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A COMPACT EMBEDDING THEOREM FOR GENERALIZED
SOBOLEV SPACES

SENG-KEE CHUA, SCOTT RODNEY AND RICHARD L. WHEEDEN

We give an elementary proof of a compact embedding theorem in abstract
Sobolev spaces. The result is first presented in a general context and later
specialized to the case of degenerate Sobolev spaces defined with respect to
nonnegative quadratic forms on Rn. Although our primary interest con-
cerns degenerate quadratic forms, our result also applies to nondegener-
ate cases, and we consider several such applications, including the classical
Rellich–Kondrachov compact embedding theorem and results for the class
of s-John domains in Rn, the latter for weights equal to powers of the dis-
tance to the boundary. We also derive a compactness result for Lebesgue
spaces on quasimetric spaces unrelated to Rn and possibly without any no-
tion of gradient.

1. The general theorem

The main goal of this paper is to generalize the classical Rellich–Kondrachov
theorem concerning compact embedding of Sobolev spaces into Lebesgue spaces.
Our principal result applies not only to the classical Sobolev spaces on open sets
� � Rn but also allows us to treat the degenerate Sobolev spaces defined in
[Sawyer and Wheeden 2010] and to obtain compact embedding of them into various
Lq.�/ spaces. These degenerate Sobolev spaces are associated with quadratic
forms Q.x; �/D � 0Q.x/�, x 2�; � 2 Rn, which are nonnegative but may vanish
identically in � for some values of x. Such quadratic forms and Sobolev spaces
arise naturally in the study of existence and regularity of weak solutions of some
second order subelliptic linear/quasilinear partial differential equations; see, for
example, [Sawyer and Wheeden 2006; Rodney 2007; 2012; Monticelli et al. 2012;
Rios et al. 2013].

The Rellich–Kondrachov theorem is frequently used to study the existence of
solutions to elliptic equations, a famous example being subcritical and critical
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Yamabe equations, resulting in the solution of Yamabe’s problem; see [Yamabe
1960; Trudinger 1968; Aubin 1976; Schoen 1984]. Further applications lie in
proving the existence of weak solutions to Dirichlet problems for elliptic equations
with rough boundary data and coefficients; see [Gilbarg and Trudinger 1997]. In
a sequel to this paper, we will apply our compact embedding results to study the
existence of solutions for some classes of degenerate equations.

In this section, we state and prove our most general compact embedding results.
In Sections 2 and 3, we study some applications to classical and degenerate Sobolev
spaces, respectively. In Section 4, more general results in quasimetric spaces are
studied.

We begin by listing some useful notation. Let w be a measure on a � -algebra †
of subsets of a set �, with � 2†. For 0< p �1, let L

p
w.�/ denote the class of

real-valued measurable functions f satisfying kf kLp
w.�/

<1, where kf kLp
w.�/
D�R

� jf j
p dw

�
1=p if p<1 and kf kL1

w .�/D ess sup�jf j, the essential supremum
being taken with respect to w-measure. When dealing with generic functions in
L

p
w.�/, we will not distinguish between functions which are equal a.e.-w. For

E 2†, w.E/ denotes thew-measure of E, and if 0<w.E/<1, fE;w denotes the
w-average of f over E: fE;w D

R
E f dw=w.E/. Throughout the paper, positive

constants are denoted by C or c and their dependence on important parameters is
indicated.

For k 2N, let X.�/ be a normed linear space of measurable Rk-valued functions
g defined on � with norm kgkX.�/. We assume that there is a subset †0 �† such
that .X.�/;†0/ satisfies the following properties:

(A) For any g 2 X.�/ and F 2†0, the function g�
F
2 X.�/, where �

F
denotes

the characteristic function of F .

(Bp) There are constants C1;C2;p satisfying 1� C1;C2;p <1 and such that if
fFlg is a finite collection of sets in †0 with

P
l �Fl

.x/ � C1 for all x 2�,
then X

l

kg�Fl
k

p

X.�/
� C2kgk

p

X.�/
for all g 2 X.�/.

For 1�N �1, we will often consider the product space LN
w .�/�X.�/. This

is a normed linear space with norm

(1-1) k.f;g/kLN
w .�/�X.�/ D kf kLN

w .�/
CkgkX.�/:

A set S�LN
w .�/�X.�/ will be called a bounded set in LN

w .�/�X.�/ if

sup
.f;g/2S

k.f;g/kLN
w .�/�X.�/ <1:
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Projection maps such as the one defined by

(1-2) � W .f;g/! f; .f;g/ 2LN
w .�/�X.�/;

play a role in our results. If w.�/<1, �.LN
w .�/�X.�//�L

q
w.�/ if 1� q�N .

Theorem 1.1. Let w be a finite measure on a �-algebra † of subsets of a set �,
with�2†. Let 1�p<1, 1<N �1, X.�/ be a normed linear space satisfying
properties (A) and (Bp) relative to a collection †0 �†, and let S be a bounded set
in LN

w .�/�X.�/.
Suppose that S satisfies the following: given � > 0, there are a finite number of

pairs fEl ;Flg
J
lD1

with El 2 † and Fl 2 †0 (the pairs and J may depend on �)
satisfying these properties:

(i) w
�
� n

S
l El

�
< � and w.El/ > 0.

(ii) fFlg has bounded overlaps independent of � with the same overlap constant
as in (Bp), that is,

(1-3)
JX

lD1

�Fl
.x/� C1; x 2�;

for C1 as in (Bp).

(iii) For every .f;g/ 2 S, the local Poincaré-type inequality

(1-4) kf �fEl ;wkL
p
w.El /

� �kg�Fl
kX.�/

holds for each .El ;Fl/.

Let OS be the set defined by

(1-5) OSD ff 2LN
w .�/ W there exists f.f j ;gj /g1jD1 � S with f j

! f a.e.-wg:

Then OS is compactly embedded in L
q
w.�/ if 1� q <N in the sense that, for every

sequence ffkg �
OS, there is a single subsequence ffki

g and a function f 2LN
w .�/

such that fki
! f pointwise a.e.-w in � and in L

q
w.�/ norm for 1� q <N .

Before proceeding with the proof of Theorem 1.1, we make several simple
observations. First, in the definition of OS, the property that f 2 LN

w .�/ follows
by Fatou’s lemma since the associated functions f j are bounded in LN

w .�/, as
S is bounded in LN

w .�/�X.�/ by hypothesis. Fatou’s lemma also shows that
OS is a bounded set in LN

w .�/. Moreover, since N > 1, if ff j g is bounded in
LN
w .�/ and f j ! f a.e.-w, then .f j /E;w! fE;w for all E 2†; in fact, in this

situation, by using Egorov’s theorem, we have
R
� f

j' dw!
R
� f ' dw for all

' 2LN 0

w .�/; 1=N C 1=N 0 D 1.
Next, while the hypothesis w.El/ > 0 in assumption (i) ensures that the averages

fEl ;w in (1-4) are well-defined, it is not needed since we can discard any pair
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El ;Fl with w.El/D 0 without affecting the inequality w.� n
S

El/ < � or (1-3)
and (1-4).

Finally, since OS contains the first component f of any pair .f;g/ 2 S, a simple
corollary of Theorem 1.1 is that the projection � defined in (1-2) is a compact
mapping of S into L

q
w.�/, 1 � q < N , in the sense that, for every sequence

f.fk ;gk/g � S, there is a subsequence ffki
g and a function f 2LN

w .�/ such that
fki
! f pointwise a.e.-w in � and in L

q
w.�/ norm for 1� q <N .

Proof of Theorem 1.1. Let S satisfy the hypotheses and suppose ffkgk2N �
OS.

For each fk , use the definition of OS to choose a sequence f.f j

k
;g

j

k
/gj � S with

f
j

k
! fk a.e.-w as j ! 1. Since S is bounded in LN

w .�/ � X.�/, there is
M 2 .0;1/ such that

k.f
j

k
;g

j

k
/kLN

w .�/�X.�/ �M

for all k and j . Also, as noted above, ffkg is bounded in LN
w .�/ norm; in fact

kfkkLN
w .�/

�M for the same constant M and all k.
Since ffkg is bounded in LN

w .�/, if 1 < N <1, it has a weakly convergent
subsequence, while if N D1, it has a subsequence which converges in the weak-
star topology. In either case, we relabel the subsequence as ffkg to preserve the
index. Fix � > 0 and let fEl ;Flg

J
lD1

satisfy the hypotheses of the theorem relative
to �. Setting �� D

S
El , we have by assumption (i) that

(1-6) w.� n��/ < �:

Let us show that there is a positive constant C independent of � such that

(1-7)
X

l

kfk � .fk/El ;wk
p

L
p
w.El /

� C�p for all k.

Fix k and let � denote the expression on the left side of (1-7). Since

f
j

k
� .f

j

k
/El ;w! fk � .fk/El ;w

a.e.-w as j !1, Fatou’s lemma gives

��
X

l

lim inf
j!1

kf
j

k
� .f

j

k
/El ;wk

p

L
p
w.El /

:

Consequently, by using the Poincaré inequality (1-4) for S and superadditivity of
lim inf, we obtain

�� lim inf
j!1

X
l

�p
kg

j

k
�Fl
k

p

X.�/
:

By (1-3), the sets Fl have finite overlaps uniformly in �, with the same overlap
constant C1 as in property (Bp) of X.�/. Hence, by applying property (Bp) to the
last expression together with boundedness of S, we get
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�� C2�
p lim inf

j!1
kg

j

k
k

p

X.�/
� C2M p�p:

This proves (1-7) with C D C2M p.
Next note that

(1-8)
Z
��
jfm�fk j

p dw �
X

l

Z
El

jfm�fk j
p dw � 2p�1.IC II/;

where

I WD
X

l

Z
El

jfm�fk�.fm�fk/El ;wj
p dw; II WD

X
l

j.fm�fk/El ;wj
pw.El/:

We estimate I and II separately. We have

(1-9) I� 2p�1

�X
l

kfm� .fm/El ;wk
p

L
p
w.El /

C

X
l

kfk � .fk/El ;wk
p

L
p
w.El /

�
� 2p�1.C�p

CC�p/D 2pC�p;

by (1-7). To estimate II , first note that

II D

JX
lD1

j.fm�fk/El ;wj
pw.El/D

JX
lD1

1

w.El/
p�1

ˇ̌̌̌Z
�

.fm�fk/�El
dw

ˇ̌̌̌p
:

Since w.�/ <1, each characteristic function �
El
2 LN 0

w .�/, 1=N C 1=N 0 D 1

(with N 0 D 1 if N D1). As ffkg converges weakly in LN
w .�/ when 1<N <1

or converges in the weak-star sense when N D 1, for m; k sufficiently large
depending on �, and for all 1� l � J ,

