-group 0 we set

Ȟ1(M, 0) := lim
−→

U

[Č(U),B0].

Remark 3.5. This agrees for 0 = Gdis with the classical Ȟ1(M,G). Furthermore,
for an abelian Lie group A the Lie groupoid BA is even a 2-group and Ȟ1(M,BA)
agrees with the classical Čech-cohomology Ȟ2(M, A).

Unwinding the above definition, we get Version I of smooth 0-gerbes:

Definition 3.6. Let 0 be a Lie 2-group, and let U = {Uα}α∈A be an open cover
of M .

(1) A 0-1-cocycle with respect to U is a pair ( fαβ, gαβγ ) of smooth maps

fαβ :Uα ∩Uβ→ 00 and gαβγ :Uα ∩Uβ ∩Uβ→ 01

satisfying s(gαβγ )= fβγ · fαβ and t (gαβγ )= fαγ , and

(3-1) gαβδ ◦ (gβγ δ · id fαβ )= gαγ δ ◦ (id fγ δ · gαβγ ).

Here, the symbols ◦ and · stand for the composition and multiplication of 0,
respectively.

(2) Two 0-1-cocycles ( fαβ, gαβγ ) and ( f ′αβ, g′αβγ ) are equivalent, if there exist
smooth maps hα :Uα→ 00 and sαβ :Uα ∩Uβ→ 01 with

s(sαβ)= g′αβ · hα, t (sαβ)= hβ · gαβ
and (idhγ · gαβγ ) ◦ (sβγ · id fαβ ) ◦ (id fβγ · sαβ)= sαγ ◦ (g′αβγ · idhα ).

Remark 3.7. For a crossed module t : H → G and 0 := G//H the associated Lie
2-group (Example 2.4.2) one can reduce 0-1-cocycles to pairs

f̃αβ :Uα ∩Uβ→ G and g̃αβγ :Uα ∩Uβ ∩Uβ→ H,

which then satisfies a cocycle condition similar to (3-1). Analogously, coboundaries
can be reduced to pairs

h̃α :Uα→ G and s̃αβ :Uα ∩Uβ→ H .
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This yields the common definition of nonabelian cocycles, which can for example
be found in [Breen 1990] or [Baez and Stevenson 2009].

Example 3.8. In case of the crossed module i : H → Aut(H) with 0 = AUT(H)
(see Example 2.4.4) 0-1-cocycles consist of pairs f̃αβ : Uα ∩Uβ → Aut(H) and
g̃αβ : Uα ∩Uβ ∩Uγ → H . Cocycles of this kind classify so-called Lie groupoid
H -extensions [Laurent-Gengoux et al. 2009, Proposition 3.14], which can hence be
seen as another equivalent version for AUT(H)-gerbes.

4. Version II: classifying maps

It is well-known that for a Lie group G the smooth Čech-cohomology Ȟ1(M,G)
and the continuous Čech-cohomology Ȟ1

c(M,G) agree if M is a smooth manifold
(in particular paracompact). This can, e.g., be shown by locally approximating
continuous cocycles by smooth ones without changing the cohomology class — see
[Müller and Wockel 2009] (even for G infinite-dimensional). Below we generalize
this fact to nonabelian cohomology for certain Lie 2-groups 0. Here the contin-
uous Čech-cohomology Ȟ1

c(M, 0) is defined in the same way as the smooth one
(Definition 3.4) but with all maps continuous instead of smooth. A Lie groupoid 0
is called smoothly separable, if the set π00 of isomorphism classes of objects is a
smooth manifold for which the projection 00→ π00 is a submersion.

Proposition 4.1. Let M be a smooth manifold and let 0 be a smoothly separable
Lie 2-group. Then, the inclusion

Ȟ1(M, 0)→ Ȟ1
c(M, 0)

of smooth into continuous Čech cohomology is a bijection.

Remark 4.2. It is possible that the assumption of being smoothly separable is not
necessary, but a proof not assuming this would certainly be more involved than
ours. Anyway, all Lie 2-groups we are interested in are smoothly separable.

Proof of Proposition 4.1. We denote by π10 the Lie subgroup of 01 consisting
of automorphisms of 1 ∈ 00. Since it has two commuting group structures —
composition and multiplication — it is abelian. The idea of the proof is to reduce
the statement via long exact sequences to statements proved in [Müller and Wockel
2009]. The exact sequence we need can be found in [Breen 1990]:

Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10)→ Ȟ1(M, 0)

→ Ȟ1(M, (π00)dis)→ Ȟ2(M,Bπ10).

Note that Ȟ1(M, 0) and Ȟ1(M, (π00)dis) do not have group structures; hence,
exactness is only meant as exactness of pointed sets. But we actually have more
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structure, namely an action of Ȟ1(M, Bπ10) on Ȟ1(M, 0). This action factors to
an action of

C := coker
(
Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10)

)
.

In fact on the nonempty fibers of the morphism Ȟ1(M, 0)→ Ȟ1(M, (π00)dis) this
action is simply transitive. In other words: Ȟ1(M, 0) is a C-torsor over

K := ker
(
Ȟ1(M, (π00)dis)→ Ȟ2(M,Bπ10)

)
.

The same type of sequence also exists in continuous cohomology, namely

Ȟ0
c(M, (π00)dis)→ Ȟ1

c(M,Bπ10)→ Ȟ1
c(M, 0)

→ Ȟ1
c(M, (π00)dis)→ Ȟ2

c(M,Bπ10).

With
C ′ := coker

(
Ȟ0

c(M, (π00)dis)→ Ȟ1
c(M,Bπ10)

)
,

K ′ := ker
(
Ȟ1

c(M, (π00)dis)→ Ȟ2
c(M,Bπ10)

)
,

we exhibit Ȟ1
c(M, 0) as a C ′-torsor over K ′.

The natural inclusions of smooth into continuous cohomology form a chain map
between the two sequences. From [Müller and Wockel 2009] we know that they
are isomorphisms on the second, fourth and fifth factor. In particular we have
an induced isomorphism K−→∼ K ′. Lemma 4.3 below additionally shows that the
induced morphism C→ C ′ is an isomorphism. Using these isomorphisms we see
that Ȟ1(M, 0) and Ȟ1

c(M, 0) are both C-torsors over K and that the natural map

Ȟ1(M, 0)→ Ȟ1
c(M, 0)

is a morphism of torsors. But each morphism of group torsors is bijective, which
concludes the proof. �

Lemma 4.3. The images of

f : Ȟ0(M, (π00)dis)→ Ȟ1(M,Bπ10) and f ′ : Ȟ0
c(M, (π00)dis)→ Ȟ1

c(M,Bπ10)

are isomorphic.

Proof. Recall that Ȟ0(M, (π00)dis) is the group of smooth maps s : M → π00

and Ȟ0
c(M, (π00)dis) is the group of continuous maps t : M→ π00. The groups

Ȟ1(M,Bπ10)= Ȟ2(M, π10) and Ȟ1
c(M,Bπ10)= Ȟ2

c(M, π10) are isomorphic
by the result of [Müller and Wockel 2009]. Under the connecting homomorphism

Ȟ0(π00, (π00)dis)→ Ȟ1(π00,Bπ10)

the identity idπ00 is sent to a class ξ0 with the property that f (s) = s∗ξ0 and
f ′(t)= t∗ξ0 . Hence it suffices to show that for each continuous map t : M→ π00
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there is a smooth map s :M→π00 with s∗ξ0 = t∗ξ0 . It is well-known that for each
continuous map t between smooth manifolds a homotopic smooth map s exists. It
remains to show that the pullback Ȟ1(π00,Bπ10)→ Ȟ1(M,Bπ10) along smooth
maps is homotopy invariant. This can, e.g., be seen by choosing smooth (abelian)
Bπ10-bundle gerbes as representatives, in which case the homotopy invariance can
be deduced from the existence of connections. �

It is a standard result in topology that the continuous G-valued Čech cohomol-
ogy of paracompact spaces is in bijection with homotopy classes of maps to the
classifying space BG of the group G. A model for the classifying space BG is for
example the geometric realization of the nerve of the groupoid BG, or Milnor’s
join construction [1956].

Now let 0 be a Lie 2-group, and let |0| denote the geometric realization of the
nerve of 0. Since the nerve is a simplicial topological group, |0| is a topological
group. Version II for smooth 0-gerbes is this:

Definition 4.4 [Baez and Stevenson 2009]. A classifying map for a smooth 0-gerbe
is a continuous map

f : M→B|0|.

We denote by [M,B|0|] the set of homotopy classes of classifying maps.

Proposition 4.5 [Baez and Stevenson 2009, Theorem 1]. Let 0 be a Lie 2-group.
Then there is a bijection

Ȟ1
c(M, 0)∼= [M,B|0|]

where the topological group |0| is the geometric realization of the nerve of 0.

Note that the assumption of [Baez and Stevenson 2009, Theorem 1] that 0
is well-pointed is automatically satisfied because Lie groups are well-pointed.
Propositions 4.1 and 4.5 imply the following equivalence theorem between Version I
and Version II.

Theorem 4.6. For M a smooth manifold and 0 a smoothly separable Lie 2-group,
there is a bijection

Ȟ1(M, 0)∼= [M,B|0|].

Remark 4.7. Baez and Stevenson [2009, Section 5.2] argue that the space B|0|

is homotopy equivalent to a certain geometric realization of the Lie 2-groupoid
|B0| from Section 3. Baas, Böstedt and Kro [Baas et al. 2012] have shown that
|B0| classifies concordance classes of charted 0-2-bundles. In particular, charted
0-2-bundles are a further equivalent version of smooth 0-gerbes.
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5. Version III: groupoid bundle gerbes

Several definitions of nonabelian bundle gerbes have appeared in literature so far
[Aschieri et al. 2005; Jurčo 2011; Murray et al. 2012]. The approach we give here not
only shows a conceptually clear way to define nonabelian bundle gerbes, but also pro-
duces systematically a whole bicategory. Moreover, these bicategories form a 2-stack
over smooth manifolds (with the Grothendieck topology of surjective submersions).

5.1. Definition via the plus construction. Recall that the stack Bun0(−) of prin-
cipal 0-bundles is monoidal if 0 is a Lie 2-group (Proposition 2.4.8). Associated
to the monoidal stack Bun0(−) we have a pre-2-stack

T rivGrb0(−) := B(Bun0(−))

of trivial 0-gerbes. Explicitly, there is one trivial 0-gerbe I over every smooth
manifold M . The 1-morphisms from I to I are principal 0-bundles over M , and
the 2-morphisms between those are morphisms of principal 0-bundles. Horizontal
composition is given by the tensor product of principal 0-bundles, and vertical
composition is the ordinary composition of 0-bundle morphisms.

Now we apply the plus construction of [Nikolaus and Schweigert 2011] in order
to stackify this pre-2-stack. The resulting 2-stack is by definition the 2-stack of
0-bundle gerbes; i.e.,

Grb0(−) := (T rivGrb0(−))+.

Unwinding the details of the plus construction, we obtain the following definitions:

Definition 5.1.1. Let M be a smooth manifold. A 0-bundle gerbe over M is
a surjective submersion π : Y → M , a principal 0-bundle P over Y [2] and an
associative morphism

µ : π∗23 P ⊗π∗12 P→ π∗13 P

of 0-bundles over Y [3].

The morphism µ is called the bundle gerbe product. Its associativity is the
evident condition for bundle morphisms over Y [4].

In order to proceed with the 1-morphisms, we say that a common refinement of
two surjective submersions π1 : Y1→ M and π2 : Y2→ M is a smooth manifold Z
together with surjective submersions Z→ Y1 and Z→ Y2 such that the diagram

Z

  ~~
Y1

π1   

Y2

π2~~
M
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is commutative.
We fix the following convention: suppose P1 and P2 are 0-bundles over surjective

submersions U1 and U2, respectively, and V is a common refinement of U1 and U2.
Then, a bundle morphism ϕ : P1 → P2 is understood to be a bundle morphism
between the pullbacks of P1 and P2 to the common refinement V . For example,
in the following definition this convention applies to U1 = Y [2]1 , U2 = Y [2]2 and
V = Z [2].

Definition 5.1.2. Let G1 and G2 be 0-bundle gerbes over M . A 1-morphism
A : G1 → G2 is a common refinement Z of the surjective submersions of G1

and G2 together with a principal 0-bundle Q over Z and a morphism

β : P2⊗ ζ
∗

1 Q→ ζ ∗2 Q⊗ P1

of 0-bundles over Z [2], where ζ1, ζ2 : Z [2]→ Z are the two projections, such that α
is compatible with the bundle gerbe products µ1 and µ2.

The compatibility of α with µ1 and µ2 means that the diagram

(5-1)

π∗23 P2⊗π
∗

12 P2⊗ ζ
∗

1 Q

id⊗ζ ∗12β

��

µ2⊗id // π∗13 P2⊗ ζ
∗

1 Q

ζ ∗13β

��

π∗23 P2⊗ ζ
∗

2 Q⊗π∗12 P1

ζ ∗23β⊗id

��
ζ ∗3 Q⊗π∗23 P1⊗π

∗

12 P1
id⊗µ1

// ζ ∗3 Q⊗π∗13 P1

of morphisms of 0-bundles over Z [3] is commutative.
If A12 : G1→ G2 and A23 : G2→ G3 are 1-morphisms between bundle gerbes

over M , the composition A23 ◦A12 : G1→ G3 is given by the fiber product Z :=
Z23×Y2 Z12, the principal 0-bundle Q := Q23⊗ Q12 over Z , and the morphism

P3⊗ ζ
∗

1 Q
β23⊗id // ζ ∗2 Q23⊗ P2⊗ ζ

∗

1 Q12
id⊗β12 // ζ ∗2 Q⊗ P1.

The identity 1-morphism idG associated to a 0-bundle gerbe G is given by Y
regarded as a common refinement of π : Y → M with itself, the trivial 0-bundle I1

(the tensor unit of Bun0(Y )), and the evident morphism I1⊗ P→ P ⊗ I1.
In order to define 2-morphisms, suppose that π1 : Y1→ M and π2 : Y2→ M are

surjective submersions, and that Z and Z ′ are common refinements of π1 and π2.
Let W be a common refinement of Z and Z ′ with surjective submersions r :W→ Z
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and r ′ :W → Z ′. We obtain two maps

s1 :W
r // Z // Y1 and t1 :W

r ′ // Z ′ // Y1,

and, analogously, two maps s2, t2 :W → Y2. These patch together to maps

xW := (s1, t1) :W → Y1×M Y1 and yW := (s2, t2) :W → Y2×M Y2.

Definition 5.1.3. Let G1 and G2 be 0-bundle gerbes over M , and let

A,A′ : G1→ G2

be 1-morphisms. A 2-morphism

ϕ :A⇒A′

is a common refinement W of the common refinements Z and Z ′, together with a
morphism

ϕ : y∗W P2⊗ r∗Q→ r ′∗Q′⊗ x∗W P1

of 0-bundles over W that is compatible with the morphisms β and β ′.

The compatibility means that a certain diagram over W [2] commutes. Fiberwise
over a point (w,w′) ∈W ×M W this diagram looks as follows:

(5-2)

P2|s2(w′),t2(w′)⊗P2|s2(w),s2(w′)⊗Q|r(w)
id⊗β //

µ2⊗id

��

P2|s2(w′),t2(w′)⊗Q|r(w′)⊗P1|s1(w),s1(w′)

ϕ⊗id
��

P2|s2(w),t2(w′)⊗Q|r(w)

µ−1
2 ⊗id

��

Q′|r ′(w′)⊗P1|s1(w′),t1(w′)⊗P1|s1(w),s1(w′)

id⊗µ1

��
P2|t2(w),t2(w′)⊗P2|s2(w),t2(w)⊗Q|r(w)

id⊗ϕ

��

Q′|r ′(w′)⊗P1|s1(w),t1(w′)

id⊗µ−1
1

��
P2|t2(w),t2(w′)⊗Q′|r ′(w)⊗P1|s1(w),t1(w)

β ′⊗id
// Q′|r ′(w′)⊗P1|t1(w),t1(w′)⊗P1|s1(w),t1(w).

Finally we identify two 2-morphisms (W1, r1, r ′1, ϕ1) and (W2, r2, r ′2, ϕ2) if the
pullbacks of ϕ1 and ϕ2 to W ×Z××Z ′ W ′ agree. Explicitly, this condition means
that, for all w1 ∈W1 and w2 ∈W2 with r1(w1)= r2(w2) and r ′1(w1)= r ′2(w2), and
for all p2 ∈ y∗W1

P2 = y∗W2
P2 and q ∈ r∗1 Q = r∗2 Q, we have ϕ1(p2, q)= ϕ2(p2, q).

Remark 5.1.4. • In the above situation of a common refinement W of two
common refinements Z , Z ′ of surjective submersions Y1, Y2, the diagram
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(5-3)

Z

  ~~
Y1 W

r
OO

r ′
��

Y2

Z ′

`` >>

is not necessarily commutative. In fact, diagram (5-3) commutes if and only if
the two maps xW : W → Y1×M Y1 and yW : W → Y2×M Y2 factor through
the diagonal maps Y1→ Y1×M Y1 and Y2→ Y2×M Y2, respectively.

• In the case that a 2-morphism ϕ is defined on a common refinement Z for which
diagram (5-3) does commute, Definition 5.1.3 can be simplified. As remarked
before, the two maps xW and yW factor through the diagonals, over which the
bundles P1 and P2 have canonical trivializations (see Corollary 5.2.6). Under
these trivializations, ϕ can be identified with a bundle morphism

ϕ : Q→ Q′.

Furthermore, the compatibility diagram (5-2) simplifies to the diagram

(5-4)

P2⊗ η
∗

1 Q
β //

id⊗η∗1ϕ

��

η∗2 Q⊗ P1

η∗2ϕ⊗id

��
P2⊗ η

∗

1 Q′
β ′

// η∗2 Q′⊗ P1.

Next we define the vertical composition

ϕ23 • ϕ12 :A1⇒A3

of 2-morphisms ϕ12 : A1⇒ A2 and ϕ23 : A2⇒ A3. The refinement is the fiber
product W :=W12×Z2 W23 of the covers of ϕ12 and ϕ23. The bundle gerbe products
induce isomorphisms

x∗W P1 ∼= x∗W23
P1⊗ x∗W12

P1 and y∗W P2 ∼= y∗W23
P2⊗ y∗W12

P2

over W . Under these identifications, the morphism y∗W P2⊗ Q1→ Q3⊗ x∗W P1 for
the 2-morphism ϕ23 • ϕ12 is defined as

y∗W23
P2⊗y∗W12

P2⊗Q1
id⊗ϕ12 // y∗W23

P2⊗Q2⊗x∗W12
P1

ϕ23⊗id // Q3⊗x∗W23
P1⊗x∗W12

P1.

The identity for vertical composition is just the identity refinement and the identity
morphism. Finally we come to the horizontal composition

ϕ23 ◦ϕ12 :A23 ◦A12⇒A′23 ◦A′12
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of 2-morphisms ϕ12 :A12⇒A′12 and ϕ23 :A23⇒A′23: its refinement W is given
by W12 ×(Y2×Y2) W23. We look at the three relevant maps xW : W → Y1 ×M Y1,
yW :W→ Y2×M Y2 and zW :W→ Y3×M Y3. The morphism ϕ of the 2-morphism
ϕ23 ◦ϕ12 is defined as the composition

z∗W P3⊗ Q23⊗ Q12
ϕ23⊗id // Q′23⊗ y∗W P2⊗ Q12

id⊗ϕ12 // Q′23⊗ Q′12⊗ x∗W P1.

It follows from the properties of the plus construction [Nikolaus and Schweigert
2011] that (a) these definitions fit together into a bicategory Grb0(M), and that (b)
these form a pre-2-stack Grb0(−) over smooth manifolds. That means there are
pullback 2-functors

f ∗ : Grb0(N )→ Grb0(M)

associated to smooth maps f : M → N , and that these are compatible with the
composition of smooth maps. Pullbacks of 0-bundle gerbes, 1-morphisms, and
2-morphisms are obtained by just taking the pullbacks of all involved data. Finally,
the plus construction implies (c):

Theorem 5.1.5 [Nikolaus and Schweigert 2011, Theorem 3.3]. The pre-2-stack
Grb0(−) of 0-bundle gerbes is a 2-stack.

Remark 5.1.6. Every 2-stack over smooth manifolds defines a 2-stack over Lie
groupoids [Nikolaus and Schweigert 2011, Proposition 2.8]. This way, our ap-
proach produces automatically bicategories Grb0(X ) of 0-bundle gerbes over a Lie
groupoid X . In particular, for an action groupoid X = M//G we have a bicategory
Grb0(M//G) of G-equivariant 0-bundle gerbes over M .

In the remainder of this section we give some examples and describe relations
between the definitions given here and existing ones.

Example 5.1.7. Let A be an abelian Lie group, for instance U(1). Then, BA-bundle
gerbes are the same as the well-known A-bundle gerbes [Murray 1996]. For more
details see Remark 5.1.10 below.

Example 5.1.8. Let (G, H, t, α) be a smooth crossed module, and let G//H be
the associated action groupoid. Then, a (G//H)-bundle gerbe is the same as a
crossed module bundle gerbe in the sense of Jurčo [2011]. The equivalence relation
of “stably isomorphic” of [Jurčo 2011] is given by “1-isomorphic” in terms of
the bicategory constructed here. These coincidences come from the equivalence
between (G//H)-bundles and so-called G-H -bundles used in [Jurčo 2011; Aschieri
et al. 2005] expressed by Lemma 2.3.10. In particular, in case of the automorphism
2-group AUT(H) of a connected Lie group H , a AUT(H)-bundle gerbe is the same
as a H -bibundle gerbe in the sense of [Aschieri et al. 2005].
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Example 5.1.9. Let G be a Lie group, so that Gdis is a Lie 2-group. Then, there is
an equivalence of 2-categories

GrbGdis(M)∼= BunBG(M)dis.

Indeed, if G is a Gdis-bundle gerbe over M , its principal Gdis-bundle over Y [2] is
by Example 2.2.4 just a smooth map α : Y [2]→ G, and its bundle gerbe product
degenerates to an equality π∗23α ·π

∗

12α= π
∗

13α for functions on Y [3]. In other words,
a Gdis-bundle gerbe is the same as a so-called G-bundle 0-gerbe. These form a
category that is equivalent to the one of ordinary principal G-bundles, as pointed
out in Section 1.

Remark 5.1.10. There are two differences between the definitions given here (for
0 = BA) and the ones discussed in the list below. Firstly, we have a slightly
different ordering of tensor products of bundles. These orderings are not essential
in the case of abelian groups because the tensor category of ordinary A-bundles is
symmetric. In the nonabelian case, a consistent theory requires the conventions we
have chosen here. Secondly, the definitions of 1-morphisms and 2-morphisms have
been generalized step by step:

(1) In [Murray 1996], 1-morphisms did not include a common refinement, but
rather required that the surjective submersion of one bundle gerbe refines the
other. This definition is too restrictive in the sense that, e.g., U(1)-bundle
gerbes are not classified by H3(M,Z), as intended.

(2) In [Murray and Stevenson 2000], 1-morphisms were defined on the canonical
refinement Z := Y1×M Y2 of the surjective submersions of the bundle gerbes.
This definition solves the previous problems concerning the classification of
bundle gerbes, but makes the composition of 1-morphisms quite involved
[Stevenson 2000].

(3) In [Waldorf 2007], 1-morphisms were defined on refinements ζ : Z→Y1×M Y2.
This generalization allows the same elegant definition of composition we have
given here, and results in the same isomorphism classes of bundle gerbes.
Moreover, 2-morphisms are defined with commutative diagrams (5-3) — this
makes the structure of the bicategory outmost simple (see Remark 5.1.4).

(4) In the present article we have allowed for a yet more general refinement in the
definition of 1-morphisms. Its achievement is that bundle gerbes come out as
an example of a more general concept — the plus construction — and we get,
e.g., Theorem 5.1.5 for free.

Despite these different definitions of 1-morphisms and 2-morphisms, the resulting
bicategories of BA-bundle gerbes in (2), (3) and (4) are all equivalent (see [Waldorf
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2007, Theorem 1; Nikolaus and Schweigert 2011, Remark 4.5] and Lemma 5.2.8
below).

5.2. Properties of groupoid bundle gerbes. We recall that a homomorphism 3 :

0 → � between Lie 2-groups is an anafunctor together with a transformation
(2.4-4) describing its compatibility with the multiplications. We recall further from
Proposition 2.4.9 that extension along 3 is a 1-morphism

3 : Bun0(−)→ Bun�(−)

between monoidal stacks over smooth manifolds. That is, extension along 3 is
compatible with pullbacks, tensor products, and morphisms between principal 0-
bundles. Applying it to the principal 0-bundle P of a 0-bundle gerbe G, and also
to the bundle gerbe product µ, we obtain immediately an �-bundle gerbe 3G. The
same is evidently true for morphisms and 2-morphisms. Summarizing, we get:

Proposition 5.2.1. Extension of bundle gerbes along a homomorphism 3 : 0→�

between Lie 2-groups defines a 1-morphism

3 : Grb0(−)→ Grb�(−)

of 2-stacks over smooth manifolds.

We recall that a weak equivalence between Lie 2-groups is a homomorphism
3 : 0→� that is a weak equivalence (see Definition 2.3.11). We have:

Theorem 5.2.2. Suppose 3 : 0→� is a weak equivalence between Lie 2-groups.
Then, the 1-morphism 3 : Grb0(−)→ Grb�(−) of Proposition 5.2.1 is an equiva-
lence of 2-stacks.

Proof. The monoidal equivalence 3 : Bun0(−)→ Bun�(−) between the monoidal
stacks (Corollary 2.4.10) induces an equivalence T rivGrb0(M)→ T rivGrb3(M)
between pre-2-stacks. Since the plus construction is functorial, this induces in turn
the claimed equivalence of 2-stacks. �

Next we generalize a couple of well-known results from abelian to nonabelian
bundle gerbes. We define a refinement of a surjective submersion π : Y → M
to be another surjective submersion ω : W → M together with a smooth map
f : W → Y such that ζ = π ◦ f . Notice that such a refinement induces smooth
maps fk :W [k]→ Y [k] that commute with the various projections ωi1···ik and πi1···ik .

Lemma 5.2.3. Suppose G1 = (Y1, P1, µ1) and G2 = (Y2, P2, µ2) are 0-bundle
gerbes over M , f : Y1 → Y2 is a refinement of surjective submersions, and
ϕ : f ∗2 P2→ P1 is an isomorphism of 0-bundles over Y [2]1 that is compatible with
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the bundle gerbe products µ1 and µ2 in the sense that the diagram

π∗23 f ∗2 P2⊗π
∗

12 f ∗2 P2

π∗23ϕ⊗π
∗

12ϕ

��

f ∗3 µ // π∗13 f ∗2 P2

π∗13ϕ

��
π∗23 P1⊗π

∗

12 P1 µ
// π∗13 P1

is commutative. Then, G1 and G2 are isomorphic.

The proof works just the same way as in the abelian case: one constructs the
1-isomorphism over the common refinement Z := Y1×M Y2 in a straightforward
way. As a consequence of Lemma 5.2.3 we have:

Proposition 5.2.4. Let G = (Y, P, µ) be a 0-bundle gerbe over M , and f :W→ Y
a refinement of its surjective submersion π : Y → M. Then, (W, f ∗2 P, f ∗3 µ) is a
0-bundle gerbe over M , and is isomorphic to G.

Lemma 5.2.5. Let G = (Y, P, µ) be a 0-bundle gerbe over M. Then, there exist
unique smooth maps i : P→ P and t : Y → P such that:

(i) The diagrams

P
i //

χ

��

P

χ

��
Y [2] flip

// Y [2]

and

P

χ

��
Y

diag
//

t

>>

Y [2]

are commutative.

(ii) The map t is neutral with respect to the bundle gerbe product µ; i.e.,

µ(t (y2), p)= p = µ(p, t (y1))

for all p ∈ P with χ(p)= (y1, y2).

(iii) The map i provides inverses with respect to the bundle gerbe product µ; i.e.,

µ(i(p), p)= t (y1) and µ(p, i(p))= t (y2)

for all p ∈ P with χ(p)= (y1, y2).

Moreover, α(t (y))= 1 and α(i(p))= α(p)−1 for all p ∈ P and y ∈ Y .

Proof. Concerning uniqueness, suppose (t, i) and (t ′, i ′) are pairs of maps satisfying
(i), (ii) and (iii). Firstly, we have t ′(y)= µ(t (y), t ′(y))= t (y) and so t = t ′. Then,
µ(i(p), p) = t (y1) = t ′(y1) = µ(i ′(p), p) implies i(p) = i ′(p), and so i = i ′. In
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order to see the existence of t and i , denote by Q := diag∗ P the pullback of P to Y ,
denote by Q∨ the dual bundle and by d : Q⊗ Q∨→ I1 the death map. Consider
the smooth map

Y
s // I1

d−1
// Q⊗ Q∨

µ−1
⊗idQ∨ // Q⊗ Q⊗ Q∨

id⊗d // I1⊗ Q ∼= Q
diag // P

where s : Y → I1 is the canonical section (see the proof of Lemma 2.2.6). It is
straightforward to see that this satisfies the properties of the map t . Since all maps
in the above sequence are (anchor-preserving) bundle morphisms, it is clear that
t ◦α = 1. �

Corollary 5.2.6. Let G = (Y, P, µ) be a 0-bundle gerbe over M , and let t and i be
the unique maps of Lemma 5.2.5. Then,

(i) t is a section of diag∗ P , and defines a trivialization diag∗ P ∼= I1;

(ii) i is a bundle isomorphism i : P∨→ flip∗ P;

(iii) C0 := Y and C1 := P define a Lie groupoid with source and target maps π1 ◦χ

and π2 ◦χ , respectively, composition µ, identity t and inversion i .

The following statement is well-known for abelian gerbes; the general version
can be proved by a straightforward generalization of the constructions given in the
proof of [Waldorf 2007, Proposition 3].

Lemma 5.2.7. Every 1-morphism A : G→H between 0-bundle gerbes over M is
invertible.

The last statement of this section shows a way to bring 1-morphisms and
2-morphisms into a simpler form (see Remark 5.1.10). For bundle gerbes G1

and G2 with surjective submersions π1 : Y1→ M and π2 : Y2→ M we denote by
Hom(G1,G2) the Hom-category in the bicategory Grb0(M), and by Hom(G1,G2)

FP

the category whose objects are those 1-morphisms whose common refinement is
Z := Y1×M Y2, and whose 2-morphisms are those 2-morphisms whose refinement
is W := Y1×M Y2 with the maps r, r ′ :W → Z the identity maps.

Lemma 5.2.8. The inclusion Hom(G1,G2)
FP
→Hom(G1,G2) is an equivalence of

categories.

Proof. First we show that it is essentially surjective. We assume A : G1→ G2 is a
general 1-morphism with a principal 0-bundle Q over a common refinement Z of
the surjective submersions π1 : Y1→ M and π2 : Y2→ M of the two bundle gerbes.
We look at the principal 0-bundle

Q̃ := κ∗2 P2⊗ pr∗2 Q⊗ κ∗1 P1

over Z̃ := Y1×M Z ×M Y2, where

κ1 : Z̃→Y [2]1 : (y1, z, y2) 7→ (y1, y1(z)), κ2 : Z̃→Y [2]2 : (y1, z, y2) 7→ (y2(z), y2).
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The projection pr13 : Z̃→Y1×M Y2 is a surjective submersion, and over Z̃×Y1×M Y2 Z̃
we have a bundle morphism α : pr∗1 Q̃→ pr∗2 Q̃ defined over a point (z̃, z̃′) with
z̃ = (y1, z, y2) and z̃′ = (y1, z′, y2) by

Q̃ z̃ P2|y2(z),y2 ⊗ Qz ⊗ P1|y1,y1(z)

µ−1
2 ⊗id⊗id
��

P2|y2(z′),y2 ⊗ P2|y2(z),y2(z′)⊗ Qz ⊗ P1|y1,y1(z)

id⊗β⊗id
��

P2|y2(z′),y2 ⊗ Qz′ ⊗ P1|y1(z),y1(z′)⊗ P1|y1,y1(z)

id⊗id⊗µ1
��

P2|y2(z′),y2 ⊗ Qz′ ⊗ P1|y1,y1(z′) Q̃ z̃′ .

The compatibility condition (5-1) implies a cocycle condition for α over the threefold
fiber product of Z̃ over Y1×M Y2, and since principal 0-bundles form a stack, the
pair (Q̃, α) defines a principal 0-bundle QFP over ZFP

:= Y1 ×M Y2. It is now
straightforward to show that the bundle isomorphism β itself descends to a bundle
isomorphism βFP over ZFP

×M ZFP in such a way that the triple (ZFP, QFP, βFP)

forms a 1-morphism AFP
: G1→ G2.

In order to show that AFP is an essential preimage of A, it remains to construct
a 2-morphism ϕFP

A :A⇒AFP. In the terminology of Definition 5.1.3, we choose
W = Z̃ with r := pr2 :W → Z and r ′ := pr13 :W → ZFP. Note that diagram (5-3)
does not commute. The maps xW : W → Y [2]1 and yW : W → Y [2]2 are given by
xW = s◦κ1 and yW = κ2, where s :Y [2]1 →Y [2]1 switches the factors. Now, the bundle
isomorphism of the 2-morphism ϕFP

A we want to construct is a bundle isomorphism

ϕ : y∗W P2⊗ r∗Q→ Q̃⊗ x∗W P1

over W , and is fiberwise over a point w = (y1, z, y2) given by

P2|y2(z),y2⊗Qz
id⊗id⊗t−1

// P2|y2(z),y2⊗Qz⊗Py1(z),y1(z)

id⊗id⊗µ−1
1��

P2|y2(z),y2⊗Qz⊗P1|y1,y1(z)⊗P1|y1(z),y1 Q̃w⊗P1|s(y1,y1(z)),

where t is the trivialization of diag∗ P of Corollary 5.2.6. The compatibility condi-
tion (5-2) is straightforward to check.

Now we show that the inclusion Hom(G1,G2)
FP
→ Hom(G1,G2) is full and

faithful. Since it is clearly faithful, it only remains to show that it is full. Given a
morphism A→A′ in Hom(G1,G2), i.e., a common refinement W of Y1×M Y2 with
itself and a bundle morphism ϕ, we have to find a morphism in Hom(G1,G2)

FP such
that the two morphisms are identified under the equivalence relation on bundle gerbe
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2-morphisms. We denote the bundles over Y1×M Y2 corresponding to A and A′ by Q
and Q′. The refinement maps are denoted as before by r = (s1, s2) :W→ Y1×M Y2

and r ′ = (t1, t2) : W → Y1×M Y2. Then we obtain an isomorphism r∗Q→ r∗Q′

fiberwise over a point w ∈W by

(5-1)

Q|s1(w),s2(w)
d−1
⊗id// P∨2 |s2(w),t2(w)⊗P2|s2(w),t2(w)⊗Q|s1(w),s2(w)

id⊗ϕ
��

P∨2 |s2(w),t2(w)⊗Q′|t1(w),t2(w)⊗P1|s1(w),t1(w)

id⊗β ′−1

��
P∨2 |s2(w),t2(w)⊗P2|s2(w),t2(w)⊗Q′|s1(w),s2(w)

d⊗id // Q′|s1(w),s2(w)

where d : P∨2 |s2(w),t2(w) ⊗ P2|s2(w),t2(w) → I1 is the death map. One can use the
compatibility condition for ϕ to show that this morphism descends to a morphism
ψ : Q→ Q′ which is a morphism in Hom(G1,G2)

FP. The two morphisms (W, ψ)
and (Y1×M Y2, ϕ) are identified if their pullbacks to

W ×(Y1×M Y2×M Y1×M Y2) (Y1×M Y2)= {w ∈W | r(w)= r ′(w)} =:W0

are equal. On the one side, the map W0 → W is the inclusion and the map
W0→ Y1×M Y2 is equal to r . The pullback of ψ along r is by construction the
map r∗Q → r∗Q′ from (5-1). On the other side, bundles x∗W P1 and y∗W P2 over
W0 have canonical trivializations (Corollary 5.2.6(i)) under which ϕ becomes also
equal to the morphism (5-1). �

5.3. Classification by Čech cohomology. In this section we prove that Versions I
(Čech 0-1-cocycles) and III (0-bundle gerbes) are equivalent. For this purpose,
we extract a Čech cocycle from a 0-bundle gerbe G over M , and prove that this
procedure defines a bijection on the level of equivalence classes (Theorem 5.3.2).
First we have to ensure the existence of appropriate open covers.

Lemma 5.3.1. For every 0-bundle gerbe G = (Y, P, µ) over M there exists an
open cover U = {Ui }i∈I of M with sections σi : Ui → Y , such that the principal
0-bundles (σi × σ j )

∗P over Ui ∩U j are trivializable.

Proof. One can choose an open cover such that the 2-fold intersections Ui ∩U j are
contractible. Since every Lie 2-group is a crossed module G//H (Remark 2.4.3),
and G//H -bundles are ordinary H -bundles (Lemma 2.2.9), these admit sections
over contractible smooth manifolds. But a section is enough to trivialize the original
0-bundle (Lemma 2.2.6). �

Let G be a 0-bundle gerbe over M , and let U= {Ui }i∈I be an open cover with
the properties of Lemma 5.3.1. We denote by MU the disjoint union of all the
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open sets Ui , and by σ : MU → Y the union of the sections σi . Then, σ is a
refinement of π : Y → M , and we have a 0-bundle gerbe GU,σ that is isomorphic
to G (Proposition 5.2.4).

The principal 0-bundle Pi j of GU,σ over the component Ui∩U j is by assumption
trivializable. Thus there exists a trivialization ti j : Pi j → I fi j for smooth functions
fi j :Ui ∩U j → 00. We define an isomorphism µi jk between trivial bundles such
that the diagram

Pjk ⊗ Pi j
µ //

t jk⊗ti j

��

Pik

tik

��
I f jk ⊗ I fi j µi jk

// I fik

is commutative. Now we are in the situation of Lemma 5.2.3, which implies that
the 0-bundle gerbe GU,σ,t := (MU, I fi j , µi jk) is still isomorphic to G.

