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A GEOMETRIC MODEL OF AN ARBITRARY
REAL CLOSED FIELD

STANISŁAW SPODZIEJA

We give an elementary construction of any real closed field in terms of Nash
function fields. We also give a characterization of any Archimedean field in
terms of fields of Nash functions.

Introduction

In the study of Hilbert’s 17th problem, orderings of a real field k are of importance
(see [Alonso 1986; Alonso et al. 1984; Artin 1927; Artin and Schreier 1927a;
1927b; Bochnak and Efroymson 1980; Bröker 1982; Dubois 1981; Guangxing 2005;
Marshall 2003; Prestel and Delzell 2001; Schwartz 1980]). By the Artin–Schreier
theorem [Artin 1927; Artin and Schreier 1927a; 1927b], the study of such orderings
amounts to considering real closures of k. The aim of this article is to construct
a universal model of an arbitrary real closed field. To this end, we construct, in
terms of Nash functions, all real closures of the rational function fields k =Q(3T ),
where 3T = (3t : t ∈ T ) and T 6=∅ is a system of any number of variables. This
suffices to achieve our purpose, because any real closed field R is order-preserving
isomorphic to a real closure of some field Q(3T ) (Corollary 5.5). If T =∅, then
Q(3T )=Q, and the above is obvious. We assume the Kuratowski–Zorn lemma,
so the set T can be well-ordered, provided T 6=∅.

L. Bröker [1982] proved in his ultrafilter theorem that there exists a one-to-one
correspondence between the family of ultrafilters and the family of orderings in
Q(3T ), or equivalently with the real closures of Q(3T ). We prove that there exists
a one-to-one correspondence between the family of orderings in Q(3T ) and the
family of plain filters (Theorem 5.2, Proposition 2.4, and Corollary 2.5). By a plain
filter we mean a filter � of subsets of RT with these properties:

(1) Any U ∈� is a nonempty open connected semialgebraic set.

(2) For any algebraic set V ( RT , where V = P−1(0) and P ∈ Q[3T ], some
connected component of RT

\ V belongs to �.
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(3) For any U1,U2 ∈�, there exists U3 ∈� such that U3 ⊂U1 ∩U2.

The correspondence between orderings and plain filters is as follows: For any
ordering � of Q(3T ), there exists a unique plain filter � such that f � 0 if and
only if f > 0 on some U ∈�, where > is the usual ordering on R. Conversely, any
plain filter � determines a unique ordering � of Q(3T ) in this way.

The main result of this article is Theorem 5.2, where we give a construction of
any real closure of Q(3T ) in terms of Nash functions. The main idea and motivation
for the above considerations was a geometric construction of the algebraic closure
of C(31, . . . , 3m) [Spodzieja 1996]. More precisely, for any plain filter � of open
connected semialgebraic sets and any U ∈�, the ring N(U ) of Q-Nash functions
(see Section 1) on U is a domain. In

⋃
U∈� N(U ), we introduce an equivalence

relation ∼ : ( f1 :U1→ R)∼ ( f2 :U2→ R) if and only if f1|U3 = f2|U3 for some
U3∈�. The set N� of equivalence classes of∼with the usual operations of addition
and multiplication is a field, which is a real closure of Q(3T ) (see Theorem 5.2,
and compare [Spodzieja 1996, Theorem 2.4 and Corollary 2.5]). One can view N�

as the inverse limit of the étale topology
⋃

U∈� N(U ) of RT [Grothendieck 1967].
In Section 3, we prove that an ordering � of Q(3T ) is Archimedean if and only

if the set
⋂

U∈� U is nonempty for the plain filter � determining �; and if that is
the case, this set has exactly one point (Theorem 3.1). In Section 4, we give some
examples of non-Archimedean orderings corresponding to the one in [Spodzieja
1996].

1. Preliminaries

Let K be the field Q of rational, R of real, or C of complex numbers. Let T be a
nonempty set. We denote by 3T = (3t : t ∈ T ) a system of independent variables
3t , by K[3T ] the ring of polynomials in 3T over K, and by K(3T ) the quotient
field of K[3T ]. Note that for any P ∈ K(3T ), we have P ∈ K(3t1, . . . , 3tm ) for
some finite number of indices t1, . . . , tm ∈ T .

