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We obtain upper bounds for the eigenvalues of the Schrödinger operator
L = 1g + q depending on integral quantities of the potential q and a con-
formal invariant called the min-conformal volume. When the Schrödinger
operator L is positive, integral quantities of q appearing in upper bounds
can be replaced by the mean value of the potential q. The upper bounds we
obtain are compatible with the asymptotic behavior of the eigenvalues. We
also obtain upper bounds for the eigenvalues of the weighted Laplacian or
the Bakry–Émery Laplacian1φ=1g+∇gφ·∇g using two approaches: first,
we use the fact that 1φ is unitarily equivalent to a Schrödinger operator
and we get an upper bound in terms of the L2-norm of ∇gφ and the min-
conformal volume; second, we use its variational characterization and we
obtain upper bounds in terms of the L∞-norm of∇gφ and a new conformal
invariant. The second approach leads to a Buser type upper bound and also
gives upper bounds that do not depend on φ when the Bakry–Émery Ricci
curvature is nonnegative.
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1. Introduction and statement of results

We study upper bound estimates for the eigenvalues of Schrödinger operators and
weighted Laplace operators or Bakry–Émery Laplace operators.
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The Schrödinger operator. Let (M, g) be a compact Riemannian manifold of
dimension m and q ∈ C0(M). The eigenvalues of the Schrödinger operator L :=
1g + q acting on functions constitute a nondecreasing, semibounded sequence of
real numbers going to infinity:

λ1(1g + q)≤ λ2(1g + q)≤ · · · ≤ λk(1g + q)≤ · · · ↗∞.

The well-known Weyl law, which describes the asymptotic behavior of the eigen-
values of the Laplacian [Bérard 1986], can be easily extended to the eigenvalues of
Schrödinger operators on compact Riemannian manifolds:

(1) lim
k→∞

λk(1g + q)
(
µg(M)

k

)2/m

= αm,

where αm = 4π2ω
−2/m
m and ωm is the volume of the unit ball in Rm . This says

that the normalized eigenvalues λk(1g+q)(µg(M)/k)2/m asymptotically tend to a
constant depending only on the dimension. However, upper bounds of normalized
eigenvalues in general cannot be independent of geometric invariants and the
potential q; see [Colbois and Dodziuk 1994] or the introduction of [Hassannezhad
2011]. We shall obtain upper bounds for normalized eigenvalues depending on some
geometric invariants and integral quantities of the potential q . These upper bounds
are compatible with the asymptotic behavior in (1); that is, they tend asymptotically
to a constant depending only on the dimension as k goes to infinity.

Numerous articles have studied how the eigenvalues of L can be controlled
in terms of geometric invariants of the manifold and quantities depending on the
potential. From the variational characterization of eigenvalues, it is easy to see that

λ1(1g + q)≤
1

µg(M)

∫
M

q dµg.

For the second eigenvalue λ2(1g + q), El Soufi and Ilias [1992, Theorem 2.2]
obtained an upper bound in terms of the mean value of the potential q and a
conformal invariant:

(2) λ2(1g + q)≤ m
(

Vc([g])
µg(M)

)2/m

+

∫
M q dµg

µg(M)
,

where Vc([g]) is the conformal volume defined by Li and Yau [1982] which only
depends on the conformal class of g, denoted by [g].

For a compact orientable Riemannian surface (6γ , g) of genus γ , as a conse-
quence of inequality (2), they obtained the following inequality, where b c denotes
the floor function:

(3) λ2(1g + q)≤
8π

µg(6γ )

⌊
γ + 3

2

⌋
+

∫
6γ

q dµg

µg(6γ )
.
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For higher eigenvalues of Schrödinger operators, Grigor’yan, Netrusov and Yau
[Grigor’yan et al. 2004] proved a general and abstract result that can be stated
in the case of Schrödinger operators as follows. Given positive constants N and
C0, assume that a compact Riemannian manifold (M, g) has the (2, N )-covering
property (that is, each ball of radius r can be covered by N balls of radius r/2) and
µg(B(x, r))≤ C0r2 for every x ∈ M and every r > 0. Then, for every q ∈ C0(M),
we have (see [Grigor’yan et al. 2004, Theorem 1.2 (1.14)])

(4) λk(1g + q)≤
Ck+ δ−1

∫
M q+ dµg − δ

∫
M q− dµg

µg(M)
,

where δ ∈ (0, 1) is a constant which depends only on N , C > 0 is a constant which
depends on N and C0, and q± =max{| ± q|, 0}.

Moreover, if L is a positive operator, then we have (see [Grigor’yan et al. 2004,
Theorem 5.15])

(5) λk(1g + q)≤
Ck+

∫
M q dµg

εµg(M)
,

where ε ∈ (0, 1) depends only on N and C depends on N and C0.
The above inequalities in dimension two have a special feature as follows. Let

6γ be a compact orientable Riemannian surface of genus γ . Then, for every
Riemannian metric g on 6γ and every q ∈ C0(6γ ), we have (see [Grigor’yan et al.
2004, Theorem 5.4])

λk(1g + q)≤
Q(γ + 1)k+ δ−1

∫
6γ

q+dµg − δ
∫
6γ

q−dµg

µg(6γ )
,

where δ ∈ (0, 1) and Q > 0 are absolute constants.
Inequalities (4) and (5) are not compatible with the asymptotic behavior regarding

the power of k, except in dimension two. Yet, for surfaces, the limit of the above
upper bound for normalized eigenvalues depends on the genus γ as k goes to infinity.
Therefore, it is not compatible with (1).

We obtain upper bounds which generalize and improve the above inequalities
without imposing any condition on the metric and which are compatible with the
asymptotic behavior. Before stating our theorem, we need to recall the definition
of the min-conformal volume. For a compact Riemannian manifold (M, g), its
min-conformal volume is defined as follows (see [Hassannezhad 2011]):

V ([g])= inf{µg0(M) : g0 ∈ [g], Riccig0 ≥−(m− 1)}.