Combining Lemma 2.2.8 with Example 2.4.7(a), we see that the isomorphisms
µi jk correspond to smooth maps gi jk :Ui∩U j∩Uk→01 such that s(gi jk)= f jk · fi j

and t (gi jk)= fik . The associativity condition for µi jk implies moreover that

gαγ δ ◦ (gαβγ · id fγ δ )= gαβδ ◦ (id fαβ · gβγ δ).

Hence, the collection { fi j , gi jk} is a 0-1-cocycle on M with respect to the open
cover U.

Theorem 5.3.2. Let M be a smooth manifold and let 0 be a Lie 2-group. The above
construction defines a bijection

{ Isomorphism classes of 0-bundle gerbes over M } ∼= Ȟ1(M, 0).

Proof. We claim that 0-bundle gerbes (MU, I fi j , µi jk) and (MV, Ihi j , νi jk) are
isomorphic if and only if the corresponding 0-1-cocycles are equivalent. This
proves at the same time that the choices of open covers and sections we have
made during the construction do not matter, that the resulting map is well-defined
on isomorphism classes, and that this map is injective. Surjectivity follows by
assigning to a 0-1-cocycle ( fi j , gi jk) with respect to some cover U the 0-bundle
gerbe (MU, I fi j , µi jk) with µi jk determined by Lemma 2.2.8.

It remains to prove that claim. We assume A= (Z , Q, α) is a 1-isomorphism
between the 0-bundle gerbes (MU, I fi j , µi jk) and (MV, Ihi j , νi jk). Similarly to
Lemma 5.3.1 one can show that there exists a cover W of M by open sets Wi that
refines both U and V, and that allows smooth sections ωi : Wi → Z for which
the 0-bundle ω∗i Q is trivializable. In the terminology of the above construction,
choosing a trivialization t : ω∗Q→ Ihi with smooth maps hi :Wi → 00 over MW
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converts the isomorphism α into smooth functions si j :Wi ∩W j → 01 satisfying
s(si j )= g′i j · hi and t (si j )= h j · gi j . The compatibility diagram (5-1) implies the
remaining condition that makes (hi , si j ) an equivalence between the 0-2-cocycles
( fi j , gi jk) and ( f ′i j , g′i jk). �

6. Version IV: principal 2-bundles

The basic idea of a smooth 2-bundle is that it gives for every point x in the base
manifold M a Lie groupoid Px varying smoothly with x . Numerous different
versions have appeared so far in the literature, e.g., [Bartels 2006; Baez and Schreiber
2007; Wockel 2011; Schommer-Pries 2011]. The main objective of our version
of principal 2-bundles is to make the definition of the objects (i.e., the 2-bundles)
as simple as possible, while keeping their isomorphism classes in bijection with
nonabelian cohomology. Thus, our principal 2-bundles will be defined using strict
actions of Lie 2-groups on Lie groupoids, and not using anafunctors. The necessary
“weakness” will be pushed into the definition of 1-morphisms.

6.1. Definition of principal 2-bundles. As an important prerequisite for princi-
pal 2-bundles we have to discuss actions of Lie 2-groups on Lie groupoids, and
equivariant anafunctors.

Definition 6.1.1. Let P be a Lie groupoid, and let 0 be a Lie 2-group. A smooth
right action of 0 on P is a smooth functor R : P ×0→ P such that R(p, 1)= p
and R(ρ, id1)= ρ for all p ∈ P0 and ρ ∈ P1, and such that the diagram

P ×0×0 id×m //

R×id

��

P ×0

R

��
P ×0 m

// P

of smooth functors is commutative (strictly, on the nose).

For example, every Lie 2-group acts on itself via multiplication. Note that, due
to strict commutativity, one has R(R(p, g), g−1) = p and R(R(ρ, γ ), i(γ )) = ρ
for all g ∈ 00, p ∈ P0, γ ∈ 01 and ρ ∈ P1.

Remark 6.1.2. This definition could be weakened in two steps. First, one could
allow a natural transformation in the above diagram instead of commutativity.
Secondly, one could allow R to be an anafunctor instead of an ordinary functor. It
turns out that for our purposes the above definition is sufficient.

Definition 6.1.3. Let X and Y be Lie groupoids with smooth actions (R1, ρ1),
(R2, ρ2) of a Lie 2-group 0. An equivariant structure on an anafunctor F :X →Y
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is a transformation

X ×0

F×id

��

R1 // X

λ

x�

F

��
Y ×0

R2

// Y

satisfying the following condition:

X×0×0 id×m //
R1×id

$$
F×id×id

��

X×0
R1

��
X×0

λ×id
v~

R1 //

F×id

��

X

λ

z�

F

��

Y×0×0

R2×id $$
Y×0

R2

// Y

=

X×0×0 id×m //

F×id×id

��

X×0

F×id

��

R1

��
X

λ
{�

F

��

Y×0×0

R2×id ##

id×m // Y×0
R2

��
Y×0

R2

// Y.

An anafunctor together with a 0-equivariant structure is called 0-equivariant ana-
functor.

In Appendix A we translate this abstract (but evidently correct) definition of
equivariance into more concrete terms involving a 01-action on the total space of
the anafunctor.

Definition 6.1.4. If (F, λ) :X→Y and (G, γ ) :X→Y are 0-equivariant anafunc-
tors, a transformation η : F⇒ G is called 0-equivariant, if the following equality
of transformation holds:

X ×0

G×id

��

F×id

��

η×idks

R1 // X

λ
s{

F

��
Y ×0

R2

// Y

=

X ×0

G×id

��

R1 // X

γ

s{

G

��

F

��

ηks

Y ×0
R2

// Y.

It follows from abstract nonsense in the bicategory of Lie groupoids, anafunctors
and transformations that we have another bicategory with

• objects: Lie groupoids with smooth right 0-actions;

• 1-morphisms: 0-equivariant anafunctors;

• 2-morphisms: 0-equivariant transformations.
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We need three further notions for the definition of a principal 2-bundle. Let M
be a smooth manifold, and let P be a Lie groupoid. We say that a smooth functor
π : P → Mdis is a surjective submersion functor, if π : P0 → M is a surjective
submersion. Let π : P → Mdis be a surjective submersion functor, and let Q be
a Lie groupoid with some smooth functor χ :Q→ Mdis. Then, the fiber product
P ×M Q is defined to be the full subcategory of P ×Q over the submanifold
P0×M Q0 ⊂ P0×Q0.

Definition 6.1.5. Let M be a smooth manifold and let 0 be a Lie 2-group.

(a) A principal 0-2-bundle over M is a Lie groupoid P , a surjective submersion
functor π :P→ Mdis, and a smooth right action R of 0 on P that preserves π ,
such that the smooth functor

τ := (pr1, R) : P ×0→ P ×M P

is a weak equivalence.

(b) A 1-morphism between principal 0-2-bundles is a 0-equivariant anafunctor

F : P1→ P2

that respects the surjective submersion functors to M .

(c) A 2-morphism between 1-morphisms is a 0-equivariant transformation between
these.

Remark 6.1.6. (a) The condition in Definition 6.1.5(a) that the action R preserves
the surjective submersion functor π means that the diagram of functors

P ×0 R //

pr1

��

P

π

��
P π

// Mdis

is commutative.

(b) The condition in Definition 6.1.5(b) that the anafunctor F respects the surjective
submersion functors means in the first place that there exists a transformation

P1
F //

π1

��

P2

qy
π2

��
Mdis.
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However, since the target of the anafunctors π1 and π2 ◦ F is the discrete
groupoid Mdis, the equivalence of Example 2.3.4 applies, and implies that,
if such a transformation exists, it is unique. Indeed, it is easy to see that an
anafunctor F : P→Q with anchors αl : F→ P0 and αr : F→Q0 respects
smooth functors π :P→ Mdis and χ :Q→ Mdis if and only if π ◦αl = χ ◦αr .

Example 6.1.7. The trivial 0-2-bundle over M is defined by

P := Mdis×0, π := pr1, R := idM ×m.

Here, the smooth functor τ even has a smooth inverse functor. In the following we
denote the trivial 0-2-bundle by I.

Remark 6.1.8. The principal 0-2-bundles of Definition 6.1.5 are very similar to
those of Bartels [2006] and Wockel [2011], in the sense that their fibers are groupoids
with a 0-action. They only differ in the strictness assumptions for the action, and
in the formulation of principality. Opposed to that, the principal 2-group bundles
introduced in [Ginot and Stiénon 2008] are quite different: their fibers are Lie
2-groupoids equipped with a certain Lie 2-groupoid morphism to B0.

6.2. Properties of principal 2-bundles. Principal 0-2-bundles over M form a bi-
category denoted 2-Bun0(M). There is an evident pullback 2-functor

f ∗ : 2-Bun0(N )→ 2-Bun0(M)

associated to smooth maps f : M→ N , and these make 2-Bun0(−) a pre-2-stack
over smooth manifolds. We deduce the following important two theorems about
this pre-2-stack. The first asserts that it actually is a 2-stack:

Theorem 6.2.1. Principal 0-2-bundles form a 2-stack 2-Bun0(−) over smooth
manifolds.

Proof. This follows from Theorem 5.1.5 (0-bundle gerbes form a 2-stack) and
Theorem 7.0.1 (the equivalence Grb0(−)∼= 2-Bun0(−)) we prove in Section 7. �

Remark 6.2.2. Similar to Remark 5.1.6, we obtain automatically bicategories
2-Bun0(X ) of principal 0-2-bundles over Lie groupoids X , including bicategories
of equivariant principal 0-2-bundles.

The second concerns a homomorphism 3 : 0 → � of Lie 2-groups, which
induces the extension 3 : Grb0(−)→ Grb�(−) between 2-stacks of bundle gerbes
(Proposition 5.2.1). Combined with the equivalence Grb0(−) ∼= 2-Bun0(−) of
Theorem 7.0.1, it defines a 1-morphism

3 : 2-Bun0(−)→ 2-Bun�(−)

between 2-stacks of principal 2-bundles. Now we get as a direct consequence of
Theorem 5.2.2:



FOUR EQUIVALENT VERSIONS OF NONABELIAN GERBES 391

Theorem 6.2.3. If 3 : 0→ � is a weak equivalence between Lie 2-groups, then
the 1-morphism 3 : 2-Bun0(−)→ 2-Bun�(−) is an equivalence of 2-stacks.

A third consequence of the equivalence of Theorem 7.0.1 in combination with
Lemma 5.2.7 is

Corollary 6.2.4. Every 1-morphism F : P1→ P2 between principal 0-2-bundles
over M is invertible.

The following discussion centers around local trivializability that is implicitly
contained in Definition 6.1.5. A principal 0-2-bundle that is isomorphic to the trivial
0-2-bundle I introduced in Example 6.1.7 is called trivializable. A section of a
principal 0-2-bundle P over M is an anafunctor S :Mdis→P such that π◦S= idMdis

(recall that an anafunctor π ◦ S : M→ M is the same as a smooth map). One can
show that every point x ∈ M has an open neighborhood U together with a section
s : Udis→ P|U . Such sections can even be chosen to be smooth functors, rather
than anafunctors, namely simply as ordinary sections of the surjective submersion
π : (P|U )0→Udis.

Lemma 6.2.5. A principal 0-2-bundle over M is trivializable if and only if it has a
smooth section.

Proof. The trivial 0-2-bundle I has the section S(m) := (m, 1), where 1 denotes
the unit of 00. If P is trivializable, and F : I→ P is an isomorphism, then, F ◦ S
is a section of P . Conversely, suppose P has a section S : Mdis→ P . Then, we get
the anafunctor

(6-1) I = Mdis×0
S×id // P ×0 R // P .

It has an evident 0-equivariant structure and respects the projections to M . Accord-
ing to Corollary 6.2.4, this is sufficient to have a 1-isomorphism. �

Corollary 6.2.6. Every principal 0-2-bundle is locally trivializable; i.e., every
point x ∈ M has an open neighborhood U and a 1-morphism T : I→ P|U .

Remark 6.2.7. In Wockel’s version [2011] of principal 2-bundles, local trivializa-
tions are required to be smooth functors and to be invertible as smooth functors,
rather than allowing anafunctors. This version turns out to be too restrictive in
the sense that the resulting bicategory receives no 2-functor from the bicategory
Grb0(M) of 0-bundle gerbes that would establish an equivalence.

It is also possible to reformulate our definition of principal 2-bundles in terms of
local trivializations. This reformulation gives us criteria which might be easier to
check than the actual definition, similar to the case of ordinary principal bundles.
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Proposition 6.2.8. Let P be a Lie groupoid, π : P→ Mdis be a surjective submer-
sion functor, and R be a smooth right action of 0 on P that preserves π . Suppose
every point x ∈ M has an open neighborhood U together with a 0-equivariant
anafunctor T : I → P|U that respects the projections. Then, π : P → Mdis is a
principal 0-2-bundle over M.

Proof. We only have to prove that the functor τ is a weak equivalence, and we use
Theorem 2.3.13. Since all morphisms of P have source and target in the same fiber
of π : P0→ Mdis, we may check the two conditions of Theorem 2.3.13 locally, i.e.,
for P|Ui where Ui is an open cover of M . Using local trivializations Ti : I→P|Ui ,
the smooth functor τ translates into the smooth functor (id, pr1,m) :Mdis×0×0→

(Mdis×0)×M (Mdis×0). This functor is an isomorphism of Lie groupoids, and
hence essentially surjective and fully faithful. �

7. Equivalence between bundle gerbes and 2-bundles

In this section we show that Versions III and IV of smooth 0-gerbes are equivalent
in the strongest possible sense:

Theorem 7.0.1. For M a smooth manifold and 0 a Lie 2-group, there is an equiva-
lence of bicategories

Grb0(M)∼= 2-Bun0(M)

between the bicategories of 0-bundle gerbes and principal 0-2-bundles over M.
This equivalence is natural in M ; i.e., it is an equivalence between pre-2-stacks.

Since the definitions of the bicategories Grb0(M) and 2-Bun0(M), and the above
equivalence are all natural in M , we obtain automatically an induced equivalence
for the induced bicategories over Lie groupoids (see Remarks 5.1.6 and 6.2.2).

Corollary 7.0.2. For X a Lie groupoid and 0 a Lie 2-group, there is an equivalence

Grb0(X )∼= 2-Bun0(X ).

The following outlines the proof of Theorem 7.0.1. In Section 7.1 we construct
explicitly a 2-functor

EM : 2-Bun0(M)→ Grb0(M).

Then we use a general criterion assuring that EM is an equivalence of bicategories.
This criterion is stated in Lemma B.1: it requires (A) that EM is fully faithful on
Hom-categories, and (B) to choose certain preimages of objects and 1-morphisms un-
der EM . Under these circumstances, Lemma B.1 constructs an inverse 2-functor RM

together with the required pseudonatural transformations assuring that EM and RM

form an equivalence of bicategories. Condition (A) is proved as Lemma 7.1.7 in
Section 7.1. The choices (B) are constructed in Section 7.2.
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In order to prove that the 2-functors EM extend to the claimed equivalence
between pre-2-stacks, we use another criterion stated in Lemma B.3. The only addi-
tional assumption of Lemma B.3 is that the given 2-functors EM form a 1-morphism
of pre-2-stacks; this is proved in Proposition 7.1.8. Then, the inverse 2-functors RM

obtained before automatically form an inverse 1-morphism between pre-2-stacks.

7.1. From principal 2-bundles to bundle gerbes. In this section we define the
2-functor EM : 2-Bun0(M)→ Grb0(M).

Definition of EM on objects. Let P be a principal 0-2-bundle over M , with projec-
tion π : P→ M and right action R of 0 on P . The first ingredient of the 0-bundle
gerbe EM(P) is the surjective submersion π : P0→ M . The second ingredient is a
principal 0-bundle P over P [2]0 . We put

P := P1×00.

Bundle projection, anchor and 0-action are given, respectively, by

(7.1-1) χ(ρ, g) := (t (ρ), R(s(ρ), g−1)), α(ρ, g) := g

and (ρ, g) ◦ γ := (R(ρ, idg−1 · γ ), s(γ )).

These definitions are motivated by Remark 7.1.2 below.

Lemma 7.1.1. This defines a principal 0-bundle over P [2]0 .

Proof. First we check that χ : P → P [2]0 is a surjective submersion. Since the
functor τ = (id, R) is a weak equivalence, we know from Theorem 2.3.13 that

f : (P0×00) τ×t×t P [2]1 → P [2]0 : (p, g, ρ1, ρ2) 7→ (s(ρ1), s(ρ2))

is a surjective submersion. Now consider the smooth surjective map

g : (P0×00) τ×t×t P [2]1 → P1×00 : (p, g, ρ1, ρ2) 7→ (ρ−1
1 ◦ R(ρ2, idg−1), g−1).

We have χ ◦ g = f ; thus, χ is a surjective submersion. Next we check that we have
defined an action. Suppose (ρ, g) ∈ P and γ ∈ 01 such that α(ρ, g) = g = t (γ ).
Then, α((ρ, g) ◦ γ ) = s(γ ). Moreover, suppose γ1, γ2 ∈ 01 with t (γ1) = g and
t (γ2)= s(γ1). Then,

((ρ, g) ◦ γ1) ◦ γ2 = (R(ρ, idg−1 · γ1), s(γ1)) ◦ γ2

=
(
R(ρ, idg−1 · γ1 · ids(γ1)−1 · γ2), s(γ2)

)
= (ρ, g) ◦ (γ1 ◦ γ2),

where we have used that γ1 ◦ γ2 = γ1 · ids(γ1)−1 · γ2 in any 2-group. It remains to
check that the smooth map

τ̃ : P α×t 01→ P χ×χ P : ((ρ, g), γ ) 7→ ((ρ, g), (ρ, g) ◦ γ )
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is a diffeomorphism. For this purpose, we consider the diagram

(7.1-2)

P [2]1

s×t
��

(P0×00)× (P0×00)
τ×τ

// P [2]0 ×P [2]0

and claim that (a) N1 := P α×t 01 is a pullback of (7.1-2), (b) N2 := P χ×χ P
is a pullback of (7.1-2), and (c) the unique map N1 → N2 is τ̃ . Thus, τ̃ is a
diffeomorphism.

In order to prove claim (a) we use again that the functor τ = (id, R) is a weak
equivalence, so that by Theorem 2.3.13 the triple (P1×01, τ, s× t) is a pullback
of (7.1-2). We consider the smooth map

ξ : N1→ P1×01 : ((ρ, g), γ ) 7→ (R(ρ, idg−1), γ )

which is a diffeomorphism because (ρ, γ ) 7→ ((R(ρ, idt (γ )), t (γ )), γ ) is a smooth
map which is inverse to ξ . Thus, putting f1 := τ ◦ ξ and g1 := (s× t) ◦ ξ we see
that (N1, f1, g1) is a pullback of (7.1-2). In order to prove claim (b), we put

f2((ρ1, g1), (ρ2, g2)) := (R(ρ1, idg−1
1
), ρ2),

g2((ρ1, g1), (ρ2, g2)) :=
(
R(s(ρ), g−1

1 ), g2, R(t (ρ1), g−1
1 ), g1

)
.

It is straightforward to check that the cone (N2, f2, g2) makes (7.1-2) commutative.
The triple (N2, f2, g2) is also universal: in order to see this suppose N ′ is any smooth
manifold with smooth maps f ′ : N ′→ P [2]1 and g′ : N ′→ (P0×00)× (P0×00)

so that (7.1-2) is commutative. For n ∈ N ′, we write f ′(n)= (ρ1, ρ2) and g′(n)=
(p1, g1, p2, g2). Then, σ(n) := ((R(ρ1, idg−1

2
), g2), (ρ2, g1)) defines a smooth map

σ : N ′→ P χ×χ P . One checks that f2 ◦ σ = f ′ and g2 ◦ σ = g′, and that σ is
the only smooth map satisfying these equations. This proves that (N2, f2, g2) is a
pullback. We are left with claim (c). Here one only has to check that τ : N1→ N2

satisfies f2 = f1 ◦ τ and g2 = g1 ◦ τ . �

Remark 7.1.2. The smooth functor τ = (id, R) : P × 0 → P ×M P is a weak
equivalence, and so has a canonical inverse anafunctor τ−1 (Remark 2.3.14). The
anafunctor

P [2]0
ι // P ×M P c // P ×M P τ−1

// P ×0
pr2 // 0,

where c is the functor that switches the factors, corresponds to a principal 0-bundle
over P [2]0 that is canonically isomorphic to the bundle P defined above.

It remains to provide the bundle gerbe product

µ : π∗23 P ⊗π∗12 P→ π∗13 P ,
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which we define by the formula

(7.1-3) µ((ρ23, g23), (ρ12, g12)) := (ρ12 ◦ R(ρ23, idg12), g23g12).

Lemma 7.1.3. Formula (7.1-3) defines an associative isomorphism

µ : π∗23 P ⊗π∗12 P→ π∗13 P

of principal 0-bundles over P [3]0 .

Proof. First of all, we recall from Example 2.4.7(b) that an element in the tensor
product π∗23 P ⊗π∗12 P is represented by a triple (p23, p12, γ ) where p23, p12 ∈ P
with π1(χ(p23))= π2(χ(p12)), and α(p23) ·α(p12)= t (γ ). In (7.1-3) we refer to
triples where γ = idg23g12 , and this definition extends to triples with general γ ∈ 01

by employing the equivalence relation

(7.1.4) (p1, p2, γ )∼ (p1 ◦ (γ · idα(p2)−1), p2, ids(γ )).

The complete formula for µ is then

(7.1.5) µ((ρ23, g23), (ρ12, g12), γ )= (ρ12 ◦ R(ρ23, idg−1
23
· γ ), s(γ )).

Next we check that (7.1.5) is well-defined under the equivalence relation (7.1.4):

µ(((ρ23, g23), (ρ12, g12), γ ))

= (ρ12 ◦ R(ρ23, idg−1
23
· γ ), s(γ ))

=
(
ρ12 ◦ R(ρ23 ◦ R(idR(s(ρ23),g−1

23 )
, γ · idg−1

12
), idg12), s(γ )

)
= µ

(
(ρ23 ◦ R(idR(s(ρ23),g−1

23 )
, γ · idg−1

12
), s(γ )g−1

12 ), (ρ12, g12), ids(γ ))
)

= µ
(
((ρ23, g23) ◦ (γ · idg−1

12
), (ρ12, g12), ids(γ ))

)
.

Now we have shown that µ is a well-defined map from π∗23 P ⊗ π∗12 P to π∗13 P ,
and it remains to prove that it is a bundle morphism. Checking that it preserves
fibers and anchors is straightforward. It remains to check that (7.1.5) preserves the
0-action. We calculate

µ(((ρ23, g23), (ρ12, g12), γ ) ◦ γ̃ )

= µ((ρ23, g23), (ρ12, g12), γ ◦ γ̃ )=
(
ρ23 ◦ R(ρ12, idg12 · i(γ ◦ γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(R(ρ12, idg12), i(γ ) ◦ i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(R(ρ12, idg12), i(γ )) ◦ R(idR(s(ρ12),g), i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(ρ12, idg12 · i(γ )) ◦ R(idR(s(ρ12),g), i(γ̃ )), s(γ̃ )

)
=
(
ρ23 ◦ R(ρ12, idg12 · i(γ )), s(γ )

)
◦ γ̃ = µ((ρ23, g23), (ρ12, g12), γ ) ◦ γ̃ .
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Summarizing, µ is a morphism of 0-bundles over P [3]0 . The associativity of µ
follows directly from the definitions. �

Definition of EM on 1-morphisms. We define a 1-morphism EM(F) : EM(P)→
EM(P ′) between 0-bundle gerbes from a 1-morphism F :P→P ′ between principal
0-2-bundles. The refinement of the surjective submersions π : P → M and π ′ :
P ′→ M is the fiber product Z := P0×M P ′0. Its principal 0-bundle has the total
space

Q := F ×00,

and its projection, anchor and 0-action are given, respectively, by

(7.1.6) χ( f, g) :=
(
αl( f ), R(αr ( f ), g−1)

)
, α( f, g) := g

and ( f, g) ◦ γ := (ρ( f, idg−1 · γ ), s(γ )),

where ρ : F × 01 → F denotes the 01-action on F that comes from the given
0-equivariant structure on F (see Appendix A).

Lemma 7.1.4. This defines a principal 0-bundle Q over Z.

Proof. We show first that the projection χ : Q→ Z is a surjective submersion. Since
the functor τ ′ :P ′×0→P×MP is a weak equivalence, we have by Theorem 2.3.13
a pullback

X //

ξ

��

(P ′0×00) R×t (P ′1×M P ′1)

s◦pr2

��
F π ′◦αl ( f )×π ′ P ′0 // P ′0×M P ′0

along the bottom map ( f, p′) 7→ (αr ( f ), p′), which is well-defined because the
anafunctor F preserves the projections to M (see Remark 6.1.6(b)). In particular,
the map ξ is a surjective submersion. It is easy to see that the smooth map

k : X→ F ×00 : (( f, p′), (p′0, g, ρ, ρ̃)) 7→ ( f ◦ ρ−1
◦ R(ρ̃, idg−1), g−1)

is surjective. Now we consider the commutative diagram

X

ξ

��

k // F ×00

χ

��
F π ′◦αl ( f )×π ′ P0

αl×id
// P0×M P ′0.

The surjectivity of k and the fact that ξ and αl× id are surjective submersions shows
that χ is one, too.
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Next, one checks (as in the proof of Lemma 7.1.1) that the 0-action on Q defined
above is well-defined and preserves the projection. Then it remains to check that
the smooth map

ξ : Q α×t 01→ Q×P0×MP ′0 Q : ( f, g, γ ) 7→ ( f, g, ρ( f, idg−1 · γ ), s(γ ))

is a diffeomorphism. An inverse map is given as follows. Given an element
( f1, g1, f2, g2) on the right-hand side, we have αl( f1) = αl( f2), so that there
exists a unique element ρ ′ ∈ P ′1 such that f1 ◦ ρ

′
= f2. One calculates that

(ρ ′, g2) and (idαr ( f1), g1) are elements of the principal 0-bundle P ′ × 00 over
P ′[2]0 of Lemma 7.1.1. Thus, there exists a unique element γ ∈ 01 such that
(ρ ′, g2) = (idαr ( f1), g1) ◦ γ . Clearly, t (γ ) = g1 and s(γ ) = g2, and we have
ρ ′ = R(idαr ( f1), idg−1

1
· γ ). We define ξ−1( f1, g1, f2, g2) := ( f1, g1, γ ). The cal-

culation that ξ−1 is an inverse for ξ uses property (ii) of Definition A.1 for the
action ρ, and is left to the reader. �

The next step in the definition of the 1-morphism E(F) is to define the bundle
morphism

β : P ′⊗ ζ ∗1 Q→ ζ ∗2 Q⊗ P

over Z ×M Z . We use the notation of Example 2.4.7(b) for elements of tensor
products of principal 0-bundles; in this notation, the morphism β in the fiber over
a point ((p1, p′1), (p2, p′2)) ∈ Z ×M Z is given by

β : ((ρ ′, g′), ( f, g), γ ) 7→ (( f̃ , g′gh), (ρ̃, h−1), γ ),

where h ∈ 00 and ρ̃ ∈ P ′1 are chosen such that s(ρ̃)= R(p2, h−1) and t (ρ̃)= p1,
and

(7.1.7) f̃ := ρ(ρ̃−1
◦ f ◦ R(ρ ′, idg), idh).

Lemma 7.1.5. This defines an isomorphism between principal 0-bundles.

Proof. The existence of choices of ρ̃, h follows because the functor τ ′ : P ′×0→
P ′×M P ′ is smoothly essentially surjective (Theorem 2.3.13); in particular, one
can choose them locally in a smooth way. We claim that the equivalence relation on
ζ ∗2 Q⊗ P identifies different choices; thus, we have a well-defined smooth map. In
order to prove this claim, we assume other choices ρ̃ ′, h′. The pairs (ρ̃, h−1) and
(ρ̃ ′, h′−1) are elements in the principal 0-bundle P ′ over P ′0×M P ′0 and sit over the
same fiber; thus, there exists a unique γ̃ ∈ 01 such that (ρ̃, h−1) ◦ γ̃ = (ρ̃ ′, h′−1);
in particular, R(ρ̃, idh · γ̃ )= ρ̃

′. Now we have

(( f̃ , g′gh), (ρ̃, h−1), γ )=
(
( f̃ , g′gh), (ρ̃, h−1), (idt (γ ) · i(γ̃ ) · γ̃ ) ◦ γ

)
∼
(
( f̃ , g′gh) ◦ (idt (γ ) · i(γ̃ )), (ρ̃, h−1) ◦ γ̃ , γ

)
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so that it suffices to calculate

( f̃ , g′gh) ◦ (idt (γ ) · i(γ̃ ))=
(
ρ( f̃ , idh−1 · i(γ̃ )), g′gh′

)
=
(
ρ(ρ̃−1

◦ f ◦ R(ρ ′, idg), i(γ̃ )), g′gh′
)

=
(
ρ(R(ρ̃−1, i(γ̃ ) · idh′−1) ◦ f ◦ R(ρ ′, idg), idh′), g′gh′

)
,

where the last step uses the compatibility condition for ρ from Definition A.1(ii).
In any 2-group, we have i(γ̃ ) · ids(γ̃ ) = (idt (γ̃ )−1 · γ̃ )−1, in which case the last line
is exactly the formula (7.1.7) for the pair (ρ̃ ′, h′).

Next we check that β is well-defined under the equivalence relation on the tensor
product P ′⊗ ζ ∗1 Q. We have

x := ((ρ ′, g′), ( f, g), (γ1 · γ2) ◦ γ )∼ ((ρ
′, g′) ◦ γ1, ( f, g) ◦ γ2, γ )=: x ′

for γ1, γ2 ∈ 01 such that t (γ1) = g′, t (γ2) = g and s(γ1)s(γ2) = t (γ ). Taking
advantage of the fact that we can make the same choice of (ρ̃, h) for both repre-
sentatives x and x ′, it is straightforward to show that β(x) = β(x ′). Finally, it is
obvious from the definition of β that it is anchor-preserving and 0-equivariant. �

In order to show that the triple (Z , Q, β) defines a 1-morphism between bundle
gerbes, it remains to verify that the bundle isomorphism β is compatible with the
bundle gerbe products µ1 and µ2 in the sense of diagram (5-1). This is straightfor-
ward to do and left for the reader.

Definition of EM on 2-morphisms, compositors and unitors. Let F1, F2 : P→ P ′
be 1-morphisms between principal 0-bundles over M , and let η : F ⇒ G be a
2-morphism. Between the 0-bundles Q1 and Q2, which live over the same common
refinement Z = P0×M P ′0, we find immediately the smooth map

η : Q1→ Q2 : ( f1, g) 7→ (η( f1), g)

which is easily verified to be a bundle morphism. Its compatibility with the bundle
morphisms β1 and β2 in the sense of the simplified diagram (5-4) is also easy to
check. Thus, we have defined a 2-morphism EM(η) : EM(F1)⇒ EM(F2).

The compositor for 1-morphisms F1 : P → P ′ and F2 : P ′→ P ′′ is a bundle
gerbe 2-morphism

cF1,F2 : EM(F2 ◦ F1)→ EM(F2) ◦EM(F1).

Employing the above constructions, the 1-morphism EM(F2 ◦ F1) is defined on the
common refinement Z12 :=P0×MP ′′0 and has the 0-bundle Q12= (F1×P ′0 F2)/P ′1×
00, whereas the 1-morphism EM(F2)◦EM(F1) is defined on the common refinement
Z := P0×M P ′0×M P ′′0 and has the 0-bundle Q2⊗ Q1 with Qk = Fk ×00. The
compositor cF1,F2 is defined over the refinement Z with the obvious refinement
maps pr13 : Z→ Z12 and id : Z→ Z making diagram (5-3) commutative. It is thus
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a bundle morphism cF1,F2 : pr∗13 Q12→ Q2⊗ Q1. For elements in a tensor product
of 0-bundles we use the notation of Example 2.4.7(b). Then, we define cF1,F2 by

(7.1.8) ((p, p′, p′′), ( f1, f2, g)) 7→
(
(ρ2(ρ̃

−1
◦ f2, idh), gh), ( f1 ◦ ρ̃, h−1), idg

)
,

where h ∈ 00 and ρ̃ : R(p′, h−1)→ αr ( f1)= αl( f2) are chosen in the same way as
in the proof of Lemma 7.1.5. The assignment (7.1.8) does not depend on the choices
of h and ρ̃, nor on the choice of the representative ( f1, f2) in (F1×P ′0 F2)/P ′1. It
is obvious that (7.1.8) is anchor-preserving, and its 0-equivariance can be seen by
choosing (ρ̃, h) in order to compute cF1,F2((p, p′, p′′), ( f1, f2, g)) and (ρ̃ ′, h) with
ρ̃ ′ := R(ρ̃, idg−1 ·γ−1) in order to compute cF1,F2(((p, p′, p′′), ( f1, f2, g))◦γ ). In
order to complete the construction of the bundle gerbe 2-morphism cF1,F2 we have to
prove that the bundle morphism cF1,F2 is compatible with the isomorphisms β12 of
EM(F2 ◦ F1) and (id⊗β1)◦ (β2⊗ id) of EM(F2)◦EM(F1) in the sense of diagram
(5-4). We start with an element ((ρ ′′, g′′), ( f12, g)) ∈ EM(P ′′)⊗ ζ ∗1 Q12, where
f12 = ( f1, f2). We have

β12((ρ
′′, g′′), ( f12, g))= ( f̃12, g′′gh, ρ̃, h−1)

upon choosing (ρ̃, h) as required in the definition of EM(F2 ◦ F1). Writing f̃12 =

( f̃1, f̃2) further we have

(7.1.9) (ζ ∗2 cF1,F2 ⊗ id)( f̃12, g′′gh, ρ̃, h−1)

=
(
ρ2(ρ̃

−1
2 ◦ f̃2, idh2), g′′ghh2, f̃1 ◦ ρ̃2, h−1

2 , ρ̃, h−1)
upon choosing appropriate (ρ̃2, h2) as required in the definition of cF1,F2 . This is the
result of the clockwise composition of diagram (5-4). Counterclockwise, we first get

(id⊗ ζ ∗1 cF1,F2)((ρ
′′, g′′), ( f12, g))= (ρ ′′, g′′, f ′′, gh1, f ′, h−1

1 )

for choices (ρ̃1, h1), where f ′′ := ρ2(ρ̃
−1
1 ◦ f2, idh1) and f ′ := f1 ◦ ρ̃1. Next we

apply the isomorphism β2 of EM(F2) and get

(β2⊗ id)(ρ ′′, g′′, f ′′, gh1, f ′1, h−1
1 )= ( f̃ ′′, g′′ghh2, ρ̂, ĥ−1, f ′1, h−1

1 )

where we have used the choices (ρ̂, ĥ) defined by ρ̂ := R(ρ̃−1
1 , h1) ◦ R(ρ̃2, h−1h1)

and ĥ := h−1
1 hh2. The last step is to apply the isomorphism β1 of EM(F2) which

gives

(7.1.10) (id⊗β1)( f̃ ′′,g′′ghh2, ρ̂, ĥ−1, f ′1,h
−1
1 )= ( f̃ ′′,g′′ghh2, f̃ ′,h−1

2 , ρ̃,h−1),

where we have used the choices (ρ̃, h) from above. Comparing (7.1.9) and (7.1.10),
we have obvious coincidence in all but the first and third components. For these
remaining factors, coincidence follows from the definitions of the various variables.
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Finally, we have to construct unitors. The unitor for a principal 0-2-bundle P
over M is a bundle gerbe 2-morphism

uP : EM(idP)⇒ idEM (P).

Abstractly, one can associate to idEM (P) the 1-morphism idFP
EM (P) constructed in the

proof of Lemma 5.2.8, and then notice that idFP
EM (P) and EM(idP) are canonically

2-isomorphic. In more concrete terms, the unitor uP has the refinement W := P [3]0
with the surjective submersions r := pr12 and r ′ := pr3 to the refinements Z = P [2]0
and Z ′ = P0 of the 1-morphisms EM(idP) and idEM (P), respectively. The relevant
maps xW and yW are pr13 and pr23, respectively. The principal 0-bundle of the
1-morphism idEM (P) is the trivial bundle Q′ = I1. We claim that the principal
0-bundle Q of EM(idP) is the bundle P of the bundle gerbe EM(P). Indeed, the
formulae (7.1.6) reduce for the identity anafunctor idP to those of (7.1-1). Now,
the bundle isomorphism of the unitor uP is

y∗W P ⊗ r∗Q = pr∗23 P ⊗ pr∗12 P
µ // pr∗13 P ∼= r ′∗Q′⊗ x∗W P ,

where µ is the bundle gerbe product of EM(P). The commutativity of diagram
(5-2) follows from the associativity of µ.

Proposition 7.1.6. The assignments EM for objects, 1-morphisms and 2-morphisms,
together with the compositors and unitors defined above, define a 2-functor

EM : 2-Bun0(M)→ Grb0(M).

Proof. A list of axioms for a 2-functor with the same conventions as we use here can
be found in [Schreiber and Waldorf 2008, Appendix A]. The first axiom requires
that the 2-functor EM respects the vertical composition of 2-morphisms — this
follows immediately from the definition.

The second axiom requires that the compositors respect the horizontal compo-
sition of 2-morphisms. To see this, let F1, F ′1 : P→ P ′ and F2, F ′2 : P ′→ P ′′ be
1-morphisms between principal 0-2-bundles, and let η1 : F1⇒ F ′1 and η2 : F2⇒ F ′2
be 2-morphisms. Then, the diagram

EM(F2 ◦ F1)

cF1,F2

��

EM (η1◦η2) +3 EM(F ′2 ◦ F ′1)

cF ′1,F
′
2

��
EM(F2) ◦EM(F1)

EM (η1)◦EM (η2)
+3 EM(F ′2) ◦EM(F ′1)

has to commute. Indeed, in order to compute cF1,F2 and cF ′1,F
′

2
one can make the

same choice of (ρ̃, h), because the transformations η and η2 preserve the anchors.
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Then, commutativity follows from the fact that η1 and η2 commute with the groupoid
actions and the 01-action according to Definition A.1.

