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THIN r-NEIGHBORHOODS OF EMBEDDED GEODESICS
WITH FINITE LENGTH AND NEGATIVE JACOBI OPERATOR

ARE STRONGLY CONVEX

PHILIPPE DELANOË

In a complete Riemannian manifold, an embedded geodesic γ with finite
length and negative Jacobi operator admits an r-neighborhood Nr(γ) with
radius r > 0 small enough such that each pair of points of Nr(γ) can be
joined by a unique geodesic contained in Nr(γ) where it minimizes length
among the piecewise C1 paths joining its endpoints.

Introduction

Let M be a connected complete Riemannian manifold; let d denote its Riemannian
distance function [do Carmo 1992]. A connected subset S ⊂ M with nonempty
interior S◦ is called strongly convex for a pair of points (p, q) ∈ S × S if there
exists a unique geodesic path t ∈ [0, 1] → γ(t) ∈ M such that γ(0)= p, γ(1)= q
and γ(t) ∈ S◦ for t ∈ (0, 1), with γ length-minimizing among piecewise C1 paths
from p to q in S. The subset S is just called strongly convex if it is so for each pair
(p, q) ∈ S× S.

Definition 0.1. Let S⊂M be a strongly convex subset. For each pair (p, q)∈ S×S,
the length of the geodesic path joining p to q with interior in S◦ is called the inner
distance from p to q in S, denoted by dS(p, q).

It is quite natural to endow a strongly convex subset S⊂M with its inner distance
function dS . The latter is nothing but the length metric associated with the metric
space (S, d|S) [Gromov 1981].

Since Whitehead’s landmark paper [1932], it has been known that small enough
balls in M are strongly convex. Moreover, if B is such a ball, its inner distance
function dB coincides with the restriction of d to B× B [Kobayashi and Nomizu
1996; Cheeger and Ebin 2008; Aubin 1998; do Carmo 1992; Klingenberg 1995].
In the flat torus Rn/Zn , if the radius of a ball B belongs to the interval

( 1
4 ,

1
2

)
,

the reader can check that B remains strongly convex but dB no longer coincides
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with d|B×B . Here, we would like to construct a general family of examples of
strongly convex subsets S ⊂ M such that dS 6≡ d|S×S .

The notion of extended distance function used in [Figalli et al. 2012] is similar
in spirit to that of inner metric; could it guide us toward an example? Let us recall
its definition. If t ∈ [0, 1] → γ(t) ∈ M is an embedded geodesic without conjugate
points, the map Id× exp : TM → M × M induces a diffeomorphism 9γ from a
neighborhood U of

(
γ(0), (dγ/dt)(0)

)
in TM to a neighborhood W of (γ(0), γ(1))

in M×M . The extended distance function dγ of [Figalli et al. 2012] is then defined
in W by dγ (p, q) = |V |p where 9γ (p, V ) = (p, q). It is called so because, if γ
contains no cut point, shrinking W if necessary, it satisfies dγ (p, q)≡ d(p, q). In
this setting, we would like to know whether a thin enough tube about the geodesic γ
must be strongly convex. Anytime it is, one may identify dγ with the restriction
to W of the inner distance function of the tube; in particular, the function dγ satisfies
in effect the distance axioms.

By a tube about γ is meant a closed subset of M containing γ([0, 1]), with
nonempty interior and each point of which admitting a unique nearest point in
γ([0, 1]); moreover, if p 7→ p⊥γ denotes the nearest-point map, the geodesic from p
to p⊥γ should meet γ([0, 1]) orthogonally. Finally, the lateral boundary of the tube
is given by the equation d(p, p⊥γ )= r , where r > 0 is a small real number called
the radius of the tube.

We are thus willing to study the question: under which conditions must a tube
about an embedded geodesic be strongly convex?

First of all, indeed, we should restrict to geodesics without conjugate points
(at least in their interior) since, by the Morse index theorem, they would not be
minimizing otherwise [Milnor 1963]. To proceed further, let us take examples. In
the domain of the unit sphere of R3 given by 06 longitude<π and−r6 latitude6r
with r small, we see that the geodesic joining two points with equal latitude close
enough to r does not stay in that domain. But if we look at a similar domain about
the interior equator of a torus of revolution in R3 and pick two points as above, the
geodesic joining them does stay in the domain. So, a curvature assumption should
be made along a geodesic before we can expect the strong convexity of a tube about
it, and positive curvature rules out strong convexity.

Eventually, we will show that a tube Tr (γ0) with small enough radius r about a
geodesic γ0 with negative Jacobi operator is essentially strongly convex. Specifically,
we will prove the following result:

Theorem 0.2. Let γ0 : s ∈[0, `0]→γ0(s)∈M be an embedded unit-speed geodesic
with negative Jacobi operator. Given ς > 0, there exists %> 0 such that, if r ∈ (0, %),
the tube Tr (γ0) is strongly convex for each pair (p, q) ∈ Tr (γ0)× Tr (γ0) of points
satisfying either |s(p⊥γ0

)−s(q⊥γ0
)|>ς , or s(p⊥γ0

) and s(q⊥γ0
) belong to the subinterval
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[ς, `0−ς ]. Furthermore, if M has dimension 2, the result holds with ς = 0 provided
we except the boundary pairs (p, q) lying in the same end (s = 0 or s = `0) of the
tube.

In this statement, we allow the geodesic γ0 to contain cut points. For instance,
if the image of γ0 is contained in the curve {x2

+ y2
= 1, z = 0} viewed as the

interior equator of a torus of revolution in R3, we allow its length `0 to belong
to the interval [0, 2π). In this context, the inner distance function for which we
are looking appears well approximated by the pseudometric defined in the tube
by d̂(p, q)= |s(p⊥γ0

)− s(q⊥γ0
)|, at least for the pairs (p, q) ∈ Tr (γ0)× Tr (γ0) such

that d̂(p, q)� r . Accordingly, our proof will split in two parts; let us provide a
rough outline of it.

Case 1: For d̂(p, q) less than a suitable positive constant c independent of r as
r ↓ 0, there exists a unique minimizing geodesic t ∈ [0, 1] → γ(t) ∈ M from p
to q , so we only have to prove the inclusion γ((0, 1))⊂ (Tr (γ0))

◦. We do it using a
one-parameter family of geodesics λ ∈ [0, 1] → cλ interpolating between c0 given
by t ∈ [0, 1] → γ0

(
ts(q⊥γ0

)+ (1− t)s(p⊥γ0
)
)

and c1 = γ . For λ small, we certainly
have cλ((0, 1))⊂ (Tr (γ0))

◦. We must rule out the possibility that cλ(t) first touches
the boundary of Tr (γ0) for some t ∈ (0, 1). If n = 2, it could happen but on the
lateral part of ∂Tr (γ0) because the ends of Tr (γ0) are totally geodesic. If n > 2,
the pinching s[(cλ(t))⊥γ0

] ∈ (0, `0) is obtained relying on the assumption (ignored
elsewhere in the proof) that d̂(p, q)> ς or s(p⊥γ0

) and s(q⊥γ0
) lie in [ς, `0−ς ]. As

for the lateral part of Tr (γ0), the estimate d
(
cλ(t), (cλ(t))⊥γ0

)
< r (unless p = q)

follows from a maximum principle for geodesics shown to hold in Tr (γ0) due to
our curvature assumption.

Case 2: d̂(p, q) > c. Here, we must work harder, shrink r > 0 and show that,
if t ∈ [0, 1] → γ(t) ∈ M is a geodesic from p to q ranging in Tr (γ0), its Jacobi
operator should stay, like the one of γ0, negative. Moreover, we infer from the latter
property that γ must be minimizing and unique. We are thus left with proving the
very existence of γ . It will be done by a tricky connectedness argument, fixing p,
letting q vary in the tube and using the parameter z = d̂(p, q) ∈ [c, `0] itself.
The openness part of that argument is based on the invertibility of d(expp)(γ̇(0)),
which holds due to the curvature property of γ ; the closedness part relies on the
aforementioned maximum principle.

Can one find a quicker proof? We did not. With Theorem 0.2 and its proof at
hand, it becomes easy to obtain a full strong convexity result if, instead of the tube
Tr (γ0), we consider the closure of the r-neighborhood of γ0, that is, the subset
Nr (γ0) = {m ∈ M, d(γ0([0, `0]),m) 6 r}. In this way, we get the main result of
the paper, namely:
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Corollary 0.3 (main result). Let γ0 : s ∈ [0, `0] → γ0(s) ∈ M be an embedded
unit-speed geodesic with negative Jacobi operator. There exists % > 0 such that the
subset Nr (γ0)⊂ M is strongly convex for r ∈ (0, %).

The paper is organized as follows: the next two sections are devoted to preliminary
tools for the proof, general properties of thin tubes are recorded in Section 1 and
further ones under our curvature assumption in Section 2, the proof of Theorem 0.2
itself is given in Section 3, and that of Corollary 0.3, in Section 4.

