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ON 4-MANIFOLDS, FOLDS AND CUSPS
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We study simple wrinkled fibrations, a variation of the simplified purely
wrinkled fibrations of Williams (Geom. Topol. 14:2 (2010), 1015–1061), and
their combinatorial description in terms of surface diagrams. We show
that simple wrinkled fibrations induce handle decompositions of their total
spaces which are very similar to those obtained from Lefschetz fibrations.
The handle decompositions turn out to be closely related to surface dia-
grams and we use this relationship to interpret some well known operations
on 4-manifolds in terms of surface diagrams. This, in turn, allows us classify
all closed 4-manifolds which admit simple wrinkled fibrations of genus one,
the lowest possible fiber genus.

1. Introduction

After the pioneering work of Donaldson [1999] and Gompf [1999] on symplectic
4-manifolds and Lefschetz fibrations and of Auroux, Donaldson and Katzarkov on
near-symplectic 4-manifolds [Auroux et al. 2005], the study of singular fibration
structures on smooth 4-manifolds has received considerable attention in the research
literature. Among the highlights in the field have been existence results for so called
broken Lefschetz fibrations over the 2-sphere on all closed, oriented 4-manifolds
[Akbulut and Karakurt 2008; Baykur 2008; Gay and Kirby 2007; Lekili 2009]
as well as a classification of these maps up to homotopy [Lekili 2009; Williams
2010]. Furthermore, the classical observation that Lefschetz fibrations over the
2-sphere are accessible via handlebody theory and can be described more or less
combinatorially in terms of collections of simple closed curves on a regular fiber
known as the vanishing cycles [Kas 1980; Gompf and Stipsicz 1999] was extended
to the broken Lefschetz setting in [Baykur 2009].

Our starting point is the work of Williams [2010], who introduced the closely
related notion of simplified purely wrinkled fibrations, proved their existence and
exhibited a similar combinatorial description of these maps — again by collections
of simple closed curves on a regular fiber — which he calls surface diagrams. It
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Figure 1. A surface diagram of S1
× S3 # S1

× S3 due to Hayano [2012].

follows that all smooth, closed, oriented 4-manifolds can be described by surface
diagrams; an example of such a diagram is shown in Figure 1. However, the
correspondence between simplified purely wrinkled fibrations and surface diagrams
has been somewhat unsatisfactory in that it usually involved arguments using broken
Lefschetz fibrations and the assumption that the fiber genus is sufficiently high.

It is one of our goals to provide a detailed and intrinsic account of this corre-
spondence and to clarify the situation in the lower-genus cases. Once this is done
we give some applications.

We now describe the contents of this paper in more detail. In Section 2 we begin
by recalling some preliminaries from the singularity theory of smooth maps and the
theory of mapping class groups of surfaces. This section is slightly lengthy because
we intend to use it as a reference for future work.

The following two sections form the technical core of this paper. In Section 3 we
introduce simple wrinkled fibrations over a general base surface; in the case when the
base is the 2-sphere our definition is almost equivalent to Williams’ simplified purely
wrinkled fibrations and our reason for introducing a new name is mainly to reduce
the number of syllables. We explain how the study of simple wrinkled fibrations
reduces to certain fibrations over the annulus which we call annular simple wrinkled
fibrations to which we associate twisted surface diagrams; roughly, such a diagram
consists of a closed, oriented surface 6, an ordered collection of simple closed
curves c1, . . . , cl ⊂6 and an orientation-preserving diffeomorphism µ :6→6

such that pairs of consecutive curves (ci and ci+1 for i < l, as well as µ(cl) and c1)
intersect transversely in one point. We prove the following:

Theorem 1.1. There is a bijective correspondence between annular simple wrinkled
fibrations up to equivalence and twisted surface diagrams up to equivalence.

For precise definitions we refer to Section 3. In the course of the proof we show
that annular simple wrinkled fibrations induce (relative) handle decompositions
of their total spaces which are, in fact, encoded in a twisted surface diagram
(Section 3B). These handle decompositions bear a very close resemblance with
those obtained from Lefschetz fibrations; the only difference appears in the framings
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of certain 2-handles. The section ends with an investigation of the ambiguities for
gluing surface bundles to the boundary components of annular simple wrinkled
fibrations.

In Section 4 we specialize to the case when the base surface is either a disk or a
sphere and recover Williams’ setting. Using our results about annular simple wrin-
kled fibrations we obtain a precise correspondence between Williams’ (untwisted)
surface diagrams and simple wrinkled fibrations over the disk (Proposition 4.1) and
the sphere (Corollary 4.2). In particular, our approach provides a direct way to
construct a simple wrinkled fibration from a given surface diagram circumventing
the previously necessary detour via broken Lefschetz fibrations.1

Next, we address the subtle question of which surface diagrams give rise to
simple wrinkled fibrations over the sphere and thus describe closed 4-manifolds.
Just as in the theory of Lefschetz fibrations, the key is to understand the boundary
of the associated simple wrinkled fibration over the disk. We show how to identify
this boundary with a mapping torus and describe its monodromy in terms of the
surface diagram. Unfortunately, it turns out that the boundary is much harder to
understand than in the Lefschetz setting.

We then go on to review the handle decompositions exhibited in Section 3 when
the base is the disk or the sphere and describe a recipe for drawing Kirby diagrams
for them. To complete the picture, we compare our decompositions with the ones
obtained via simplified broken Lefschetz fibrations.

In Sections 5 and 6 we give some applications. We show that certain substitutions
of curve configurations in surface diagrams correspond to cut-and-paste operations
on 4-manifolds. In particular, we give a surface diagram interpretation of blow-
ups and sum stabilizations, by which we mean connected sums with CP2, CP2

and S2
× S2. Using these we easily obtain a classification of closed 4-manifolds

which admit simple wrinkled fibrations with the lowest possible fiber genus.

Theorem 1.2. A smooth, closed, oriented 4-manifold admits a simple wrinkled
fibration of genus one if and only if it is diffeomorphic to kS2

× S2 or mCP2 #nCP2

where k,m, n ≥ 1.

Our result should be compared to [Baykur and Kamada 2010] and [Hayano 2011],
where the classification problem of genus-one simplified broken Lefschetz fibrations
is addressed but only partial solutions are achieved. However, it should also be noted
that their class of maps is strictly larger than that of genus-one simple wrinkled
fibrations and it is thus conceivable that the classification is more complicated.

Section 7 closes this paper by highlighting what we consider as some of the main
problems in the field and by outlining some related developments.

1By now this can be considered as a special case of [Gay and Kirby 2012], which appeared while
we were writing this paper.
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Conventions. By default, all manifolds are smooth, compact and orientable; all
maps are smooth and all diffeomorphisms preserve orientations. Given a submani-
fold S⊂M we denote by νS (respectively ν̄S) an open (respectively closed) tubular
neighborhood of S and whenever we speak of neighborhoods of submanifolds we
usually mean tubular neighborhoods. For induced orientations on boundaries we use
the outward normal first convention and, in order to coherently orient regular fibers
of maps between oriented manifolds, we use the fiber first convention. Exceptions
to these rules will be explicitly stated and we reserve the right to sometimes restate
some of the conditions for emphasis.

2. Preliminaries

To fix some terminology, let f : M → N be a smooth map with differential
d f : T M→ T N . A critical point or singularity of f is a point p ∈M such that d f p

is not surjective. The set of critical points, called the critical locus of f , will be
denoted by

C f :=
{

p ∈ M | rk d f p < dim N
}
⊂ M.

The image of a critical point is called a critical value and the set of all critical
values is called the critical image of f .

As customary, we call the preimage of a point a fiber, usually decorated with the
adjectives regular or singular indicating whether or not the fiber contains singulari-
ties. Note that regular fibers are always smooth submanifolds with trivial normal
bundle.

Remark 2.1. The terms critical point and singularity are used synonymously and
somewhat inconsistently in the literature, even in standard references such as
[Golubitsky and Guillemin 1973]. We will adapt to this custom of arbitrariness and
also use both terms depending on which seems more appropriate. However, we
would like to stress that neither term indicates the failure of a map to be smooth
at a given point — all maps we consider are smooth — they just indicate irregular
behavior of the differential at that point as described above.

2A. Folds, cusps and Lefschetz singularities. As a warm-up, recall that a generic
map from any compact manifold to a 1-dimensional manifold has only finitely
many critical points on which it is injective and, moreover, all critical points are of
Morse type; that is, they are locally modeled on maps of the form

(x1, . . . , xn) 7→ −x2
1 − · · ·− x2

k + x2
k+1+ · · ·+ x2

n ,

where the number k is called the (Morse) index of the critical point. (We say that a
map f : Mm

→ N n is locally modeled around p ∈ M on f0 : R
m
→ Rn if there are

local coordinates around p and f (p) mapping these points to the origin such that
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the coordinate representation of f agrees with f0.) Maps whose critical points are
all of Morse type are called Morse functions.

A similar statement holds for maps to surfaces. For convenience we take the
source to be 4-dimensional from now on. In this setting the Morse critical points
are replaced by two other types of singularities known as folds and cusps which
can also be described in terms of local models. The model for a fold point is the
map R4

→ R2 given by the formula

(2-1) (t, x, y, z) 7→ (t,−x2
− y2
± z2)

and the cusps are locally modeled on

(2-2) (t, x, y, z) 7→ (t,−x3
+ 3t x − y2

± z2).

If the sign in either of the above expressions is positive (respectively negative), then
the singularity is called indefinite (respectively definite).

An easy calculation shows that the critical loci of the fold and cusp models
are given by { (r, 0, 0, 0) | r ∈ R } and { (r2, r, 0, 0) | r ∈ R }, respectively. As
a consequence, the critical image of a smooth map is a smooth 1-dimensional
submanifold near fold and cusp points. The critical images of both models are
shown in Figure 2. Note that the critical image is smoothly embedded in the
fold model whereas in the cusp case it is topologically embedded via a smooth
homeomorphism whose inverse fails to be smooth only at the cusp point.

It follows directly from the models that folds always come in 1-dimensional
families on which the map restricts to an immersion. We will usually be sloppy and
refer to such an arc of fold points in the source as well as their image in the target
as fold arcs. Furthermore, cusps are isolated in the critical locus in the sense that
there is a small neighborhood which contains no other cusps. However, cusps are
not isolated singularities. In fact, one can show that any cusp is surrounded by two
fold arcs, at least one of which is indefinite.

We can now state the normal form of generic maps from 4-manifolds to surfaces.

Figure 2. The critical images of the fold and cusp models.
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Theorem 2.2 (generic maps to surfaces). A generic smooth map from a 4-manifold
to a surface has only fold and cusp singularities, it is injective on the cusps and
restricts to an immersion of its critical locus with only transverse intersections
between fold arcs.

Results of this kind are common knowledge in singularity theory; precise ref-
erences for Theorem 2.2 are [Golubitsky and Guillemin 1973, Theorem 5.2] and
[Levine 1964, Theorem 1] (see also [Boardman 1967; Morin 1965]).

The preceding discussion shows, in particular, that the critical locus of a generic
map to a surface is a smooth 1-dimensional submanifold of the source.

Remark 2.3. Recently, these generic maps to surfaces have appeared under the
name Morse 2-functions in [Gay and Kirby 2011a; 2011b; 2012].

In what follows we only deal with indefinite singularities. So from now on, when
we speak of folds and cusps, we always mean the indefinite ones.

Figure 2 contains some further decorations which we will now explain. Both
folds and cusps are intimately related to 3-dimensional Morse–Cerf theory. The
fold models a trivial homotopy of a Morse functions with one critical point (of
index two) on the vertical slices. This means that the model restricted to a small arc
transverse to the fold locus is a Morse function with one critical point of index one
or two, depending on the direction. The arrows in the picture indicate the direction
in which the index is two. Note that the topology of the fibers of either side of a
fold arc is necessarily different.

Similarly, the cusp is also a homotopy of Morse functions on the vertical slices,
although a nontrivial one. It models the cancellation of a pair of critical points of
index one and two. The arrows indicate the index two direction of the fold arcs
adjacent to the cusp.

For the moment, this is all we have to say about folds and cusps. Another
important type of singularity which has its roots in (complex) algebraic geometry
is the Lefschetz singularity and its local model is given in complex coordinates by

L : C2
→ C, (z, w) 7→ zw.

At this point it becomes important whether the charts that we use to model the map
are orientation-preserving. Indeed, the use of orientation-reversing charts for the
Lefschetz model produces so called achiral Lefschetz singularities which are not
compatible with complex geometry; in orientation-preserving coordinates achiral
Lefschetz singularities can be modeled by (z, w) 7→ z̄w which is not holomor-
phic. We will thus always use orientation-preserving charts to model singularities
whenever the source or target are oriented. Note that this is no restriction for folds
and cusps since both models admit an orientation-reversing diffeomorphism which
leaves the map invariant.
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As stated in the introduction, maps with (indefinite) fold, cusp and Lefschetz
singularities have been prominently featured in the research literature over the past
decade. Unfortunately, different authors have used different names for various types
of maps and there is yet no commonly accepted terminology in the field. For the
purpose of this paper we use this:

Definition 2.4. Let f : X → B be a surjective map from an oriented 4-manifold
to an oriented surface, with critical locus C f . Assume that all intersections in the
critical image are transverse intersections of fold arcs and C f is transverse to the
boundary of X . We call

(a) a wrinkled fibration if C f contains only indefinite folds and cusps,

(b) a (broken) Lefschetz fibration if C f contains only Lefschetz singularities (and
indefinite folds),

(c) a broken fibration if C f contains only indefinite folds, cusps and Lefschetz
singularities.