The third axiom describes the compatibility of the compositors with the compo-
sition of 1-morphisms in the sense that the diagram

EM(F3 ◦ F2 ◦ F1)
cF2◦F1,F3 +3

cF3◦F2,F1

��

EM(F3) ◦EM(F2 ◦ F1)

id◦cF2,F1

��
EM(F3 ◦ F2) ◦EM(F1) cF3,F2◦id

+3 EM(F3) ◦EM(F2) ◦EM(F1)

is commutative. In order to verify this, one starts with an element ( f1, f2, f3, g)
in EM(F3 ◦ F2 ◦ F1). In order to go clockwise, one chooses pairs (ρ̃12,3, h12,3) and
(ρ̃1,2, h1,2) and gets from the definitions

CW=
((
ρ3(ρ̃

−1
12,3 ◦ f3, idh12,3), gh12,3

)
,(

ρ2(ρ̃
−1
1,2 ◦ f2 ◦ ρ̃12,3, idh1,2), h−1

12,3h1,2
)
, ( f1 ◦ ρ̃1,2, h−1

1,2)
)
.

Counterclockwise, one can choose firstly again the pair (ρ̃1,2, h1,2) and then the
pair (ρ̃2,3, h2,3) with ρ̃2,3 = R(ρ̃12,3, idh1,2) and h2,3 = h−1

1,2h12,3. Then, one gets

CCW=
((
ρ3(ρ̃

−1
2,3 ◦ ρ3( f3, idh1,2), idh2,3), gh1,2h2,3

)
,(

ρ2(ρ̃
−1
1,2 ◦ f2, idh1,2) ◦ ρ̃2,3, h−1

2,3

)
, ( f1 ◦ ρ̃1,2, h−1

1,2)
)
,

where one has to use formula (A-2) for the 01-action on the composition of equi-
variant anafunctors. Using the definitions of h2,3 and ρ̃2,3 as well as the axiom of
Definition A.1(ii) one can show that CW= CCW.

The fourth and last axiom requires that compositors and unitors are compatible
with each other in the sense that for each 1-morphism F :P→P ′ the 2-morphisms

EM(F)∼=EM(F◦idP)
cidP ,F +3 EM(F)◦EM(idP)

id◦uP +3 EM(F)◦idEM (P)
∼=EM(F),

EM(F)∼=EM(idP ′◦F)
cF,idP ′ +3 EM(idP ′)◦EM(F)

uP ′◦id +3 idEM (P ′)◦EM(F)∼=EM(F)

are the identity 2-morphisms. We prove this for the first one and leave the second as
an exercise. Using the definitions, we see that the 2-morphism has the refinement
W :=P0×M P0×M P ′0 with r = pr13 and r ′= pr23. The maps xW :W→P0×M P0

and yW :W→P ′0×M P ′0 are pr12 and 1◦pr3, respectively, where 1 is the diagonal
map. Its bundle morphism is a morphism

ϕ : pr∗13 Q→ pr∗23 Q⊗ pr∗12 P ,

where Q = F ×00 is the principal 0-bundle of EM(F), and P = P1×00 is the
principal 0-bundle of EM(P). Over a point (p1, p2, p′) and ( f, g) ∈ pr∗13 Q, i.e.,
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αl( f )= p1 and R(αr ( f ), g−1)= p′, the bundle morphism ϕ is given by

( f, g) 7→
(
ρ(ρ̃−1

◦ f, idh), gh, ρ̃, h−1),
where h ∈ 00, and ρ̃ ∈ P1 with s(ρ̃) = R(p2, h−1) and t (ρ̃) = αl( f ). We have
to compare (W, ϕ) with the identity 2-morphism of EM(F), which has the refine-
ment Z with r = r ′ = id and the identity bundle morphism. According to the
equivalence relation on bundle gerbe 2-morphisms we have to evaluate ϕ over a
point w ∈W with r(w)= r ′(w); i.e., w is of the form w= (p, p, p′). Here we can
choose h = 1 and ρ̃ = idp, in which case we have

ϕ( f, g)= (( f, g), (idp, 1)).

This is indeed the identity on Q. �

Properties of the 2-functor EM . For the proof of Theorem 7.0.1 we provide the
following two statements.

Lemma 7.1.7. The 2-functor EM is fully faithful on Hom-categories.

Proof. Let P , P ′ be principal 0-2-bundles over M , and let F1, F2 : P → P ′ be
1-morphisms. By Lemma 5.2.8 every 2-morphism η : EM(F1)⇒ EM(F2) can be
represented by one whose refinement is P0×M P ′0, so that its bundle isomorphism is
η : Q1→ Q2, where Qk := Fk×0 for k = 1, 2. We can read off a map η : F1→ F2,
and it is easy to see that this is a 2-morphism η : F1⇒ F2. This procedure is clearly
inverse to the 2-functor EM on 2-morphisms. �

Proposition 7.1.8. The 2-functors EM form a 1-morphism between pre-2-stacks.

Proof. For a smooth map f : M→ N , we have to look at the diagram

2-Bun0(N )

EN

��

f ∗ // 2-Bun0(M)

EM

��
Grb0(N ) f ∗

// Grb0(M)

of 2-functors. For P a principal 0-2-bundle over N , the 0-bundle gerbe EM( f ∗P)
has the surjective submersion pr1 : Y := M ×N P0→ M , the principal 0-bundle
P := M ×N P1×00 over Y [2], and a bundle gerbe product µ defined as in (7.1-3)
that ignores the M-factor. On the other hand, the 0-bundle gerbe f ∗EN (P) has
the same surjective submersion, and — up to canonical identifications between
fiber products — the same 0-bundle and the same bundle gerbe product. These
canonical identifications make up a pseudonatural transformation that renders the
above diagram commutative. �
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7.2. From bundle gerbes to principal 2-bundles. We now provide the data we will
feed into Lemma B.1 in order to produce a 2-functor RM :Grb0(M)→ 2-Bun0(M)
that is inverse to the 2-functor EM constructed in the previous section. These data
are:

(1) A principal 0-2-bundle RG for each 0-bundle gerbe G over M .

(2) A 1-isomorphism AG : G→ EM(RG) for each 0-bundle gerbe G over M .

(3) A 1-isomorphism RA : P→ P ′ and a 2-isomorphism ηA :A⇒ EM(RA) for
all principal 0-2-bundles P , P ′ over M and all bundle gerbe 1-morphisms
A : EM(P)→ EM(P ′).

Construction of the principal 0-2-bundle RG . We assume that G consists of a
surjective submersion π : Y → M , a principal 0-bundle P over Y [2] and a bundle
gerbe product µ. Let α : P→ 00 be the anchor of P , and let χ : P→ Y [2] be the
bundle projection.

The Lie groupoid P of the principal 2-bundle RG is defined by

P0 := Y ×00 and P1 := P ×00;

source map, target maps, and composition are given by, respectively,

(7.2.1) s(p, g) := (π2(χ(p)), g), t (p, g) :=
(
π1(χ(p)), α(p)−1

· g
)

and (p2, g2) ◦ (p1, g1) := (µ(p1, p2), g1).

The identity morphism of an object (y, g) ∈ P0 is (ty, g) ∈ P1, where ty denotes
the unit element in P over the point (y, y); see Lemma 5.2.5. The inverse of
a morphism (p, g) ∈ P1 is (i(p), α(p)−1g), where i : P → P is the map from
Lemma 5.2.5. The bundle projection is π(y, g) := π(y). The action is given on
objects and morphisms by

(7.2.2) R0((y, g), g′) := (y, gg′),

R1((p, g), γ ) :=
(

p ◦ (idg · γ · idt (γ )−1g−1α(p)), g · s(γ )
)
.

Lemma 7.2.1. This defines a functor R : P × 0→ P , and R is an action of 0
on P .

Proof. We assume that t : H → G is a smooth crossed module, and that 0 is the
Lie 2-group associated to it; see Example 2.4.2 and Remark 2.4.3. Then we use
the correspondence between principal 0-bundles and principal H -bundles with
H -antiequivariant maps to G of Lemma 2.2.9. Writing γ = (h, g′), we have

R1((p, g), γ )= (p ? gh, gg′).

With this simple formula at hand it is straightforward to show that R respects source
and target maps and satisfies the axiom of an action. For the composition, we



404 THOMAS NIKOLAUS AND KONRAD WALDORF

assume composable (p2, g2), (p1, g1) ∈ P1; i.e., g2 = α(p1)
−1g1, and composable

(h2, g′2), (h1, g′1) ∈ 01; i.e., g′2 = t (h1)g′1. Then we have

R
(
(p2, g2) ◦ (p1, g1), (h2, g′2) ◦ (h1, g′1)

)
= R

(
(µ(p1, p2), g1), (h2h1, g′1)

)
=
(
µ(p1, p2) ?

g1(h2h1), g1g′1
)

=
(
µ(p1 ?

g1h2, p2) ?
g1h1, g1g′1

)
=
(
µ(p1, p2 ?

g2h2) ?
g1h1, g1g′1

)
=
(
µ(p1 ?

g1h1, p2 ?
g2h2), g1g′1

)
= (p2 ?

g2h2, g2g′2) ◦ (p1 ?
g1h1, g1g′1)

= R((p2, g2), (h2, g′2)) ◦ R((p1, g1), (h1, g′1)),

finishing the proof. �

It is obvious that the action R preserves the projection π . Thus, in order to
complete the construction of the principal 2-bundle RG it remains to show that the
functor τ = (pr1, R) is a weak equivalence. This is the content of the following
two lemmata in connection with Theorem 2.3.13.

Lemma 7.2.2. The functor τ is smoothly essentially surjective.

Proof. The condition we have to check is whether or not the map

(Y ×00×00) τ×t ((P ×00)×M (P ×00))
(s×s)◦pr2 // (Y ×00)×M (Y ×00)

is a surjective submersion. The left-hand side is diffeomorphic to (P ×00) π1×π1

(P ×00) via pr2, so that this is equivalent to checking that

s× s : (P ×00) π1◦χ×π1◦χ (P ×00)→ (Y ×00)×M (Y ×00)

is a surjective submersion. Since the 00-factors are just spectators, this is in turn
equivalent to checking that

(π2×π2) ◦ (χ ×χ) : P π1◦χ×π1◦χ P→ Y [2]

is a surjective submersion. It fits into the pullback diagram

P π1◦χ×π1◦χ P �
� //

χ×χ

��

P × P

χ×χ

��
Y [2] π1×π1 Y [2]

π2×π2

��

� � // Y [2]× Y [2]

π2×π2

��
Y [2]
� � // Y × Y
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which has a surjective submersion on the right-hand side; hence, also the map on
the left-hand side must be a surjective submersion. �

Lemma 7.2.3. The functor τ is smoothly fully faithful.

Proof. We assume a smooth manifold N with two smooth maps

f : N → (P0×00)× (P0×00) and g : N → P1×M P1

such that the diagram

N

f

��

g // P1×M P1

s×t

��
(P0×00)× (P0×00)

τ×τ
// (P0×M P0)× (P0×M P0)

is commutative. For a fixed point n ∈ N we put

((p1, g1), (p2, g2)) := g(n) ∈ (P ×00)×M (P ×00),

((y, g, g̃), (y′, g′, g̃′)) := f (n) ∈ (Y ×00×00)× (Y ×00×00).

The commutativity of the diagram implies χ(p1)= χ(p2)= (y′, y), so that there
exists γ ′ ∈ 01 with p2 = p1 ◦γ

′. We define γ := idg−1
1
·γ ′ · idα(p2)−1g2 , which yields

a morphism γ ∈ 01 satisfying τ(p1, g1, γ )= (p1, g1, p2, g2)= g(n). On the other
hand, we check that

(s(p1, g1, γ ), t (p1, g1, γ ))=
(
π2(p1), g1, s(γ ), π1(p1), α(p1)

−1g1, t (γ )
)
= f (n),

using that s(γ )= g−1
1 g2 and t (γ )= g−1

1 α(p1)α(p2)
−1g2. Summarizing, we have

defined a smooth map

σ : N → P1×01 : n 7→ (p1, g1, γ )

such that τ ◦σ = g and (s× t)◦σ = f . Now let σ ′ : N→P1×01 be another such
map, and let σ ′(n)=: (p′1, g′1, γ

′). The condition that τ(σ (n))= g(n)= τ(σ ′(n))
shows immediately that p1 = p′1 and g1 = g′1, and then that p1 ◦ γ = p1 ◦ γ

′.
But since the 0-action on P is principal, we have γ = γ ′. This shows σ = σ ′.
Summarizing, P1×01 is a pullback. �

Example 7.2.4. Suppose 0 = BU(1) (see Example 2.1.1(b)) and suppose G is a
0-bundle gerbe over M , also known as a U(1)-bundle gerbe (see Example 5.1.7).
Then, the associated principal BU(1)-2-bundle RG has the groupoid P with P0= Y
and P1 = P , source and target maps s = π2 ◦χ and t = π1 ◦χ , and composition
p2 ◦ p1 = µ(p1, p2). The action of BU(1) on P is trivial on the level of objects
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and the given U(1)-action on P on the level of morphisms. The same applies for
general abelian Lie groups A instead of U(1).

Construction of the 1-isomorphism AG : G → EM(RG). The 0-bundle gerbe
EM(RG) has the surjective submersion Ỹ := Y × 00 with π̃(y, g) := π(y). The
total space of its 0-bundle P̃ is P̃ := P×00×00; it has the anchor α(p, g, h)= h,
the bundle projection

χ̃ : P̃→ Ỹ [2] : (p, g, h) 7→
(
(π1(χ(p)), α(p)−1g), (π2(χ(p)), gh−1)

)
,

the 0-action is

(p, g, h) ◦ γ
(7.1-1)
=

(
(p, g) ◦ R((tπ2(χ(p)), gh−1), γ ), s(γ )

)
(7.2.2)
=

(
(p, g) ◦ (tπ2(χ(p)) ◦ (idgh−1 · γ · idg−1), gh−1s(γ )), s(γ )

)
(7.2.1)
=

(
µ(tπ2(χ(p)) ◦ (idgh−1 · γ · idg−1), p), gh−1s(γ ), s(γ )

)
(2.4-3)
=

(
p ◦ (idgh−1 · γ · idg−1α(p)), gh−1s(γ ), s(γ )

)
,

and its bundle gerbe product µ̃ is given by

µ̃((p23, g23, h23), (p12, g12, h12))
(7.1-3)
=

(
(p12, g12) ◦ R((p23, g23), idh12), h23h12

)
(7.2.2)
= ((p12, g12) ◦ (p23, g23h12), h23h12)

(7.2.1)
= (µ(p23, p12), g23h12, h23h12).

In order to compare the bundle gerbes G and EM(RG) we consider the smooth
maps σ : Y → Y × 00 and σ̃ : P → P̃ that are defined by σ(y) := (y, 1) and
σ̃ (p) := (p, α(p), α(p)).

Lemma 7.2.5. The map σ̃ defines an isomorphism σ̃ : P→ (σ×σ)∗ P̃ of 0-bundles
over Y [2]. Moreover, the diagram

π∗23 P ⊗π∗12 P

µ

��

σ̃⊗σ̃ // π̃∗23 P̃ ⊗ π̃∗12 P̃

µ̃

��
π∗13 P

σ̃

// π̃∗13 P̃

is commutative.
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Proof. For the first part it suffices to prove that σ̃ is 0-equivariant, preserves the
anchors, and that the diagram

P

χ

��

σ̃ // P̃

χ̃

��
Y [2] σ×σ

// Ỹ [2]

is commutative. Indeed, the commutativity of the diagram is obvious, and also that
the anchors are preserved. For the 0-equivariance, we have

σ̃ (p ◦ γ )= (p ◦ γ, s(γ ), s(γ ))= (p, α(p), α(p)) ◦ γ = σ̃ (p) ◦ γ .

Finally, we calculate

µ̃
(
(p23, α(p23), α(p23)), (p12, α(p12), α(p12))

)
=
(
µ(p23, p12), α(p23)α(p12), α(p23)α(p12)

)
=
(
µ(p23, p12), α(µ(p23, p12)), α(µ(p23, p12))

)
which shows the commutativity of the diagram. �

Via Lemma 5.2.7 the bundle morphism σ̃ defines the required 1-morphism AG ,
and Lemma 5.2.3 guarantees that AG is a 1-isomorphism.

Construction of the 1-morphism RA : P → P ′. Let A : EM(P)→ EM(P ′) be
a 1-morphism between 0-bundle gerbes obtained from principal 0-2-bundles P
and P ′ over M . By Lemma 5.2.8 we can assume that A consists of a principal
0-bundle χ : Q→ Z with Z =P0×M P ′0, and some isomorphism β over Z [2]. For
preparation, we consider the fiber products Zr :=P0×M P ′[2]0 and Zl :=P [2]0 ×M P ′0
with the obvious embeddings ιl : Zl → Z and ιr : Zr → Z obtained by doubling
elements. Together with the trivialization of Corollary 5.2.6, the pullbacks of β
along ιl and ιr yield bundle morphisms

βl := ι
∗

l β : pr∗13 Q→ pr∗23 Q⊗ pr∗12 P

and

βr := ι
∗

rβ : pr∗23 P ′⊗ pr∗12 Q→ pr∗13 Q,

where P :=P1×00 and P ′ :=P ′×00 are the principal 0-bundles of the 0-bundle
gerbes EM(P) and EM(P ′), respectively.

Lemma 7.2.6. The bundle morphisms βl and βr have the following properties:
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(i) They commute with each other in these sense that the diagram

P ′p′1,p′2
⊗ Q p1,p′1

β

((

βr //

id⊗βl

��

Q p1,p′2

βl

��
P ′p′1,p′2

⊗ Q p2,p′1 ⊗ Pp1,p2
βr⊗id

// Q p2,p′2 ⊗ Pp1,p2

is commutative for all ((p1, p′1), (p2, p′2)) ∈ Z [2].

(ii) βl is compatible with the bundle gerbe product µ in the sense that

βl |p1,p3,p′ = (id⊗µp1,p2,p3) ◦ (βl |p2,p3,p′ ⊗ id) ◦βl |p1,p2,p′

for all (p1, p2, p3, p′) ∈ P [3]0 ×P ′0.

(iii) βr is compatible with the bundle gerbe product µ′ in the sense that

βr |p,p′1,p
′

3
◦ (µ′p′1,p

′

2,p
′

3
⊗ id)= βr |p,p′2,p

′

3
◦ (id⊗βr |p,p′1,p

′

2
)

for all (p, p′1, p′2, p′3) ∈ P0×P ′[3]0 .

Proof. The identities (ii) and (iii) follow by restricting the commutative diagram
(5-1) to the submanifolds P [3]0 ×P ′0 and P0×P ′[3]0 of Z [3], respectively. Similarly,
the commutativity of the two triangular subdiagrams in (i) follows by restricting
(5-1) along appropriate embeddings Z [2]→ Z [3]. �

Now we are in position to define the anafunctor RA. First, we consider the left
action

β0 : 00× Q→ Q : (g, q) 7→ βr ((id, g), q)

that satisfies α(β0(g, q))= gα(q). The action β0 is properly discontinuous and free
because βr is a bundle isomorphism. The quotient F := Q/00 is the total space
of the anafunctor RA we want to construct. Left and right anchors of an element
q ∈ F with χ(q)= (p, p′) are given by

αl(q) := p and αr (q) := R(p′, α(q)).

The actions are defined by

ρl(ρ, q) := β−1
l (q, (ρ, 1)) and ρr (q, ρ ′) := βr

(
(R(ρ ′, idα(q)−1), 1), q

)
.

The left action is invariant under the action β0 because of Lemma 7.2.6(i). For the
right action, invariance follows from Lemma 7.2.6(ii) and the identity

µ′
(
(R(ρ ′, idα(q)−1g−1), 1), (id, g)

) (7.1-3)
= µ′

(
(id, g), (R(ρ ′, idα(q)−1), 1)

)
.
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Lemma 7.2.7. The above formulas define an anafunctor F : P→ P ′.

Proof. The compatibility between anchors and actions is easy to check. The
axiom for the actions ρl and ρr follows from parts (ii) and (iii) of Lemma 7.2.6.
Lemma 7.2.6(i) shows that the actions commute. It remains to prove that αl : F→P0

is a principal P ′-bundle. Since αl is a composition of surjective submersions, we
only have to show that the map

τ : F αr×t P ′→ F αl×αl F : (q, ρ ′) 7→ (q, ρr (q, ρ ′))

is a diffeomorphism. We construct an inverse map τ−1 as follows. For (q1, q2)

with χ(q1)= (p, p′) and χ(q2)= (p, p̃′), choose a representative

((ρ̃ ′, g′), q̃) := βr |
−1
p,p′, p̃′(q2).

Such choices can be made locally in a smooth way, and the result will not depend on
them. We have χ(q̃)= (p, p′) that there exists a unique γ ∈01 such that q1= q̃ ◦γ .
Now we put

τ−1(q1, q2) := (q1, R(ρ̃ ′, γ−1)).

The calculation of τ−1
◦τ is straightforward. For the calculation of (τ ◦τ−1)(q1, q2)

we have to compute in the second component

βr
(
(R(ρ̃ ′, γ−1

· idα(q1)−1), 1), q1
)

= βr
(
(R(ρ̃ ′, γ−1

· idα(q1)−1), 1) ◦ (γ · idα(q̃)−1), q̃
)
= βr

(
(ρ̃ ′, α(q1)α(q̃)−1), q̃

)
= β0

(
α(q1)α(q̃)−1g′−1, βr ((ρ̃

′, g′), q̃)
)
= β0(α(q1)α(q̃)−1g′−1, q2),

and this is equivalent to q2. �

In order to promote the anafunctor F to a 1-morphism between principal 2-
bundles, we have to do two things: we have to check that F commutes with the
projections of the bundle P1 and P2, and we have to construct a 0-equivariant
structure on F . For the first point we use Remark 6.1.6(b), whose criterion π ◦αl =

π ◦ αr is clearly satisfied. For the second point we provide a smooth action ρ :
F ×01→ F in the sense of Definition A.1 and use Lemma A.2, which provides a
construction of a 0-equivariant structure. The action is defined by

(7.2.3) ρ(q, γ ) := β−1
l

(
q ◦ (idα(q) · γ · idt (γ )−1), (idR(αl (q),t (γ )), t (γ ))

)
.

Lemma 7.2.8. This defines a smooth action of 01 on F in the sense of Definition A.1.

Proof. Smoothness is clear from the definition. The identity

ρ(ρ(q, γ1), γ2)=β
−1
l

(
q◦(idα(q)·γ1·γ2·idt (γ2)−1t (γ1)−1), (id, t (γ1·γ2))

)
=ρ(q, γ1·γ2)
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follows from the definition and the two identities

(7.2.4) α(ρ(q, γ ))= α(q)s(γ )

and (γ1 · idt (γ1)−1) · (ids(γ1) · γ2 · idt (γ2)−1t (γ1)−1)= γ1 · γ2 · idt (γ2)−1t (γ1)−1 .

The latter can easily be verified upon substituting a crossed module for 0. Checking
condition (i) of Definition A.1 just uses the definitions. We check condition (ii) in
two steps. First we prove the identity

ρ(ρl(ρ, q), γl ◦ γ )= ρl(R(ρ, γl), ρ(q, γ )).

The main ingredient is the decomposition

(7.2.5) idα(q) ·(γl ◦γ )·idt (γl )−1 = (idα(q) ·γ ·idt (γ )−1)◦(idα(q)s(γ )t (γ )−1 ·γl ·idt (γl )−1)

that can, e.g., be verified in the crossed module language. Now we compute

ρ(ρl(ρ, q), γl ◦ γ ) = β−1
l

(
q ◦ (idα(q) · (γl ◦ γ ) · idt (γl )−1), (R(ρ, t (γl)), t (γl))

)
(7.2.5)
= β−1

l

(
q ◦ (idα(q) · γ · idt (γ )−1), (R(ρ, γl), t (γl))

)
= ρl(R(ρ, γl), ρ(q, γ )).

The second step is to show the identity

ρ(ρr (q, ρ ′), γ ◦ γr )= ρr (ρ(q, γ ), R(ρ ′, γr )).

Here we use the decomposition

(7.2.6) idα(q) · (γ ◦ γr ) · idt (γ )−1 = (idα(q) · γ · idt (γ )−1) ◦ (idα(q) · γr · idt (γ )−1).

Then we compute

ρ(ρr (q, ρ ′), γ ◦ γr )

= β−1
l

(
βr ((R(ρ ′, idα(q)−1), 1), q ◦ (idα(q) · (γ ◦ γr ) · idt (γ )−1)), (id, t (γ ))

)
(7.2.6)
= β−1

l

(
βr ((R(ρ ′, γr · ids(γ )−1α(q)−1), 1),

β0(α(q)s(γr )s(γ )−1α(q)−1, q ◦ (idα(q) · γ · idt (γ )−1))), (id, t (γ ))
)

(7.2.4)
= β−1

l

(
βr ((R(ρ ′, γr · idα(ρ(q,γ ))−1)), q ◦ (idα(q) · γ · idt (γ )−1)), (id, t (γ ))

)
= ρr (ρ(q, γ ), R(ρ ′, γr )),

where we have employed the equivalence relation on F that was generated by the
action of β0. �
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Construction of a 2-isomorphism ηA :A⇒ EM(RA). We may again assume that
the common refinement of A is the fiber product P0×M P ′0; otherwise, the proof
of Lemma 5.2.8 provides a 2-isomorphism between A and one of these. Now, A
and EM(RA) have the same common refinement, and ηA is given by the map

η : Q→ F ×00 : q 7→ (q, α(q)).

This is obviously smooth and respects the projections to the base: if χ(q)= (p, p′),
then

χ(q, α(q))
(7.1.6)
=

(
αl(q), R(αr (q), α(q)−1)

)
= (p, p′).

Further, it respects the 0-actions:

η(q◦γ )=(q◦γ,s(γ ))=β−1
l (q◦γ,(id,1))

(7.2.3)
= (ρ(q,idα(q)−1 ·γ ),s(γ ))

(7.1.6)
= η(q)◦γ ,

so that η is a bundle morphism. It remains to verify the commutativity of the
compatibility diagram (5-4). Let ((ρ ′, g′), q ′) ∈ P ′ ⊗ ζ ∗1 Q, and let (q, (ρ, g)) ∈
ζ ∗2 Q ⊗ P be a representative for β((ρ ′, g′), q ′). In particular, we have α(q)g =
g′α(q ′), since βr is anchor-preserving. Then, we get clockwise

(7.2.7) (η⊗ id)
(
β((ρ ′, g′), q ′)

)
=
(
(q, α(q)), (ρ, g)

)
.

Counterclockwise, we have to use the isomorphism of Lemma 7.1.5 that we call β̃
here. Then,

(7.2.8) β̃
(
(id⊗ η)((ρ ′, g′), q ′)

)
= β̃

(
(ρ ′, g′), (q ′, α(q ′))

)
=
(
(q̃, g′α(q ′)g−1), (ρ, g)

)
where the choices (ρ̃, h) we have to make for the definition of β̃ are here (ρ, g−1),
and q̃ is defined in (7.1.7), which gives here

q̃ = β−1
l

(
βr ((ρ

′, 1), q ′), (R(ρ−1, idg−1), g−1)
)
.

Comparing (7.2.7) and (7.2.8) it remains to prove q= q̃ in F . As F was the quotient
of Q by the action β0, it suffices to have

β0(g′, q̃)
(i)
= β−1

l

(
βr ((id, g′), βr ((ρ

′, 1), q ′)), (R(ρ−1, idg−1), g−1)
)

(iii)
= β−1

l

(
βr ((ρ

′, g′), q ′), (R(ρ−1, idg−1), g−1)
)

= β−1
l

(
β−1

l (q, (ρ, g)), (R(ρ−1, idg−1), g−1)
)

(ii)
= β−1

l (q, (id, 1))= q .

This finishes the construction of the 2-isomorphism ηA.
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Appendix A. Equivariant anafunctors and group actions

In this section we are concerned with a Lie 2-group 0 and Lie groupoids X and Y
with actions R1 : X ×0→ X and R2 : Y ×0→ Y .

Definition A.1. An action of the 2-group 0 on an anafunctor F : X → Y is an
ordinary smooth action ρ : F ×01→ F of the group 01 on the total space F that

(i) preserves the anchors in the sense that the diagrams

F ×01

αl×t

��

ρ // F

αl

��
X0×00 R1

// X0

and

F ×01
ρ //

αr×s

��

F

αr

��
Y0×00 R2

// Y0

are commutative;

(ii) is compatible with the 0-actions in the sense that the identity

ρ(χ ◦ f ◦ η, γl ◦ γ ◦ γr )= R1(χ, γl) ◦ ρ( f, γ ) ◦ R2(η, γr )

holds for all appropriately composable χ ∈X1, η∈Y1, f ∈ F , and γl , γ , γr ∈01.

If F1, F2 : X → Y are anafunctors with 0-action, a transformation η : F1⇒ F2 is
called 0-equivariant if the map η : F1→ F2 between total spaces is 01-equivariant
in the ordinary sense.

Anafunctors X → Y with 0-actions together with 0-equivariant transformations
form a groupoid Ana∞0 (X ,Y). On the other hand, there is another groupoid
0-Ana∞(X ,Y) consisting of 0-equivariant anafunctors (Definition 6.1.3) and 0-
equivariant transformations (Definition 6.1.4).

Lemma A.2. The categories Ana∞0 (X ,Y) and 0-Ana∞(X ,Y) are canonically
isomorphic.

Proof. We construct a functor

(A-1) E :Ana∞0 (X ,Y)→ 0-Ana∞(X ,Y).

Let F :X → Y be an anafunctor with 0-action ρ. We shall define a transformation

λρ : F ◦ R1⇒ R2 ◦ (F × id).

First of all, the composite

X ×0
R1 // X F // Y

is given by the total space (X0×00) R1×αl F , left and right anchors send an element
(x, g, f ) to (x, g) and αr ( f ), respectively, and the actions are
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(χ, γ )◦(x, g, f )= (t (χ), t (γ ), R1(χ, γ )◦ f ) and (x, g, f )◦η= (x, g, f ◦η).

On the other hand, the composite

X ×0 F×id // Y ×0
R2 // Y

is given by the total space ((F × 01) R2◦(αr×s)×t Y1) / ∼ with the equivalence
relation

( f ◦ η′, γ ◦ γ ′, η)∼ ( f, γ, R2(η
′, γ ′) ◦ η).

The left and right anchors send an element ( f, γ, η) to (αl( f ), t (γ )) and s(η),
respectively, and the actions are

(χ, γ ′) ◦ ( f, γ, η)= (χ ◦ f, γ ′ ◦ γ, η) and ( f, γ, η) ◦ η′ = ( f, γ, η ◦ η′).

The inverse of the following map will define the transformation λ:

(F×01) R2◦(αr×s)×tY1→ (X0×00) R1×αl F : ( f, γ, η) 7→
(
αl( f ), t (γ ), ρ( f, γ )◦η

)
.

Condition (i) ensures that this map ends in the correct fiber product, and condition (ii)
ensures that it is well-defined under the equivalence relation ∼ . The left anchors
are automatically respected, and the right anchors require condition (i). Similarly,
the left action is respected automatically, and the right actions due to condition (ii).
The axiom for a transformation is satisfied because ρ is a group action. This defines
the functor E on objects. On morphisms, it is straightforward to check that the
conditions on both hand sides coincide; in particular, E is full and faithful.

In order to prove that the functor E is an isomorphism, we start with a given
0-equivariant structure λ on the anafunctor F . Then, an action ρ : F ×01→ F is
defined by

( f, γ ) 7→ pr3(λ
−1( f, γ, idR2(αr ( f ),s(γ ))))

with pr3 : (X0×00) R1×αl F→ F the projection. The axiom for an action is satisfied
due to the identity λ obeys. It is straightforward to verify conditions (i) and (ii) of
Definition A.1. To close the proof it suffices to notice that the two procedures we
have defined are (strictly) inverse to each other. �

We are also concerned with the composition of anafunctors with 0-action. Sup-
pose that Z is a third Lie groupoid with a 0-action R3, and F : X → Y and
G : Y→ Z are anafunctors with 0-actions ρ : F ×01→ F and τ : G×01→ G.
Then, the composition G ◦ F is equipped with the 0-action defined by

(A-2) (F ×Y0 G)×01→ (F ×Y0 G) : (( f, g), γ ) 7→ (ρ( f, γ ), τ (g, ids(γ ))).

We leave it to the reader to check:

Lemma A.3. Let X , Y and Z be Lie groupoids with 0-actions R1, R2 and R3.
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(a) Let F :X→Y and G :Y→Z be 0-equivariant anafunctors. If 0-equivariant
structures on F and G correspond to 01-actions under the isomorphism of
Lemma A.2, then the 0-equivariant structure on the composite F ◦G corre-
sponds to the 01-action defined above.

(b) The isomorphism of Lemma A.2 identifies the trivial 0-equivariant structure
on the identity anafunctor id : X → X with the 01-action R1 : X1×01→ X1

on its total space X .

Appendix B. Constructing equivalences between 2-stacks

Let C be a bicategory (we assume that associators and unifiers are invertible 2-
morphisms). We fix the following terminology: a 1-isomorphism f : X1→ X2

in C always includes the data of an inverse 1-morphism f̄ : X2 → X1 and of
2-isomorphisms i : f̄ ◦ f ⇒ id and j : id⇒ f ◦ f̄ satisfying the zigzag identities.
Let D be another bicategory. A 2-functor F : C→D is assumed to have invertible
compositors and unitors.

The following lemma is certainly “well-known”, although we have not been able
to find a reference for exactly this statement.

Lemma B.1. Let F : C→D be a 2-functor that is fully faithful on Hom-categories.
Suppose one has chosen:

(1) for every object Y ∈D an object GY ∈C and a 1-isomorphism ξY :Y→ F(GY );

(2) for all objects X1, X2 ∈ C and all 1-morphisms g : F(X1)→ F(X2), a 1-
morphism Gg : X1→ X2 in C together with a 2-isomorphism ηg : g⇒ F(Gg).1

Then, there is a 2-functor G :D→ C and pseudonatural equivalences

a : idD⇒ F ◦G and b : G ◦ F ⇒ idC .

In particular, F is an equivalence of bicategories.

Proof. We recall our convention concerning 1-isomorphisms: the 1-isomorphisms ξY

include choices of inverse 1-morphisms ξ̄Y together with 2-isomorphisms iY :

ξ̄Y ◦ ξY ⇒ id and jY : id⇒ ξY ◦ ξ̄Y satisfying the zigzag identities.
First we explicitly construct the 2-functor G. On objects, we put G(Y ) := GY .

We use the notation g̃ := (ξY2 ◦ g) ◦ ξ̄Y1 for all 1-morphisms g : Y1 → Y2 in D,
and define G(g) = G g̃. If g, g′ : Y1→ Y2 are 1-morphisms, and ψ : g⇒ g′ is a
2-morphism, we consider the 2-morphism ψ̃ defined by

F(G g̃)
η−1

g̃ +3 (ξY2 ◦ g) ◦ ξ̄Y1

(id◦ψ)◦id +3 (ξY2 ◦ g′) ◦ ξ̄Y1

ηg̃′ +3 F(G g̃′).

1More accurately we should write G X1,X2,g and ηX1,X2,g , but we will suppress X1 and X2 in the
notation.
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Since F is fully faithful on 2-morphisms, we may choose the unique 2-morphism
G(ψ) : G(g)⇒ G(g′) such that F(G(ψ))= ψ̃ . In order to define the compositor
of G we look at 1-morphisms g12 : Y1→ Y2 and g23 : Y2→ Y3. We consider the
2-morphism

F(G(g23) ◦G(g12))
c−1

G(g12),G(g23) +3 F(G g̃23) ◦ F(G g̃12)

η−1
g̃23
◦η−1

g̃12
��

((ξY3 ◦ g23) ◦ ξ̄Y2) ◦ ((ξY2 ◦ g12) ◦ ξ̄Y1)

a,iY2
��

(ξY3 ◦ (g23 ◦ g12)) ◦ ξ̄Y1 η ˜g23◦g12

+3 F(G(g23 ◦ g12));

its unique preimage under the 2-functor F is the compositor

cg12,g23 : G(g23) ◦G(g12)⇒ G(g23 ◦ g12).

In order to define the unitor of G we consider an object Y ∈ D and look at the
2-morphism

F(G(idY ))
η−1

ĩdY +3 (ξY ◦ idY ) ◦ ξ̄Y
lξY , j−1

Y +3 idF(G(Y ))
u−1

G(Y ) +3 F(idG(Y )).

Its unique preimage under the 2-functor F is the unitor uY : G(idY )⇒ idG(Y ). The
second step is to verify the axioms of a 2-functor. This is simple but extremely
tedious and can only be left as an exercise. The third step is to construct the
pseudonatural transformation

a : idD⇒ F ◦G.

Its component at an object Y in D is the 1-morphism a(Y ) := ξY : Y → F(G(Y )).
Its component at a 1-morphism g : Y1→ Y2 is the 2-morphism a(g) defined by

a(Y2) ◦ g ξY2 ◦ g

id◦l−1
ξY2
◦g

��
(ξY2 ◦ g) ◦ id

a,i−1
Y2��

((ξY2 ◦ g) ◦ ξ̄Y1) ◦ ξY1

ηg̃◦id
��

F(G g̃) ◦ ξY1 F(G(g)) ◦ a(Y1).
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There are two axioms a pseudonatural transformation has to satisfy, and their proofs
are again left as an exercise. It is easy to see that a is a pseudonatural equivalence,
with an inverse transformation given by ā(Y ) := ξ̄Y . The fourth and last step is to
construct the pseudonatural transformation

b : G ◦ F ⇒ idC .

Its component at an object X is b(X) := G ξ̄F(X)
: G(F(X))→ X . Its component at

a 1-morphism f : X2→ X2 is the 2-morphism

b( f ) : b(X2) ◦G(F( f ))⇒ f ◦ b(X1)

given as the unique preimage under F of the 2-morphism

F(b(X2) ◦G(F( f ))) c−1
+3 F(b(X2)) ◦ F(G(F( f )))

η−1
ξ̄F(X2)

◦η−1
F( f )
��

ξ̄F(X2) ◦ ((ξF(X2) ◦ F( f )) ◦ ξF(X1))

a,iF(X2),r
��

F( f ) ◦ ξ̄F(X1)

idF( f )◦ηξ̄F(X1)
��

F( f ) ◦ F(b(X1)) c
+3 F( f ◦ b(X1)).