1. Properties of a thin tube about an embedded geodesic

Throughout this section, we use the setting of Theorem 0.2 but drop the assumption
made on the Jacobi operator of the geodesic γ0.

1A. Fermi map, cylinders and Gauss lemma. Let us recall how the tube Tr (γ0)

can be precisely defined [Aubin 1998; Gray 2004]. The geodesic γ0 extends
uniquely as a geodesic embedding of an interval I = (−ε, `0+ ε) with ε small. We
consider the map

(V, s) ∈ V⊥0 × I → E0(V, s)= exp⊥γ0(s)
(‖γ0(V )) ∈ M,

where we have denoted by V⊥0 the subspace of Tγ0(0)M orthogonal to the velocity
vector V0 = (dγ0/ds)(0), by ‖γ0(V ) the vector field along γ0 obtained by parallel
transport of the vector V and by exp⊥γ0(s)

the restriction of the exponential map to
‖
γ0(V0)(s)⊥. The differential of E0 at (0, s) is given by

(δV, δs) ∈ V⊥0 ×R→ d E0(0, s)(δV, δs)=
dγ0

ds
(s)δs+‖γ0(δV )(s) ∈ Tγ0(s)M;

it is an isomorphism since orthogonality is preserved by parallel transport. From the
inverse function theorem [Lang 2002] and the compactness of [0, `0] (or bounded
length of γ0), we infer1 the existence of a real R > 0 such that, setting |V | for the
norm of a vector V and B⊥(0, R) = {V ∈ V⊥0 , |V | 6 R}, the map E0 induces a
diffeomorphism from a neighborhood of B⊥(0, R)×[0, `0] onto a neighborhood of
its image. Let us fix such a radius R once for all. For r 6 R, we denote by Tr (γ0)

the image by E0 of B⊥(0, r)× [0, `0] and call it the tube about γ0 with radius r
[Gray 2004]. We set p 7→ F0(p)= (v⊥0 (p), z(p)) for the inverse of the mapping
E0 and refer to it as the Fermi map along γ0. We call z(p) the height of the
point p relative to γ0 and the subsets E top

R (γ0) = {p ∈ TR(γ0), z(p) = `0} and
Ebot

R (γ0) = {p ∈ TR(γ0), z(p) = 0}, respectively, the top and bottom ends of the

1Full details are given in Section 1D for a construction encompassing the present one.



THIN r -NEIGHBORHOODS OF NEGATIVE GEODESICS ARE STRONGLY CONVEX 311

tube. If p ∈ TR(γ0), the unit-speed geodesic

s ∈ [0, |v⊥0 (p)|] → E0

(
s
v⊥0 (p)

|v⊥0 (p)|
, z(p)

)
is the unique minimizing geodesic from γ0 to p; its length rγ0(p)= |v

⊥

0 (p)| is thus
equal to d(γ0, p). For short, that geodesic will be denoted by s 7→ [γ0, p](s) ∈
TR(γ0), and the function rγ0 itself simply by r unless a confusion may occur. We
let Nγ0(p), or just N (p) if no confusion, denote the velocity vector d[γ0, p]/ds
evaluated at s = d(γ0, p). The unit vector field p 7→ N (p) is defined in the open
subset of the tube TR(γ0) where r(p)> 0, that is, outside the geodesic γ0; moreover,
it is readily seen to satisfy dz(N )= 0, dr(N )= 1 and ∇N N = 0, with ∇ the Levi-
Civita connection. If r ∈ (0, R], we set Cr (γ0) = {p ∈ TR(γ0), r(p) = r} for the
cylinder of radius r about γ0, sometimes called the lateral part of the boundary of
the tube Tr (γ0). The outward unit normal to that cylinder at p ∈ Cr (γ0) is nothing
but N (p) due to the generalized Gauss lemma according to which the gradient of
the function r and the vector field N coincide [Gray 2004, pp. 26–28]. The identity
N = grad r will be central for us. It yields the following identity, recorded here for
later use, valid at each p ∈ TR(γ0) such that r(p) > 0:

(1) (g−dr2)(V,W )=(g−dr2)(5⊥N (V ),5
⊥

N (W )) for all (V,W )∈Tp M×Tp M,

where we have set 5⊥N (V )= V − g(V, N )N for the orthogonal projection of Tp M
onto N (p)⊥; in other words, if we write TM =RN⊕N⊥ on {r> 0}, the generalized
Gauss lemma implies that the metric g splits into the sum of dr2 along RN and
(g− dr2) along N⊥.

Finally, i ∈ (0,∞] will stand for the injectivity radius of TR(γ0), that is, for
the minimum of the distance from a point p to its cut locus as p varies in TR(γ0)

[do Carmo 1992, pp. 267–273]. For each r ∈ (0, R], the injectivity radius of Tr (γ0)

will thus be at least equal to i. If M is compact, i is finite, but i=∞ if M is the
hyperbolic space, for instance.

1B. Fermi charts and related notions. Let n=dim M . Given an orthonormal basis
{e1, . . . , en} of Tγ0(0)M with en = (dγ0/ds)(0), let us assign to each p ∈ TR(γ0)

the n-tuple x = (x̃, xn) ∈ Bn−1(0, R) × [0, `0], where Bn−1(0, R) denotes the
closure of the ball of radius R in the Euclidean space Rn−1, given by x(p) =
(x1, . . . , xn−1, xn) if and only if v⊥0 (p) =

∑n−1
α=1 xαeα and z(p) = xn . The map

x : TR(γ0)→ Bn−1(0, R)×[0, `0] so defined is called a Fermi chart along the em-
bedded geodesic γ0. (In 1922, while a PhD student at the Scuola Normale Superiore
in Pisa, motivated by the study of the equivalence principle in general relativity,
Enrico Fermi was the first to consider such local coordinates, which he used along
timelike paths; see [Gray and Vanhecke 1982, p. 217] and references therein.)
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We see from this construction that y = (ỹ, yn) is another such chart if and
only if yn

= xn and there exists an orthogonal transformation R ∈ O(n− 1) such
that ỹ =Rx̃ . The calculations which we will perform in the tube TR(γ0) will be
invariant (or tensorial) with respect to change of Fermi charts. We will freely use
the local Euclidean metric eγ0 =

∑n
i=1(dx i )2 (just denoted by e, unless confusing)

and the affine structure inherited from its (flat) Levi-Civita connection Dγ0 = D.
The latter will be convenient to identify distinct tangent spaces and hence view
vectors tangent to TR(γ0) at distinct points as belonging to the same vector space.
We will also view the Christoffel symbols 0k

i j (x) of our original (global) connection
∇ as the components in the chart x of the local tensorial difference (∇ − D).

In the Fermi chart x , the components of the metric tensor g satisfy gi j (0, xn)=δi j ,
dgi j (0, xn) = 0, so the Christoffel symbols vanish at (0, xn), meaning that g is
osculating to e along γ0. We set ‖ · ‖ for the norm associated to the Euclidean
metric e and θ0=min ‖U‖61620=max ‖U‖, where U runs over all unit2 tangent
vectors at points of TR(γ0). For each p ∈ TR(γ0), setting ρ(x) =

√∑n−1
α=1(xα)2,

we have r(p) = ρ(x(p)). The geodesic ray t ∈ [0, 1] → E0(tv⊥0 (p), z(p)) ∈ M
reads t 7→ R(t) = (t x1, . . . , t xn−1, xn) with x = x(p); being constant, its speed
is equal to ρ(x), so the unit vector field N reads N (p) = ν(x(p)) with ν(x) =
(1/ρ)(x)

∑n−1
α=1 xα ∂/∂xα.

If W =
∑n

i=1 W i ∂/∂x i
∈ Tp M , we may view W as a constant vector field in

TR(γ0), in other words, extend it to TR(γ0) by Dγ0 parallelism, a notion well
defined in any Fermi chart along γ0. Following [Gray 2004, p. 21], let us call any
such vector field a Fermi field (here, with respect to γ0). Given a point p ∈ TR(γ0)

and vector field Z on TR(γ0), we may similarly consider the Fermi field Z(p),
thinking of it as Z frozen at p. Among Fermi fields, one may distinguish those
with W n

= 0 from those writing Z = Zn∂/∂xn (sometimes called axial). For later
use, we record the brackets identities

(2)
[
ν,

∂

∂xn

]
= 0 and

[
ν, ρ

∂

∂xα

]
=
∂ρ

∂xα
ν for all α < n.

Finally, it will be convenient to consider on TR(γ0) the field of projections 50 =∑n−1
α=1 dxα ⊗ ∂/∂xα, which is the constant (or Fermi) extension of the orthogonal

projection of Tγ0(0)M onto V⊥0 .