1

w.El/
p�1

ˇ̌̌̌ Z
�

.fm�fk/�El
dw

ˇ̌̌̌p
�
�p

J
:

Thus II � �p for m; k sufficiently large depending on �. Combining this estimate
with (1-8) and (1-9) shows that

(1-10) kfm�fkkLp
w.��/

< C�

for m; k sufficiently large and C D C.M;C2/.
Let us now show that ffkg is a Cauchy sequence in L1

w.�/. For m; k as in
(1-10), Hölder’s inequality and the fact that kfkkLN

w .�/
�M for all k yield

kfm�fkkL1
w.�/

� kfm�fkkL1
w.��/

Ckfm�fkkL1
w.�n��/

� kfm�fkkLp
w.��/

w.��/1=p
0

Ckfm�fkkLN
w .�n��/

w.� n��/1=N
0

< C�w.��/1=p
0

C 2Mw.� n��/1=N
0

< C�w.�/1=p
0

C 2M�1=N 0

by (1-6):
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Since N 0<1, it follows that ffkg is Cauchy in L1
w.�/. Hence it has a subsequence

(again denoted by ffkg) that converges in L1
w.�/ and pointwise a.e.-w in � to a

function f 2L1
w.�/. If N D1, ffkg is bounded in L1w .�/ by hypothesis, so its

pointwise limit f 2L1w .�/. If N <1, since ffkg is bounded in LN
w .�/, Fatou’s

Lemma implies that f 2LN
w .�/. This completes the proof in case q D 1.

For general q, we use the same subsequence ffkg as above. Thus we only need
to show that ffkg converges in L

q
w.�/ for 1< q <N . We use Hölder’s inequality.

Given q 2 .1;N /, choose � 2 .0; 1/, namely, �D .1=q�1=N /=.1�1=N /. Hence
�D 1=q if N D1. Then

(1-11) kfm�fkkLq
w.�/

� kfm�fkk
�

L1
w.�/
kfm�fkk

1��

LN
w .�/

:

As before, kfkkLN
w .�/

�M , and therefore

kfm�fkk
1��

LN
w .�/

� .2M /1��:

Hence, by (1-11), ffkg is Cauchy in L
q
w.�/ as it is Cauchy in L1

w.�/. This
completes the proof of Theorem 1.1. �

A compact embedding result is also proved in [Franchi et al. 1997, Theorem 3.4]
by using Poincaré type estimates. However, Theorem 1.1 applies to situations not
considered in [Franchi et al. 1997] since it is not restricted to the context of Lipschitz
vector fields in Rn. Other abstract compact embedding results can be found in
[Hajłasz and Koskela 1998, Theorem 4; Hajłasz and Koskela 2000, Theorem 8.1],
including a version [Hajłasz and Koskela 1998, Theorem 5] for weighted Sobolev
spaces with nonzero continuous weights, and a version [Hajłasz and Koskela 2000]
for metric spaces with a single doubling measure. The proof in [Hajłasz and Koskela
1998] assumes prior knowledge of the classical Rellich–Kondrachov compactness
theorem (see, for example, [Gilbarg and Trudinger 1997, Theorem 7.22(i)] and
below).

By making minor changes in the proof of Theorem 1.1, we can obtain a sufficient
condition for a bounded set in LN

w .�/ to be precompact in L
q
w.�/, 1 � q < N ,

without mentioning the sets fFlg, the space X.�/, properties (A) and (Bp), or
conditions (1-3) and (1-4). We state this result in the next theorem. An application
is given in Section 4.

Theorem 1.2. Let w be a finite measure on a �-algebra † of subsets of a set �,
with � 2†. Let 1� p <1, 1<N �1, and P be a bounded subset of LN

w .�/.
Suppose there is a positive constant C such that, for every � > 0, there are a finite
number of sets El 2† with

(i) w
�
� n

S
l El

�
< � and w.El/ > 0;
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(ii) for every f 2 P,

(1-12)
X

l

kf �fEl ;wk
p

L
p
w.El /

� C�p:

Let bPD ˚f 2LN
w .�/ W there exists ff j

g � P with f j ! f a:e:-w
	
:

Then, for every sequence ffkg �
bP, there is a single subsequence ffki

g and a
function f 2LN

w .�/ such that fki
! f pointwise a.e.-w in� and in L

q
w.�/ norm

for 1� q <N .

Remark 1.3. (1) Given � > 0, let fElg satisfy hypothesis (i) of Theorem 1.2.
Hypothesis (ii) of Theorem 1.2 is clearly true for fElg if, for every f 2 P, there
are nonnegative constants falg such that

(1-13) kf �fEl ;wkL
p
w.El /

� �al

and

(1-14)
X

a
p

l
� C

with C independent of f; �. The constants falg may vary with f and �.

(2) Theorem 1.1 is a corollary of Theorem 1.2. To see why, suppose that the
hypothesis of Theorem 1.1 holds. Define

PD �.S/D ff W .f;g/ 2 Sg:

Let � > 0 and choose f.El ;Fl/g as in Theorem 1.1. Given f 2 P, choose any
g such that .f;g/ 2 S and set al D kg�Fl

kX.�/ for all l . Then (1-4), (1-3), and
property (Bp) of X.�/ imply (1-13) and (1-14). The preceding remark shows that
the hypothesis of Theorem 1.2 holds. The conclusion of Theorem 1.1 now follows
from Theorem 1.2.

Proof of Theorem 1.2. Theorem 1.2 can be proved by checking through the proof
of Theorem 1.1. In fact, the nature of hypothesis (1-12) allows simplification of
the proof. First recall that if f j ! f a.e.-w and ff j g is bounded in LN

w .�/,
.f j /E;w! fE;w for every E 2†. Therefore, by the definition of bP and Fatou’s
lemma, the truth of (1-12) for all f 2 P implies its truth for all f 2 bP. Given a
sequence ffkg in bP, we follow the proof of Theorem 1.1, but we no longer need to
introduce the ff j

k
g or prove (1-7) since (1-7) now follows from the fact that (1-12)

holds for bP. Further details are left to the reader. �

We close this section by listing an alternate version of Theorem 1.1 that we use
in Section 3D when we consider local results.
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Theorem 1.4. Let w be a measure (not necessarily finite) on a �-algebra † of
subsets of a set �, with � 2 †. Let 1 � p <1, 1 < N �1, X.�/ be a normed
linear space satisfying properties (A) and (Bp) relative to a set †0 �†, and let S

be a collection of pairs .f;g/ such that f is †-measurable and g 2 X.�/.
Suppose that S satisfies the following conditions relative to a fixed set �0 2† (in

particular �0 ��): for each � D �j D 1=j with j 2N, there are a finite number of
pairs fE�

l
;F �

l
gl with E�

l
2† and F �

l
2†0 satisfying these conditions:

(i) w
�
�0 n

S
l E�

l

�
D 0 and 0<w.E�

l
/ <1.

(ii) fF �
l
gl has bounded overlaps independent of � with the same overlap constant

as in (Bp), that is, X
l

�F �
l
.x/� C1; x 2�;

for C1 as in (Bp).

(iii) For every .f;g/ 2 S, the local Poincaré-type inequality

kf �fE�
l
;wkLp

w.E
�
l
/ � �kg�F �

l
kX.�/

holds for each .E�
l
;F �

l
/.

Then, for every sequence f.fk ;gk/g in S with

(1-15) sup
k

ŒkfkkLN
w .
S

l;j E
1=j

l
/
CkgkkX.�/� <1;

there is a subsequence ffki
g of ffkg and a function f 2LN

w .�
0/ such that fki

! f

pointwise a.e.-w in �0 and in L
q
w.�

0/ norm for 1 � q � p. If p < N , then also
fki
! f in L

q
w.�

0/ norm for 1� q <N .

The principal difference between the assumptions in Theorems 1.1 and 1.4 occurs
in hypothesis (i). When we apply Theorem 1.4 in Section 3D, the sets fE�

l
g will

satisfy �0 �
S

l E�
l

for each �, and consequently the condition in hypothesis (i)
that w

�
�0 n

S
l E�

l

�
D 0 for each � will automatically be true. Unlike Theorem 1.1,

the value of q in Theorem 1.4 is always allowed to equal p. Although w.�/ is
not assumed to be finite in Theorem 1.4, w.�0/ <1 is true due to hypothesis (i)
and the fact that the number of E�

l
is finite for each �. As in Theorem 1.1, the

hypothesis w.E�
l
/ > 0 is dispensable.

Proof of Theorem 1.4. The proof is like that of Theorem 1.1, with minor changes and
some simplifications. We work directly with the pairs .fk ;gk/ without considering
approximations .f j

k
;g

j

k
/. Due to the form of assumption (i) in Theorem 1.4, neither

the set �� nor estimate (1-6) is now needed. Since w.�0 n
S

l E�
l
/D 0 for each

� D 1=j , we can replace �� by �0 in the proof, obtaining the estimate

(1-16) kfm�fkkLp
w.�0/ < C�



A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES 25

as an analogue of (1-10). In deriving (1-16), the weak and weak-star arguments are
guaranteed since, by (1-15),

sup
k

kfkkLN
w .
S

l;j E
1=j

l
/
<1:

The main change in the proof comes by observing that the entire argument formerly
used to show that ffkg is Cauchy in L1

w.�/ is no longer needed. In fact, (1-16)
proves that ffkg is Cauchy in L

p
w.�

0/, and therefore it is also Cauchy in L
q
w.�

0/

if 1� q � p since w.�0/ <1. The first conclusion in Theorem 1.4 then follows.
To prove the second one, assuming that p; q < N , we use an analogue of (1-11)
with �0 in place of � and the same choice of �, namely,

kfm�fkkLq
w.�0/ � kfm�fkk

�

L1
w.�0/

kfm�fkk
1��

LN
w .�0/

:

The desired conclusion then follows as before since we have already shown that
the first factor on the right side tends to 0. �

2. Applications in the nondegenerate case

Roughly speaking, a consequence of Theorem 1.1 is that a set of functions which
is bounded in LN

w .�/ is precompact in L
q
w.�/ for 1� q <N if the gradients of

the functions are bounded in an appropriate norm and a local Poincaré inequality
holds for them. The requirement of boundedness in LN

w .�/ will be fulfilled if, for
example, the functions satisfy a global Poincaré or Sobolev estimate with exponent
N on the left side. In order to illustrate this principle more precisely, we first consider
the classical gradient operator and functions on Rn with the standard Euclidean
metric. We include a simple way to see that the Rellich–Kondrachov compactness
theorem follows from our results. Our derivation of this fact is different from those
in [Adams and Fournier 2003; Gilbarg and Trudinger 1997]; in particular, it avoids
using the Arzelá–Ascoli theorem and regularization of functions by convolution. We
also list compactness results for the special class of s-John domains in Rn. Hajlasz
and Koskela [1998] mention that such results follow from their development without
giving specific statements. See also [Hajłasz and Koskela 2000, Theorem 8.1]. We
list results for degenerate quadratic forms and vector fields in Section 3.

