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ON NONLINEAR NONHOMOGENEOUS RESONANT
DIRICHLET EQUATIONS

NIKOLAOS S. PAPAGEORGIOU AND GEORGE SMYRLIS

We consider a ( p, 2)-equation with a Carathéodory reaction f (z, x) which
is resonant at ±∞ and has constant sign, z-dependent zeros. Using vari-
ational methods, together with truncation and comparison techniques and
Morse theory, we establish the existence of five nontrivial smooth solutions
(four of constant sign and the fifth nodal). If the reaction f (z, x) is C1 in
x ∈ R, then we produce a second nodal solution for a total of six nontrivial
smooth solutions.

1. Introduction

Let �⊆ RN be a bounded domain with a C2-boundary ∂�. In this paper we study
the nonlinear Dirichlet problem

(1) −1pu(z)−1u(z)= f (z, u(z)) in �, u|∂� = 0, 2< p.

Here 1p denotes the p-Laplacian differential operator defined by

1pu(z)= div(‖Du(z)‖p−2 Du(z)) for all u ∈W 1,p
0 (�).

Problem (1) is important in quantum physics in connection with Derrick’s model
[Derrick 1964] for the existence of solitons, which was investigated in more detail
by Benci, D’Avenia, Fortunato, and Pisani [Benci et al. 2000]. Recently, such
equations attracted the interest of people working on nonlinear partial differential
equations and some existence and multiplicity results were proved in [Cingolani
and Degiovanni 2005; Cingolani and Vannella 2003; Sun 2012]. All consider
nonresonant equations. In contrast, in this work we deal with the resonant case.
More precisely, we assume that, asymptotically at ±∞, we have resonance with
respect to the first eigenvalue of (−1p,W 1,p

0 (�)). In problem (1) the reaction
f (z, x) is a Carathéodory function (i.e., for all x ∈ R, z→ f (z, x) is measurable,
and, for a.a. z ∈�, x→ f (z, x) is continuous) and has positive and negative zeros
which in general depend on z ∈�. Problems driven by the p-Laplacian, and with a
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reaction that has zeros, were studied by Bartsch, Liu, and Weth [Bartsch et al. 2005]
(they assume that the zeros are constant) and by Iturriaga, Massa, Sánchez, and
Ubilla [Iturriaga et al. 2010] (they have variable zeros). In both works the reaction
f (z, · ) is (p− 1)-superlinear.

Here, we prove the existence of at least five nontrivial smooth solutions and
provide sign information for all of them (two are positive, two are negative and
the fifth is nodal). Moreover, by strengthening the regularity of f (z, · ) (namely,
assuming that f (z, · ) ∈ C1(R)), we produce a second nodal solution for a total of
six nontrivial smooth solutions, all with precise sign information.

Our approach is variational based on the critical point theory, coupled with
suitable truncation and comparison techniques and with Morse theory (critical
groups). In the next section, for the convenience of the reader, we recall the main
mathematical tools that we will use in this work.

2. Mathematical background

Let X be a Banach space. By X∗ we denote the topological dual of X and by 〈 · , · 〉
the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies
the Cerami condition if the following is true:

C-condition. Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded
and

(2) (1+‖xn‖)ϕ
′(xn)→ 0 in X∗ as n→∞

admits a strongly convergent subsequence.

This compactness-type condition is in general weaker than the usual Palais–Smale
condition (“PS-condition” for short). However, it suffices to have a deformation
theorem and from it derive the minimax theory of certain critical values of ϕ (see,
for example, [Gasiński and Papageorgiou 2006]). In particular, we can state the
following theorem, known in the literature as the mountain pass theorem [ibid.,
p. 648].

Theorem 1. If ϕ ∈C1(X) satisfies the C-condition, x0, x1∈ X , ρ >0, ‖x0−x1‖>ρ,

max{ϕ(x0), ϕ(x1)}< inf [ϕ(x) : ‖x − x0‖ = ρ] = ηρ

and

c = inf
γ∈0

max
0≤t≤1

ϕ(γ (t)), where 0 = {γ ∈ C([0, 1], X) : γ (0)= x0, γ (1)= x1},

then c ≥ ηρ and c is a critical value of ϕ.
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In the analysis of problem (1), in addition to the Sobolev spaces

W 1,p
0 (�), H 1

0 (�),

we will also use the Banach space

C1
0(�)= {u ∈ C1(�) : u|∂� = 0}.

This is an ordered Banach space with positive cone

C+ = {u ∈ C1
0(�) : u(z)≥ 0 for all z ∈�}.

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 for all z ∈�,
∂u
∂n
(z) < 0 for all z ∈ ∂�

}
(here n( · ) denotes the outward unit normal on ∂�).

Let f0 :�×R→R be a Carathéodory function with subcritical growth in x ∈R;
i.e.,

| f0(z, x)| ≤ â(z)+ ĉ|x |r−1 for a.a. z ∈�, all x ∈ R,

with â ∈ L∞(�)+, ĉ > 0, and

1< r < p∗ =


N p

N − p
if p < N ,

+∞ if p ≥ N .

We set F0(z, x)=
∫ x

0 f0(z, s) ds and consider the C1-functional ϕ0 :W
1,p
0 (�)→

R defined by

ϕ0(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F0(z, u(z)) dz for all u ∈W 1,p
0 (�).

The next theorem is a particular case of a more general result of [Gasiński and
Papageorgiou 2012].

Theorem 2. If u0 ∈ W 1,p
0 (�) is a local C1

0(�)-minimizer of ϕ0, i.e., there exists
ρ0 > 0 such that

ϕ0(u0)≤ ϕ0(u0+ h) for all h ∈ C1
0(�) with ‖h‖C1

0 (�)
≤ ρ0,

then u0 ∈ C1,α(�) for some α ∈ (0, 1) and u0 is also a local W 1,p
0 (�)-minimizer

of ϕ0; i.e., there exists ρ1 > 0 such that

ϕ0(u0)≤ ϕ0(u0+ h) for all h ∈W 1,p
0 (�) with ‖h‖ ≤ ρ1.
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Remark. We should mention that the first such result was proved by Brézis and
Nirenberg [1993] and was later extended by García Azorero, Peral Alonso, and
Manfredi [García Azorero et al. 2000].

Let h, ĥ ∈ L∞(�). We write h ≺ ĥ if, for every compact K ⊆ �, we can find
ε > 0 such that

h(z)+ ε ≤ ĥ(z) for a.a. z ∈ K .

Clearly, if h, ĥ∈C(�) and h(z)< ĥ(z) for all z∈�, then h≺ ĥ. A straightforward
modification of the proof of Proposition 2.6 of [Arcoya and Ruiz 2006] in order
to accommodate the extra linear term −1u gives the following strong comparison
principle.

Proposition 3. If ξ ≥ 0, h, ĥ ∈ L∞(�), h ≺ ĥ, u, v ∈ C1
0(�) are solutions of

−1pu(z)−1u(z)+ ξ |u(z)|p−2u(z)= h(z),

−1pv(z)−1v(z)+ ξ |v(z)|p−2v(z)= ĥ(z) in �,

and v ∈ int C+, then v− u ∈ int C+.

Proof. We follow [Arcoya and Ruiz 2006] (see Proposition 2.6).
By nonlinear regularity, u, v ∈ C1,β(�) (0< β < 1).
We have

Ap(u)+ A(u)+ ξ |u|p−2u = h ≤ ĥ = Ap(v)+ A(v)+ ξv p−1 in W−1,p′(�).

Acting with (u− v)+ ∈W 1,p
0 (�), we obtain〈

Ap(u)− Ap(v), (u− v)+
〉
+
〈
A(u)− A(v), (u− v)+

〉
+

∫
�

ξ(|u|p−2u− v p−1)(u− v)+ dz ≤ 0,

which implies that ‖D(u− v)+‖22 ≤ 0, since Ap is monotone; hence u ≤ v.
First we show that u(z)≤ v(z) for all z ∈�. For this purpose, we introduce

D0 = {z ∈� : u(z)= v(z)} and D1 = {z ∈� : Du(z)= Dv(z)= 0}.

We show that D0⊆ D1. So, let z0 ∈ D0. Since u≤ v, the function z 7→ (u−v)(z)
attains its maximum at z0 ∈ D0 and so we have Du(z0)= Dv(z0). If Du(z0) 6= 0,
then we can find Bρ(z0)⊆� such that

‖Du(z)‖> 0, ‖Dv(z)‖> 0, (Du(z), Dv(z))RN > 0 for all z ∈ Bρ(z0).

We set w = v− u ∈ C+\ {0}. Then w satisfies the linear elliptic equation

−

N∑
i, j=1

∂

∂zi

(
ηi j (z)

∂w

∂z j

)
=−ξ(v p−1

− |u|p−2u)+ ĥ− h.
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In this equation the coefficients ηi j ( · ) are given by

ηi j (z)= δi j (‖Du(z)‖p−2
+ 1)+ (p− 2)‖Du(z)‖p−4 ∂u

∂zi
(z)

∂u
∂z j

(z)

for all z ∈ Bρ(z0) (see [Arcoya and Ruiz 2006, p. 854]). Hence ηi j ∈ Cβ(Bρ(z0))

with β ∈ (0, 1) and the ηi j form a uniformly elliptic operator by taking ρ ∈ (0, 1)
even smaller if necessary. Then the strong maximum principle (see [Gilbarg and
Trudinger 2001; Vázquez 1984]) implies that

u(z) < v(z) for all z ∈ Bρ(z0),

which contradicts the fact that z0 ∈ D0. So, we infer that D0 ⊆ D1.
Since by hypothesis v ∈ int C+, we see that D1 is compact and so D0 is compact.