1C. Estimates for geodesics in a thin tube. Beforehand, let us recall a classical
result, namely: there exists a continuous function p ∈ M→ χ(p) ∈ (0,∞] called
the convexity radius, which is smaller than the injectivity radius, such that, for each
% ∈ (0, χ(p)), the Riemannian ball B(p, %) is strongly convex [Cheeger and Ebin
2008, pp. 103–105; Klingenberg 1995, pp. 84–85; Whitehead 1932]. For r > 0

2Here and below, to be understood for the metric g, unless otherwise specified.
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small, we may thus consider the function r 7→ χγ0(r) = min{χ(p), p ∈ Tr (γ0)},
which is nonincreasing. We set c= χγ0(R) and stress that c6 i. Our first estimate
is an upper bound on the length of the geodesics contained in the tube TR0(γ0) with
R0 =min(R, c/3).

Proposition 1.1. If γ : [0, `]→γ(s)∈TR0(γ0) is a unit-speed geodesic,3 its length `
is bounded above by L0, with L0 = `0+ 2R if i=∞, and L0 = 2(`0+ c) if c<∞.

Proof. If i=∞, the geodesic γ is minimizing and unique in M . But we can join
its endpoints p = γ(0), q = γ(`) by a geodesic path broken twice, namely, first by
going along the geodesic ray from p to γ0(z(p)), next by going from γ0(z(p)) to
γ0(z(q)) along γ0, then by going along the geodesic ray from γ0(z(q)) to q. The
total length of that broken path must be larger than ` and it is, indeed, at most equal
to L0 = `0+ 2R.

If c<∞, for each ε > 0 small enough, the triangle inequality satisfied by the
Riemannian distance on M shows that we can cover the tube TR0(γ0) by N open balls
of radius r = c− ε, successively centered at the points γ0(0), γ0(r), γ0(2r), . . . ,
γ0((N − 1)r), γ0(`0), with N = [`0/c] + 1. Now, the length of the restriction of
the geodesic γ to each ball is bounded above by 2r and, letting ε ↓ 0, we obtain
`6 2Nc. �

Using a Fermi chart along γ0, setting R1 =
9

10 R0, we can readily find a positive
constant c1 such that, for each p∈TR1(γ0), the following estimates hold at x= x(p):

(3) ‖g− e‖6 c1ρ
2(x), ‖∇ − D‖6 c1ρ(x).

The purpose of our next proposition is twofold. On the one hand, it provides
a radius under which the geodesics contained in a tube about γ0 and longer than
a given length δ > 0 keep moving axially in a single direction; in particular, they
must be embedded, like γ0. On the other hand, it provides an estimate describing
how C0-close to γ0 a geodesic should be in order to get C1-close to it.

Proposition 1.2. Fixing δ ∈ (0, L0), let r1 > 0 be given by

r2
1

(
c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2)
= 1.

For each r ∈ (0,min(R1, r1)) and each unit-speed geodesic s ∈ [0, `] → γ(s) ∈
Tr (γ0) with length `> δ, the axial component dγn/ds of the velocity cannot vanish.
Moreover, the following estimate holds:

(4)
∥∥∥∥εdγ

ds
−

∂

∂xn

∥∥∥∥6 (4
`
+ c1`2

2
0

)
ργ +

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2 )
ρ2
γ ,

3Throughout the paper, ` denotes the length of γ which may vary; it should be written `(γ), of
course, but we will stick to the short notation ` instead.
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where ργ stands for maxσ∈[0,`] ρ(γ(σ )) and ε = ±1, according to the sign of
dγn/ds.

Proof. Before proving the first assertion we require an estimate; namely, letting
s ∈ [0, `] → γ(s) ∈ TR1(γ0) be a unit-speed geodesic, we have

(5)
∥∥∥∥50

dγ
ds
(s)
∥∥∥∥6 (4

`
+ c1`2

2
0

)
ργ for all s ∈ [0, `].

Indeed, if s ∈
[
0, `2

]
, we write, for all α ∈ {1, . . . , n− 1},

(`− s)
dγα

ds
(s)= γα(`)− γα(s)−

∫ `

s

∫ S

s

d2γα

dσ 2 (σ ) dσ d S,

while if s ∈
[
`
2 , `

]
, we write instead

s
dγα

ds
(s)= γα(s)− γα(0)−

∫ s

0

∫ S

s

d2γα

dσ 2 (σ ) dσ d S.

In either case, transforming the last term of the right-hand side by means of the
geodesic equation, recalling (3) and using the triangle and Schwarz inequalities,
we readily infer (5). Writing∣∣∣∣dγn

ds

∣∣∣∣= ∥∥∥∥dγ
ds

∥∥∥∥
√

1−
‖50 dγ/ds‖2

‖dγ/ds‖2
and

∥∥∥∥dγ
ds

∥∥∥∥=
√

1− (g− e)

(
dγ
ds
,

dγ
ds

)
,

the latter to be combined with (3), we get∣∣∣∣dγn

ds

∣∣∣∣> 1− c1ρ
2
γ2

2
0−

1
θ2

0

∥∥∥∥50
dγ
ds

∥∥∥∥2

;

hence, using (5), we obtain the important lower bound

(6)
∣∣∣∣dγn

ds
(s)
∣∣∣∣> 1−

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2 )
ρ2
γ for all s ∈ [0, `].

Recalling Proposition 1.1 and the assumption `> δ, this shows that dγn/ds cannot
vanish provided the radius r of the tube in which the geodesic ranges satisfies

r2
(

c12
2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2 )
< 1,

or else r ∈ (0,min(R1, r1)), as we assumed. The first part of Proposition 1.2 is thus
proved.

Moreover, letting now ε stand for the sign of dγn/ds, we have

|dγn/ds(s)| ≡ ε dγn/ds,
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so we readily get from (6) and the obvious inequality |dγn/ds| 6 ‖dγ/ds‖, the
pinching

−
1
2

c12
2
0ρ

2
γ 6 1− ε

dγn

ds
6

(
c12

2
0+

1
θ2

0

(
4
`
+ c1`2

2
0

)2)
ρ2
γ .

Combined with (5) this yields (4), since∥∥∥∥εdγ
ds
(s)−

∂

∂xn

∥∥∥∥6 ∥∥∥∥50
dγ
ds
(s)
∥∥∥∥+ ∣∣∣∣εdγn

ds
(s)− 1

∣∣∣∣. �

Writing UM for the unit tangent bundle and Ends(TM) for the bundle of sym-
metric4 endomorphisms of TM , let us consider the map

(p,U ) ∈UM→ J(p,U )= Rp( · ,U )U ∈ Ends(TM),

where Rp stands for the Riemann curvature tensor at the point p ∈ M . It satisfies
g(V, J(p,U )W )≡ Sp(V,U,W,U ) where Sp stands for the sectional (or covariant
Riemann) curvature tensor of the metric g at the point p; it is thus, indeed, symmetric.
We denote by κ1(p,U )6 · · ·6 κn−1(p,U ) the eigenvalues (each repeated with its
multiplicity) of the nontrivial part of J(p,U ), namely of its restriction to U⊥. For
each α ∈ {1, . . . , n−1}, the map (p,U )∈UM→ κα(p,U )∈R is C1

loc [Kato 1995,
pp. 122–123], hence uniformly Lipschitz for p ∈ TR0(γ0). So there exists a constant
k0 such that, for each pair ((p,U ), (p′,U ′))∈UM2 with max(rγ0(p), rγ0(p

′))6 R0

and each α ∈ {1, . . . , n− 1}, the following uniform estimate holds:

(7)
∣∣κα(p,U )− κα(p′,U ′)∣∣6 k0

(
d(p, p′)+‖U −U ′‖

)
.

For each unit-speed geodesic σ ∈ [0, `] → γ(σ ) ∈ M , we write s 7→ Jγ (s) for
the pullback to [0, `] of the map J by the section

t 7→
(
γ(s),

dγ
dσ
(s)
)
∈UM

and call Jγ (s) the Jacobi operator along the geodesic γ at s. We further write
κ1
γ (s)6 · · ·6 κ

n−1
γ (s) for the eigenvalues of the restriction of Jγ (s) to dγ

dσ (s)
⊥ and

call them the Jacobi curvatures along γ at s.

Corollary 1.3. Given δ and r as in Proposition 1.2, set

k = k0

(
1+

4
δ
+ c1L02

2
0+

(
c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2)
r
)
.

For each unit-speed geodesic σ ∈ [0, `] → γ(σ ) ∈ Tr (γ0) with length ` > δ and

4Here, “unit” and “symmetric” refer to the Riemannian metric g, of course.
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each s ∈ [0, `], the following estimate holds:∣∣καγ (s)− κα0 (γn(s))
∣∣6 kργ for all α ∈ {1, . . . , n− 1},

where κ1
0 6 · · ·6 κ

n−1
0 stand for the Jacobi curvatures along γ0.