We will usually refer to X as the total space and to B as the base of f .

If f : X→ B is a broken fibration, then ∂X ∩ C f is either empty or consists of
finitely many fold points and it follows from the fold model that f restricts to a
circle valued Morse function over each boundary component of B.

The regular fibers of f are orientable surfaces and our conventions determine
an orientation. We will usually assume that ∂X = f −1(∂B) so that the fibers are
closed surfaces.

It is quite useful to think of broken fibrations as singular families of surfaces
parametrized by the base. More precisely, the images of the folds and cusps cut
the base into several regions which may or may not contain Lefschetz singularities.
Each regular fiber is an orientable surface whose topological type depends only on
the region that it maps into. One thus decorates the base with the topological type
of the fibers over each region together with some information about what happens
to a fiber if one crosses a fold arc (the fold vanishing cycles corresponding to the
little arrows we have indicated above, see Definition 3.11) or runs into a Lefschetz
singularity (the Lefschetz vanishing cycle). Under certain circumstances this data
is enough to determine the map as we will see later on; see also [Gay and Kirby
2012].

We finish this section with a short review of the homotopy classification of
broken fibrations over S2 that was mentioned in the introduction. An important
contribution of Lekili [2009] is that he showed how to pass back and forth between
broken Lefschetz fibrations and wrinkled fibrations via two local homotopies, i.e.,
homotopies supported in arbitrarily small balls. As portrayed in Figure 3 one can
wrinkle a Lefschetz point into an indefinite triangle (that is, an indefinite circle with
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Figure 3. Wrinkling (left) and unsinking (right) a Lefschetz singularity.

three cusps) and one can exchange a cusp for a Lefschetz singularity; this move is
sometimes called unsinking a Lefschetz point from a fold. (Moreover, he showed
that these modifications work equally well with achiral Lefschetz singularities which,
together with the results of [Gay and Kirby 2007], proves the existence of broken
Lefschetz fibrations.) As a consequence, one can translate questions about broken
fibrations into questions about wrinkled fibrations which are accessible by means of
singularity theory. For example, there is a structural result similar to Theorem 2.2
for generic homotopies between wrinkled fibrations. The basic building blocks
include isotopies of the base and total space and three types of modifications (and
their inverses) that are realized by local homotopies: the birth/death, the merge and
the flip. Figure 4 shows their effect on the critical image. In general, such a generic
homotopy will pass through maps with definite singularities. However, the main
theorem in [Williams 2010], which was conjectured in [Lekili 2009], states that
indefinite singularities can, in fact, be avoided. In other words, any two homotopic
wrinkled fibrations are homotopic through wrinkled fibrations.

birth merge

flip

Figure 4. The basic local homotopies.

Remark 2.5. It has become common to refer to an application of any of these
modifications as moves performed on a broken fibration; this terminology is due
to [Lekili 2009]. It is important to note that most of these moves are not strictly
reversible in the following sense. If the critical image of a given broken fibration
exhibits the left configuration in any of the pairs, it is always possible to replace
it by the one on the right. However, it might not be possible to go into the other
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direction. The only exception is the birth. In all other cases some extra conditions
are needed to go from right to left. This is indicated in our pictures with shaded
arrows. For further details we refer to [Lekili 2009].

Remark 2.6. There is some disagreement in the literature about which direction in
the second pair in Figure 4 should be called merge and which inverse merge. To avoid
this decision we simply speak of merging cusps and merging folds, respectively.

2B. Surfaces and simple closed curves. As we pointed out, the regular fibers of
broken fibrations are surfaces and these fibers will be our main focus later on. The
theory of surfaces and mapping class groups is yet another field of mathematics
with many different conventions and, in the author’s experience, it can be confusing
to decide whether a statement in some reference actually applies to a situation at
hand. For this reason we give very precise definitions, deliberately risking to be
overly precise.

By a surface6 we mean a compact, orientable, 2-dimensional manifold, possibly
with boundary and some marked points in the interior. A simple closed curve in 6
is a closed, connected, 1-dimensional submanifold of 6 that does not meet the
boundary or the marked points. We usually consider simple closed curves up to
ambient isotopy in 6 relative to ∂6 and the marked points and will not make a
notational distinction between a simple closed curve and its isotopy class. Note
that according our definition simple closed curves are unoriented objects. However,
from time to time it will be convenient to choose orientations on them in order to
speak of their homology classes.

The geometric intersection number of two simple closed curves a, b ⊂6 is

i(a, b) :=min {#(α ∩β) | α ∼ a, β ∼ b, α t β} ∈ N,

where the signs ∼ and t indicate isotopy and transverse intersection. If the curves
as well as the surface are oriented, then we also have an algebraic intersection
number which is obtained by a signed count of intersections after making the curves
transverse. Equivalently, this number can be described as

〈a, b〉 := 〈[a], [b]〉6 := 〈[a], [b]〉H1(6) ∈ Z,

where the bracket on the right side denotes the intersection form on H1(6). (In the
present paper homology is always taken with integer coefficients.)

Note that the algebraic intersection number is alternating and depends only on
the homology classes of the oriented simple closed curves while the geometric inter-
section number is symmetric and depends on the isotopy classes. Both intersection
numbers have the same parity and satisfy the inequality

(2-3) | 〈a, b〉 | ≤ i(a, b).
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We say that a and b are geometrically dual (respectively algebraically dual) if their
geometric (respectively algebraic) intersection number is one.

A simple closed curve a ⊂ 6 is called nonseparating if its complement is
connected, otherwise it is called separating. Note that a simple closed curve is
separating if and only if it is null-homologous (with either orientation) and thus
simple closed curves that have geometric or algebraic duals are automatically
nonseparating.

Diffeomorphisms of surfaces. Let us now turn to diffeomorphisms of surfaces. Let
Diff+(6, ∂6) denote the set of orientation-preserving diffeomorphisms that restrict
to the identity on ∂6 and preserve the set of marked points. The mapping class
group of 6 is defined as

Mod(6) := π0(Diff+(6, ∂6), id).

Given a simple closed curve a⊂6 there is a well defined mapping class τa ∈Mod(6)
called the (right-handed) Dehn twist about a. Similarly, any simple arc r ⊂6 that
connects two distinct marked points gives rise to a half twist τ̄r ∈Mod(6).

It is well known that Mod(6) is generated by the collection of Dehn twist and
half twists, where the latter are only needed in the presence of marked points.
On the other hand, mapping classes can be effectively studied by their action on
(isotopy classes of) simple closed curves. In particular, it is desirable to understand
the effect of Dehn twists on simple closed curves. While this can be tricky, the
situation simplifies significantly on the level of homology classes.

Proposition 2.7 (Picard–Lefschetz formula). Let 6 be a surface, a ⊂6 a simple
closed curve and let x ∈ H1(6). Then for any orientation on a we have

(2-4) (τ k
a )∗x = x + k 〈[a], x〉 [a].

In particular, if b is an oriented simple closed curve, then

(2-5) [τ k
a (b)] = [b] + k 〈[a], [b]〉 [a].

Proof. See [Farb and Margalit 2011, Proposition 6.3] �

Remark 2.8. The Picard–Lefschetz formula is particularly useful for the torus
since, in that case, mapping classes are completely determined by their action on
homology.

Another useful tool is the change of coordinates principle, which roughly states
that any two configurations of simple closed curves on a surface with the same
intersection pattern can be mapped onto each other by a diffeomorphism. We will
only use the following special cases. For details we refer to [Farb and Margalit
2011, Chapter 1.3].
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Proposition 2.9 (change of coordinates principle). If a, b ⊂ 6 is a pair of non-
separating simple closed curves, then there exists some φ ∈ Diff+(6, ∂6) such
that φ(a)= b. Furthermore, if a, b and a′, b′ are two pairs of geometrically dual
curves, then there is some φ ∈ Diff+(6, ∂6) such that φ(a)= a′ and φ(b)= b′.

Mapping tori and their automorphisms. Given a surface 6 and a diffeomorphism
µ : 6 → 6, possibly not orientable or orientation-preserving, we can form the
mapping torus

6(µ) :=
(
6×[0, 1]

)
/
(
(x, 1)∼ (µ(x), 0)

)
which is a 3-manifold that fibers over S1 ∼= [0, 1]/{0, 1} in the obvious way. If
6 is oriented and µ is orientation-preserving, then our conventions stated in the
introduction induce an orientation on 6(µ). All surface bundles over S1 can be
described as mapping tori. Indeed, if a 3-manifold fibers over S1, then one chooses
a fiber and a lift of a vector field that determines the orientation of S1 and the return
map of the flow of this vector field induces a diffeomorphism of the fiber which is
usually called the monodromy.

Let Y be an oriented 3-manifold that fibers over the circle via a map f : Y → S1.
An automorphism of (Y, f ) is an orientation- and fiber-preserving diffeomorphism
of Y . We denote the group of automorphisms by Aut(Y, f ) or simply by Aut(Y )
when the fibration is clear from the context. If we identify Y with a mapping torus,
say 6(µ), then we obtain a description of Aut(Y ) in terms of diffeomorphisms
of 6. Indeed, any element φ ∈ Aut(6(µ)) can be considered as a path (φt)t∈[0,1]

in Diff+(6) connecting some element φ0 ∈Diff+(6) to φ1=µ
−1φ0µ. In particular,

φ0 must be isotopic to µ−1φ0µ and thus represents an element of CMod(6)(µ), the
centralizer in Mod(6) of (the mapping class represented by)µ. Elaborating on this
observation one arrives at the conclusion that

(2-6) π0
(

Aut(Y )
)
∼= π0

(
Aut(6(µ))

)
∼= CMod(6)(µ)nπ1(Diff(6), id),

where the multiplication on the right side is given by

(g, σ ) · (h, τ )=
(
h ◦ g, (g−1τg) ∗ σ

)
.

This means that there are essentially two types of automorphism of mapping tori:
the ones that are constant on the fibers coming from CMod(6)(µ) and the ones
coming from π1(Diff(6), id) that vary with the fibers and restrict to the identity
on the reference fiber. However, it turns out that for most surfaces there are no
nonconstant automorphisms.

Theorem 2.10 [Earle and Eells 1969]. If 6 is a closed, orientable surface without
marked points, the group π1(Diff(6), id) is isomorphic to Z2, Z⊕Z, or the trivial
group, depending on whether the genus g equals 0, 1, or more than 1.
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Hence, as soon as the genus of the fiber of a mapping torus is at least two, all
automorphisms are isotopic (through automorphisms) to constant ones.

Remark 2.11. It is important not to confuse the group Aut(Y ) with the group of
all (orientation-preserving) diffeomorphisms of Y . A general diffeomorphism will
not even be isotopic to a fiber-preserving one!

Theorem 2.10 has many important consequences, of which we only highlight one.

Corollary 2.12. Let P→ S2 be a surface bundle with closed fibers of genus g.

(1) If g = 0, then P is diffeomorphic to S2
× S2 or CP2 # CP2.

(2) If g = 1, then P is diffeomorphic to T 2
× S2, S1

× S3 or S1
× L(n, 1).

(3) If g ≥ 2, then P is diffeomorphic to 6g × S2

Proof. For the genus-one case see [Baykur and Kamada 2010, Lemma 10]. The
other cases are well known. �

3. Simple wrinkled fibrations over general base surfaces

Without further ado we introduce the main objects of study in this paper.

Definition 3.1. Let X be a 4-manifold and B a surface, both oriented. A simple
wrinkled fibration with total space X and base B is wrinkled fibration w : X→ B
with the following additional properties:

(1) ∂X = w−1(B).

(2) Cw ∩ ∂X =∅.

(3) Cw is nonempty, connected, and contains a cusp.

(4) w is injective on Cw.

(5) All fibers of w are connected.

The genus of w is the maximal genus among all regular fibers. Finally, two
simple wrinkled fibrations w : X → B and w′ : X ′→ B ′ are equivalent if there
are orientation-preserving diffeomorphisms φ̂ : X → X ′ and φ̌ : B → B ′ such
that w′ ◦ φ̂ = φ̌ ◦w.

A neighborhood of the critical image of a simple wrinkled fibration is shown in
Figure 5. Before we continue we make some remarks about the definition.

Remark 3.2. Simple wrinkled fibrations over S2 are, in essence, the same as
Williams’ simplified purely wrinkled fibrations, with two minor differences. On
the one hand we do not put restrictions on the fiber genus, but on the other we
require the presence of cusps. Both conditions can always be achieved by applying
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Figure 5. A neighborhood of the critical image of a simple wrin-
kled fibration.

Figure 6. The base diagrams during a flip-and-slip move. (The
pictures show the complement of a disk in the lower-genus region
of the original fibration.)

a flip-and-slip move (see next remark) and are thus not restrictive. Moreover, the
“simple wrinkled fibrations without cusps” are easily classified (see Example 3.7),
so one does not lose too much by excluding them.

Remark 3.3. Given a simple wrinkled fibration over S2 there is an important
homotopy to another such simple wrinkled fibration which has become known as a
flip-and-slip move. Its effect on the base diagram is shown in Figure 6. One first
perform two flips on the same fold arc and then chooses an isotopy of the total space
(the slip) during which the critical image undergoes the changes demonstrated in
the picture. A flip-and-slip increases the fiber genus by one and introduces four
new cusps.