So, we can find �1 ⊆� open and smooth such that

D0 ⊆�1 ⊆�1 ⊆�.

We can find ε > 0 such that

u(z)+ ε < v(z) for all z ∈ ∂�1,

h(z)+ ε < ĥ(z) for a.a. z ∈�1.

Let δ ∈ (0,min{ε, 1}) be such that

ξ
∣∣|s|p−2s− |s ′|p−2s ′

∣∣< ε for all s, s ′ ∈ [−‖u‖∞, ‖v‖∞] with |s− s ′|< 2δ.

Then we have

−1p(u+δ)−1(u+δ)+ξ |u+δ|p−2(u+δ)=−1p(u)−1(u)+ξ |u+δ|p−2(u+δ)

= ξ [|u+δ|p−2(u+δ)−|u|p−2u]+h

≤ h+ε ≤ ĥ =−1pv−1v+ξv
p−1,

which implies u+ δ ≤ v in �1, by the weak maximum principle.
Since D0 ⊆�1, we infer that the boundary point theorem is valid for uniformly

elliptic operators with Hölder continuous coefficients (see [Finn and Gilbarg 1957,
Lemma 7, p. 31; Gilbarg and Trudinger 2001, p. 46]). So, for every z0 ∈ ∂�, we
have

∂w

∂n
(z0) < 0,

and therefore v− u ∈ int C+. �

We now recall some basic facts concerning the spectrum of (−1p,W 1,p
0 (�)).

We consider the nonlinear eigenvalue problem

(3)
{
−1pu(z)= λ̂|u(z)|p−2u(z) a.e. in �,

u|∂� = 0.
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A number λ̂ ∈ R is an eigenvalue of (−1p,W 1,p
0 (�)) if the problem (3) has a

nontrivial solution û ∈W 1,p
0 (�); that solution is an eigenfunction corresponding

to the eigenvalue λ̂. The smallest eigenvalue λ̂1(p) of (−1p,W 1,p
0 (�)) has the

following properties (see [Anane 1987; Anane and Tsouli 1996; García Azorero
and Peral Alonso 1987]):

• λ̂1(p) is positive and isolated.

• λ̂1(p) is simple (its eigenspace is one-dimensional).

• λ̂1(p)= inf
[
‖Du‖p

p

‖u‖p
p
: u ∈W 1,p

0 (�), u 6≡ 0
]
.

In this variational characterization of λ̂1(p), the infimum is realized on the corre-
sponding one-dimensional eigenspace. Moreover, it is clear from the third property
above that the elements of the one-dimensional eigenspace do not change sign. In the
sequel, by û1,p ∈W 1,p

0 (�), we denote the L p-normalized (i.e., ‖û1,p‖p=1) positive
eigenfunction corresponding to the eigenvalue λ̂1(p) > 0. The nonlinear regularity
theory (see, for example, [Gasiński and Papageorgiou 2006, pp. 737–738]), implies
that û1,p ∈ C+\ {0}. Then the nonlinear maximum principle of [Vázquez 1984]
says that û1,p ∈ int C+. Since the spectrum σ(p) of (−1p,W 1,p

0 (�)) is closed and
λ̂1(p) > 0 is isolated, the second eigenvalue λ̂2(p)= inf [λ ∈ σ(p) : λ > λ̂1(p)] is
also well-defined.

If N = 1 (ordinary differential equation), then σ(p)= {λ̂k(p)}k≥1 ⊆ (0,+∞),
where each λ̂k(p) is a simple eigenvalue, λ̂k(p) → +∞ as k → +∞ and the
corresponding eigenfunctions {ûk,p}k≥1 have exactly k− 1 zeros (see, for example,
[Gasiński and Papageorgiou 2006, p. 761]).

If N ≥ 2 (partial differential equation), then the Ljusternik–Schnirelmann min-
imax scheme via the Krasnoselskii genus gives us a whole strictly increasing
sequence of eigenvalues {λ̂k(p)}k≥1 such that λ̂k(p)→ +∞ as k → +∞. It is
not known if this is the complete list of eigenvalues. If p = 2 (linear eigenvalue
problem), then these are all the eigenvalues of (−1, H 1

0 (�)).
Next we recall some basic definitions and facts from Morse theory and from

[Cingolani and Vannella 2003; 2007], which we will need in order to produce a
second nodal solution.

So, as before, let X be a Banach space and (Y1, Y2) a topological pair such that
Y2 ⊆ Y1 ⊆ X . For every integer k ≥ 0, by Hk(Y1, Y2) we denote the k-th-relative
singular homology group with integer coefficients for the pair (Y1, Y2). For k < 0,
Hk(Y1, Y2)= 0.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the sets

ϕc
= {x ∈ X : ϕ(x)≤ c}, Kϕ = {x ∈ X : ϕ′(x)= 0}, K c

ϕ = {x ∈ Kϕ : ϕ(x)= c}.
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The critical groups of ϕ ∈C1(X) at an isolated critical point x ∈ X with ϕ(x)= c
(i.e., x ∈ K c

ϕ) are defined by

Ck(ϕ, x)= Hk
(
ϕc
∩U, ϕc

∩U \ {x}
)

for all k ≥ 0,

where U is a neighborhood of x such that Kϕ∩ϕ
c
∩U = {x}. The excision property

of singular homology theory implies that the above definition of critical groups is
independent of the particular choice of the neighborhood U .

Now suppose that ϕ ∈ C1(X) satisfies the C-condition and infϕ(Kϕ) > −∞.
Let c < infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞)= Hk(X, ϕc) for all k ≥ 0.

The second deformation theorem (see, for example, [Gasiński and Papageorgiou
2006, p. 628]), implies that this definition is independent of the level c< infϕ(Kϕ).

Suppose that Kϕ is finite and define

M(t, x)=
∑
k≥0

rank Ck(ϕ, x)tk for all t ∈ R, all x ∈ Kϕ

and

P(t,∞)=
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

The Morse relation says that

(4)
∑

x∈Kϕ

M(t, x)= P(t,∞)+ (1+ t)Q(t),

where Q(t)=
∑

k≥0 βk tk is a formal series in t ∈ R with integer coefficients βk .
Let H be a Hilbert space, x a point in H , and U a neighborhood of x . Let

ϕ ∈ C2(U ). If x ∈ Kϕ , then the Morse index µ = µ(x) of x is defined to be
the supremum of the dimensions of the vector subspaces of H on which ϕ′′(x) is
negative definite. The nullity ν(x) of x ∈ Kϕ is the dimension of kerϕ′′(x). We say
that x ∈ Kϕ is nondegenerate if ϕ′′(x) is invertible (i.e., ν(x)= 0). If ϕ ∈ C2(U )
and x ∈ Kϕ is nondegenerate with Morse index µ, then

Ck(ϕ, x)= δk,µZ for all k ≥ 0,

where δk,µ is the Kronecker symbol.
As mentioned in the introduction, to produce a second nodal solution, we will

use some facts from [Cingolani and Vannella 2003; 2007]. Suppose f :�×R→R

is a measurable function such that, for a.a. z ∈�, f (z, · ) ∈ C1(R) and

| f ′x(z, x)| ≤ α̃(z)+ c̃|x |r−2 for a.a. z ∈�, all x ∈ R,
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with α̃ ∈ L∞(�)+, c̃ > 0 and p ≤ r < p∗. We set F(z, x) =
∫ x

0
f (z, s) ds and

consider the C2-functional ϕ :W 1,p
0 (�)→ R defined by

ϕ(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F(z, u(z)) dz for all u ∈W 1,p
0 (�).

For all u, v, y ∈W 1,p
0 (�), we have (see [Cingolani and Vannella 2003])

〈ϕ′′(u)v, y〉 =
∫
�

(1+‖Du‖p−2)(Dv, Dy)RN dz

+ (p−2)
∫
�

‖Du‖p−4(Du, Dv)RN (Du, Dy)RN dz−
∫
�

f ′x(z, u)vy dz.

Here 〈 · , · 〉 denotes the duality brackets for the pair consisting of the spaces

W−1,p′(�)=W 1,p
0 (�)∗ and W 1,p

0 (�), where 1
p
+

1
p′
= 1.

Suppose that u0 ∈ Kϕ . Nonlinear regularity theory (see [Ladyzhenskaya and
Ural’tseva 1968; Lieberman 1991]) implies that u0 ∈ C1

0(�). It follows that

b( · )= ‖Du0( · )‖
(p−4)/2 Du0( · ) ∈ L∞(�,RN ).

Let Hb be the completion of C∞c (�) under the inner product

(v, y)b =
∫
�

[
(1+‖b‖2)(Dv, Dy)RN + (p− 2)(b, Dv)RN (b, Dy)RN

]
dz.

Denote by ‖ · ‖b the corresponding norm. Clearly ‖ · ‖b is equivalent to the usual
Sobolev norm of H 1

0 (�), so Hb and H 1
0 (�) are isomorphic. Since p> 2, W 1,p

0 (�)

is embedded continuously into Hb. Let Lb ∈ L(Hb, H∗b ) be defined by

〈Lb(v), y〉b = (v, y)b−
∫
�

f ′x(z, u0)vy dz for all v, y ∈ Hb.