Proof. Fixing γ as stated, we may apply Proposition 1.2 to it. This yields an
estimate for ‖(dγ/dσ)(s)− ∂/∂xn

‖ which, combined with the estimate (7) read at
(p,U )=

(
γ(s), (dγ/dσ)(s)

)
and (p′,U ′)=

(
γ0(γ

n(s)), ∂/∂xn
)
, yields the desired

result. �

Corollary 1.3 shows in particular that, if the Jacobi operator along γ0 stays
definite, it must stay so (with the same signature) along geodesics longer than a
given length and contained in a tube about γ0 of small enough radius.

1D. Family of Fermi maps near γ0. For each unit-speed geodesic s ∈ [0, `] →
γ(s) ∈ TR1(γ0), let Iγ0(γ) ⊂ [0, `0] denote the axial image interval γn([0, `])
and T (γ0, γ), the shortest piece of tube about γ0 containing γ , equal to {m ∈
Tργ (γ0), xn(m)∈ Iγ0(γ)}. If such a geodesic γ is an embedding, when is it possible
to construct a Fermi map along it such that a point m ∈ T (γ0, γ) may stay outside
the corresponding tube about γ if and only if its height zγ (m) relative to γ satisfies
either zγ (m) < 0 or zγ (m) > `? When such a possibility occurs, we call (γ0, γ)-
exceptional the latter points and (γ0, γ)-accessible all other points of T (γ0, γ).
Sticking to the notations of Proposition 1.2, we will prove the following:

Proposition 1.4. For each δ ∈ (0, `0), there exists r2 ∈ (0,min(R1, r1)) such that,
for each unit-speed geodesic γ longer than δ and contained in Tr2(γ0), a Fermi map
can be constructed along γ with corresponding tube about γ containing the whole
of T (γ0, γ) but its (γ0, γ)-exceptional points.

We call family of Fermi maps near γ0 the map which assigns, to each unit-speed
geodesic γ as stated and each (γ0, γ)-accessible point m ∈ Tr2(γ0), the image of m
by the Fermi map along γ .

Proof. The idea is to use a suitable implicit function theorem argument along γ0.
Since it is absent from the literature, we will present it carefully. Let us fix δ ∈
(0, `0) and a unit-speed geodesic σ ∈ [0, `∗] → γ∗(σ ) ∈ Tr2(γ0), with `∗ > δ and
r2 ∈ (0,min(R1, r1)) to be chosen later. From Proposition 1.2, we know that γ∗

is an embedding. We can thus construct a tube T%(γ∗) about γ∗, for some radius
% > 0, as done for γ0 in Section 1A. We want ργ∗ 6 r2 small enough compared
to % such that the tube T%(γ∗) contains T (γ0, γ

∗) but its exceptional points. Can
we choose the radius r2 such that this property holds for every such geodesic γ∗?

First, we observe that the required property holds for γ∗ if and only if it holds for
the reversed geodesic γ∗rev, given by σ ∈ [0, `∗]→ γ∗rev(σ )= γ

∗(`∗−σ). Therefore,
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applying Proposition 1.2 to γ∗, we may assume with no loss of generality that
dγ∗n/dσ is positive.

Next, we note that the geodesic γ∗ is given by its Cauchy data

(p∗, u∗)=
(
γ∗(0),

dγ∗

dσ
(0)
)
∈UM

and its length `∗ ∈ [δ, L0], while the generic point m∗ of the tube T%(γ∗) is deter-
mined by its Fermi map image Fγ∗(m∗), namely by its height σ ∗= zγ∗(m∗)∈ [0, `∗]
and by the vector V ∗= v⊥γ∗(m

∗)∈ (u∗)⊥ such that |V ∗|6 % and Eγ∗(V ∗, σ ∗)=m∗.
Here, we have denoted by Eγ∗ : (u∗)⊥× (−ε, `∗+ ε)→ M (respectively, by v⊥γ∗)
the analogue for γ∗ of the map E0 (respectively, of the component v⊥0 ) defined for
γ0 at the beginning of Section 1A.

The resulting point (p∗, u∗, V ∗), the amalgam of the Cauchy data of γ∗ with
the Fermi component V ∗ = v⊥γ∗(m

∗) ∈ (u∗)⊥ of m∗, lies in the vector bundle
ker Tπ→UM , the kernel of the tangent map to the natural projection π :UM→M .
Sticking to the Fermi chart x along γ0, we use it to build a chart of ker Tπ near
(p∗, u∗, V ∗) by assigning to each neighboring point (p, u, V ) the (3n− 2)-tuple
(x1, . . . , xn, u1

0, . . . , un−1
0 , V 1

0 , . . . , V n−1
0 ) with x i

= x i (p) and uα0 , V α
0 defined

as follows. Firstly, for each tangent vector W ∈ Tp M , let W 0 ∈ Tp⊥0
M , with

p⊥0 = p⊥γ0
≡ γ0(x

n(p)), denote its (backward) parallel transport5 along the geodesic
ray [γ0, p], and W0 ∈ Tγ0(0)M , similarly from the latter now along γ0. We pause
to record a lemma (the proof of which is left as an easy exercise):

Lemma 1.5. If U is a unit tangent vector at p ∈ TR1(γ0) and U 0 stands for its par-
allel transport to the point γ0(x

n(p)) along the geodesic ray [γ0, p], the following
estimate holds:

‖U −U 0‖6 c120r
2(p).

Applying this lemma, combined with Proposition 1.2 and the triangle inequality,
to the vector u∗ ∈ Tp∗M , and recalling that ‖ · ‖ ≡ | · | along γ0, we infer the
estimate

(8) |u∗0− en|6 k1r2,

with

k1 =
4
δ
+ c1L02

2
0+

(
c120+ c12

2
0+

1
θ2

0

(
4
δ
+ c1L02

2
0

)2 )
r1.

Here, we used the positivity assumption made above on (u∗)n . Taking r2 < 1/k1,
this estimate implies the positivity of (u∗0)

n . Back to the definition of the chart of

5Henceforth, with respect to the Levi-Civita connection ∇, unless otherwise specified.
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ker Tπ under elaboration, we take (p, u, V ) close enough to (p∗, u∗, V ∗) for un
0

to be still positive, and we define the uα0 ’s and V α
0 ’s by

n−1∑
α=1

uα0 eα =50u0,

n−1∑
α=1

V α
0 eα =50V0.

We recover the full parallel transported vectors u0, V0, by setting

un
0 =

√
1−

n−1∑
α=1
(uα0 )

2,

since |u0| = 1 and un
0 > 0, and

V n
0 =−

1
un

0

n−1∑
α=1

uα0 V α
0 ,

since V0⊥ u0. So (x i , uα0 , V α
0 ) is, indeed, a local chart of ker Tπ . Although heavier,

let us denote it rather by (x∗i , u∗α0 , V ∗α0 ) since we are now willing to move around
the geodesic γ∗ and the point m∗ ∈ T%(γ∗), hence to let the point (p∗, u∗, V ∗)
itself vary in ker Tπ near (p0, u0, V0)=

(
γ0(s0), (dγ0/ds)(s0), 0

)
with s0 ∈ [0, `0].

Deferring the completion of the present proof, we pause to set up an appropriate
implicit function theorem.

Implicit function theorem argument. In this section, the requirement that the geodesic
γ∗ be longer than δ will be unnecessary, thus ignored provisionally. Given s0∈[0, `0]

and σ0 ∈ [0, `0− s0], let the point (p∗, u∗, V ∗) ∈ ker Tπ be close to (p0, u0, V0)

and the real σ ∗ ∈R+ be close to σ0; let a further point m belong to Tr2(γ0). Setting
γ∗(σ )= expp∗(σu∗) and m∗ = Eγ∗(V ∗, σ ∗), consider the map

9(p∗, u∗, V ∗, σ ∗,m)= x(m∗)− x(m) ∈ Rn.

Using the chart (x∗i , u∗α0 , V ∗α0 ) for (p∗, u∗, V ∗) and the chart x i for m, let us denote
the local expression of 9 (respectively, x ◦ Eγ∗) by

9 i (x∗ j , u∗α0 , V ∗α0 , σ ∗, x j )= E i (x∗ j , u∗α0 , V ∗α0 , σ ∗)− x i .