Theorem 1.1. There exist positive constants αm ∈ (0, 1), Bm , and Cm depending
only on m such that, for every compact m-dimensional Riemannian manifold (M, g),
every potential q ∈ C0(M), and every k ∈ N∗, we have
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(6) λk(1g + q)≤
α−1

m
∫

M q+ dµg −αm
∫

M q− dµg

µg(M)

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

In particular, when the potential q is nonnegative, one has

(7) λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

,

where Am = α
−1
m .

We also obtain upper bounds for eigenvalues of positive Schrödinger operators.
Note that the positivity of the Schrödinger operator L =1g + q implies that

∫
M q

is nonnegative, and q here may not be nonnegative. The following upper bound
generalizes inequalities (5) and (7).

Theorem 1.2. There exist constants Am > 1, Bm , and Cm depending only on m
such that if L = 1g + q with q ∈ C0(M) is a positive operator, then, for every
compact m-dimensional Riemannian manifold (Mm, g) and every k ∈N∗, we have

λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

Given the Schrödinger operator L =1g + q, for every ε > 0, the Schrödinger
operator L̃ =1g+q−λ1(L)+ε is positive and λk(L̃)= λk(L)−λ1(L)+ε. When
ε goes to zero, Theorem 1.1 leads to the following.

Corollary 1.3. Under the assumptions of Theorem 1.1, we get

λk(1g + q)≤ Am

∫
M q dµg

µg(M)
+ (1− Am)λ1(1g + q)

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

In the two-dimensional case, for a compact orientable Riemannian surface
(6γ , g) of genus γ , thanks to the uniformization and Gauss–Bonnet theorems,
one has V ([g]) ≤ 4πγ . Therefore, in compact orientable Riemannian surfaces,
one can replace the min-conformal volume by the topological invariant 4πγ in the
above inequalities.

Corollary 1.4. There exist absolute constants a ∈ (0, 1), A, and B such that, for
every compact orientable Riemannian surface (6γ , g) of genus γ , every potential
q ∈ C0(M), and every k ∈ N∗, we have

(8) λk(1g + q)µg(6γ )≤

∫
6γ

(aq+− a−1q−) dµg + Aγ + Bk.
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And if L is a positive operator,

λk(1g + q)µg(6γ )≤ a
∫
6γ

q dµg + Aγ + Bk.

An interesting application of Theorem 1.1 is the case of weighted Laplace
operators or Bakry–Émery Laplace operators.

Bakry–Émery Laplacian. Let (M, g) be a Riemannian manifold and φ ∈ C2(M).
The corresponding weighted Laplace operator 4φ is defined by

1φ =1g +∇gφ · ∇g.

This operator is associated with the quadratic functional
∫

M |∇g f |2e−φ dµg, that is,∫
M
1φ f he−φ dµg =

∫
M
〈∇g f,∇gh〉e−φ dµg.

This operator is an elliptic operator on C∞c (M)⊆ L2(e−φ dµg) and can be extended
to a selfadjoint operator with the weighted measure e−φ dµg. In this sense, it arises
as a generalization of the Laplacian. The weighted Laplace operator 1φ is also
known as the diffusion operator or the Bakry–Émery Laplace operator which is
used to study the diffusion process; see, for instance, the pioneering work of Bakry
and Émery [1985] or [Lott 2007; Lott and Villani 2009]. The triple (M, g, φ) is
called a Bakry–Émery manifold, where φ ∈ C2(M) and (M, g) is a Riemannian
manifold with the weighted measure e−φdµg; see [Lu and Rowlett 2012; Rowlett
2010]. The interplay between the geometry of M and the behavior of φ is mostly
taken into account by means of a new notion of curvature called the Bakry–Émery
Ricci tensor1, which is defined by

Ricciφ = Riccig +Hessφ.

Our aim is to find upper bounds for the eigenvalues of 1φ denoted by λk(1φ) in
terms of the geometry of M and of properties of φ.

Upper bounds for the first eigenvalue λ1(1φ) of complete noncompact Riemann-
ian manifolds have been recently considered in several works; see [Munteanu and
Wang 2012; Setti 1998; Su and Zhang 2012; Wu 2010; 2012]. These upper bounds
depend on the L∞-norm of ∇gφ and a lower bound of the Bakry–Émery Ricci
tensor.

Let (M, g, φ) be a complete noncompact Bakry–Émery manifold of dimension
m with Ricciφ ≥−κ2(m− 1) and |∇gφ| ≤ σ for some constants κ ≥ 0 and σ > 0.
Then we have, by [Su and Zhang 2012, Proposition 2.1] (see also [Munteanu and

1 The Bakry–Émery Ricci tensor Ricciφ is also referred to as the∞-Bakry–Émery Ricci tensor.
We denote Ricciφ and Hessφ by Ricciφ(M, g) and Hessg φ wherever any confusion might occur.
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Wang 2012; Wu 2010; 2012])

(9) λ1(1φ)≤
1
4((m− 1)κ + σ)2.

In particular, if Ricciφ ≥ 0, we have

(10) λ1(1φ)≤
1
4σ

2.

We consider compact Bakry–Émery manifolds and we present two approaches to
obtain upper bounds for the eigenvalues of the Bakry–Émery Laplace operator in
terms of the geometry of M and the properties of φ.

First approach. One can see that 1φ is unitarily equivalent to the Schrödinger
operator L=1g+

1
21gφ+

1
4 |∇gφ|

2; see, for example, [Setti 1998, p. 28]. Therefore,
as a consequence of Theorem 1.2, we obtain an upper bound for λk(1φ) in terms
of the min-conformal volume and the L2-norm of ∇gφ.