The proofs of the axioms are again left for the reader, and again it is easy to
see that b is a pseudonatural equivalence with an inverse transformation given by
b̄(X) := GξF(X) . �

As a consequence of Lemma B.1 we obtain the certainly well-known result:

Corollary B.2. Let F : C→D be essentially surjective, and an equivalence on all
Hom-categories. Then, F is an equivalence of bicategories.

Since we work with 2-stacks over manifolds, we need the following stacky
extension of Lemma B.1. For a pre-2-stack C, we denote by CM the 2-category it
associates to a smooth manifold M , and by ψ∗ : CN→ CM the 2-functor it associates
to a smooth map ψ : M→ N . The pseudonatural equivalences ψ∗ ◦ϕ∗ ∼= (ϕ ◦ψ)∗

will be suppressed from the notation in the following. If C and D are pre-2-stacks,
a 1-morphism F : C → D associates 2-functors FM : CM → DM to a smooth
manifold M , pseudonatural equivalences

Fψ : ψ∗ ◦ FN → FM ◦ψ
∗

to smooth maps ψ :M→ N , and certain modifications Fψ,ϕ that control the relation
between Fψ and Fϕ for composable maps ψ and ϕ.
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Lemma B.3. Suppose C and D are pre-2-stacks over smooth manifolds, and F :
C→D is a 1-morphism. Suppose that for every smooth manifold M

(1) the assumptions of Lemma B.1 for the 2-functor FM are satisfied, and

(2) the data (GY , ξY ) and (Gg, ηg) is chosen for all objects Y and 1-morphisms g
in DM .

Then, there is a 1-morphism G :D→C of pre-2-stacks together with 2-isomorphisms

a : F ◦G⇒ idD and b : G ◦ F ⇒ idC

such that for every smooth manifold M the 2-functor G M and the pseudonatural
transformations aM and bM are the ones of Lemma B.1. In particular, F is an
equivalence of pre-2-stacks.

For the proof one constructs the required pseudonatural equivalences Gψ and
the modifications Gψ,ϕ from the given ones, Fψ and Fψ,ϕ , respectively, in a sim-
ilar way as explained in the proof of Lemma B.1. Since these constructions are
straightforward to do but would consume many pages, and the statement of the
lemma is not too surprising and certainly well-known to many people, we leave
these constructions for the interested reader.
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ON NONLINEAR NONHOMOGENEOUS RESONANT
DIRICHLET EQUATIONS

NIKOLAOS S. PAPAGEORGIOU AND GEORGE SMYRLIS

We consider a ( p, 2)-equation with a Carathéodory reaction f (z, x) which
is resonant at ±∞ and has constant sign, z-dependent zeros. Using vari-
ational methods, together with truncation and comparison techniques and
Morse theory, we establish the existence of five nontrivial smooth solutions
(four of constant sign and the fifth nodal). If the reaction f (z, x) is C1 in
x ∈ R, then we produce a second nodal solution for a total of six nontrivial
smooth solutions.

1. Introduction

Let �⊆ RN be a bounded domain with a C2-boundary ∂�. In this paper we study
the nonlinear Dirichlet problem

(1) −1pu(z)−1u(z)= f (z, u(z)) in �, u|∂� = 0, 2< p.

Here 1p denotes the p-Laplacian differential operator defined by

1pu(z)= div(‖Du(z)‖p−2 Du(z)) for all u ∈W 1,p
0 (�).

Problem (1) is important in quantum physics in connection with Derrick’s model
[Derrick 1964] for the existence of solitons, which was investigated in more detail
by Benci, D’Avenia, Fortunato, and Pisani [Benci et al. 2000]. Recently, such
equations attracted the interest of people working on nonlinear partial differential
equations and some existence and multiplicity results were proved in [Cingolani
and Degiovanni 2005; Cingolani and Vannella 2003; Sun 2012]. All consider
nonresonant equations. In contrast, in this work we deal with the resonant case.
More precisely, we assume that, asymptotically at ±∞, we have resonance with
respect to the first eigenvalue of (−1p,W 1,p

0 (�)). In problem (1) the reaction
f (z, x) is a Carathéodory function (i.e., for all x ∈ R, z→ f (z, x) is measurable,
and, for a.a. z ∈�, x→ f (z, x) is continuous) and has positive and negative zeros
which in general depend on z ∈�. Problems driven by the p-Laplacian, and with a
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reaction that has zeros, were studied by Bartsch, Liu, and Weth [Bartsch et al. 2005]
(they assume that the zeros are constant) and by Iturriaga, Massa, Sánchez, and
Ubilla [Iturriaga et al. 2010] (they have variable zeros). In both works the reaction
f (z, · ) is (p− 1)-superlinear.

Here, we prove the existence of at least five nontrivial smooth solutions and
provide sign information for all of them (two are positive, two are negative and
the fifth is nodal). Moreover, by strengthening the regularity of f (z, · ) (namely,
assuming that f (z, · ) ∈ C1(R)), we produce a second nodal solution for a total of
six nontrivial smooth solutions, all with precise sign information.

Our approach is variational based on the critical point theory, coupled with
suitable truncation and comparison techniques and with Morse theory (critical
groups). In the next section, for the convenience of the reader, we recall the main
mathematical tools that we will use in this work.

2. Mathematical background

Let X be a Banach space. By X∗ we denote the topological dual of X and by 〈 · , · 〉
the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies
the Cerami condition if the following is true:

C-condition. Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded
and

(2) (1+‖xn‖)ϕ
′(xn)→ 0 in X∗ as n→∞

admits a strongly convergent subsequence.

This compactness-type condition is in general weaker than the usual Palais–Smale
condition (“PS-condition” for short). However, it suffices to have a deformation
theorem and from it derive the minimax theory of certain critical values of ϕ (see,
for example, [Gasiński and Papageorgiou 2006]). In particular, we can state the
following theorem, known in the literature as the mountain pass theorem [ibid.,
p. 648].

Theorem 1. If ϕ ∈C1(X) satisfies the C-condition, x0, x1∈ X , ρ >0, ‖x0−x1‖>ρ,

max{ϕ(x0), ϕ(x1)}< inf [ϕ(x) : ‖x − x0‖ = ρ] = ηρ

and

c = inf
γ∈0

max
0≤t≤1

ϕ(γ (t)), where 0 = {γ ∈ C([0, 1], X) : γ (0)= x0, γ (1)= x1},

then c ≥ ηρ and c is a critical value of ϕ.
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In the analysis of problem (1), in addition to the Sobolev spaces

W 1,p
0 (�), H 1

0 (�),

we will also use the Banach space

C1
0(�)= {u ∈ C1(�) : u|∂� = 0}.

This is an ordered Banach space with positive cone

C+ = {u ∈ C1
0(�) : u(z)≥ 0 for all z ∈�}.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈�,
∂u
∂n
(z) < 0 for all z ∈ ∂�

}
(here n( · ) denotes the outward unit normal on ∂�).

Let f0 :�×R→R be a Carathéodory function with subcritical growth in x ∈R;
i.e.,

| f0(z, x)| ≤ â(z)+ ĉ|x |r−1 for a.a. z ∈�, all x ∈ R,

with â ∈ L∞(�)+, ĉ > 0, and

1< r < p∗ =


N p

N − p
if p < N ,

+∞ if p ≥ N .

We set F0(z, x)=
∫ x

0 f0(z, s) ds and consider the C1-functional ϕ0 :W
1,p
0 (�)→

R defined by

ϕ0(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F0(z, u(z)) dz for all u ∈W 1,p
0 (�).

The next theorem is a particular case of a more general result of [Gasiński and
Papageorgiou 2012].

Theorem 2. If u0 ∈ W 1,p
0 (�) is a local C1

0(�)-minimizer of ϕ0, i.e., there exists
ρ0 > 0 such that

ϕ0(u0)≤ ϕ0(u0+ h) for all h ∈ C1
0(�) with ‖h‖C1

0 (�)
≤ ρ0,

then u0 ∈ C1,α(�) for some α ∈ (0, 1) and u0 is also a local W 1,p
0 (�)-minimizer

of ϕ0; i.e., there exists ρ1 > 0 such that

ϕ0(u0)≤ ϕ0(u0+ h) for all h ∈W 1,p
0 (�) with ‖h‖ ≤ ρ1.
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Remark. We should mention that the first such result was proved by Brézis and
Nirenberg [1993] and was later extended by García Azorero, Peral Alonso, and
Manfredi [García Azorero et al. 2000].

Let h, ĥ ∈ L∞(�). We write h ≺ ĥ if, for every compact K ⊆ �, we can find
ε > 0 such that

h(z)+ ε ≤ ĥ(z) for a.a. z ∈ K .

Clearly, if h, ĥ∈C(�) and h(z)< ĥ(z) for all z∈�, then h≺ ĥ. A straightforward
modification of the proof of Proposition 2.6 of [Arcoya and Ruiz 2006] in order
to accommodate the extra linear term −1u gives the following strong comparison
principle.

Proposition 3. If ξ ≥ 0, h, ĥ ∈ L∞(�), h ≺ ĥ, u, v ∈ C1
0(�) are solutions of

−1pu(z)−1u(z)+ ξ |u(z)|p−2u(z)= h(z),

−1pv(z)−1v(z)+ ξ |v(z)|p−2v(z)= ĥ(z) in �,

and v ∈ int C+, then v− u ∈ int C+.

Proof. We follow [Arcoya and Ruiz 2006] (see Proposition 2.6).
By nonlinear regularity, u, v ∈ C1,β(�) (0< β < 1).
We have

Ap(u)+ A(u)+ ξ |u|p−2u = h ≤ ĥ = Ap(v)+ A(v)+ ξv p−1 in W−1,p′(�).

Acting with (u− v)+ ∈W 1,p
0 (�), we obtain〈

Ap(u)− Ap(v), (u− v)+
〉
+
〈
A(u)− A(v), (u− v)+

〉
+

∫
�

ξ(|u|p−2u− v p−1)(u− v)+ dz ≤ 0,

which implies that ‖D(u− v)+‖22 ≤ 0, since Ap is monotone; hence u ≤ v.
First we show that u(z)≤ v(z) for all z ∈�. For this purpose, we introduce

D0 = {z ∈� : u(z)= v(z)} and D1 = {z ∈� : Du(z)= Dv(z)= 0}.

We show that D0⊆ D1. So, let z0 ∈ D0. Since u≤ v, the function z 7→ (u−v)(z)
attains its maximum at z0 ∈ D0 and so we have Du(z0)= Dv(z0). If Du(z0) 6= 0,
then we can find Bρ(z0)⊆� such that

‖Du(z)‖> 0, ‖Dv(z)‖> 0, (Du(z), Dv(z))RN > 0 for all z ∈ Bρ(z0).

We set w = v− u ∈ C+\ {0}. Then w satisfies the linear elliptic equation

−

N∑
i, j=1

∂

∂zi

(
ηi j (z)

∂w

∂z j

)
=−ξ(v p−1

− |u|p−2u)+ ĥ− h.
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In this equation the coefficients ηi j ( · ) are given by

ηi j (z)= δi j (‖Du(z)‖p−2
+ 1)+ (p− 2)‖Du(z)‖p−4 ∂u

∂zi
(z)

∂u
∂z j

(z)

for all z ∈ Bρ(z0) (see [Arcoya and Ruiz 2006, p. 854]). Hence ηi j ∈ Cβ(Bρ(z0))

with β ∈ (0, 1) and the ηi j form a uniformly elliptic operator by taking ρ ∈ (0, 1)
even smaller if necessary. Then the strong maximum principle (see [Gilbarg and
Trudinger 2001; Vázquez 1984]) implies that

u(z) < v(z) for all z ∈ Bρ(z0),

which contradicts the fact that z0 ∈ D0. So, we infer that D0 ⊆ D1.
Since by hypothesis v ∈ int C+, we see that D1 is compact and so D0 is compact.

So, we can find �1 ⊆� open and smooth such that

D0 ⊆�1 ⊆�1 ⊆�.

We can find ε > 0 such that

u(z)+ ε < v(z) for all z ∈ ∂�1,

h(z)+ ε < ĥ(z) for a.a. z ∈�1.

Let δ ∈ (0,min{ε, 1}) be such that

ξ
∣∣|s|p−2s− |s ′|p−2s ′

∣∣< ε for all s, s ′ ∈ [−‖u‖∞, ‖v‖∞] with |s− s ′|< 2δ.

Then we have

−1p(u+δ)−1(u+δ)+ξ |u+δ|p−2(u+δ)=−1p(u)−1(u)+ξ |u+δ|p−2(u+δ)

= ξ [|u+δ|p−2(u+δ)−|u|p−2u]+h

≤ h+ε ≤ ĥ =−1pv−1v+ξv
p−1,

which implies u+ δ ≤ v in �1, by the weak maximum principle.
Since D0 ⊆�1, we infer that the boundary point theorem is valid for uniformly

elliptic operators with Hölder continuous coefficients (see [Finn and Gilbarg 1957,
Lemma 7, p. 31; Gilbarg and Trudinger 2001, p. 46]). So, for every z0 ∈ ∂�, we
have

∂w

∂n
(z0) < 0,

and therefore v− u ∈ int C+. �

We now recall some basic facts concerning the spectrum of (−1p,W 1,p
0 (�)).

We consider the nonlinear eigenvalue problem

(3)
{
−1pu(z)= λ̂|u(z)|p−2u(z) a.e. in �,

u|∂� = 0.
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A number λ̂ ∈ R is an eigenvalue of (−1p,W 1,p
0 (�)) if the problem (3) has a

nontrivial solution û ∈W 1,p
0 (�); that solution is an eigenfunction corresponding

to the eigenvalue λ̂. The smallest eigenvalue λ̂1(p) of (−1p,W 1,p
0 (�)) has the

following properties (see [Anane 1987; Anane and Tsouli 1996; García Azorero
and Peral Alonso 1987]):

• λ̂1(p) is positive and isolated.

• λ̂1(p) is simple (its eigenspace is one-dimensional).

• λ̂1(p)= inf
[
‖Du‖p

p

‖u‖p
p
: u ∈W 1,p

0 (�), u 6≡ 0
]
.

In this variational characterization of λ̂1(p), the infimum is realized on the corre-
sponding one-dimensional eigenspace. Moreover, it is clear from the third property
above that the elements of the one-dimensional eigenspace do not change sign. In the
sequel, by û1,p ∈W 1,p

0 (�), we denote the L p-normalized (i.e., ‖û1,p‖p=1) positive
eigenfunction corresponding to the eigenvalue λ̂1(p) > 0. The nonlinear regularity
theory (see, for example, [Gasiński and Papageorgiou 2006, pp. 737–738]), implies
that û1,p ∈ C+\ {0}. Then the nonlinear maximum principle of [Vázquez 1984]
says that û1,p ∈ int C+. Since the spectrum σ(p) of (−1p,W 1,p

0 (�)) is closed and
λ̂1(p) > 0 is isolated, the second eigenvalue λ̂2(p)= inf [λ ∈ σ(p) : λ > λ̂1(p)] is
also well-defined.

If N = 1 (ordinary differential equation), then σ(p)= {λ̂k(p)}k≥1 ⊆ (0,+∞),
where each λ̂k(p) is a simple eigenvalue, λ̂k(p) → +∞ as k → +∞ and the
corresponding eigenfunctions {ûk,p}k≥1 have exactly k− 1 zeros (see, for example,
[Gasiński and Papageorgiou 2006, p. 761]).

If N ≥ 2 (partial differential equation), then the Ljusternik–Schnirelmann min-
imax scheme via the Krasnoselskii genus gives us a whole strictly increasing
sequence of eigenvalues {λ̂k(p)}k≥1 such that λ̂k(p)→ +∞ as k → +∞. It is
not known if this is the complete list of eigenvalues. If p = 2 (linear eigenvalue
problem), then these are all the eigenvalues of (−1, H 1

0 (�)).
Next we recall some basic definitions and facts from Morse theory and from

[Cingolani and Vannella 2003; 2007], which we will need in order to produce a
second nodal solution.

So, as before, let X be a Banach space and (Y1, Y2) a topological pair such that
Y2 ⊆ Y1 ⊆ X . For every integer k ≥ 0, by Hk(Y1, Y2) we denote the k-th-relative
singular homology group with integer coefficients for the pair (Y1, Y2). For k < 0,
Hk(Y1, Y2)= 0.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the sets

ϕc
= {x ∈ X : ϕ(x)≤ c}, Kϕ = {x ∈ X : ϕ′(x)= 0}, K c

ϕ = {x ∈ Kϕ : ϕ(x)= c}.
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The critical groups of ϕ ∈C1(X) at an isolated critical point x ∈ X with ϕ(x)= c
(i.e., x ∈ K c

ϕ) are defined by

Ck(ϕ, x)= Hk
(
ϕc
∩U, ϕc

∩U \ {x}
)

for all k ≥ 0,

where U is a neighborhood of x such that Kϕ∩ϕ
c
∩U = {x}. The excision property

of singular homology theory implies that the above definition of critical groups is
independent of the particular choice of the neighborhood U .

Now suppose that ϕ ∈ C1(X) satisfies the C-condition and infϕ(Kϕ) > −∞.
Let c < infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞)= Hk(X, ϕc) for all k ≥ 0.

The second deformation theorem (see, for example, [Gasiński and Papageorgiou
2006, p. 628]), implies that this definition is independent of the level c< infϕ(Kϕ).

Suppose that Kϕ is finite and define

M(t, x)=
∑
k≥0

rank Ck(ϕ, x)tk for all t ∈ R, all x ∈ Kϕ

and

P(t,∞)=
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

The Morse relation says that

(4)
∑

x∈Kϕ

M(t, x)= P(t,∞)+ (1+ t)Q(t),

where Q(t)=
∑

k≥0 βk tk is a formal series in t ∈ R with integer coefficients βk .
Let H be a Hilbert space, x a point in H , and U a neighborhood of x . Let

ϕ ∈ C2(U ). If x ∈ Kϕ , then the Morse index µ = µ(x) of x is defined to be
the supremum of the dimensions of the vector subspaces of H on which ϕ′′(x) is
negative definite. The nullity ν(x) of x ∈ Kϕ is the dimension of kerϕ′′(x). We say
that x ∈ Kϕ is nondegenerate if ϕ′′(x) is invertible (i.e., ν(x)= 0). If ϕ ∈ C2(U )
and x ∈ Kϕ is nondegenerate with Morse index µ, then

Ck(ϕ, x)= δk,µZ for all k ≥ 0,

where δk,µ is the Kronecker symbol.
As mentioned in the introduction, to produce a second nodal solution, we will

use some facts from [Cingolani and Vannella 2003; 2007]. Suppose f :�×R→R

is a measurable function such that, for a.a. z ∈�, f (z, · ) ∈ C1(R) and

| f ′x(z, x)| ≤ α̃(z)+ c̃|x |r−2 for a.a. z ∈�, all x ∈ R,
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with α̃ ∈ L∞(�)+, c̃ > 0 and p ≤ r < p∗. We set F(z, x) =
∫ x

0
f (z, s) ds and

consider the C2-functional ϕ :W 1,p
0 (�)→ R defined by

ϕ(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F(z, u(z)) dz for all u ∈W 1,p
0 (�).

For all u, v, y ∈W 1,p
0 (�), we have (see [Cingolani and Vannella 2003])

〈ϕ′′(u)v, y〉 =
∫
�

(1+‖Du‖p−2)(Dv, Dy)RN dz

+ (p−2)
∫
�

‖Du‖p−4(Du, Dv)RN (Du, Dy)RN dz−
∫
�

f ′x(z, u)vy dz.

Here 〈 · , · 〉 denotes the duality brackets for the pair consisting of the spaces

W−1,p′(�)=W 1,p
0 (�)∗ and W 1,p

0 (�), where 1
p
+

1
p′
= 1.

Suppose that u0 ∈ Kϕ . Nonlinear regularity theory (see [Ladyzhenskaya and
Ural’tseva 1968; Lieberman 1991]) implies that u0 ∈ C1

0(�). It follows that

b( · )= ‖Du0( · )‖
(p−4)/2 Du0( · ) ∈ L∞(�,RN ).

Let Hb be the completion of C∞c (�) under the inner product

(v, y)b =
∫
�

[
(1+‖b‖2)(Dv, Dy)RN + (p− 2)(b, Dv)RN (b, Dy)RN

]
dz.

Denote by ‖ · ‖b the corresponding norm. Clearly ‖ · ‖b is equivalent to the usual
Sobolev norm of H 1

0 (�), so Hb and H 1
0 (�) are isomorphic. Since p> 2, W 1,p

0 (�)

is embedded continuously into Hb. Let Lb ∈ L(Hb, H∗b ) be defined by

〈Lb(v), y〉b = (v, y)b−
∫
�

f ′x(z, u0)vy dz for all v, y ∈ Hb.

Then Lb is a Fredholm operator of index zero and it is the extension of ϕ′′(u0) on
Hb. We consider the orthogonal direct sum decomposition

Hb = H−⊕ H 0
⊕ H+,

where H−, H 0, H+ are the negative, null and positive spaces according to the
spectral decomposition of Lb in L2(�). Then H− and H 0 are finite-dimensional
and, since u0 ∈ C1

0(�), standard regularity theory implies that

H−⊕ H 0
⊆W 1,p

0 (�)∩ L∞(�).

We set V = H−⊕ H 0 and W =W 1,p
0 (�)∩ H+. Then W 1,p

0 (�)= V ⊕W and,
by [Cingolani and Vannella 2003, p. 279], there exists c > 0 such that

〈ϕ′′(u0)v, v〉 ≥ c‖v‖2b for all v ∈W.
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In what follows, for every r ∈ (1,+∞), we denote by

Ar :W
1,r
0 (�)→W−1,r ′(�),

1
r
+

1
r ′
= 1,

the nonlinear map defined by

(5) 〈Ar (u), y〉 =
∫
�

‖Du‖r−2(Du, Dy)RN dz for all u, y ∈W 1,r
0 (�).

If r = 2, then we set A2 = A ∈ L(H 1
0 (�), H−1(�)). The next result can be

found in [Gasiński and Papageorgiou 2006, pp. 745–746].

Proposition 4. If Ar :W
1,r
0 (�)→W−1,r ′(�) is defined by (5), then Ar is continu-

ous, monotone (hence maximal monotone) and of type (S)+; that is, if un converges
weakly to u in W 1,p

0 (�) and lim supn→+∞〈Ar (un), un − u〉 ≤ 0, then un → u in
W 1,r

0 (�).

Throughout this paper by ‖ · ‖ we denote the norm of W 1,p
0 (�). By virtue of

Poincaré’s inequality, ‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�). By ‖ · ‖ we will also

denote the norm of RN . No confusion is possible, since it will always be clear from
the context which norm we mean.

For x ∈ R, we define
x± =max{±x, 0}.

Then for u ∈W 1,p
0 (�) we set

u±( · )= u( · )±.

We know that u± ∈W 1,p
0 (�) and

|u| = u++ u− and u = u+− u−.

By | · |RN we denote the Lebesgue measure on RN .
Finally, if g :�×R→R is a measurable function (for example, if (z, x)→g(z, x)

is a Carathéodory function), then we set

Ng(u)( · )= g( · , u( · )) for all u ∈W 1,p
0 (�).

3. Constant sign solutions

In this section, we produce four nontrivial smooth solutions of constant sign, two
positive and two negative. The hypotheses on the reaction f (z, x) are the following:

Hypotheses H. (i) f :�×R→ R is a Carathéodory function.

(ii) f (z, 0)= 0 a.e. in �.

(iii) | f (z, x)| ≤ α(z)+ c|x |p−1 for a.a. z ∈�, all x ∈ R, with α ∈ L∞(�)+, c > 0.
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(iv) If F(z, x)=
∫ x

0 f (z, s) ds, then

lim
x→±∞

pF(z, x)
|x |p

= λ̂1(p) uniformly for a.a. z ∈�,

and, for some τ > 2,

lim sup
x→±∞

f (z, x)x − pF(z, x)
|x |τ

≤ β̂ < 0 uniformly for a.a. z ∈�.

(v) There exist functions w± ∈W 1,p(�)∩C(�) such that

w−(z)≤ c− < 0< c+ ≤ w+(z) for all z ∈�,

ess sup
�

f ( · , w+( · ))≤ 0≤ ess inf
�

f ( · , w−( · )),

and Ap(w−)+ A(w−)≤ 0≤ Ap(w+)+ A(w+) in W−1,p′(�)=W 1,p
0 (�)∗.

(vi) For every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ �, the function
x→ f (z, x)+ ξρ |x |p−2x is nondecreasing on [−ρ, ρ].

(vii) There exist integer m ≥ 2 and functions η, η̂ ∈ L∞(�)+ such that

λ̂m(2)≤ η(z)≤ η̂(z)≤ λ̂m+1(2) a.e. in �, λ̂m(2) 6= η, λ̂m+1(2) 6= η̂

and

η(z)≤ lim inf
x→0

f (z, x)
x
≤ lim sup

x→0

f (z, x)
x
≤ η̂(z) uniformly for a.a. z ∈�.

Remarks. Hypothesis H(iv) implies that, asymptotically at±∞, we have resonance
with respect to the principal eigenvalue λ̂1(p) > 0 from the right. Hence the energy
functional of the problem, as we will see, is indefinite. Hypothesis H(v) is satisfied
if we can find c− < 0< c+ such that f (z, c+)= f (z, c−)= 0 a.e. in �.

Example. The following function satisfies the hypotheses H (for simplicity, we
drop the z-dependence):

f (x)=
{

η(x − |x |r−2x) if |x | ≤ 1,
λ̂1(p)(|x |p−2x − |x |τ−2x) if |x |> 1,

with η ∈ (λ̂m(2), λ̂m+1(2)), m ≥ 2 and r > 2, 1< τ < p.

We introduce the following truncations of f (z, · ):

(6) f̂+(z, x)=


0 if x < 0,

f (z, x) if 0≤ x ≤ w+(z),
f (z, w+(z)) if w+(z) < x
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and

f̂−(z, x)=


f (z, w−(z)) if x <w−(z),

f (z, x) if w−(z)≤ x ≤ 0,
0 if 0< x .

Both are Carathéodory functions. Let F̂±(z, x) =
∫ x

0
f̂±(z, s) ds and consider

the C1-functionals ϕ̂± :W
1,p
0 (Z)→ R defined by

ϕ̂±(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F̂±(z, u(z)) dz for all u ∈W 1,p
0 (�).

Also, let ϕ : W 1,p
0 (�)→ R be the energy (Euler) functional for problem (1)

defined by

ϕ(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F(z, u(z)) dz for all u ∈W 1,p
0 (�).

Clearly, ϕ ∈ C1(W 1,p
0 (�)).

First, we produce two nontrivial constant sign smooth solutions of (1).

Proposition 5. If hypotheses H(iii), (v), (vi), (vii) hold, then problem (1) has at
least the two nontrivial constant sign smooth solutions

u0 ∈ int C+ and v0 ∈ −int C+,

and both are local minimizers of ϕ.

Proof. First we produce the positive solution.
From (6) we see that ϕ̂+ is coercive. Also, using the Sobolev embedding theorem,

we can check easily that ϕ̂+ is sequentially weakly lower semicontinuous. So, by
the Weierstrass theorem, we can find u0 ∈W 1,p

0 (�) such that

(7) ϕ̂+(u0)= inf [ϕ̂+(u) : u ∈W 1,p
0 (�)] = m+.

By virtue of hypothesis H(vii), we can find ϑ > λ̂1(2) and 0<δ <min{c+,−c−}
such that

(8) F(z, x)≥ 1
2ϑx2 for a.a. z ∈�, all |x | ≤ δ.

Let t ∈ (0, 1) be small such that t û1,2(z) ∈ [0, δ] for all z ∈ � (recall that
û1,2 ∈ int C+). Then

ϕ̂+(t û1,2)=
t p

p
‖Dû1,2‖

p
p +

t2

2
λ̂1(2)−

∫
�

F̂+(z, t û1,2) dz

≤
t p

p
‖Dû1,2‖

p
p +

t2

2
[λ̂1(2)−ϑ]

(see (8) and recall that ‖û1,2‖2 = 1).
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Since ϑ > λ̂1(2) and p > 2, by choosing t ∈ (0, 1) even smaller if necessary,
we have ϕ̂+(t û1,2) < 0, which implies ϕ̂+(u0)= m̂+ < 0= ϕ̂+(0) (see (7)); hence
u0 6= 0.

From (7) we have ϕ̂′
+
(u0)= 0, which implies

(9) Ap(u0)+ A(u0)= N f̂+(u0).

On (9) we act with −u−0 ∈W 1,p
0 (�) and obtain u0 ≥ 0, u0 6= 0 (see (6)). Also,

we act with (u0−w+)
+
∈W 1,p

0 (�). Then

〈Ap(u0), (u0−w+)
+
〉+ 〈A(u0), (u0−w+)

+
〉

=

∫
�

f̂+(z, u0)(u0−w+)
+ dz =

∫
�

f (z, w+)(u0−w+)
+ dz (see (6))

≤
〈
Ap(w+)+ A(w+), (u0−w+)

+
〉
,

by hypothesis H(v). Therefore∫
{u0>w+}

(
‖Du0‖

p−2 Du0−‖Dw+‖p−2 Dw+, Du0− Dw+
)

RN dz

+‖D(u0−w+)
+
‖

2
2 ≤ 0.

It follows that u0 ≤ w+.
So, we have proved that

u0 ∈ [0, w+] = {u ∈W 1,p
0 (�) : 0≤ u(z)≤ w+(z) a.e. in �}.

Then (9) becomes Ap(u0)+ A(u0)= N f (u0) (see (6)), and hence

(10) −1pu0(z)−1u0(z)= f (z, u0(z)) a.e. in �, u0|∂� = 0.

From (10) and [Ladyzhenskaya and Ural’tseva 1968, Theorem 7.1, p. 286], we
have u0 ∈ L∞(�). We can apply the regularity result of [Lieberman 1991, p. 320]
and have u0 ∈ C+\ {0}. Note that

Ap(u0)+ A(u0)− N f (u0)= 0≤ Ap(w+)+ A(w+)− N f (w+) in W−1,p′(�),

by H(v), and, for a.a. z ∈� and all x , y ∈ [−ρ, ρ] with x > y, we have, by H(vi),

f (z, x)− f (z, y)≥−ξρ(x − y),

Let a(ξ)= ‖ξ‖p−2ξ + ξ for all ξ ∈ RN . Then a ∈ C1(RN ),

∇a(ξ)= ‖ξ‖p−2
(

I + (p− 2)
ξ ⊗ ξ

‖ξ‖2

)
+ I

and
div a(Du)=1pu+1u for all u ∈W 1,p

0 (�).
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We have (∇a(ξ)y, y)RN ≥ ‖y‖2 for all ξ , y ∈ RN and so we can apply [Pucci
and Serrin 2007, Theorem 2.5.3, p. 37] and infer, via H(v), that

u0(z) < w+(z) for all z ∈�.

Let ρ =max{‖w+‖∞, ‖w−‖∞}. By virtue of H(vi) and (10), we have

−1pu0(z)−1u0(z)+ ξ̂ρu0(z)p−1
= f (z, u0(z))+ ξ̂ρu0(z)p−1

≥ 0 a.e. in �,

and hence
1pu0(z)+1u0(z)≤ ξ̂ρu0(z)p−1 a.e. in �.

Invoking the boundary point theorem of Pucci and Serrin [2007, Theorem 5.5.1,
p. 120] we have u0 ∈ int C+. Therefore

u0 ∈ intC1
0 (�)
[0, w+].

It is clear from (6) that ϕ̂+|[0,w+] = ϕ|[0,w+]. Therefore u0 is a local C1
0(�)-

minimizer of ϕ and so by Theorem 2 it is also a local W 1,p
0 (�)-minimizer of ϕ.

Similarly, working this time with ϕ̂−, we produce another constant sign smooth
solution v0 ∈ −int C+ which is a local minimizer of ϕ. �

Using u0 ∈ int C+, v0 ∈ −int C+, we can produce two more nontrivial constant
sign smooth solutions.

Proposition 6. If hypotheses H hold and Kϕ is finite, problem (1) has at least four
nontrivial constant sign smooth solutions

u0, û ∈ int C+ with û− u0 ∈ int C+

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+.

Proof. From Proposition 5 we already have two solutions u0 ∈ int C+ and v0 ∈

−int C+.
Next we produce the second nontrivial positive smooth solution. To this end, we

introduce the following truncation of f (z, · ):

(11) h+(z, x)=
{

f (z, u0(z)) if x ≤ u0(z),
f (z, x) if u0(z) < x .

This is a Carathéodory function. We set H+(z, x)=
∫ x

0
h+(z, s) ds and consider

the C1-functional ψ+ :W
1,p
0 (�)→ R defined by

ψ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

H+(z, u(z)) dz for all u ∈W 1,p
0 (�).

Claim 1. The functional ψ+ satisfies the C-condition.
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Proof. Let {un}n≥1 ⊆W 1,p
0 (�) be a sequence such that

(12) |ψ+(un)| ≤ M1 for some M1 > 0, all n ≥ 1

and

(13) (1+‖un‖)ψ
′

+
(un)→ 0 in W−1,p′(�) as n→∞.

From (13) we have

(14)
∣∣∣∣〈Ap(un), g〉+ 〈A(un), g〉−

∫
�

h+(z, un)g dz
∣∣∣∣≤ εn‖g‖

1+‖un‖

for all g ∈W 1,p
0 (�),with εn ↓ 0.

In (14) we choose g =−u−n ∈W 1,p
0 (�). Then we get

‖Du−n ‖
p
p +‖Du−n ‖

2
2−

∫
�

f (z, u0)(−u−n ) dz ≤ εn for all n ≥ 1,

by (11); this implies that ‖Du−n ‖
p
p≤ c1‖u−n ‖ for some c1>0 and all n≥1 (by H(iii)),

and we conclude, since p > 1, that

(15) {u−n }n≥1 ⊆W 1,p
0 (�) is bounded.

We will show that {un}n≥1 ⊆ W 1,p
0 (�) is bounded. Arguing by contradiction,

because of (15) and by passing to a suitable subsequence if necessary, we may
assume that ‖u+n ‖→∞. We set yn = u+n /‖u

+
n ‖, n ≥ 1. Then ‖yn‖= 1 for all n ≥ 1

and so we may assume that

(16) yn
w
−→ y in W 1,p

0 (�) and yn→ y in L p(�) as n→∞,

where
w
−→ indicates weak convergence. From (14), we have

(17)
∣∣∣∣〈Ap(yn), g〉+

1
‖u+n ‖p−2

〈A(yn), g〉−
∫
�

h+(z, u+n )
‖u+n ‖p−1

g dz
∣∣∣∣≤ ε′n‖g‖,

with ε′n→ 0 (see (15)).
Hypothesis H(iii) and (11) imply that

(18)
{

Nh+(u
+
n )

‖u+n ‖p−1

}
n≥1
⊆ L p′(�) is bounded.

From (18) and using hypothesis H(iv), as in the proof of Proposition 30 of
[Aizicovici et al. 2008], we have

(19)
Nh+(u

+
n )

‖u+n ‖p−1
w
−→ β = λ̂1(p)y p−1 in L p′(�).
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Also, if in (17) we choose g = yn − y ∈ W 1,p
0 (�), pass to the limit as n→∞

and use (16) and (19), we obtain

lim
n→∞
[〈Ap(yn), yn − y〉+ 〈A(yn), yn − y〉] = 0,

from which we get successively

lim sup
n→∞

[〈Ap(yn), yn − y〉+ 〈A(y), yn − y〉] ≤ 0 (since A is monotone),

lim sup
n→∞

〈Ap(yn), yn − y〉 ≤ 0 (see (16)),

yn→ y in W 1,p
0 (�) (see Proposition 4).

The upshot is that

(20) ‖y‖ = 1, y ≥ 0.

Passing to the limit as n→∞ in (17) and using (19) and (20), we see that

〈Ap(y), g〉 = λ̂1(p)
∫
�

y p−1g dz for all g ∈W 1,p
0 (�),

since p > 2 and ‖u+n ‖→∞. This yields Ap(y)λ̂1(p)y p−1 and so

−1p y(z)= λ̂1(p)y(z)p−1 a.e. in �, y|∂� = 0,

implying, in view of (20), that

(21) y = λû1,p for some λ > 0.

Therefore y(z) > 0 for all z ∈� and this implies that u+n (z)→+∞ for all z ∈�.
Then, by virtue of hypothesis H(iv), we have

lim sup
n→∞

f (z, u+n (z))u
+
n (z)− pF(z, u+n (z))
|u+n (z)|τ

≤ β̂ < 0 for a.a. z ∈�,

or again, in view of (11),

(22) lim sup
n→∞

h+(z, u+n (z))u
+
n (z)− pH+(z, u+n (z))
|u+n (z)|τ

≤ β̂ < 0 for a.a. z ∈�.

Hypothesis H(iv) and Fatou’s lemma, together with (21) and (22), imply that

(23) lim sup
n→∞

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n (z)− pH+(z, u+n )
]

dz < 0

On the other hand, from (12) and (15), we have

(24) −M2 ≤ ‖Du+n ‖
p
p +

p
2
‖Du+n ‖

2
2−

∫
�

pH+(z, u+n ) dz
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for some M2 > 0 and all n ≥ 1.
Also, if we choose g = u+n ∈W 1,p

0 (�) in (14), then

(25) −εn ≤−‖Du+n ‖
p
p −‖Du+n ‖

2
2+

∫
�

h+(z, u+n )u
+

n dz for all n ≥ 1.

Adding (24) and (25), we obtain

−M3 ≤

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz+
( p

2
− 1

)
‖Du+n ‖

2
2

for some M3 > 0 and all n ≥ 1, whence (since p > 2)

−
M3

‖u+n ‖τ
≤

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz+ c2

( p
2
− 1

) 1
‖u+n ‖τ−2

for some c2 > 0 and all n ≥ 1, and finally, since τ > 2 and p > 2,

(26) 0≤ lim inf
n→∞

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz.

Comparing (23) and (26), we reach a contradiction.
This proves that {u+n }n≥1 ⊆W 1,p

0 (�) is bounded; hence {un}n≥1 ⊆W 1,p
0 (�) is

bounded, by (15). So, we may assume that

(27) un
w
−→ u in W 1,p

0 (�) and un→ u in L p(�).