At the point given by6 x∗α = 0, x∗n = s0, u∗α0 = 0, V ∗α0 = 0, σ ∗ = σ0, x α = 0,
xn
= s0+ σ0, we have

9 i((E0, s0), E0, E0, σ0, (E0, s0+ σ0)
)
= 0 for all i ∈ {1, . . . , n}

and

det
(

∂9 j

∂(V ∗α0 , σ ∗)

(
(E0, s0), E0, E0, σ0, (E0, s0+ σ0)

))
6= 0,

6Throughout with α ranging in {1, . . . , n− 1}.
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where E0 stands for the zero vector of Rn−1. The latter equation holds since

∂9 j

∂(V ∗α0 , σ ∗)
≡

∂E j

∂(V ∗α0 , σ ∗)

and d E j ((E0, s0), E0, E0, σ0) ≡ dx j
◦ d E0(0, s0 + σ0), where d E0(0, s0 + σ0) is an

isomorphism as seen in Section 1A. We are thus in position to apply the im-
plicit function theorem [Lang 2002]. There exists a real ε > 0 and a unique map
(x∗ j , u∗α0 , x j )→ F∗ = (V∗10 , . . . ,V∗n−1

0 , ς∗) such that, if

(9) ρ(x∗)6 ε, |x∗n−s0|6 ε, |50u∗0|6 ε, ρ(x)6 ε, |xn
−(s0+σ0)|6 ε,

the identities

9 i(x∗ j , u∗α0 ,V∗α0 (x
∗k, u∗α0 , xk), ς∗(x∗k, u∗α0 , xk), x j)

≡ 0 for all i ∈ {1, . . . , n}

are satisfied with
∑n−1

α=1(V
∗α
0 (x

∗k, u∗α0 , xk))2 and
∣∣ς∗(x∗k, u∗α0 , xk)−σ0

∣∣ small. By
construction, these identities imply m = m∗; in other words, the map

x j
→ F∗i (x∗ j , u∗α0 , x j )

is nothing but the expression of the Fermi map Fγ∗ along the geodesic γ∗(σ ) =
expp∗(σu∗) read in the Fermi chart x along γ0. Finally, let us stress that the real
ε > 0 occurring in (9) may be chosen so small that it becomes independent of the
pair of parameters (s0, σ0), because the latter lies in a compact subset of R2, namely
in the triangle of the positive quadrant given by s0+ σ0 6 `0. Henceforth, we fix
ε > 0 so.

Completion of the proof of Proposition 1.4. Back to the case of our previous geodesic
γ∗, supposed longer than δ and with positive axial component, we are now in position
to choose the radius r2 of the tube about γ0 in which γ∗ should lie. First of all,
we fix a point m ∈ T (γ0, γ

∗). So far, we have required r2 ∈ (0,min(R1, r1, 1/k1)).
Redoing the preceding implicit function theorem argument now with p∗ = γ∗(0),
s0 = xn(p∗), s0 + σ0 = xn(m), the first and fourth inequalities of (9) prompt us
to take r2 6 ε. Besides, we must further shrink r2 > 0 in order to keep γ∗ nearly
vertical so that the third inequality of (9) holds as well. From (8), we can do it
by taking r2 6 ε/k1, as easily verified. Altogether, if the geodesic γ∗ is longer
than δ ∈ (0, `0) with dγ∗n/dσ > 0 and if it is contained in the tube Tr2(γ0) with
r2 ∈ (0,min(R1, r1, ε/k1)), the triple(

x∗i = x∗i (γ∗(0)), u∗α0 = u∗α0

(
dγ∗

dσ
(0)
)
, x i
= x i (m)

)
satisfies the bounds (9). So we may consider its image by the local map F∗

precedingly constructed. In particular, it follows that the point m lies in a tube
about the embedded geodesic γ∗ if and only if its height zγ∗(m)= ς∗(x∗i , u∗α0 , x i )
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lies in the interval [0, `∗]. Since the point m was arbitrarily fixed in T (γ0, γ
∗), we

are done. �

1E. Second fundamental form of a cylinder. If n > 2, sticking to the notations
of Section 1A, let us study the second fundamental form of a cylinder Cr (γ0) of
small radius r about γ0.

Proposition 1.6. Given r ∈ (0,min(1, R)), a point p∈Cr (γ0) and a pair of vectors
(V,W )∈ TpCr (γ0)×TpCr (γ0), let us denote by IIp(V,W ) the second fundamental
form of the cylinder Cr (γ0) calculated at p on (V,W ). If we extend the vectors
V , W and N (p) as Fermi fields on TR(γ0) and set p⊥ = γ0(z(p)), the following
asymptotic expansion holds:

IIp(V,W )=−
1
r

g(50V,50W )(p⊥)+ r
(
S(V, N (p),W, N (p))(p⊥)

−
1
3 S(50V, N (p),50W, N (p))(p⊥)

)
+ O(r2),

where, again, S stands for the sectional curvature tensor.

Proof. By definition [Gray 2004, p. 33; do Carmo 1992, p. 128], we have
IIp(V,W ) = g(−∇V N ,W )(p) and, here, one may allow the vectors V , W to be
arbitrary in Tp M since N is a vector field defined outside Cr (γ0). Covariant differ-
entiation of the generalized Gauss lemma identity g(N , · )= dr on {r> 0}⊂ TR(γ0)

yields

(10) IIp(V,W )=−∇dr(V,W )(p).

More generally, for each pair of vector fields (A, B), we find ∇dr(A, B) =
g(A,∇B N )= g(B,∇A N ); hence also, using Lie brackets,

(11) 2∇dr(A, B)= N .g(A, B)+ g(A, [B, N ])+ g(B, [A, N ]),

since ∇ is torsionless. Taking a Fermi chart x along γ0 such that

x(p)= (r, 0, . . . , 0︸ ︷︷ ︸
n−2

, xn(p)),

let us calculate ∇dρ(r, 0, xn) using (11) with A and B equal to the ∂/∂x i . Note that
ν(r, 0, xn) = ∂/∂x1 and dρ(r, 0, xn) = dx1. From (1), we get g1i (r, 0, xn) = δ1i

and N · g(∂/∂x1, ∂/∂x i )(r, 0, xn)= 0. From (2), we find [∂/∂xn, ν](r, 0, xn)= 0
and [

∂

∂xα
, ν

]
(r, 0, xn)=

1
r

(
∂

∂xα
− δ1α

∂

∂x1

)
for all α < n;

in particular, [∂/∂x1, ν](r, 0, xn)= 0. Besides, for i , j ∈ {2, . . . , n}, we can derive
the local expressions of N .g(∂/∂x i , ∂/∂x j )(r, 0, xn)= (∂gi j/∂x1)(r, 0, xn) from
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the following Riemann-type formulas extended to the Fermi setting [Spivak 1979;
Delanoë and Ge 2010, Lemma 2]:

gab(x1, 0, . . . , 0︸ ︷︷ ︸
n−2

, xn)= δab−
1
3(x

1)2 Ra1b1( 0, . . . , 0︸ ︷︷ ︸
n−1

, xn)+ O((x1)3),

with a, b ∈ {2, . . . , n− 1}, and

(12)
gan(x1, 0, xn)=− 2

3(x
1)2 Ra1n1(0, xn)+ O((x1)3),

gnn(x1, 0, xn)= 1− (x1)2 Rn1n1(0, xn)+ O((x1)3),

where x1 stands for a small real parameter and Ri jkl for the components of the
sectional curvature tensor. Doing so, we obtain the expression

(13) ∇dρ(r, 0, xn)=

n−1∑
a=2

n−1∑
b=2

(
1
r
δab−

2
3r Ra1b1(0, xn)+ O(r2)

)
dxa
⊗ dxb

+

n−1∑
a=2

(
−r Ra1n1(0, xn)+ O(r2)

)
(dxa
⊗ dxn

+ dxn
⊗ dxa)

+
(
−r Rn1n1(0, xn)+ O(r2)

)
dxn
⊗ dxn.

The latter combined with (10) yields the proposition. �

Remark 1.7. For later use, we record here that, if n=2, recalling (1), the expansion
of the metric in the Fermi chart x becomes simply

g(x1, x2)= dx1
⊗ dx1

+
(
1− (x1)2K (0, x2)+ O((x1)3)

)
dx2
⊗ dx2,

where K stands for the Gauss curvature of M . Accordingly, still from (11), the
Hessian formula (13) becomes

∇dρ(r, x2)=
(
−r K (0, x2)+ O(r2)

)
dx2
⊗ dx2.

2. Further properties when the Jacobi operator is negative

From the properties established is the preceding section for a thin tube about the
geodesic γ0, we will now derive stronger ones by assuming that the operator Jγ0 is
negative, as done in Theorem 0.2. Specifically, using the notations of Corollary 1.3
and setting κ0=maxs∈[0,`0] κ

n−1
0 (s), our assumption means that κ0 < 0; henceforth,

it is implicitly made.