Theorem 1.5. There exist constants Am , Bm , and Cm depending on m ∈ N∗, such
that, for every m-dimensional compact Bakry–Émery manifold (M, g, φ), we have

λk(1φ)≤ Am
1

µg(M)
‖∇gφ‖

2
L2(M)+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.

It is worth noticing that in full generality it is not possible to obtain upper bounds
which do not depend on φ; see, for instance, [Su and Zhang 2012, Section 2]. How-
ever, we will see that for compact manifolds with nonnegative Bakry–Émery Ricci
curvature we can find upper bounds which do not depend on φ (see Corollary 1.8).

In the two-dimensional case, as a result of Corollary 1.4, we obtain the following.

Corollary 1.6. There exist absolute constants a ∈ (0, 1), A, and B such that, for
every compact orientable Riemannian surface (6γ , g) of genus γ and every k ∈N∗,

λk(1φ)µg(6γ )≤ a‖∇gφ‖
2
L2(6γ )

+ Aγ + Bk.

Second approach. This approach is based on using the technique introduced in
[Hassannezhad 2011], which was successfully applied for the Laplace operator 1g

on Riemannian manifolds [Hassannezhad 2011, Theorem 1.1]. We obtain upper
bounds for eigenvalues of 1φ in terms of a conformal invariant. We also obtain a
Buser type upper bound for λk(1φ) (see Corollary 1.9).

Definition 1.1. Let (M, g, φ) be a compact Bakry–Émery manifold. We define the
φ-min-conformal volume as

(11) Vφ([g])= inf{µφ(M, g0) : g0 ∈ [g],Ricciφ(M, g0)≥−(m− 1)},

where µφ(M, g0) is the weighted measure2 of M with respect to the metric g0.

2For a Bakry–Émery manifold (M, g, φ), when µφ is the weighted measure with respect to the
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Note that up to dilations3 there is always a Riemannian metric g0 ∈ [g] such that
Ricciφ(M, g0)≥−(m− 1). We are now ready to state our theorem.

Theorem 1.7. There exist positive constants A(m) and B(m) depending only on
m ∈N∗ such that, for every compact Bakry–Émery manifold (M, g, φ) with |∇gφ|≤

σ , for some σ ≥ 0 and for every k ∈ N∗, we have

(12) λk(1φ)≤ A(m)max{σ 2, 1}
(

Vφ([g])
µφ(M)

)2/m

+ B(m)
(

k
µφ(M)

)2/m

.

If a metric g is conformally equivalent to a metric g0 with Ricciφ(M, g0) ≥ 0,
Vφ([g])= 0. Thus an immediate consequence of Theorem 1.7 is the following.

Corollary 1.8. There exists a positive constant A(m) depending only on m ∈ N∗

such that, for every compact Bakry–Émery manifold (M, g, φ) with Vφ([g]) = 0
and for every k ∈ N∗,

(13) λk(1φ)≤ A(m)
(

k
µφ(M)

)2/m

.

The above upper bound is similar to the upper bound for the eigenvalues of the
Laplacian in Riemannian manifolds (M, g) when V ([g])= 0; see [Korevaar 1993].

If Ricciφ(M) ≥ −κ2(m − 1) for some κ ≥ 0, then, for g0 = κ
2g, one has

Ricciφ(M, g0) ≥ −(m − 1) and Vφ([g]) ≤ µφ(M, g0) = κ
mµφ(M, g). Replacing

in inequality (12), we get a Buser type upper bound for the eigenvalues of the
Bakry–Émery Laplacian.

Corollary 1.9 (Buser type upper bound). There are positive constants A(m) and
B(m) depending only on m ∈ N∗ such that, for every compact Bakry–Émery mani-
fold (M, g, φ) with Ricciφ(M) >−κ2(m− 1) and |∇gφ| ≤ σ for some κ ≥ 0 and
σ ≥ 0, and for every k ∈ N∗, we have

λk(1φ)≤ A(m)max{σ 2, 1}κ2
+ B(m)

(
k

µφ(M)

)2/m

.

A weaker version of Corollary 1.9 can be proved directly by the classic idea
used by Buser [1979] and Li and Yau [1980]. We refer the reader to the appendix,
where we give a simple and direct proof.

Remark 1.1. All of the results mentioned above for compact manifolds are also
valid when one considers bounded subdomains of complete manifolds with the
Neumann boundary condition.

metric g, we simply denote the weighted measure of a measurable subset A of M by µφ(A) instead
of µφ(A, g).

3Note that Hessφ and Riccig do not change under dilations. If Ricciφ(M, g)≥−κ2(m− 1)g, for
all α > 0, Ricciφ(M, g0) := Ricciφ(M, αg)= Ricciφ(M, g)≥−κ2(m− 1)g =−(κ2/α)(m− 1)g0.
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2. Preliminaries and technical tools

Basic definitions. A capacitor is a pair of Borel sets (F,G) in a topological space
satisfying F  G.

We say that a metric space (X, d) satisfies the (κ, N ; ρ)-covering property if
each ball of radius 0< r ≤ρ can be covered by N balls of radius r/κ . We sometimes
call this the local covering property when ρ <∞.

For any x ∈ X and 0≤ r ≤ R, we define the annulus A(x, r, R) as

A(x, r, R) := B(x, R) \ B(x, r)= {y ∈ X : r ≤ d(x, y) < R}.

Note that A(x, 0, R) = B(x, R). If F = A(x, r, R) and λ ≥ 1, we define λF :=
A(x, λ−1r, λR). For F ⊆ X and r > 0, we denote by Fr the r -neighborhood of F :

Fr
= {x ∈ X : d(x, F)≤ r}.

Here we state the key method that we use in order to obtain our results. This
method was introduced in [Hassannezhad 2011] and was inspired by two elaborate
constructions given in [Colbois and Maerten 2008; Grigor’yan et al. 2004]. It
leads to the construction of a “nice” family of capacitors, crucial to estimating the
eigenvalues of Schrödinger operators and Bakry–Émery operators via capacities.