Remark 3.4. In spite of the lengthy definition, simple wrinkled fibrations are
arguably the simplest possible maps from 4-manifolds to surfaces, at least as far
as their singularity structure is concerned. As will be explained in detail it is
this simplicity which makes it possible to give nice combinatorial descriptions of
4-manifolds.

Given the rather specialized nature of simple wrinkled fibrations one might
wonder whether they actually exist. This is indeed the case and we begin by giving
some simple constructions.
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Example 3.5 (surface bundles). Let π : X→ B be a surface bundle over a surface B
with closed fibers of genus g. Then we can perform a birth homotopy on π to
obtain a simple wrinkled fibration of genus g+1 with two cusps.

Example 3.6 (Lefschetz fibrations). If f : X→ B is a Lefschetz fibration (possi-
bly achiral) with closed fibers of genus g, then after wrinkling all the Lefschetz
singularities we obtain a number of disjoint circles with three cusps in the critical
image. By suitably merging cusps we can turn this configuration into a single circle
resulting in a simple wrinkled fibration of genus g+ 1.

Example 3.7 (the case without cusps). This example includes the broken Lefschetz
fibration on S4 from [Auroux et al. 2005] that was mentioned in the introduction.
Let � be a cobordism from 6g to 6g−1 together with a Morse function µ :�→ I
with exactly one critical point of index two. Then µ×id :�×S1

→ I×S1 is a stable
map with one circle of indefinite folds which fails to be a simple wrinkled fibration
only because it does not have any cusps. Nevertheless, we can use �× S1 to build
wrinkled fibrations over S2 by suitably filling in the two boundary components
with 6g × D2 and 6g−1× D2 such that the fibration structures on the boundary
extends. Using the handle decomposition from [Baykur 2009] it is easy to see that
this construction produces the following total spaces: P # S1

× S3 where P is any
6g−1-bundle over S2 and, if g = 1, S4 and some other manifolds with finite cyclic
fundamental group; see [Baykur and Kamada 2010; Hayano 2011]. Having built
these maps one can then apply a flip-and-slip to obtain honest simple wrinkled
fibrations. In particular, S4 carries a simple wrinkled fibration of genus two.

These examples show that simple wrinkled fibrations can be considered as a
common generalization of surface bundles and (achiral) Lefschetz fibrations. The
vastness of this generalization is indicated by the following remarkable theorem.

Theorem 3.8 [Williams 2010]. Let X be a closed, oriented 4-manifold. Then any
map X→ S2 is homotopic to a simple wrinkled fibration of arbitrarily high genus.

Remark 3.9. Williams’ proof builds on the results of [Gay and Kirby 2007] which,
in turn, depends on deep theorems in 3-dimensional contact topology. This some-
what unnatural dependence could be removed by refining the singularity theory
based approach of [Baykur 2008] to produce maps which are injective on their
critical locus.

Williams [2010] introduced a combinatorial description of simple wrinkled
fibrations over S2 in terms of what he calls surface diagrams. We will generalize
his construction to the setting of general base surfaces.

Let w : X → B be a simple wrinkled fibration. The discussion in Section 2A
shows that the critical locus Cw ⊂ X is a smoothly embedded circle and that
w restricts to a topological embedding of Cw into B. Furthermore, the critical
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image w(Cw) separates B into two components. Indeed, if the complement were
connected, then all regular fibers would be diffeomorphic. But according to the fold
model, the topology of the fibers on the two sides of a fold arc must be different. In
fact, since we require that all fibers are connected, the genus on one side has to be
one higher than on the other side. We will call the two components of B \w(Cw)
the higher- and lower-genus regions.

We would like to understand more precisely how the topology of the fibers
changes across the critical image. A reference path for w is an oriented, embedded
arc R ⊂ B that connects a point p+ in the higher-genus region to a point p− in
the lower-genus region and intersects w(Cw) transversely in exactly one fold point.
Then the reference fibers 6±(R) := w−1(p±) over the reference points p± are
closed, oriented surfaces.

Lemma 3.10. A reference path R⊂ B induces a nonseparating simple closed curve
c(R)⊂6+(R) which depends only on the isotopy class of R relative to its reference
points and the cusps.

Definition 3.11. The curve c(R) ⊂ 6+(R) is called the (fold) vanishing cycle
associated to R.

Proof. The fold model implies that w−1(R) is a cobordism from 6+(R) to 6−(R)
on which w restricts to a Morse function with exactly one critical point of index 2.
Thus w−1(R) is diffeomorphic to 6+(R)×[0, 1] with a (3-dimensional) 2-handle
attached along a simple closed curve in 6+(R)×{1} which is canonically identified
with a simple closed curve c(R)⊂6+(R). �

Next, let us look at what happens around the cusp. Let R1 and R2 be two
reference paths for w with common reference points and assume that their interiors
are disjoint. We call R1 and R2 adjacent if their union R1 ∪ R2 bounds a disk in B
that contains exactly one cusp.

Lemma 3.12. Let R1 and R2 be adjacent reference paths. Then the vanishing
cycles c(R1) and c(R2) in 6+ :=6+(R1)=6+(R2) are geometrically dual.

Proof. As in the proof of Lemma 3.10 the preimages w−1(Ri ), i = 1, 2, are
both cobordisms from 6+ to 6−, each consisting of a 2-handle attachment along
c(Ri ). By reversing the orientation of R1 we can consider w−1(R1) as a cobordism
from 6− to 6+, now consisting of a 1-handle attachment. In this process the former
attaching sphere of the 2-handle c(R1) becomes the belt sphere of the 1-handle.

Gluing w−1(R1) and w−1(R2) together along 6+ gives a cobordism from 6− to
itself consisting of a 1-handle attachment followed by a 2-handle attachment. Now
recall that a cusp models the death (or birth) of a canceling pair of Morse critical
points. Hence, the attaching sphere of the 2-handle, which is c(R2), intersects the
belt sphere of the 1-handle, which is c(R1), in a single point. �
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Looking a bit ahead, our strategy will be to choose suitable collections of
reference paths and to study simple wrinkled fibrations in terms of the induced
collection of vanishing cycles. The only obstacle for doing so is the possibly
complicated topology of the base surface. But this can easily be overcome by
cutting the base into three pieces

B = B+ ∪ A∪ B−

where A is a regular neighborhood of the critical image of w (diffeomorphic to an
annulus) and B± are the closures of the complement of A. The subscript in B±
indicates whether the surface is contained in the higher- or lower-genus region.
Note that w restricts to surface bundles over B± and, although complicated, these
form a rather well studied class of objects. Thus the interesting new part of w is
the restriction w−1(A)→ A which is a simple wrinkled fibration over an annulus
whose critical image is boundary parallel.

Definition 3.13. A simple wrinkled fibration w : W → A over an annulus A is
called annular if its critical image is boundary parallel.

So in order to understand simple wrinkled fibrations over any base surface, it is
enough to understand annular simple wrinkled fibrations and this is where twisted
surface diagrams (see Definition 3.20 below) enter the picture. The remainder of
this section is devoted to the proof of Theorem 1.1 stated in the introduction.

Remark 3.14. Gay and Kirby [2012] have published a result that contains Theorem
1.1 as a special case. Although their methods are somewhat similar to ours we feel
that our approach is of independent interest.

We will split the proof of the theorem into the two obvious parts. The first part is
the subject of Section 3A (see Proposition 3.25) where we show how assign twisted
surface diagrams to annular simple wrinkled fibrations. The second part that shows
how to build annular simple wrinkled fibrations from twisted surface diagrams is
treated in Section 3C (see Proposition 3.31). In between, we will see in Section 3B
that, just as Lefschetz fibrations, annular simple wrinkled fibrations are directly
accessible via handlebody theory.

3A. Twisted surface diagrams of annular simple wrinkled fibrations. Consider
an annular simple wrinkled fibration w : W → A. We denote by ∂+A and ∂−A
the boundary components of the base annulus A contained in the higher- and
lower-genus regions, respectively, and we let

∂±W = w−1(∂±A).

We equip ∂+A and ∂+W with the opposite boundary orientation, so that W is an
oriented cobordism from ∂+W to ∂−W .
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Figure 7. A reference system for an annular simple wrinkled fibration.

Definition 3.15. Let w : W → A be an annular simple wrinkled fibration. A
reference system for w is a collection of reference paths R= {R1, . . . , Rl} for w
(where l is the number of cusps) such that

(1) all reference paths have the same reference points p± ∈ ∂±A,

(2) the interiors of the arcs are pairwise disjoint,

(3) with respect to the orientations on ∂±A the arcs leave ∂+A and enter ∂−A in
order of increasing index (see Figure 7) and

(4) each fold arc is hit by exactly one of the Ri .

Remark 3.16. Condition (3) might need some further explanation. Assume that we
have a collection of properly embedded arcs in a surface which all hit the boundary
in the same point and are otherwise disjoint near that boundary component. If the
boundary component is oriented, then there is a well defined notion of order for
the arcs which can be described as follows. We take a small half disk around the
boundary point and orient the boundary of this half disk so that it agrees with the
orientation of the boundary component of the surface. For a generic choice of half
disk each arc will intersect the boundary of the half disk transversely in one point
and the order of these intersection points is easily seen to be independent of the
choice of half disk.

As before, we denote the reference fibers by 6± :=6±(R)= w−1(p±). Using
the reference fibers we can write ∂±W as mapping tori

∂±W ∼=6±(µ±)

where µ± ∈Mod(6±) is the monodromy of w over ∂±A (in the positive direction).
We will refer to µ+ and µ− as the higher and lower monodromies of w.
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R

S

R

S′

Figure 8. Swinging an arc around a boundary component.

Lemma 3.17. Let w : W → A be an annular simple wrinkled fibration together
with a reference system R= {R1, . . . , Rl} and let ci = c(Ri )⊂6+. For i < l the
vanishing cycles ci and ci+1 are geometrically dual, and so are µ+(cl) and c1.

In the proof we need the following construction. Let B be an oriented surface
and let R and S be two properly embedded arcs in B which hit a boundary compo-
nent ∂i B ⊂ ∂B transversely in the same point such that S enters ∂i B after R (as
explained in Remark 3.16) and whose interiors are disjoint. As indicated in Figure 8
we can modify S by moving its endpoint along ∂i B resulting in a new arc S′ which
enters ∂i B before R and whose interior is still disjoint from R. We will say that S′

is obtained from S be swinging once around ∂i B. (Note that swinging around ∂i B is
not the same as performing a boundary parallel Dehn twist since such Dehn twists
are supported in the interior of B and fix a collar neighborhood of the boundary.
In particular, they cannot change the order of arcs at the boundary and, moreover,
in Figure 8 a boundary parallel Dehn twist applied to S would produce an arc that
intersects R in its interior.)

Proof of Lemma 3.17. The first statement follows from Lemma 3.12 since for i < l
the reference paths Ri and Ri+1 are clearly adjacent. For the second statement we
first swing Rl once around the boundary of A so that the resulting reference path R′l
is adjacent to R1 and thus c(R′l) is geometrically dual to c(R1). Next we observe
that R′l is homotopic to Rl precomposed with the boundary curve. Thus the parallel
transport along R′l is the composition of the parallel transport along Rl and the
higher-genus monodromy. In particular, we have c(R′l)= µ+(cl). �

Remark 3.18. Note that in the above proof we did not actually need the whole
reference system but only the parts of the arcs contained in the higher-genus region.

Let us isolate the combinatorial structure encountered in the above lemma.

Definition 3.19. Let 6 be a surface. A circuit (of length l) on 6 is an ordered
collection of simple closed curves 0 = (c1, . . . , cl) such that any two adjacent
curves ci and ci+1 are geometrically dual for i < l. A switch for 0 is a mapping
class µ ∈Mod(6) such that µ(cl) and c1 are geometrically dual. We say that 0 is
closed if cl and c1 are geometrically dual, that is, if the identity works as a switch.
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Definition 3.20. A twisted surface diagram is a triple S= (6, 0,µ) where 6 is a
closed, oriented surface, 0 is a circuit in 6 and µ ∈Mod(6) is a switch for 0. In
the case that 0 is a closed circuit and µ= id, we simply speak of surface diagrams
and shorten the notation to S= (6, 0) or sometimes even (6; c1, . . . , cl).

Remark 3.21. Note that our definition of surface diagrams is slightly different from
Williams’ original definition [2010]. Indeed, Williams requires that surface diagrams
are induced from simple wrinkled fibrations over the sphere so that the associated
annular simple wrinkled fibration has trivial higher and lower monodromies while
we only require trivial higher monodromy. The reason for our deviance is that we
would like to have an abstract definition of (twisted) surface diagram that does not
depend on any relation to simple wrinkled fibrations. However, it turns out that
the trivial lower monodromy condition for an annular simple wrinkled fibration is
not easy to state in terms of its twisted surface diagrams (see Section 4A for the
untwisted case) and we find it more appropriate to consider it as an extra condition.

Remark 3.22. There is no restriction on the intersections of nonadjacent curves
in a circuit. Circuits in which nonadjacent curves are disjoint, so called chains of
curves, are well known objects in the theory of mapping class groups of surfaces
where they play an important role.