We begin by proving a compact embedding result for some Sobolev spaces
involving two measures. Let w be a measure on the Borel subsets of a fixed open set
�� Rn, and let � be a measure on the � -algebra of Lebesgue measurable subsets
of �. We also assume that � is absolutely continuous with respect to Lebesgue
measure. If 1� p <1, let E

p
�.�/ denote the class of locally Lebesgue integrable

functions on � with distributional derivatives in L
p
�.�/. If 1 � N �1, we say

that a set Y �LN
w .�/\E

p
�.�/ (intersection of function spaces instead of normed
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spaces of equivalence classes) is bounded in LN
w .�/\E

p
�.�/ if

sup
f 2Y

fkf kLN
w .�/

Ckrf kLp
�.�/
g<1:

We use D to denote a generic open Euclidean ball. The radius and center of D

will be denoted r.D/ and xD , and if C is a positive constant, CD will denote the
ball concentric with D whose radius is C r.D/.

Theorem 2.1. Let z��� be open sets in Rn. Let w be a Borel measure on � with
w. z�/ D w.�/ <1 and � be a measure on the Lebesgue measurable sets in �
which is absolutely continuous with respect to Lebesgue measure. Let 1� p <1,
1<N �1, and S�LN

w .�/\E
p
�.�/, and suppose that, for all � > 0, there exists

ı� > 0 such that

(2-1) kf �fD;wkLp
w.D/

� �krf kLp
�.D/

for all f 2 S

and all Euclidean balls D with r.D/ < ı� and 2D � z�. Then, for any sequence
ffkg � S that is bounded in LN

w .�/\E
p
�.�/, there is a subsequence ffki

g and
a function f 2LN

w .�/ such that ffki
g ! f pointwise a.e.-w in � and in L

q
w.�/

norm for 1� q <N .

Before proving Theorem 2.1, we give typical examples of z� and w with w. z�/D
w.�/ <1. For any two nonempty sets E1;E2 � Rn, let

(2-2) �.E1;E2/D inffjx�yj W x 2E1;y 2E2g

denote the Euclidean distance between E1 and E2. If x 2 Rn and E is a nonempty
set, we write �.x;E/ instead of �.fxg;E/. Let z� be an open subset of �. If �
is bounded and � n z� has Lebesgue measure 0, the measure w on � defined by
dw D �.x;Rn n z�/˛ dx clearly has the desired properties if ˛ � 0. The range of ˛
can be increased to ˛>�1 if� is a Lipschitz domain and�n z� is a finite set. Indeed,
if @� is described in local coordinates x D .x1; : : : ;xn/ by xn D F.x1; : : : ;xn�1/

with F Lipschitz, the distance from x to @� is equivalent to jxn�F.x1; : : : ;xn�1/j,
and, consequently, the restriction ˛ > �1 guarantees that w is finite near @� by
using Fubini’s theorem; see also [Chua 1995, Remark 3.4(b)]. If � is bounded
and � n z� is finite, but with no restriction on @�, the range can clearly be further
increased to ˛ >�n for the measure �.x; �n z�/˛ dx. Also note that any w without
point masses satisfies w. z�/Dw.�/ if z� is obtained by deleting a countable subset
of �.

Proof of Theorem 2.1. We verify the hypotheses of Theorem 1.1. Let

X.�/D

�
g D .g1; : : : ;gn/ W jgj D

� nX
iD1

g2
i

�1=2

2Lp
�.�/

�
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and kgkX.�/ D kgkLp
�.�/

. Then

krf kX.�/ D krf kLp
�.�/

if f 2E
p
�.�/.

If f 2 E
p
�.�/, we may identify f with the pair .f;rf / since the distributional

gradientrf is uniquely determined by f up to a set of Lebesgue measure zero. Then
LN
w .�/\E

p
�.�/ can be viewed as a subset of LN

w .�/�X.�/. In Theorem 1.1,
choose S to be the particular sequence ffkg � S in the hypothesis of Theorem 2.1,
† to be the Lebesgue measurable subsets of �, and †0 to be the collection of balls
D ��. Then hypotheses (A) and (Bp) are valid with C2 D C1 for any C1. Given
� > 0, since w. z�/Dw.�/<1, there is a compact set K � z� with w.�nK/ < �.
Let 0 < ı0� < �.K;R

n n z�/ (where �.K;Rn n z�/ is interpreted as1 if z�D Rn).
Let ı� be as in (2-1), and fix r� with 0< r� <minfı�; ı0�g. By considering the triples
of balls in a maximal collection of pairwise disjoint balls of radius r�=6 centered
in K, we obtain a collection fE�

l
gl of balls of radius r�=2 which satisfy 2E�

l
� z�,

have bounded overlaps with overlap constant independent of �, and whose union
covers K. Since K is compact, we may assume the collection is finite. Also,

w
�
� n

S
l

E�
l

�
� w.� nK/ < �;

and (1-4) holds with Fl D El D E�
l

by (2-1). Theorem 2.1 now follows from
Theorem 1.1 applied to �. �

In particular, we obtain the following result when w D � is a Muckenhoupt
Ap.R

n/ weight, that is, when d�D dw D � dx, where �.x/ satisfies�
1

jDj

Z
D

� dx

��
1

jDj

Z
D

��1=.p�1/ dx

�p�1

� C

if 1<p<1, and satisfies jDj�1
R

D � dx�C ess infDw if pD 1, for all Euclidean
balls D, with C independent of D. As is well known, such a weight also satisfies
the classical doubling condition

(2-3) w.Dr .x//� C
�

r

r 0

��
w.Dr 0.x//; 0< r 0 < r <1;

with � D np� � for some � > 0 if p > 1, and with � D n if p D 1, where C and �
are independent of r; r 0;x.

We denote by W 1;p;w.�/ the weighted Sobolev space defined as all functions
in L

p
w.�/ whose distributional gradient is in L

p
w.�/. Therefore W 1;p;w.�/ D

L
p
w.�/\E

p
w.�/. If w.�/ <1, it follows that LN

w .�/\E
p
w.�/�W 1;p;w.�/

when N � p, and that the opposite containment holds when N � p.

Theorem 2.2. Let 1 � p < 1, w 2 Ap.R
n/, and � be an open set in Rn with

w.�/ < 1. If 1 < N � 1, then any bounded subset of LN
w .�/ \ E

p
w.�/ is
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precompact in L
q
w.�/ if 1� q <N . Consequently, if N > p and S is a subset of

W 1;p;w.�/ with

(2-4) kf kLN
w .�/

� C.kf kLp
w.�/
Ckrf kLp

w.�/
/ for all f 2 S;

then any set in S that is bounded in W 1;p;w.�/ is precompact in L
q
w.�/ for

1� q <N .
If � is a John domain, then there exists N > p (N can be �p=.� �p/ for some

� > p as described after (2-3)) such that W 1;p;w.�/ is compactly embedded in
L

q
w.�/ for 1� q <N . In particular, the embedding of W 1;p;w.�/ into L

p
w.�/ is

compact when w 2Ap.R
n/ and � is a John domain.

Remark 2.3. When w D 1 and p < n, the choices N D np=.n � p/ and S D

W
1;p

0
.�/— the closure in W 1;p.�/ of the class of Lipschitz functions with com-

pact support in�— guarantee (2-4) by the classical Sobolev inequality for functions
in W

1;p
0

.�/ (see, for example, [Gilbarg and Trudinger 1997, Theorem 7.10]). Con-
sequently, the classical Rellich–Kondrachov theorem giving the compact embedding
of W

1;p
0

.�/ in Lq.�/ for 1� q < np=.n�p/ follows as a special case of the first
part of Theorem 2.2.

Proof. We apply Theorem 2.1 with w D �. Fix p and w with 1 � p <1 and
w 2Ap.R

n/. By [Fabes et al. 1982], there is a constant C such that the weighted
Poincaré inequality

kf �fD;wkLp
w.D/

� C r.D/krf kLp
w.D/

; f 2 C1.�/;

holds for all Euclidean balls D � �. Then since C1.�/ is dense in LN
w .�/\

E
p
w.�/ if 1�N <1 (see, for example, [Turesson 2000]), by fixing any � > 0 we

obtain from Fatou’s lemma that, for all balls D �� with C r.D/� �,

kf �fD;wkLp
w.D/

� �krf kLp
w.D/

if f 2LN
w .�/\Ep

w.�/:

The same holds when N D 1 since L1w .�/ D L1.�/ � L
p
w.�/ due to the

assumptions w 2Ap.R
n/ and w.�/ <1. With 1<N �1, the first statement of

the theorem now follows from Theorem 2.1, and the second statement is a corollary
of the first one.

Next, let� be a John domain. Choose � >p such thatw satisfies (2-3) and define
N D �p=.� �p/. Then N > p and, by [Chua and Wheeden 2008, Theorem 1.8(b)
or Theorem 4.1],

kf �f�;wkLN
w .�/

� Ckrf kLp
w.�/

; 8f 2 C1.�/:

Again, the inequality remains true for functions in W 1;p;w.�/ by density and
Fatou’s lemma. It is now clear that (2-4) holds, and the last part of the theorem
follows. �



A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES 29

Our next example involves domains in Rn which are more restricted. For special
�, there are values N > 1 such that

(2-5) kf kLN .�/ � C.kf kL1.�/Ckrf kLp.�//

for all f 2 L1.�/\Ep.�/. Note that if � has finite Lebesgue measure, then
W 1;p.�/�L1.�/\Ep.�/. As we will explain, (2-5) is true for some N > 1 if
� is an s-John domain in Rn and 1� s < 1Cp=.n�1/. Recall that, for 1� s <1,
a bounded domain �� Rn is called an s-John domain with central point x0 2� if
for some constant c > 0 and all x 2� with x ¤ x0, there is a curve � W Œ0; l �!�

such that �.0/D x; �.l/D x0,

j�.t1/��.t2/j � t2� t1 for all Œt1; t2�� Œ0; l �,

�.�.t/;�c/� ct s for all t 2 Œ0; l �.