Capacity on Riemannian manifolds. For each capacitor (F,G) in a Riemannian
manifold (M, g) of dimension m, we define the capacity and the m-capacity by

(14) capg(F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

2 dµg and cap(m)
[g] (F,G)= inf

ϕ∈T

∫
M
|∇gϕ|

m dµg,

respectively, where T=T(F,G) is the set of all functions ϕ ∈ C∞0 (M) such that
suppϕ ⊂ G, 0 ≤ φ ≤ 1, and ϕ ≡ 1 in a neighborhood of F . If T(F,G) is empty,
capg(F,G)= cap(m)

[g] (F,G)=+∞.

Proposition 2.1 ([Hassannezhad 2012, Theorem 1.2.1]; see also [Hassannezhad
2011]). Let (X, d, µ) be a metric measure space with a nonatomic Borel measure
µ satisfying the (2, N ; ρ)-covering property. Then, for every n ∈ N∗, there exists a
family of capacitors A= {(Fi ,Gi )}

n
i=1 with the following properties:

(i) µ(Fi )≥ ν := µ(X)/(8c2n), where c is a constant depending only on N.

(ii) The Gi are mutually disjoint.

(iii) The family A is such that either

(a) all the Fi are annuli with outer radii smaller than ρ and Gi =
2Fi , or

(b) all the Fi are domains in X and Gi = Fr0
i with r0 =

1
1600ρ.

As a consequence of this proposition, we have:
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Lemma 2.2. Let (Mm, g, µ) be a compact Riemannian manifold with a nonatomic
Borel measure µ. Then there exist positive constants c(m) ∈ (0, 1) and α(m)
depending only on the dimension such that, for every k ∈N∗, there exists a family
{(Fi ,Gi )}

k
i=1 of mutually disjoint capacitors with the following properties:

(I) µ(Fi ) > c(m)
µ(M)

k
.

(II) capg(Fi ,Gi )≤
µg(M)

k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

k
µg(M)

)2/m]
, with r0=

1
1600 .

Proof of Lemma 2.2. Take the metric measure space (M, dg0, µ), where g0 ∈ [g]
with Riccig0 ≥−(m−1) and dg0 is the distance associated to the Riemannian metric
g0. It is easy to verify that (M, dg0, µ) has the (2, N ; 1)-covering property, where
N is a constant depending only on the dimension [Hassannezhad 2011]. Therefore,
Proposition 2.1 implies that for every k ∈N∗ there is a family of 3k mutually disjoint
capacitors {(Fi ,Gi )}

3k
i=1 satisfying the following properties (see [Grigor’yan et al.

2004, Proposition 3.1] for more justification):

• µ(Fi ) > c(m)µ(M)/k, where c(m) ∈ (0, 1) is a positive constant depending
only on the dimension.

• Either

(a) all the Fi are annuli with outer radii smaller than 1 and cap(m)
[g] (Fi ,

2Fi )≤

Qm , where the constant Qm depends only on the dimension, and Gi =
2Fi ;

or
(b) all the Fi are domains in M and Gi = Fr0

i , where r0 =
1

1600 .

Hence, the family of {(Fi ,Gi )}
3k
i=1 has property (I). We now show that at least k

of the capacitors satisfy property (II). We first find an upper bound for the m-capacity
cap(m)
[g] (Fi ,Gi ). If all the Fi are annuli, we already have an estimate by property (a).

If the Fi are domains, one can define a family of functions ϕi ∈T(Fi ,Gi ), 1≤ i ≤3k,
such that |∇g0ϕi | ≤ 1/r0. Then

cap(m)
[g] (Fi ,Gi )≤

∫
M
|∇g0ϕi |

m dµg0 ≤
1

rm
0
µg0(Gi ).

Since G1, . . . ,G3k are mutually disjoint, there exist at least 2k of them so that
µg0(Gi ) ≤ µg0(M)/k. Similarly, there exist at least 2k sets (not necessarily the
same ones) such that µg(Gi )≤ µg(M)/k. Therefore, up to reordering, we assume
that the first k of them (that is, G1, . . . ,Gk) satisfy the inequalities

µg(Gi )≤ µg(M)/k and µg0(Gi )≤ µg0(M)/k.
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Hence, in general, there exist k capacitors (Fi ,Gi ), 1≤ i ≤ k, with

cap(m)
[g] (Fi ,Gi )≤ Qm +

1
rm

0

µg0(M)
k

.

The left side of this inequality is a conformal invariant. Now, taking the infimum
over g0 ∈ [g] with Riccig0 ≥−(m− 1), we get

cap(m)
[g] (Fi ,Gi )≤ Qm +

1
rm

0

V ([g])
k

.

Now, for every ε > 0, we consider plateau functions { fi }
k
i=1, fi ∈T(Fi ,Gi ), with∫

M
|∇g fi |

m dµg ≤ cap(m)
[g] (Fi ,Gi )+ ε.

Therefore,

(15) capg(Fi ,Gi )≤

∫
M
|∇g fi |

2dµg ≤

(∫
M
|∇g fi |

mdµg

)2/m(∫
M

1supp fi dµg

)1−2/m

≤
(
cap(m)
[g] (Fi ,Gi )+ ε

)2/m
µg(Gi )

1−2/m

≤

(
Qm +

1
rm

0

V ([g])
k
+ ε

)2/m

µg(Gi )
1−2/m

≤

[
Q2/m

m +
1
r2

0

(
V ([g])

k

)2/m

+ ε2/m
](
µg(M)

k

)1−2/m

.

where the last inequality is due to the well-known fact that

(a+ b)s ≤ as
+ bs

when a, b are nonnegative real numbers and 0< s ≤ 1. Letting ε tend to zero, we
obtain property (II). This completes the proof. �

Capacity on Bakry–Émery manifolds. In an analogous way, we define the capacity
in a Bakry–Émery manifold (M, g, φ). For each capacitor (F,G) in a Bakry–Émery
manifold (M, g, φ) of dimension m, the capacity and the m-capacity are defined as

(16) capφ(F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

2 dµφ and cap(m)φ (F,G)= inf
ϕ∈T

∫
M
|∇gϕ|

m dµφ,

respectively, where T=T(F,G) is the set of all functions ϕ ∈ C∞0 (M) such that
suppϕ ⊂ G, 0 ≤ φ ≤ 1 and ϕ ≡ 1 in a neighborhood of F . If T(F,G) is empty,
capφ(F,G)= cap(m)φ (F,G)=+∞.