Then Lb is a Fredholm operator of index zero and it is the extension of ϕ′′(u0) on
Hb. We consider the orthogonal direct sum decomposition

Hb = H−⊕ H 0
⊕ H+,

where H−, H 0, H+ are the negative, null and positive spaces according to the
spectral decomposition of Lb in L2(�). Then H− and H 0 are finite-dimensional
and, since u0 ∈ C1

0(�), standard regularity theory implies that

H−⊕ H 0
⊆W 1,p

0 (�)∩ L∞(�).

We set V = H−⊕ H 0 and W =W 1,p
0 (�)∩ H+. Then W 1,p

0 (�)= V ⊕W and,
by [Cingolani and Vannella 2003, p. 279], there exists c > 0 such that

〈ϕ′′(u0)v, v〉 ≥ c‖v‖2b for all v ∈W.
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In what follows, for every r ∈ (1,+∞), we denote by

Ar :W
1,r
0 (�)→W−1,r ′(�),

1
r
+

1
r ′
= 1,

the nonlinear map defined by

(5) 〈Ar (u), y〉 =
∫
�

‖Du‖r−2(Du, Dy)RN dz for all u, y ∈W 1,r
0 (�).

If r = 2, then we set A2 = A ∈ L(H 1
0 (�), H−1(�)). The next result can be

found in [Gasiński and Papageorgiou 2006, pp. 745–746].

Proposition 4. If Ar :W
1,r
0 (�)→W−1,r ′(�) is defined by (5), then Ar is continu-

ous, monotone (hence maximal monotone) and of type (S)+; that is, if un converges
weakly to u in W 1,p

0 (�) and lim supn→+∞〈Ar (un), un − u〉 ≤ 0, then un → u in
W 1,r

0 (�).

Throughout this paper by ‖ · ‖ we denote the norm of W 1,p
0 (�). By virtue of

Poincaré’s inequality, ‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�). By ‖ · ‖ we will also

denote the norm of RN . No confusion is possible, since it will always be clear from
the context which norm we mean.

For x ∈ R, we define
x± =max{±x, 0}.

Then for u ∈W 1,p
0 (�) we set

u±( · )= u( · )±.

We know that u± ∈W 1,p
0 (�) and

|u| = u++ u− and u = u+− u−.

By | · |RN we denote the Lebesgue measure on RN .
Finally, if g :�×R→R is a measurable function (for example, if (z, x)→g(z, x)

is a Carathéodory function), then we set

Ng(u)( · )= g( · , u( · )) for all u ∈W 1,p
0 (�).

3. Constant sign solutions

In this section, we produce four nontrivial smooth solutions of constant sign, two
positive and two negative. The hypotheses on the reaction f (z, x) are the following:

Hypotheses H. (i) f :�×R→ R is a Carathéodory function.

(ii) f (z, 0)= 0 a.e. in �.

(iii) | f (z, x)| ≤ α(z)+ c|x |p−1 for a.a. z ∈�, all x ∈ R, with α ∈ L∞(�)+, c > 0.
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(iv) If F(z, x)=
∫ x

0 f (z, s) ds, then

lim
x→±∞

pF(z, x)
|x |p

= λ̂1(p) uniformly for a.a. z ∈�,

and, for some τ > 2,

lim sup
x→±∞

f (z, x)x − pF(z, x)
|x |τ

≤ β̂ < 0 uniformly for a.a. z ∈�.

(v) There exist functions w± ∈W 1,p(�)∩C(�) such that

w−(z)≤ c− < 0< c+ ≤ w+(z) for all z ∈�,

ess sup
�

f ( · , w+( · ))≤ 0≤ ess inf
�

f ( · , w−( · )),

and Ap(w−)+ A(w−)≤ 0≤ Ap(w+)+ A(w+) in W−1,p′(�)=W 1,p
0 (�)∗.

(vi) For every ρ > 0, there exists ξρ > 0 such that for a.a. z ∈ �, the function
x→ f (z, x)+ ξρ |x |p−2x is nondecreasing on [−ρ, ρ].

(vii) There exist integer m ≥ 2 and functions η, η̂ ∈ L∞(�)+ such that

λ̂m(2)≤ η(z)≤ η̂(z)≤ λ̂m+1(2) a.e. in �, λ̂m(2) 6= η, λ̂m+1(2) 6= η̂

and

η(z)≤ lim inf
x→0

f (z, x)
x
≤ lim sup

x→0

f (z, x)
x
≤ η̂(z) uniformly for a.a. z ∈�.

Remarks. Hypothesis H(iv) implies that, asymptotically at±∞, we have resonance
with respect to the principal eigenvalue λ̂1(p) > 0 from the right. Hence the energy
functional of the problem, as we will see, is indefinite. Hypothesis H(v) is satisfied
if we can find c− < 0< c+ such that f (z, c+)= f (z, c−)= 0 a.e. in �.

Example. The following function satisfies the hypotheses H (for simplicity, we
drop the z-dependence):

f (x)=
{

η(x − |x |r−2x) if |x | ≤ 1,
λ̂1(p)(|x |p−2x − |x |τ−2x) if |x |> 1,

with η ∈ (λ̂m(2), λ̂m+1(2)), m ≥ 2 and r > 2, 1< τ < p.

We introduce the following truncations of f (z, · ):

(6) f̂+(z, x)=


0 if x < 0,

f (z, x) if 0≤ x ≤ w+(z),
f (z, w+(z)) if w+(z) < x
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and

f̂−(z, x)=


f (z, w−(z)) if x <w−(z),

f (z, x) if w−(z)≤ x ≤ 0,
0 if 0< x .

Both are Carathéodory functions. Let F̂±(z, x) =
∫ x

0
f̂±(z, s) ds and consider

the C1-functionals ϕ̂± :W
1,p
0 (Z)→ R defined by

ϕ̂±(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F̂±(z, u(z)) dz for all u ∈W 1,p
0 (�).

Also, let ϕ : W 1,p
0 (�)→ R be the energy (Euler) functional for problem (1)

defined by

ϕ(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

F(z, u(z)) dz for all u ∈W 1,p
0 (�).

Clearly, ϕ ∈ C1(W 1,p
0 (�)).

First, we produce two nontrivial constant sign smooth solutions of (1).

Proposition 5. If hypotheses H(iii), (v), (vi), (vii) hold, then problem (1) has at
least the two nontrivial constant sign smooth solutions

u0 ∈ int C+ and v0 ∈ −int C+,

and both are local minimizers of ϕ.

Proof. First we produce the positive solution.
From (6) we see that ϕ̂+ is coercive. Also, using the Sobolev embedding theorem,

we can check easily that ϕ̂+ is sequentially weakly lower semicontinuous. So, by
the Weierstrass theorem, we can find u0 ∈W 1,p

0 (�) such that

(7) ϕ̂+(u0)= inf [ϕ̂+(u) : u ∈W 1,p
0 (�)] = m+.

By virtue of hypothesis H(vii), we can find ϑ > λ̂1(2) and 0<δ <min{c+,−c−}
such that

(8) F(z, x)≥ 1
2ϑx2 for a.a. z ∈�, all |x | ≤ δ.

Let t ∈ (0, 1) be small such that t û1,2(z) ∈ [0, δ] for all z ∈ � (recall that
û1,2 ∈ int C+). Then

ϕ̂+(t û1,2)=
t p

p
‖Dû1,2‖

p
p +

t2

2
λ̂1(2)−

∫
�

F̂+(z, t û1,2) dz

≤
t p

p
‖Dû1,2‖

p
p +

t2

2
[λ̂1(2)−ϑ]

(see (8) and recall that ‖û1,2‖2 = 1).
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Since ϑ > λ̂1(2) and p > 2, by choosing t ∈ (0, 1) even smaller if necessary,
we have ϕ̂+(t û1,2) < 0, which implies ϕ̂+(u0)= m̂+ < 0= ϕ̂+(0) (see (7)); hence
u0 6= 0.

From (7) we have ϕ̂′
+
(u0)= 0, which implies

(9) Ap(u0)+ A(u0)= N f̂+(u0).

On (9) we act with −u−0 ∈W 1,p
0 (�) and obtain u0 ≥ 0, u0 6= 0 (see (6)). Also,

we act with (u0−w+)
+
∈W 1,p

0 (�). Then

〈Ap(u0), (u0−w+)
+
〉+ 〈A(u0), (u0−w+)

+
〉

=

∫
�

f̂+(z, u0)(u0−w+)
+ dz =

∫
�

f (z, w+)(u0−w+)
+ dz (see (6))

≤
〈
Ap(w+)+ A(w+), (u0−w+)

+
〉
,

by hypothesis H(v). Therefore∫
{u0>w+}

(
‖Du0‖

p−2 Du0−‖Dw+‖p−2 Dw+, Du0− Dw+
)

RN dz

+‖D(u0−w+)
+
‖

2
2 ≤ 0.

It follows that u0 ≤ w+.
So, we have proved that

u0 ∈ [0, w+] = {u ∈W 1,p
0 (�) : 0≤ u(z)≤ w+(z) a.e. in �}.

Then (9) becomes Ap(u0)+ A(u0)= N f (u0) (see (6)), and hence

(10) −1pu0(z)−1u0(z)= f (z, u0(z)) a.e. in �, u0|∂� = 0.