Remark 3.23. Sometimes it will be convenient to choose orientations on the curves
in a circuit 0 = (c1, . . . , cl) in order to speak of their homology classes. If the
ambient surface is oriented, we always choose orientations such that the intersection
of ci and ci+1, i < l, has positive sign.

With this terminology we can rephrase Lemma 3.17 as stating that an annular
simple wrinkled fibration w :W → A together with a reference system R induces
a twisted surface diagram

Sw,R := (6+, 0w,R, µ+)

where the higher monodromy works as a switch.
Not surprisingly, the twisted surface diagrams constructed in Lemma 3.17 depend

on the choice of the reference system. To understand this dependence we observe
that a reference system is uniquely determined (up to isotopy relative to the boundary
and the cusps) by specifying the first reference path — this follows directly from the
definition. Furthermore, it is easy to see that any two reference paths which have
the same reference points and hit the same fold arc become isotopic after suitably
swinging around the boundary components of A.

Now let R= {R1, . . . , Rl} and S = {S1, . . . , Sl} be two reference systems with
common reference points and let Sk hit the same fold arc as R1. As in the proof
of Lemma 3.17 we successively swing the arcs Sl, Sl−1, . . . , Sk once around each
boundary component to obtain a new reference system S ′ in which the first reference
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path hits the same fold arc as R1. Now, by further swinging all of S ′ simultaneously,
but this time independently around the boundary components, we can match the
two first reference paths and thus the whole reference systems.

Let us analyze the effect of this matching procedure on the twisted surface
diagram. For brevity of notation let S= (6, 0,µ) be the twisted surface diagram
associated to an annular simple wrinkled fibration w : W → A together with a
reference system R. Since the surface 6 and the switch µ only depend on the
reference points, only the circuit 0= (c1, . . . , cl) will be affected by swinging some
reference paths. Moreover, note again that the vanishing cycles ci only depend on
the part of the reference paths contained in the higher-genus region. Thus swinging
around the lower-genus boundary does not change the circuit.

Now, as we have already observed, if we swing the last reference path in R once
around both boundary components, we obtain a new reference system R′, which
induces the circuit

0[1]µ :=
(
µ(cl), c1, . . . , cl−1

)
.

This operation of going from S to S[1] := (6, 0[1]µ , µ) makes sense in the abstract
setting of twisted surface diagrams and we call it (and its obvious inverse) switching.
Note that if the higher monodromy µ is trivial, then switching simply amounts to a
cyclic permutation of the vanishing cycles.

Since we can relate any two reference systems for a given annular simple wrinkled
fibration by suitably swinging reference paths, we see that the twisted surface
diagram is well defined up to switching.

Next we want to compare the twisted surface diagrams of two equivalent annular
simple wrinkled fibrations as in the commutative diagram below.

X

w

��

φ̂ // X ′

w′

��
A

φ̌ // A′

If R is a reference system for w, then R′ := φ̌(R) is a reference system for w′.
Let S= (6, 0,µ) and S′= (6′, 0′, µ′) be the associated twisted surface diagrams.
Then φ̂ induces an orientation-preserving diffeomorphism φ :6→6′ and clearly
the higher monodromies satisfy µ′ = φµφ−1. It is also easy to see that

0′ = φ(0) :=
(
φ(c1), . . . , φ(cl)

)
where, as usual, 0 = (c1, . . . , cl). Again, the effect of an equivalence of annular
simple wrinkled fibrations makes sense for abstract twisted surface diagrams and
we say that S and S′ are diffeomorphic via φ.
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Combining this with switching we end up with the following definition.

Definition 3.24. Two twisted surface diagrams S and S′ called equivalent if, for
some integer k, S′ is diffeomorphic to S[k].

Summarizing this section so far, we have proved the first half of Theorem 1.1:

Proposition 3.25. To an annular simple wrinkled fibration w : W → A we can
assign a twisted surface diagram

Sw = (6+, 0w, µ+)

which is well defined up to equivalence. Moreover, equivalent annular simple
wrinkled fibrations have equivalent twisted surface diagram.

Remark 3.26. We would like to point out that it is very convenient that only the
equivalence class of the surface diagram plays a role. Indeed, in order to actually
visualize the twisted surface diagram of an annular simple wrinkled fibration one
has to identify the higher-genus reference fiber with some model surface and there
is no canonical way to do so. However, any two such identifications will differ by a
diffeomorphism of the model surface and thus be equivalent. So we can safely forget
about the choice of identification whenever we are only interested in the equivalence
class of the simple wrinkled fibrations or the diffeomorphism type of its total space.

3B. Handle decompositions for annular simple wrinkled fibrations. As a next
step we relate the twisted surface diagrams associated to annular simple wrinkled
fibrations to the topology of their total spaces. We will see that the situation is very
similar to Lefschetz fibrations.

Proposition 3.27. Let w :W → A be an annular simple wrinkled fibration. Then
W has a relative handle decomposition on ∂+W with one 2-handle for each fold arc.
Such a handle decomposition is encoded in any twisted surface diagram for w.

In the following we will refer to the 2-handles associated to the fold arcs as fold
handles.

Proof. The rough idea is to parametrize A by S1
×[0, 1] such that the composition

ofw and the projection p : S1
×[0, 1]→[0, 1] becomes a Morse function. We equip

S1
×[0, 1] with coordinates (θ, t) and refer to the direction in which t increases as

right. We say that a parametrization κ : A→ S1
×[0, 1] is w-regular if the critical

image Cκ := κ ◦w(Cw) is in the following standard position:

• All cusps point to the right.

• Each Rθ := {θ} × [0, 1] meets Cκ in exactly one point, either in a cusp or
transversely in a fold point.

• The projection p restricted to Cκ has exactly one minimum on each fold arc.
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We claim that for any w-regular parametrization κ , the map

pκ := p ◦ κ ◦w :W → [0, 1]

is a Morse function. Clearly, the critical points of pκ are contained in Cw. Thus we
have to understand how the projection p interacts with the critical image Cκ . By
the standard position assumption there are three ways how a level set St := S1

×{t}
can intersect Cκ (see Figure 9):

a) St intersects Cκ transversely in a fold point,

b) St meets Cκ in a cusp and the fold arcs surrounding the cusp are on the left
side of St or

c) St is tangent to a fold arc which is located on the right side of St . We will
refer to this phenomenon as a left tangency.

Figure 9. Level sets intersecting the critical image.

It turns out that only the left tangencies contribute critical points of pκ . In fact,
from the models for the fold and cusp we immediately see that pκ is modeled on
the compositions

(3-1) (t, x, y, z) 7→ (t,−x3
+ 3t x − y2

+ z2) 7→ t

in case of a cusp intersection and

(3-2) (t, x, y, z) 7→ (t,−x2
− y2
+ z2) 7→ ±t

for a transverse fold intersection (the sign depends on how the fold and cusp models
are embedded) which shows that these are regular points of pκ .

It remains to treat the concave tangencies. These occur precisely at the minima
of pκ |Cκ . This minimum can be modeled by t 7→ t2 and it is easy to see that pκ is
modeled on

(3-3) (t, x, y, z) 7→ (−x2
− y2
+ z2
+ t2)
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which is a Morse critical point of index 2. By assumption there is exactly one
concave tangency for each fold arc and, using the correspondence between Morse
functions and handle decompositions, we obtain the desired handle decomposition.

In order to understand how the fold handles are attached, consider the arcs

Ri := Rθi ⊂ S1
×[0, 1],

where θ1, . . . , θl ∈ S1 is a sequence of numbers ordered according to the orientation
of S1 (for example, the l-th roots of unity). The w-regular parametrization κ can
be chosen in such a way that each Ri is a reference path for precisely one fold
arc and Cκ is contained in the open annulus S1

× (ε, 1− ε) for some ε > 0. For
each Ri we obtain a vanishing cycle ci in the fiber of w over (θi , 0) ∈ ∂+A and the
local model for folds implies that the fold handles are attached to ∂+W × [0, ε]
along the vanishing cycles ci pushed off into the fiber over (θi , ε) with respect to
the canonical framing induced by the fiber.

The relation to twisted surface diagrams now becomes obvious. There is a
canonical way to turn the reference paths 21, . . . ,2l into a reference system by
fixing 21 and successively sliding the endpoints of the remaining arcs along the
boundary onto 21 against the orientation. Thus the vanishing cycles record the
attaching curves of the fold handles. �

Remark 3.28. The above proposition is one of the reasons why we require the
presence of cusps in the critical loci of simple wrinkled fibrations. If there were no
cusps, then it would not be possible to avoid right tangencies which would corre-
spond to 3-handles instead of 2-handles. Thus the presence of cusps guarantees that
the total spaces of annular simple wrinkled fibrations are (relative) 2-handlebodies.

Remark 3.29. The observation that fold tangencies correspond to Morse critical
points was also made by Gay and Kirby [2011a] in their more general setting of
Morse 2-functions. The fact that the real part of the Lefschetz model is also a Morse
function allows to include Lefschetz singularities in the discussion. Proceeding this
way, one can recover Baykur’s result [2009] about handle decompositions from
broken Lefschetz fibrations.

Remark 3.30. The reader familiar with Lefschetz fibrations will have noticed the
strong resemblance of the handle decompositions described above with the ones
induced by Lefschetz fibrations. In fact, the handle decompositions have exactly
the same structure except that the fold handles are attached with respect to the fiber
framing while the framing of the Lefschetz handles differs by −1.

3C. Annular simple wrinkled fibrations from twisted surface diagrams. Using
the handle decompositions exhibited in the previous section as a stepping stone we
can now build annular simple wrinkled fibrations out of twisted surface diagrams
and thus complete the proof of Theorem 1.1.
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Figure 10. Building a simple wrinkled fibration from a surface
diagram. Bold curves represent the critical image, and dashed
curves the reference path.

Proposition 3.31. A twisted surface diagram S= (6, 0,µ) determines an annular
simple wrinkled fibration wS : WS→ S1

× [0, 1] with higher-genus fiber 6 and
higher monodromy µ.

Proof. To make the construction of wS more transparent we begin with some
preliminary considerations. One important ingredient is the mapping cylinder 6(µ)
with its canonical fibration p :6(µ)→ S1

= [0, 1]/{0, 1} in which we identify 6
with the fiber over 0∼ 1. We will also need a collection of arcs R= {R1, . . . , Rl}

in S1
× [0, 1] that will serve as a reference system for wS; see Figure 10(a). To

construct these let r : [0, 1] → [0, 1] be a smooth function that has the constant
value 1 on the interval

[ 1
3 ,

2
3

]
, satisfies r(0)= r(1)= 0 and is strictly increasing for

t ≤ 1
3 and strictly decreasing for t ≥ 2

3 . If the length of 0 is l, then for i = 1, . . . , l
we let θi := (i − 1)/c and define

Ri :=
{(
θir(t), t

)
/∼

∣∣ t ∈ [0, 1] ⊂ S1
×[0, 1]

}
.

We can now give the construction of WS and wS in three steps.

Step 1: We begin by taking the product W1 := 6(µ)× [0, 1
3 ] and define a map

w1 :W1→ S1
×[0, 1

3 ] by sending (x, t) to (p(x), t).

Step 2: Next, we construct W2 by attaching 2-handles to W1 in the following way.
Let 0= (c1, . . . , cl). Using the arc Ri ⊂ S1

×[0, 1] described above we can parallel
transport the curve ci ⊂6 to the fiber of w1 over

(
θi ,

1
3

)
. We attach a 2-handle to

the resulting curve with respect to the fiber framing.
This choice of framing allows us to extend w1 over each 2-handle. Indeed, we

can consider attaching the i-th (4-dimensional) 2-handle as a 1-parameter family
of 3-dimensional 2-handle attachments parametrized by a small neighborhood
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of (θi , 1) in S1
×{1}. (Of course, these neighborhoods are pairwise disjoint.) For

each point θ in such a neighborhood, the restriction of w1 to the θ -ray {θ}×
[
0, 1

3

]
extends to a Morse function (with one critical point of index 2) over a slightly
longer ray, say {θ}×

[
0, 2

3

]
, in the standard way. Using these 1-parameter families

of Morse functions we can extend w1 to map from W2 to an annulus with “bumps”
on one side, as shown in Figure 10(b), and this map has an arc of indefinite folds
on each bump. We can then smooth out the bumps by standard techniques from
differential topology to obtain a map w2 :W2→ S1

×
[
0, 2

3

]
in which each 2-handle

attachment has created an arc of indefinite folds whose endpoints hit the boundary
of W2 transversely in the component that was affected by the handle attachment, as
in Figure 10(c); let us call this component ∂2W2.

Step 3: For the final step we first note that the restriction of w2 over S1
× {

2
3} is

a circle valued Morse function with a pair of critical points of index 1 and 2 for
each fold arc of w2. The crucial observation is that the condition that 0 is a circuit
with switch µ implies that all these pairs of critical points cancel! Thus there is a
standard homotopy, which we parametrize by

[2
3 , 1

]
, from w2|∂2W2 to a submersion

that realizes this cancellation. We let

WS :=W2 ∪∂2W2 ∂2W2×
[ 2

3 , 1
]

and extend w2 over the newly added collar of ∂2W2 by tracing out the homotopy
to obtain a map wS :WS→ S1

×[0, 1]. This last step removes all critical points
from the boundary in exchange for an interior cusp for each canceling pair. Clearly
wS is an annular simple wrinkled fibration with base diagram as in Figure 10(d).