We prove a similar lemma below (Lemma 2.2). We first show that every compact
Bakry–Émery manifold satisfies the assumptions of Proposition 2.1. Thanks to a
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volume comparison theorem for Bakry–Émery manifolds, which we quote next, we
can show that such have the local covering property (see Lemma 2.4).

Theorem 2.3 (volume comparison theorem [Wei and Wylie 2009]). Let (M, g, φ)
be a compact Bakry–Émery manifold with Ricciφ ≥ α(m− 1). If ∂rφ ≥−σ with
respect to geodesic polar coordinates centered at x , then, for every 0< r ≤ R, we
have (assume R ≤ π/2

√
α if α > 0)

(17)
µφ(B(x, R))
µφ(B(x, r))

≤ eσ R v(m, R, α)
v(m, r, α)

,

and, in particular, letting r tend to zero yields

(18) µφ(B(x, R))≤ eσ Rv(m, R, α),

where v(m, r, α) is the volume of a ball of radius r in the simply connected space
form of constant sectional curvature α.

Lemma 2.4. Let (M, g, φ) be a compact Bakry–Émery manifold with Ricciφ ≥
−κ2(m − 1) and |∇gφ| ≤ σ for some κ ≥ 0 and σ ≥ 0. There exist constants
N (m)∈N∗ and ξ = ξ(σ, κ)> 0 such that (M, g, φ) satisfies the (2, N ; ξ)-covering
property. Moreover, there exists a positive constant C(m) such that, for every 0≤
r < R ≤ ξ and x ∈ M , the annulus A= A(x, r, R) satisfies cap(m)φ (A, 2A))≤C(m).

Proof. Take ξ = min{1/σ, 1/κ}. (Take ξ =∞ if σ = κ = 0.) We first show that
(M, µφ) has the doubling property for r < 4ξ , that is,

µφ(B(x, r))≤ cµφ(B(x, r/2)), 0< r < 4ξ,

for some positive constant c. From this, it is easy to deduce that (M, µφ) has
the (2, N ; ξ)-covering property, for example with N = c4. To prove the doubling
property, according to inequality (17) we have

µφ(B(x, r))
µφ(B(x, r/2))

≤ eσr v(m, r,−κ2)

v(m, r/2,−κ2)
= eσr v(m, κr,−1)

v(m, κr/2,−1)
.

Take r̃ := κr . Then, for 0< r < 4ξ = 4 min{1/σ, 1/κ}, we have

eσr v(m, κr,−1)
v(m, κr/2,−1)

≤ e4 v(m, r̃ ,−1)
v(m, r̃/2,−1)

≤ c(m),

where

c(m) := sup
r̃∈(0,4)

e4 v(m, r̃ ,−1)
v(m, r̃/2,−1)

.

Thus
µφ(B(x, r))
µφ(B(x, r/2))

≤ c(m) for every 0< r < ξ.

Therefore, (M, g, φ) has the (2, N ; ξ)-covering property for N = c4(m).
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To estimate the capacity of an annulus, we now follow the same argument as
in [Hassannezhad 2011, p. 3430]. Let A = A(x, r, R) and let f ∈ T(A, 2A) be
given by

(19) f (y)=


1 if y ∈ A(x, r, R),

2dg0(y, B(x, r/2))/r if y ∈ A(x, r/2, r) and r 6= 0,

1− dg0(y, B(x, R))/R if y ∈ A(x, R, 2R),

0 if y ∈ M \ A(x, r/2, 2R).

We have

|∇g0 f | ≤
{

2/r on B(x, r) \ B(x, r/2),

1/R on B(x, 2R) \ B(x, R).

Therefore,

cap(m)φ (A, 2A)≤
∫

M
|∇g f |mdµφ ≤

(2
r

)m
µφ(A(x,r/2,r))+

( 1
R

)m
µφ(A(x,R,2R))

≤

(2
r

)m
µφ(B(x, r))+

( 1
R

)m
µφ(B(x, 2R)).

Having inequality (18), we get

cap(m)φ (A, 2A)≤
(2

r

)m
eσrv(m, r,−κ2)+

( 1
R

)m
e2σ Rv(m, 2R,−κ2)

=

( 2
κr

)m
eσrv(m, κr,−1)+

( 1
κR

)m
e2σ Rv(m, 2κR,−1).

Take r̃ := κr and R̃ := κR. Then, for every 0< r < R ≤ 2ξ = 2 min{1/σ, 1/κ}, we
get

(20) cap(m)φ (A, 2A)≤
(

2
r̃

)m

e2v(m, r̃ ,−1)+
(

1

R̃

)m

e4v(m,2R̃,−1).