From (10) and [Ladyzhenskaya and Ural’tseva 1968, Theorem 7.1, p. 286], we
have u0 ∈ L∞(�). We can apply the regularity result of [Lieberman 1991, p. 320]
and have u0 ∈ C+\ {0}. Note that

Ap(u0)+ A(u0)− N f (u0)= 0≤ Ap(w+)+ A(w+)− N f (w+) in W−1,p′(�),

by H(v), and, for a.a. z ∈� and all x , y ∈ [−ρ, ρ] with x > y, we have, by H(vi),

f (z, x)− f (z, y)≥−ξρ(x − y),

Let a(ξ)= ‖ξ‖p−2ξ + ξ for all ξ ∈ RN . Then a ∈ C1(RN ),

∇a(ξ)= ‖ξ‖p−2
(

I + (p− 2)
ξ ⊗ ξ

‖ξ‖2

)
+ I

and
div a(Du)=1pu+1u for all u ∈W 1,p

0 (�).
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We have (∇a(ξ)y, y)RN ≥ ‖y‖2 for all ξ , y ∈ RN and so we can apply [Pucci
and Serrin 2007, Theorem 2.5.3, p. 37] and infer, via H(v), that

u0(z) < w+(z) for all z ∈�.

Let ρ =max{‖w+‖∞, ‖w−‖∞}. By virtue of H(vi) and (10), we have

−1pu0(z)−1u0(z)+ ξ̂ρu0(z)p−1
= f (z, u0(z))+ ξ̂ρu0(z)p−1

≥ 0 a.e. in �,

and hence
1pu0(z)+1u0(z)≤ ξ̂ρu0(z)p−1 a.e. in �.

Invoking the boundary point theorem of Pucci and Serrin [2007, Theorem 5.5.1,
p. 120] we have u0 ∈ int C+. Therefore

u0 ∈ intC1
0 (�)
[0, w+].

It is clear from (6) that ϕ̂+|[0,w+] = ϕ|[0,w+]. Therefore u0 is a local C1
0(�)-

minimizer of ϕ and so by Theorem 2 it is also a local W 1,p
0 (�)-minimizer of ϕ.

Similarly, working this time with ϕ̂−, we produce another constant sign smooth
solution v0 ∈ −int C+ which is a local minimizer of ϕ. �

Using u0 ∈ int C+, v0 ∈ −int C+, we can produce two more nontrivial constant
sign smooth solutions.

Proposition 6. If hypotheses H hold and Kϕ is finite, problem (1) has at least four
nontrivial constant sign smooth solutions

u0, û ∈ int C+ with û− u0 ∈ int C+

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+.

Proof. From Proposition 5 we already have two solutions u0 ∈ int C+ and v0 ∈

−int C+.
Next we produce the second nontrivial positive smooth solution. To this end, we

introduce the following truncation of f (z, · ):

(11) h+(z, x)=
{

f (z, u0(z)) if x ≤ u0(z),
f (z, x) if u0(z) < x .

This is a Carathéodory function. We set H+(z, x)=
∫ x

0
h+(z, s) ds and consider

the C1-functional ψ+ :W
1,p
0 (�)→ R defined by

ψ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

H+(z, u(z)) dz for all u ∈W 1,p
0 (�).

Claim 1. The functional ψ+ satisfies the C-condition.
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Proof. Let {un}n≥1 ⊆W 1,p
0 (�) be a sequence such that

(12) |ψ+(un)| ≤ M1 for some M1 > 0, all n ≥ 1

and

(13) (1+‖un‖)ψ
′

+
(un)→ 0 in W−1,p′(�) as n→∞.

From (13) we have

(14)
∣∣∣∣〈Ap(un), g〉+ 〈A(un), g〉−

∫
�

h+(z, un)g dz
∣∣∣∣≤ εn‖g‖

1+‖un‖

for all g ∈W 1,p
0 (�),with εn ↓ 0.

In (14) we choose g =−u−n ∈W 1,p
0 (�). Then we get

‖Du−n ‖
p
p +‖Du−n ‖

2
2−

∫
�

f (z, u0)(−u−n ) dz ≤ εn for all n ≥ 1,

by (11); this implies that ‖Du−n ‖
p
p≤ c1‖u−n ‖ for some c1>0 and all n≥1 (by H(iii)),

and we conclude, since p > 1, that

(15) {u−n }n≥1 ⊆W 1,p
0 (�) is bounded.

We will show that {un}n≥1 ⊆ W 1,p
0 (�) is bounded. Arguing by contradiction,

because of (15) and by passing to a suitable subsequence if necessary, we may
assume that ‖u+n ‖→∞. We set yn = u+n /‖u

+
n ‖, n ≥ 1. Then ‖yn‖= 1 for all n ≥ 1

and so we may assume that

(16) yn
w
−→ y in W 1,p

0 (�) and yn→ y in L p(�) as n→∞,

where
w
−→ indicates weak convergence. From (14), we have

(17)
∣∣∣∣〈Ap(yn), g〉+

1
‖u+n ‖p−2

〈A(yn), g〉−
∫
�

h+(z, u+n )
‖u+n ‖p−1

g dz
∣∣∣∣≤ ε′n‖g‖,

with ε′n→ 0 (see (15)).
Hypothesis H(iii) and (11) imply that

(18)
{

Nh+(u
+
n )

‖u+n ‖p−1

}
n≥1
⊆ L p′(�) is bounded.

From (18) and using hypothesis H(iv), as in the proof of Proposition 30 of
[Aizicovici et al. 2008], we have

(19)
Nh+(u

+
n )

‖u+n ‖p−1
w
−→ β = λ̂1(p)y p−1 in L p′(�).
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Also, if in (17) we choose g = yn − y ∈ W 1,p
0 (�), pass to the limit as n→∞

and use (16) and (19), we obtain

lim
n→∞
[〈Ap(yn), yn − y〉+ 〈A(yn), yn − y〉] = 0,

from which we get successively

lim sup
n→∞

[〈Ap(yn), yn − y〉+ 〈A(y), yn − y〉] ≤ 0 (since A is monotone),

lim sup
n→∞

〈Ap(yn), yn − y〉 ≤ 0 (see (16)),

yn→ y in W 1,p
0 (�) (see Proposition 4).

The upshot is that

(20) ‖y‖ = 1, y ≥ 0.

Passing to the limit as n→∞ in (17) and using (19) and (20), we see that

〈Ap(y), g〉 = λ̂1(p)
∫
�

y p−1g dz for all g ∈W 1,p
0 (�),

since p > 2 and ‖u+n ‖→∞. This yields Ap(y)λ̂1(p)y p−1 and so

−1p y(z)= λ̂1(p)y(z)p−1 a.e. in �, y|∂� = 0,

implying, in view of (20), that

(21) y = λû1,p for some λ > 0.

Therefore y(z) > 0 for all z ∈� and this implies that u+n (z)→+∞ for all z ∈�.
Then, by virtue of hypothesis H(iv), we have

lim sup
n→∞

f (z, u+n (z))u
+
n (z)− pF(z, u+n (z))
|u+n (z)|τ

≤ β̂ < 0 for a.a. z ∈�,

or again, in view of (11),

(22) lim sup
n→∞

h+(z, u+n (z))u
+
n (z)− pH+(z, u+n (z))
|u+n (z)|τ

≤ β̂ < 0 for a.a. z ∈�.

Hypothesis H(iv) and Fatou’s lemma, together with (21) and (22), imply that

(23) lim sup
n→∞

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n (z)− pH+(z, u+n )
]

dz < 0

On the other hand, from (12) and (15), we have

(24) −M2 ≤ ‖Du+n ‖
p
p +

p
2
‖Du+n ‖

2
2−

∫
�

pH+(z, u+n ) dz
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for some M2 > 0 and all n ≥ 1.
Also, if we choose g = u+n ∈W 1,p

0 (�) in (14), then

(25) −εn ≤−‖Du+n ‖
p
p −‖Du+n ‖

2
2+

∫
�

h+(z, u+n )u
+

n dz for all n ≥ 1.

Adding (24) and (25), we obtain

−M3 ≤

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz+
( p

2
− 1

)
‖Du+n ‖

2
2

for some M3 > 0 and all n ≥ 1, whence (since p > 2)

−
M3

‖u+n ‖τ
≤

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz+ c2

( p
2
− 1

) 1
‖u+n ‖τ−2

for some c2 > 0 and all n ≥ 1, and finally, since τ > 2 and p > 2,

(26) 0≤ lim inf
n→∞

1
‖u+n ‖τ

∫
�

[
h+(z, u+n )u

+

n − pH+(z, u+n )
]

dz.

Comparing (23) and (26), we reach a contradiction.
This proves that {u+n }n≥1 ⊆W 1,p

0 (�) is bounded; hence {un}n≥1 ⊆W 1,p
0 (�) is

bounded, by (15). So, we may assume that

(27) un
w
−→ u in W 1,p

0 (�) and un→ u in L p(�).

If in (14) we choose g = un − u ∈ W 1,p
0 (�), pass to the limit as n→∞ and

use (27), then, as before, exploiting the monotonicity of A, we have

lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0,

implying that un → u in W 1,p
0 (�), by Proposition 4. Hence ψ+ satisfies the C-

condition, and this proves Claim 1. �

Claim 2. The function u0 is a local minimizer of ψ+.