We denote by KT the set of all functions T → K equipped with the unique
topology for which all projections KT

3 x 7→ x(t) ∈ K, t ∈ T are continuous.
Let L be a subfield of K. A subset of KT is called L-algebraic, or simply algebraic

if L=K, when it is defined by a finite system of equations P = 0, where P ∈ L[3T ].
Any L-algebraic set in KT is of the form {x ∈ KT

: (x(t1), . . . , x(tm)) ∈ V }, where
m ∈ N, t1, . . . , tm ∈ T , and V ⊂ Km is an L-algebraic subset of Km .

If L is a subfield of R, then we assume that L is an ordered field with order
induced from R.

Let L be a subfield of R. A subset of RT is called L-semialgebraic when it is
defined by a finite alternative of finite systems of inequalities P > 0 or P ≥ 0, where
P ∈ L[3T ]. Analogously to the above, any L-semialgebraic set in RT is of the form
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{x ∈ RT
: (x(t1), . . . , x(tm)) ∈ X}, where m ∈ N, t1, . . . , tm ∈ T , and X ⊂ Rm is

an L-semialgebraic subset of Rm . A set is called open basic L-semialgebraic if it
has the form {x ∈ RT

: gi (x) > 0, i = 1, . . . , n}, for some n ∈ N and gi ∈ L[3T ],
i = 1, . . . , n.

We now list some basic properties of algebraic and semialgebraic sets in infinite-
dimensional real vector spaces, which follow easily from their analogues in finite-
dimensional spaces [Benedetti and Risler 1990; Bochnak et al. 1987; Bochnak
and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski 1976; Prestel and
Delzell 2001; Tancredi and Tognoli 2006; Tworzewski 1990].

Proposition 1.1. Let L be a subfield of R (or K in (a)).

(a) The family of L-algebraic sets in KT is closed with respect to union and
intersection of a finite number of sets.

(b) The family of L-semialgebraic sets in RT is closed with respect to complement,
union, and intersection of a finite number of sets.

(c) (Tarski–Seidenberg) Let πt1,...,tm : R
T
3 x 7→ (x(t1), . . . , x(tm)) ∈ Rm , where

t1, . . . , tm ∈ T . If X ⊂ RT , Y ⊂ Rm are L-semialgebraic sets, then πt1,...,tm (X)
and π−1

t1,...,tm (Y ) are L-semialgebraic sets, too.

(d) For any L-semialgebraic set X ⊂ RT , the interior Int X , closure X , and the
boundary ∂X are L-semialgebraic sets.

Let L be a subfield of R. A function f : U → R, where U ⊂ RT is an open
L-semialgebraic set, is called an L-Nash function if f is analytic and there exists a
nonzero polynomial P ∈ L[3T , Z ] such that P(λ, f (λ))= 0 for λ ∈U . In fact, f
depends on a finite number of variables, so the analyticity of f is clear. The ring of
L-Nash functions in U is denoted by NL(U ).

The next result follows via R. Thom’s lemma (see for instance [Bochnak et al.
1987, Proposition 2.5.4 and the arguments of Theorems 2.3.6 and 2.4.4]) from the
fact that any L-semialgebraic set in a finite-dimensional vector space over R is the
disjoint union of a finite number of L-semialgebraic sets which are homeomorphic
to Cartesian products of intervals.

Proposition 1.2. Let L be a subfield of R. Any connected component of an L-
semialgebraic subset of RT is L-semialgebraic.

A function f :U→C, where U ⊂CT is an open set, is called a C-Nash function
if f is holomorphic and there exists a nonzero polynomial P ∈ C[3T , Z ] such
that P(λ, f (λ))= 0 for λ ∈U . The ring of C-Nash functions in U is denoted by
NC(U ).

For the basic properties of Nash functions and semialgebraic sets in finite-
dimensional vector spaces, see, for instance, [Benedetti and Risler 1990; Bochnak
et al. 1987; Bochnak and Efroymson 1980; Efroymson 1974; 1976; 1981; Mostowski
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1976; Nash 1952; Tancredi and Tognoli 2006; Tworzewski 1990]. From these
properties, we immediately obtain:

Proposition 1.3. Let K = R or K = C, let L be a subfield of K, and let U ⊂ KT

be an open connected set. Then NK(U ) is a domain, provided U is semialgebraic
when K = R. In particular NQ(U ) is a domain.

2. Orderings in Q(3T )

Let T be a nonempty set. A family � of subsets of RT will be called a c-filter
(connected sets filter) if it satisfies these conditions:

(i) Any U ∈� is a nonempty open connected Q-semialgebraic set.

(ii) For any Q-algebraic set V  RT , there exists U ∈� such that V ∩U =∅.