If in (14) we choose g = un − u ∈ W 1,p
0 (�), pass to the limit as n→∞ and

use (27), then, as before, exploiting the monotonicity of A, we have

lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0,

implying that un → u in W 1,p
0 (�), by Proposition 4. Hence ψ+ satisfies the C-

condition, and this proves Claim 1. �

Claim 2. The function u0 is a local minimizer of ψ+.

Proof. We may assume that Kϕ ∩[0, w+] = {0, u0}. Otherwise, let y be a nontrivial
element of Kϕ ∩ [0, w+] distinct from u0; as a nontrivial solution of (1), y can be
taken such that u0 ≤ y, because (1) has a biggest solution in [0, w+] (this is shown
like Proposition 4.4 in [Filippakis et al. 2009]). Therefore, we are done if such a y
exists.

We introduce the following truncation of h+(z, · ):

(28) ĥ+(z, x)=
{

h+(z, x) if x ≤ w+(z),
h+(z, w+(z)) if w+(z) < x .

This is a Carathéodory function. We set Ĥ+(z, x)=
∫ x

0 ĥ+(z, s) ds and consider
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the C1-functional ψ̂+ :W
1,p
0 (�)→ R defined by

ψ̂+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

Ĥ+(z, u(z)) dz for all u ∈W 1,p
0 (�).

From (28) it is clear that ψ̂+ is coercive. Also, it is sequentially weakly lower
semicontinuous. Hence, we can find u0 ∈W 1,p

0 (�) such that

ψ̂+(u0)= inf [ψ̂+(u) : u ∈W 1,p
0 (�)],

which is to say ψ̂ ′
+
(u0)= 0; therefore

(29) Ap(u0)+ A(u0)= Nĥ+(u0).

On (29) first we act with (u0 − u0)
+
∈ W 1,p

0 (�) and then with (u0 −w+)
+
∈

W 1,p
0 (�). Using (11), (28) and hypothesis H(v), this leads to

u0 ∈ [u0, w+] =
{
u ∈W 1,p

0 (�) : u0(z)≤ u(z)≤ w+(z) a.e. in �
}
.

Then (29) becomes Ap(u0)+ A(u0) = N f (u0) by (11) and (28); thus u0 ∈ Kϕ ∩

[0, w+], which is to say u0 = u0.
From Proposition 5 and its proof, we have

u0 ∈ int C+ and u0(z) < w+(z) for all z ∈�.

From (28) we infer that ψ+|[0,w+] = ψ̂+|[0,w+], so u0 is a local C1
0(�)-minimizer

of ψ+. Applying Theorem 2, we see that u0 is also a local W 1,p
0 (�)-minimizer of

ψ+, as we wished to show. �

If u ∈ Kψ+ , then
Ap(u)+ A(u)= Nh+(u).

Acting with (u0−u)+ ∈W 1,p
0 (�) and using (11), we show that u0≤u. Therefore

(30) Kψ+ ⊆ [u0)=
{
u ∈W 1,p

0 (�) : u0(z)≤ u(z) for a.a. z ∈�
}
.

By virtue of Claim 2, u0 ∈ Kψ+ . Note that from (11) and (30) it follows that
Kψ+ ⊆ Kϕ and recall that by hypothesis Kϕ is finite. So, as in [Aizicovici et al.
2008, proof of Proposition 29], we can find ρ ∈ (0, 1) small such that

(31) ψ+(u0) < inf [ψ+(u) : ‖u− u0‖ = ρ] = η
+

ρ .

Claim 3. ψ+(t û1,p)→−∞ as t→+∞.

Proof. By virtue of hypothesis H(iv), we can find β̂1 ∈ (β̂, 0) and M4 > ‖u0‖∞

such that f (z, x)x − pF(z, x)≤ β̂1xτ for a.a. z ∈�, all x ≥ M4. Thus

(32) h+(z, x)x − pH+(z, x)≤ β̂1xτ + c3
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for a.a. z ∈�, all x ≥ M4, some c3 > 0.
(Note that F(z, x)= H+(z, x)−H+(z, u0(z))+ f (z, u0(z))u0(z) for a.a. z ∈�,

all x ≥ M4.)
Without loss of generality, we may assume that τ < p (see H(iv)). We have

d
dx

(
H+(z, x)

x p

)
=

h+(z, x)x p
− px p−1 H+(z, x)

x2p

=
h+(z, x)x − pH+(z, x)

x p+1 ≤
β̂1xτ + c3

x p+1 (see (32))

= β̂1xτ−p−1
+

c3

x p+1 .

It follows that

H+(z, x)
x p −

H+(z, y)
y p ≤−

β̂1

p− τ

(
1

x p−τ −
1

y p−τ

)
−

c3

p

(
1

x p −
1
y p

)
for a.a. z ∈�, all x ≥ y ≥ M4.

Letting x→+∞, using hypothesis H(iv) and recalling that τ < p, we obtain

λ̂1(p)
p
−

H+(z, y)
y p ≤

β̂1

p− τ
1

y p−τ +
c3

p
1
y p for a.a. z ∈�, all y ≥ M4,

or, upon multiplication by y p and with c4 = c3/p,

(33)
λ̂1(p)

p
y p
− H+(z, y)≤

β̂1

p− τ
yτ + c4 for a.a. z ∈�, all y ≥ 0.

Then, for t > 0, we have

(34) ψ+(t û1,p)=
t p

p
λ̂1(p)‖û1,p‖

p
p +

t2

2
‖Dû1,p‖

2
2−

∫
�

H+(z, t û1,p) dz

≤
β̂1

p− τ
tτ‖û1,p‖

τ
τ +

t2

2
‖Dû1,p‖

2
2+ c4|�|N (see (33)).

Since τ > 2 (see H(iv)) and β̂1 < 0, it follows from (34) that ψ+(t û1,p)→−∞

as t→+∞. This proves Claim 3. �

Claims 1, 3 and (31) permit the use of Theorem 1, the mountain pass theorem.
So, we can find û ∈W 1,p

0 (�) such that

(35) ψ+(u0) < η
+

ρ ≤ ψ+(û)

(see (31)) and

(36) ψ ′
+
(û)= 0.

From (35) we see that û 6= u0, while from (36) we have û ∈ [u0) (see (30)).
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Therefore û is the second nontrivial positive solution of (1) (see (11)). Moreover,
nonlinear regularity theory (see [Lieberman 1991]) implies that û ∈ int C+, u0 ≤ û,
u0 6= û. From the tangency principle of [Pucci and Serrin 2007, p. 35], we have

u0(z) < û(z) for all z ∈�.

Let ρ = ‖û‖∞ and let ξ̂ > ξ̂ρ (ξ̂ρ > 0 as postulated by hypothesis H(vi)). We set

h(z)= f (z, u0(z))+ ξ̂u0(z)p−1 and ĥ(z)= f (z, û(z))+ ξ̂ û(z)p−1.

Clearly, h, ĥ ∈ L∞(�)+, h ≺ ĥ (see H(vi) and recall u0(z) < û(z) for all z ∈�).
Moreover, û ∈ int C+ and so we can use Proposition 3 and infer that û−u0 ∈ int C+.

Similarly, consider the truncation

h−(z, x)=
{

f (z, x) if x < v0(z),
f (z, v0(z)) if v0(z)≤ x .

Arguing as before, we produce a second nontrivial negative solution v̂ ∈ −int C+
such that v0− v̂ ∈ int C+. �

4. Nodal solutions

In this section we produce nodal solutions for problem (1). Under the current
hypotheses H, we will produce a nodal solution, and subsequently, by strengthening
the regularity on f (z, · ) (see hypotheses Ĥ below), we will generate a second nodal
solution. In this section, Morse theory is a basic tool.

Our strategy is the following. First we will show that problem (1) has extremal
constant sign solutions; i.e., there is a smallest nontrivial positive solution u+
of (1) and a biggest nontrivial negative solution v− of (1). By truncating f (z, · ) at
{v−(z), u+(z)} and using variational methods and Morse theoretic techniques, we
show that problem (1) has nontrivial solutions in the order interval [v−, u+] distinct
from v− and u+. The extremality of v− and u+ implies that such solutions are
necessarily nodal. The nonhomogeneity of the differential operator u→−1pu−1u
creates difficulties, which we have to overcome. To this end, note that hypotheses
H(iii), (vii) imply that we can find c5 > λ̂1(2) and c6 > 0 such that

f (z, x)x ≥ c5x2
− c6|x |p for a.a. z ∈�, all x ∈ R.

This growth estimate leads to the following Dirichlet problem

(37) −1pu(z)−1u(z)= c5u(z)− c6|u(z)|p−2u(z) in �, u|∂� = 0.

Proposition 7. Problem (37) has a unique nontrivial positive solution u∗ ∈ int C+
and, since (37) is odd, v∗=−u∗∈−int C+ is the unique nontrivial negative solution
of (37).
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Proof. We consider the C1-functional γ+ :W
1,p
0 (�)→ R defined by

γ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

c5

2
‖u+‖22+

c5

p
‖u+‖p

p for all u ∈W 1,p
0 (�).

Since p> 2, it is clear that γ+ is coercive. Also, γ+ is sequentially weakly lower
semicontinuous. Therefore, we can find u∗ ∈W 1,p

0 (�) such that

(38) γ+(u∗)= inf [γ+(u) : u ∈W 1,p
0 (�)] = m+

∗
.

Since c5 > λ̂1(2) and p > 2, for t ∈ (0, 1) small, we have γ+(t û1,2) < 0, which
implies γ+(u∗)= m+

∗
< 0= γ+(0) by (38); hence u∗ 6= 0.

From (38) we have

(39) γ ′
+
(u∗)= 0

and therefore
Ap(u∗)+ A(u∗)= c5u+

∗
− c6(u+∗ )

p−1.

On (39) we act with −u−
∗
∈ W 1,p

0 (�) and infer that u∗ ≥ 0, u∗ 6= 0. Hence
Ap(u∗)+ A(u∗)= c5u∗− c6u p−1

∗ , and so

−1pu∗(z)−1u∗(z)= c5u∗(z)− c6u∗(z)p−1 a.e. in �, u∗|∂� = 0.

Nonlinear regularity theory (see [Ladyzhenskaya and Ural’tseva 1968; Lieberman
1991]) implies that u∗ ∈ C+\ {0}. Moreover, from the strong maximum principle of
[Pucci and Serrin 2007, p. 34], we have u∗(z) > 0 for all z ∈�. Then

1pu∗(z)+1u∗(z)≤ c6u∗(z)p−1 a.e. in �,

which in view of [Pucci and Serrin 2007, p. 120] leads to

u∗ ∈ int C+.

This establishes the existence of a nontrivial positive smooth solution of (37).
Next we show the uniqueness of u∗ ∈ int C+. To this end, we consider the integral

functional β+ : L1(�)→ R= R∪ {+∞} defined by

(40) β+(u)=

{
1
p‖Du1/2

‖
p
p +

1
2‖Du1/2

‖
2
2 if u ≥ 0, u1/2

∈W 1,p
0 (�),

+∞ otherwise.

Let G0(t)= t p/p+ t2/2 for all t ≥ 0. Clearly G0 is strictly convex and strictly
increasing. We set G(y)= G0(‖y‖) for all y ∈ RN . From (40) we have

(41) β+(u)=

{∫
�

G(Du1/2) dz if u ≥ 0, u1/2
∈W 1,p

0 (�),

+∞ otherwise.
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Let u1, u2 ∈ domβ+ and set y1 = u1/2
1 , y2 = u1/2

2 . Then y1, y2 ∈W 1,p
0 (�). We

define
y3 = (tu1+ (1− t)u2)

1/2
∈W 1,p

0 (�) with t ∈ [0, 1].

Then Lemma 4 of [Benguria et al. 1981] (see also [Díaz and Saá 1987, Lemma 1])
implies that

‖Dy3(z)‖ ≤
(
t‖Dy1(z)‖2+ (1− t)‖Dy2(z)‖2

)1/2 a.e. in �,

or again, since G0 is increasing,

(42) G0(‖Dy3(z)‖)≤ G0
((

t‖Dy1(z)‖2+ (1− t)‖Dy2(z)‖2
)1/2) a.e. in �.

The right-hand side is bounded above by tG0(‖Dy1(z)‖)+ (1− t)G0(‖Dy2(z)‖),
since t→ G0(t1/2) is convex. So from (42) we obtain successively

G(Dy3(z))≤ tG(Dy1(z))+ (1− t)G(Dy2(z)) a.e. in �,

G
(
D(tu1+ (1− t)u2)

1/2(z)
)
≤ tG(Du1/2

1 (z))+ (1− t)G(Du1/2
2 (z)) a.e. in �,

and finally, using (41), the convexity of β+.
Let u ∈W 1,p

0 (�) be a nontrivial positive solution of the auxiliary problem (37).
From the first part of the proof we have u ∈ int C+. Therefore u2

∈ domβ+. Also,
if h ∈ C1

0(�) and t ∈ (−1, 1) is small, then u2
+ th ∈ domβ+. So, the Gâteaux

derivative of β+ at u2 in the direction h exists. The chain rule and the density of
C1

0(�) in W 1,p
0 (�) imply

(43) β ′
+
(u2)(h)=

∫
�

−1pu−1u
u

h dz for all h ∈W 1,p
0 (�).

Similarly, if v ∈ W 1,p
0 (�) is another nontrivial positive solution of (37), then

v ∈ int C+ and we have

(44) β ′
+
(v2)(h)=

∫
�

−1pv−1v

v
h dz for all h ∈W 1,p

0 (�).

Since β+ is convex, its Gâteaux derivative is monotone, and so, from (43)
and (44), we have

0≤
〈
β ′
+
(u2)−β ′

+
(v2), u2

− v2〉
L1

=

∫
�

(
−1pu−1u

u
−
−1pv−1v

v

)
(u2
− v2) dz

=

∫
�

(
c5u− c6u p−1

u
−

c5v− c6v
p−1

v

)
(u2
− v2) dz

= c6

∫
�

(v p−1
− u p−1)(u2

− v2) dz ≤ 0.
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Therefore u = v, showing that u∗ ∈ int C+ is the unique nontrivial positive solution
of (37).

Since (37) is odd, we conclude that v∗ =−u∗ ∈−int C+ is the unique nontrivial
negative solution of (37). �

Having this proposition, we can now establish the existence of extremal nontrivial
constant sign solutions for problem (1).

Proposition 8. If hypotheses H hold, then problem (1) has a smallest nontrivial pos-
itive solution u+ ∈ int C+ and a biggest nontrivial negative solution v− ∈ −int C+.

Proof. Recall that the set of nontrivial positive solutions of (1) is downward directed
(i.e., if u1, u2 are nontrivial positive solutions of (1), then there exists a nontrivial
positive solution u of (1) such that u ≤ u1 and u ≤ u2; see [Filippakis et al. 2009,
Lemma 4.2 and Proposition 4.4]). So, in order to produce the smallest nontrivial
positive solution of (1), it suffices to consider the set

S+ = {u ∈W 1,p
0 (�) : u is a nontrivial solution of (1), u ∈ [0, w+]}.

From Proposition 5, we know that S+ is nonempty and S+ ⊆ int C+.
Let u ∈ S+ and consider the Carathéodory function

(45) e+(z, x)=


0 if x < 0,

c5x − c6x p−1 if 0≤ x ≤ u(z),
c5u(z)− c6u(z)p−1 if u(z) < x .

We set E+(z, x)=
∫ x

0
e+(z, s) ds and consider the C1-functional σ+ :W

1,p
0 (�)→R

defined by

σ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

E+(z, u(z)) dz for all u ∈W 1,p
0 (�).

It is clear from (45) that σ+( · ) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find ũ ∈ W 1,p

0 (�) such
that

(46) σ+(ũ)= inf [σ+(u) : u ∈W 1,p
0 (�)].

As before (see the proof of Proposition 7), since c5 > λ̂1(2) and p > 2, for
t ∈ (0, 1) small we have σ+(t ũ1,2) < 0, and therefore σ+(ũ) < 0 = σ+(0); hence
ũ 6= 0. From (46) this implies σ ′

+
(ũ)= 0; therefore

(47) Ap(ũ)+ A(ũ)= Ne+(ũ).

On (47) we act with −ũ− ∈W 1,p
0 (�) and obtain ũ ≥ 0, ũ 6= 0 (see (45)). Also
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on (47) we act with (ũ− u)+ ∈W 1,p
0 (�). We obtain

〈Ap(ũ), (ũ− u)+〉+ 〈A(ũ), (ũ− u)+〉

=

∫
�

e+(z, ũ)(ũ− u)+ dz =
∫
�

(c5u− c6u p−1)(ũ− u)+ dz (see (45))

≤

∫
�

f (z, u)(ũ− u)+ dz = 〈Ap(u), (ũ− u)+〉+ 〈A(u), (ũ− u)+〉;

this implies∫
{ũ>u}

(
‖Dũ‖p−2 Dũ−‖Du‖p−2 Du, Dũ− Du

)
RN dz+‖D(ũ− u)+‖22 ≤ 0,

and so ũ ≤ u.
So, we have proved that

ũ ∈ [0, u] = {u ∈W 1,p
0 (�) : 0≤ ũ(z)≤ u(z) a.e. in �}, ũ 6= 0.

From (45) and (47) it follows that

−1pũ(z)−1ũ(z)= c5ũ(z)−c6ũ(z)p−1 a.e. in �, ũ|∂�=0, ũ≥0, ũ 6=0,

whence ũ = u∗ by Proposition 7, and therefore ũ ≤ u.
Since u ∈ S+ is arbitrary, we conclude that

(48) u∗ ≤ u for all u ∈ S+.

Now let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). Then we can
find {un}n≥1 ⊆ C such that inf C = infn≥1 un; (see [Dunford and Schwartz 1958,
p. 336]).

We have

(49) Ap(un)+ A(un)= N f (un), un ∈ [u∗, w+] for all n ≥ 1

by (48), so {un}n≥1 ⊆W 1,p
0 (�) is bounded.

So, we may assume that

(50) un
w
−→ u in W 1,p

0 (�) and un→ u in L p(�).

On (49) we act with un−u ∈W 1,p
0 (�), pass to the limit as n→∞ and use (50).

Then
lim

n→∞

(
〈Ap(un), un − u〉+ 〈A(un), un − u〉

)
= 0,

and so (reasoning as in Claim 1 in the proof of Proposition 6)

(51) un→ u in W 1,p
0 (�).
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So, if in (49) we pass to the limit as n→∞ and use (51), then (48) yields

Ap(u)+ A(u)= N f (u), u∗ ≤ u,

which leads to u ∈ S+, u = inf C .
Because C is an arbitrary chain, the Kuratowski–Zorn lemma gives the existence

of a minimal element u+ ∈ S+ of S+. But recall that S+ is downward directed. So,
if u ∈ S+, we can find y ∈ S+ such that y ≤ u, y ≤ u+. The minimality of u+
implies that u+ = y and so u+ ≤ u. Since u ∈ S+ is arbitrary, we conclude that u+
is the smallest nontrivial positive solution of (1).

Similarly, let S− be the set of nontrivial negative solutions of (1) in [w−, 0].
Then S− is upward directed (i.e., if v1, v2 ∈ S−, then we can find v ∈ S− such that
v1 ≤ v, v2 ≤ v; see [Filippakis et al. 2009, Lemma 4.3]). Let v ∈ S− and consider
the Carathéodory function

e−(z, x)=


c5v(z)− c6|v(z)|p−2v(z) if x < v(z),

c5x − c6|x |p−2x if v(z)≤ x ≤ 0,
0 if 0< x .

We set E−(z, x)=
∫ x

0
e−(z, s) ds and consider the C1-functional σ− :W

1,p
0 (�)→R

defined by

σ−(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

E−(z, u(z)) dz for all u ∈W 1,p
0 (�).

Reasoning as above, we produce v− ∈ −int C+, the smallest nontrivial negative
solution of (1). �

To implement the strategy outlined in the beginning of this section and produce
a nodal solution, we need to be able to identify the nonzero critical points of ϕ
distinct from u∗ and v∗ which are in the order interval [v∗, u∗]. This can be done
using critical groups. For this reason, we compute the critical groups of ϕ at the
origin.

Proposition 9. If hypotheses H hold, then Ck(ϕ, 0) = δk,dm Z for all k ≥ 0 with
dm = dim

⊕m
i=1 E(λ̂i (2)).

Proof. Let µ∈ (λ̂m(2), λ̂m+1(2)) and consider the C2-functional ϕ0 :W
1,p
0 (�)→R

defined by

ϕ0(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

µ

2
‖u‖22 for all u ∈W 1,p

0 (�).

We consider the homotopy h0 : [0, 1]×W 1,p
0 (�)→ R defined by

h0(t, u)= tϕ(u)+ (1− t)ϕ0(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (�).
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Clearly h0(0, · )= ϕ0( · ) and h1(0, · )= ϕ( · ).
It is easy to see that, since p > 2, ϕ0 satisfies the C-condition. Also, reasoning

as in Claim 1 in the proof of Proposition 6, via hypothesis H(iv), we show that ϕ
satisfies the C-condition.

Suppose we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (�) such that

(52) tn→ t, un→ 0 in W 1,p
0 (�) and (h0)

′

u(tn, un)= 0 for all n ≥ 1.

From the equality in (52), we have

Ap(un)+ A(un)= tn N f (un)+ (1− tn)µun,

and therefore

(53) −1pun(z)−1un(z)= tn f (z, un(z))+(1−tn)µun(z)a.e. in �, un|∂�=0.

Since µ ∈ (λ̂m(2), λ̂m+1(2)), we have

t f (z, x)x + (1− t)µx2
≥ c5x2

− c6|x |p for a.a. z ∈�, all x ∈ R, t ∈ [0, 1],

where c5 > λ̂1(2) and c6 > 0 are as before (see (37)). Then from (53) and the proof
of Proposition 8, we have u∗ ≤ un for all n ≥ 1, which contradicts (52). Therefore
(52) cannot happen and so the homotopy invariance of critical groups (see, for
example, [Chang 2005]) implies that Ck(h0(0, · ), 0)=Ck(h0(1, · ), 0) for all k≥ 0,
whence

(54) Ck(ϕ0, 0)= Ck(ϕ, 0) for all k ≥ 0.

Note that ϕ′′0 (0) = A − µI (see [Cingolani and Vannella 2003, p. 277]) and
recall that µ∈ (λ̂m(2), λ̂m+1(2)). Invoking Theorem 1.1 of [Cingolani and Vannella
2003], we have Ck(ϕ0, 0) = δk,dm Z for all k ≥ 0,with dm = dim

⊕m
i=1 E(λ̂i (2)).

Using (54) concludes the proof. �

Now we have all the necessary tools to complete our strategy and produce a
nodal solution.

Proposition 10. If hypotheses H hold, problem (1) has a nodal solution y0 ∈C1
0(�)

such that
u+− y0 ∈ int C+ and y0− v− ∈ int C+.

Proof. Let u+ ∈ int C+ and v− ∈ −int C+ be the two extremal nontrivial constant
sign solutions of (1) produced in Proposition 8. Using these two solutions, we
introduce the following truncation of the reaction f (z, · ):

(55) g(z, x)=


f (z, v−(z)) if x < v−(z),

f (z, x) if v−(z)≤ x ≤ u+(z),
f (z, u+(z)) if u+(z) < x .
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This is a Carathéodory function. We set G(z, x) =
∫ x

0 g(z, s) ds. Also, let
g±(z, x) = g(z,±x±) and G±(z, x) =

∫ x
0 g±(z, s) ds. Then we introduce the

C1-functionals ξ∗, ξ∗
±
:W 1,p

0 (�)→ R defined by

ξ∗(u)= 1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

G(z, u(z)) dz,

ξ∗
±
(u)= 1

p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

G±(z, u(z)) dz for all u ∈W 1,p
0 (�).

Claim 1. Kξ∗ ⊆ [v−, u+], Kξ∗+
= {0, u+}, Kξ∗−

= {0, v−}.

Proof. Let u ∈ Kξ∗ . Then we have

(56) Ap(u)+ A(u)= Ng(u).

On (56) we act with (u− u+)+ ∈W 1,p
0 (�) and obtain

〈Ap(u), (u− u+)+〉+ 〈A(u), (u− u+)+〉

=

∫
�

g(z, u)(u− u+)+ dz =
∫
�

f (z, u+)(u− u+)+ dz (see (55))

= 〈Ap(u+), (u− u+)+〉+ 〈A(u+), (u− u+)+〉,

so that∫
{u>u+}

(
‖Du‖p−2 Du−‖Du+‖p−2 Du+, Du− Du+

)
RN dz+‖D(u− u+)+‖22 = 0

and therefore u ≤ u+.
Similarly, acting on (56) with (v− − u)+ ∈ W 1,p

0 (�), we show that v− ≤ u.
Therefore Kξ∗ ⊆ [v−, u+].

In a similar fashion, we show that Kξ∗+
⊆ [0, u+]. Clearly {0, u+} ⊆ Kξ∗+

. The
extremality of u+ implies that Kξ∗+

={0, u+}. Similarly, Kξ∗−
={v−, 0}. This proves

Claim 1. �

Claim 2. The functions u+ ∈ int C+ and v− ∈ −int C+ are both local minimizers
of the functional ξ∗.

Proof. It is clear from (55) that ξ∗
+

is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ũ ∈W 1,p

0 (�) such that

ξ∗
+
(ũ)= inf [ξ∗

+
(u) : u ∈W 1,p

0 (�)].

As in the proof of Proposition 5, using hypothesis H(vii) and the fact that 2< p,
we have ξ∗

+
(t û1,2) < 0 for t ∈ (0, 1) small, which give ξ∗

+
(ũ) < 0= ξ∗

+
(0); hence

ũ 6= 0, showing that ũ = u+ by Claim 1.
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But u+ ∈ int C+ and ξ∗|C+ = ξ
∗
+
|C+ (see (55)). Therefore u+ is a local C1

0(�)-
minimizer of ξ∗; hence it is a local W 1,p

0 (�)-minimizer of ξ∗ (see Theorem 2).
Similarly for v− ∈ −int C+, using this time the functional ξ∗

−
. �

We assume that Kξ∗ is finite (otherwise, we already have an infinity of dis-
tinct nodal solutions). Also, without any loss of generality, we assume that
ξ∗(v−) ≤ ξ

∗
+
(u+) (the analysis is similar if the opposite inequality holds). By

virtue of Claim 2, as in [Aizicovici et al. 2008, proof of Proposition 29] we can
find ρ ∈ (0, 1) small such that

(57) ξ∗(v−)≤ ξ∗(u+) < inf [ξ∗(u) : ‖u−u+‖= ρ] = η∗ρ and ‖v−−u+‖>ρ.

Note that ξ∗ is coercive (see (55)); hence it satisfies the C-condition. This fact
and (57) permit the use of the mountain pass theorem. So, we can find y0 ∈W 1,p

0 (�)

such that

(58) y0 ∈ Kξ∗ and η∗ρ ≤ ξ
∗(y0).

From (57), (58) and Claim 1, we have

(59) y0 ∈ [v−, u+], y0 6∈ {v−, u+}.

Since y0 is a critical point of ξ∗ of mountain pass type, we have

(60) C1(ξ
∗, y0) 6= 0.

Using the homotopy invariance of critical groups, we have Ck(ξ
∗, 0)= Ck(ϕ, 0)

for all k ≥ 0, which gives (see Proposition 9)

(61) Ck(ξ
∗, 0)= δk,dm Z for all k ≥ 0.

From (60), (61) and since dm ≥ 2, we infer that y0 6= 0. Then the extremality
of u+ and v− and the fact that y0 ∈ [v−, u+] imply that y0 ∈C1

0(�) (see [Lieberman
1991]) is a nodal solution of (1).

Using the tangency principle of [Pucci and Serrin 2007, p. 35], we have

(62) v−(z) < y0(z) < u+(z) for all z ∈�.

Let ρ = max{‖u+‖, ‖v−‖} and let ξρ > 0 as postulated by hypothesis H(vi).
Then, for ξ̃ > ξρ , we have

−1p y0(z)−1y0(z)+ ξ̃ |y0(z)|p−2 y0(z)

= f (z, y0(z))+ ξ̃ |y0(z)|p−2 y0(z)≤ f (z, u+(z))+ ξ̃u+(z)p−1

=−1pu+(z)−1u+(z)+ ξ̃u+(z)p−1 a.e. in �.
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Setting h(z)= f (z, y0(z))+ ξ̃ |y0(z)|p−2 y0(z) and ĥ= f (z, u+(z))+ ξ̃u+(z)p−1,
we see that h, ĥ ∈ L∞(�) and h≺ ĥ. Since u+ ∈ int C+, we can apply Proposition 3
and infer that u+− y0 ∈ int C+. Similarly we show that y0− v− ∈ int C+. �

So, we can state the following multiplicity theorem concerning problem (1). We
stress that the result is proved without assuming any differentiability on the function
x → f (z, x) (see hypotheses H). In addition our multiplicity theorem provides
precise sign information for all the solutions produced.

Theorem 11. If hypotheses H hold, the problem (1) has at least five nontrivial
smooth solutions:

u0, û ∈ int C+ with u0− û ∈ int C+,

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+,

and
y0 ∈ C1

0(�) nodal s.t. y0− v0 ∈ int C+, u0− y0 ∈ int C+.

Next, by strengthening the regularity condition on f (z, · ), we will be able to
produce a second nodal solution.

The new hypotheses on the reaction f (z, x) are the following:

Hypotheses Ĥ. (i) f :�×R→ R is a measurable function.

(ii) For a.a. z ∈�, we have f (z, 0)= 0 and f (z, · ) ∈ C1(R).

(iii) | f ′x(z, x)| ≤ α(z)+ c|x |r−2 for a.a. z ∈�, all x ∈ R, with α ∈ L∞(�)+, c> 0
and p ≤ r < p∗.

(iv) If F(z, x)=
∫ x

0
f (z, s) ds, then

lim
x→±∞

pF(z, x)
|x |p

= λ̂1(p) uniformly for a.a. z ∈�

and, for some τ > 2,

lim
x→±∞

f (z, x)x − pF(z, x)
|x |τ

≤ β̂ < 0 uniformly for a.a. z ∈�.

(v) There exist functions w± ∈W 1,p(�)∩C(�) such that

w−(z)≤ c− < 0< c+ ≤ w+(z) for all z ∈�,

ess sup
�

f ( · , w+( · ))≤ 0≤ ess inf
�

f ( · , w−( · ))

and

Ap(w−)+ A(w−)≤ 0≤ Ap(w+)+ A(w+) in W−1,p′(�)=W 1,p
0 (�)∗

(where 1/p+ 1/p′ = 1).
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(vi) For every ρ > 0, there exists ξρ > 0 such that, for a.a. z ∈ �, the function
x→ f (z, x)+ ξρ |x |p−2x is nondecreasing on [−ρ, ρ].

(vii) There exists integer m ≥ 2 such that

λ̂m(2)≤ f ′x(z, 0)≤ λ̂m+1(2) a.e. in �, λ̂m(2) 6= f ′x(z, · ), λ̂m+1(2) 6= f ′x(z, · ),

f ′x(z, 0)= lim
x→0

f (z, x)
x

uniformly for a.a. z ∈�.

In what follows, we use the notation and the functionals introduced in the proof
of Proposition 10.

Proposition 12. If hypotheses Ĥ hold, then problem (1) has a second nodal solution
ŷ ∈ C1

0(�) such that

u+− ŷ ∈ int C+ and ŷ− v− ∈ int C+.

Proof. We assume that Kξ∗+
is finite (otherwise we already have an infinity of nodal

solutions). From the proof of Proposition 10, we have

{0, u+, v−, y0} ⊆ Kξ∗+
⊆ [v−, u+].

We know that u+ ∈ int C+ and v− ∈ −int C+ are local minimizers of the func-
tional ξ∗ (see Claim 2 in the proof of Proposition 10). So, we have

(63) Ck(ξ
∗, u+)= Ck(ξ

∗, v−)= δk,0Z for all k ≥ 0.

Also, from (61) we have

(64) Ck(ξ
∗, 0)= δk,dm Z for all k ≥ 0.

Moreover, since ξ∗ is coercive (see (55)), we have

(65) Ck(ξ
∗,∞)= δk,0Z for all k ≥ 0.

Claim 1. Ck(ϕ, y0)= Ck(ξ
∗, y0) for all k ≥ 0.

Proof. We consider the homotopy h̃ : [0, 1]×W 1,p
0 (�)→ R defined by

h̃(t, u)= (1− t)ξ∗(u)+ tϕ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (�).

We have h̃(0, · ) = ξ∗( · ) and h̃(1, · ) = ϕ( · ) and both functionals satisfy the
C-condition. Let {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p

0 (�) such that

(66) tn→ t, un→ y0 in W 1,p
0 (�) and (h̃)′u(tn, un)= 0 for all n ≥ 1.

From the equation in (66), we have

Ap(un)+ A(un)= (1− tn)Ng(un)+ tn N f (un) for all n ≥ 1,
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by (55). Hence

(67)
{
−1pun(z)−1un(z)= (1−tn)g(z, un(z))+tn f (z, un(z)) a.e. in �,

un|∂� = 0 for all n ≥ 1.

From (67) and [Lieberman 1991], we know that we can find γ ∈ (0, 1) and
M > 0 such that

(68) un ∈ C1,γ
0 (�) and ‖un‖C1,γ

0 (�)
≤ M for all n ≥ 1.

From (68) and the compact embedding of C1,γ
0 (�) into C1

0(�), by passing to a
suitable subsequence if necessary, we may assume by (66) that

(69) un→ y0 in C1(�).

Since y0 ∈ intC1,γ
0 (�)
[v−, u+] (see Theorem 11), from (69) it follows that

un ∈ [v−, u+], un 6= v−, un 6= u+ for all n ≥ n0;

this, by (55), gives {un}n≥n0 ⊆ Kξ∗ , which contradicts our hypothesis that Kξ∗ is
finite. So, (66) cannot happen, and, from the homotopy invariance of critical groups,
we have

Ck(h̃(0, · ), y0)= Ck(h̃(1, · ), y0) for all k ≥ 0,

which yields the claim. �

From (60) and Claim 1, we have

(70) C1(ϕ, y0) 6= 0.

Claim 2. Ck(ϕ, y0)= δk,1Z for all k ≥ 0.

Proof. From [Cingolani and Vannella 2007, Lemma 2.2], we know that we can find
ρ > 0 and a C2-function ϑ : V ∩ Bρ→ R (recall V = H−⊕ H 0 (see Section 2),
while Bρ = {u ∈W 1,p

0 (�) : ‖u‖ ≤ ρ}) such that

〈ϑ ′′(0)v, u〉 = 〈ϕ′′(y0)v, u〉 for all u, v ∈W 1,p
0 (�).

In addition ϑ ′′(0) is a Fredholm operator and kerϑ ′′(0)= H 0. From [Cingolani
and Vannella 2003, p. 286], we have

(71) Ck(ϕ, y0)= Ck(ϑ, 0) for all k ≥ 0.

Then (70), (71) imply that

(72) C1(ϑ, 0) 6= 0,

and so

(73) d− = dim H− ≤ 1.
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Let d0 = dim H 0. We consider two cases:

Case I: d0 = 0. In this case, u = 0 is a nondegenerate critical point of ϑ with Morse
index d−. Hence Ck(ϑ, 0) = δk,d−Z for all k ≥ 0 (see Section 2). In view of (72)
we then have d− = 1, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

Case II: d0 > 0. In this case, u = 0 is a degenerate critical point of ϑ . From (73)
we see that d− = 1 or d− = 0.

If d−= 1, then, from [Cingolani and Vannella 2003, p. 286], we have Ck(ϑ, 0)=
δk,1Z for all k ≥ 0, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

If d− = 0, then, from (72) and [Cingolani and Degiovanni 2009], we have
Ck(ϑ, 0)= δk,1Z for all k ≥ 0, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

This proves Claim 2. �

Claims 1 and 2 imply that

(74) Ck(ξ
∗, y0)= δk,1Z for all k ≥ 0.

Suppose that Kξ∗+
= {0, u+, v−, y0}. Then, from (63), (64), (65), (74) and the

Morse relation (see (4)) with t=−1, we have (−1)dm =0, a contradiction. Therefore,
we can find ŷ ∈ Kξ∗+

, ŷ 6∈ {0, u+, v−, y0}. We have ŷ ∈ [v−, u+] (see Claim 1 in
the proof of Proposition 10) and so ŷ is nodal. Moreover, ŷ ∈ C1

0(�) (nonlinear
regularity) and, as we did for y0 (see the proof of Proposition 10), we show that
ŷ ∈ intC1

0 (�)
[v−, u+]. �

Now we can state the second multiplicity theorem for problem (1).

Theorem 13. If hypotheses Ĥ hold, then problem (1) has at least six nontrivial
smooth solutions

u0, û ∈ int C+ with û− u0 ∈ int C+,

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+

and y0, ŷ ∈C1
0(�) nodal with u0− y0, u0− ŷ ∈ int C+ and y0−v0, ŷ−v0 ∈ int C+.
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A GEOMETRIC MODEL OF AN ARBITRARY
REAL CLOSED FIELD

STANISŁAW SPODZIEJA

We give an elementary construction of any real closed field in terms of Nash
function fields. We also give a characterization of any Archimedean field in
terms of fields of Nash functions.

Introduction

In the study of Hilbert’s 17th problem, orderings of a real field k are of importance
(see [Alonso 1986; Alonso et al. 1984; Artin 1927; Artin and Schreier 1927a;
1927b; Bochnak and Efroymson 1980; Bröker 1982; Dubois 1981; Guangxing 2005;
Marshall 2003; Prestel and Delzell 2001; Schwartz 1980]). By the Artin–Schreier
theorem [Artin 1927; Artin and Schreier 1927a; 1927b], the study of such orderings
amounts to considering real closures of k. The aim of this article is to construct
a universal model of an arbitrary real closed field. To this end, we construct, in
terms of Nash functions, all real closures of the rational function fields k =Q(3T ),
where 3T = (3t : t ∈ T ) and T 6=∅ is a system of any number of variables. This
suffices to achieve our purpose, because any real closed field R is order-preserving
isomorphic to a real closure of some field Q(3T ) (Corollary 5.5). If T =∅, then
Q(3T )=Q, and the above is obvious. We assume the Kuratowski–Zorn lemma,
so the set T can be well-ordered, provided T 6=∅.