Proof. We may assume that Kϕ ∩[0, w+] = {0, u0}. Otherwise, let y be a nontrivial
element of Kϕ ∩ [0, w+] distinct from u0; as a nontrivial solution of (1), y can be
taken such that u0 ≤ y, because (1) has a biggest solution in [0, w+] (this is shown
like Proposition 4.4 in [Filippakis et al. 2009]). Therefore, we are done if such a y
exists.

We introduce the following truncation of h+(z, · ):

(28) ĥ+(z, x)=
{

h+(z, x) if x ≤ w+(z),
h+(z, w+(z)) if w+(z) < x .

This is a Carathéodory function. We set Ĥ+(z, x)=
∫ x

0 ĥ+(z, s) ds and consider
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the C1-functional ψ̂+ :W
1,p
0 (�)→ R defined by

ψ̂+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

Ĥ+(z, u(z)) dz for all u ∈W 1,p
0 (�).

From (28) it is clear that ψ̂+ is coercive. Also, it is sequentially weakly lower
semicontinuous. Hence, we can find u0 ∈W 1,p

0 (�) such that

ψ̂+(u0)= inf [ψ̂+(u) : u ∈W 1,p
0 (�)],

which is to say ψ̂ ′
+
(u0)= 0; therefore

(29) Ap(u0)+ A(u0)= Nĥ+(u0).

On (29) first we act with (u0 − u0)
+
∈ W 1,p

0 (�) and then with (u0 −w+)
+
∈

W 1,p
0 (�). Using (11), (28) and hypothesis H(v), this leads to

u0 ∈ [u0, w+] =
{
u ∈W 1,p

0 (�) : u0(z)≤ u(z)≤ w+(z) a.e. in �
}
.

Then (29) becomes Ap(u0)+ A(u0) = N f (u0) by (11) and (28); thus u0 ∈ Kϕ ∩

[0, w+], which is to say u0 = u0.
From Proposition 5 and its proof, we have

u0 ∈ int C+ and u0(z) < w+(z) for all z ∈�.

From (28) we infer that ψ+|[0,w+] = ψ̂+|[0,w+], so u0 is a local C1
0(�)-minimizer

of ψ+. Applying Theorem 2, we see that u0 is also a local W 1,p
0 (�)-minimizer of

ψ+, as we wished to show. �

If u ∈ Kψ+ , then
Ap(u)+ A(u)= Nh+(u).

Acting with (u0−u)+ ∈W 1,p
0 (�) and using (11), we show that u0≤u. Therefore

(30) Kψ+ ⊆ [u0)=
{
u ∈W 1,p

0 (�) : u0(z)≤ u(z) for a.a. z ∈�
}
.

By virtue of Claim 2, u0 ∈ Kψ+ . Note that from (11) and (30) it follows that
Kψ+ ⊆ Kϕ and recall that by hypothesis Kϕ is finite. So, as in [Aizicovici et al.
2008, proof of Proposition 29], we can find ρ ∈ (0, 1) small such that

(31) ψ+(u0) < inf [ψ+(u) : ‖u− u0‖ = ρ] = η
+

ρ .

Claim 3. ψ+(t û1,p)→−∞ as t→+∞.

Proof. By virtue of hypothesis H(iv), we can find β̂1 ∈ (β̂, 0) and M4 > ‖u0‖∞

such that f (z, x)x − pF(z, x)≤ β̂1xτ for a.a. z ∈�, all x ≥ M4. Thus

(32) h+(z, x)x − pH+(z, x)≤ β̂1xτ + c3
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for a.a. z ∈�, all x ≥ M4, some c3 > 0.
(Note that F(z, x)= H+(z, x)−H+(z, u0(z))+ f (z, u0(z))u0(z) for a.a. z ∈�,

all x ≥ M4.)
Without loss of generality, we may assume that τ < p (see H(iv)). We have

d
dx

(
H+(z, x)

x p

)
=

h+(z, x)x p
− px p−1 H+(z, x)

x2p

=
h+(z, x)x − pH+(z, x)

x p+1 ≤
β̂1xτ + c3

x p+1 (see (32))

= β̂1xτ−p−1
+

c3

x p+1 .

It follows that

H+(z, x)
x p −

H+(z, y)
y p ≤−

β̂1

p− τ

(
1

x p−τ −
1

y p−τ

)
−

c3

p

(
1

x p −
1
y p

)
for a.a. z ∈�, all x ≥ y ≥ M4.

Letting x→+∞, using hypothesis H(iv) and recalling that τ < p, we obtain

λ̂1(p)
p
−

H+(z, y)
y p ≤

β̂1

p− τ
1

y p−τ +
c3

p
1
y p for a.a. z ∈�, all y ≥ M4,

or, upon multiplication by y p and with c4 = c3/p,

(33)
λ̂1(p)

p
y p
− H+(z, y)≤

β̂1

p− τ
yτ + c4 for a.a. z ∈�, all y ≥ 0.

Then, for t > 0, we have

(34) ψ+(t û1,p)=
t p

p
λ̂1(p)‖û1,p‖

p
p +

t2

2
‖Dû1,p‖

2
2−

∫
�

H+(z, t û1,p) dz

≤
β̂1

p− τ
tτ‖û1,p‖

τ
τ +

t2

2
‖Dû1,p‖

2
2+ c4|�|N (see (33)).

Since τ > 2 (see H(iv)) and β̂1 < 0, it follows from (34) that ψ+(t û1,p)→−∞

as t→+∞. This proves Claim 3. �

Claims 1, 3 and (31) permit the use of Theorem 1, the mountain pass theorem.
So, we can find û ∈W 1,p

0 (�) such that

(35) ψ+(u0) < η
+

ρ ≤ ψ+(û)

(see (31)) and

(36) ψ ′
+
(û)= 0.

From (35) we see that û 6= u0, while from (36) we have û ∈ [u0) (see (30)).
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Therefore û is the second nontrivial positive solution of (1) (see (11)). Moreover,
nonlinear regularity theory (see [Lieberman 1991]) implies that û ∈ int C+, u0 ≤ û,
u0 6= û. From the tangency principle of [Pucci and Serrin 2007, p. 35], we have

u0(z) < û(z) for all z ∈�.

Let ρ = ‖û‖∞ and let ξ̂ > ξ̂ρ (ξ̂ρ > 0 as postulated by hypothesis H(vi)). We set

h(z)= f (z, u0(z))+ ξ̂u0(z)p−1 and ĥ(z)= f (z, û(z))+ ξ̂ û(z)p−1.

Clearly, h, ĥ ∈ L∞(�)+, h ≺ ĥ (see H(vi) and recall u0(z) < û(z) for all z ∈�).
Moreover, û ∈ int C+ and so we can use Proposition 3 and infer that û−u0 ∈ int C+.

Similarly, consider the truncation

h−(z, x)=
{

f (z, x) if x < v0(z),
f (z, v0(z)) if v0(z)≤ x .

Arguing as before, we produce a second nontrivial negative solution v̂ ∈ −int C+
such that v0− v̂ ∈ int C+. �

4. Nodal solutions

In this section we produce nodal solutions for problem (1). Under the current
hypotheses H, we will produce a nodal solution, and subsequently, by strengthening
the regularity on f (z, · ) (see hypotheses Ĥ below), we will generate a second nodal
solution. In this section, Morse theory is a basic tool.

Our strategy is the following. First we will show that problem (1) has extremal
constant sign solutions; i.e., there is a smallest nontrivial positive solution u+
of (1) and a biggest nontrivial negative solution v− of (1). By truncating f (z, · ) at
{v−(z), u+(z)} and using variational methods and Morse theoretic techniques, we
show that problem (1) has nontrivial solutions in the order interval [v−, u+] distinct
from v− and u+. The extremality of v− and u+ implies that such solutions are
necessarily nodal. The nonhomogeneity of the differential operator u→−1pu−1u
creates difficulties, which we have to overcome. To this end, note that hypotheses
H(iii), (vii) imply that we can find c5 > λ̂1(2) and c6 > 0 such that

f (z, x)x ≥ c5x2
− c6|x |p for a.a. z ∈�, all x ∈ R.

This growth estimate leads to the following Dirichlet problem

(37) −1pu(z)−1u(z)= c5u(z)− c6|u(z)|p−2u(z) in �, u|∂� = 0.

Proposition 7. Problem (37) has a unique nontrivial positive solution u∗ ∈ int C+
and, since (37) is odd, v∗=−u∗∈−int C+ is the unique nontrivial negative solution
of (37).
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Proof. We consider the C1-functional γ+ :W
1,p
0 (�)→ R defined by

γ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

c5

2
‖u+‖22+

c5

p
‖u+‖p

p for all u ∈W 1,p
0 (�).

Since p> 2, it is clear that γ+ is coercive. Also, γ+ is sequentially weakly lower
semicontinuous. Therefore, we can find u∗ ∈W 1,p

0 (�) such that

(38) γ+(u∗)= inf [γ+(u) : u ∈W 1,p
0 (�)] = m+

∗
.

Since c5 > λ̂1(2) and p > 2, for t ∈ (0, 1) small, we have γ+(t û1,2) < 0, which
implies γ+(u∗)= m+

∗
< 0= γ+(0) by (38); hence u∗ 6= 0.

From (38) we have

(39) γ ′
+
(u∗)= 0

and therefore
Ap(u∗)+ A(u∗)= c5u+

∗
− c6(u+∗ )

p−1.