(iii) For any U1,U2 ∈�, there exists U3 ∈� such that U3 ⊂U1 ∩U2.

Proposition 2.1. Let � be a c-filter of subsets of RT . The set ∂� :=
⋂

U∈� U has
at most one point. Moreover, whenever T is a finite set, ∂� 6=∅ if and only if there
exists a bounded set U ∈�.

Proof. If x1, x2 ∈ ∂� with x1 6= x2, then for some polynomial f ∈Q[3T ], we have
f (x1) < 0< f (x2). Hence, for some W ∈� such that W ∩ f −1(0)=∅, we have
both f (x) < 0 and f (x) > 0 for some x ∈W . This contradiction gives the first part
of the assertion.

Now let T ={t1, . . . , tm}. Suppose that ∂� 6=∅ and each W ∈� is an unbounded
set. Take x0 ∈ ∂�, and let f = (3T ) = 3

2
t1 + · · · +3

2
tm − r , where r ∈ Q and

r > x2
0(t1)+ · · · + x2

0(tm). Then f −1(0)∩W =∅ for some W ∈�. Since W is a
connected unbounded set, x0 is not an accumulation point of W . This contradicts
the choice of x0. Now assume that some W ∈ � is bounded. Then it is easy to
see that there exists a sequence of nonempty compact sets C1 ⊃ C2 ⊃ · · · with
diameters decreasing to 0 and such that U ∩Cn 6=∅ for all U ∈� and n ∈N. Then
there exists x ∈

⋂
n∈N Cn belonging to ∂�. �

Let us fix a c-filter � and define a relation �� in Q(3T ) by

f �� 0 ⇐⇒ there exists U ∈� such that f (x) > 0 for all x ∈U,

f �� g ⇐⇒ f − g �� 0.

Let � be a family of subsets of RT . If an ordering � of Q(3T ) satisfies f � 0
if and only if f > 0 on some U ∈�, we say that � determines the ordering �.

Lemma 2.2. The relation �� is an ordering in Q(3T ), or in other words, a total
ordering satisfying

f �� g ⇒ f + h �� g+ h and f �� 0, g �� 0 ⇒ f g �� 0.
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Proof. The relation �� is well-defined. Indeed, if f ∈ Q(3T ) and f 6= 0, then
the union of the sets of zeros and poles of f is contained in some Q-algebraic set
V  Rm . Hence, by (i) and (ii), for some U ∈�, the values f (x) have a fixed sign
for all x ∈ U . Moreover, if for some U1,U2 ∈ � we have f (x) > 0 for x ∈ U1

and f (x) ≤ 0 for x ∈ U2, then 0 < f (x) ≤ 0 for x ∈ U1 ∩U2, and U1 ∩U2 6= ∅
by (iii). This is impossible. It is easy to see that the remaining conditions are also
satisfied. �

Proposition 2.3. Let �1, �2 be c-filters. If the orderings ��1 and ��2 are equal,
then �= {U ∪W :U ∈�1, W ∈�2} is a c-filter determining the ordering ��1 .

Proof. Since �1 and �2 are c-filters, it suffices to prove that U ∩ W 6= ∅ for
all U ∈ �1 and W ∈ �2. Suppose U ∩W = ∅ for some U ∈ �1 and W ∈ �2.
Let U = U1 ∪ · · · ∪ Uk ∪ V be a decomposition of U into disjoint basic open
semialgebraic sets U1, . . . ,Uk and a semialgebraic set V included in an algebraic
set. By (i) and (ii), there exists U ′ ∈�1 such that U ′ ⊂Ui for some i ∈ {1, . . . , k}.
Since Ui = {x ∈ RT

: f j (x) > 0, j = 1, . . . , n} for some f1, . . . , fn ∈Q[3T ], by
the assumption we have f1, . . . , fn ��1 0, and so there exists W1 ∈ �2 such that
f j (x) > 0 for all x ∈ W1 and j = 1, . . . , n. By (iii), there exists W2 ∈ �2 such
that W2 ⊂W ∩W1 and f j (x) > 0 for all j = 1, . . . , n and x ∈W2. Thus W2 ⊂U ,
which contradicts the assumption. �

Now let � be an ordering in Q(3T ), and let

U� =

{ n⋂
i=1

f −1
i ((0,+∞))⊂ RT

: fi ∈Q(3T ), fi � 0 for i = 1, . . . , n, n ∈ N

}
,

where we regard f ∈Q(3T ) as a function f : RT
→ R. By the definition of U�

and the Tarski transfer principle (see [Tarski 1948; Seidenberg 1954]), we find that
∅ 6∈U�. Moreover, the relation � is defined by

f � 0 ⇐⇒ there exists U ∈U� such that f (x) > 0 for all x ∈U.