Setting C(m) to the supremum of the expression on the right side over r̃ , R̃ ∈ (0, 2)
completes the proof. �

Lemma 2.5. Let (Mm, g, φ) be a compact Bakry–Émery manifold with |∇gφ| ≤ σ

for some σ ≥ 0. There exist positive constants c(m) ∈ (0, 1) and α(m) depending
only on the dimension such that, for every k ∈N∗, there exists a family {(Fi ,Gi )}

k
i=1

of capacitors with the following properties:

(I) µφ(Fi ) > c(m)
µφ(M)

k
,

(II) capφ(Fi ,Gi ) ≤
µφ(M)

k

[
1
r2

0

(
Vφ([g])
µφ(M)

)2/m

+ α(m)
(

k
µφ(M)

)2/m ]
, where

1/r0 = 1600 max{σ, 1}.
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Proof. We consider the Bakry–Émery manifold (M, g, φ) as the metric measure
space (M, dg0, µφ) where g0 ∈ [g] with Ricciφ(M, g0)≥−(m− 1) and µφ is the
weighted measure with respect to the metric g. According to Lemma 2.4, this space
has the (2, N , ξ)-covering property with ξ =min{1/σ, 1}. Having Proposition 2.1
and Lemma 2.4, and following steps analogous to those in Lemma 2.2 we see,
for every k ∈ N∗, there exists a family of k mutually disjoint capacitors {Fi ,Gi }

satisfying the following properties:

• µφ(Fi )≥ c(m)µφ(M)/k, where c(m)∈ (0, 1) is a positive constant depending
only on the dimension, and µφ(Gi )≤ µφ(M)/k. Either

(a) all the Fi are annuli with outer radii smaller than ξ , Gi =
2Fi , and

cap(m)φ (Fi ,Gi )≤ C(m),

where C(m) is the constant defined in (20);
or
(b) all the Fi are domains in M , Gi = Fr0

i is the r0-neighborhood of Fi , and
cap(m)φ (Fi ,Gi )≤ r−2

0 Vφ([g])/k, with r0 = ξ/1600.

Hence, cap(m)φ (Fi ,Gi )≤C(m)+r−2
0 Vφ([g])/k. Now, for every ε > 0, we consider

a family of functions { fi }
k
i=1, fi ∈ T(Fi ,Gi ) such that∫

M
|∇g fi |

me−φ dµg ≤ cap(m)φ (Fi ,Gi )+ ε.

We repeat the same argument as before.

capφ(Fi ,Gi )≤

∫
M
|∇g fi |

2e−φdµg

≤

(∫
M
|∇g fi |

me−φdµg

)2/m(∫
M

1supp fi
e−φdµg

)1−2/m

≤

[
C(m)2/m

+
1
r2

0

(
Vφ([g])

k

)2/m

+ ε2/m
](
µφ(M)

k

)1−2/m

.

Having 1/r0 = 1600/ξ = 1600 max{σ, 1} and letting ε tend to zero, we obtain
property (II). This completes the proof. �

3. Eigenvalues of Schrödinger operators

In this section, we prove Theorems 1.1 and 1.2. The idea of the proof is to construct
a suitable family of test functions to be used in the variational characterization of
the eigenvalues. Due to the min-max Theorem, we have the following variational
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characterization for the eigenvalues of the Schrödinger operator L =1g + q:

λk(1g + q)=min
Vk

max
06= f ∈Vk

∫
M |∇g f |2 dµg +

∫
M f 2q dµg∫

M f 2 dµg
,

where Vk is a k-dimensional linear subspace of H 1(M) and µg is the Riemannian
measure corresponding to the metric g.

According to this variational formula, for every family { fi }
k
1=1 of disjointly

supported test functions, one has

(21) λk(1g + q)≤ max
i∈{1,...,k}

∫
M |∇g fi |

2 dµg +
∫

M f 2
i q dµg∫

M f 2
i dµg

.

The potential q ∈C0(M) is a signed function (notice that we can assume q ∈ L1(M)
as well). We define a signed measure σ associated to the potential q by

σ(A)=
∫

A
q dµg for every measurable subset A of X.

For any signed measure ν we write ν = ν+− ν−, where ν+ and ν− are the positive
and negative parts of ν, respectively. For any signed measure ν and 0≤ δ ≤ 1 we
define a new signed measure νδ as νδ := δν+− ν−.

Let µ and ν be two signed measures on M . Then, according to [Grigor’yan et al.
2004, Lemma 4.3], we have

(22) (µ+ ν)δ ≥ µδ + νδ.

Proof of Theorem 1.1. For a real number λ ∈ R define µλ := (λµg − σ)
+ as a

nonatomic Borel measure on M . We apply Lemma 2.2 to (M, g, µλ). Thus, for
every k ∈ N∗ and every λ ∈ R, there exists a family {(Fi ,Gi )}

2k
i=1 of 2k capacitors

satisfying properties (I) and (II) of Lemma 2.2.
From now on, we take λ := λk = λk(L). Property (I) yields

(λkµg − σ)
+(Fi )≥ c(m)

(λkµg − σ)
+(M)

2k
.

The measure (λkµg − σ)
− is also nonatomic. Since Gi are mutually disjoint, up to

reordering, the first k of them satisfy

(λkµg − σ)
−(Gi )≤

(λkµg − σ)
−(M)

k
, i ∈ {1, . . . , k}.

Therefore

(23) (λkµg − σ)
−(Gi )− (λkµg − σ)

+(Fi )

≤
(λkµg − σ)

−(M)
k

− c(m)
(λkµg − σ)

+(M)
2k

.
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For every ε > 0 and every 1≤ i ≤ k, we choose fi ∈ T(Fi ,Gi ) such that

(24)
∫

M
|∇g fi |

2 dµg ≤ capg(Fi ,Gi )+ ε.

Inequality (21) implies that there exists i ∈ {1, . . . , k} so that

λk

∫
M

f 2
i dµg ≤

∫
M
|∇g fi |

2 dµg +

∫
M

f 2
i q dµg.

Hence, having Lemma 2.2 and inequality (23), we get

(25) 0≤
∫

M
|∇g fi |

2 dµg −

∫
M

f 2
i (λk − q) dµg

≤ capg(Fi ,Gi )+ ε−

∫
M

f 2
i (λk − q) dµg

≤
µg(M)

2k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m ]
+ ε

+

∫
M

f 2
i (λk − q)− dµg −

∫
M

f 2
i (λk − q)+ dµg

≤
µg(M)

2k

[
1
r2

0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m ]
+ ε

+
(λkµg − σ)

−(M)
k

− c(m)
(λkµg − σ)

+(M)
2k

.