The terms 1-John domain and John domain are the same. When � is an s-John
domain for some s 2 Œ1; 1Cp=.n�1//, it is shown in [Kilpeläinen and Malý 2000;
Chua and Wheeden 2008; 2011] that (2-5) holds for all finite N with

(2-6)
1

N
�

s.n� 1/�pC 1

np

and for all f 2 W 1;p.�/ without any support restrictions. Note that the right
side of (2-6) is strictly less than 1=p for such s, and consequently there are values
N > p which satisfy (2-6). For N as in (2-6), the global estimate

(2-7) kf �f�kLN .�/ � Ckrf kLp.�/; f� D

Z
�

f .x/ dx=j�j;

is shown to hold if f 2 Liploc.�/ [Chua and Wheeden 2011], and then follows
for all f 2L1.�/\Ep.�/; see the proof of Theorem 2.4 for related comments.
Inequality (2-5) is clearly a consequence of (2-7).

More generally, weighted versions of (2-7) hold for s-John domains and lead to
weighted compactness results, as we now show. Let 1 � p <1, and, for real ˛
and �.x; �c/ as in (2-2), let L

p

�˛ dx
.�/ be the class of Lebesgue measurable f on

� with

kf kLp

�˛ dx
.�/ D

�Z
�

jf .x/jp�.x; �c/˛ dx

�1=p

<1:

Theorem 2.4. Suppose that 1 � s <1 and � is an s-John domain in Rn. Let
p; a; b satisfy 1� p <1, a� 0, b 2 R, and b� a< p.

(i) If

(2-8) nC a> s.n� 1C b/�pC 1;
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then, for any 1� q <1 such that

(2-9)
1

q
>max

n
1

p
�

1

n
;
s.n�1Cb/�pC1

.nCa/p

o
;

L1
�a dx

.�/\E
p

�b dx
.�/ is compactly embedded in L

q

�a dx
.�/.

(ii) If p > 1 and

(2-10) nC ap > s.n� 1C b/�pC 1� nC a;

then, for any 1� q <1 such that

(2-11)
a

q
>max

n
b

p
� 1;

s.n�1Cb/�p�nC1

p

o
;

L1
�a dx

.�/\E
p

�b dx
.�/ is compactly embedded in L

q

�a dx
.�/.

Remark 2.5. (1) If aD b D 0, (2-8) is the same as s < 1Cp=.n� 1/. If aD 0,
(2-10) never holds.

(2) The requirement that b�a<p follows from (2-8) and (2-9) by considering the
cases n�1Cb� 0 and n�1Cb< 0 separately. Hence b�a<p automatically
holds in Theorem 2.4(i), but it is an assumption in (ii). Also, (2-10) and (2-11)
imply that q < p, and consequently that p > 1.

(3) Conditions (2-8) and (2-9) imply there exists N 2 .p;1/ with

(2-12)
1

q
>

1

N
>max

n
1

p
�

1

n
;
s.n�1Cb/�pC1

.nCa/p

o
:

Conversely, (2-8) holds if there exists N 2 .p;1/ such that (2-12) holds.

(4) Assumption (2-11) ensures that there exists N 2 .q;1/ such that (2-11) holds
with q replaced by N .

Proof of Theorem 2.4. This result is also a consequence of Theorem 2.1, but we
deduce it from Theorem 1.1 by using arguments like those in the proofs of Theorems
2.1 and 2.2. Fix a; b;p; q as in the hypothesis and denote �.x/D �.x; �c/. Choose
w D �a dx and note that w.�/ <1 since a� 0 and � is now bounded. Define

X.�/D fg D .g1; : : : ;gn/ W jgj 2L
p

�b dx
.�/g

and kgkX.�/ D kgkLp

�b dx
.�/. Fix � > 0 and choose a compact set K �� with

j� nKj�a dx WD

Z
�nK

�a dx < �:

Also choose ı0� with 0< ı0� < �.K; �
c/, where �.K; �c/ is the Euclidean distance

between K and �c .
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If D is a Euclidean ball with center xD 2K and r.D/ < 1
2
ı0� , then 2D �� and

�.x/ is essentially constant on D; in fact, for such D,

1
2
�.xD/� �.x/�

3
2
�.xD/; x 2D:

We claim that, for such D, the simple unweighted Poincaré estimate

kf �fDkLp.D/ � C r.D/krf kLp.D/; f 2 Liploc.�/;

where fD D fD;dx , implies that for f 2 Liploc.�/,

(2-13) kf �fD;�a dxkLp

�a dx
.D/

� zC .r.D/.a�b/=p
C diam.�/.a�b/=p/r.D/krf kLp

�b dx
.D/;

where fD;�a dx D
R

D f�
a dx=

R
D �

a dx and zC depends on C; a; b but is indepen-
dent of D; f . To show this, first note that, for such D, since � � �.xD/ on D, the
simple Poincaré estimate immediately gives

kf �fDkLp

�a dx
.D/ �

zC�.xD/
.a�b/=pr.D/krf kLp

�b dx
.D/; f 2 Liploc.�/;

and then a similar estimate with fD replaced by fD;�a dx follows by standard
arguments. Clearly (2-13) will now follow if we show that

�.xD/
.a�b/=p

� r.D/.a�b/=p
C diam.�/.a�b/=p for such D.

However, this is clear since r.D/� �.xD/� diam.�/ for D as above, and (2-13)
is proved.

We can now apply the weighted density result of [Hajłasz 1993; Hajłasz and
Koskela 1998] to conclude that (2-13) holds for all f 2 L1

�a dx
.�/\E

p

�b dx
.�/

and all balls D with xD 2K and r.D/ < 1
2
ı0�.

Recall that .a� b/=pC 1> 0. Thus there exists r� with 0< r� <
1
2
ı0� and

zC .r .a�b/=p
� C diam.�/.a�b/=p/r� < �:

Let † and †0 be as in the proof of Theorem 2.1, and let fElgl D fFlgl be the
triples of balls in a maximal collection of pairwise disjoint balls centered in K

with radius 1
3
r� . Then (2-13) and the choice of r� give the desired version of (1-4),

namely
kf �fD;�a dxkLp

�a dx
.D/ � �krf kLp

�b dx
.D/

for D D El and f 2 L1
�a dx

.�/ \ E
p

�b dx
.�/. Next, use the last two parts of

Remark 2.5 to choose N 2 .q;1/ such that either (2-9) or (2-11) holds with q
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replaced by N . Every f 2L1
�a dx

.�/\E
p

�b dx
.�/ then satisfies the global Poincaré

estimate

(2-14) kf �f�;�a dxkLN
�a dx

.�/ � Ckrf kLp

�b dx
.�/;

f 2L1
�a dx.�/\E

p

�b dx
.�/;

where

f�;�a dx D

Z
�

f�a dx
.Z

�

�a dx:

In fact, under the hypothesis of Theorem 2.4, this is proved for example in [Chua
and Wheeden 2011] for f 2 Liploc.�/\L1

�a dx
.�/\E

p

�b dx
.�/, and then follows

for all f 2L1
�a dx

.�/\E
p

�b dx
.�/ by the density result of [Hajłasz 1993; Hajłasz

and Koskela 1998] and Fatou’s lemma. By (2-14),

kf kLN
�a dx

.�/ � Ckf kL1
�a dx

.�/CCkrf kLp

�b dx
.�/

for the same class of f . The remaining details of the proof are left to the reader. �

In passing, we mention that the role played by the distance function �.x; �c/ in
Theorem 2.4 can instead be played by

�0.x/D inffjx�yj W y 2�0g; x 2�;

for certain �0 ��
c ; see [Chua and Wheeden 2011, Theorem 1.6] for a description

of such �0 and the required Poincaré estimate, and note that the density result in
[Hajłasz and Koskela 1998] holds for positive continuous weights.

3. Applications in the degenerate case

In this section, � will denote a fixed open set in Rn, possibly unbounded. For
.x; �/ 2��Rn, we consider a nonnegative quadratic form � 0Q.x/� which may
degenerate, that is, which may vanish for some � ¤ 0. Such quadratic forms occur
naturally in the context of subelliptic equations and give rise to degenerate Sobolev
spaces as discussed below. Our goal is to apply Theorem 1.1 to obtain compact
embedding of these degenerate spaces into Lebesgue spaces related to the gain in
integrability provided by Poincaré–Sobolev inequalities. The framework that we
use contains the subelliptic one developed in [Sawyer and Wheeden 2006; 2010],
where regularity theory for weak solutions of linear subelliptic equations of second
order in divergence form is studied.

3A. Standing assumptions. We now list some notation and assumptions that will
be in force everywhere in Section 3, even when not explicitly mentioned.
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Definition 3.1. A function d is called a finite symmetric quasimetric (or simply a
quasimetric) on � if d W���! Œ0;1/ and there is a constant � � 1 such that,
for all x;y; z 2�,

(3-1)

d.x;y/D d.y;x/;

d.x;y/D 0 () x D y;

d.x;y/� �Œd.x; z/C d.z;y/�:

If d is a quasimetric on �, we refer to the pair .�; d/ as a quasimetric space.
In some applications, d is closely related to Q.x/. For example, d is sometimes
chosen to be the Carnot–Carathéodory control metric related to Q; cf. [Sawyer and
Wheeden 2006].

Given x 2�, r > 0, and a quasimetric d , the subset of � defined by

Br .x/D fy 2� W d.x;y/ < rg

will be called the quasimetric d-ball centered at x of radius r . Note that every
d -ball B D Br .x/ satisfies B �� by definition.

It is sometimes possible, and desirable in case the boundary of � is rough, to
be able to work only with d-balls that are deep inside � in the sense that their
Euclidean closures B lie in �. See Remark 3.6(ii) for comments about being able
to use such balls.

Recall that Ds.x/ denotes the ordinary Euclidean ball of radius s centered at x.
We always assume that d is related to the standard Euclidean metric as follows:

(3-2) 8x 2� and r > 0, 9s D s.x; r/ > 0 such that Ds.x/� Br .x/:

Remark 3.2. Condition (3-2) is clearly true if d-balls are open, and it is weaker
than the well-known condition of C. Fefferman and Phong stating that for each
compact K ��, there are constants ˇ; r0 > 0 such that Drˇ .x/ � Br .x/ for all
x 2K and 0< r < r0.