The sets of the family U� may be disconnected, so U� is not a c-filter. We will
prove that the ordering � is defined by some c-filter.

Proposition 2.4. There exists a unique c-filter � with the following properties:

(a) For any f ∈Q(3T ), we have f �� 0 if and only if f � 0.

(b) For any U ∈ �, there exists a Q-algebraic set V ( RT such that U is a
connected component of RT

\ V .

(c) For any Q-algebraic set V (RT , some connected component of RT
\V belongs

to �.

Proof. Let F be the family of all connected components of sets U ∈U�.
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Claim 1. Every U ∈U� has a connected component U0 such that U0 ∩W 6=∅ for
any W ∈U�.

Let U ∈ U� and let U = U1 ∪ · · · ∪Un be the decomposition into connected
components. Assume to the contrary that there exist W1, . . . ,Wn ∈U� such that
Ui ∩Wi =∅ for i = 1, . . . , n. Then U ∩W1 ∩ · · · ∩Wn =∅, which is impossible.
This gives Claim 1.

Claim 2. Each U ∈U� has exactly one connected component SU that intersects
every W ∈U�.

Let U ∈U�, and let U1, . . . ,Up be the connected components of U . Then

(1) U =
s⋂

l=1

{x ∈ RT
: gl(x) > 0}

for some nonzero polynomials gl ∈Q[3T ], with gl � 0 for l = 1, . . . , s, and

Ui = [ f −1
i (0)∩Ui ] ∪

n⋃
j=1

m⋂
k=1

{x ∈ RT
: fi, j,k(x) > 0}, i = 1, . . . , p,

for some nonzero polynomials fi , fi, j,k ∈Q[3T ]. Denote by εi, j,k the sign of fi, j,k

in the ordering �. Then εi, j,k 6= 0 and εi, j,k fi, j,k � 0 for any i, j, k. Observe that
for some i ∈ {1, . . . , p} and j ∈ {1, . . . , n}, we have fi, j,k � 0 for k = 1, . . . ,m.
Indeed, in the opposite case,

∅=
s⋂

l=1

p⋂
i=1

n⋂
j=1

m⋂
k=1

{x ∈ RT
: gl(x) > 0, εi, j,k fi, j,k(x) > 0} ∈U�,

which is impossible. So, for some i0 ∈ {1, . . . , p} and j0 ∈ {1, . . . , n},

U ′ =
m⋂

k=1

{x ∈ RT
: fi0, j0,k(x) > 0} ∈U�,

and U ′∩U j =∅ for j 6= j0. Hence, by Claim 1, SU =U j0 is the unique connected
component of U satisfying Claim 2.

Claim 3. The family �= {SU :U ∈U�} is a c-filter.

Since for every Q-algebraic set V ⊂RT there exists U ∈U� such that U∩V =∅,
we have SU ∩ V =∅. Hence, it suffices to prove that for any SU1, SU2 ∈�, there
exists SU3 ∈� contained in SU1 ∩ SU2 . Indeed, by the argument of Claim 2, there
exist W1,W2 ∈U� such that W1⊂ SU1 and W2⊂ SU2 . Hence, SW1∩W2 ⊂W1∩W2⊂

SU1 ∩ SU2 and SW1∩W2 ∈�.

Claim 4. The c-filter � defined in Claim 3 satisfies the assertion of Proposition 2.4.
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Part (a) is obvious.
Let U ∈ U� be of the form (1), f = g1 . . . gs , and V = f −1(0). Then, by the

definition of SU , we see that SU is a connected component of RT
\V . This gives (b).

Let V = f −1(0) be a Q-algebraic subset of RT . Then U ={x ∈RT
: f 2(x)>0}=

RT
\ V ∈U� and SU ∈� is a connected component of RT

\ V . This gives (c) and
completes the proof. �

We call the c-filter � defined in Proposition 2.4 the plain filter for the ordering �
and denote it by ��.

From Proposition 2.4, we immediately obtain:

Corollary 2.5. The mapping � 7→�� is a one-to-one correspondence between the
set of orderings of Q(3T ) and the set of plain filters.