On (39) we act with −u−
∗
∈ W 1,p

0 (�) and infer that u∗ ≥ 0, u∗ 6= 0. Hence
Ap(u∗)+ A(u∗)= c5u∗− c6u p−1

∗ , and so

−1pu∗(z)−1u∗(z)= c5u∗(z)− c6u∗(z)p−1 a.e. in �, u∗|∂� = 0.

Nonlinear regularity theory (see [Ladyzhenskaya and Ural’tseva 1968; Lieberman
1991]) implies that u∗ ∈ C+\ {0}. Moreover, from the strong maximum principle of
[Pucci and Serrin 2007, p. 34], we have u∗(z) > 0 for all z ∈�. Then

1pu∗(z)+1u∗(z)≤ c6u∗(z)p−1 a.e. in �,

which in view of [Pucci and Serrin 2007, p. 120] leads to

u∗ ∈ int C+.

This establishes the existence of a nontrivial positive smooth solution of (37).
Next we show the uniqueness of u∗ ∈ int C+. To this end, we consider the integral

functional β+ : L1(�)→ R= R∪ {+∞} defined by

(40) β+(u)=

{
1
p‖Du1/2

‖
p
p +

1
2‖Du1/2

‖
2
2 if u ≥ 0, u1/2

∈W 1,p
0 (�),

+∞ otherwise.

Let G0(t)= t p/p+ t2/2 for all t ≥ 0. Clearly G0 is strictly convex and strictly
increasing. We set G(y)= G0(‖y‖) for all y ∈ RN . From (40) we have

(41) β+(u)=

{∫
�

G(Du1/2) dz if u ≥ 0, u1/2
∈W 1,p

0 (�),

+∞ otherwise.
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Let u1, u2 ∈ domβ+ and set y1 = u1/2
1 , y2 = u1/2

2 . Then y1, y2 ∈W 1,p
0 (�). We

define
y3 = (tu1+ (1− t)u2)

1/2
∈W 1,p

0 (�) with t ∈ [0, 1].

Then Lemma 4 of [Benguria et al. 1981] (see also [Díaz and Saá 1987, Lemma 1])
implies that

‖Dy3(z)‖ ≤
(
t‖Dy1(z)‖2+ (1− t)‖Dy2(z)‖2

)1/2 a.e. in �,

or again, since G0 is increasing,

(42) G0(‖Dy3(z)‖)≤ G0
((

t‖Dy1(z)‖2+ (1− t)‖Dy2(z)‖2
)1/2) a.e. in �.

The right-hand side is bounded above by tG0(‖Dy1(z)‖)+ (1− t)G0(‖Dy2(z)‖),
since t→ G0(t1/2) is convex. So from (42) we obtain successively

G(Dy3(z))≤ tG(Dy1(z))+ (1− t)G(Dy2(z)) a.e. in �,

G
(
D(tu1+ (1− t)u2)

1/2(z)
)
≤ tG(Du1/2

1 (z))+ (1− t)G(Du1/2
2 (z)) a.e. in �,

and finally, using (41), the convexity of β+.
Let u ∈W 1,p

0 (�) be a nontrivial positive solution of the auxiliary problem (37).
From the first part of the proof we have u ∈ int C+. Therefore u2

∈ domβ+. Also,
if h ∈ C1

0(�) and t ∈ (−1, 1) is small, then u2
+ th ∈ domβ+. So, the Gâteaux

derivative of β+ at u2 in the direction h exists. The chain rule and the density of
C1

0(�) in W 1,p
0 (�) imply

(43) β ′
+
(u2)(h)=

∫
�

−1pu−1u
u

h dz for all h ∈W 1,p
0 (�).

Similarly, if v ∈ W 1,p
0 (�) is another nontrivial positive solution of (37), then

v ∈ int C+ and we have

(44) β ′
+
(v2)(h)=

∫
�

−1pv−1v

v
h dz for all h ∈W 1,p

0 (�).

Since β+ is convex, its Gâteaux derivative is monotone, and so, from (43)
and (44), we have

0≤
〈
β ′
+
(u2)−β ′

+
(v2), u2

− v2〉
L1

=

∫
�

(
−1pu−1u

u
−
−1pv−1v

v

)
(u2
− v2) dz

=

∫
�

(
c5u− c6u p−1

u
−

c5v− c6v
p−1

v

)
(u2
− v2) dz

= c6

∫
�

(v p−1
− u p−1)(u2

− v2) dz ≤ 0.
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Therefore u = v, showing that u∗ ∈ int C+ is the unique nontrivial positive solution
of (37).

Since (37) is odd, we conclude that v∗ =−u∗ ∈−int C+ is the unique nontrivial
negative solution of (37). �

Having this proposition, we can now establish the existence of extremal nontrivial
constant sign solutions for problem (1).

Proposition 8. If hypotheses H hold, then problem (1) has a smallest nontrivial pos-
itive solution u+ ∈ int C+ and a biggest nontrivial negative solution v− ∈ −int C+.

Proof. Recall that the set of nontrivial positive solutions of (1) is downward directed
(i.e., if u1, u2 are nontrivial positive solutions of (1), then there exists a nontrivial
positive solution u of (1) such that u ≤ u1 and u ≤ u2; see [Filippakis et al. 2009,
Lemma 4.2 and Proposition 4.4]). So, in order to produce the smallest nontrivial
positive solution of (1), it suffices to consider the set

S+ = {u ∈W 1,p
0 (�) : u is a nontrivial solution of (1), u ∈ [0, w+]}.

From Proposition 5, we know that S+ is nonempty and S+ ⊆ int C+.
Let u ∈ S+ and consider the Carathéodory function

(45) e+(z, x)=


0 if x < 0,

c5x − c6x p−1 if 0≤ x ≤ u(z),
c5u(z)− c6u(z)p−1 if u(z) < x .

We set E+(z, x)=
∫ x

0
e+(z, s) ds and consider the C1-functional σ+ :W

1,p
0 (�)→R

defined by

σ+(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

E+(z, u(z)) dz for all u ∈W 1,p
0 (�).

It is clear from (45) that σ+( · ) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find ũ ∈ W 1,p

0 (�) such
that

(46) σ+(ũ)= inf [σ+(u) : u ∈W 1,p
0 (�)].

As before (see the proof of Proposition 7), since c5 > λ̂1(2) and p > 2, for
t ∈ (0, 1) small we have σ+(t ũ1,2) < 0, and therefore σ+(ũ) < 0 = σ+(0); hence
ũ 6= 0. From (46) this implies σ ′

+
(ũ)= 0; therefore

(47) Ap(ũ)+ A(ũ)= Ne+(ũ).

On (47) we act with −ũ− ∈W 1,p
0 (�) and obtain ũ ≥ 0, ũ 6= 0 (see (45)). Also
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on (47) we act with (ũ− u)+ ∈W 1,p
0 (�). We obtain

〈Ap(ũ), (ũ− u)+〉+ 〈A(ũ), (ũ− u)+〉

=

∫
�

e+(z, ũ)(ũ− u)+ dz =
∫
�

(c5u− c6u p−1)(ũ− u)+ dz (see (45))

≤

∫
�

f (z, u)(ũ− u)+ dz = 〈Ap(u), (ũ− u)+〉+ 〈A(u), (ũ− u)+〉;

this implies∫
{ũ>u}

(
‖Dũ‖p−2 Dũ−‖Du‖p−2 Du, Dũ− Du

)
RN dz+‖D(ũ− u)+‖22 ≤ 0,

and so ũ ≤ u.
So, we have proved that

ũ ∈ [0, u] = {u ∈W 1,p
0 (�) : 0≤ ũ(z)≤ u(z) a.e. in �}, ũ 6= 0.

From (45) and (47) it follows that

−1pũ(z)−1ũ(z)= c5ũ(z)−c6ũ(z)p−1 a.e. in �, ũ|∂�=0, ũ≥0, ũ 6=0,

whence ũ = u∗ by Proposition 7, and therefore ũ ≤ u.
Since u ∈ S+ is arbitrary, we conclude that

(48) u∗ ≤ u for all u ∈ S+.

Now let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). Then we can
find {un}n≥1 ⊆ C such that inf C = infn≥1 un; (see [Dunford and Schwartz 1958,
p. 336]).

We have

(49) Ap(un)+ A(un)= N f (un), un ∈ [u∗, w+] for all n ≥ 1

by (48), so {un}n≥1 ⊆W 1,p
0 (�) is bounded.

So, we may assume that

(50) un
w
−→ u in W 1,p

0 (�) and un→ u in L p(�).

On (49) we act with un−u ∈W 1,p
0 (�), pass to the limit as n→∞ and use (50).

Then
lim

n→∞

(
〈Ap(un), un − u〉+ 〈A(un), un − u〉

)
= 0,

and so (reasoning as in Claim 1 in the proof of Proposition 6)

(51) un→ u in W 1,p
0 (�).
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So, if in (49) we pass to the limit as n→∞ and use (51), then (48) yields

Ap(u)+ A(u)= N f (u), u∗ ≤ u,

which leads to u ∈ S+, u = inf C .
Because C is an arbitrary chain, the Kuratowski–Zorn lemma gives the existence

of a minimal element u+ ∈ S+ of S+. But recall that S+ is downward directed. So,
if u ∈ S+, we can find y ∈ S+ such that y ≤ u, y ≤ u+. The minimality of u+
implies that u+ = y and so u+ ≤ u. Since u ∈ S+ is arbitrary, we conclude that u+
is the smallest nontrivial positive solution of (1).