L. Bröker [1982] proved in his ultrafilter theorem that there exists a one-to-one
correspondence between the family of ultrafilters and the family of orderings in
Q(3T ), or equivalently with the real closures of Q(3T ). We prove that there exists
a one-to-one correspondence between the family of orderings in Q(3T ) and the
family of plain filters (Theorem 5.2, Proposition 2.4, and Corollary 2.5). By a plain
filter we mean a filter � of subsets of RT with these properties:

(1) Any U ∈� is a nonempty open connected semialgebraic set.

(2) For any algebraic set V ( RT , where V = P−1(0) and P ∈ Q[3T ], some
connected component of RT

\ V belongs to �.
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(3) For any U1,U2 ∈�, there exists U3 ∈� such that U3 ⊂U1 ∩U2.

The correspondence between orderings and plain filters is as follows: For any
ordering � of Q(3T ), there exists a unique plain filter � such that f � 0 if and
only if f > 0 on some U ∈�, where > is the usual ordering on R. Conversely, any
plain filter � determines a unique ordering � of Q(3T ) in this way.

The main result of this article is Theorem 5.2, where we give a construction of
any real closure of Q(3T ) in terms of Nash functions. The main idea and motivation
for the above considerations was a geometric construction of the algebraic closure
of C(31, . . . , 3m) [Spodzieja 1996]. More precisely, for any plain filter � of open
connected semialgebraic sets and any U ∈�, the ring N(U ) of Q-Nash functions
(see Section 1) on U is a domain. In

⋃
U∈� N(U ), we introduce an equivalence

relation ∼ : ( f1 :U1→ R)∼ ( f2 :U2→ R) if and only if f1|U3 = f2|U3 for some
U3∈�. The set N� of equivalence classes of∼with the usual operations of addition
and multiplication is a field, which is a real closure of Q(3T ) (see Theorem 5.2,
and compare [Spodzieja 1996, Theorem 2.4 and Corollary 2.5]). One can view N�

as the inverse limit of the étale topology
⋃

U∈� N(U ) of RT [Grothendieck 1967].
In Section 3, we prove that an ordering � of Q(3T ) is Archimedean if and only

if the set
⋂

U∈� U is nonempty for the plain filter � determining �; and if that is
the case, this set has exactly one point (Theorem 3.1). In Section 4, we give some
examples of non-Archimedean orderings corresponding to the one in [Spodzieja
1996].

1. Preliminaries

Let K be the field Q of rational, R of real, or C of complex numbers. Let T be a
nonempty set. We denote by 3T = (3t : t ∈ T ) a system of independent variables
3t , by K[3T ] the ring of polynomials in 3T over K, and by K(3T ) the quotient
field of K[3T ]. Note that for any P ∈ K(3T ), we have P ∈ K(3t1, . . . , 3tm ) for
some finite number of indices t1, . . . , tm ∈ T .

We denote by KT the set of all functions T → K equipped with the unique
topology for which all projections KT

3 x 7→ x(t) ∈ K, t ∈ T are continuous.
Let L be a subfield of K. A subset of KT is called L-algebraic, or simply algebraic

if L=K, when it is defined by a finite system of equations P = 0, where P ∈ L[3T ].
Any L-algebraic set in KT is of the form {x ∈ KT

: (x(t1), . . . , x(tm)) ∈ V }, where
m ∈ N, t1, . . . , tm ∈ T , and V ⊂ Km is an L-algebraic subset of Km .

If L is a subfield of R, then we assume that L is an ordered field with order
induced from R.

Let L be a subfield of R. A subset of RT is called L-semialgebraic when it is
defined by a finite alternative of finite systems of inequalities P > 0 or P ≥ 0, where
P ∈ L[3T ]. Analogously to the above, any L-semialgebraic set in RT is of the form
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{x ∈ RT
: (x(t1), . . . , x(tm)) ∈ X}, where m ∈ N, t1, . . . , tm ∈ T , and X ⊂ Rm is

an L-semialgebraic subset of Rm . A set is called open basic L-semialgebraic if it
has the form {x ∈ RT

: gi (x) > 0, i = 1, . . . , n}, for some n ∈ N and gi ∈ L[3T ],
i = 1, . . . , n.

We now list some basic properties of algebraic and semialgebraic sets in infinite-
dimensional real vector spaces, which follow easily from their analogues in finite-
dimensional spaces [Benedetti and Risler 1990; Bochnak et al. 1987; Bochnak
and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski 1976; Prestel and
Delzell 2001; Tancredi and Tognoli 2006; Tworzewski 1990].

Proposition 1.1. Let L be a subfield of R (or K in (a)).

(a) The family of L-algebraic sets in KT is closed with respect to union and
intersection of a finite number of sets.

(b) The family of L-semialgebraic sets in RT is closed with respect to complement,
union, and intersection of a finite number of sets.

(c) (Tarski–Seidenberg) Let πt1,...,tm : R
T
3 x 7→ (x(t1), . . . , x(tm)) ∈ Rm , where

t1, . . . , tm ∈ T . If X ⊂ RT , Y ⊂ Rm are L-semialgebraic sets, then πt1,...,tm (X)
and π−1

t1,...,tm (Y ) are L-semialgebraic sets, too.

(d) For any L-semialgebraic set X ⊂ RT , the interior Int X , closure X , and the
boundary ∂X are L-semialgebraic sets.

Let L be a subfield of R. A function f : U → R, where U ⊂ RT is an open
L-semialgebraic set, is called an L-Nash function if f is analytic and there exists a
nonzero polynomial P ∈ L[3T , Z ] such that P(λ, f (λ))= 0 for λ ∈U . In fact, f
depends on a finite number of variables, so the analyticity of f is clear. The ring of
L-Nash functions in U is denoted by NL(U ).

The next result follows via R. Thom’s lemma (see for instance [Bochnak et al.
1987, Proposition 2.5.4 and the arguments of Theorems 2.3.6 and 2.4.4]) from the
fact that any L-semialgebraic set in a finite-dimensional vector space over R is the
disjoint union of a finite number of L-semialgebraic sets which are homeomorphic
to Cartesian products of intervals.

Proposition 1.2. Let L be a subfield of R. Any connected component of an L-
semialgebraic subset of RT is L-semialgebraic.

A function f :U→C, where U ⊂CT is an open set, is called a C-Nash function
if f is holomorphic and there exists a nonzero polynomial P ∈ C[3T , Z ] such
that P(λ, f (λ))= 0 for λ ∈U . The ring of C-Nash functions in U is denoted by
NC(U ).

For the basic properties of Nash functions and semialgebraic sets in finite-
dimensional vector spaces, see, for instance, [Benedetti and Risler 1990; Bochnak
et al. 1987; Bochnak and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski
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1976; Nash 1952; Tancredi and Tognoli 2006; Tworzewski 1990]. From these
properties, we immediately obtain:

Proposition 1.3. Let K = R or K = C, let L be a subfield of K, and let U ⊂ KT

be an open connected set. Then NK(U ) is a domain, provided U is semialgebraic
when K = R. In particular NQ(U ) is a domain.

2. Orderings in Q(3T )

Let T be a nonempty set. A family � of subsets of RT will be called a c-filter
(connected sets filter) if it satisfies these conditions:

(i) Any U ∈� is a nonempty open connected Q-semialgebraic set.

(ii) For any Q-algebraic set V  RT , there exists U ∈� such that V ∩U =∅.

(iii) For any U1,U2 ∈�, there exists U3 ∈� such that U3 ⊂U1 ∩U2.

Proposition 2.1. Let � be a c-filter of subsets of RT . The set ∂� :=
⋂

U∈� U has
at most one point. Moreover, whenever T is a finite set, ∂� 6=∅ if and only if there
exists a bounded set U ∈�.

Proof. If x1, x2 ∈ ∂� with x1 6= x2, then for some polynomial f ∈Q[3T ], we have
f (x1) < 0< f (x2). Hence, for some W ∈� such that W ∩ f −1(0)=∅, we have
both f (x) < 0 and f (x) > 0 for some x ∈W . This contradiction gives the first part
of the assertion.

Now let T ={t1, . . . , tm}. Suppose that ∂� 6=∅ and each W ∈� is an unbounded
set. Take x0 ∈ ∂�, and let f = (3T ) = 3

2
t1 + · · · +3

2
tm − r , where r ∈ Q and

r > x2
0(t1)+ · · · + x2

0(tm). Then f −1(0)∩W =∅ for some W ∈�. Since W is a
connected unbounded set, x0 is not an accumulation point of W . This contradicts
the choice of x0. Now assume that some W ∈ � is bounded. Then it is easy to
see that there exists a sequence of nonempty compact sets C1 ⊃ C2 ⊃ · · · with
diameters decreasing to 0 and such that U ∩Cn 6=∅ for all U ∈� and n ∈N. Then
there exists x ∈

⋂
n∈N Cn belonging to ∂�. �

Let us fix a c-filter � and define a relation �� in Q(3T ) by

f �� 0 ⇐⇒ there exists U ∈� such that f (x) > 0 for all x ∈U,

f �� g ⇐⇒ f − g �� 0.

Let � be a family of subsets of RT . If an ordering � of Q(3T ) satisfies f � 0
if and only if f > 0 on some U ∈�, we say that � determines the ordering �.

Lemma 2.2. The relation �� is an ordering in Q(3T ), or in other words, a total
ordering satisfying

f �� g ⇒ f + h �� g+ h and f �� 0, g �� 0 ⇒ f g �� 0.
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Proof. The relation �� is well-defined. Indeed, if f ∈ Q(3T ) and f 6= 0, then
the union of the sets of zeros and poles of f is contained in some Q-algebraic set
V  Rm . Hence, by (i) and (ii), for some U ∈�, the values f (x) have a fixed sign
for all x ∈ U . Moreover, if for some U1,U2 ∈ � we have f (x) > 0 for x ∈ U1

and f (x) ≤ 0 for x ∈ U2, then 0 < f (x) ≤ 0 for x ∈ U1 ∩U2, and U1 ∩U2 6= ∅
by (iii). This is impossible. It is easy to see that the remaining conditions are also
satisfied. �

Proposition 2.3. Let �1, �2 be c-filters. If the orderings ��1 and ��2 are equal,
then �= {U ∪W :U ∈�1, W ∈�2} is a c-filter determining the ordering ��1 .

Proof. Since �1 and �2 are c-filters, it suffices to prove that U ∩ W 6= ∅ for
all U ∈ �1 and W ∈ �2. Suppose U ∩W = ∅ for some U ∈ �1 and W ∈ �2.
Let U = U1 ∪ · · · ∪ Uk ∪ V be a decomposition of U into disjoint basic open
semialgebraic sets U1, . . . ,Uk and a semialgebraic set V included in an algebraic
set. By (i) and (ii), there exists U ′ ∈�1 such that U ′ ⊂Ui for some i ∈ {1, . . . , k}.
Since Ui = {x ∈ RT

: f j (x) > 0, j = 1, . . . , n} for some f1, . . . , fn ∈Q[3T ], by
the assumption we have f1, . . . , fn ��1 0, and so there exists W1 ∈ �2 such that
f j (x) > 0 for all x ∈ W1 and j = 1, . . . , n. By (iii), there exists W2 ∈ �2 such
that W2 ⊂W ∩W1 and f j (x) > 0 for all j = 1, . . . , n and x ∈W2. Thus W2 ⊂U ,
which contradicts the assumption. �

Now let � be an ordering in Q(3T ), and let

U� =

{ n⋂
i=1

f −1
i ((0,+∞))⊂ RT

: fi ∈Q(3T ), fi � 0 for i = 1, . . . , n, n ∈ N

}
,

where we regard f ∈Q(3T ) as a function f : RT
→ R. By the definition of U�

and the Tarski transfer principle (see [Tarski 1948; Seidenberg 1954]), we find that
∅ 6∈U�. Moreover, the relation � is defined by

f � 0 ⇐⇒ there exists U ∈U� such that f (x) > 0 for all x ∈U.

The sets of the family U� may be disconnected, so U� is not a c-filter. We will
prove that the ordering � is defined by some c-filter.

Proposition 2.4. There exists a unique c-filter � with the following properties:

(a) For any f ∈Q(3T ), we have f �� 0 if and only if f � 0.

(b) For any U ∈ �, there exists a Q-algebraic set V ( RT such that U is a
connected component of RT

\ V .

(c) For any Q-algebraic set V (RT , some connected component of RT
\V belongs

to �.

Proof. Let F be the family of all connected components of sets U ∈U�.
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Claim 1. Every U ∈U� has a connected component U0 such that U0 ∩W 6=∅ for
any W ∈U�.

Let U ∈ U� and let U = U1 ∪ · · · ∪Un be the decomposition into connected
components. Assume to the contrary that there exist W1, . . . ,Wn ∈U� such that
Ui ∩Wi =∅ for i = 1, . . . , n. Then U ∩W1 ∩ · · · ∩Wn =∅, which is impossible.
This gives Claim 1.

Claim 2. Each U ∈U� has exactly one connected component SU that intersects
every W ∈U�.

Let U ∈U�, and let U1, . . . ,Up be the connected components of U . Then

(1) U =
s⋂

l=1

{x ∈ RT
: gl(x) > 0}

for some nonzero polynomials gl ∈Q[3T ], with gl � 0 for l = 1, . . . , s, and

Ui = [ f −1
i (0)∩Ui ] ∪

n⋃
j=1

m⋂
k=1

{x ∈ RT
: fi, j,k(x) > 0}, i = 1, . . . , p,

for some nonzero polynomials fi , fi, j,k ∈Q[3T ]. Denote by εi, j,k the sign of fi, j,k

in the ordering �. Then εi, j,k 6= 0 and εi, j,k fi, j,k � 0 for any i, j, k. Observe that
for some i ∈ {1, . . . , p} and j ∈ {1, . . . , n}, we have fi, j,k � 0 for k = 1, . . . ,m.
Indeed, in the opposite case,

∅=
s⋂

l=1

p⋂
i=1

n⋂
j=1

m⋂
k=1

{x ∈ RT
: gl(x) > 0, εi, j,k fi, j,k(x) > 0} ∈U�,

which is impossible. So, for some i0 ∈ {1, . . . , p} and j0 ∈ {1, . . . , n},

U ′ =
m⋂

k=1

{x ∈ RT
: fi0, j0,k(x) > 0} ∈U�,

and U ′∩U j =∅ for j 6= j0. Hence, by Claim 1, SU =U j0 is the unique connected
component of U satisfying Claim 2.

Claim 3. The family �= {SU :U ∈U�} is a c-filter.

Since for every Q-algebraic set V ⊂RT there exists U ∈U� such that U∩V =∅,
we have SU ∩ V =∅. Hence, it suffices to prove that for any SU1, SU2 ∈�, there
exists SU3 ∈� contained in SU1 ∩ SU2 . Indeed, by the argument of Claim 2, there
exist W1,W2 ∈U� such that W1⊂ SU1 and W2⊂ SU2 . Hence, SW1∩W2 ⊂W1∩W2⊂

SU1 ∩ SU2 and SW1∩W2 ∈�.

Claim 4. The c-filter � defined in Claim 3 satisfies the assertion of Proposition 2.4.
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Part (a) is obvious.
Let U ∈ U� be of the form (1), f = g1 . . . gs , and V = f −1(0). Then, by the

definition of SU , we see that SU is a connected component of RT
\V . This gives (b).

Let V = f −1(0) be a Q-algebraic subset of RT . Then U ={x ∈RT
: f 2(x)>0}=

RT
\ V ∈U� and SU ∈� is a connected component of RT

\ V . This gives (c) and
completes the proof. �

We call the c-filter � defined in Proposition 2.4 the plain filter for the ordering �
and denote it by ��.

From Proposition 2.4, we immediately obtain:

Corollary 2.5. The mapping � 7→�� is a one-to-one correspondence between the
set of orderings of Q(3T ) and the set of plain filters.

Remark 2.6. From the ultrafilter theorem [Bröker 1982], we see that for any
ultrafilter F of subsets of RT , there exists a plain filter �⊂ F.

Remark 2.7. It is easy to observe that the statements of this section hold with Q

replaced by R.

3. Archimedean orderings in Q(3T )

Let � be an ordering of Q(3T ). Then one can assume that T is linearly ordered by

t1 � t2 ⇐⇒ 3t1 �3t2 .

If f � g, then we also write g ≺ f .

Theorem 3.1. The following conditions are equivalent:

(a) The field (Q(3T ),�) is Archimedean.

(b) There exists x� ∈ ∂�� such that the set of coordinates of x� is algebraically
independent over Q.

(c) There exists x� ∈ ∂�� such that f � 0 if and only if f (x�) > 0.

(d) There exists x� ∈ ∂�� such that x� ∈U for any U ∈��.

Proof. Assume (a). Then for any t1, . . . , tn ∈ T with t1 ≺ · · · ≺ tn , and for the
projection πt1,...,tn : R

T
7→ (x(t1), . . . , x(tn)) ∈ Rn , the family

(2) �t1,...,tn = {πt1,...,tn (U ) :U ∈�}

determines an Archimedean order in Q(3t1, . . . , 3tn ). Thus for some W ∈�t1,...,tn ,
the function f = 32

t1 + · · · +3
2
tn is bounded on W . So the set W is bounded.

Hence, by Proposition 2.1, there exists (x1, . . . , xn) ∈ ∂�t1,...,tn . Since the pro-
jections πt1,...,tn are open, it is easy to observe that, for tk1, . . . , tk j ∈ {t1, . . . , tn}
with tk1 ≺ · · · ≺ tk j , we have (xk1, . . . , xk j ) ∈ ∂�tk1 ,...,tk j

. Consequently, there
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exists x ∈ RT such that for any t1, . . . , tn ∈ T with t1 ≺ · · · ≺ tn , we have
πt1,...,tn (x) ∈ ∂�t1,...,tn . Summing up, x ∈ ∂�. The set of coordinates of x is
algebraically independent over Q: otherwise, f (x)=0 for some nonzero polynomial
f ∈Q[3T ], and so f is infinitesimal. This contradicts (a) and gives (b).

Assume (b). Then any nonzero f ∈Q(3T )with f �0 is defined at x�. Moreover,
f (x�) 6= 0, so f (x�) > 0. Conversely, assume that f (x�) > 0. Then obviously for
some connected component U of f −1(0,+∞), we have U ∈�� and f (x) > 0 for
x ∈U . Summing up, we obtain (c).

The implication (c)⇒ (d) is trivial.
Now assume (d). Then we immediately obtain (b), and hence, no f ∈Q(3T )

is infinitesimal, and the field (Q(3T ),�) is Archimedean. This gives (a) and
completes the proof. �

Remark 3.2. The assertion of Theorem 3.1 also holds for every c-filter determin-
ing � in place of the plain filter ��.

Theorem 3.1 implies:

Corollary 3.3. Let T be a finite set. Then the set of Archimedean orderings of
Q(3T ) is a dense subset of the space of orderings in Q(3T ) in the path topology
(see, for instance, [Marshall 2008]) of the real spectrum Sper(Q[3T ]).

4. Examples of non-Archimedean orderings

Let m be a fixed positive integer and 3 a system of m variables 31, . . . , 3m .
Take any P ∈ R[3]. Let 0P ⊂ Rm be a set defined by

0P = {(λ1, . . . , λm) ∈ Rm
: P(λ1, . . . , λm−1, λm + γ )= 0 for some γ ∈ [0,∞)}.

We define a polynomial ω(P)∈R[31, . . . , 3m−1] (or a number ω(P)∈R if m= 1)
by ω(P)= 0 for P = 0, and ω(P)= P0 for P 6= 0, where

P = P03
d
m + P13

d−1
m + · · ·+ Pd

and Pi ∈ R[31, . . . , 3m−1] (or Pi ∈ R if m = 1) for i = 0, . . . , d and P0 6= 0.
Let us define sets WP ⊂Rm , for P ∈R[3]. The definition will be inductive with

respect to the number of variables 31, . . . , 3m . For P ∈ R[3], we put

(3) WP =

{
R \0P ⊂ R if m = 1,
(Rm
\0P)∩ (Wω(P)×R)⊂ Rm if m > 1.

By the Tarski–Seidenberg theorem — see Proposition 1.1(c) — the sets WP are
semialgebraic for all P ∈ R[3].

Analogously to Theorem 1.1 of [Spodzieja 1996], we prove the following propo-
sition, which gives an example of c-filter.
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Proposition 4.1. The family W= {WP : P ∈ R[3]} satisfies these conditions:

R0. WP ⊂ {λ ∈ Rm
: P(λ) 6= 0}.

R1. WP ∩WQ =WP Q .
R2. For P 6= 0, WP is an unbounded subset of Rm .
R3. For P 6= 0, WP is an open, connected and simply connected set.

Moreover, one can demand that

R4. WP = Rm for P = const, P 6= 0.

In particular, W contains the c-filter

�= {WP : P ∈Q[3]}.

Lemma 4.2. Let 1 ≤ i1 < · · · < im ≤ n, and let P ∈ R[3i1, . . . , 3im ]. Let
Q ∈ R[31, . . . , 3n] be a polynomial of the form

(4) Q(x1, . . . , xn)= P(xi1, . . . , xim ), (x1, . . . , xn) ∈ Rn.

Then WP ⊂ Rm , WQ ⊂ Rn , and

WQ ⊂ {(x1, . . . , xn) ∈ Rn
: (xi1, . . . , xim ) ∈WP}.

Proof. For P = 0 or n = m, the assertion is trivial. Assume that P 6= 0 and n > m.
Consider the case n = m+ 1. Then there exists 1≤ j ≤ n such that

(3i1, . . . , 3im )= (31, . . . , 3n− j ,3n− j+2, . . . , 3n),

under the obvious convention for j = 1 and j = n. Denote the i-th iteration of ω
by ωi , where ω0(P)= P . Then, for (x1, . . . , xn−i ) ∈ Rn−i ,

ωi (Q)(x1, . . . , xn−i )=


ωi (P)(x1, . . . , xn− j , xn− j+2, . . . , xn−i ) if 0≤ i ≤ j − 2,
ωi (P)(x1, . . . , xn− j ) if i = j − 1,
ωi−1(P)(x1, . . . , xn−i ) if j ≤ i ≤ n.

Hence,

0ωi (Q) = {(x1, . . . , xn−i ) ∈ Rn−i
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ 0ωi (P)}

for 0≤ i ≤ j − 2, and

0ω j−1(Q) = {(x1, . . . , xn− j+1) ∈ Rn− j+1
: (x1, . . . , xn− j ) ∈ 0ω j−1(P)}

and 0ωi (Q) = 0ωi−1(P) for j ≤ i ≤ n. In particular, Wωi (Q) =Wωi−1(P) for j ≤ i ≤ n.
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Summing up, by (3),

WQ =

n⋂
i=0

[(Rn−i
\0ωi (Q))×Ri

]

=

j−2⋂
i=0

{(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ Rn−i−1

\0ωi (P)}

∩ {(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j ) ∈ Rn− j

\0ω j−1(P)} ∩ [Wω j (Q)×R j
]

⊂

j−2⋂
i=0

{(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ Rn−i−1

\0ωi (P)}

∩ [Wω j−1(P)×R j
]

= {(x1, . . . , xn) ∈ Rn
: (xi1, . . . , xim ) ∈WP}.

This gives the assertion for n =m+ 1. Hence, by an easy induction with respect to
n−m, we obtain the assertion. �

Let T be a linearly ordered set and let � be the ordering of T .
For any t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , we define a projection map

πt1,...,tm : R
T
3 x 7→ (x(t1), . . . , x(tm)) ∈ Rm .

Define a family � of semialgebraic subsets U of RT by

(5) U = (πt1,...,tm )
−1(WP),

where m ∈ N, t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , and P ∈Q[3t1, . . . , 3tm ] \ {0}.

Proposition 4.3. The family � is a c-filter.

Proof. By Proposition 4.1 (condition R2), any U ∈� is a nonempty set.
Let V ( RT be a Q-algebraic set, and let P ∈ Q[3T ] \ {0} be such that V =
{x ∈ RT

: P(x) = 0}. Then P ∈ Q[3t1, . . . , 3tm ] \ {0} for some t1, . . . , tm ∈ T ,
t1 ≺ · · · ≺ tm , and U = (πt1,...,tm )

−1(WP). Applying Proposition 4.1 (condition R0),
we obtain that U satisfies (i).

Let U1,U2 ∈ �. Let t1, . . . , tm, u1, . . . , un ∈ T satisfy t1 ≺ · · · ≺ tm and
u1 ≺ · · · ≺ un , and assume moreover that for some P ∈ Q[3t1, . . . , 3tm ] and
Q ∈Q[3u1, . . . , 3un ] we have U1= (πt1,...,tm )

−1(WP) and U2= (πu1,...,un )
−1(WQ).

Let v1, . . . , vs ∈ T , v1 ≺ · · · ≺ vs , be such that {t1, . . . , tm} ∪ {u1, . . . , un} ⊂

{v1, . . . , vs}, and let P, Q ∈ R[3v1, . . . , 3vs ] be polynomials of the form (4) de-
termined by P and Q, respectively. Then, by Proposition 4.1 (condition R1) and
Lemma 4.2,

(πv1,...,vs )
−1(WP Q)= (πv1,...,vs )

−1(WP)∩ (πv1,...,vs )
−1(WQ)⊂U1 ∩U2.

This gives (ii).
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Take any U ∈�. There exist t1, . . . , tm ∈ T and P ∈ R[3t1, . . . , 3tm ] \ {0} such
that t1 ≺ · · · ≺ tm and U = (πt1,...,tm )

−1(WP). By Proposition 4.1 (condition R3),
U satisfies (iii). This completes the proof. �

From the definition of the family �, we immediately obtain:

Corollary 4.4. For any t1, t2 ∈ T , we have t1 � t2 if and only if 3t1 �� 3t2 .

Let Q ∈Q[3T ] \ {0} and let �Q be a family of semialgebraic subsets U of RT

defined by

(6) U = (πt1,...,tm )
−1(WP ∩WQ),

where m ∈ N, t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , and P Q ∈Q[3t1, . . . , 3tm ] \ {0}. By
Proposition 4.3, we have:

Corollary 4.5. �Q is a c-filter.

Let X ⊂ RT be an open semialgebraic set and let x̊ ∈ X be a point with rational
coordinates. There exist t1, . . . , tk ∈ T , t1 ≺ · · · ≺ tk , and an open semialgebraic set
Y ⊂ Rk such that X = {x ∈ RT

: (x(t1), . . . , x(tk)) ∈ Y }. Hence, there exists r > 0
such that

B := {x ∈ RT
: max

i=1,...,k
|x(ti )− x̊(ti )|< r} ⊂ X.

Let
P0 =3t1 . . . 3tk (3

2
t1 + · · ·+3

2
tk − 1/r2),

let U0 = (πt1,...,tk )
−1(WP0), and let F :U0→ RT be a mapping defined by

F(x)(t)=
{

x̊(t)+ 1/x(t) for x ∈U0, t ∈ {t1, . . . , tk},
x(t) for x ∈U0, t ∈ T \ {t1, . . . , tk}.

Proposition 4.6. {F(U ) :U ∈�P0} is a c-filter subset of X. In particular, for any
open semialgebraic set Y ⊂ RT , there exists c-filter subsets of Y .

Proof. By Lemma 4.2, any set U ∈ �P0 is a subset of U0. Moreover, F is an
open semialgebraic mapping, so F(U ) is semialgebraic for U ∈ �P0 . Hence,
{F(U ) :U ∈�P0} satisfies conditions (i)–(iii). �

From Proposition 4.6 and Theorem 3.1, we have that:

Corollary 4.7. The set of c-filters defined in Proposition 4.6 is a dense subset of the
space of orderings in Q(3T ) in the path topology of the real spectrum Sper(Q[3T ]).
Moreover, any ordering determined by such a c-filter is not Archimedean.

Remark 4.8. It is easy to see that the results of this section hold if we replace Q

by R.
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5. Fields of Nash functions

Let T be a nonempty set. We denote by N(X) the domain of Q-Nash functions on
an open connected semialgebraic set X ⊂ RT .

Let � be an ordering in Q(3T ) and let �� be the plain filter of subsets of RT

determining �. Let us introduce in
⋃

U∈�� N(U ) a relation ∼� by

( f1 :U1→ R)∼� ( f2 :U2→ R) ⇐⇒ ∃U∈�� (U ⊂U1 ∩U2 and f1|U = f2|U ).

From Proposition 2.4, we immediately see that ∼� is an equivalence relation. The
equivalence class of ∼� determined by f :U → R is denoted by [ f ]�, and the set
of all such classes by N�. The set N� is linearly ordered by

[ f ]� � 0 ⇐⇒ ∃U∈�� ( f ∈ N(U ) and f (x) > 0 for x ∈U ).

Proposition 5.1. The set N�, together with the usual operations

[ f1]�+ [ f2]� = [ f1|U + f2|U ]� , [ f1]� · [ f2]� = [ f1|U f2|U ]� ,

where f1 ∈ N(U1), f2 ∈ N(U2), and U ∈��, U ⊂U1 ∩U2, is a real field.

Proof. Since the ring N(U ) is a domain for any U ∈��, so is N�. We prove that
any nonzero f ∈N� has an inverse in N�. Indeed, there exists U ∈�� such that
f ∈ N(U ). Since f 6= 0, the set f −1(0) is contained in some proper Q-algebraic
subset of RT . Then, by the definition of c-filter, one can assume that f (λ) 6= 0 for
any λ ∈ U . Thus 1/ f ∈ N(U ), so f has an inverse in N�. Summing up, N� is a
field. Since −1 ∈ N(U ) is not a sum of squares in N(U ), it follows that −1 ∈ N�
is not a sum of squares in N�. �

Theorem 5.2. The field N� is a real closure of the field (Q(3T ),�).

Proof. Take any irreducible polynomial P ∈ N�[Z ] of odd degree d with respect
to Z . Then there exists U ∈ �� such that P ∈ N(U )[Z ]. Let t1, . . . , tm ∈
T , and let Ũ ⊂ Rm be an open connected semialgebraic set such that U =
{x ∈ RT

: (x(t1), . . . , x(tm)) ∈ Ũ }. By using the Hermite method (for Ũ ) we
deduce that there exists a decomposition U =U1 ∪ · · · ∪Uk ∪ V of U into disjoint
open basic Q-semialgebraic sets U1, . . . ,Uk and a semialgebraic set V included in
an algebraic set such that P(x, Z) has the same number of zeroes for all x ∈ Ui

and each of these zeroes is single. By (i) and (ii) in the definition of a c-filter,
there exists U ′ ∈�� such that U ′ ⊂Ui for some i ∈ {1, . . . , k}. Then there exists
k ∈ N, k > 0 such that P(x, Z) has exactly k zeroes for x ∈U ′, and so there exist
functions ξ1, . . . , ξk :U ′→ R with ξ1(x) < · · ·< ξk(x) such that P(x, ξi (x))= 0
for x ∈ U ′, i = 1, . . . , k. As ξi (x) are single zeroes of P(x, Z), by the Implicit
Function Theorem, ξi is a Nash function for i = 1, . . . , k. As N� is a real field
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(Proposition 5.1), N� is a real closed field. Since N� is an algebraic extension of
Q(3T ), by the Artin–Schreier Theorem, it is a real closure of (Q(3T ),�). �

Remark 5.3. The above results of this section also hold for an arbitrary c-filter
determining � in place of the plain filter ��. The results also hold if we put R in
place of Q.

From Theorems 3.1 and 5.2, we recover the familiar result that any Archimedean
field can be embedded in R.

Corollary 5.4. Let �� be a plain filter of subsets of RT determining an Archi-
medean ordering � of Q(3T ), and let x� ∈

⋂
U∈�� U. Then the mapping

N� 3 f 7→ f (x�) ∈ R

is an order-preserving monomorphism.

From Theorem 5.2, we immediately obtain:

Corollary 5.5. Let R be a real closed field with ordering �, and let T be the
transcendence basis of R over Q whose existence is guaranteed by the Kuratowski–
Zorn lemma. Assume that T 6= ∅ and let 3T = (3t : t ∈ T ) be a system of
independent variables. Then the field R is order-preserving isomorphic to a real
closure of the rational functions field Q(3T ), i.e., to some field N�.

Remark 5.6. Let K be an algebraically closed field of characteristic zero. Then
K = R[i], where i2

= −1, for some real closed field R. Let T ⊂ R be the
transcendence basis of K over Q. Assume that T 6=∅. Then K is isomorphic to an
algebraic closure of Q(3T ). By Theorem 1.1 of [Spodzieja 1996], one can introduce
a filter �C of open, connected, and simply connected semialgebraic subsets U of
CT satisfying conditions (i), (ii), and (iii). Then, analogously to [Spodzieja 1996],
one can introduce a geometric construction of the algebraic closure of Q(3T ) in
terms of complex Nash functions.
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TWISTED K-THEORY FOR THE ORBIFOLD [∗/G]
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The main result of this paper establishes an explicit ring isomorphism be-
tween the twisted orbifold K-theory ωKorb([∗/G]) and R(Dω(G)) for any
element ω ∈ Z3(G; S1). We also study the relation between the twisted
orbifold K-theories αKorb(X) and α′Korb(Y) of the orbifolds X = [∗/G] and
Y = [∗/G′], where G and G′ are different finite groups, and α ∈ Z3(G; S1)

and α′ ∈ Z3(G′; S1) are different twistings. We prove that if G′ is an ex-
traspecial group with prime number p as an index and order pn (for some
fixed n∈N), under a suitable hypothesis over the twisting α′ we can obtain a
twisting α on the group (Z p)

n such that there exists an isomorphism between
the twisted K-theories α′Korb([∗/G′]) and αKorb([∗/(Z p)

n]).

1. Introduction

The twisted K-theory is a successful example of the increasing flow of physical
ideas into mathematics. Brought from the physical setup, the twisted orbifold
K-theory has been, for the last twenty-five years, a fruitful field of ideas and
development in K-theory and algebraic topology. It emerged from two sources: the
consideration of the D-brane charge on a smooth manifold by Witten [1998], and
the concept of discrete torsion on an orbifold by Vafa [2001]. Although for any
element α ∈ H 3(X;Z) one can associate the twisted K-theory αK (X), its structure
is simpler if the element α lies in the image of the pullback associated to the map
X→∗. In such a case, we call this element a discrete torsion since we can see it
as an element in the cohomology H 3(G;Z).

On the other hand, an orbifold is a type of generalization of a smooth manifold.
It is a topological space locally modeled as a quotient of a manifold by an action
of a finite group. When X represents an orbifold, the twisted K-theory is more
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for our work.
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interesting because it is naturally related to equivariant theories if we specialize
in the orbifold X = [X/G], where X is a smooth manifold and G is a compact
Lie group acting almost freely on X . In the case of orbifolds, we have another
important advantage to work with; it is the cohomological counterpart given by the
Chen–Ruan cohomology on orbifolds H∗C R(X;C) related to K-theory by the Chern
character. The Chen–Ruan cohomology of orbifolds has an interesting nontrivial
internal product which makes it an algebra. This product can be presented in the
setup of the K-theory to obtain a stringy product on the K-theory of the orbifold
Korb(X) (see [Becerra and Uribe 2009; Adem and Ruan 2003]). If the orbifold
considered has the form [X/G], then the twisted orbifold K-theory can be related
to the equivariant K-theory of the spaces of fixed points by the G-action on X .

On the other hand, the tensor product defines a product

αKorb(X)⊗
βKorb(X)→

α+βKorb(X)

for any pair of elements α and β in H 3(X;Z). In fact, one can obtain a stringy
product for the twisted K-theory on orbifolds by using the stringy product defined
on each space of fixed points to define an explicit stringy product in each αK (X)
for any α ∈ H 3(X;Z). Nevertheless, the crucial information to define the stringy
product on the twisted K-theory of orbifolds does not lie in H 3(X;Z); instead it
lies in H 4(X;Z). Given an element φ in H 4(X;Z), it defines an element θ(φ)
in H 3(∧X;Z), where ∧X is the inertia orbifold associated to X. Hence, we can
define a stringy product over the twisted K-theory orbifold θ(φ)Korb(∧X) by using a
suitable structure of the inertia orbifold ∧X . One such product structure is based
on the map θ(φ) called the inverse transgression map, which is considered to be
the inverse of the classical transgression map.

For this paper, the stringy product in Korb(X) has a trivial expression as we will
restrict our observations to the case in which X = [{∗}/G], where G is a finite
group.

The main result in this paper is to present an explicit relation between the twisted
Drinfeld double Dω(G) and the twisted orbifold K-theory ωKorb([∗/G]) for an
element ω of discrete torsion (see Section 4). This allows us to relate the twisted
orbifold K-theories ωKorb([∗/G]) and ω′Korb([∗/G ′]) for two orbifolds [∗/G] and
[∗/G ′] with the twistings ω ∈ H 4(G;Z) and ω′ ∈ H 4(G ′;Z). To obtain such a
relation, we modify the stringy product defined in [Adem et al. 2007] by an element
in Rαg (C(g)∩C(h)).

2. Pushforward map in the twisted representation ring

In this section, we introduce the pushforward map. Although this map can be defined
for almost complex manifolds, we will focus only on the case of homogeneous
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spaces G/H . To define this map, let us recall the Thom isomorphism theorem in
equivariant K-theory.

Fact [Segal 1968, Proposition 3.2]. Let X be a compact G-manifold and p : E→X
be a complex G-vector bundle over X. There exists an isomorphism

φ : K ∗G(X)→ K ∗G(E, E \ E0), φ([F]) := p∗(F)⊗ λ−1(E),

where E0 is the zero section and the class λ−1(E) is the Thom class associated
to [E].

Remark 2.1. We need to recall how to define the normal bundle. If M and N are
G-manifolds (that means a manifold with a smooth G-action) and f : M→ N is a
G-embedding, we can define a (real) vector bundle τ such that d f (T M)⊕ τ ∼= T N
(for details in this construction, consult [tom Dieck 1987]). If the map f is not a
G-embedding, we can consider f : M → N × D j (D j is the unitary disk in R j

with the trivial G-action) for sufficiently large j and by Corollary 1.10 [Wasserman
1969] we can approximate f by an immersion g f , then we define the normal bundle
for f as the normal bundle of g f .