Throughout Section 3, Q.x/ denotes a fixed Lebesgue measurable n� n non-
negative symmetric matrix on � and we assume that every d-ball B centered in
� is Lebesgue measurable. We deal with three locally finite measures w; �; � on
the Lebesgue measurable subsets of �, each with a particular role. In Section 3C,
where only global results are developed, we assume w.�/<1, but this assumption
is not required for the local results of Section 3D. The measure � is assumed to be
absolutely continuous with respect to Lebesgue measure; the comment following
(3-4) explains why this assumption is natural. In Section 3, we sometimes assume
that w is absolutely continuous with respect to �, but we drop this assumption
completely in the Appendix.
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We do not require the existence of a doubling measure for the collection of
d-balls, but we always assume that .�; d/ satisfies the weaker local geometric
doubling property given in the next definition; see [Hytönen and Martikainen 2012]
for a global version.

Definition 3.3. A quasimetric space .�; d/ satisfies the local geometric doubling
condition if for every compact K ��, there exists ı0D ı0.K/ > 0 such that, for all
x 2K and all 0< r 0 < r < ı0, the number of disjoint d -balls of radius r 0 contained
in Br .x/ is at most a constant Cr=r 0 depending on r=r 0 but not on K.

3B. The degenerate Sobolev spaces W
1;p
�;� .�; Q/ and W

1;p

�;�;0
.�; Q/. We will

define weighted degenerate Sobolev spaces by using an approach like the one
in [Sawyer and Wheeden 2010] or [Monticelli et al. 2012] for the unweighted
case. We first define an appropriate space of vectors, including vectors which
will eventually play the role of gradients, where size is measured relative to the
nonnegative quadratic form

Q.x; �/D � 0Q.x/�; .x; �/ 2��Rn:

For 1� p <1, consider the collection of measurable Rn-valued functions Eg.x/D
.g1.x/; : : : ;gn.x// satisfying

(3-3) kEgkL
p
�.�;Q/

D

�Z
�

Q.x; Eg.x//p=2d�

�1=p

D

�Z
�

j
p

Q.x/Eg.x/jpd�

�1=p

<1:

We identify any two functions Eg; Eh in the collection for which kEg� EhkL
p
�.�;Q/

D 0.
Then (3-3) defines a norm on the resulting space of equivalence classes. The form-
weighted space L

p
�.�;Q/ is defined to be the collection of these equivalence classes,

with norm (3-3). By using methods similar to those in [Sawyer and Wheeden 2010],
it follows that L2

�.�;Q/ is a Hilbert space and L
p
�.�;Q/ is a Banach space for

1� p <1.
Now consider the (possibly infinite) norm on Liploc.�/ defined by

(3-4) kf k
W

1;p
�;� .�;Q/

D kf kLp
� .�/
Ckrf kL

p
�.�;Q/

:

We comment here that our standing assumption that�.Z/D0 when Z has Lebesgue
measure 0 assures that krf kL

p
�.�;Q/

is well-defined if f 2 Liploc.�/; in fact, for
such f , the Rademacher–Stepanov theorem implies that rf exists a.e. in � with
respect to Lebesgue measure.
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Definition 3.4. Let 1� p <1.

(1) The degenerate Sobolev space W
1;p
�;� .�;Q/ is the completion under the norm

(3-4) of the set

LipQ;p.�/D LipQ;p;�;�.�/D ff 2 Liploc.�/ W kf kW 1;p
�;� .�;Q/

<1g:

(2) The degenerate Sobolev space W
1;p
�;�;0

.�;Q/ is the completion under the
norm (3-4) of the set LipQ;p;0.�/D Lip0.�/\LipQ;p.�/, where Lip0.�/

denotes the collection of Lipschitz functions with compact support in �. If
Q 2L

p=2
loc .�/, LipQ;p;0.�/D Lip0.�/ since � and � are locally finite.

We now make some comments about W
1;p
�;� .�;Q/, most of which have analogues

for W
1;p
�;�;0

.�;Q/. By definition, W
1;p
�;� .�;Q/ is the Banach space of equivalence

classes of Cauchy sequences of LipQ;p.�/ functions with respect to the norm (3-4).
Given a Cauchy sequence ffj g of LipQ;p.�/ functions, denote its equivalence class
by Œffj g�. If fvj g 2 Œffj g�, then fvj g is a Cauchy sequence in L

p
� .�/ and frvj g is a

Cauchy sequence in L
p
�.�;Q/. Hence there is a pair .f; Eg/ 2L

p
� .�/�L

p
�.�;Q/

so that
kvj �f kLp

� .�/
! 0 and krvj � EgkL

p
�.�;Q/

! 0

as j !1. The pair .f; Eg/ is uniquely determined by the equivalence class Œffj g�,
that is, it is independent of a particular fvj g2 Œffj g�. We say that .f; Eg/ is represented
by fvj g. We obtain a Banach space isomorphism J from W

1;p
�;� .�;Q/ onto a closed

subspace W
1;p
�;�.�;Q/ of L

p
� .�/�L

p
�.�;Q/ by setting

(3-5) J.Œffj g�/D .f; Eg/:

We often do not distinguish between W
1;p
�;� .�;Q/ and W

1;p
�;�.�;Q/. Similarly,

W
1;p
�;�;0

.�;Q/ denotes the image of W
1;p
�;�;0

.�;Q/ under J, but we often consider
these spaces to be the same.

It is important to think of a typical element of W
1;p
�;�.�;Q/, or W

1;p
�;� .�;Q/,

as a pair .f; Eg/ as above, and not simply as the first component f . In fact, if
.f; Eg/ 2 W

1;p
�;�.�;Q/, the vector Eg may not be uniquely determined by f ; see

[Fabes et al. 1982, Section 2.1] for a well-known example.
If f 2LipQ;p.�/, the pair .f;rf /may be viewed as an element of W

1;p
�;� .�;Q/

by identifying it with the equivalence class Œff g� corresponding to the sequence each
of whose entries is f . When viewed as a class, .f;rf / generally contains pairs
whose first components are not Lipschitz functions; for example, if f 2 LipQ;p.�/

and F is any function with F D f a.e.-�, then .f;rf /D .F;rf / in W
1;p
�;� .�;Q/.

However, in what follows, when we consider a pair .f;rf / with f 2 LipQ;p.�/,
we do not adopt this point of view. Instead we identify an f 2 LipQ;p.�/ with
the single pair .f;rf / whose first component is f (defined everywhere in �)
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and whose second component is rf , which exists a.e. with respect to Lebesgue
measure by the Rademacher–Stepanov theorem. This convention lets us avoid
assuming that w is absolutely continuous with respect to �, written w � �, in
Poincaré–Sobolev estimates for LipQ;p.�/ functions. We reserve the notation H

for subsets of LipQ;p.�/ viewed in this way.

On the other hand, W denotes various subsets of W
1;p
�;� .�;Q/ with elements

viewed as equivalence classes. When our hypotheses are phrased in terms of such
W, we assume that w� � in order to avoid technical difficulties associated with
sets of measure 0; see the comment after (3-18). In the Appendix, we drop the
assumption w� � altogether.

We abuse the notation (3-4) by writing

(3-6) k.f;rf /k
W

1;p
�;� .�;Q/

D kf kLp
� .�/
Ckrf kL

p
�.�;Q/

; f 2 LipQ;p.�/;

and we extend this to generic .f; Eg/ 2W
1;p
�;� .�;Q/ by writing

(3-7)
k.f; Eg/k

W
1;p
�;� .E;Q/

D kf kLp
� .E/
CkEgkL

p
�.E;Q/

for any measurable E ��.

3C. Global compactness results for degenerate spaces. In this section, we state
and prove compactness results which apply to the entire set �. Results which are
more local are given in Section 3D.

In order to apply Theorem 1.1 in this setting, we use the following version of
Poincaré’s inequality for d -balls.

Definition 3.5. Let 1 � p < 1, let LipQ;p.�/ be as in Definition 3.4, and let
H� LipQ;p.�/. We say that the Poincaré property of order p holds for H if there
is a constant c0 � 1 such that for every � > 0 and every compact set K ��, there
exists ıD ı.�;K/ > 0 such that, for all f 2H and every d -ball Br .y/ with y 2K

and 0< r < ı,

(3-8)
�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f;rf /k
W

1;p
�;� .Bc0r .y/;Q/

:

Remark 3.6. (i) Inequality (3-8) is not of standard Poincaré form. A more typical
form is

(3-9)
�

1

w.Br .y//

Z
Br .y/

jf �fBr .y/;wj
p dw

�1=p

� C r

�
1

�.Bc0r .y//

Z
Bc0r .y/

j
p

Qrf jpd�

�1=p

for some c0 � 1. In [Sawyer and Wheeden 2006; 2010; Rodney 2007; 2012], the
unweighted version of (3-9) with p D 2 is used. Let �.x; @�/ and �.E; @�/ be as
in (2-2). In [Sawyer and Wheeden 2010], the unweighted form of (3-9) with pD 2
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is assumed for all f 2 LipQ;2.�/ and all Br .y/ with y 2� and 0< r <ı0�.y; @�/

for some ı0 2 .0; 1/ independent of y; r . If K is a compact set in �, this version
would then hold for all Br .y/ with y 2K and 0 < r < ı0�.K; @�/. For general
p; w, and �, if for every compact K ��, (3-9) is valid for all Br .y/ with y 2K

and 0< r < ı0�.K; @�/, then (3-8) follows easily, provided

(3-10) lim
r!0

�
sup
y2K

rp w.Br .y//

�.Bc0r .y//

�
D 0

for every compact K ��. Note that (3-10) automatically holds if w D �.
If both (3-9) and (3-10) hold, then (3-8) is true for any choice of �. In this

situation, one can pick � D w in order to avoid technicalities encountered below
when w is not absolutely continuous with respect to �.

(ii) Especially when @� is rough, it is simplest to deal only with d -balls B which
stay away from @�, that is, which satisfy

(3-11) B ��:

We can always assume this for the balls in (3-8) if the converse of (3-2) is also true,
namely, if

(3-12) 8x 2� and r > 0; 9s D s.r;x/ > 0 such that Bs.x/�Dr .x/:

To see why, let us first show that given a compact set K and an open set G with
K �G ��, there exists t > 0 so that Bt .y/�G for all y 2K. Indeed, for such
K and G, let t 0 D 1

2
�.K;Gc/. By (3-12), for each x 2 K, there exists r.x/ > 0

such that Br.x/.x/ � Dt 0.x/. Further, by (3-2), there exists s.x/ > 0 such that
Ds.x/.x/ � Br.x/=.2�/.x/, where � is as in (3-1). Since K is compact, we may
choose finite collections fBri=.2�/.xi/g and fDsi

.xi/g with xi 2 K, ri D r.xi/,
si D s.xi/, and K �

S
Dsi

.xi/�
S

Bri=.2�/.xi/. Now set t Dminfri=.2�/g. Let
y 2 K and choose i such that y 2 Bri=.2�/.xi/. By (3-1), Bt .y/ � Bri

.xi/ and,
consequently, Bt .y/ � Dt 0.xi/. Since Dt 0.xi/ � G, we obtain Bt .y/ � G for
every y 2K, as desired. In particular, Bt .y/�� for all y 2K. Since the validity
of (3-8) for some ı D ı.�;K/ implies its validity for min fı; tg, it follows that we
may assume (3-11) for every Br .y/ in (3-8) when (3-12) holds. Similarly, since the
constant c0 in (3-8) is independent of K, we may also assume that every Bc0r .y/

in (3-8) has closure in �.