Similarly, let S− be the set of nontrivial negative solutions of (1) in [w−, 0].
Then S− is upward directed (i.e., if v1, v2 ∈ S−, then we can find v ∈ S− such that
v1 ≤ v, v2 ≤ v; see [Filippakis et al. 2009, Lemma 4.3]). Let v ∈ S− and consider
the Carathéodory function

e−(z, x)=


c5v(z)− c6|v(z)|p−2v(z) if x < v(z),

c5x − c6|x |p−2x if v(z)≤ x ≤ 0,
0 if 0< x .

We set E−(z, x)=
∫ x

0
e−(z, s) ds and consider the C1-functional σ− :W

1,p
0 (�)→R

defined by

σ−(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

E−(z, u(z)) dz for all u ∈W 1,p
0 (�).

Reasoning as above, we produce v− ∈ −int C+, the smallest nontrivial negative
solution of (1). �

To implement the strategy outlined in the beginning of this section and produce
a nodal solution, we need to be able to identify the nonzero critical points of ϕ
distinct from u∗ and v∗ which are in the order interval [v∗, u∗]. This can be done
using critical groups. For this reason, we compute the critical groups of ϕ at the
origin.

Proposition 9. If hypotheses H hold, then Ck(ϕ, 0) = δk,dm Z for all k ≥ 0 with
dm = dim

⊕m
i=1 E(λ̂i (2)).

Proof. Let µ∈ (λ̂m(2), λ̂m+1(2)) and consider the C2-functional ϕ0 :W
1,p
0 (�)→R

defined by

ϕ0(u)=
1
p
‖Du‖p

p +
1
2
‖Du‖22−

µ

2
‖u‖22 for all u ∈W 1,p

0 (�).

We consider the homotopy h0 : [0, 1]×W 1,p
0 (�)→ R defined by

h0(t, u)= tϕ(u)+ (1− t)ϕ0(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (�).
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Clearly h0(0, · )= ϕ0( · ) and h1(0, · )= ϕ( · ).
It is easy to see that, since p > 2, ϕ0 satisfies the C-condition. Also, reasoning

as in Claim 1 in the proof of Proposition 6, via hypothesis H(iv), we show that ϕ
satisfies the C-condition.

Suppose we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (�) such that

(52) tn→ t, un→ 0 in W 1,p
0 (�) and (h0)

′

u(tn, un)= 0 for all n ≥ 1.

From the equality in (52), we have

Ap(un)+ A(un)= tn N f (un)+ (1− tn)µun,

and therefore

(53) −1pun(z)−1un(z)= tn f (z, un(z))+(1−tn)µun(z)a.e. in �, un|∂�=0.

Since µ ∈ (λ̂m(2), λ̂m+1(2)), we have

t f (z, x)x + (1− t)µx2
≥ c5x2

− c6|x |p for a.a. z ∈�, all x ∈ R, t ∈ [0, 1],

where c5 > λ̂1(2) and c6 > 0 are as before (see (37)). Then from (53) and the proof
of Proposition 8, we have u∗ ≤ un for all n ≥ 1, which contradicts (52). Therefore
(52) cannot happen and so the homotopy invariance of critical groups (see, for
example, [Chang 2005]) implies that Ck(h0(0, · ), 0)=Ck(h0(1, · ), 0) for all k≥ 0,
whence

(54) Ck(ϕ0, 0)= Ck(ϕ, 0) for all k ≥ 0.

Note that ϕ′′0 (0) = A − µI (see [Cingolani and Vannella 2003, p. 277]) and
recall that µ∈ (λ̂m(2), λ̂m+1(2)). Invoking Theorem 1.1 of [Cingolani and Vannella
2003], we have Ck(ϕ0, 0) = δk,dm Z for all k ≥ 0,with dm = dim

⊕m
i=1 E(λ̂i (2)).

Using (54) concludes the proof. �

Now we have all the necessary tools to complete our strategy and produce a
nodal solution.

Proposition 10. If hypotheses H hold, problem (1) has a nodal solution y0 ∈C1
0(�)

such that
u+− y0 ∈ int C+ and y0− v− ∈ int C+.

Proof. Let u+ ∈ int C+ and v− ∈ −int C+ be the two extremal nontrivial constant
sign solutions of (1) produced in Proposition 8. Using these two solutions, we
introduce the following truncation of the reaction f (z, · ):

(55) g(z, x)=


f (z, v−(z)) if x < v−(z),

f (z, x) if v−(z)≤ x ≤ u+(z),
f (z, u+(z)) if u+(z) < x .
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This is a Carathéodory function. We set G(z, x) =
∫ x

0 g(z, s) ds. Also, let
g±(z, x) = g(z,±x±) and G±(z, x) =

∫ x
0 g±(z, s) ds. Then we introduce the

C1-functionals ξ∗, ξ∗
±
:W 1,p

0 (�)→ R defined by

ξ∗(u)= 1
p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

G(z, u(z)) dz,

ξ∗
±
(u)= 1

p
‖Du‖p

p +
1
2
‖Du‖22−

∫
�

G±(z, u(z)) dz for all u ∈W 1,p
0 (�).

Claim 1. Kξ∗ ⊆ [v−, u+], Kξ∗+
= {0, u+}, Kξ∗−

= {0, v−}.

Proof. Let u ∈ Kξ∗ . Then we have

(56) Ap(u)+ A(u)= Ng(u).

On (56) we act with (u− u+)+ ∈W 1,p
0 (�) and obtain

〈Ap(u), (u− u+)+〉+ 〈A(u), (u− u+)+〉

=

∫
�

g(z, u)(u− u+)+ dz =
∫
�

f (z, u+)(u− u+)+ dz (see (55))

= 〈Ap(u+), (u− u+)+〉+ 〈A(u+), (u− u+)+〉,

so that∫
{u>u+}

(
‖Du‖p−2 Du−‖Du+‖p−2 Du+, Du− Du+

)
RN dz+‖D(u− u+)+‖22 = 0

and therefore u ≤ u+.
Similarly, acting on (56) with (v− − u)+ ∈ W 1,p

0 (�), we show that v− ≤ u.
Therefore Kξ∗ ⊆ [v−, u+].

In a similar fashion, we show that Kξ∗+
⊆ [0, u+]. Clearly {0, u+} ⊆ Kξ∗+

. The
extremality of u+ implies that Kξ∗+

={0, u+}. Similarly, Kξ∗−
={v−, 0}. This proves

Claim 1. �

Claim 2. The functions u+ ∈ int C+ and v− ∈ −int C+ are both local minimizers
of the functional ξ∗.

Proof. It is clear from (55) that ξ∗
+

is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ũ ∈W 1,p

0 (�) such that

ξ∗
+
(ũ)= inf [ξ∗

+
(u) : u ∈W 1,p

0 (�)].

As in the proof of Proposition 5, using hypothesis H(vii) and the fact that 2< p,
we have ξ∗

+
(t û1,2) < 0 for t ∈ (0, 1) small, which give ξ∗

+
(ũ) < 0= ξ∗

+
(0); hence

ũ 6= 0, showing that ũ = u+ by Claim 1.
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But u+ ∈ int C+ and ξ∗|C+ = ξ
∗
+
|C+ (see (55)). Therefore u+ is a local C1

0(�)-
minimizer of ξ∗; hence it is a local W 1,p

0 (�)-minimizer of ξ∗ (see Theorem 2).
Similarly for v− ∈ −int C+, using this time the functional ξ∗

−
. �

We assume that Kξ∗ is finite (otherwise, we already have an infinity of dis-
tinct nodal solutions). Also, without any loss of generality, we assume that
ξ∗(v−) ≤ ξ

∗
+
(u+) (the analysis is similar if the opposite inequality holds). By

virtue of Claim 2, as in [Aizicovici et al. 2008, proof of Proposition 29] we can
find ρ ∈ (0, 1) small such that

(57) ξ∗(v−)≤ ξ∗(u+) < inf [ξ∗(u) : ‖u−u+‖= ρ] = η∗ρ and ‖v−−u+‖>ρ.

Note that ξ∗ is coercive (see (55)); hence it satisfies the C-condition. This fact
and (57) permit the use of the mountain pass theorem. So, we can find y0 ∈W 1,p

0 (�)

such that

(58) y0 ∈ Kξ∗ and η∗ρ ≤ ξ
∗(y0).

From (57), (58) and Claim 1, we have

(59) y0 ∈ [v−, u+], y0 6∈ {v−, u+}.

Since y0 is a critical point of ξ∗ of mountain pass type, we have

(60) C1(ξ
∗, y0) 6= 0.

Using the homotopy invariance of critical groups, we have Ck(ξ
∗, 0)= Ck(ϕ, 0)

for all k ≥ 0, which gives (see Proposition 9)

(61) Ck(ξ
∗, 0)= δk,dm Z for all k ≥ 0.

From (60), (61) and since dm ≥ 2, we infer that y0 6= 0. Then the extremality
of u+ and v− and the fact that y0 ∈ [v−, u+] imply that y0 ∈C1

0(�) (see [Lieberman
1991]) is a nodal solution of (1).

Using the tangency principle of [Pucci and Serrin 2007, p. 35], we have

(62) v−(z) < y0(z) < u+(z) for all z ∈�.