We now estimate the last two terms of this inequality considering two alternatives.

Case 1. If λk = λk(L) is positive, then, applying (22) for the measure λkµg and
signed measure −σ with δ = c(m)/2, we get

(26)
c(m)

2
(λkµg − σ)

+(M)− (λkµg − σ)
−(M)

≥
c(m)

2
σ−(M)− σ+(M)+

c(m)
2
λkµg(M).

Substituting (26) in (25) and letting ε tend to zero gives

(27) λk ≤
(2/c(m))σ+(M)− σ−(M)

µg(M)

+
1

c(m)r2
0

(
V ([g])
µg(M)

)2/m

+
α(m)
c(m)

(
2k

µg(M)

)2/m

.

Case 2. If λk = λk(L) is nonpositive, applying (22) for the signed measures λkµg

and −σ with δ = c(m)/2 implies

c(m)
2
(λkµg − σ)

+(M)− (λkµg − σ)
−(M)≥

c(m)
2
σ−(M)− σ+(M)+ λkµg(M).
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Substituting this in (25) and letting ε go to zero gives

(28) λk ≤
σ+(M)− (c(m)/2)σ−(M)

µg(M)
+

1
2r2

0

(
V ([g])
µg(M)

)2/m

+
α(m)

2

(
2k

µg(M)

)2/m

.

Therefore, λk(L) is smaller than the sum of the right sides of inequalities (27) and
(28). We finally obtain inequality (6) with, for example, αm = c(m)/4. �

Proof of Theorem 1.2. We partly follow the spirit of’ the proof of [Grigor’yan et al.
2004, Theorem 5.15]. Take the metric measure space (M, g, µg). By Lemma 2.2,
for every k ∈ N ∗ there is a family of 2k disjoint capacitors {(Fi ,Gi )}

2k
i=1 that satisfies

properties (I) and (II) of Lemma 2.2. For every ε > 0, let { fi }
2k
i=1 be a family of

test functions with 2 fi ∈ T(Fi ,Gi ) and 4
∫

M |∇g fi |
2 dµg ≤ capg(Fi ,Gi )+ ε. We

claim that this family satisfies the following property:

(29)
2k∑

i=1

∫
M

f 2
i q dµg ≤

2k∑
i=1

∫
M
|∇g fi |

2 dµg +

∫
M

q dµg.

If we have inequality (29),

(30)
2k∑

i=1

∫
M
(|∇g fi |

2
+ f 2

i q) dµg ≤ 2
2k∑

i=1

∫
M
|∇g fi |

2 dµg +

∫
M

q dµg

≤ k max
i

capg(Fi ,Gi )+ kε+
∫

M
q dµg.

By the assumption,
∫

M(|∇g fi |
2
+ f 2

i q) dµg is positive for each 1≤ i≤2k. Therefore,
at least k of them (up to reordering we assume that it’s the first k) satisfy the
inequality

(31)
∫

M
(|∇g fi |

2
+ f 2

i q) dµg ≤max
i

capg(Fi ,Gi )+ ε+

∫
M q dµg

k
.

Inequality (31), together with the bounds of capg(Fi ,Gi ) and µg(Fi ) given in
Lemma 2.2 and properties (I) and (II), leads to

λk(L)≤max
i

∫
M |∇g fi |

2dµg+
∫

M f 2
i q dµg∫

M f 2
i dµg

≤
maxi capg(Fi ,Gi )+ε+(1/k)

∫
M q dµg

µg(Fi )

≤
1

c(m)r2
0

(
V ([g])
µg(M)

)2/m

+α(m)
(

2k
µg(M)

)2/m

+
2kε

c(m)µg(M)
+

2
∫

M q dµg

c(m)µg(M)
.
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Hence we get the desired inequality as ε tends to zero. It remains to prove inequality
(29) which is proved in [Grigor’yan et al. 2004, Section 5]; however, for the reader’s
convenience we repeat the proof. We define the function h by the identity

(32)
2k∑

i=1

f 2
i + h2

= 1.

Since f1, . . . , f2k are disjointly supported and 0 ≤ fi ≤ 1/2, h ≥ 1/2. We now
estimate the left side of inequality (29).

(33)
∫

M

( 2k∑
i=1

f 2
i + h2

− h2
)

q dµg =

∫
M

q dµg −

∫
M

h2q dµg

≤

∫
M

q dµg +

∫
M
|∇h|2 dµg,

where the last inequality comes from the fact that the Schrödinger operator L is
positive. Identity (32) implies

−2h∇gh =−∇gh2
=

2k∑
i=1

∇g f 2
i = 2

2k∑
i=1

fi∇g fi .

Therefore,

(34) |∇gh|2 ≤ |2h∇gh|2 =
2k∑

i=1

|∇g f 2
i |

2
= 4

2k∑
i=1

| fi∇g fi |
2
≤

2k∑
i=1

|∇g fi |
2.

Combining inequalities (33) and (34) we get inequality (29). �

4. Eigenvalues of Bakry–Émery Laplace operators

In this section we consider eigenvalues of the Bakry–Émery Laplace operator 1φ
on a Bakry–Émery manifold (M, g, φ), where M is a compact m-dimensional
Riemannian manifold and φ ∈ C2(M). We denote the weighted measure on M by
µφ with

µφ(A)=
∫

A
e−φ dµg for every Borel subset A of M.

Proof of Theorem 1.5. As we mentioned in the introduction, one can see that
1φ = 1g +∇gφ · ∇g is unitarily equivalent to the positive Schrödinger operator
L =1g +

1
21gφ+

1
4 |∇gφ|

2. Therefore, Theorem 1.2 yields

λk(1φ)≤ Am
1

µg(M)

∫
M

( 1
21gφ+

1
4 |∇gφ|

2) dµg

+ Bm

(
V ([g])
µg(M)

)2/m

+Cm

(
k

µg(M)

)2/m

.
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Now Stokes’ theorem implies that
∫

M 1gφ dµg = 0. This gives the result. �

For the proof of Theorem 1.7, we use the characteristic variational formula for
the Bakry–Émery Laplacian; see for example [Lu and Rowlett 2012, Proposition 1;
Rowlett 2010, Proposition 4].