Proposition 2.1 (the second fundamental form stays definite). One can find a small
real r3>0 such that, for each p∈Tr3(γ0) with r= r(p) 6=0, the second fundamental
form of Cr (γ0) at the point p is negative definite.
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Proof. Let us take a Fermi chart x at the point p like the one used in the proof
of Proposition 1.6 and write with it the expression of IIp(V,W ) found in that
proposition, with V =W =

∑n
i=2 V i∂/∂x i

∈ TpCr (γ0). We find

(14) IIp(V, V )

=−
1
2r

n−1∑
a=2

(V a)2+
r
2

Rn1n1(0, xn)(V n)2

−
1
4r

(
n−1∑
a=2
(V a)2− 8r2

n−1∑
a=2

Ra1n1(0, xn)V a V n
− 2r2 Rn1n1(0, xn)(V n)2

)

−
1
4r

n−1∑
a=2

n−1∑
b=2

V a V b(δab−
8
3r2 Ra1b1(0, xn)

)
+ O(r2)

and the result readily follows from Rn1n1(0, xn)6 κ0 < 0, provided r is taken small
enough. �

Proposition 2.2 (geodesics obey a maximum principle). One can find a small
real r4 > 0 such that, for each geodesic path t ∈ [0, 1] → γ(t) ∈ Tr4(γ0), the
following inequality holds:

max
t∈[0,1]

r(γ(t))6max
(
r(γ(0)), r(γ(1))

)
.

Moreover, if r(γ(ϑ))=max
(
r(γ(0)), r(γ(1))

)
for some ϑ ∈ (0, 1), the path γ must

be constant.

Proof. Anytime t ∈ [0, 1] → γ(t) ∈ TR(γ0) is a geodesic, at each t ∈ [0, 1] such
that r(γ(t)) 6= 0, we have

d2

dt2

(
r(γ(t))

)
=∇dr(γ(t))

(
dγ
dt
,

dγ
dt

)
.

If n > 2, combining (13) with (14) written with V = dγ
dt , we infer that the second

derivative of the auxiliary real function t ∈ [0, 1]→ r(γ(t)) is nonnegative on [0, 1]
provided r(γ(t)) 6 r4 = r3. If n = 2, the same conclusion holds with r4 small
enough, due to Remark 1.7 read with K (0, x2)6 κ0 < 0. In any case, the maximum
principle [Protter and Weinberger 1967] implies the first part of the proposition.
Moreover, it yields r◦γ ≡ r(γ(ϑ))=: rϑ > 0; hence (dγ/dt)(t) ∈ Tγ(t)Crϑ (γ0) for
each t ∈ [0, 1]. From (10) and Proposition 2.1 combined with

d2

dt2

(
r(γ(t))

)
6 0,

we infer that dγ/dt ≡ 0, so γ must indeed be constant. �
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Before moving on to the next property, we state a lemma of independent interest.
(A reader parachuting to this point should understand it preceded by: “Let γ0 be an
embedded unit-speed geodesic with negative Jacobi operator.”)

Lemma 2.3. One can find a small real r5>0 such that the inequality g>dr2
γ0
+dz2

γ0

between quadratic forms holds at each point of {p ∈ Tr5(γ0), r(p) > 0}.

Proof. Take a point p as stated and a Fermi chart x along γ0 such that x(p) =
(r, 0, . . . , 0, xn). From Remark 1.7 read with K (0, x2) 6 κ0 < 0, the lemma
appears straightforward if n = 2. In higher dimensions, from (1) and the expansion
of gi j (x1, 0, xn) in (12), we infer that, for each vector V =

∑n
i=1 V i ∂/∂x i

∈ Tp M ,
the quadratic form (g − dr2

γ0
− dz2

γ0
)(p) applied to V can be expressed in the

chart x , up to O(r3) terms, as the sum of two quadratic polynomials in V , namely∑n−1
a,b=2

(1
2δab−

1
3r2 Ra1b1(0, xn)

)
V a V b and

n−1∑
a=2

( 1
2 V 2

a −
4
3r2 Ra1n1(0, xn)V a V n)

− r2 Rn1n1(0, xn)(V n)2.

By taking r > 0 small enough, and using Rn1n1(0, xn) 6 κ0 < 0 for the second
polynomial, we can make each polynomial nonnegative. �

Proposition 2.4 (γ0 is minimizing). Take r5 > 0 as in Lemma 2.3. The length of
each piecewise C1 path t ∈ [0, 1] → c(t) ∈ M ranging in Tr5(γ0) with z(c(0))= 0
and z(c(1))= `0 must be at least equal to `0. Furthermore, if equality holds and
r ◦ c(t)= 0 for some t ∈ [0, 1] then c, reparametrized by an arc-length parameter
suitably shifted to avoid jumps7 on each subinterval of [0, 1] in the interior of
which c is C1 and dc/dt 6= 0, coincides with γ0.

Proof. Let c be a path as stated and x a Fermi chart along γ0. From Lemma 2.3,
the length of c satisfies

`>
∫ 1

0

√(
d
dt
(ρ ◦ c)

)2

+

(
dcn

dt

)2

dt.

Therefore, if
∫ 1

0

∣∣(d/dt)(ρ ◦c)
∣∣ dt 6= 0, we have `>

∫ 1
0 |dcn/dt | dt > `0 as asserted.

Moreover, if `=`0, we see that (d/dt)(ρ◦c)must vanish, hence also (ρ◦c) anytime
it does at some t ∈ [0, 1]. In that case, the images of c and γ0 coincide, so |dc/dt | =
‖dc/dt‖= |dcn/dt | and

∫ 1
0 |dcn/dt | dt = `0= cn(1)−cn(0)=

∫ 1
0 (dcn/dt) dt . The

latter equality implies that dcn/dt > 0, so the path c, reparametrized by arc length
as stated, must indeed coincide with γ0. �

7By taking the initial value of the parameter on a subinterval equal to (zero, of course, on the first
subinterval and elsewhere to) the final value of the parameter on the preceding subinterval.
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Proposition 2.5 (long geodesics have a negative Jacobi operator). Given δ > 0, we
can find r6 ∈ (0,min(R1, r1)] such that, for each r ∈ (0, r6) and each unit-speed
geodesic σ ∈ [0, `] → γ(σ ) ∈ Tr (γ0) with length `> δ, the Jacobi operator Jγ is
negative, or else maxs∈[0,`] κ

n−1
γ (s) < 0.

Proof. Let k = k(r) be the affine function of r defined in Corollary 1.3 and r+ be
the positive root of the quadratic equation rk(r)+ κ0 = 0; the proposition holds
with r6 =min(R1, r1, r+) by Corollary 1.3. �

Proposition 2.6 (each geodesic is minimizing). One can find a small real r7 > 0
such that, for each unit-speed geodesic s∈[0, `]→γ(s)∈M and each piecewise C1

path t ∈ [0, 1] → c(t) ∈ M , both ranging in Tr7(γ0) with c(0)= γ(0), c(1)= γ(`),
the length of c must be at least equal to `. Moreover, equality holds if and only if c,
reparametrized by a suitable arc length parameter on each subinterval of [0, 1] in
the interior of which c is C1 and dc/dt 6= 0, coincides with γ .

Proof. Let γ be a geodesic of length ` as stated. The proposition is obvious if ` < i.
If `> i, which we suppose in the proof, we may use Propositions 1.2 and 1.4 read
with δ = i; the radii r1 and r2 are understood accordingly and we take r7 6 r2. In
this situation, we know that γ is an embedding and there exists a Fermi chart xγ
along γ whose domain Tη(γ) contains T (γ0, γ) but the (γ0, γ)-exceptional points.

Our next task is the main one; namely, we must specify how the radius η of that
tubular domain can be controlled by r7. By inspecting the proof of Proposition 1.4,
we see (sticking to its notations, except for γ∗ now written γ , so m∗ = γ(0),
u∗ = (dγ/ds)(0)) that such a control amounts to a similar one on

∥∥V∗0(x
∗,50u∗0, x)

∥∥2
=

n∑
i=1

(
V∗i0 (x

∗,50u∗0, x)
)2
,

where x∗, 50u∗0, x satisfy the bounds (9) now read with ε = r7 and where V∗n0 has
to be defined by

V∗n0 =−
1

u∗n0

n−1∑
α=1

u∗α0 V∗α0 with u∗n0 =±

√
1−

n−1∑
α=1
(u∗α0 )

2.

Furthermore, as r7 ↓ 0, we know that
∑n−1

α=1(V
∗α
0 )

2 tends to zero. All we require is
thus a uniform positive lower bound on |u∗n0 |. Such a bound will follow from (6)
and Lemma 1.5. Indeed, the former combined with Proposition 1.1 implies here
that ∣∣∣∣dγn

ds

∣∣∣∣> 1−
(

c12
2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
r2

7 ,

which in turn yields |u∗n0 |> |dγ
n/ds| − c12

2
0r2

7 . Thus we get
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|u∗n0 |> 1−
(

2c12
2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
r2

7 .