Let ρ = max{‖u+‖, ‖v−‖} and let ξρ > 0 as postulated by hypothesis H(vi).
Then, for ξ̃ > ξρ , we have

−1p y0(z)−1y0(z)+ ξ̃ |y0(z)|p−2 y0(z)

= f (z, y0(z))+ ξ̃ |y0(z)|p−2 y0(z)≤ f (z, u+(z))+ ξ̃u+(z)p−1

=−1pu+(z)−1u+(z)+ ξ̃u+(z)p−1 a.e. in �.
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Setting h(z)= f (z, y0(z))+ ξ̃ |y0(z)|p−2 y0(z) and ĥ= f (z, u+(z))+ ξ̃u+(z)p−1,
we see that h, ĥ ∈ L∞(�) and h≺ ĥ. Since u+ ∈ int C+, we can apply Proposition 3
and infer that u+− y0 ∈ int C+. Similarly we show that y0− v− ∈ int C+. �

So, we can state the following multiplicity theorem concerning problem (1). We
stress that the result is proved without assuming any differentiability on the function
x → f (z, x) (see hypotheses H). In addition our multiplicity theorem provides
precise sign information for all the solutions produced.

Theorem 11. If hypotheses H hold, the problem (1) has at least five nontrivial
smooth solutions:

u0, û ∈ int C+ with u0− û ∈ int C+,

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+,

and
y0 ∈ C1

0(�) nodal s.t. y0− v0 ∈ int C+, u0− y0 ∈ int C+.

Next, by strengthening the regularity condition on f (z, · ), we will be able to
produce a second nodal solution.

The new hypotheses on the reaction f (z, x) are the following:

Hypotheses Ĥ. (i) f :�×R→ R is a measurable function.

(ii) For a.a. z ∈�, we have f (z, 0)= 0 and f (z, · ) ∈ C1(R).

(iii) | f ′x(z, x)| ≤ α(z)+ c|x |r−2 for a.a. z ∈�, all x ∈ R, with α ∈ L∞(�)+, c> 0
and p ≤ r < p∗.

(iv) If F(z, x)=
∫ x

0
f (z, s) ds, then

lim
x→±∞

pF(z, x)
|x |p

= λ̂1(p) uniformly for a.a. z ∈�

and, for some τ > 2,

lim
x→±∞

f (z, x)x − pF(z, x)
|x |τ

≤ β̂ < 0 uniformly for a.a. z ∈�.

(v) There exist functions w± ∈W 1,p(�)∩C(�) such that

w−(z)≤ c− < 0< c+ ≤ w+(z) for all z ∈�,

ess sup
�

f ( · , w+( · ))≤ 0≤ ess inf
�

f ( · , w−( · ))

and

Ap(w−)+ A(w−)≤ 0≤ Ap(w+)+ A(w+) in W−1,p′(�)=W 1,p
0 (�)∗

(where 1/p+ 1/p′ = 1).
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(vi) For every ρ > 0, there exists ξρ > 0 such that, for a.a. z ∈ �, the function
x→ f (z, x)+ ξρ |x |p−2x is nondecreasing on [−ρ, ρ].

(vii) There exists integer m ≥ 2 such that

λ̂m(2)≤ f ′x(z, 0)≤ λ̂m+1(2) a.e. in �, λ̂m(2) 6= f ′x(z, · ), λ̂m+1(2) 6= f ′x(z, · ),

f ′x(z, 0)= lim
x→0

f (z, x)
x

uniformly for a.a. z ∈�.

In what follows, we use the notation and the functionals introduced in the proof
of Proposition 10.

Proposition 12. If hypotheses Ĥ hold, then problem (1) has a second nodal solution
ŷ ∈ C1

0(�) such that

u+− ŷ ∈ int C+ and ŷ− v− ∈ int C+.

Proof. We assume that Kξ∗+
is finite (otherwise we already have an infinity of nodal

solutions). From the proof of Proposition 10, we have

{0, u+, v−, y0} ⊆ Kξ∗+
⊆ [v−, u+].

We know that u+ ∈ int C+ and v− ∈ −int C+ are local minimizers of the func-
tional ξ∗ (see Claim 2 in the proof of Proposition 10). So, we have

(63) Ck(ξ
∗, u+)= Ck(ξ

∗, v−)= δk,0Z for all k ≥ 0.

Also, from (61) we have

(64) Ck(ξ
∗, 0)= δk,dm Z for all k ≥ 0.

Moreover, since ξ∗ is coercive (see (55)), we have

(65) Ck(ξ
∗,∞)= δk,0Z for all k ≥ 0.

Claim 1. Ck(ϕ, y0)= Ck(ξ
∗, y0) for all k ≥ 0.

Proof. We consider the homotopy h̃ : [0, 1]×W 1,p
0 (�)→ R defined by

h̃(t, u)= (1− t)ξ∗(u)+ tϕ(u) for all (t, u) ∈ [0, 1]×W 1,p
0 (�).

We have h̃(0, · ) = ξ∗( · ) and h̃(1, · ) = ϕ( · ) and both functionals satisfy the
C-condition. Let {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p

0 (�) such that

(66) tn→ t, un→ y0 in W 1,p
0 (�) and (h̃)′u(tn, un)= 0 for all n ≥ 1.

From the equation in (66), we have

Ap(un)+ A(un)= (1− tn)Ng(un)+ tn N f (un) for all n ≥ 1,
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by (55). Hence

(67)
{
−1pun(z)−1un(z)= (1−tn)g(z, un(z))+tn f (z, un(z)) a.e. in �,

un|∂� = 0 for all n ≥ 1.

From (67) and [Lieberman 1991], we know that we can find γ ∈ (0, 1) and
M > 0 such that

(68) un ∈ C1,γ
0 (�) and ‖un‖C1,γ

0 (�)
≤ M for all n ≥ 1.

From (68) and the compact embedding of C1,γ
0 (�) into C1

0(�), by passing to a
suitable subsequence if necessary, we may assume by (66) that

(69) un→ y0 in C1(�).

Since y0 ∈ intC1,γ
0 (�)
[v−, u+] (see Theorem 11), from (69) it follows that

un ∈ [v−, u+], un 6= v−, un 6= u+ for all n ≥ n0;

this, by (55), gives {un}n≥n0 ⊆ Kξ∗ , which contradicts our hypothesis that Kξ∗ is
finite. So, (66) cannot happen, and, from the homotopy invariance of critical groups,
we have

Ck(h̃(0, · ), y0)= Ck(h̃(1, · ), y0) for all k ≥ 0,

which yields the claim. �

From (60) and Claim 1, we have

(70) C1(ϕ, y0) 6= 0.

Claim 2. Ck(ϕ, y0)= δk,1Z for all k ≥ 0.

Proof. From [Cingolani and Vannella 2007, Lemma 2.2], we know that we can find
ρ > 0 and a C2-function ϑ : V ∩ Bρ→ R (recall V = H−⊕ H 0 (see Section 2),
while Bρ = {u ∈W 1,p

0 (�) : ‖u‖ ≤ ρ}) such that

〈ϑ ′′(0)v, u〉 = 〈ϕ′′(y0)v, u〉 for all u, v ∈W 1,p
0 (�).

In addition ϑ ′′(0) is a Fredholm operator and kerϑ ′′(0)= H 0. From [Cingolani
and Vannella 2003, p. 286], we have

(71) Ck(ϕ, y0)= Ck(ϑ, 0) for all k ≥ 0.

Then (70), (71) imply that

(72) C1(ϑ, 0) 6= 0,

and so

(73) d− = dim H− ≤ 1.
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Let d0 = dim H 0. We consider two cases:

Case I: d0 = 0. In this case, u = 0 is a nondegenerate critical point of ϑ with Morse
index d−. Hence Ck(ϑ, 0) = δk,d−Z for all k ≥ 0 (see Section 2). In view of (72)
we then have d− = 1, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

Case II: d0 > 0. In this case, u = 0 is a degenerate critical point of ϑ . From (73)
we see that d− = 1 or d− = 0.

If d−= 1, then, from [Cingolani and Vannella 2003, p. 286], we have Ck(ϑ, 0)=
δk,1Z for all k ≥ 0, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

If d− = 0, then, from (72) and [Cingolani and Degiovanni 2009], we have
Ck(ϑ, 0)= δk,1Z for all k ≥ 0, so Ck(ϕ, y0)= δk,1Z for all k ≥ 0 (see (71)).

This proves Claim 2. �

Claims 1 and 2 imply that

(74) Ck(ξ
∗, y0)= δk,1Z for all k ≥ 0.

Suppose that Kξ∗+
= {0, u+, v−, y0}. Then, from (63), (64), (65), (74) and the

Morse relation (see (4)) with t=−1, we have (−1)dm =0, a contradiction. Therefore,
we can find ŷ ∈ Kξ∗+

, ŷ 6∈ {0, u+, v−, y0}. We have ŷ ∈ [v−, u+] (see Claim 1 in
the proof of Proposition 10) and so ŷ is nodal. Moreover, ŷ ∈ C1

0(�) (nonlinear
regularity) and, as we did for y0 (see the proof of Proposition 10), we show that
ŷ ∈ intC1

0 (�)
[v−, u+]. �

Now we can state the second multiplicity theorem for problem (1).

Theorem 13. If hypotheses Ĥ hold, then problem (1) has at least six nontrivial
smooth solutions

u0, û ∈ int C+ with û− u0 ∈ int C+,

v0, v̂ ∈ −int C+ with v0− v̂ ∈ int C+

and y0, ŷ ∈C1
0(�) nodal with u0− y0, u0− ŷ ∈ int C+ and y0−v0, ŷ−v0 ∈ int C+.
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