Remark 2.6. From the ultrafilter theorem [Bröker 1982], we see that for any
ultrafilter F of subsets of RT , there exists a plain filter �⊂ F.

Remark 2.7. It is easy to observe that the statements of this section hold with Q

replaced by R.

3. Archimedean orderings in Q(3T )

Let � be an ordering of Q(3T ). Then one can assume that T is linearly ordered by

t1 � t2 ⇐⇒ 3t1 �3t2 .

If f � g, then we also write g ≺ f .

Theorem 3.1. The following conditions are equivalent:

(a) The field (Q(3T ),�) is Archimedean.

(b) There exists x� ∈ ∂�� such that the set of coordinates of x� is algebraically
independent over Q.

(c) There exists x� ∈ ∂�� such that f � 0 if and only if f (x�) > 0.

(d) There exists x� ∈ ∂�� such that x� ∈U for any U ∈��.

Proof. Assume (a). Then for any t1, . . . , tn ∈ T with t1 ≺ · · · ≺ tn , and for the
projection πt1,...,tn : R

T
7→ (x(t1), . . . , x(tn)) ∈ Rn , the family

(2) �t1,...,tn = {πt1,...,tn (U ) :U ∈�}

determines an Archimedean order in Q(3t1, . . . , 3tn ). Thus for some W ∈�t1,...,tn ,
the function f = 32

t1 + · · · +3
2
tn is bounded on W . So the set W is bounded.

Hence, by Proposition 2.1, there exists (x1, . . . , xn) ∈ ∂�t1,...,tn . Since the pro-
jections πt1,...,tn are open, it is easy to observe that, for tk1, . . . , tk j ∈ {t1, . . . , tn}
with tk1 ≺ · · · ≺ tk j , we have (xk1, . . . , xk j ) ∈ ∂�tk1 ,...,tk j

. Consequently, there
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exists x ∈ RT such that for any t1, . . . , tn ∈ T with t1 ≺ · · · ≺ tn , we have
πt1,...,tn (x) ∈ ∂�t1,...,tn . Summing up, x ∈ ∂�. The set of coordinates of x is
algebraically independent over Q: otherwise, f (x)=0 for some nonzero polynomial
f ∈Q[3T ], and so f is infinitesimal. This contradicts (a) and gives (b).

Assume (b). Then any nonzero f ∈Q(3T )with f �0 is defined at x�. Moreover,
f (x�) 6= 0, so f (x�) > 0. Conversely, assume that f (x�) > 0. Then obviously for
some connected component U of f −1(0,+∞), we have U ∈�� and f (x) > 0 for
x ∈U . Summing up, we obtain (c).

The implication (c)⇒ (d) is trivial.
Now assume (d). Then we immediately obtain (b), and hence, no f ∈Q(3T )

is infinitesimal, and the field (Q(3T ),�) is Archimedean. This gives (a) and
completes the proof. �

Remark 3.2. The assertion of Theorem 3.1 also holds for every c-filter determin-
ing � in place of the plain filter ��.

Theorem 3.1 implies:

Corollary 3.3. Let T be a finite set. Then the set of Archimedean orderings of
Q(3T ) is a dense subset of the space of orderings in Q(3T ) in the path topology
(see, for instance, [Marshall 2008]) of the real spectrum Sper(Q[3T ]).

4. Examples of non-Archimedean orderings

Let m be a fixed positive integer and 3 a system of m variables 31, . . . , 3m .
Take any P ∈ R[3]. Let 0P ⊂ Rm be a set defined by

0P = {(λ1, . . . , λm) ∈ Rm
: P(λ1, . . . , λm−1, λm + γ )= 0 for some γ ∈ [0,∞)}.

We define a polynomial ω(P)∈R[31, . . . , 3m−1] (or a number ω(P)∈R if m= 1)
by ω(P)= 0 for P = 0, and ω(P)= P0 for P 6= 0, where

P = P03
d
m + P13

d−1
m + · · ·+ Pd

and Pi ∈ R[31, . . . , 3m−1] (or Pi ∈ R if m = 1) for i = 0, . . . , d and P0 6= 0.
Let us define sets WP ⊂Rm , for P ∈R[3]. The definition will be inductive with

respect to the number of variables 31, . . . , 3m . For P ∈ R[3], we put

(3) WP =

{
R \0P ⊂ R if m = 1,
(Rm
\0P)∩ (Wω(P)×R)⊂ Rm if m > 1.

By the Tarski–Seidenberg theorem — see Proposition 1.1(c) — the sets WP are
semialgebraic for all P ∈ R[3].