(35) λk(1φ)= inf
Vk

sup
f ∈Vk

∫
M |∇g f |2e−φ dµg∫

M f 2e−φ dµg
,

where Vk is a k-dimensional linear subspace of H 1(M, µφ).

Proof of Theorem 1.7. According to Lemma 2.5, for k ∈ N∗ we have a family of k
capacitors satisfying properties (I) and (II). For every ε > 0, take fi ∈ T(Fi ,Gi ),
1≤ i ≤ k, so that ∫

M
|∇g fi |

2e−φdµg ≤ capφ(Fi ,Gi )+ ε.

Hence, the characteristic variational formula (35) gives

λk(1φ)≤max
i

∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤max

i

capφ(Fi ,Gi )+ ε

µφ(Fi )
.

Having the properties (I) and (II), we get

λk(1φ)≤ A(m)max{σ 2, 1}
(

Vφ([g])
µφ(M)

)2/m

+ B(m)
(

k
µφ(M)

)2/m

+
kε

c(m)µφ(M)
.

Letting ε go to zero, we get the desired inequality. �

Appendix: Buser type upper bound on Bakry–Émery manifolds

Here, we present a direct and simple proof of a weaker version of Corollary 1.9. The
idea behind this proof was used by Buser [1979, Satz 7], Cheng [1975], and Li and
Yau [1980] in the case of the Laplace–Beltrami operator. It is based on constructing
a family of balls as capacitors which will be the support of test functions. We can
successfully apply this idea in the case of the Bakry–Émery Laplace operator.

Theorem A.1 (Buser type upper bound). Let (M, g, φ) be a compact Bakry–Émery
manifold with Ricciφ(M) >−κ2(m− 1) and |∇gφ| ≤ σ for some κ ≥ 0 and σ ≥ 0.
There are positive constants A(m) and B(m) such that, for every k ∈ N∗,

λk(1φ)≤ A(m)max{σ, κ}2+ B(m)
(

k
µφ(M)

)2/m

.

To see that the above theorem is weaker than Corollary 1.9, consider the case
where Ricciφ(M, g) is nonnegative. Indeed, the upper bound in Theorem A.1 still
depends on σ while Corollary 1.9 provides an upper bound which depends only on
the dimension.
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Proof. Since Ricciφ(M) > −κ2(m − 1) and |∇gφ| ≤ σ , the comparison theorem
gives us the following inequalities for every 0 < r ≤ ξ = min{1/σ, 1/κ} (with
ξ =∞ if σ = κ = 0):

µφ(B(x, r))
µφ(B(x, r/2))

≤ eσr v(m, r,−κ2)

v(m, r/2,−κ2)
≤ sup

r∈(0,ξ)
eσr v(m, r,−κ2)

v(m, r/2,−κ2)
=: c1(m)

and

(36) µφ(B(x, r))≤ eσrv(m, r,−κ2)≤ sup
s∈(0,ξ)

eσ sv(m, s,−κ2)rm
=: c2(m)rm .

Given k ∈ N∗, let ρ(k) be the positive number defined by

ρ(k)= sup{r : there exist p1, . . . , pk ∈ M with dg(pi , p j ) > r for all i 6= j}.

We consider two cases.

Case 1. Let ρ(k) ≥ ξ . For every r < ξ , there are k points p1, . . . , pk with
B(pi , r/2) cap B(p j , r/2)=∅ for all i 6= j . For each i ∈ {1, . . . , k}, we consider
a plateau function fi ∈ T(B(pi , r/4), B(pi , r/2)), 1 ≤ i ≤ k, defined as in (19).
Then, for every 1≤ i ≤ k and every r < ξ ,∫

M |∇g fi |
2e−φ dµg∫

M f 2
i e−φ dµg

≤
16
r2

µφ(B(pi , r/2))
µφ(B(pi , r/4))

≤ c1(m)
16
r2 .

Therefore, letting r tend to ξ , one has∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ c1(m)

16
ξ 2 ≤ A(m)max{σ, κ}2.

Case 2. Let ρ(k) < ξ . Take r < ρ(k) very close to ρ(k). As in Case 1, there are k
points p1, . . . , pk with B(pi , r/2) cap B(p j , r/2)=∅ for all i 6= j . Repeating the
same argument, we get, for every 1≤ i ≤ k,∫

M |∇g fi |
2e−φ dµg∫

M f 2
i e−φ dµg

≤ c1(m)
16
r2 .

Therefore, for every 1≤ i ≤ k,∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ c1(m)

16
ρ(k)2

.

We now estimate ρ(k). Let ρ(k) < s < ξ and n be the maximal number of points
q1, . . . , qn ∈ M so that d(qi , q j ) > s for all i 6= j . Of course n ≤ k and because
of the maximality of n, the balls {B(qi , s)}ni=1 cover M . Hence, according to
inequality (36),
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µφ(M)≤
n∑

i=1

µφ(B(qi , s))≤ nc2(m)sm
≤ kc2(m)sm .

Thus, letting s tend to ρ(k), we get

1
ρ(k)2

≤ c2(m)2/m
(

k
µφ(M)

)2/m

.

Therefore, ∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ 16c1(m)c2(m)2/m

(
k

µφ(M)

)2/m

.

In conclusion, we obtain

λk(1φ)≤max
i

∫
M |∇g fi |

2e−φ dµg∫
M f 2

i e−φ dµg
≤ A(m)max{σ, κ}2+B(m)

(
k

µφ(M)

)2/m

. �
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