Defining r1 > 0 by, say,

r2
1

(
2c12

2
0+

1
θ2

0

(
4
i
+ 2c12

2
0(`0+ i)

)2 )
=

1
2
,

and taking r76 r1, we obtain |u∗n0 |>
1
2 . Now, it is clear that ‖V∗0(x

∗,50u∗0, x)‖ tends
to zero as r7 ↓ 0. Here, among the arguments of V∗0, we are given the first one, since
x∗= x(γ(0)); similarly for the second one, since50u∗0 is defined out of (dγ/ds)(0);
the sole variable is the third one, since x = x(m) with m ∈ T (γ0, γ) ∩ Tη(γ).
Moreover, using the aforementioned Fermi chart xγ , the identity

ρ(xγ )= ‖V∗0(x
∗,50u∗0, x)‖

holds. So ρ(xγ ) ↓ 0 as r7 ↓ 0, which shows that the implicit function theorem used
in the proof of Proposition 1.4 allows us to let η go to zero as r7 ↓ 0.

Besides, Proposition 2.5 read with δ = i implies that, if we take r7 < r6, the
Jacobi operator of γ is negative.

We conclude that there exists r7>0 small enough such that, if γ ranges in Tr7(γ0),
the radius η of the tube about γ provided by Proposition 1.4 may be taken small
enough such that Lemma 2.3 and Proposition 2.4 hold for the geodesic γ in Tη(γ).

Now, we are in position to complete the proof of Proposition 2.6. Let c be a path
as stated. By the definition of T (γ0, γ), the smallness of r7 (hence of η) and the
property of Tη(γ) proved in Proposition 1.4, there exists a closed interval contained
in [0, 1] such that the restriction c̄ of c to this interval fulfills the assumption
of Proposition 2.4 (read in Tη(γ) instead of Tr5(γ0)). So we get the inequalities
L = length of c > length of c̄ > `= length of γ , which proves the first part of the
proposition. Moreover, if L = `, the images of the paths c and c̄ must coincide,
so c̄ shares with γ the same endpoints and the last part of Proposition 2.6 follows
from that of Proposition 2.4. �

Corollary 2.7 (each geodesic is uniquely determined by its endpoints). Take r7 > 0
as in Proposition 2.6. For each (p, q) ∈ Tr7(γ0)× Tr7(γ0), there exists at most
one unit-speed geodesic of γ : [0, `] → M entirely lying in Tr7(γ0) with γ(0)= p,
γ(`)= q.

Proof. We argue by contradiction. If two distinct unit-speed geodesics of M entirely
lying in Tr7(γ0) had the same endpoints, Proposition 2.6 would imply that the length
of each geodesic is at least equal to the length of the other; so the geodesics would
have equal length. Still by Proposition 2.6, the geodesics would thus coincide,
which is absurd. �
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3. Proof of Theorem 0.2

Reduction of the proof. We only have to prove the existence of a radius r > 0 such
that each pair of points of the tube Tr (γ0), located as stated in Theorem 0.2, can be
joined by a geodesic with interior lying in (Tr (γ0))

◦. Indeed, suppose we have done
so. Then, each such geodesic must be unique (by Corollary 2.7) and minimizing
among piecewise C1 paths sharing the same endpoints and lying in Tr (γ0) (by
Proposition 2.6), so the proof is complete.

Strategy. Fixing p ∈ Tr (γ0), let us consider the subsets

Z+p =
{
m ∈ Tr (γ0),m 6= p, z(m)> z(p) and, if z(p)= 0 or `0, z(m) 6= z(p)

}
,

Z−p =
{
m ∈ Tr (γ0),m 6= p, z(m)6 z(p) and, if z(p)= 0 or `0, z(m) 6= z(p)

}
.

Assuming z(p) < `0, we will prove Theorem 0.2 for q ∈ Z+p . Assuming z(p) > 0,
we would prove it similarly for q ∈ Z−p . Let us proceed to the proof itself. We
distinguish two cases.

Case 1: z(q)− z(p) < c/2. For λ ∈ [0, 1], set p⊥λ = [γ0, p](λr(p)) and q⊥λ =
[γ0, q](λr(q)). Take r < c/2. Then, for each λ ∈ [0, 1], the points p⊥λ and q⊥λ lie in
the Riemannian ball {m ∈M, d(m⊥0 ,m)<%} with center m⊥0 = γ0

( 1
2(z(p)+ z(q))

)
and radius % = c/2+ r < c. Hence there exists a unique minimizing geodesic
cλ : [0, 1] → M going from p⊥λ to q⊥λ and such that, for each t ∈ [0, 1], the map
λ ∈ [0, 1] → cλ(t) ∈ M is smooth. We must prove that c1((0, 1))⊂ (Tr (γ0))

◦. To
do so, let us argue by connectedness on the set

3=
{
λ ∈ [0, 1], cλ((0, 1))⊂ (Tr (γ0))

◦
}
.

By construction, 3 is nonempty (0 ∈ 3) and relatively open in [0, 1], so we
only have to prove that 3 is closed. Letting (λi )i∈N be a sequence of 3 and
λ∞ = limi→∞ λi ∈ [0, 1], it amounts to prove that cλ∞((0, 1)) ⊂ (Tr (γ0))

◦. By
continuity, the geodesic cλ∞ ranges in Tr (γ0). If cλ∞(θ)∈Cr (γ0) for some θ ∈ (0, 1),
Proposition 2.2 implies that cλ∞ is constant, so p⊥λ∞ = q⊥λ∞ . But the latter yields
p = q, contradicting the assumption q ∈ Z+p .

We are left with ruling out the following property:

(15) z(cλ∞(θ))= 0 or `0 for some θ ∈ (0, 1).

To do so, given δ > 0, we distinguish two subcases as stated in Theorem 0.2.

Subcase 1: n = 2. If (15) held, the vector (dcλ∞/dt)(θ) would necessarily belong
to ker dz \ {0}. But then, the geodesic t 7→ cλ∞(t) would stay for all t ∈ [0, 1] in
the end of the tube given by the equation z = z(cλ∞(θ)) because, when n = 2, the
latter is totally geodesic. We reach a contradiction, since we have assumed that
z(p) < `0 and, if z(p)= 0, z(q) 6= 0.
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Subcase 2: n > 2 and either |z(p)− z(q)| > ς or ς 6 z(p) 6 z(q) 6 `0 − ς . If
|z(p)− z(q)|> ς , the length `λ∞ of the geodesic cλ∞ must be bounded below by ς
due to Lemma 2.3. It follows that dcn

λ∞
/dt > 0 if r > 0 is taken small enough, due

to Proposition 1.2 read with δ = ς . So, in that case, the property (15) cannot hold.
If instead ς 6 z(p)6 z(q)6 `0− ς , with |z(p)− z(q)|< ς , the latter inequality
yields `λ∞ 6 ς + 2r , while the former pinching combined with Lemma 2.3 yields
`λ∞ > 2ς if (15) holds. In that case, we get the lower bound r > ς which is absurd,
provided r < ς . In either case, we conclude that (15) cannot occur for r > 0 small
enough.

Having proved that λ∞ ∈ 3, we conclude that 3 is closed and hence equal
to [0, 1]. In particular, 1 ∈3 so Case 1 is settled.

Case 2: z(q)− z(p)> c/2. Here, reading the constant r1 from Proposition 1.2 with
δ = c/2, we take r > 0 small as done in Proposition 2.5. Furthermore, we consider
the subset of the interval [z(p), `0] defined by

Z+p =
{
z∈[z(p), `0],∀m ∈Z+p , z(m)= z=⇒Tr (γ0) is strongly convex for (p,m)

}
.

By construction, if z∈Z+p , the whole interval [z(p), z]must lie in Z+p and, by Case 1,
we know that Z+p contains the interval

[
z(p), z(p)+ c/2

)
. In the next two lemmas,

we prove that Z+p is both closed and relatively open in [z(p), `0]. Granted it is, by
connectedness, it must coincide with [z(p), `0]; hence Theorem 0.2 is established
when z(p) < `0 and q ∈ Z+p . The proof when z(p) > 0 and q ∈ Z−p is similar. �

Lemma 3.1. The subset Z+p is closed.

Lemma 3.2. The subset Z+p is relatively open in [z(p), `0].