Analogously to Theorem 1.1 of [Spodzieja 1996], we prove the following propo-
sition, which gives an example of c-filter.
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Proposition 4.1. The family W= {WP : P ∈ R[3]} satisfies these conditions:

R0. WP ⊂ {λ ∈ Rm
: P(λ) 6= 0}.

R1. WP ∩WQ =WP Q .
R2. For P 6= 0, WP is an unbounded subset of Rm .
R3. For P 6= 0, WP is an open, connected and simply connected set.

Moreover, one can demand that

R4. WP = Rm for P = const, P 6= 0.

In particular, W contains the c-filter

�= {WP : P ∈Q[3]}.

Lemma 4.2. Let 1 ≤ i1 < · · · < im ≤ n, and let P ∈ R[3i1, . . . , 3im ]. Let
Q ∈ R[31, . . . , 3n] be a polynomial of the form

(4) Q(x1, . . . , xn)= P(xi1, . . . , xim ), (x1, . . . , xn) ∈ Rn.

Then WP ⊂ Rm , WQ ⊂ Rn , and

WQ ⊂ {(x1, . . . , xn) ∈ Rn
: (xi1, . . . , xim ) ∈WP}.

Proof. For P = 0 or n = m, the assertion is trivial. Assume that P 6= 0 and n > m.
Consider the case n = m+ 1. Then there exists 1≤ j ≤ n such that

(3i1, . . . , 3im )= (31, . . . , 3n− j ,3n− j+2, . . . , 3n),

under the obvious convention for j = 1 and j = n. Denote the i-th iteration of ω
by ωi , where ω0(P)= P . Then, for (x1, . . . , xn−i ) ∈ Rn−i ,

ωi (Q)(x1, . . . , xn−i )=


ωi (P)(x1, . . . , xn− j , xn− j+2, . . . , xn−i ) if 0≤ i ≤ j − 2,
ωi (P)(x1, . . . , xn− j ) if i = j − 1,
ωi−1(P)(x1, . . . , xn−i ) if j ≤ i ≤ n.

Hence,

0ωi (Q) = {(x1, . . . , xn−i ) ∈ Rn−i
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ 0ωi (P)}

for 0≤ i ≤ j − 2, and

0ω j−1(Q) = {(x1, . . . , xn− j+1) ∈ Rn− j+1
: (x1, . . . , xn− j ) ∈ 0ω j−1(P)}

and 0ωi (Q) = 0ωi−1(P) for j ≤ i ≤ n. In particular, Wωi (Q) =Wωi−1(P) for j ≤ i ≤ n.
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Summing up, by (3),

WQ =

n⋂
i=0

[(Rn−i
\0ωi (Q))×Ri

]

=

j−2⋂
i=0

{(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ Rn−i−1

\0ωi (P)}

∩ {(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j ) ∈ Rn− j

\0ω j−1(P)} ∩ [Wω j (Q)×R j
]

⊂

j−2⋂
i=0

{(x1, . . . , xn) ∈ Rn
: (x1, . . . , xn− j , xn− j+2, . . . , xn−i ) ∈ Rn−i−1

\0ωi (P)}

∩ [Wω j−1(P)×R j
]

= {(x1, . . . , xn) ∈ Rn
: (xi1, . . . , xim ) ∈WP}.

This gives the assertion for n =m+ 1. Hence, by an easy induction with respect to
n−m, we obtain the assertion. �

Let T be a linearly ordered set and let � be the ordering of T .
For any t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , we define a projection map

πt1,...,tm : R
T
3 x 7→ (x(t1), . . . , x(tm)) ∈ Rm .

Define a family � of semialgebraic subsets U of RT by

(5) U = (πt1,...,tm )
−1(WP),

where m ∈ N, t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , and P ∈Q[3t1, . . . , 3tm ] \ {0}.

Proposition 4.3. The family � is a c-filter.

Proof. By Proposition 4.1 (condition R2), any U ∈� is a nonempty set.
Let V ( RT be a Q-algebraic set, and let P ∈ Q[3T ] \ {0} be such that V =
{x ∈ RT

: P(x) = 0}. Then P ∈ Q[3t1, . . . , 3tm ] \ {0} for some t1, . . . , tm ∈ T ,
t1 ≺ · · · ≺ tm , and U = (πt1,...,tm )

−1(WP). Applying Proposition 4.1 (condition R0),
we obtain that U satisfies (i).