Note that WS is diffeomorphic to W2 and thus has the same relative handle
decomposition. Moreover, it follows directly from the construction that R is a
reference system for wS with S as its twisted surface diagram. �

In order to finish the proof of Theorem 1.1 we have to show that equivalent
twisted surface diagrams give equivalent annular simple wrinkled fibrations. Recall
that an equivalence of surface diagrams is a combination of two things: switching
and a diffeomorphism. We will treat these separately.

Lemma 3.32. If S and S′ are diffeomorphic, then wS and wS′ are equivalent.

Proof. Let S= (6, 0,µ), S′= (6′, 0′, µ′) and let φ :6→6′ be a diffeomorphism
such that 0′ = φ(0) and µ′ = φµφ−1. We will extend φ to a diffeomorphism
φ̂ :WS→WS′ which fits in the commutative diagram

WS

wS %%

φ̂ // WS′

wS′yy
S1
×[0, 1]
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This will be done by going through the steps in the proof of Proposition 3.31. Let
Wi and W ′i , i = 1, 2, denote the 4-manifolds built in each step.

From the identity µ′ = φµφ−1 we deduce that φ induces a fiber-preserving
diffeomorphism 6(µ)→6′(µ′). Taking the product with the identity, we obtain
φ̂1 :W1→W ′1.

In the second step, where the 2-handles are attached to the curves in 0, we simply
note that φ̂1 maps the attaching regions into each other and can thus be extended
over the 2-handles to φ̂2 :W2→W ′2. Note that the smoothing of the bumpy annulus
does not cause any trouble since it does not involve the total space.

For the third step observe that, given a homotopy from w2|∂2W2 to a submersion,
we can push it forward via φ̂2|∂2W2 to obtain such a homotopy for w′2|∂2W ′2 . �

Lemma 3.33. If S is a twisted surface diagram, then wS and wS[1] are equivalent.

Proof. If we take the canonical reference system for wS and swing the last reference
path once around the boundary, we obtain a reference system that induces S[1].
Thus wS and wS[1] are essentially the same annular simple wrinkled fibration. �

3D. Gluing ambiguities. Recall that simple wrinkled fibrations over arbitrary base
surfaces can be obtained from annular ones by gluing suitable surface bundles to
the boundary components. To be precise, let w0 : W → A be an annular simple
wrinkled fibration and let π± : Y±→ B± be surface bundles over surfaces B± such
that there are boundary components C±⊂ B± and fiber-preserving diffeomorphisms

ψ± : π
−1
±
(C±)→ ∂±W.

Then we can form a simple wrinkled fibration

w : Y+ ∪ψ+ W ∪ψ− Y− −→ B+ ∪C+ A∪C− B−.

Of course, different choices of gluing diffeomorphisms may lead to inequivalent
simple wrinkled fibrations. If we fix a pair ψ± of gluing maps, then we can obtain
any other such pair by composing with automorphisms (in the sense of Section 2B)
of the boundary fibrations w0 : ∂±W → S1. Obviously, isotopic gluing maps give
rise to equivalent simple wrinkled fibrations and the gluing ambiguities are a priori
parametrized by

π0
(
Aut(∂+W, w)

)
×π0

(
Aut(∂−W, w)

)
.

However, it turns out that the first factor can be eliminated.

Lemma 3.34. Let w :W → A be an annular simple wrinkled fibration. Then any
fiber-preserving diffeomorphism of ∂+W extends to a self-equivalence of w.

Proof. By Theorem 1.1 we can assume that w is built from a twisted surface
diagram S= (6, 0,µ) such that ∂+W =6(µ). According to (2-6) there are two
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Figure 11. The relevant regions for extending nonconstant automorphisms.

types of automorphisms of 6(µ), the constant ones coming from CMod(6)(µ) and
the nonconstant ones originating from π1(Diff(6), id). The statement that constant
automorphisms of ∂+W extend to self-equivalences of w is just a reformulation of
Lemma 3.32. Thus it remains to treat the nonconstant ones.

By Theorem 2.10 these only occur when 6 has genus one; we can thus assume
that 6 = T 2. A refinement of Theorem 2.10 states that the map

(3-4) π1
(
Diff(T 2), id

)
→ π1(T 2, x),

which sends an isotopy to the path traced out by a base point x ∈ T 2 during that
isotopy, is an isomorphism; see [Earle and Eells 1969]. Note the first two curves
in 0, say c1 and c2, generate the fundamental group of T 2. Hence, we only have to
extend the automorphisms coming from generators of π1

(
Diff(T 2), id

)
that map

to c1 and c2 in (3-4). If we parametrize the torus by S1
× S1
⊂C2 such that S1

×{1}
maps to c1 and {1}× S1 maps to c2, then such generators are given by

hc1
t (ξ, η) := (e

2π i tξ, η) and hc2
t (ξ, η) := (ξ, e2π i tη) (t ∈ [0, 1])

and we denote the corresponding automorphisms of 6(µ) by

ϕi (x, t) :=
(
hci

t (x), t
)
.

In order to extend ϕi to WS we take one step back and homotope the path hci to
be constant outside the interval where the 2-handle corresponding to ci is attached.
These intervals (times [0,1]) are highlighted in Figure 11. Outside the preimage of
the regions shown in Figure 11 we can simply extend ϕi as the identity. In these
region, observe that hci

t fixes ci setwise at all times, it just rotates it more and more
as t increases. It is easy to see that these rotations can be extended across the
2-handles in a way that respects the fibration structure. �

Remark 3.35. The genus-one case of Example 3.7 shows that this Lemma does
not hold in the absence of cusps. The above proof breaks down at the point where
we need the vanishing cycles to generate the fundamental group.
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4. Simple wrinkled fibrations over the disk and the sphere

We now leave the general theory behind and focus on untwisted surface diagrams,
that is, pairs S= (6, 0) where 0 is a closed circuit in 6, which we refer to simply
as surface diagrams from now on. This will not lead to confusion since we will not
encounter any twisted diagrams anymore.

By the results of the previous section, a surface diagram S corresponds to an
annular simple wrinkled fibration whose higher-genus boundary component has
trivial monodromy. In fact, the higher-genus boundary of wS :WS→ S1

×[0, 1]
as constructed in Proposition 3.31 is canonically identified with the trivial fibra-
tion 6× S1. We can thus fill this boundary component with 6× D2 using some
fiber-preserving diffeomorphism of6×S1 to obtain a simple wrinkled fibration over
the disk. We denote the fibration obtain by gluing with the identity bywS : ZS→D2

or, by a slight abuse of notation, simply by ZS with the map to the disk implicitly
understood. Since the boundary of the disk is contained in the lower-genus region,
we refer to such fibrations as descending simple wrinkled fibrations (over the disk).
According to Lemma 3.34, different gluing diffeomorphisms give rise to simple
wrinkled fibrations equivalent to ZS. We have thus established the following:

Proposition 4.1. There is a bijective correspondence between the respective equiv-
alence classes of (untwisted) surface diagrams and descending simple wrinkled
fibrations over the disk.

To make the connection to simple wrinkled fibrations over S2, recall that by
construction the boundary of ZS fibers over the circle. For the moment, let us
say that S has trivial monodromy if this boundary fibration is trivial (this will
be made more precise in Definition 4.4 below). In this situation we can close off
to a simple wrinkled fibration over S2 by proceeding as above. More precisely,
for a fixed boundary fiber 6′ in ZS we can choose a fiber-preserving diffeomor-
phism ϕ :6′× S1

→ ∂ZS and fill the boundary of ZS with a copy of 6′×D2. The
result is a closed 4-manifold Xϕ

S= ZS∪ϕ6
′
×D2 equipped with a simple wrinkled

fibration over S2 which we denote bywϕS. Unfortunately, this gluing process is more
delicate. The main problem is that there is no canonical choice for ϕ; moreover, if
the genus of 6′ is low, then different choices can lead to inequivalent fibrations.
Combining Proposition 4.1 with the discussion in Section 3D and Theorem 2.10
leads to the cleanest possible statement:

Corollary 4.2. Let g > 0 be a positive integer.

(1) For g ≥ 3 there is a one-to-one correspondence between equivalence classes of
genus g surface diagrams with trivial monodromy and genus g simple wrinkled
fibrations over S2.
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(2) For g = 2 (respectively g = 1) the set of equivalence classes of genus g
simple wrinkled fibrations over S2 with equivalent surface diagrams admits a
transitive action of Z⊕Z (respectively Z2).

Recall that, according to Theorem 3.8, we can obtain all closed, oriented, smooth
4-manifolds from surface diagrams by the above process. It is thus of great interest
to understand which surface diagrams have trivial monodromy and actually describe
closed 4-manifolds. The following example indicates that most surface diagrams
will not have trivial monodromy.

Example 4.3. Let 6 be a closed, orientable surface together with a mapping
class φ ∈Mod(6). Then any factorization of µ into positive Dehn twists yields a
Lefschetz fibration over the disk whose boundary can be identified with the mapping
torus 6(φ)= (6×[0, 1])/(x, 1)∼ (φ(x), 0). As in Example 3.6 we can turn this
Lefschetz fibration into a descending simple wrinkled fibration without changing
the boundary. Thus any surface bundle over the circle (with closed fibers) bounds
some descending simple wrinkled fibration over the disk and any mapping class
can be realized as the monodromy of a surface diagram.

In fact, the situation is very similar to the theory of Lefschetz fibrations. Any
word in positive Dehn twists (or, equivalently, a finite sequence of simple closed
curves) on a closed, oriented surface determines a Lefschetz fibration over the disk,
the boundary fibers over the circle with monodromy being given by the product of
the Dehn twists; and if this monodromy is trivial, one can close off to a Lefschetz
fibration over S2. Just as an arbitrary product of Dehn twists will not be isotopic to
the identity, so will a surface diagram not give rise to a simple wrinkled fibration
over S2. The advantage of the Lefschetz setting is the direct control over the
boundary.

4A. The monodromy of a surface diagram. In order to obtain a more intrinsic
description of the boundary of ZS in terms of S we need a little detour. Let a, b⊂6
be a pair of simple closed curves in a surface6 that intersect transversely in a single
point. We denote by 6a and 6b the surfaces obtained by surgery on the curves a
and b, respectively. To be concrete, we fix tubular neighborhoods νa and νb and
consider6a (respectively6b) as the result of filling in the two boundary components
of 6 \νa (respectively 6 \νb) with disks. We can assume that ν(a∪b) := νa∪νb
is diffeomorphic to a once punctured torus — for convenience we also assume
that it has a smooth boundary in 6. Observe that 6 \ ν(a ∪ b) has one boundary
component and is contained in both 6a and 6b as a subsurface. Furthermore, the
closure of νb\νa (respectively νa \νb) is a disk in 6a (respectively 6b). It follows
that, up to isotopy, there is a unique diffeomorphism

κa,b :6a→6b
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which restricts to the identity on 6 \ ν(a ∪ b). Furthermore, we can assume that
κa,b maps b \ νa onto a \ νb.

Now let S= (6; c1, . . . , cl) be a surface diagram and consider the associated
simple wrinkled fibration wS : ZS→ D2. Then each adjacent pair of curves ci

and ci+1 fits the above situation and we thus get a collection of diffeomorphisms

κci ,ci+1 :6ci →6ci+1 .

Moreover, it follows from the definition of surface diagrams that the composition

µS := κcl ,c1 ◦ κcl−1,cl ◦ · · · ◦ κc1,c2

maps 6c1 to itself and it is easy to see that its isotopy class does not depend on any
of the implicit choices involved in its definition.

Definition 4.4. The mapping class µS ∈Mod(6c1) represented by the composition
above is called the monodromy of S.

This name is justified by the following lemma.

Lemma 4.5. Let S= (6, 0) be a surface diagram. Then the boundary fibration
(∂ZS, wS) can be identified with the mapping torus 6c1(µS).

Proof. By the construction of wS its fiber over the origin is naturally identified
with 6. Furthermore, recall that the annular fibration associated to S is equipped
with a reference system whose reference paths we can naturally extend from the
annulus to the disk by connecting them to the origin. The result is a collection
of reference paths R1, . . . , Rl from the origin to the boundary of the disk and we
denote its endpoints by θ1 . . . , θl ∈ S1. Observe that such a reference path, say Ri ,
gives rise to an identification of the fiber over θi with the surface 6ci obtained from
surgery on ci where ci is the vanishing cycle associated to Ri .

Now consider the region in the base bounded by two adjacent reference paths Ri

and Ri+1. Using a suitable notion of parallel transport we see that the preimage
of this region contains a trivial bundle with fiber 6 \ ν(ci ∪ ci+1). In particular,
the parallel transport along the boundary segment from θi to θi+1 restricts to the
identity on the complement of ν(ci ∪ ci+1) and thus must be isotopic to κci ,ci+1 and
the claim follows. �

It is also possible to describe the monodromy in terms of the original surface 6.
This takes us on another small detour. Let a ⊂6 be a nonseparating simple closed
curve in a surface 6 and let Mod(6, a) denote the subgroup of Mod(6) consisting
of all elements that fix a up to isotopy. Recall that there is a short exact sequence

(4-1) 1−→ 〈τa〉 −→Mod(6, a)
cuta
−→Mod(6 \ a)−→ 1
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where we consider 6 \a as a twice punctured surface (see [Farb and Margalit 2011,
Chapter 3] and also [Ivanov 1992, Section 7.5] for a proof that cuta is well defined).
The complement 6 \ a can be related to the surgered surface 6a as follows. In 6a

there is an obvious pair of points, namely the centers of the surgery disks. If we
denote by6∗a the surface obtained by marking these points, then6\a is canonically
identified (at least up to isotopy) with 6∗a and thus Mod(6 \ a) is canonically
isomorphic to Mod(6∗a ). Hence, we can define the surgery homomorphism

8a :Mod(6, a)→Mod(6a)

as the composition

Mod(6, a)

8a

,,
cuta

// Mod(6 \ a)
∼=

// Mod(6∗a ) forget
// Mod(6a)

where the last map is induced by forgetting the marked points in 6∗a .
Applying this to surface diagram we obtain the following.