Proof of Lemma 3.1. Let (zi )i∈N be a sequence of Z+p ; set z= limi→∞ zi ∈ [z(p), `0].
We must prove that z ∈ Z+p , so we may assume with no loss of generality that z>
z(p)+c/2. Fix m∈Z+p satisfying z(m)= z and let (mi )i∈N be a sequence of Z+p such
that, for all i ∈N, z(mi )= zi and limi→∞mi =m. For each i ∈N, set t ∈ [0, 1]→
ci (t) ∈ M for the unique minimizing geodesic such that ci (0) = p, ci (1) = mi

and ci ((0, 1))⊂ (Tr (γ0))
◦. By Proposition 1.1, the sequence

(
(dci/dt)(0)

)
i∈N

is
bounded in Tp M ; it thus converges toward a vector V ∈ Tp M . By continuity of
the map expp : Tp M→ M , the geodesic t ∈ [0, 1]→ expp(tV ) ∈ M (let us denote
it by c) satisfies c(0) = p, c(1) = m and c([0, 1]) ⊂ Tr (γ0). For each t ∈ (0, 1),
Proposition 1.2 implies that z(c(t)) ∈ (z(p), z(m)) while, taking r 6 r4, we know
that r(c(t)) < r by Proposition 2.2, so the inclusion c((0, 1))⊂ (Tr (γ0))

◦ must hold.
Finally, by Proposition 2.6 and Corollary 2.7, the geodesic c must be minimizing
and unique in Tr (γ0). In other words, we have proved that Tr (γ0) is strongly convex
for (p,m). Since the point m is arbitrary, we conclude that z ∈ Z+p as desired. �
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Proof of Lemma 3.2. Pick z ∈ Z+p and m ∈ Z+p with z(m) = z. We may take
z ∈ [z(p)+ c/2, `0) without loss, due to Lemma 3.1. Let t ∈ [0, 1] → cm(t) ∈ M
be the geodesic such that cm(0) = p, cm(1) = m and cm((0, 1)) ⊂ (Tr (γ0))

◦.
By Proposition 2.5, the Jacobi operator of cm is negative. Therefore the tangent
map d(expp)

(
(dcm/dt)(0)

)
: Tp M→ Tm M is invertible [Aubin 1998, pp. 17–18;

do Carmo 1992, pp. 117, 149; Milnor 1963, pp. 98, 100]. The inverse function
theorem [Lang 2002] yields a real εm > 0 such that each point m′ lying in the
Riemannian ball B(m, εm) can be joined to the point p by a unique geodesic
t ∈ [0, 1] → cm′(t)= expp(tV ′) ∈ M with V ′ ∈ Tp M close to Vm = (dcm/dt)(0).
Possibly shrinking εm > 0, we take it such that z(p)+ c/46 z < `0 on B(m, εm).
Since the level set Tr (γ0)∩ {z = z} is compact, it can be covered by the union of
finitely many balls Bi = B(mi , εi ), i ∈ {1, . . . , N }, each constructed like the ball
B(m, εm). There exists θ > 0 such that the level set Tr (γ0)∩ {z = z+ θ} remains
covered by

⋃N
i=1 Bi .

Claim. The subset Z+p contains z+ θ .

The claim, provisionally taken for granted, implies that [z(p), z+ θ ] ⊂ Z+p , so
Lemma 3.2, indeed, holds. �

Proof of the claim. Pick m′ ∈ Z+p with z(m′)= z+ θ . There exists i ∈ {1, . . . , N }
such that m′ ∈ Bi . So m′ = expp(V

′) ∈ M for a unique vector V ′ ∈ Tp M close to
Vi = (dcmi /dt)(0). Moreover, there exists a unique geodesic path λ ∈ [0, 1] →
m(λ)∈M ranging in Bi such that m(0)=mi , m(1)=m′. Let λ∈[0, 1]→Vλ∈Tp M
be the corresponding path, derived (like V ′) from the inverse function theorem as
done above, such that expp(Vλ)≡m(λ). Set t ∈ [0, 1]→ γλ(t)∈M for the geodesic
path given by γλ(t) = expp(tVλ). From the pinching z(p)+ c/4 6 z(m(λ)) < `0

combined with Proposition 2.2, we know that m((0, 1))⊂ (Tr (γ0))
◦. Let us argue

by connectedness on the subset of the interval [0, 1] given by

L=
{
λ ∈ [0, 1], γλ((0, 1))⊂ (Tr (γ0))

◦
}
,

which is nonempty (0 ∈ L). The closedness of L can readily be established, arguing
as we did for that of Z+p . Let us focus on proving that L is relatively open in
[0, 1]. If λ ∈ L, the continuity of expp implies the existence of µ > 0 such that
γλ′([0, 1])⊂ T2r (γ0) for each λ′ ∈ (λ−µ, λ+µ)∩ [0, 1]. By Lemma 2.3, taking
2r 6 r5, we know that the length of the geodesic γλ′ is at least equal to c/4. By
Proposition 1.2 read in T2r (γ0) with δ = c/4, we can take r > 0 small enough such
that dγλ′/dt > 0; hence z(γλ′((0, 1])) ⊂ (z(p), `0). Furthermore, taking 2r 6 r4

and applying Proposition 2.2, we get r(γλ′(t)) < r for t ∈ (0, 1). It follows that
λ′ ∈ L; in other words, L is relatively open in [0, 1]. By connectedness, we get
L= [0, 1]. In particular, 1 ∈ L, from which we readily infer that m′ ∈Z+p . Since m′

is arbitrary, we conclude z+ θ ∈ Z+p , as claimed. �
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4. Proof of Corollary 0.3

The assumption made in Theorem 0.2 on the geodesic γ0 is an open condition.
Given a small real ς > 0, we can thus find r > 0 such that Theorem 0.2 holds
for the geodesic s ∈ [−r, `0 + r ] → γr (s) ∈ M defined as the extension of the
geodesic γ0 to the interval [−r, `0+ r ]. There still exists a Fermi map about the
extended geodesic γr ; let us stick to our preceding notations for this map. It is
important to note the inclusion

(16) Nr (γ0)⊂ Tr (γr )

which follows from those of B(γ0(0), r) and B(γ0(`0), r) in Tr (γr ) combined
with the identity Nr (γ0) ≡ Tr (γ0)∪ B(γ0(0), r)∪ B(γ0(`0), r). Given a pair of
points (p, q) in Nr (γ0), say, with z(p) 6 z(q), we must prove that Nr (γ0) is
strongly convex for (p, q). To do so, it suffices to construct a geodesic path from p
to q ranging in (Nr (γ0))

◦. Indeed, by (16) combined with Proposition 2.6 and
Corollary 2.7 applied in Tr (γr ), such a geodesic path will necessarily be minimizing
and unique in Nr (γ0). From Theorem 0.2 applied in Tr (γ0) ⊂ Nr (γ0), we only
have to treat the following two cases.

Case 1: z(q)−z(p)> ς and either z(p)< 0 or z(q)> `0. By Theorem 0.2, the tube
Tr (γr ) is strongly convex for (p, q). Let t ∈ [0, 1]→ γ(t)∈ M denote the geodesic
from γ(0) = p to γ(1) = q such that γ((0, 1)) ⊂ (Tr (γr ))

◦. We must prove that
γ((0, 1)) ⊂ (Nr (γ0))

◦. By Proposition 1.2, we know that d(z ◦ γ)/dt > 0 while,
by Proposition 2.2, we have r ◦ γ < r on (0, 1). We may assume with no loss of
generality the existence of T ∈ (0, 1) such that either z(γ(T ))= 0 or z(γ(T ))= `0.
If the former occurs, the restriction of γ to the subinterval [0, T ] is minimizing in
Tr (γr )∩ {−r 6 z 6 0} among piecewise C1 paths joining p to γ(T ). Besides, the
ball B(γ0(0), r) being strongly convex, there exists a unique minimizing geodesic
τ ∈ [0, 1]→ c(τ )∈M such that c(0)= p, c(1)= γ(T ), c((0, 1])⊂ (B(γ0(0), r))

◦.
By uniqueness and due to (16), these geodesics must coincide: c(τ )≡ γ(τT ). In
particular, we do have γ((0, T ])⊂ (B(γ0(0), r))

◦. Similarly, if the latter occurs, the
restriction of γ to the subinterval [T, 1] is minimizing in Tr (γr )∩{`0 6 z 6 `0+r}
among piecewise C1 paths joining γ(T ) to q . The ball B(γ0(`0), r) being strongly
convex, there exists a unique minimizing geodesic τ ∈ [0, 1] → c(τ ) ∈ M such
that c(0)= γ(T ), c(1)= q and c([0, 1))⊂ (B(γ0(`0), r))◦. Again, these geodesics
must coincide: c(τ ) ≡ γ(τ + (1− τ)T ). In particular, we do have γ([T, 1)) ⊂
(B(γ0(`0), r))◦. Case 1 is settled.

Case 2: z(q)− z(p) < ς and either z(p) < ς or z(q) > `0 − ς . Here, we may
assume that the points p and q lie in the closure of a strongly convex ball B and
argue as in Case 1 of the proof of Theorem 0.2, with Tr (γ0) now replaced by
Nr (γ0). Doing so, the present proof is reduced to ruling out the analogue of (15),
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namely the property

cλ∞(θ)∈
[
∂B(γ0(0), r)∩{z<0}

]
∪
[
∂B(γ0(`0), r)∩{z>`0}

]
for some θ ∈ (0, 1).

This can be done by observing that the geodesic t ∈ [0, 1] → cλ∞(t) ∈ M is
minimizing from p⊥λ∞ to q⊥λ∞ and by relying on the inclusion (16) combined with
the strong convexity of the balls B(γ0(0), r) and B(γ0(`0), r); we leave it as an
exercise.
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