Now, we proceed to define the pushforward map f∗ : K ∗G(X)→ K ∗G(Y ) for a
differentiable map f : X→ Y between almost complex G-manifolds by letting τ
be the normal bundle associated to the map f : X→ Y . We define the pushforward,
which will be denoted by f∗, as the composition

K ∗G(X)
φ
−→K ∗G(τ,τ \τ0)

j
−→K ∗G(Y×D j ,(Y×D j )\g f (X))

i]
−→K ∗G(Y×D j )∼=K ∗G(Y ),

where φ is the Thom isomorphism. The map j is given by excision, the map i] is
the pullback map induced by the inclusion, and the last isomorphism is induced by
the natural inclusion. The pushforward map can be defined also in the twisted case
(see [Carey and Wang 2008]). Consider the following diagram of inclusions:

G � K

H

6

� H ∩ K

6

from which we get a diagram of surjections:

G/G �
i1 G/K

G/H

j1
6

�i2 G/(H ∩ K )

j2
6
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Using this diagram we obtain the map

j2∗ ◦ i∗2 : K
∗

G(G/H)→ K ∗G(G/K ), [E] 7→ [λ−1(τ j2)⊗ i∗2 (p
∗(E))],

where τ j2 is the normal bundle of j2, and the map

i∗1 ◦ j1∗ : K ∗G(G/H)→ K ∗G(G/K ), [E] 7→ [i∗1 (λ−1(τ j1))⊗ i∗1 (p
∗(E))].

Afterwards, we compare the two maps and we conclude that the obstruction bundle
is λ−1(i∗1 (τ j1)/τ j2). This means that

(2-1) i∗1 ◦ j1∗([E])= j2∗ ◦ i∗2 ([E])⊗ λ−1(i∗1 (τ j1)/τ j2).

We consider the particular case of the groups H =CG(x) and K =CG(y), where x
and y are elements in the group G and CG(x) and CG(y) denote their centralizers
in G. Then by (2-1) we get an obstruction bundle which is denoted as γx,y .

3. Twisted orbifold K-theory for the orbifold [∗/G]

The goal of this section is to consider a K-theory structure on an orbifold structure
defined by the trivial action of a finite group over the space {∗}. This is a particular
case of a more general kind of spaces that are obtained by almost free actions of a
compact Lie group over compact manifolds. These spaces naturally have an orbifold
structure that sets a basis for all developments in this paper. When the manifold is
one point and the group is finite, all the hypotheses in the already defined theory
hold.

Let us consider the inertia orbifold ∧[∗/G] for a finite group G. We define the
orbifold K-theory for the orbifold [∗/G] as the module

Korb([∗/G]) := K (∧[∗/G])∼=
⊕
(g)

K ([∗/CG(g)])∼=
⊕
(g)

KCG(g)(∗),

where (g) denotes the class of conjugation of the element g ∈G and CG(g) denotes
the centralizer of the element g∈G. In this case, the orbifold K-theory introduced in
[Adem et al. 2007] turns out to be simply KG(∗), which is additively isomorphic to
the group

⊕
(g) R(CG(g)) (see [Adem and Ruan 2003]), where R(CG(g)) denotes

the Grothendieck ring associated to the semigroup of isomorphism classes of linear
representations of the group CG(g), and the sum is taken over conjugacy classes.
The product structure in KG(∗) is defined as follows: consider the maps

e1 : CG(g)∩CG(h)×CG(g)∩CG(h)→ CG(g), e1(a, b)= a,

e2 : CG(g)∩CG(h)×CG(g)∩CG(h)→ CG(h), e2(a, b)= b,

e12 : CG(g)∩CG(h)×CG(g)∩CG(h)→ CG(gh), e12(a, b)= ab.
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Note that for any element τ ∈ G, the map φτ : G→ G defined by φτ (g)= τgτ−1

implies that φτ ◦ ei = ei ◦ (φτ , φτ ). Thus, the maps ei are φτ -equivariant for any
element τ ∈ CG(g). Given E in R(CG(g)) and F in R(CG(h)), we define the
product

(3-1) E ? F := e12∗(e∗1(E)⊗ e∗2(F)⊗ γg,h) ∈ R(CG(gh)).

Since the action is trivial, it follows from Theorem 2.2 in [Segal 1968] that
R(CG(g))= KCG(g)(∗). Thus, the product can be seen as

? : KCG(g)(∗)× KCG(h)(∗)→ KCG(gh)(∗)

in the setup of equivariant K-theory. We note that the product defined in (3-1)
is analogous to the stringy and twisted stringy product defined in [Becerra and
Uribe 2009] in the case in which G is an abelian group. Let α be a cocycle in
Z3(G; S1), i.e., α : G × G × G → S1 satisfies α(a, b, c)α(a, bc, d)α(d, c, d) =
α(ab, c, d)α(a, b, cd) for all a, b, c, d ∈ G. We proceed to define the twisted
orbifold K-theory αKorb([∗/G]).

For the global quotient [X/G] and the element α ∈ Z3(G; S1), the twisted
orbifold K-theory is defined as the sum

(3-2) αKorb([X/G]) :=
⊕
g∈C

αgKCG(g)(X
g),

where C is a set of representatives of the conjugacy classes in G and αg is the
inverse transgression map (see below for details). In particular, if G is an abelian
group, the set C is the group G. For every group H and β ∈ Z2(H ; S1) we take its
associated group Hβ given by the central extension

1→ S1
→ Hβ→ H → 1.

Recall that the group Hβ is the set S1
× H , with the group operation defined by

(s1, h1) ∗ (s2, h2) := (s1s2β(h1, h2), h1h2).

The twisted equivariant K-theory βK H (X) is defined as the class of Hβ-equivariant
vector bundles such that the action of the center S1 restricts to multiplication on the
fibers. In the case of the space X = {∗}, the twisted equivariant K-theory βK H (∗)

coincides with Rβ(H), the Grothendieck ring of classes of projective representations
for the group H (see [Karpilovsky 1993] for a precise definition of Rβ(H)).

Returning to the case of the orbifold [∗/G] for a finite group G, the twisted
orbifold K-theory defined in (3-2) takes the form

αKorb([∗/G]) :=
⊕
g∈C

αgKCG(g)(∗)
∼=

⊕
g∈C

Rαg (CG(g)).
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Inverse transgression map. We review the inverse transgression map for finite
groups to describe the multiplicative structure in the module αKorb([∗/G]). Through-
out this subsection we follow the development presented in Section 3.2 in [Becerra
and Uribe 2009]. Let us recall the definition of the inverse transgression map for
a global quotient [M/G]. For g ∈ G, consider the action of CG(g)×Z on Mg

=

{x ∈ M | gx = x} given by (h,m) · x := hgm x and the homomorphism

ψg : CG(g)×Z→ G, (h,m) 7→ hgm .

Thus, the inclusion ig : Mg
→ M becomes a ψg equivariant map and induces a

homomorphism
i∗g : H

∗

G(M;Z)→ H∗CG(g)×Z(M
g
;Z).

From the isomorphisms

H∗CG(g)×Z(M
g
;Z)∼= H∗(Mg

×CG(g)×ECG(g)× BZ;Z)

∼= H∗CG(g)(M
g
;Z)⊗Z H∗(S1

;Z),

we have, for each k,

i∗g : H
k
G(M;Z)→ H k

CG(g)(M
g
;Z)⊕ H k−1

CG(g)(M
g
;Z).

Hence, we define the inverse transgression map as the map induced by projecting
on the second factor

τg : H k
G(M;Z)→ H k−1

CG(g)(M
g
;Z).

In the particular case that [M/G] = [∗/G] the definition above turns into:

Definition 3.1. For any element α ∈ Z3(G; S1), the inverse transgression map is
defined as the map

τg : H k
G(∗;Z)→ H k−1

CG(g)(∗;Z)

induced by τg on each k.

Product in the twisted case. Take α ∈ Z3(G;Z). Let us consider the orbifold
[∗/G] where G is a finite group. Now, consider the module

(3-3) αKorb([∗/G]) :=
⊕
g∈C

Rαg (CG(g)),

where αg ∈ H 2(C(g);Z) denotes the inverse transgression map of α. The goal of
this subsection is to define an associative product for this module; specifically, we
show that it’s possible to endow the module αKorb([∗/G]) with a ring structure. For
simplicity, we denote CG(g) as C(g). Consider the inclusion maps of groups

ig : C(g)∩C(h)→ C(g), ih : C(g)∩C(h)→ C(h)
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and

igh : C(g)∩C(h)→ C(gh)

for g, h ∈ G. These maps induce the restriction maps

i∗g : H
2(C(g); S1)→ H 2(C(g)∩C(h); S1),

i∗h : H
2(C(h); S1)→ H 2(C(g)∩C(h); S1),

and the morphism igh induces a map

(igh)∗ : H 2(C(g)∩C(h); S1)→H 2(C(gh); S1),

which is the induction morphism in group cohomology (see for example [tom Dieck
1987]).

Given E ∈ Rαg (C(g)), we consider it as a C(g)αg -module that restricts to mul-
tiplication on the fibers over S1. Therefore, we get the following commutative
diagram for the inclusion ig and the identity map s on S1:

(3-4)

1 - S1 - C(g)αg
- C(g) - 1

1 - S1

s

6

- (C(g)∩C(h))i∗g (αg)

(s, ig)

6

- C(g)∩C(h)

ig

6

- 1

This implies that any C(g)αg -module restricts to a (C(g) ∩ C(h))i∗g (αg)-module,
denoted by i∗g(E). In particular, for any (E, F) ∈ Rαg (C(g))× Rαh (C(h)), we get
the map

Rαg (C(g))× Rαh (C(h))→ Ri∗g (αg)(C(g)∩C(h))× Ri∗h (αh)(C(g)∩C(h)),

(E, F) 7→ (i∗g(E), i∗h (F)).

Now, from the central extensions

1→ S1
→ (C(g)∩C(h))i∗g (αg)→ C(g)∩C(h)→ 1,

1→ S1
→ (C(g)∩C(h))i∗h (αh)→ C(g)∩C(h)→ 1

induced by i∗g(α) and i∗h (α) ∈ H 2(C(g)∩C(h); S1)), we get

1→ S1
× S1
→ (C(g)∩C(h))i∗g (αg)× (C(g)∩C(h))i∗h (αh)

→ C(g)∩C(h)×C(g)∩C(h)→ 1

For E ∈ Ri∗g (αg)(C(g)) and F ∈ Ri∗g (αg)(C(g)), the tensor product E⊗F is naturally
a (C(g)∩C(h))i∗g (αg)× (C(g)∩C(h))i∗h (αh)-module that restricts to multiplication
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on the fibers by elements of S1. By considering the action restricted to the diagonal

1(C(g)∩C(h))⊂ C(g)∩C(h)×C(g)∩C(h),

we get the central extension

1→ S1
→ (C(g)∩C(h))i∗g (αg)i∗h (αh)→1(C(g)∩C(h))→ 1

corresponding to the element

i∗g(αg)i∗h (αh) ∈ H 2(C(g)∩C(h); S1).

Thus, we have

Ri∗g (αg)(C(g)∩C(h))× Ri∗h (αh)(C(g)∩C(h))→ Ri∗g (αg)i∗h (αh)(C(g)∩C(h)),

(E, F) 7→ E ⊗ F.

Now, since i∗g(αg)i∗h (αh)= i∗gh(αgh) in H 2(C(g)∩C(h); S1) since the cocycles
are cohomologous (see [Adem et al. 2007, Proposition 4.3]), it follows that

Ri∗g (αg)i∗h (αh)(C(g)∩C(h))∼= Ri∗gh(αgh)(C(g)∩C(h)).

Therefore, the induction map can be defined as

Ri∗gh(αgh)(C(g)∩C(h))→ R(igh)∗i∗gh(αgh)(C(gh)), A 7→ IndC(gh)
C(g)∩C(h)(A).

Thus, a product on the module (3-3) can be obtained from the previously described
morphisms to get

(3-5) Rαg (C(g))× Rαh (C(h))→ Rαgh (C(gh))

defined by

(E, F) 7→ E ?α F := IndC(gh)
C(g)∩C(h)(i

∗

g(E)⊗ i∗h (F)⊗ γg,h),

where γg,h is defined as the excess bundle as in Section 2.

Definition 3.2. By using the restriction notation, we define the twisted stringy
product in the module αKorb([∗/G]) as the map

Rαg(C(g))× Rαh(C(h))→ Rαgαh (C(gh))

(E, F) 7→ I C(gh)
C(g)∩C(h)

(
ResC(g)

C(g)∩C(h)(E)⊗ResC(h)
C(g)∩C(h)(F)⊗γg,h

)
,

where ResC(g)
C(g)∩C(h) denotes the restriction of α-twisted representations of C(g) to

ig(α)-representations of C(g)∩C(h) (and likewise for h).
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4. Twisted orbifold K-theory and the algebra Dω(G)

The goal of this section is to give an introduction of the twisted Drinfeld double
Dω(G) and to show an explicit relation with the twisted orbifold K-theory. Our
main reference is [Witherspoon 1996]. Let us recall the definition and the main
properties of the twisted Drinfeld double to clarify the nature of this structure
and its representations. From a different point of view, we can also obtain some
properties of the stringy product defined on the sections above, using the properties
of the representations of the twisted Drinfeld double. Namely, the Grothendieck
ring of these representations is isomorphic to the twisted orbifold K-theory with
the structure induced by the stringy product, which will be proven on page 481.
Because of the associativity of the tensor product of the Dω(G)-modules, this yields
a proof of the associativity of the stringy product defined above; see Corollary 4.3.

Let G be a finite group and k an algebraically closed field. Let ω be an element
in Z3(G, k∗), that is, a function ω : G×G×G→ k∗ such that

ω(a, b, c)ω(a, bc, d)ω(d, c, d)= ω(ab, c, d)ω(a, b, cd)

for all a, b, c, d ∈ G. We define the quasitriangular quasi-Hopf algebra Dω(G)
as the vector space (kG)∗ ⊗ (kG), where (kG)∗ denotes the dual of the algebra
kG (see [Drinfel’d 1987]) and the algebra structure in Dω(G) is given as follows:
consider the canonical basis {δg⊗ x̄}g,x∈G of Dω(G), where δg is the function such
that δg(h)= 1 if h = g and 0 otherwise. We denote δg⊗ x̄ by δg x̄ . Now, we define
the product of elements in the basis by

(4-1) (δg x̄)(δh ȳ)= ωg(x, y)δgδxhx−1 xy,

where ωg is the image of ω via the inverse transgression map of the element g ∈ G
as in Definition 3.1. The multiplicative identity for this product is the element
1Dω(G)=

⊕
g∈G δg1̄. Now, we use the notation δg for the element δg1̄. The coproduct

1 : Dω(G)→ Dω(G)⊗ Dω(G) in the algebra Dω(G) is defined by the map

(4-2) 1(δg x̄)=
⊕
h∈G

γx(h, h−1g)(δh x̄)⊗ (δh−1g x̄),

where
γx(h, l)=

ω(h, l, x)ω(x, x−1hx, x−1lx)
ω(h, x, x−1lx)

.

The algebra Dω(G) endowed with these operations is usually called the twisted
Drinfeld double.

Representations of Dω(G). Let U, V be modules over the algebra Dω(G). Con-
sider the tensor product U ⊗ V as a Dω(G)-module endowed with the action from
Dω(G), induced by the coproduct 1. Note that the field k can be considered as a
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trivial Dω(G)-module, which is the multiplicative identity for the tensor product
of Dω(G)-modules. In particular, for k = C, we define the ring of representations
R(Dω(G)) of Dω(G) as the C-algebra generated by the set of isomorphism classes
of Dω(G)-modules with the direct sum of modules as the sum operation and the
tensor as the product operation. We define the ideal R0(Dω(G)) generated by all
combinations [U ] − [U ′] − [U ′′] (brackets denoting the isomorphism class) where
0→U ′→U →U ′′→ 0 is a short exact sequence of Dω(G)-modules. Now, we
define the Grothendieck ring R(Dω(G)) as the quotient between Rep(Dω(G)) and
the ideal R0(Dω(G)).

The algebra Dω(G) is quasitriangular with

A =
⊕

g,h∈G

δg1̄⊗ δh ḡ and A−1
=

⊕
g,h∈G

ωghg−1(g, g−1)−1δg1̄⊗ δhg−1.

Thus, A1(a)A−1
= σ(1(a)) for all a ∈ Dω(G), where σ is the automorphism that

exchanges the images in the coproduct. Therefore, if U and V are Dω(G)-modules,
this equation implies that U ⊗ V and V ⊗U are isomorphic as Dω(G)-modules;
that is, the algebra R(Dω(G)) is commutative. Now, assume that β : G×G→ C∗

is a cochain with coboundary

δβ(a, b, c)= β(b, c)β(a, bc)β(ab, c)−1β(a, b)−1.

Then, the algebra Dωδβ(G) is isomorphic to Dω(G) given through the map

υ(δg x̄)=
β(g, x)

β(x, xgx−1)
δg x̄ .

In particular, we get the isomorphism

υ∗ : R(Dωδβ(G))
∼=
→ R(Dω(G)).

Next, we consider the following theorem (compare [Willerton 2008, Theorem 19]):

Theorem 4.1. The ring R(Dω(G)) is additively isomorphic to the ring⊕
(g)⊂G

Rωg (C(g)),

where (g) denotes the conjugacy class of g ∈ G.

Proof. For all x ∈ G, we take the subspaces

Sω(x) :=
⊕

g∈C(x)

Cδx ḡ and Dω(x) :=
⊕
g∈G

Cδx ḡ

of Dω(G). Then Sω(x) is a subalgebra of Dω(G) with identity element δx 1̄ such
that, from the product defined in Dω(G), it follows that Sω(x)∼= Rωx C(x) where
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Rωx C(x) is defined in [Karpilovsky 1993]. Given (g)⊂ G, consider

Dω((g)) :=
⊕
h∈(g)

Dω(h).

Note that Dω(G) ∼=
⊕

(g)⊂G Dω((g)) (additively). For an element h in a fixed
conjugacy class (g), take a Sω(h)-module (i.e., a Rωh C(h)-module) U , and define
the map

U 7→U ⊗Sω(h) Dω(h),

whose image is a Dω((g))-module if we take the action of Dω((g)) on it as right
multiplication in the second factor. On the other hand, for a Dω((g))-module V ,
we define the map

V 7→ V δh 1̄,

whose image is a Rωh C(h)-module. Thus, there is an equivalence between Rωh C(h)-
modules and Dω((g))-modules. Therefore, from [Karpilovsky 1993, Theorem I.3.2],
we have Rωh (C(h))∼= R(Dω((g))) for any h ∈ (g), and the theorem follows. �

From [Dijkgraaf et al. 1991], we get that it is possible to explicitly describe the
morphism using the induction DPR which is defined on each Rα(C(g)) for g ∈ G.
Namely, let (ρ, V ) be a twisted representation of the group C(g) and define the
representation ψ((ρ, V )) := (πρ, A) of Dω(G) as given by

(4-3) A := IndG
C(g)(V ), πρ := πρ(δk x̄)x j ⊗v = δkδxs gx−1

s

ωk(x, x j )

ωk(xs, r)
xs⊗ρ(r)v,

where x j is a representative of a class in G/C(g), r ∈ C(g) and the element xs is a
representative of a class in G/C(g), such that xx j = xsr .

Relation between R(Dω(G)) and the twisted K-theory of the orbifold [∗/G]. Let
us consider an element ω ∈ Z3(G; S1). By (3-3) the twisted orbifold K-theory of
the orbifold [∗/G] is the ring

ωKorb([∗/G])=
⊕
(g)⊂G

ωgKC(g)(∗)∼=
⊕
(g)⊂G

Rωg (C(g)).

By Theorem 4.1, there exists an additive isomorphism between R(Dω(G)) and
the twisted orbifold K-theory ωKorb([∗/G]). We will show that if we endow this
ring with the twisted product ?α, then the additive isomorphism is in fact a ring
isomorphism. The DPR induction is defined as (I G

C(g)(E), ρπ ) where (E, π) is an
element in Rωg (C(g)). Let us consider two elements E and F in Rωg (C(g)) and
Rωh (C(h)) respectively. The tensor product of the DPR-induction of these elements
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can be related to the twisted product ? via the Frobenius reciprocity as follows:

I G
C(g)(E)⊗ I G

C(h)(F)∼= I G
C(g)

(
E ⊗ RG

C(g)(I
G
C(h)(F))

)
∼= I G

C(g)
(
E ⊗ I G

C(g)(R
C(h)
C(g)∩C(h)(F)⊗ γg,h)

)
∼= I G

C(g)
(
I C(g)
C(g)∩C(h)(R

C(g)
C(g)∩C(h)(E)⊗ RC(h)

C(g)∩C(h)(F)⊗ γg,h)
)

∼= I G
C(g)∩C(h)

(
RC(g)

C(g)∩C(h)(E)⊗ RC(h)
C(g)∩C(h)(F)⊗ γg,h

)
∼= I G

C(gh)
(
I C(gh)
C(g)∩C(h)(R

C(g)
C(g)∩C(h)(E)⊗ RC(h)

C(g)∩C(h)(F)⊗ γg,h)
)

∼= I G
C(gh)(E ?ω F).

Proposition 4.2. There exists a ring isomorphism

(ωKorb([∗/G]), ?ω)∼= (R(Dω(G)),⊗).

Proof. DPR induction defines a morphism φ :
⊕

(g)⊂G Rω(C(g))→ R(Dω(G)).
Moreover, we proved above that for E ∈ Rωg (C(g)) and F ∈ Rωh (C(h)), we have

φ(E)⊗φ(F)= φ(E ?ω F);

that is, it is a ring homomorphism. By Theorem 4.1, the result follows. �

Corollary 4.3. The stringy product ?ω is associative.

5. Twisted K-theory for an extraspecial p-group

The goal of this section is to establish a relation between the twisted orbifold
K-theories for the orbifolds [∗/H ] and [∗/G], where H is an extraspecial group
with exponent p, order p2n+1 and G = (Zp)

2n+1. For an odd prime number p, a
p-group H is called extraspecial if its center Z(H) is a cyclic group of order p,
that is Z(H)∼= Zp, and H/Z(H) is an elementary abelian group. Any extraspecial
p-group has order p2n+1 for some n ∈ N. On the other hand, for any n there exist
two extraspecial groups of order p2n+1 such that a group has exponent p and the
other group has exponent p2. The motivation for these kinds of relations comes
from works such as [Goff et al. 2007], where these relations are studied for p = 2,
and to some extent results due to A. Duman [2009]. However, there exists a deeper
interest to study these kinds of relations by establishing correspondences with the
twisted Drinfeld algebras. In particular, the following result is of utmost importance
for obtaining the results of this section:

Theorem 5.1 [Naidu and Nikshych 2008, Corollary 4.20]. Let H be a finite group
ω′ ∈ Z3(H ; S1) such that

• H contains an abelian normal subgroup K ,

• ω′|K×K×K is trivial in cohomology (in H 3(K ; S1)),
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• there exists an H-invariant 2-cochain µ over H such that δ(µ)|K×K×K =

ω′|K×K×K .

Then, there exists a group G and an element ω ∈ Z2(G; S1) such that R(Dω(G))∼=
R(Dω′(H)).

From the relation established in the previous section between the twisted Drin-
feld’s algebras and the twisted orbifold K-theory, we get the following corollary
under the same assumptions as in the last theorem.

Corollary 5.2. There exists a ring isomorphism

ωKorb([∗/G])∼= ω′Korb([∗/H ]).

Now, we follow with a nice application of this result.

Proposition 5.3. Let H be an extraspecial group with order p2n+1 and exponent p.
Then

Korb([∗/H ])∼= ωKorb([∗/(Zp)
2n+1
])

for some nontrivial twisting ω.

Proof. Let H be an extraspecial group. From definition we may assume K = Z(H)∼=
Zp. Now, suppose there exists µ∈C2(H ; S1) such that δ(µ)|K×K×K =ω

′
|K×K×K ,

which is H -invariant; that is, if we take the action of H on the 2-cochains C2(H ; S1)

defined by yµ := µ(yx1 y−1, yx2 y−1), then yµ = µ in C2(H ; S1) for all y ∈ H .
Now, since K = Z(H), it follows that yµ|K = µ|K for all y ∈ H . Thus, for all
y ∈ H there exists a 1-chain ηy on H such that δηy =

yµ/µ= 1. Since K is abelian,
we can define the map

ν : H/K × H/K → C1(H ; S1), (y1, y1) 7→
y2ηy1ηy2

ηy1 y2

.

Lemma 5.4 [Naidu 2007, Lemma 4.2, Corollary 4.3]. The function ν defines an
element in H 2(H/K ; K̂ )).

However, this element represents a short exact sequence

1→ K̂ → K̂ ×ν H/K → H/K → 1,

where the product in K̂ ×v H/K is defined by the formula

(ρ1, x1)(ρ2, x2) := (ν(x1, x2)ρ1ρ2, x1x2).

Now, the element ω ∈ Z3(G; S1), with G := K̂ ×ν H/K , is defined for all (ρ1, x1),
(ρ2, x2), (ρ3, x3) in K̂ ×ν H/K by the formula

ω
(
(ρ1, x1)(ρ2, x2)(ρ3, x3)

)
:=
(
ν(x1, x2)(u(x3))

)
(1)ρ1(kx2,x3),

where u : H/K → H is a function such that, when composed with the projection
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p : H → H/K , yields p(u(x)) = x , and kx2,x3 ∈ H is an element that satisfies
u(x1)u(x2)= kx1,x2u(p(u(x1)u(x2))).

Clearly, when ω′ is the trivial 3-cocycle, we can choose µ to be trivial and so
ν is also trivial. By definition of an extraspecial group, H/K is an elementary
abelian group and if ν is trivial, it follows easily that K̂ ×ν H/K ∼= (Zp)

2n+1. It
remains to show that ω is nontrivial in H 3(G; S1). Take H = {h1, . . . , h p2n+1},
K = Z(H) = {z1, . . . , z p} and K̂ = {ρ1, . . . , ρp}, with ρi nontrivial for i 6= 1.
Denote the quotient group H/K = {x1K , . . . , x p2n K }, with x1 = 1H/K . Now, we
define the function u : H/K → H such that u(xi K ) = xi (z−1

i ) for xi K ∈ H/K ,
z j ∈ K . Consider the element ((ρ, xi K ), (ρ, xi K ), (ρ, xi K )) with ρ ∈ K̂ fixed and
nontrivial. Since ν is trivial, the element ω is reduced to ρ(kxi K ,xi K )= ρ(zi ) 6= 1,
which implies that ω is nontrivial. �

Twisted orbifold K-theory for the orbifold [∗/(Z p)
n]. With the above result, to

calculate the orbifold K-theory structure for [∗/H ], with H an extraspecial p-
group, we only have to calculate the twisted orbifold K-theory for [∗/(Zp)

n
] and a

twist element in H 3((Zp)
n
; S1), following the constructions presented in Section 3.

Because all those constructions are based on the inverse transgression map, we
proceed to give an explicit way of calculating it. Later we present an example with
a particular twist element, having no trivial inverse transgression map.

*. Inverse transgression map for the group (Zp)
n Let us consider the following

commutative diagram given by two natural short exact sequences:

(5-1)

0 - Z
×p - Z

π - Zp - 0

0 - Zp

?
×p- Zp2

?
τ - Zp

?
- 0

where π and τ are the natural projections, and likewise for the downarrow maps.
These two exact sequences in the diagram above induce long exact sequences

(5-2) · · · −→ H k−1(BG;Zp)
∂
−→ H k(BG;Z)

(×p)∗
−→ H k(BG;Z)

(π)∗
−→ H k(BG;Zp)

∂
−→ H k+1(BG;Z)−→ · · · ,

(5-3) · · · −→ H k−1(BG;Zp)
β
−→ H k(BG;Zp)

(×p)∗
−→ H k(BG;Zp2)

(τ )∗
−→ H k(BG;Zp)

β
−→ H k+1(BG;Zp)−→ · · · .

Remark 5.5. The connection morphism β of the long exact sequence (5-3) is
known as the Bockstein map. It induces a map β : H∗(BG;Zp)→ H∗(BG;Zp)
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which has the multiplicative property

β(xy)= β(x)y+ (−1)deg(x)xβ(y).

Since G is a p-group, H k(BG;−) is also a p-group and this implies that the
morphism (×p)∗ in the long exact sequences (5-2) and (5-3) is the zero map.
Thus, π∗ and τ∗ are injective maps and H k(BG;Z) ∼= H k(BG;Zp2). On the
other hand, by the exactness of the sequence (5-3), we have H k(BG;Zp2) ∼=

Ker
(
β : H k(BG;Zp)→ H k+1(BG;Zp)

)
and then

H k(BG;Z)∼= Ker
(
β : H k(BG;Zp)→ H k+1(BG;Zp)

)
.

Relation to the inverse transgression map. By definition, the inverse transgression
map τg is a map defined between the groups H k(BG;Z) and H k−1(BCG(g);Z).
Since G= (Zp)

n is an abelian group, the inverse transgression map can be factorized
as

τ̃g : Ker
(
β : H k(BG;Zp)→ H k+1(BG;Zp)

)
→ Ker

(
β : H k−1(BG;Zp)→ H k(BG;Zp)

)
.

Consider the cohomology ring H∗(BG;Zp)∼=Fp[x1, . . . , xn]⊗3[y1, . . . , yn] with
|xi | = 2 and |yi | = 1 for i = 1, . . . , n. By the calculations above we need to find a
polynomial p(x1, . . . , xn, y1, . . . , yn)∈Fp[x1, . . . , xn]⊗3[y1, . . . , yn] of degree k,
such that β(p)= 0 and τ̃g(p) 6= 0 for some g ∈ G.

To obtain the desired polynomial, first we do the calculation of the inverse
transgression map. Take an element g = (a1, . . . , an) ∈ G and consider the map

G×Z→ G×〈g〉 → G

defined by
(h,m) 7→ (h, gm) 7→ hgm .

At the level of cohomology we get

(5-4) H∗(BG; Fp)→ H∗(BG× B(Zp); Fp)→ H∗(BG× BZ; Fp),

xi 7→ xi + aiw 7→ xi ,

yi 7→ yi + ai z 7→ yi + ai z,

where

H∗(BG; Fp)= Fp[x1, . . . , xn]⊗3[y1, . . . , yn],

H∗(BG× B(Zp); Fp)= Fp[x1, . . . , xn, w]⊗3[y1, . . . , yn, z],

H∗(BG× BZ; Fp)= Fp[x1, . . . , xn]⊗3[y1, . . . , yn, z].

Now, for the products xi y j , xi x j , yi y j ∈ H∗(BG; Fp) we can obtain the calculation
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of the inverse transgression maps. For the first product xi y j we get

(5-5) (xi y j ) 7→ (xi + aiw)(y j + ai z)= xi y j + xi a j z+ aiwy j + ai a jwz

in H∗(BG × B(Zp); Fp) and (xi y j ) 7→ xi y j + xi a j z in H∗(BG × BZ; Fp), from
Definition 3.1 it follows that τ̃g(xi y j )= xi a j . For the second product xi x j we get

(xi x j ) 7→ (xi + aiw)(x j + aiw)= xi x j + xi a jw+ aiwx j

in H∗(BG× B(Zp); Fp) and (xi x j ) 7→ xi x j in H∗(BG× BZ; Fp); hence

(5-6) τ̃g(xi x j )= 0.

Finally, for the product yi y j we get

(5-7) (yi y j ) 7→ (yi + ai z)(y j + ai z)= yi y j + yi a j z+ ai zy j

in H∗(BG×B(Zp); Fp) and (yi y j ) 7→ yi y j+(a j yi−ai y j )z in H∗(BG×BZ; Fp);
therefore τ̃g(yi y j )= (a j yi − ai y j ).

Since we are interested in calculating the inverse transgression map for elements
α ∈ H 4(G;Z), we consider only polynomials of degree 4 in

H∗(BG; Fp)= Fp[x1, . . . , xn]⊗3[y1, . . . , yn].

Now, we present some examples of the inverse transgression map. It is easiest to
consider the cases n = 2 and n = 3. In the first case the inverse transgression map
is a trivial map. In the latter the inverse transgression map is more interesting.

Example 5.6. n = 2. For p 6= 2 we have H∗(BG; Fp) = Fp[x1, x2] ⊗3[y1, y2]

with |yi | = 1 and |β yi | = |xi | = 2. Thus, we can just consider linear combinations
of the polynomials p1(x1, x2, y1, y2) := x1x2, p2(x1, x2, y1, y2) := x1 y1 y2 and
p3(x1, x2, y1, y2) := x2 y1 y2. For p1 the calculations leading up to (5-6) show that
τ̃g(p1)= 0. Thus we need to find a (Zp)-linear combination p of the polynomials
p2 and p3 such that β(p)= 0. But we have

β(p3)= x2(β(y1)y2− y1β(y2))= x2(x1 y2− y1x2),

β(p2)= x1(β(y1)y2− y1β(y2))= x1(x1 y2− y1x2).

Therefore, there does not exists such a (Zp)-linear combination.

n = 3. By analyzing the degree of the polynomials, we obtain the element

(5-8) p(x1, x2, x3, y1, y2, y3)= x1 y2 y3− x2 y1 y3+ x3 y1 y2,

which satisfies the condition β(p) = 0. To check this, we use the property of β
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noted in Remark 5.5:

β(p)= β(x1 y2 y3)−β(x2 y1 y3)+β(x3 y1 y2)

= β(x1)y2 y3+x1β(y2 y3)−β(x2)y1 y3−x2β(y1 y3)+β(x3)y1 y2+x3β(y1 y2)

= x1β(y2)y3−x1 y2β(y3)−x2β(y1)y3+x2 y1β(y3)+x3β(y1)y2−x3 y1β(y2)

= x1x2 y3−x1 y2x3−x2x1 y3+x2 y1x3+x3x1 y2−x3 y1x2

= 0.

The inverse transgression map for an element g = (a1, a2, a3) ∈ (Zp)
3 evaluated in

the polynomial p gives

(5-9) τg(p)= τg(x1 y2 y3)− τg(x2 y1 y3)+ τg(x3 y1 y2)

= x1(a3 y2− a2 y3)− x2(a3 y1− a1 y3)+ x3(a2 y1− a1 y2)

= a1(x2 y3− x3 y2)+ a2(x3 y1− x1 y3)+ a3(x1 y2− x2 y1).

Lemma 5.7. Let g = (a1, a2, a3) and h = (b1, b2, b3) be elements in G = (Zp)
3.

The double inverse transgression map of p is equal to

(5-10) τhτg(p)= [(a1, a2, a3)× (b1, b2, b3)] · (x1, x2, x3).

Remark 5.8. With n=3, this example shows that for n≥3 the inverse transgression
map is nontrivial. We can always consider the element p(x1, . . . , xn, y1, . . . , yn)=

xi y j yk − x j yi yk + xk yi y j as being in H 4((Z p)
n
;Z). By calculations similar to

those leading to (5-9), we can prove that β(p)= 0 while τg(p) 6= 0 for g ∈ (Zp)
n .

By using the inverse transgression map for the group (Zp)
n presented above and

by the decomposition formula presented in Theorem 3.6 in [Becerra and Uribe
2009], we can calculate the explicit structure of the twisted orbifold K-theory for
the orbifold [∗/(Zp)

3
] and the twist element α as the element in H 3((Zp)

3
; S1)

associated to the polynomial defined in (5-8) via the isomorphism H 3((Zp)
3
; S1)∼=

H 4((Zp)
3
;Z). Note that in this case

αKorb([∗/(Zp)
3
])=

⊕
g∈(Zp)3

αgK(Zp)3(∗)
∼=

⊕
g∈(Zp)3

Rαg ((Zp)
3).

Now, for each g ∈ Zp, the decomposition formula implies

Rαg ((Zp)
3)⊗Q∼=

∏
g,h∈(Zp)3

(
Q(ζp)h,αg

)(Zp)
3

,

where ζp is a p-root of the unity. Note that the action of (Zp)
3 on Q(ζp)h,αg is to

multiply by the double inverse transgression map evaluated on k ∈ (Zp)
3, τh(αg)(k).
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By Lemma 5.7, we get

(5-11)
(
Q(ζp)h,αg

)(Zp)
3

=

{
Q(ζp) if g = λh, λ ∈ Zp,

0 else.

So, for h 6= 0, we have

Rαg ((Zp)
3)⊗Q=

∏
λ∈Zp

Q(ζp),

while for g = 0, we get

Rα1((Zp)
3)⊗Q=

∏
λ∈(Zp)3

Q(ζp).

Then, the twisted orbifold K-theory module for the orbifold [∗/(Zp)
3
] turns out to

be
αKorb([∗/(Zp)

3
])⊗Q=

∏
λ∈Zp

Q(ζp) ⊕
∏

λ∈(Zp)3

Q(ζp)

and the product structure is defined via the product of the elements in Q(ζp).

6. Final remarks

With the result presented in Section 4 about the Grothendieck ring associated to
the semigroup of representations of the twisted Drinfeld double Dω(G) and the
twisted orbifold K-theory, we found a nice relation between two structures coming
from different sources. As we already said, the orbifold [∗/G] is a particular case
of a more general kind of orbifolds obtained by the almost free action of a compact
Lie group G on a compact manifold M . With a little more structure, the stringy
product introduced in Section 3 can be extended to a stringy product on the module
αKorb([M/G]) (in the same way as in [Becerra and Uribe 2009]), where [M/G]
denotes the orbifold structure obtained by the almost free action (see [Adem and
Ruan 2003] for the details of this structure). Therefore, under suitable hypotheses
we can think about the twisted orbifold K-theory ωKorb([M/G]) as a more general
object which coincides with the Grothendieck ring R(Dω(G)) if G is a finite group
and M = {∗}. Nevertheless, we shall explore the interpretation and consequences
of this more general object. Next, we focus our attention on the results obtained in
Section 5, where we establish an explicit relation between the twisted orbifold K-
theories of the orbifolds [∗/H ] and [∗/(Zp)

n
], where H is a particular extraspecial

p-group. In the same spirit, we look for some general relation between the twisted
orbifold K-theories αKorb([M/G]) and βKorb([M/K ]) of the orbifolds [M/G] and
[M/K ], for suitable twistings α ∈ H 3(G; S1) and β ∈ H 3(H ; S1), and appropriate
actions of the finite groups G and K on a compact manifold M . In the same way,
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we hope that some analogous results may be obtained if G and K are compact
Lie groups acting almost freely on a compact manifold M . By our preliminary
observations, in order to obtain such results, some hypothesis on the almost free
actions of the compact Lie groups G and K must be added.
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LINEAR RESTRICTION ESTIMATES
FOR THE WAVE EQUATION

WITH AN INVERSE SQUARE POTENTIAL

JUNYONG ZHANG AND JIQIANG ZHENG

We study modified linear restriction estimates associated with the wave
equation with an inverse square potential. In particular, we show that the
classical linear restriction estimates hold in their almost sharp range when
the initial data is radial.