Lemma 4.6. Let S= (6; c1, . . . , cl) be a surface diagram. Then

µ̃S := ττcl (c1) ◦ ττcl−1 (cl ) ◦ ττc1 (c2) ∈Mod(6)

is contained in Mod(6, c1) and satisfies 8c1(µ̃S)= µS.

Proof. Since ci and ci+1 are geometrically dual, the mapping class ττcl−1 (cl ) has a
representative T ∈Diff+(6) that maps ci to ci+1 (as a set). The claim then follows
from the observation that the diagram

6

ττci (ci+1)

��

6 \ ci

T
��

oo // 6∗ci

κci ,ci+1

��
6 6 \ ci+1oo // 6∗ci+1

commutes up to isotopy. �

The above makes it interesting to study the map 8c1 and its kernel.

Lemma 4.7. Let a ⊂ 6 be a nonseparating simple closed curve. The group
Mod(6, a) is generated by elements of the form τc and 1a,b := (τaτb)

3, where
i(a, c)= 0 and i(a, b)= 1.

We refer to the mapping classes 1a,b as 1-twists. Note that 1-twists are defined
for arbitrary pairs of geometrically dual curves and do not have to involve the
curve a in the above Lemma.

Proof. It follows from the short exact sequence (4-1) that we can obtain a generating
set for Mod(6, a) by lifting a generating set for Mod(6 \ a) and adding the Dehn
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twist about a. As a generating set for Mod(6 \ a) we can take the collection Dehn
twists and so called half-twists about simple arcs connecting the two punctures.
Then the Dehn twists in Mod(6 \a) have obvious lifts in Mod(6) and it is easy to
see that each half-twist lifts to a 1-twist. �

Corollary 4.8. The kernel of 8a : Mod(S, a) → Mod(6a) contains the Dehn
twist τa as well as all 1-twists involving a.

The expert will have noticed that the mapping class µ̃S in Lemma 4.6 is simply
the monodromy of the boundary of the Lefschetz part of the simplified broken
Lefschetz fibration obtained from wS by unsinking all the cusps. Of course, there
are many different lifts of µS to Mod(6). For example, it follows from the braid
relations for the pairs of adjacent curves that

µ̃S = τ
−c
c1
(τcl τc1)(τcl−1τcl ) . . . (τc1τc2)

= τ−2c
c1

(τcl τc1τcl )(τcl−1τcl τcl−1) . . . (τc1τc2τc1)

and since τc1 is contained in the kernel of 8c1 we obtain two other choices. To
illustrate these mapping class group techniques we produce some examples of
surface diagrams with trivial monodromy.

Example 4.9. Given a not necessarily closed circuit 0= (c1, . . . , cl) in an oriented
surface6 we can form a closed circuit D0 := (c1, . . . , cl−1, cl, cl−1, . . . , c2) which
we call the double of 0. We claim that the surface diagram DS := (6, D0) has
trivial monodromy. For convenience let us write τi = τci . As explained above the
monodromy of DS can be lifted to Mod(6) as

µ= (τ2τ1τ2) . . . (τl−2τl−1τl−2)(τl−1τlτl−1)(τlτl−1τl)(τl−1τl−2τl−1) . . . (τ1τ2τ1)

= (τ2τ1τ2) . . . (τl−2τl−1τl−2)1cl−1,cl (τl−1τl−2τl−1) . . . (τ1τ2τ1).

Our goal is to factor this expression into a sequence of 1-twists involving c1. The
key observation is that

(τl−2τl−1τl−2) 1cl−1,cl (τl−1τl−2τl−1)

= (τl−2τl−1τl−2) 1cl−1,cl (τl−2τl−1τl−2)

= (τl−2τl−1τl−2) 1cl−1,cl (τl−2τl−1τl−2)
−1 1cl−2,cl−1

=1τl−2τl−1τl−2(cl−1),τl−2τl−1τl−2(cl ) 1cl−2,cl−1

=1cl−2,τl−2τl−1τl−2(cl ) 1cl−2,cl−1 .

Applying this repeatedly we eventually obtain

µ=1c1,δl1c1,δl−1 . . . 1c1,δ2,
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where δk := τ1τ2τ1 . . . τk−2τk−1τk−2(ck). Hence, the monodromy of DS is trivial
by Corollary 4.8.

It is also possible to show that DS has trivial monodromy by directly construct-
ing a simple wrinkled fibration over S2. This construction will also justify our
terminology. The key observation is that, even if 0 is not closed, the ideas in the
proof of Proposition 3.31 can be used to build a wrinkled fibration over the disk.

Indeed, by attaching 2-handles to 6× D2 along the fiber framed curves ci in
boundary fibers ordered according to the orientation of S1 we obtain a 4-manifold
with boundary P0 together with a map to the disk which has an arc of folds for each
2-handle and each arc gives rise to a pair of Morse critical points on the boundary.
As in the third step of the proof of Proposition 3.31 we can trade pairs of critical
points on the boundary coming from ci and ci+1, i < l, for cusps in the interior.
What remains is a wrinkled fibration on P0 over the disk with two critical points on
the boundary, one coming from c1 and the other from cl . Of course, if 0 is closed,
then P0 is diffeomorphic to ZS where S= (6, 0), but the corresponding map to
the disk is different.

If we apply this construction to the reversed circuit 0 = (cl, . . . , c1), then we
obtain another 4-manifold P0 and it is easy to see that the self-diffeomorphism
of 6× D2 which sends (p, x) to (p,−x) induces an orientation-preserving diffeo-
morphism from P0 to P0 . We thus obtain a wrinkled fibration on P0 and the identity
map of ∂P0 provides an orientation-reversing and fiber-preserving diffeomorphism
of the boundary fibrations on P0 and P0 . Hence, the fibrations on P0 and P0 give
rise to a wrinkled fibration over S2 on the double D P0 = P0 ∪id P0 which turns
out to be a simple wrinkled fibration with surface diagram DS.

4B. Drawing Kirby diagrams. In this section we show how to translate surface
diagrams into Kirby diagrams of the associated simple wrinkled fibrations. For the
necessary background we refer the reader to [Gompf and Stipsicz 1999]. Throughout,
we use Akbulut’s dotted circle notation for 1-handles to avoid ambiguities for
framing coefficients.

Descending simple wrinkled fibrations. Let wS : ZS→ D2 be a descending simple
wrinkled fibration of genus g with surface diagram S= (6g; c1, . . . , cl). Recall
that the associated handle decomposition of Z is obtained from (some handle
decomposition of) 6g × D2 by attaching 2-handles along ci ⊂6g ×{θi } with the
fiber framing where θ1, . . . , θl ∈ S1 are ordered according to the orientation on S1.
So in order to draw a Kirby diagram for ZS we need to find a diagram for 6× D2

in which the fibers of the boundary should be as clearly visible as possible.
A convenient choice is the diagram shown in Figure 12 which is induced from

the obvious handle decomposition of 6g with one 0-handle, 2g 1-handles and one
2-handle. One fiber of 6g × S1, which we identify with 6g, is clearly visible and
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Figure 12. A diagram for 6g × D2 where fiber and blackboard
framing agree. The red curves show a basis for H1(6g).

the canonical generators a1, b1, . . . , ag, bg for H1(6g) are also indicated. We have
chosen the orientations such that 〈ai , bi 〉6g = 1. Another advantage of this picture
is that the fiber framing agrees with the blackboard framing. One minor drawback
is that the picture does not immediately show all fibers of 6g × S1 but only an
interval worth of them (just thicken the surface a little). However, this is actually
enough for our purposes since we only need the fibers over the interval [θ1, θl] ⊂ S1.
To get the orientations right we require that the orientation of the fiber agrees with
the standard orientation of the plane and, according to the “fiber first convention”,
the positive S1-direction points toward the reader.

With this understood, it is easy to locate the attaching curves of the fold handles in
the diagram and it remains to determine their framing coefficients. More generally,
we can describe the linking form of the link corresponding to the fold handles.
It should be no surprise that the framing and linking information in the diagram
depends on our choice of the handle decomposition for 6g.

Let c⊂6g be a simple closed curve. After choosing an orientation its homology
class [c] ∈ H1(6) can be expressed as

[c] =
g∑

i=1

(
nai (c) ai + nbi (c) bi

)
.

We identify 6g with 6g × {0} and, by a slight abuse of notation, we continue to
denote the canonical push-off of c to 6g ×{z}, z ∈ D2, by c.

Lemma 4.10. For a simple closed curve c⊂6g×{θ}, θ ∈ [θ1, θl]⊂ S1, the framing
coefficient of the fiber framing in Figure 12 is given by

(4-2) fr(c)=
g∑

i=1

nai (c)nbi (c).
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Figure 13. An intersection in a surface diagram and its crossing
in the Kirby diagram.

Furthermore, if c ⊂ 6g × {θ} and c′ ⊂ 6g × {θ
′
} are two oriented simple closed

curves, with θ, θ ′ ∈ [θ1, θl], their linking number in Figure 12 is

(4-3) lk(c, c′)= 1
2 sgn(θ − θ ′)〈c, c′〉+ 1

2

g∑
i=1

(
nai (c)nbi (c

′)+ nai (c
′)nbi (c)

)
,

where 〈c, c′〉 is the algebraic intersection number of c and c′ in 6g and sgn denotes
the sign of a real number.

Proof. First observe that c ⊂ 6g × {θ} can be isotoped off the 2-handle of 6g

so that it becomes completely visible in Figure 12 and, since the fiber framing
and blackboard framing agree, its framing coefficient is given by its writhe in the
diagram — the signed count of crossings with some chosen orientation. From the
way the diagram is drawn it is clear that each crossing is caused by c running over ai

and bi for some i and that their signed sum is given by the right side of (4-2).
The statement about linking numbers follows from a similar count of crossings.

Recall that the linking number of two oriented knots can be computed from any link
diagram as half of the signed number of crossings. The second term on the right
side of (4-3) arises just as above. However, the first term deserves some explanation.
Each (transverse) intersection point of c and c′ in 6g contributes a crossing in the
diagram. Now, the sign of the crossing depends on two things: the sign of the
intersection point and the information which strand is on top in the diagram. From
Figure 13 we see that the contribution of each crossing is exactly as in (4-2). �

Remark 4.11. Formula (4-3) can be used to obtain a description of the intersection
form of the 4-manifold ZS using only the data in S. Also, since (4-3) only depends
on the homology classes of the curves in S, so do the intersection form and, in partic-
ular, the signature of ZS. We will return to this observation in a future publication.

The diagrams of simple wrinkled fibrations derived from Figure 12 are good
for abstract reasoning, however, in practice it is convenient to start with a cleaner
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Figure 14. A cleaner diagram of 6g × D2.

diagram for 6g × D2 such as the one shown in Figure 14. In this picture, the fiber
appears as the boundary sum of regular neighborhoods of the basis curves

{
a′i , bi

}g
i=1

which, in turn, appear as meridians to the dotted circles. The framing coefficient of
the fiber framing for simple closed curves on a fiber in Figure 14 can be computed
as follows. It is not hard to see that Figure 14 is obtained from Figure 12 by a
sequence of 1-handle slides and an isotopy of the 2-handle and vice versa. Note
that these moves do not change the framing coefficients of any other 2-handles that
might have been around. Moreover, during the moves, the b-curves remain fixed,
while the a-curves undergo some changes. When pulling a′i in Figure 14 back to
Figure 12 one obtains a representative for the element

[a1, b1] ∗ · · · ∗ [ai−1, bi−1] ∗ ai ∈ π1(6g)

where [x, y] = xyx−1 y−1. The important observation is that while this curve is
not isotopic to ai it does represent the same homology class. As a consequence,
formula (4-2) can be used for Figure 14 with ai replaced by a′i .

Closing off and the last 2-handle. Recall that our motivation comes from Williams’
theorem that all closed, oriented 4-manifolds admit simple wrinkled fibrations
over S2. We have seen that these can be described (up to equivalence) by surface
diagrams with trivial monodromy and we have already mentioned that it is in general
not easy to check whether the monodromy of a given surface diagram is trivial. But
the situation is even worse. Say that we know for some reason that a given surface
diagram has trivial monodromy and let us also assume that the genus is at least
three so that there are no gluing ambiguities. Even in this case it is not clear at all
how the surface diagram encodes the information to complete the Kirby diagram.

To be more precise, let w : X→ S2 be a simple wrinkled fibration with surface
diagram S. Let ν6− be a neighborhood of a lower-genus fiber and let Z := X \ν6−.
Then w restricts to a descending simple wrinkled fibration on Z and ∂Z can be
identified with 6−× S1 so that S must have trivial monodromy. We can draw a
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Kirby diagram for Z as described in the previous section and to complete it to a
diagram for X we have to understand how to glue ν6− back in.