Let U1,U2 ∈ �. Let t1, . . . , tm, u1, . . . , un ∈ T satisfy t1 ≺ · · · ≺ tm and
u1 ≺ · · · ≺ un , and assume moreover that for some P ∈ Q[3t1, . . . , 3tm ] and
Q ∈Q[3u1, . . . , 3un ] we have U1= (πt1,...,tm )

−1(WP) and U2= (πu1,...,un )
−1(WQ).

Let v1, . . . , vs ∈ T , v1 ≺ · · · ≺ vs , be such that {t1, . . . , tm} ∪ {u1, . . . , un} ⊂

{v1, . . . , vs}, and let P, Q ∈ R[3v1, . . . , 3vs ] be polynomials of the form (4) de-
termined by P and Q, respectively. Then, by Proposition 4.1 (condition R1) and
Lemma 4.2,

(πv1,...,vs )
−1(WP Q)= (πv1,...,vs )

−1(WP)∩ (πv1,...,vs )
−1(WQ)⊂U1 ∩U2.

This gives (ii).
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Take any U ∈�. There exist t1, . . . , tm ∈ T and P ∈ R[3t1, . . . , 3tm ] \ {0} such
that t1 ≺ · · · ≺ tm and U = (πt1,...,tm )

−1(WP). By Proposition 4.1 (condition R3),
U satisfies (iii). This completes the proof. �

From the definition of the family �, we immediately obtain:

Corollary 4.4. For any t1, t2 ∈ T , we have t1 � t2 if and only if 3t1 �� 3t2 .

Let Q ∈Q[3T ] \ {0} and let �Q be a family of semialgebraic subsets U of RT

defined by

(6) U = (πt1,...,tm )
−1(WP ∩WQ),

where m ∈ N, t1, . . . , tm ∈ T , t1 ≺ · · · ≺ tm , and P Q ∈Q[3t1, . . . , 3tm ] \ {0}. By
Proposition 4.3, we have:

Corollary 4.5. �Q is a c-filter.

Let X ⊂ RT be an open semialgebraic set and let x̊ ∈ X be a point with rational
coordinates. There exist t1, . . . , tk ∈ T , t1 ≺ · · · ≺ tk , and an open semialgebraic set
Y ⊂ Rk such that X = {x ∈ RT

: (x(t1), . . . , x(tk)) ∈ Y }. Hence, there exists r > 0
such that

B := {x ∈ RT
: max

i=1,...,k
|x(ti )− x̊(ti )|< r} ⊂ X.

Let
P0 =3t1 . . . 3tk (3

2
t1 + · · ·+3

2
tk − 1/r2),

let U0 = (πt1,...,tk )
−1(WP0), and let F :U0→ RT be a mapping defined by

F(x)(t)=
{

x̊(t)+ 1/x(t) for x ∈U0, t ∈ {t1, . . . , tk},
x(t) for x ∈U0, t ∈ T \ {t1, . . . , tk}.

Proposition 4.6. {F(U ) :U ∈�P0} is a c-filter subset of X. In particular, for any
open semialgebraic set Y ⊂ RT , there exists c-filter subsets of Y .

Proof. By Lemma 4.2, any set U ∈ �P0 is a subset of U0. Moreover, F is an
open semialgebraic mapping, so F(U ) is semialgebraic for U ∈ �P0 . Hence,
{F(U ) :U ∈�P0} satisfies conditions (i)–(iii). �

From Proposition 4.6 and Theorem 3.1, we have that:

Corollary 4.7. The set of c-filters defined in Proposition 4.6 is a dense subset of the
space of orderings in Q(3T ) in the path topology of the real spectrum Sper(Q[3T ]).
Moreover, any ordering determined by such a c-filter is not Archimedean.

Remark 4.8. It is easy to see that the results of this section hold if we replace Q

by R.
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5. Fields of Nash functions

Let T be a nonempty set. We denote by N(X) the domain of Q-Nash functions on
an open connected semialgebraic set X ⊂ RT .

Let � be an ordering in Q(3T ) and let �� be the plain filter of subsets of RT

determining �. Let us introduce in
⋃

U∈�� N(U ) a relation ∼� by

( f1 :U1→ R)∼� ( f2 :U2→ R) ⇐⇒ ∃U∈�� (U ⊂U1 ∩U2 and f1|U = f2|U ).