1. Introduction and statement of main result

In this paper, we study a modified restriction estimate associated with the wave
equation perturbed by an inverse square potential. More precisely, we consider the
following wave equation with a singular potential:

(1-1)

8<: @
2
t u��uC

a

jxj2
uD 0; .t;x/ 2 R�Rn; a 2 R;

u.t;x/jtD0 D 0; @tu.t;x/jtD0 D f .x/:

The scale-covariant elliptic operator Pa WD ��C a=jxj2 appearing in (1-1) plays
a key role in many problems of physics and geometry. The heat and Schrödinger
flows for the elliptic operator Pa have been studied in the theory of combustion
[Vazquez and Zuazua 2000] and in quantum mechanics [Kalf et al. 1975]. The
wave equation (1-1) arises in the study of the wave propagation on conic manifolds
[Cheeger and Taylor 1982]. There has been a lot of interest in developing Strichartz
estimates both for the Schrödinger and wave equations with the inverse square
potential; we refer the reader to [Burq et al. 2003; 2004; Planchon et al. 2003b;
2003a; Miao et al. 2013b]. However, as far as we know, there are few results about
the restriction estimates associated with the operator Pa arising in the study of
eigenfunction estimates of Pa. Here, we address some restriction issues in special
settings associated with the operator Pa.

In the case aD 0 — the linear wave equation with no potential — we can solve
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the equation by the Fourier transform formula

(1-2) u.t;x/D
sin.t
p
��/

p
��

f D
1

2i

Z
Rn

e2�ix��
�
e2�it j�j

� e�2�it j�j
�
Of .�/

d�

j�j
;

where the Fourier transform is defined by

Of .�/D

Z
Rn

e�2� ix��f .x/ dx:

It is well known that the spacetime norm estimate of u.t;x/ is connected with the
linear adjoint cone restriction estimate

(1-3) k.F d�/_kLq
t;x.R�Rn/ � Cp;q;n;SkFkLp

.S;d�/;

where F is a Schwartz function and the inverse spacetime Fourier transform of the
measure F d� is defined by

.F d�/_.t;x/D

Z
S

F.�; �/e2� i.x��Ct�/ d�.�/D

Z
Rn

F.j�j; �/e2�i.x��Ct j�j/d�

j�j
:

Here, the set S is a nonempty smooth compact subset of the cone

f.�; �/ 2 R�Rn
W � D j�jg with n� 2:

The canonical measure d� is the pull back of the measure d�=j�j under the projec-
tion map .�; �/ 7! �. By the decay of .d�/_ and the Knapp counterexample, the
two necessary conditions for (1-2) are

(1-4) q >
2n

n� 1
and

nC 1

q
�

n� 1

p0

(see [Stein 1979; Tao 2003a]). The corresponding linear adjoint restriction conjec-
ture for cones asserts that:

Conjecture 1.1. The inequality (1-3) holds with constants depending on n, p, q,
and S if and only if the inequalities (1-4) are satisfied.

Even though there is a large amount of literature focused on this problem, it
remains open for n � 4. For progress on this conjecture, we refer the readers
to [Taberner 1985; Strichartz 1977; Tao 2001; 2003a; 2003b; Tao et al. 1998;
Wolff 2001]. Shao [2009a] provided two simple and novel arguments to prove
that Conjecture 1.1 holds true for the spatial rotation invariant functions which are
supported on the cone. Motivated by [Shao 2009a], Miao et al. [2012] utilized
expansions in spherical harmonics and analyzed the asymptotic behavior of the
Bessel function to generalize Shao’s result for cone cases by establishing, assuming
(1-4), that

k.F d�/_kLq
t .RIL

q

r n�1 dr
L2
�
.Sn�1// � Cp;q;n;SkFkLp.S;d�/:
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In the case a¤ 0, the spacetime Fourier transform is no longer so useful; one
can instead establish an approximate parametrix for the fundamental solution and
try to obtain good control over it. In our case we resort to expansions in spherical
harmonics and Hankel transforms, for technical reasons involving the singular
potential; compare [Burq et al. 2003; Planchon et al. 2003b; Miao et al. 2013b].
Although the harmonic expansion expression leads to some loss of angular regularity
in the restriction estimates, it allows us to show the restriction estimates when q is
close to 2n=.n� 1/. A key ingredient in this process is to explore the oscillatory
properties of the Bessel function and eit j�j to overcome the difficulties arising from
the low decay of the Bessel function J�.r/ when � � r . Finally, by using the
properties of the hypergeometric function shown in [Planchon et al. 2003b], we
prove an inequality involving the Hankel transform to obtain the desired result.

Main Theorem. Assume n � 2 and a > �1
4
.n� 2/2, and let u be the solution of

(1-1). Suppose that p > 1 and

(1-5) q D
p0.nC 1/

n� 1
>

2n

n� 1
:

Then there exists a constant C , depending only on p, q, n, and a, satisfying the
following conditions:

(i) If f is a radial Schwartz function, then

(1-6) ku.t;x/kLq
t;x.R�Rn/ � C

j�j� 1
p Of


Lp.Rn/
:

(ii) If f is a Schwartz function (may not be radial) and p � 2, then

(1-7) ku.t;x/kLq
t .RIL

q

r n�1 dr
L2
�
.Sn�1// � C

j�j� 1
p Of


Lp.Rn/
:

Remarks. (i) This extends the classical restriction estimate associated with the
Laplace operator to a restriction estimate associated with ��C a=jxj2. We obtain
more estimates than the Strichartz estimates of [Burq et al. 2003; Planchon et al.
2003b], which focus on p D 2. The theorem can also be viewed as an exten-
sion of the result in [Chen et al. 2012] about the operator ��C a=r2 acting on
L2
�
.0;1/I rn�1 dr

�
.

(ii) The theorem means that we almost show that the classical linear restriction
estimates hold for radial functions in the conjecture range.

(iii) When a D 0, we recover the cone restriction result in [Shao 2009b]. When
supp Of is compact, we can extend the result to q � p0.nC1/=.n�1/, which is the
same range as in the cone restriction conjecture.

(iv) Equation (1-6) gives a Strichartz-type estimate

ku.t;x/k
L

2.nC1/=.n�1/
t;x .R�Rn/

� C
jrj� 1

2f


L2.Rn/
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for the radial solution. The method used here generalizes the result for the radial
initial data to a linear finite combination of products of the Hankel transform of
radial functions and spherical harmonics. We hope to remove the whole radial
assumption in (1-6) in the future, at least for q � 2.nC 3/=.nC 1/.

(v) If Of � f� WN � j�j � 2N g and f is radial, the method here can be employed
to obtain the Strichartz estimate

ku.t;x/kLq
t;x.R�Rn/ � CN

n�2
2
�

nC1
q kf kL2.Rn/ for q >

2n

n�1
:

We remark that the pair .q; q/ is allowed to be out of the admissible requirement in
[Planchon et al. 2003b], it is however consistent with the admissible range due to
[Miao et al. 2013b].

(vi) We rely heavily on the harmonic expansion formula to give the expression of
the solution due to the potential, which causes the restriction p � 2. It is possible
that the resolvent expression can be used to remove this restriction.

Now we introduce some notation. We use A. B to denote the statement that
A � CB for some constant C , which may vary from line to line and depend on
various parameters. We write A� B to mean that A. B .A.

If the constant C depends on parameters other than p, q, n, and S , we denote
this fact explicitly using subscripts. For instance, C� should be understood as a
positive constant depending on � in addition to (possibly) p, q, n, and S .

Pairs of conjugate indices are written as p and p0, where

1

p
C

1

p0
D 1 and 1� p �1:

This paper is organized as follows: In Section 2, we present some simple
facts about the Hankel transforms and the Bessel functions and also recall the
van der Corput lemma. Section 3 is devoted to the proof of the Main Theorem via
expansions in spherical harmonics and an analysis of the asymptotic behavior of the
Bessel function. Finally, in an Appendix, we show an inequality used in Section 3,
involving the Hankel transforms.

2. Preliminaries

Before turning to Hankel transforms and Bessel functions, we recall the expansion
formula in spherical harmonics. For details, refer to [Stein and Weiss 1971]. For
convenience, we write

� D �! and x D r� with !; � 2 Sn�1:

We denote by Hk the space of spherical harmonics of degree k on Sn�1, whose
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dimension is given by

d.0/D 1; d.k/D
2kC n� 2

k
C k�1

nCk�3 ' hki
n�2 for k > 0:

Note that if nD 2 this dimension is 2 for all k.
Any g 2L2.Rn/ can be expanded in spherical harmonics as

(2-1) g.x/D

1X
kD0

d.k/X
lD1

ak;l.r/Yk;l.�/;

where fYk;1; : : : ;Yk;d.k/g is an orthogonal basis of Hk . We have the orthogonal
decomposition

L2.Sn�1/D

1M
kD0

Hk ;

and by orthogonality,

(2-2) kg.x/kL2
�
D kak;l.r/kl2

k;l
:

The Hankel transform formula (see Theorem 3.10 in [Stein and Weiss 1971], for
instance) relates the Fourier transform of g to spherical harmonics. It reads

(2-3) Og.�!/D

1X
kD0

d.k/X
lD1

2� ikYk;l.!/�
�n�2

2

Z 1
0

JkCn�2
2
.2�r�/ak;l.r/r

n
2 dr:

Here the Bessel function Jk.r/ of order k is defined by

Jk.r/D

�
r
2

�k
�
�
kC 1

2

�
�
�

1
2

� Z 1

�1

eisr
�
1� s2

� 2k�1
2 ds; with k > �1

2
and r > 0:

A simple computation gives the rough estimate

(2-4) jJk.r/j �
C rk

2k�
�
kC 1

2

�
�
�

1
2

��1C
1

kC 1
2

�
;

where C is an absolute constant. These estimates will be mainly used when r . 1.
Another well known asymptotic expansion about the Bessel function is

(2-5) Jk.r/D r�
1
2

r
2

�
cos

�
r �

k�

2
�
�

4

�
COk.r

�3=2/ as r !1;

but with a constant depending on k (see [Stein and Weiss 1971]). As pointed out in
[Stein 1993], if one seeks a uniform bound for large r and k, then the best one can
do is jJk.r/j � C r�

1
3 . To investigate the asymptotic behavior in k and r , we recall
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Schläfli’s integral representation [Watson 1944] of the Bessel function. For r 2 RC

and k > �1
2

,

(2-6) Jk.r/D
1

2�

Z �

��

eir sin ��ik� d� �
sin.k�/
�

Z 1
0

e�.r sinh sCks/ ds

DW QJk.r/�Ek.r/:

We remark that Ek.r/D 0 when k 2 ZC. A simple computation gives, for r > 0,

(2-7) jEk.r/j D

ˇ̌̌̌
sin.k�/
�

Z 1
0

e�.r sinh sCks/ ds

ˇ̌̌̌
� C.r C k/�1:

Next, we recall some properties of the Bessel function Jk.r/ from [Stein 1993;
Stempak 2000]; see [Miao et al. 2013a] for a detailed proof.

Lemma 2.1 (asymptotics of the Bessel function). Assume k� 1. Let Jk.r/ be the
Bessel function of order k defined as above. Then there exist a large constant C

and a small constant c independent of k and r such that

jJk.r/j � Ce�c.kCr/ when r � k=2;(2-8)

jJk.r/j � C k�
1
3

�
k�

1
3 jr � kjC 1

�� 1
4 when k=2� r � 2k;(2-9)

Jk.r/D r�
1
2

X
˙

a˙.r/e
˙ir
CE.r/ when r � 2k;(2-10)

where ja˙.r/j � C and jE.r/j � C r�1.

We define

(2-11) �.k/D
n�2

2
C k; �.k/D

p
�2.k/C a with a> �

.n�2/2

4
:

For the sake of simplicity, we sometimes write � instead of �.k/. Let g be a
Schwartz function defined on Rn. We define the Hankel transform of order �:

(2-12) .H�g/.�!/D

Z 1
0

.r�/�
n�2

2 J�.r�/g.r!/r
n�1 dr:

If the function g is radial, we can drop the dependence on ! from both sides.
We remark that if g has the expansion (2-1), it follows from (2-3) that

(2-13) Og.�/D

1X
kD0

d.k/X
lD1

2� ikYk;l.!/.H�.k/ak;l/.�/:

The following properties of the Hankel transform are proved in [Burq et al. 2003;
Planchon et al. 2003b]:
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Lemma 2.2. Let H� be as above and let

A�.k/ WD �@
2
r �

n�1

r
@r C

�
�2.k/�

�
n�2

2

�2 �
r�2:

(i) H� DH�1
� .

(ii) H� is self-adjoint: H� DH�� .

(iii) H� is an L2 isometry: kH��kL2
�
D k�kL2

x
.

(iv) H�.A��/.�/D j�j
2.H��/.�/, for � 2L2.

We conclude this section by recalling van der Corput’s lemma [Stein 1993]:

Lemma 2.3. Let � be a smooth real-valued function defined on an interval Œa; b�,
and assume j�.k/.x/j � 1 for all x 2 Œa; b�. Assume moreover that either k � 2, or
k D 1 and �0.x/ is monotonic. Then

(2-14)
ˇ̌̌̌ Z b

a

ei��.x/ dx

ˇ̌̌̌
� ck�

� 1
k ;

with ck independent of � and �.

3. Proof of the main theorem

In this section, we will use the asymptotic properties of the Bessel function and the
stationary phase argument to establish two estimates for the Hankel transform. A
key ingredient is to effectively exploit the oscillatory property of the Bessel function
and eit j�j to obtain more decay.

The Hankel transform and the solution. Let us consider (1-1) in polar coordinates.
Write v.t; r; �/D u.t; r�/ and g.r; �/D f .r�/D f .x/. Then v.t; r; �/ satisfies

(3-1)

8<:@t tv� @rrv�
n�1

r
@rv�

1

r2
��vC

a

r2
v D 0;

v.0; r; �/D 0; @tv.0; r; �/D g.r; �/:

We use the spherical harmonic expansion to write

(3-2) g.r; �/D

1X
kD0

d.k/X
lD1

ak;l.r/Yk;l.�/:

Using separation of variables, we can write v as a superposition

(3-3) v.t; r; �/D

1X
kD0

d.k/X
lD1

vk;l.t; r/Yk;l.�/;
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where vk;l satisfies

(3-4)

(
@t tvk;l � @rrvk;l �

n� 1

r
@rvk;l C

k.kC n� 2/C a

r2
vk;l D 0;

vk;l.0; r/D 0; @tvk;l.0; r/D ak;l.r/

for each k; l 2 N; 1� l � d.k/. Define

(3-5) A�.k/ WD �@
2
r �

n�1

r
@r C

�2.k/�
�

n�2
2

�2
r2

:

Then we are reduced to considering the system

(3-6)
�
@t tvk;l CA�.k/vk;l D 0;

vk;l.0; r/D 0; @tvk;l.0; r/D ak;l.r/:

Applying the Hankel transform to (3-6), we have, by Lemma 2.2,

(3-7)
�
@t t Qvk;l C �

2 Qvk;l D 0;

Qvk;l.0; �/D 0; @t Qvk;l.0; �/D bk;l.�/;

where

(3-8) Qvk;l.t; �/D .H�vk;l/.t; �/; bk;l.�/D .H�ak;l/.�/:

Solving this ODE and using the Hankel transform, we obtain

vk;l.t; r/D

Z 1
0

.r�/�
n�2

2 J�.k/.r�/ Qvk;l.t; �/�
n�2 d�

D
1

2i

Z 1
0

.r�/�
n�2

2 J�.k/.r�/
�
eit�
� e�it�

�
bk;l.�/�

n�2 d�:

Therefore, we get

(3-9) u.x; t/D v.t; r; �/

D

1X
kD0

d.k/X
lD1

Yk;l.�/

Z 1
0

.r�/�
n�2

2 J�.k/.r�/ sin.t�/bk;l.�/�
n�2 d�

D

1X
kD0

d.k/X
lD1

Yk;l.�/H�.k/

�
��1 sin.t�/bk;l.�/

�
.r/:

Estimates of Hankel transforms. We now turn to some key estimates needed for
proving the main theorem.

Proposition 3.1. Let R�1 and let ' be a smooth function supported in the interval
I WD

�
1
2
; 1
�

and taking values in Œ0; 1�. Then
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(3-10)
� 1X

kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

e�it�J�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2� 1
2


L2
t .RIL

2
r .ŒR;2R�//

� C

� 1X
kD0

d.k/X
lD1

jbk;l.�/j
2

�1
2


L2
�.I /

;

where C is a constant independent of R.

Proof. Using the Plancherel theorem in t , we have

(3-11) LHS of (3-10).
� 1X

kD0

d.k/X
lD1

J�.k/.r�/bk;l.�/'.�/
2

L2
�

�1
2


L2
r .ŒR;2R�/

:

With this, it is easy to verify (3-10) if we can prove that

(3-12)
Z 2R

R

jJk.r/j
2 dr � C;

where R� 1 and C is independent of k and R. To prove (3-12), we write

(3-13)
Z 2R

R

jJk.r/j
2 dr D

Z
I1

jJk.r/j
2 dr C

Z
I2

jJk.r/j
2 dr C

Z
I3

jJk.r/j
2 dr;

where
I1 D ŒR; 2R�\ Œ0; k=2�;

I2 D ŒR; 2R�\ Œk=2; 2k�;

I3 D ŒR; 2R�\ Œ2k;1�:

By using (2-8) and (2-10) in Lemma 2.1, we have

(3-14)
Z

I1

jJk.r/j
2 dr � C

Z
I1

e�cr r dr � Ce�cR;

Z
I3

jJk.r/j
2 dr � C:

For the remaining interval, we writeZ
I2

jJk.r/j
2 dr �

Z 2k

k
2

jJk.r/j
2 dr � C

Z 2k

k
2

k�
2
3

�
1C k�

1
3 jr � kj

�� 1
2 dr � C;

where the last inequality follows from the fact that the integral is uniformly bounded
(by 2C

p
2) for all k > 0. Together with (3-14), this yields (3-12). �

Proposition 3.2. Suppose R� 1. Let ' be a smooth function supported in the
interval I WD

�
1
2
; 1
�

and taking values in Œ0; 1�.

(i) If K is finite, there exists a constant CK independent of R such that
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(3-15)
� KX

kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

e�it�J�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

� CK R�
1
2

� KX
kD0

d.k/X
lD1

jbk;l.�/j
2

�1
2


L1
�.I /

:

(ii) If K is infinite, there exists a constant C independent of R such that

(3-16)
� KX

kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

e�it�J�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

� CR�
1
2

� KX
kD0

d.k/X
lD1

jbk;l.�/j
2

�1
2


L2
�.I /

:

Proof. We first prove (3-15). Recalling (2-5) we can write jJ�.k/.r/j � CK r�
1
2

when r � 1. By the Minkowski inequality and the Hausdorff–Young inequality in
t , there exists a constant CK independent of R such that� KX

kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

e�it�J�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2 �1
2


L1t .RIL
1
r .ŒR;2R�//

� CK R�
1
2

� KX
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L1
�.I /

:

This proves (3-15). When K is infinite, we need to show a precise estimate uniform
in K. We utilize the Schläfli’s integral representation of the Bessel function (2-6)
to write J�.k/.r�/DE�.k/.r�/C QJ�.k/.r�/. By (2-7), the Minkowski inequality,
and the Hausdorff–Young inequality in t , there exists a constant C independent of
K and R such that� KX

kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

e�it�E�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2 �1
2


L1t .RIL
1
r .ŒR;2R�//

� CR�1

� KX
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L1
�.I /

:

Thus, it remains to prove (3-16) with J�.k/ replaced by QJ�.k/. We consider 0<ı�1

to be fixed later, and write Œ��; ��D I1[ I2[ I3, with

I1 D f� W j� j � ıg;

I2 D Œ��;��=2� ı�[ Œ�=2C ı; ��;

I3 D Œ��; �� n .I1[ I2/:
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We define

(3-17) ˆr;k.�/D sin � � k�

r
;

and let �ı.�/ be a smooth function satisfying

(3-18) �ı.�/D

�
1; � 2 Œ�ı; ı�;

0; � 62 Œ�2ı; 2ı�:

Then write

(3-19) QJk.r/D
1

2�

Z �

��

eirˆr;k.�/ d� D QJ 1
k .r/C

QJ 2
k .r/C

QJ 3
k .r/;

with
QJ 1
k .r/ WD

1

2�

Z �

��

eirˆr;k.�/�ı.�/ d�;

QJ 2
k .r/ WD

1

2�

Z
I2

eirˆr;k.�/ d�;

QJ 3
k .r/ WD

1

2�

Z
I3

eirˆr;k.�/.1��ı.�// d�:

When � 2 I2, the function ˆ0
r;k
.�/ D cos � � k=r is monotonic in the intervals

Œ��;��=2� ı� and Œ�=2C ı; ��, and satisfies

jˆ0r;k.�/j �
k

r
Cjcos � j � sin ı:

Then van der Corput’s lemma (Lemma 2.3) gives, uniformly in k,

(3-20)
ˇ̌̌̌

1

2�

Z
I2

eirˆr;k.�/ d�

ˇ̌̌̌
� cır

�1:

When � 2 I3, we have jˆ00
r;k
.�/j � sin ı, and Lemma 2.3 again yields that

(3-21)
ˇ̌̌̌

1

2�

Z
I3

eirˆr;k.�/.1��ı.�// d�

ˇ̌̌̌
� cır

� 1
2

uniformly in k.
Using arguments similar to those above, it follows from (3-20) and (3-21) that� 1X
kD0

d.k/X
lD1

ˇ̌̌̌ 1Z
0

e�it�
�
QJ 2
�.k/.r�/C

QJ 3
�.k/.r�/

�
bk;l.�/'.�/d�

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

.R�
1
2

� 1X
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L1
�.I /

:

To establish (3-16) with J�.k/ replaced by QJ 1
�.k/

, we need to use the oscillation of
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eit� effectively. To this end, we write the Fourier series as bk;l.�/D
P

j b
j

k;l
ei �

2
�j ,

where

(3-22) b
j

k;l
D

1

4

Z 4

0

e�i �
2
�j bk;l.�/ d�:

Then
P

j jb
j

k;l
j2 D kbk;l.�/k

2

L2
�.I /

. For simplicity, we use the scaling argument to

reduce the problem by replacing t and r by 2� t and 2�r respectively, and define
(3-23)

 k
t�j=4.r/D

1

2�

Z 1
0

e�2�i.t� j
4
/�

Z
R

e2�i�r sin ��i�.k/��ı.�/ d�'.�/ d�:

Let mD t � j=4. Then we write

(3-24)  k
m.r/D

1

2�

Z
R2

e2�i�.r sin ��m/e�i�.k/��ı.�/'.�/ d� d�

D
1

2�

Z
R

L'.r sin � �m/e�i�.k/��ı.�/ d�:

For our purpose, we need to investigate the asymptotic behavior of the function
 k

m.r/. We consider two subcases:

(a) 4R� jmj. R� 1, hence jmj � 4. Since L' is a Schwartz function, we have

j L'.r sin � �m/j � CN .1Cjr sin � �mj/�N for all N > 0:

On the other hand, we have

jr sin � �mj � jmj � r jsin � j � 1
100
jmj;

since r � 2R� jmj and j� j � 2ı. Thus, (3-24) gives

(3-25) j k
m.r/j � Cı;N .1Cjmj/

�N :

Keeping in mind that mD t � j=4, we have� 1X
kD0

d.k/X
lD1

ˇ̌̌̌ X
j W

4R�jt�j=4j

b
j

k;l
 k

t�j=4.r/

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

� Cı;N R�N

� 1X
kD0

d.k/X
lD1

ˇ̌̌̌ X
j W

4R�jt�j=4j

jb
j

k;l
j.1Cjt � j

4
j/�N

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

:

By the Cauchy–Schwarz inequality, and choosing N large enough, the above is
bounded by
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Cı;N R�N

� 1X
kD0

d.k/X
lD1

X
j

jb
j

k;l
j
2.1Cjt �

j

4
j/�N

�1
2


L1t .RIL
1
r .ŒR;2R�//

� Cı;N R�N

� 1X
kD0

d.k/X
lD1

X
j

jb
j

k;l
j
2

�1
2

.R�N

� 1X
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L2
�.I /

:

(b) jmj< 4R. Again, since L' is a Schwartz function,

(3-26) j L'.r sin � �m/j � CN .1Cjr sin � �mj/�N for all N > 0:

By (3-24), this givesˇ̌
 k

m.r/
ˇ̌
�

CN

2�

�Z
f� Wj� j<2ı;
jr sin ��mj�1g

d� C

Z
f� Wj� j<2ı;
jr sin ��mj�1g

.1Cjr sin � �mj/�N d�

�
:

Let y D r sin � �m; then

(3-27)
ˇ̌
 k

m.r/
ˇ̌
�

CN

2�r

�Z
fyWjyj�1g

dyC

Z
fyWjyj�1g

.1Cjyj/�N dy

�
. 1

r
:

For fixed t;R, we define the set AD fj 2 Z W jt � j=4j � 4Rg. It is easy to see the
cardinality of A is O.R/. Thus, it follows from (3-27) and the Cauchy–Schwarz
inequality that� 1X

kD0

d.k/X
lD1

ˇ̌̌̌X
j2A

b
j

k;l
 k

t�j=4.r/

ˇ̌̌̌2�1
2


L1t .RIL
1
r .ŒR;2R�//

� Cı;N R�
1
2

� 1X
kD0

d.k/X
lD1

X
j

jb
j

k;l
j
2

�1
2

.R�
1
2

� 1X
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L2
�.I /

:�

Proposition 3.3. Let ' be a smooth function supported on I D
�

1
2
; 1
�

and taking
values in Œ0; 1�, and let R be a positive real number. Assume (1-5) is satisfied, and
consider the quantity

QDr�
n�2

2

� KX
kD0

d.k/X
lD1

ˇ̌̌̌Z 1
0

e�it�J�.k/.r�/bk;l.�/'.�/ d�

ˇ̌̌̌2�1
2


L
q
t .RIL

q

r n�1dr
.ŒR;2R�//

:

(Recall the definition of � D �.k/ in (2-11).)

(i) When K is finite, there exists a constant CK independent of R such that

(3-28) Q� CK min
˚
R

n
q ;R�

n�1
2

�
1� 2n

q.n�1/

�	� KX
kD0

d.k/X
lD1

jbk;l.�/j
2

�1
2


L
p
�.I /

:
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(ii) When K is infinite, there exists a constant C independent of R such that

(3-29) Q� C min
˚
R

n
q ;R�

n�1
2

�
1� 2n

q.n�1/

�	� KX
kD0

d.k/X
lD1

jbk;l.�/j
2

�1
2


L2
�.I /

:

Proof. We first consider the case R . 1. The Minkowski inequality and the
Hausdorff–Young inequality in t show that

Q.
r�

n�2
2

� KX
kD0

d.k/X
lD1

J�.k/.r�/bk;l.�/'.�/
2

L
q0

�

�1
2


L
q

r n�1 dr
.ŒR;2R�/

:

Hence, by (2-4), there exists a constant C independent of K such that

Q�C

�Z 2R

R

r�
.n�2/q

2

� KX
kD0

d.k/X
lD1

ˇ̌̌̌
.8�r/�

2��
�
�C1

2

�
�
�

1
2

� ˇ̌̌̌2'.�/bk;l.�/
2

L
q0

�

�q
2

rn�1 dr

�1
q

and

Q� CR
n
q

� KX
kD0

d.k/X
lD1

ˇ̌
'.�/bk;l.�/

ˇ̌2�1
2


L
q0

� .I /

r:

Secondly, we consider the case R � 1. By Prepositions 3.1 and 3.2, we use
interpolation to obtainr�

n�2
2

� KX
kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

J�.r�/e
it�bk;l.�/'.�/ d�

ˇ̌̌̌2�1
2


L
q
t .RIL

q

r n�1 dr
.ŒR;2R�//

� CK R�
n�1

2

�
1� 2n

q.n�1/

�� KX
kD0

d.k/X
lD1

ˇ̌
'.�/bk;l.�/

ˇ̌2�1
2


L
q0

� .I /

:

When K is infinite,r�
n�2

2

� 1X
kD0

d.k/X
lD1

ˇ̌̌̌ Z 1
0

J�.r�/e
it�bk;l.�/'.�/ d�

ˇ̌̌̌2�1
2


L
q
t .RIL

q

r n�1 dr
.ŒR;2R�//

� CR�
n�1

2

�
1� 2n

q.n�1/

�� 1X
kD0

d.k/X
lD1

ˇ̌
'.�/bk;l.�/

ˇ̌2�1
2


L2
�.I /

:

In view of (1-5) and since supp ' �
�

1
2
; 1
�
, this shows (3-28) and (3-29). �

Conclusion of the proof of the Main Theorem. We know that if f is radial, so is u

in (3-9). To prove the Main Theorem, we need to estimate the following by (3-9):

(3-30)
 KX

kD0

d.k/X
lD1

Yk;l.�/H�

�
��1 sin.t�/bk;l.�/

�
.r/


L

q
t .RIL

q

r n�1 dr
L2
�
.Sn�1//
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in the cases of K D 0 and K D1, which correspond to the radial case and the
general case respectively. To this end, we use orthogonality and apply a dyadic
decomposition to (3-30) to obtain the estimate

(3-30)

� C

�X
R

�X
M

� KX
kD0

d.k/X
lD1

J�.r�/e
it��

�
�

M

�
�

ˇ̌̌̌Z 1
0

.r�/�
n�2

2 bk;l.�/�
n�2 d�

ˇ̌̌̌2�1
2


L
q
t .RIL

q

r n�1dr
.ŒR;2R�//

�q�1
q

;

DW†

where R and M are dyadic numbers and � is a smooth function supported on
�

1
2
; 1
�

and taking values in Œ0; 1�. By a scaling argument, we have

†� C

�X
R

�X
M

M .n�1/�nC1
q

� KX
kD0

d.k/X
lD1ˇ̌̌̌ 1Z

0

.r�/�
n�2

2 J�.r�/e
it��.�/bk;l.M�/�

n�2d�

ˇ̌̌̌2�1
2


L
q
t .RIL

q

r n�1dr
.ŒRM;2RM �//

�q�1
q

:

Applying Proposition 3.3 with '.�/ D �.�/�
n
2
�1 to the above, one can see that

when K is finite,

†� CK

�X
R

�X
M

min
˚
.RM /

n
q ; .RM /�

n�1
2

�
1� 2n

q.n�1/

�	
�M .n�1/�nC1

q

� KX
kD0

d.k/X
lD1

ˇ̌
�.�/�

n
2
�1bk;l.M�/

ˇ̌2�1
2


L
p
�

�q�1
q

;

and when K is infinite,

†� C

�X
R

�X
M

min
˚
.RM /

n
q ; .RM /�

n�1
2

�
1� 2n

q.n�1/

�	
�M .n�1/�nC1

q

� 1X
kD0

d.k/X
lD1

ˇ̌
�.�/�

n
2
�1bk;l.M�/

ˇ̌2�1
2


L2
�

�q�1
q

:

Since q > 2n=.n� 1/, one has

sup
R

X
M

min
˚
.RM /

n
q ; .RM /�

n�1
2

�
1� 2n

q.n�1/

�	
<1;

sup
M

X
R

min
˚
.RM /

n
q ; .RM /�

n�1
2

�
1� 2n

q.n�1/

�	
<1:
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Then by Schur’s test lemma and the embedding lp ,! lq with q >
2n

n�1
> p, we

have, in the case when K is finite,

†� CK

�X
M

M

�
.n�1/�nC1

q

�
p

�.�/� KX
kD0

d.k/X
lD1

jbk;l.M�/j2
�1

2
p

L
p
�

�1
p

� CK

�X
M

M

�
n�1
p0
�

nC1
q

�
p

�� �M �� KX
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2

�
n�2

p

p

L
p
�

�1
p

� CK

� KX
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L
p

�n�2 d�
.RC/

;

and in the case when K is infinite and p � 2,

†� C

�X
M

M

�
n�1
p0
�

nC1
q

�
q

�� �M �� 1X
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2

�
n�2

2

q

L
p
�

�1
q

� C

� 1X
kD0

d.k/X
lD1

ˇ̌
bk;l.�/

ˇ̌2�1
2


L
p

�n�2 d�
.RC/

:

By Lemma 2.2, we have bk;l.�/ D H�.k/H�.k/ŒH�.k/ak;l �.�/. To proceed we
make use of the following fact, whose proof we defer to the Appendix:

Claim. For the measure space .RC; dw.�//, where dw.�/ D �n�2 d�, and for
1< p <1, denote by Lp.w/ the corresponding Lebesgue space equipped with the
norm

kf kp D

�Z 1
0

jf jp dw

�1
p

:

Let H�.k/;H�.k/ be the Hankel transforms defined above and suppose that

(3-31) n�2

2
� �.0/ <

n�1

p
<

n�2

2
C�.0/C 2:

Then there exists a constant C such that, for any ffkg
1
kD0
2Lp.wI l2/, we have

(3-32)
�X

k

jH�.k/H�.k/fk j
2

�1
2


Lp.w/

� C

�X
k

jfk j
2

�1
2


Lp.w/

:

Condition (3-31) is satisfied because 1 < p <
2n

n�1
by the Main Theorem’s

assumptions. Thus, applying the Claim we get

†� C

� KX
kD0

d.k/X
lD1

ˇ̌
ŒH�.k/ak;l �.�/

ˇ̌2�1
2


L
p

�n�2 d�
.RC/

:
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By (2-2) and (2-13), under the conditions of the Main Theorem, we further have

†� C
j�j� 1

p Of .�/


L
p

�n�1 d�
.RCIL2

!.Sn�1//
� C

j�j� 1
p Of .�/


L

p

�
.Rn/

:

This completes the proof. �

Appendix: Proof of (3-32)

Let Tk DH�.k/H�.k/, and set �D n�2

2
. We first show that

(A-1) kTkfkkLp.w/ � CkfkkLp.w/;

by following the argument used to prove Theorem 3.1 in [Planchon et al. 2003b].
By that argument, we can write

.Tkfk/.�/D

Z 1
0

k0
�;�.k/.�; s/fk.s/s

n�1 ds;

where the kernel is given by

k0
˛;ˇ.�; s/D

8̂<̂
:

A˛;ˇ
sˇ��

��CˇC2
F
�
˛Cˇ

2
C 1;

ˇ�˛

2
C 1IˇC 1I

�
s

�

�2�
for s < �;

Aˇ;˛
s˛��

��C˛C2
F
�
ˇC˛

2
C 1;

˛�ˇ

2
C 1I˛C 1I

�
�

s

�2�
for s > �;

where F.a; bI cI d/ is the hypergeometric function and

A˛;ˇ D
2�.˛Cˇ

2
C 1/

�.ˇ�˛
2
/�.ˇC 1/

:

When s is near �, the kernel k0
�;�.�; s/ behaves like c.�� s/�1CO.� log j�� sj/.

Define

. zTk Œs
n�1

p fk.s/�/.�/ WD

Z 1
0

zk0
�;�.�; s/

�
s

n�1
p fk.s/

�ds

s
;

where
zk0
�;�.�; s/D �

n�1
p k0

�;�.�; s/s
n�n�1

p :

Then�
zTk Œs

n�1
p fk.s/�

�
.�/D

Z 1
0

�
n�1

p k0
�;�.�; s/s

n�n�1
p Œs

n�1
p fk.s/�

ds

s
D�

n�1
p .Tkfk/.�/:

Note that .Tkfk/.�/


Lp.w/
D
� n�1

p .Tkfk/.�/


L
p

��1 d�

:

To prove (A-1), it suffices to show

(A-2) k zTkfkkLp.��1 d�/ � CkfkkLp.��1 d�/:
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Again by the argument in [Planchon et al. 2003b], one has

jk0
�;�.�; s/j D

�
O.������2C�s��C���/ for s < �;

O.������s�����2C�/ for s > �:

Then

j zk0
�;�.�; s/j D

(
O
�
.s=�/�C�C2�n�1

p
��
�

for s < �;

O
�
.s=�/����

n�1
p
C�
�

for s > �:

Since �� � < .n� 1/=p < �C�C 2, the kernel zk0
�;� is bounded in L1. d�=�/.

Using logarithmic coordinates, we express the operator Tk as a convolution operator
with the kernel zk0

�;�. When s � �, we recall that zk0
�;� is a Calderón–Zygmund

kernel behaving like
c.�� s/�1

CO.� log j�� sj/:

Applying Young’s inequality to the region away from �� s and Calderón–Zygmund
theory to the region � � s, we obtain (A-2), and so (A-1).

By a similar argument, we show the adjoint operator T �
k

is also bounded in
Lp0.w/, provided ��� < .n� 1/=p0 < �C �C 2, which is true for 1< p <1.

Now we are ready to show (3-32). We consider two cases:
If 1<p� 2, since the adjoint operator T �

k
DH�.k/H�.k/ is bounded in Lp0.w/,

we get (3-32) by duality.
If 2� p <1, we set q WD p=2 (forgetting the earlier value of q). Then q � 1,

and we have�X
k

jTkfk j
2

�1
2
2

Lp.w/

D

X
k

jTkfk j
2


Lq.w/

D sup
g�0

g2Lq0 .w/

ˇ̌̌̌ Z 1
0

X
k

jTkfk j
2g.�/�n�2 d�

ˇ̌̌̌

D

X
k

sup
g�0

g2Lq0 .w/

Z 1
0

jTkfk j
2g.�/�n�2 d�

D

X
k

kTkfkk
2
Lp.w/:

By (A-1), we see that�X
k

jTkfk j
2

�1
2
2

Lp.w/

� C
X

k

kfkk
2
Lp.w/

D C
X

k

sup
g�0

g2Lq0 .w/

ˇ̌̌̌ Z 1
0

jfk j
2g.�/�n�2 d�

ˇ̌̌̌
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� C sup
g�0

g2Lq0 .w/

Z 1
0

X
k

jfk j
2g.�/�n�2 d�

� C

X
k

jfk j
2

2

Lq.w/

� C

�X
k

jfk j
2

�1
2
2

Lp.w/

:
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