We can choose a handle decomposition for ν6− with one 0-handle, 2g(6−)
1-handles and one 2-handle. Turning this upside down results in a relative handle
decomposition on ∂Z ∼= 6− × S1 with one 2-handle, 2g(6−) 3-handles and a
4-handle. The general theory tells us that the 3- and 4-handles attach in a standard
way once we know how to attach the 2-handle. Unfortunately, it turns out to be
rather difficult to locate this last 2-handle in the Kirby diagram for Z .

Our knowledge about the last 2-handle is a priori limited to the following ob-
servation. If we identify ν6− with 6−× D2, then the attaching curve of the last
2-handle corresponds to {p}× ∂D2 for some p ∈6−. In particular, we see that it
must be attached along a section of the boundary fibration (∂Z , w).

Remark 4.12. Given a surface diagram S with trivial monodromy there is a general
method for finding possible last 2-handles for ZS which is not very conceptual
but still useful in some situations. One considers a Kirby diagram for ZS as a
surgery diagram for ∂ZS and performs (3-dimensional) Kirby moves until the
fibration structure is clearly visible as 6− × S1. In such a diagram it is easy to
locate attaching curves for possible last 2-handles which one can then pull back to
the original diagram by undoing the moves and dragging the curves along. This
strategy also works for Lefschetz fibrations as discussed in [Gompf and Stipsicz
1999, Chapter 8.2].

Just as in the Lefschetz case, the situation becomes easier if one knows that ZS

can be closed off to a fibration over S2 which admits a section. The proof of the
following lemma is the same as in the Lefschetz case and we refer the reader to
[Gompf and Stipsicz 1999].

Lemma 4.13. Let w : X → S2 be a simple wrinkled fibration with surface dia-
gram S. Ifw admits a section of self-intersection k, then the last two handle appears
in the diagram for ZS as a k-framed meridian of the 2-handle corresponding to the
fiber. Furthermore, if S is a surface diagram and a meridian as above can be used
to attach the last 2-handle, then the corresponding simple wrinkled fibration admits
a section of self-intersection k.

In order to illustrate Remark 4.12 and Lemma 4.13 as well as our method of
drawing Kirby diagrams we give an example which is also a warm-up for the next
section.

Example 4.14. Let a, b⊂6g be a geometrically dual pair of simple closed curves.
We claim that S= (6g; a, τb(a), b) is a surface diagram for 6g−1× S2 # CP2. We
can assume that a and b are the standard generators a1 and b1 in Figure 14 and
Figure 15 shows the final Kirby diagram. In order to see how we got there let us first
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Figure 15. Manifolds with surface diagram (6g; a, τb(a), b).

ignore all the blue components. What is left is just the Kirby diagram for ZS. The
framings on the fold handles can either be computed using Lemma 4.10 (together
with Proposition 2.7) or by hand (the curve is simple enough to draw a parallel
push-off in the fiber direction and compute the linking number). We now perform
the obvious handle moves: using the meridians to the two 1-handles on the left
we first unlink the −1-framed fold handle (corresponding to τb(a)) to obtain a
−1-framed unknot isolated from the rest of the diagram, then we unlink the black
2-handle (corresponding to the fiber) and finally cancel the 1-handles and their
meridians. Obviously, the thus obtained diagram shows 6g−1 × D2 # CP2 and
the boundary is clearly visible as 6g−1× S1. Moreover, it is easy to see that the
last 2-handle can be attached along a 0-framed meridian to the fiber 2-handle and
the resulting manifold is 6g−1× S2 # CP2 as claimed. Finally, since we attached
the last 2-handle in a region that was not affected by the Kirby moves it will not
change when we undo the moves again and we arrive at Figure 15. Lemma 4.13
then tells us that the corresponding simple wrinkled fibration will have a section of
self-intersection zero.

Note that for g ≥ 3 any other choice for the last 2–handle that might have
been possible leads to an equivalent fibration whose total space is diffeomorphic
to 6g−1× S2 # CP2. In the lower-genus cases there are more options. However, in
any case one will end up with a blow-up of some surface bundle over S2.

4C. Relation to broken Lefschetz fibrations. Let w : X→ B be a simple wrinkled
fibration. After trading all the cusps for Lefschetz singularities by applying Lekili’s
unsinking modification we obtain a broken Lefschetz fibration

βw : X→ B

with one round singularity, smoothly embedded in the base, and all its Lefschetz
points on the higher-genus side. If the base is the sphere or the disk, then βw is a
simplified broken Lefschetz fibration in the sense of [Baykur 2009] and thus induces
another handle decomposition of X .
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In order to relate these two handle decompositions, let us briefly review how a
simplified broken Lefschetz fibration β : X→ B gives rise to a handle decomposi-
tions. Much in the spirit of simple wrinkled fibrations one chooses a reference point
in the higher-genus region together with a collection of disjointly embedded arcs
L1, . . . , Lk, R ⊂ B, where k is the number of Lefschetz singularities, emanating
from the reference point such that each L i ends in a Lefschetz point and R passes
through the round singularity once. Such a system of arcs is known as a Hurwitz
system for β. The arcs in a Hurwitz system then give rise to simple closed curves
in the reference fiber 6 to which we shall refer to as the Lefschetz vanishing
cycles λ1, . . . , λk ⊂6 and the round vanishing cycle ρ. A handle decomposition
of X is then given as follows:

• Start with 6× D2.

• Going around S1, attach a Lefschetz handle along the λi pushed off into fibers
over S1 (that is, 2-handles with framing −1 with respect to the fiber framing).

• Attach a round 2-handle along ρ.

The round 2-handle decomposes into a 2-handle and a 3-handle such that the 3-
handle goes over the 2-handle geometrically twice and the 2-handle is attached
along ρ with respect to the fiber framing. (For more details see [Baykur 2009].)

Now let w : X→ B be a simple wrinkled fibration and let βw be the associated
simplified broken Lefschetz fibration. Given a reference system R = {Ri } for w
with associated surface diagram (6, 0) there is a canonical Hurwitz system for βw.
Since the unsinking homotopy is supported near the cusps we can assume that the
nothing happens around the reference paths. Now observe that the arcs Ri cut the
higher-genus region into triangles each containing a single Lefschetz singularity
of βw. Thus, up to isotopy, there is a unique arc L i in the triangle bounded by Ri

and Ri+1 going from the reference fiber to the Lefschetz singularity and for the
round singularity we take the arc R= R1. According to Lekili [2009], the vanishing
cycles of βw with respect to this Hurwitz system are given by

λi = τci (ci+1) and ρ = c1.

We can go from the handle decomposition induced by βw to the one induced by w
using the following handlebody interpretation of the (un)sinking deformation.

Assume that we have a Lefschetz singularity next to a fold arc that is sinkable,
that is, the Lefschetz and fold vanishing cycles intersect in one point. (In other
words, it is the resulting of unsinking a cusp.) In terms of handle decompositions
the situation before and after the sinking process is locally described in Figure 16.
(These handle decompositions have already appeared in a disguised form in [Lekili
2009].) Clearly, both pictures describe a 4-ball and they are related by an obvious
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Figure 16. A Lefschetz singularity before and after sinking. (The
Lefschetz 2-handle on the left runs over both 1-handles. One readily
checks that it is correctly framed.)

2-handle slide. Indeed, to go from (a) to (b) one has to slide the Lefschetz handle
over the fold handle in such a way that it unlinks from the lower 1-handle. Note
that his handle slide is compatible with the fibration structures in the sense that the
attaching curves stay on the fibers. Moreover, it mysteriously adjusts the framings
exactly as needed.

Remark 4.15. Although the handle slide described above seems to be a correct
interpretation of Lekili’s (un)sinking deformation it is a priori not obvious why this
should be true. In fact, the deformation is a combination of wrinkling, merging
and flipping (see [Lekili 2009, Figure 8]) and does not seem very atomic. On the
other hand, the handle slide is an atomic modification of the handlebodies. It would
be interesting to see a 1-parameter family of Morse functions associated with the
(un)sinking deformation that would exhibit the handle slide.

This shows that, if we start we the handle decomposition of βw, then sliding λ1

over ρ = c1 produces a fiber framed attaching curve λ′1 which is isotopic to c2.
Successively sliding λi over λ′i−1 ∼ ci results in fiber framed attaching curves λ′i
isotopic to ci+1. Altogether we end up with fiber framed curves λ′1, . . . , λ

′

l, ρ. The
final observation is that λ′l is isotopic to ρ= c1 and can be unlinked and isolated from
the rest of the diagram to form a zero framed unknot which cancels the 3-handle
coming from the round singularity. What we are left with is the decomposition
associated to w.

5. Substitutions

Let S= (6, 0) be a surface diagram and let 3 be a subcircuit of 0. If 3′ is any
circuit that starts and ends with the same curves as 3, then we can build a new
surface diagram (6, 0′) where 0′ is obtained by replacing 3 with 3′. We call
this operation a substitution of type (3|3′). Similar substitution techniques for
Lefschetz fibrations are studied in [Endo and Gurtas 2010; Endo et al. 2011].



ON 4-MANIFOLDS, FOLDS AND CUSPS 297

Passing to the associated simple wrinkled fibrations one can ask how such a
substitution affects the total spaces. In the following we treat two instances in
which this question can be answered. Our main tools are the handle decompositions
exhibited in the previous section.

Let Z be a compact 4-manifold, possibly with nonempty boundary. Recall that
the operations of taking connected sums with CP2 and62

×S2 (taken in the interior
of Z ) are commonly known as blow-up and sum stabilization. We will be slightly
more general and also call connected sums with CP2 blow-ups and connected sums
with CP2#CP2, the twisted S2-bundle over S2, sum stabilizations. For convenience,
we let

Sk :=

{
S2
× S2 for k even,

CP2 # CP2 for k odd,

and note that Sk is described by the (0, k)-framed Hopf link.

Lemma 5.1 (blow-ups and sum stabilizations). Let S= (6, 0) be a surface dia-
gram and let S′ be obtained from S by a substitution of type

(5-1)
(
a, b | a, τ±1

b (a), b
)
.

Furthermore, let S′′ be obtained by a substitution of type

(5-2)
(
a, b | a, b, τ k

b (a), b
)
.

Then ZS′ is diffeomorphic to the blow-up ZS #∓CP2 and ZS′′ is diffeomorphic to
the sum stabilization ZS # S−k .

Of course, any substitution is reversible so that whenever a surface diagram
contains a configuration of the form (a, τ±1

b (a), b) or (a, b, τ k
b (a), b) the associated

4-manifold must be a blow-up or sum stabilization, respectively. We will call these
blow-up (respectively sum stabilization) configurations.

Proof. By switching we can assume that 0 = (. . . , a, b), so 0′(. . . , a, τ±1
b (a), b)

and 0′′ = (. . . , a, b, τ k
b (a), b). Figure 17 shows the relevant parts of the handle

decompositions of the associated 4-manifolds. The shaded ribbons indicate the
regions that contain all the other fold handles. Note that the curves a and b appear
as 0-framed meridians to the dotted circles.

In the case of ZS′ we can use the meridians to unlink the curve corresponding
to τ±b (a) resulting in an unknot with framing ∓1 which is isolated from the rest of
the diagram. Furthermore, the rest of the diagram agrees with the diagram for ZS

and the claim follows.
The argument for ZS′′ is almost the same. Again, by sliding over the meridians

we can isolate the curves corresponding to b and τ k
b (a) from the rest of the diagram.

This time we obtain a (0,−k)-framed Hopf link that represents a copy of S−k . �
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Figure 17. The relevant parts of the handle decompositions of ZS,
ZS′ and ZS′′ . All 2-handles without framing coefficient are 0-
framed.

Proposition 5.2. Let S, S′ and S′′ be as in Lemma 5.1.

(1) All three diagrams have the same monodromy.

(2) If S has trivial monodromy so that ZS closes off to a closed 4-manifold X ,
then ZS′ closes off to X #∓CP2 and ZS′′ closes off to X # Sk .

(3) Any closed 4-manifold obtained from S′ (resp. S′′) is a blow-up (resp. sum
stabilization) of a manifold obtained from S.

Proof. The first statement follows directly from Lemma 5.1 since connected sums
with closed manifold (taken in the interior) do not change the boundary.

For the other statements, observe that if one knows how to apply the method
from Remark 4.12 for S, then one also knows it for S′ and S′′, and vice versa. �

Another instance where a substitution corresponds to a well known cut-and-paste
operation was observed in [Hayano 2012, Lemma 6.13]. Assume that a surface
diagram S contains a curve c ⊂6. If d ⊂6 is geometrically dual to c, then one
can perform a substitution of type (c | c, d, c) and Hayano shows that if S′ denotes
the resulting surface diagram, then ZS′ is obtained from ZS by a surgery on the
curve δ ⊂6 ⊂ ZS with respect to its fiber framing, that is, the framing induced by
the its canonical framing in 6 together with the framing of 6 in ZS as a regular
fiber of wS : ZS→ D2.

One immediately notices that our sum-stabilization substitution is a special
case of this construction. However, it also paves the way for the following minor
generalization of the surgery substitution which captures not only the fiber framed
surgery but also the one with the opposite framing. (Recall that an embedded circle
in an orientable 4-manifold always has trivial normal bundle and there are exactly
two framings, since π1(SO(3))∼= Z2.)
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Figure 18. Hayano’s surgery substitution: neighborhoods with
vanishing cycle c (left) and vanishing cycles c, d, c (right).