(iii) We can often slightly weaken the assumption in Definition 3.5 that K is an
arbitrary compact set in �. For example, in our results where w.�/ <1, it is
generally enough to assume that for each � > 0, there is a particular compact K

with w.� nK/ < � such that (3-8) holds. However, in Section 3D, where we do
not assume w.�/ <1, it is convenient to keep the hypothesis that K is arbitrary.
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Given a set H� LipQ;p.�/, define

(3-13) bHD ff W there exists ff j
g �H with f j

! f a.e.-wg:

It will be useful later to note that if H is bounded in LN
w .�/ for some N , thenbH is also bounded in LN

w .�/ by Fatou’s lemma; in particular, every f 2 bH then
belongs to LN

w .�/. See (3-15) for a relationship between bH and the closure of H

in W
1;p
�;� .�;Q/ in case w� �.

We now state our simplest global result. Its proof is given after Corollary 3.11.

Theorem 3.7. Let the assumptions of Section 3A hold, w.�/ <1, 1 � p <1,
1<N �1, and H� LipQ;p.�/. Suppose that the Poincaré property of order p

in Definition 3.5 holds for H and that

(3-14) sup
f 2H

fkf kLN
w .�/

Ckf kLp
� .�/
Ckrf kL

p
�.�;Q/

g<1:

Then any sequence ffkg �
bH has a subsequence that converges in L

q
w.�/ norm for

every 1� q <N to a function belonging to LN
w .�/.

Let H � LipQ;p.�/ and bH be as in (3-13). We reserve the notation H for the
closure of H in W

1;p
�;� .�;Q/, that is, for the closure of the collection

f.f;rf / W f 2Hg

with respect to the norm (3-6). Elements of H are viewed as equivalence classes. If
w� �,

(3-15) ff W there exists Eg such that .f; Eg/ 2Hg � bH:
Indeed, if .f; Eg/2H, there is a sequence ff j g�H such that .f j ;rf j /! .f; Eg/ in
W

1;p
�;� .�;Q/ norm, and consequently f j! f in L

p
� .�/. By using a subsequence,

we may assume that f j ! f pointwise a.e.-�, and hence, by absolute continuity,
that f j ! f pointwise a.e.-w. This proves (3-15). In fact, it can be verified by
using Egorov’s theorem that

(3-16) ff W there exists f.f j ; Egj /g �H with f j
! f a.e.-wg � bH:

Theorem 3.7 and (3-15) immediately imply the following corollary.

Corollary 3.8. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Let 1 � p < 1, 1 < N � 1, H � LipQ;p.�/, and H be the closure of H in
W

1;p
�;� .�;Q/. Suppose that the Poincaré property of order p in Definition 3.5 holds

for H and that

(3-17) sup
f 2H

fkf kLN
w .�/

Ck.f;rf /k
W

1;p
�;� .�;Q/

g<1:
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Then any sequence ffkg in

ff W there exists Eg such that .f; Eg/ 2Hg

has a subsequence that converges in L
q
w.�/ norm for 1� q <N to a function that

belongs to LN
w .�/.

Remark 3.9. Corollary 3.8 may be thought of as an analogue in the degenerate
setting of the Rellich–Kondrachov theorem since it contains this classical result as
a special case. To see why, set Q.x/D Id and w D � D � to be Lebesgue measure.
Then, given a bounded sequence f.fk ; Egk/g �W

1;p
0

.�/DW
1;p

dx;dx;0
.�;Q/, we

may choose ff j

k
g�Lip0.�/ with .f j

k
;rf

j

k
/! .fk ; Egk/ in W 1;p.�/ norm. Thus,

setting HD ff
j

k
gk2N;j>Jk

where each Jk is chosen sufficiently large to preserve
boundedness, the classical Sobolev inequality gives (3-17) with N D np=.n�p/

for 1� p < n. The Rellich–Kondrachov theorem now follows from Corollary 3.8.

We next mention analogues of these results when H is replaced by a set

W�W 1;p
�;� .�;Q/

with elements viewed as equivalence classes, assuming that w� �. We then modify
Definition 3.5 by replacing (3-8) with the analogous estimate
(3-18)�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/ 2W:

The assumption w� � guarantees that the left side of (3-18) does not change when
the first component of a pair is arbitrarily altered in a set of �-measure zero.

If Poincaré’s inequality is known to hold for subsets of Lipschitz functions in the
form (3-8), it can often be extended by approximation to the similar form (3-18) for
subsets of W

1;p
�;� .�;Q/. Indeed, let us show without using weak convergence that

if w� � and the Radon–Nikodym derivative dw=d� 2L
p0

� .�/; 1=pC 1=p0 D 1,
then (3-18) holds with WDW

1;p
�;� .�;Q/ if (3-8) holds with HDLipQ;p.�/. This

follows easily from Fatou’s lemma since if .f; Eg/ 2W
1;p
�;� .�;Q/ and we choose

ffj g � LipQ;p.�/ with .fj ;rfj /! .f; Eg/ in W
1;p
�;� .�;Q/, then, for any ball B,

since fj ! f in L
p
� .�/, we have

.fj /B;w D
1

w.B/

Z
B

fj
dw

d�
d�!

1

w.B/

Z
B

f
dw

d�
d� D fB;w:

Of course we may also assume that fj ! f a.e.-w by selecting a subsequence of
ffj g which converges to f a.e.-�. The same argument shows that if (3-18) holds for
all pairs in any set W�W

1;p
�;� .�;Q/, then it also holds for pairs in the closure W of

W in W
1;p
�;� .�;Q/. Moreover, if all balls B in question satisfy B �� (cf. (3-11)),

the assumption can clearly be weakened to dw=d� 2L
p0

�;loc.�/. As we observed in
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Remark 3.6(ii), the balls in (3-8) can be assumed to satisfy (3-11) provided (3-12)
is true.

Analogues of Theorem 3.7 and Corollary 3.8 for a set W �W
1;p
�;� .�;Q/ are

given in the next result, which also includes the Rellich–Kondrachov theorem as a
special case.

Theorem 3.10. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Let 1 � p <1, 1 < N �1, and W �W

1;p
�;� .�;Q/. Suppose that the Poincaré

property in Definition 3.5 holds, but in the modified form given in (3-18), and that

(3-19) sup
.f;Eg/2W

fkf kLN
w .�/

Ck.f; Eg/k
W

1;p
�;� .�;Q/

g<1:

Let bWD ff W there exists f.f j ; Egj /g �W with f j
! f a.e.�wg:

Then any sequence in bW has a subsequence that converges in L
q
w.�/ norm for

every 1� q <N to a function belonging to LN
w .�/. In particular, if W denotes the

closure of W in W
1;p
�;� .�;Q/, the same is true for any sequence in

ff W there exists Eg such that .f; Eg/ 2Wg:

As a corollary, we obtain a result for arbitrary sequences f.fk ; Egk/g which are
bounded in W

1;p
�;� .�;Q/ and whose first components ffkg are bounded in LN

w .�/.

Corollary 3.11. Let the assumptions of Section 3A hold, w.�/ < 1, w � �,
1� p <1, and 1<N �1. Suppose that the Poincaré property in Definition 3.5
holds for all of W

1;p
�;� .�;Q/, that is, Definition 3.5 holds with (3-8) replaced by

(3-18) for WDW
1;p
�;� .�;Q/. Then if f.fk ; Egk/g is any sequence in W

1;p
�;� .�;Q/

such that
sup

k

ŒkfkkLN
w .�/

Ck.fk ; Egk/kW 1;p
�;� .�;Q/

� <1;

there is a subsequence of ffkg that converges in L
q
w.�/ norm for 1� q <N to a

function belonging to LN
w .�/. If in addition dw=d� 2 L

p0

� .�/; 1=pC 1=p0 D 1,
the conclusion remains valid if the Poincaré property holds just for LipQ;p.�/.

In fact, the first conclusion in Corollary 3.11 follows by applying Theorem 3.10
with W chosen to be the specific sequence f.fk ; Egk/gk in question, and the second
statement follows from the first one and our observation above that (3-18) holds
with WDW

1;p
�;� .�;Q/ if dw=d� 2 L

p0

� .�/; 1=pC 1=p0 D 1, and if (3-8) holds
with HD LipQ;p.�/.

Proofs of Theorems 3.7 and 3.10. We will concentrate on the proof of Theorem 3.7.
The proof of Theorem 3.10 is similar and omitted. We begin with a useful covering
lemma.
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Lemma 3.12. Let the assumptions of Section 3A hold and let w.�/ < 1. Fix
p 2 Œ1;1/ and a set H � LipQ;p.�/. Suppose the Poincaré property of order p

in Definition 3.5 holds for H, and let � be as in (3-1) and c0 be as in (3-8). Then,
for every � > 0, there are positive constants r D r.�; �; c0/;M DM.�; c0/, and a
finite collection fBr .yk/gk of d -balls, such that

w
�
� n

S
k

Br .yk/
�
< �;(3-20) P

k

�Bc0r .yk/
.x/�M for all x 2�;(3-21)

kf �fBr .yk/;wkL
p
w.Br .yk//

� �k.f;rf /k
W

1;p
�;� .Bc0r .yk/;Q/

(3-22)

for all f 2H and all k. Note that M is independent of �.

Proof. We first recall the “swallowing” property of d -balls: there is a constant 
 � 1

depending only on � such that if x;y2�, 0< r1� r2<1 and Br1
.x/\Br2

.y/¤∅,
then

(3-23) Br1
.x/� B
 r2

.y/:

Indeed, by [Chua and Wheeden 2008, Observation 2.1], 
 can be chosen to be
�C 2�2.

Fix � > 0. Since w.�/ <1, there is a compact set K �� with w.� nK/ < �.
Let ı0D ı0.�/ be as in Definition 3.3 for K, and let ıD ı.�/ be as in (3-8). Fix r with
0< r <minfı; ı0=.c0
 /g where c0 is as in (3-8). For each x 2K, use (3-2) to pick
s.x; r/ > 0 so that Ds.x;r/.x/ � Br=
 .x/. Since K is compact, there are finitely
many points fxj g in K such that K �

S
j Br=
 .xj /. Choose a maximal pairwise

disjoint subcollection fBr=
 .yk/g of fBr=
 .xj /g. We show that the collection
fBr .yk/g satisfies (3-20)–(3-22).