From Proposition 2.4, we immediately see that ∼� is an equivalence relation. The
equivalence class of ∼� determined by f :U → R is denoted by [ f ]�, and the set
of all such classes by N�. The set N� is linearly ordered by

[ f ]� � 0 ⇐⇒ ∃U∈�� ( f ∈ N(U ) and f (x) > 0 for x ∈U ).

Proposition 5.1. The set N�, together with the usual operations

[ f1]�+ [ f2]� = [ f1|U + f2|U ]� , [ f1]� · [ f2]� = [ f1|U f2|U ]� ,

where f1 ∈ N(U1), f2 ∈ N(U2), and U ∈��, U ⊂U1 ∩U2, is a real field.

Proof. Since the ring N(U ) is a domain for any U ∈��, so is N�. We prove that
any nonzero f ∈N� has an inverse in N�. Indeed, there exists U ∈�� such that
f ∈ N(U ). Since f 6= 0, the set f −1(0) is contained in some proper Q-algebraic
subset of RT . Then, by the definition of c-filter, one can assume that f (λ) 6= 0 for
any λ ∈ U . Thus 1/ f ∈ N(U ), so f has an inverse in N�. Summing up, N� is a
field. Since −1 ∈ N(U ) is not a sum of squares in N(U ), it follows that −1 ∈ N�
is not a sum of squares in N�. �

Theorem 5.2. The field N� is a real closure of the field (Q(3T ),�).

Proof. Take any irreducible polynomial P ∈ N�[Z ] of odd degree d with respect
to Z . Then there exists U ∈ �� such that P ∈ N(U )[Z ]. Let t1, . . . , tm ∈
T , and let Ũ ⊂ Rm be an open connected semialgebraic set such that U =
{x ∈ RT

: (x(t1), . . . , x(tm)) ∈ Ũ }. By using the Hermite method (for Ũ ) we
deduce that there exists a decomposition U =U1 ∪ · · · ∪Uk ∪ V of U into disjoint
open basic Q-semialgebraic sets U1, . . . ,Uk and a semialgebraic set V included in
an algebraic set such that P(x, Z) has the same number of zeroes for all x ∈ Ui

and each of these zeroes is single. By (i) and (ii) in the definition of a c-filter,
there exists U ′ ∈�� such that U ′ ⊂Ui for some i ∈ {1, . . . , k}. Then there exists
k ∈ N, k > 0 such that P(x, Z) has exactly k zeroes for x ∈U ′, and so there exist
functions ξ1, . . . , ξk :U ′→ R with ξ1(x) < · · ·< ξk(x) such that P(x, ξi (x))= 0
for x ∈ U ′, i = 1, . . . , k. As ξi (x) are single zeroes of P(x, Z), by the Implicit
Function Theorem, ξi is a Nash function for i = 1, . . . , k. As N� is a real field
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(Proposition 5.1), N� is a real closed field. Since N� is an algebraic extension of
Q(3T ), by the Artin–Schreier Theorem, it is a real closure of (Q(3T ),�). �

Remark 5.3. The above results of this section also hold for an arbitrary c-filter
determining � in place of the plain filter ��. The results also hold if we put R in
place of Q.

From Theorems 3.1 and 5.2, we recover the familiar result that any Archimedean
field can be embedded in R.

Corollary 5.4. Let �� be a plain filter of subsets of RT determining an Archi-
medean ordering � of Q(3T ), and let x� ∈

⋂
U∈�� U. Then the mapping

N� 3 f 7→ f (x�) ∈ R

is an order-preserving monomorphism.

From Theorem 5.2, we immediately obtain:

Corollary 5.5. Let R be a real closed field with ordering �, and let T be the
transcendence basis of R over Q whose existence is guaranteed by the Kuratowski–
Zorn lemma. Assume that T 6= ∅ and let 3T = (3t : t ∈ T ) be a system of
independent variables. Then the field R is order-preserving isomorphic to a real
closure of the rational functions field Q(3T ), i.e., to some field N�.

Remark 5.6. Let K be an algebraically closed field of characteristic zero. Then
K = R[i], where i2

= −1, for some real closed field R. Let T ⊂ R be the
transcendence basis of K over Q. Assume that T 6=∅. Then K is isomorphic to an
algebraic closure of Q(3T ). By Theorem 1.1 of [Spodzieja 1996], one can introduce
a filter �C of open, connected, and simply connected semialgebraic subsets U of
CT satisfying conditions (i), (ii), and (iii). Then, analogously to [Spodzieja 1996],
one can introduce a geometric construction of the algebraic closure of Q(3T ) in
terms of complex Nash functions.
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