Lemma 5.3. Let S and S′ be two surface diagrams with the same underlying
surface 6 and let c, d ⊂ 6 be a geometrically dual pair of simple closed curves.
If S′ is obtained from S by a substitution of type (c | c, τ k

c (d), c), then ZS′ is
obtained from ZS by a surgery on d ⊂ 6 ⊂ X with respect to the fiber framing
when k is even and the opposite framing when k is odd.

Proof. As in Hayano’s proof, it is enough to work in a neighborhood of c∪d which
we can assume to be a punctured torus. Using our handle decomposition instead of
the ones from broken Lefschetz fibrations, the effect of Hayano’s surgery substitu-
tion, that is, the case when k = 0, looks as in Figure 18, where c (respectively d)
appears as the meridian of the upper (respectively lower) 1-handle. To obtain
the other even cases, observe that in Figure 18, right, we can slide the 2-handle
corresponding to d once over each 2-handle corresponding to c in the same direction.
Depending on the direction this changes the framing coefficient by ±2 and one
readily checks that the resulting diagram shows a neighborhood with vanishing
cycles (c, τ∓2

c (d), c). Repeating this trick one can obtain all configurations with
even k and they will all describe the fiber framed surgery on d .

As shown in [Gompf and Stipsicz 1999, Example 8.4.6] the surgery with the
opposite framing can be realized by inserting a pair of a Lefschetz vanishing cycle
and an achiral Lefschetz vanishing cycle which are both parallel to d . But Figure 19
shows that the result is the same as a substitution of type (c | c, τ−1

c (d), c) which
corresponds to k = −1. Moreover, the arguments for shifting the value of k by
multiples of 2 works just as in the fiber framed case. �

Using Lemma 5.3, the sum stabilization can be interpreted as performing surgery
on a null-homotopic curve with either of its framing. Indeed, as d one takes one of
the adjacent vanishing cycles of c in S which is clearly null-homotopic in ZS.

It would be interesting to interpret other cut-and-paste operations on 4-manifolds
as substitutions in surface diagrams. For example, it is reasonable to expect such
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Figure 19. Surgery with the opposite framing.

an interpretation for certain rational blow downs which can be described in terms
of Lefschetz fibrations; see [Endo et al. 2011]. However, we settle for blow-ups
and sum stabilizations in this paper.

6. Manifolds with genus-one simple wrinkled fibrations

In this section we prove Theorem 1.2. Our strategy is to use Proposition 5.2
to construct some genus-one simple wrinkled fibrations and then show that this
construction gives all such fibrations.

We begin with the construction of genus-one simple wrinkled fibrations over S2.
As before, we denote by Sk the closed 4-manifolds described by the (0, k)-framed
Hopf link and we define a family of manifolds

(6-1) Xklmn = Sk # l(S2
× S2) # mCP2 # nCP2, k ∈ {0, 1} , l,m, n ≥ 0.

Note that these are precisely the manifolds in Theorem 1.2. Recall that Sk is an S2-
bundle over S2. By performing a birth on a suitable bundle projection Sk→ S2 we
obtain a simple wrinkled fibration with two cusps. We can then use Proposition 5.2
to add the other summands at will. Thus, in order to prove Theorem 1.2, it remains
to show the following.

Proposition 6.1. Let w : X → S2 be a simple wrinkled fibration of genus one.
Then X is diffeomorphic to some Xklmn described in (6-1).

Remark 6.2. The reason for our small reformulation of Theorem 1.2 is that, while
the original formulation is cleaner, the new one is more in tune with the structure
of the proof.

The key to the proof of Proposition 6.1 is the simple nature of simple closed curves
on the torus. Indeed, the two facts that two oriented simple closed curves on the torus
are isotopic if and only if they are homologous and that the (absolute value of the)
algebraic and geometric intersection numbers agree allow us to transfer the whole
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discussion of genus 1 surface diagrams into the homology group H1(T 2)∼= Z⊕Z

simply by choosing orientations on the curves. Building on this observation we
obtain the following result about the structure of genus-one surface diagrams.

Lemma 6.3. Any closed circuit on the torus of length at least three contains blow-up
or sum stabilization configurations (as described in Lemma 5.1).

Proof. Let 0 = (c1, . . . , cl) be a (not necessarily closed) circuit on the torus of
length c ≥ 3. As usual, we choose an arbitrary orientation on c1 and orient the
remaining curves by requiring that 〈ci , ci+1〉 = 1 for i < l so that we can consider
each ci as an element of H1(T 2).

We first observe that, since any two adjacent curves in 0 are algebraically dual,
they form a basis of H1(T 2). In particular, for i ≥ 3 we can write

ci = ki ci−1− ci−2, ki ∈ Z

where the coefficient of ci−2 determined by our convention that 〈ci−1, ci 〉 = 1.
This shows that if we denote by σi := 〈c1, ci 〉 the algebraic intersection number
between c1 and ci , then we obtain a recursive formula

(6-2) σi = kiσi−1− σi−2

for i ≥ 3 with initial values σ1 = 0 and σ2 = 1. At this point we note that 0 is
closed if and only if |σl | = 1.

We claim that if |ki | ≥ 2 for all i ≥ 3, then |σi+1|> |σi | for all i . This follows
inductively since |σ2|> |σ1| and from (6-2) we get

|σi+1| = |ki+1σi − σi−1| ≥
∣∣|ki+1||σi | − |σi−1|

∣∣ = |ki+1||σi | − |σi−1| > |σi |,

where we have used the reverse triangle inequality, the induction hypothesis and
the assumption that |ki+1| ≥ 2. As a consequence, we see that if 0 is closed, then
we must have |ki | ≤ 1 for some i ≥ 3.

Assume first that ki = ±1. To keep the notation transparent we momentarily
rename the relevant curves to

(6-3) (ci−2, ci−1, ci )=: (a, ξ, b).

By assumption, b =±ξ − a and thus ξ =±(a+ b) and the orientation convention
shows that 〈a, b〉=±1. By invoking the Picard–Lefschetz formula (Proposition 2.7)
we obtain

τ±1
a (b) = b±〈a, b〉 a = a+ b = ±ξ,

which, after forgetting the orientations again, reveals the excerpt of 0 shown in (6-3)
as a blow-up configuration.

A similar argument exhibits a sum-stabilization configuration in the remaining
case when ki = 0. The details are left to the reader. �
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The proof of Proposition 6.1, and thus of Theorem 1.2, is now very easy.

Proof of Proposition 6.1. Any genus-one simple wrinkled fibration over S2 is
obtained by closing off a manifold ZS associated to a surface diagram S= (T 2, 0).
Moreover, any such diagram S can be closed off since the mapping class group
of the lower-genus fiber is trivial. By Lemma 6.3 and Proposition 5.2(3) we can
successively split off summands of the form ±CP2 and Sk until the remaining
surface diagram, say S0 has a circuit of length two. It is easy to see that ZS0 is the
trivial disk bundle S2

×D2. (Either by drawing a Kirby diagram or by observing that
any simple wrinkled fibration with two cusps is homotopic to a bundle projection.)
Thus there are exactly two ways to close off the fibration, producing a summand of
the form S0 ∼= S2

× S2 or S1 ∼= CP2 # CP2. �

7. Concluding remarks

The theory of simple wrinkled fibrations and surface diagrams is still in a very early
stage and at this point it raises more questions then it provides answers. We would
like to point out what we consider as some of the major problems in the subject as
well as to indicate some further developments.

7A. Closed 4-manifolds. The ultimate goal is to use surface diagrams to study
closed 4-manifolds. Unfortunately, it turns out that most surface diagrams do not
describe closed manifolds since they have nontrivial monodromy and it is usually a
hard problem to determine whether a given surface diagram has trivial monodromy.
The following is thus of great interest.

Problem 7.1. Find at least necessary conditions for a surface diagram to have trivial
monodromy that are easier to check.

The next major problem was already mentioned on page 292. If a surface diagram
of sufficiently high genus is known to have trivial monodromy, then it determines
a unique closed 4-manifold together with a simple wrinkled fibration over S2 by
closing off the associated fibration over the disk. However, for practical purposes
the information on how to close off is encoded too implicitly in the surface diagram.
For example, by simply looking at the surface diagram it not at all clear how to
answer the following very reasonable questions about the corresponding simple
wrinkled fibration over S2:

• Does the fibration have a section?

• What can be said about the homology class of the fiber? Is it trivial, primitive,
torsion, . . . ?

• What is the fundamental group, homology, etc. of the total space?
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What is missing is one more piece of information which is roughly the (framed)
attaching curve of the last 2-handle. One can also reformulate this issue in terms of
mapping class groups (see [Hayano 2012], for example).

Problem 7.2. Find a practical method to determine the missing piece of information
from a surface diagram with trivial monodromy.

7B. Higher-genus fibrations. The fact that any (achiral) Lefschetz fibration can be
turned into a simple wrinkled fibration of one genus higher suggests the philosophy
that simple wrinkled fibrations of a fixed genus might behave similarly as (achiral)
Lefschetz fibrations of one genus lower.

This analogy works rather well for the lowest possible fiber genera. Indeed, our
result about genus-one simple wrinkled fibrations looks very similar to the (rather
trivial) classification of genus zero (achiral) Lefschetz fibrations, the latter being
blow-ups of either S2

× S2 or CP2 # CP2.
Following this train of thought one might hope to be able to say something useful

about the classification of genus two simple wrinkled fibrations over S2 but one
should expect to be lost as soon as the genus is three or higher. However, it is
nonetheless conceivable that part of the classification scheme that works in the
genus-one case might carry over to higher-genus fibrations, as we will now explain.

Let S= (6; c1, . . . , cl) be a surface diagram and assume that for some 2< k < l
the curve ck is geometrically dual to c1. Then there is an obvious way to decom-
poseS into the two smaller surface diagrams (6; c1, . . . , ck) and (6; c1, ck, . . . , cl).
Repeating this process we eventually obtain a decomposition ofS into a collection of
surface diagrams with the property that no pair of nonadjacent curves has geometric
intersection number one. Let us call such a surface diagram irreducible.

In terms of the simple wrinkled fibration associated to S the above decomposition
of S should correspond to merging the fold arcs that induce c1 and ck . (As shown
in [Lekili 2009], the necessary and sufficient condition for a fold merge is exactly
that the vanishing cycles of the fold arcs are geometrically dual.) The result is a
wrinkled fibration that naturally decomposes as a boundary fiber sum of the two
simple wrinkled fibrations associated to the parts of the decomposition of S.

This suggests that any descending simple wrinkled fibration over the disk nat-
urally decomposes into a boundary fiber sum of irreducible fibrations where we
call a simple wrinkled fibration irreducible if its surface diagram is irreducible.
Consequently, the classification of descending simple wrinkled fibrations splits into
two parts: the classification of irreducible fibrations and understanding the effect of
boundary fiber sums.

The genus-one classification fits into this scheme as follows. Our arguments
show that the only irreducible surface diagrams of genus-one are given by the
blow-up configurations (a, τ±1

a (b), b) and the sum-stabilization configurations
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(a, b, τ k
b (a), b) for k 6= 1. Using the handle decompositions it is easy to identify

the corresponding manifolds. (They are the connected sum of S2
× D2 with either

±CP2, S2
×S2 or CP2#CP2.) Furthermore, the boundary fiber sums are performed

along spheres and are thus easy to understand.

Making these arguments precise requires an understanding of the effect of merg-
ing folds and cusps on surface diagrams.

7C. Uniqueness of surface diagrams. Given the fact that all closed 4-manifolds
can be described by surface diagrams, it is natural to ask for a set of moves to relate
different surface diagrams that describe the same manifold, similar to the situation
of 3-manifolds and Heegaard diagrams.

A first step in this direction was taken by Williams [2011] who relates the surface
diagrams of homotopic simple wrinkled fibrations over S2 of genus at least three.
He shows that any two homotopic simple wrinkled fibrations can be connected by
a special homotopy that is made up of four basic building blocks. These building
blocks are simple enough to understand their effect on the initial surface diagram
(see also [Hayano 2012]).

So far this is completely analogous to the 3-dimensional context. A new phenom-
enon in the 4-dimensional context is that two simple wrinkled fibrations on a given
4-manifold are not necessarily homotopic. The structure of the set π2(X) := [X, S2

]

of homotopy classes of maps from a closed 4-manifold to the 2-sphere — also known
as the second cohomotopy set of X — is described in [Kirby et al. 2012] (see also the
references therein). Our results show that an equivalence class of surface diagrams
for X determines an orbit of the action of the diffeomorphism group of X on π2(X).
This action is usually neither trivial, as shown by the two projections of S2

× S2

which are interchanged by flipping the factors, nor transitive since the action of the
diffeomorphism group on the second homology group preserves divisibility. Thus,
reparametrizing a surface diagram can change the homotopy class of its simple
wrinkled fibration but one cannot expect to obtain all homotopy classes in this way.

A general method for relating broken fibrations in different homotopy classes is
the projection move mentioned in [Williams 2010] but it is not at all obvious how
to interpret this procedure in terms of surface diagrams. Altogether, the problem of
relating surface diagram with nonhomotopic fibrations is still wide open.
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