To verify (3-20), it is enough to show that K �
S

k Br .yk/. Let y 2K. Then
y 2Br=
 .xj / for some xj . If xj D yk for some yk then y 2Br .yk/. If xj ¤ yk for
all yk , there exists yl such that Br=
 .yl/\Br=
 .xj /¤∅. Then Br=
 .xj /�Br .yl/

by (3-23), and so y 2 Br .yl/. In either case, we obtain y 2
S

k Br .yk/ as desired.
To verify (3-21), suppose that fkig

L
iD1

satisfies \L
iD1

Bc0r .yki
/¤∅. Then, by

(3-23), Bc0r .yki
/� Bc0
 r .yk1

/ for 1� i �L. Since 
; c0 � 1, we have

Br=
 .yk/� Bc0r .yk/

for all k, and consequentlyS
Br=
 .yki

/�
S

Bc0r .yki
/� Bc0
 r .yk1

/:

By construction, fBr=
 .yk/g is pairwise disjoint in k. Since 0< r=
 < c0
 r < ı0,
the corresponding constant C in the definition of geometric doubling depends only
on .c0
 r/=.r=
 /D c0


2, that is, C depends only on � and c0. Choosing M to be
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this constant, we obtain that L�M as desired. The same argument shows that the
collection fBc0r .yk/g has the stronger bounded intercept property with the same
bound M , that is, any ball in the collection intersects at most M � 1 others.

Finally, let us verify (3-22). Recall that 0< r < ı by construction. Hence (3-8)
implies that for each k and all f 2H,

(3-24) kf �fBr .yk/;wkL
p
w.Br .yk//

� �k.f;rf /k
W

1;p
�;� .Bc0r .yk/;Q/

. �

We deduce the proof of Theorem 3.7 from Theorem 1.1 by choosing X.�/D

L
p
� .�/�L

p
�.�;Q/ and considering the product space

BN;X.�/ DLN
w .�/� .L

p
� .�/�Lp

�.�;Q//:

We always choose † to be the Lebesgue measurable subsets of � and

†0 D fBr .x/ W r > 0;x 2�g:

Note that X.�/ and BN;X.�/ are normed linear spaces (even Banach spaces), and
the norm in BN;X.�/ is

(3-25) k.h; .f; Eg//kBN;X.�/
D khkLN

w .�/
Ckf kLp

� .�/
CkEgkL

p
�.�;Q/

:

The roles of g and .f;g/ in Section 1 are now played by .f; Eg/ and .h; .f; Eg//
respectively.

Let us verify properties (A) and (Bp) in Section 1 with X.�/ and †0 chosen as
above. To verify (A), fix B 2†0 and .f; Eg/ 2 X.�/. Clearly f �

B
2L

p
� .�/ since

f 2L
p
� .�/. Also,Z

�

..Eg�B/
0Q.Eg�B//

p=2 d�D

Z
B

.Eg 0Q.x/Eg/p=2 d�

�

Z
�

.Eg 0Q.x/Eg/p=2d� <1:

Thus .f; Eg/�
B
2 X.�/ and property (A) is proved.

To verify (Bp), let fBlg be a finite collection of d -balls satisfying
P

l �Bl
.x/�C1

for all x 2�. Then if .f; Eg/ 2 X.�/,X
l

k.f; Eg/�Bl
k

p

X.�/
D

X
l

.kf �Bl
kLp

� .�/
CkEg�Bl

kL
p
�.�;Q/

/p

� 2p�1
X

l

.kf �Bl
k

p

L
p
� .�/
CkEg�Bl

k
p

L
p
�.�;Q/

/

D 2p�1

Z
�

jf jp
�X

l

�Bl

�
d�C

Z
�

.Eg0QEg/p=2
�X

l

�Bl

�
d�

� 2p�1C1.kf k
p

L
p
� .�/
CkEgk

p

L
p
�.�;Q/

/� 2pC1k.f; Eg/k
p

X.�/
:
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This verifies (Bp) with C2 chosen to be 2pC1.
The proof of Theorem 3.7 is now very simple. Let H satisfy its hypotheses and

choose S in Theorem 1.1 to be the set

SD f.f; .f;rf // W f 2Hg:

Note that S is a bounded subset of BN;X.�/ by hypothesis (3-14). Next, in or-
der to choose the pairs fEl ;Flgl and verify conditions (i)–(iii) of Theorem 1.1
(see (1-3) and (1-4)), we appeal to Lemma 3.12. Given � > 0, let fEl ;Flgl D

fBr .yk/;Bc0r .yk/gk where fykg and r are as in Lemma 3.12. Then El ;Fl 2†0,
and conditions (i)–(iii) of Theorem 1.1 are guaranteed by Lemma 3.12. Finally, by
noting that the set bH defined in (3-13) is the same as the set OS defined in (1-5), the
conclusion of Theorem 3.7 follows from Theorem 1.1. �

For special domains � and special choices of N , the boundedness assumption
(3-14) (or (3-17)) can be weakened to

(3-26) sup
f 2H

fkf kLp
� .�/
Ckrf kL

p
�.�;Q/

g D sup
f 2H

k.f;rf /k
W

1;p
�;� .�;Q/

<1:

This is clearly the case for any � and N for which there exists a global Sobolev–
Poincaré estimate that bounds kf kLN

w .�/
by

k.f;rf /k
W

1;p
�;� .�;Q/

for all f 2 H. We now formalize this situation assuming that w � �. In the
Appendix, we consider a case when w� � fails.

The form of the global Sobolev–Poincaré estimate we will use is given in the
next definition. It guarantees that (3-14) and (3-26) are the same when N D p� .

Definition 3.13. Let 1 � p <1 and H � LipQ;p.�/. Then the global Sobolev
property of order p holds for H if there are constants C > 0 and � > 1 such that

(3-27) kf kLp�
w .�/ � Ck.f;rf /k

W
1;p
�;� .�;Q/

for all f 2H:

If w � �, (3-27) extends to .f; Eg/ 2 H. In fact, let .f; Eg/ 2 H and choose
ffj g �H with .fj ;rfj /! .f; Eg/ in W

1;p
�;� .�;Q/. Then fj ! f in L

p
� .�/ norm,

and by choosing a subsequence we may assume that fj ! f a.e.-�. Hence fj ! f

a.e.-w because w� �. Since each fj satisfies (3-27), it follows that

(3-28) kf kLp�
w .�/ � Ck.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H:

Under the same assumptions, namely, that Definition 3.13 holds for a set

H� LipQ;p.�/
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and that w� �, the same sequence ffj g as above is also bounded in L
p�
w .�/ norm

and so satisfies .fj /E;w! fE;w for measurable E by the same weak convergence
argument given after the statement of Theorem 1.1. Hence the Poincaré estimate in
Definition 3.5 also extends to H in the same form as (3-18), with W replaced by H,
that is,

(3-29)
�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/2H:

Hence we immediately obtain the next result by choosing WDH and N D p� in
Theorem 3.10.

Theorem 3.14. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Fix p 2 Œ1;1/ and a set H� LipQ;p.�/. Suppose the Poincaré and global Sobolev
properties of order p in Definitions 3.5 and 3.13 hold for H, and let � be as in
(3-27). If f.fk ; Egk/g is a sequence in H with

(3-30) sup
k

k.fk ; Egk/kW 1;p
�;� .�;Q/

<1;

then ffkg has a subsequence which converges in L
q
w.�/ for 1� q < p� , and the

limit of the subsequence belongs to L
p�
w .�/.

A result for the entire space W
1;p
�;� .�;Q/ follows by choosing HD LipQ;p.�/

in Theorem 3.14 or Corollary 3.8:

Corollary 3.15. Suppose the hypotheses of Theorem 3.14 hold with HDLipQ;p.�/.
If f.fk ; Egk/g � W

1;p
�;� .�;Q/ and (3-30) is true, ffkg has a subsequence which

converges in L
q
w.�/ for 1� q < p� , and the limit of the subsequence belongs to

L
p�
w .�/.

See the Appendix for analogues of Theorem 3.14 and Corollary 3.15 without
the assumption w� �.

3D. Local compactness results for degenerate spaces. In this section, for general
bounded open sets �0 with �0 ��, we study compact embedding of subsets of
W

1;p
�;� .�;Q/ into L

q
w.�

0/ without assuming a global Sobolev estimate for � or
�0 and without assuming w.�/ <1. For some applications, see the comment at
the end of the section.

The theorems below assume a much weaker condition than the global Sobolev
estimate (3-27), namely, the following local estimate.

Definition 3.16. Let 1� p <1. We say that the local Sobolev property of order
p holds if, for some fixed constant � > 1 and every compact set K ��, there is a
constant r1 > 0 such that, for all d -balls B D Br .y/ with y 2K and 0< r < r1,

(3-31) kf kLp�
w .B/�C.B/k.f;rf /k

W
1;p
�;� .�;Q/

if f 2Lip0.�/ with suppf �B;
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where C.B/ is a positive constant independent of f .

Remark 3.17. (i) A more standard assumption than (3-31) is a normalized inequal-
ity that includes a factor r in the gradient term on the right side:

(3-32)
�

1

w.Br .y//

Z
Br .y/

jf jp� dw

�1=.p�/

�C

�
1

�.Br .y//

Z
Br .y/

jf jp d�

�1=p

CC r

�
1

�.Br .y//

Z
Br .y/

j
p

Qrf jp d�

�1=p

;

with C independent of r;y; see, for example, [Sawyer and Wheeden 2006; Rodney
2007; 2012] in the unweighted case with p D 2. Clearly (3-32) is a stronger
requirement than (3-31).

(ii) In the classical n-dimensional elliptic case for linear second order equations
in divergence form, Q satisfies cj�j2 �Q.x; �/� C j�j2 for some fixed constants
c;C >0 and d is the standard Euclidean metric d.x;y/Djx�yj. For 1�p<n and
� Dn=.n�p/, (3-31) then holds with dwDd�Dd�Ddx since the corresponding
version of (3-32) is true with j

p
Qrf j replaced by jrf j.

We also use a notion of Lipschitz cutoff functions on d -balls:

Definition 3.18. For s � 1, we say that the cutoff property of order s holds for �
if, for each compact K ��, there exists ı D ı.K/ > 0 such that, for every d-ball
Br .y/ with y 2K and 0< r < ı, there is a function � 2 Lip0.�/ and a constant

 D 
 .y; r/ 2 .0; r/ satisfying

(i) 0� � � 1 in �,

(ii) supp� � Br .y/ and � D 1 in B
 .y/,

(iii) r� 2 Ls
�.�;Q/.

Since� is always assumed to be locally finite, the strongest form of Definition 3.18,
namely, the version with s D1, automatically holds if Q is locally bounded in �
and (3-12) is true; recall that we always assume (3-2). To see why, fix a compact
set K �� and consider Br .y/ with y 2K and r < 1. Use (3-2) to choose open
Euclidean balls D0;D with common center y such that D0 � D � Br .y/ (� �
by definition). Construct a smooth function � in � with support in D such that
0� � � 1 and � D 1 on D0. By (3-12), there is 
 > 0 such that B
 .y/�D0. Then
� satisfies Definition 3.18(i)–(iii) with s D1; for (iii), we use the fact that r� has
compact support in� together with local boundedness of Q and local finiteness of�.

To compensate for the lack of a global Sobolev estimate, given H� LipQ;p.�/,
we assume in conjunction with the cutoff property of some order s � p� 0 that, for
every compact set K ��, there exists ı D ı.K/ > 0 such that, for every d -ball B
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with center in K and radius less than ı, there is a constant C1.B/ such that

(3-33) kf k
L

pt0

� .B/
� C1.B/k.f;rf /kW 1;p

�;� .�;Q/
if f 2H;

where t D s=p and 1=t C 1=t 0 D 1. Note that 1� t 0 � � since s � p� 0.

Remark 3.19. Inequality (3-33) is different in nature from (3-31) even if t 0 D �

and w D � since there is a restriction on supports in (3-31) but not in (3-33).
However, (3-33) implies (3-31) when sDp� 0, wD�, and H contains all functions
in Lip0.�/ with support in any ball. On the other hand, (3-33) is often automatic
if �D �. For example, as mentioned earlier, if Q is locally bounded and (3-12) is
true, the cutoff property holds with s D1, giving t D1 and t 0 D 1. In this case,
when � D �, the left side of (3-33) is clearly smaller than the right side (in fact
smaller than kf kLp

� .�/
).

We can now state our main local result.

Theorem 3.20. Let the assumptions of Section 3A and condition (3-12) hold, and
let w � �. Fix p 2 Œ1;1/ and suppose the Poincaré property of order p in
Definition 3.5 holds for a fixed set H� LipQ;p.�/ and the local Sobolev property
of order p in Definition 3.16 holds. Assume the cutoff property of some order
s � p� 0 is true for �, with � as in (3-31), and that (3-33) holds for H with t D s=p.
Then, for every f.fk ; Egk/g � H that is bounded in W

1;p
�;� .�;Q/ norm, there is a

subsequence ffki
g of ffkg and an f 2 L

p�
w;loc.�/ such that fki

! f pointwise
a.e.-w in � and in L

q
w.�

0/ norm for all 1 � q < p� and every bounded open �0

with �0 ��.

See the Appendix for a version of Theorem 3.20 without assuming w� �.
Recall that HDW

1;p
�;� .�;Q/ if HD LipQ;p.�/. In the important case when

Q 2L1loc.�/, Theorem 3.20 and Remark 3.19 immediately imply the next result.

Corollary 3.21. Let Q be locally bounded in � and suppose that (3-12) holds. Fix
p 2 Œ1;1/, and with w D � D �, assume the Poincaré property of order p holds
for LipQ;p.�/ and the local Sobolev property of order p holds. Then, for every
bounded sequence f.fk ; Egk/g �W

1;p
w;w.�;Q/, there is a subsequence ffki

g of ffkg

and a function f 2 L
p�
w;loc.�/ such that fki

! f pointwise a.e.-w in � and in
L

q
w.�

0/ norm, 1� q < p� , for every bounded open �0 with �0 ��.

Proof of Theorem 3.20. We begin by using the cutoff property in Definition 3.18 to
construct a partition of unity relative to d -balls and compact subsets of �.

Lemma 3.22. Fix � and s � 1, and suppose the cutoff property of order s holds
for �. If K is a compact subset of � and r > 0, there is a finite collection of
d-balls fBr .yj /g with yj 2K together with functions f j g in Lip0.�/ such that
supp j � Br .yj / and
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(a) K �
S

j Br .yj /,

(b) 0�  j � 1 in � for each j and
P

j  j .x/D 1 for all x 2K,

(c) r j 2 Ls
�.�;Q/ for each j .

Proof. The argument is an adaptation of one in [Rudin 1987] for the usual Euclidean
case. The authors thank D. D. Monticelli for related discussions. Fix r > 0 and a
compact set K ��, and set ˇ Dminfı=2; rg for ı D ı.K/ as in Definition 3.18.
Since ˇ < ı, Definition 3.18 implies that, for each y 2K, there exist 
 .y/ 2 .0; ˇ/
and �y.x/ 2 Lip0.�/ such that 0 � �y � 1 in �, supp�y � Bˇ.y//, �y D 1 in
B
.y/.y/ and r�y 2 Ls

�.�;Q/. The collection fB
.y/.y/gy2K covers K, so by
(3-2) and the compactness of K, there is a finite subcollection fB
.yj /.yj /g

m
jD1

whose union covers K. Part (a) follows since 
 .yj / < r . Next let �j .x/D �yj .x/

and define f j g
m
jD1

as follows: set  1 D �1 and

 j D .1��1/ � � � .1��j�1/�j

for j D 2; : : : ;m. Then each  j 2 Lip0.�/, and supp�j � Br .yj / since ˇ < r .
Also, 0�  j � 1 in � and

mX
jD1

 j .x/D 1�

mY
jD1

.1��j .x//; x 2�:

If x 2 K, x 2 B
.yj /.yj / for some j . Hence some �j .x/ D 1 and consequentlyP
j  j .x/ D 1. This proves part (b). Lastly, we use Leibniz’s product rule to

compute r j and then apply Minkowski’s inequality j times to obtain part (c)
from the fact that r�j 2 Ls

�.�;Q/. �

The next lemma shows how the local Sobolev estimate (3-31) and Lemma 3.22
lead to a local analogue of the global Sobolev estimate (3-27).

Lemma 3.23. Let �0 be a bounded open set with �0 � �. Suppose that both
Definition 3.16 and the cutoff property for � of some order s � p� 0 hold, and also
that (3-33) holds with t D s=p for a fixed set H� Liploc.�/. Then there is a finite
constant C.�0/ such that

(3-34) kf kLp�
w .�0/ � C.�0/k.f;rf /k

W
1;p
�;� .�;Q/

if f 2H:

Proof. Let r1 be as in Definition 3.16 relative to the compact set �0 ��, and let ı
be as in (3-33). Use Lemma 3.22 to cover �0 by the union of a finite number of
d-balls fBj g each of radius smaller than minfr1; ıg. Associated with this cover is
a collection f j g � Lip0.�/ with supp j � Bj ,

P
j  j D 1 in �0, and

r j 2 Ls
�.�;Q/:
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If f 2H, then

(3-35) kf kLp�
w .�0/ D





f X
j

 j






L

p�
w .�0/

�

X
j

k jf kLp�
w .Bj /

:

Since  jf 2 Lip0.�/ and supp. jf /� Bj , the estimate (3-31) and the product
rule give

(3-36) k jf kLp�
w .Bj /

� C.Bj / k. jf;r. jf //kW 1;p
�;� .Bj ;Q/

D C.Bj /
�
k jf kLp

� .Bj /
Ck

p
Qr. jf /kLp

�.Bj /

�
� C.Bj /

�
k jf kLp

� .Bj /
Ck j

p
Qrf kLp

�.Bj /
Ckf

p
Qr jkLp

�.Bj /

�
� C.Bj /.k.f;rf /kW 1;p

�;� .�;Q/
Ckf

p
Qr jkLp

�.Bj /
/;

where we have used j j j � 1. We estimate the second term on the right of (3-36)
by using (3-33). Recall that t D s=p � � 0 and 1=t C 1=t 0 D 1. Let

C Dmax
j
k
p

Qr jkLs
�.Bj /:

By Hölder’s inequality and (3-33),

(3-37)
kf
p

Qr jkLp
�.Bj /

� kf k
L

pt0

� .Bj /
k
p

Qr jkLs
�.Bj /

� C C1.Bj /k.f;rf /kW 1;p
�;� .�;Q/

:

Combining this with (3-36) gives

k jf kLp�
w .Bj /

� C.Bj /
�
1CC C1.Bj /

�
k.f;rf /k

W
1;p
�;� .�;Q/

:

By (3-35), for any f 2H,

kf kLp�
w .�0/ � k.f;rf /kW 1;p

�;� .�;Q/

X
j

C.Bj /.1CC C1.Bj //

D C.�0/k.f;rf /k
W

1;p
�;� .�;Q/

: �

Theorem 3.20 follows from Lemma 3.23 and Theorem 1.4. We sketch the proof,
omitting some familiar details. By choosing a sequence of compact sets increasing
to � and using a diagonalization argument, it is enough to prove the conclusion
for a fixed open �0 with compact closure �0 in �. Fix such an �0 and select a
bounded open �00 with �0 � �00 � �00 � �. For H as in Theorem 3.20, apply
Lemma 3.23 to the set �00 to obtain

(3-38) kf kLp�
w .�00/ � C.�00/k.f;rf /k

W
1;p
�;� .�;Q/

; f 2H:
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By assumption, w� �, so (3-38) extends to H in the form

(3-39) kf kLp�
w .�00/ � C.�00/k.f; Eg/k

W
1;p
�;� .�;Q/

; .f; Eg/ 2H:

Let � > 0. By hypothesis, H satisfies the Poincaré estimate (3-8) for balls Br .y/

with y 2�0 and r < ı.�;�0/. Since the Euclidean distance between �0 and @�00 is
positive and we have assumed (3-12), we may also assume by Remark 3.6(ii) that
all such balls lie in the larger set �00. Next we claim that (3-8) extends to H, that
is,

(3-40)
�Z

Br .y/

jf �fBr .y/;wj
pdw

�1=p

��k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/2H;

for the same class of balls Br .y/. In fact, if .f; Eg/ 2 H and ff j g � H satisfies
.f j ;rf j /! .f; Eg/ in W

1;p
�;� .�;Q/ norm, then there is a subsequence, still denoted

ff j g, with f j ! f a.e.-� in �, and so with f j ! f a.e.-w in � since w� �.
By (3-38), ff j g is bounded in L

p�
w .�00/. Hence, since the balls in (3-40) satisfy

Br .y/ � �
00, we obtain f j

Br .y/;w
! fBr .y/;w by our usual weak convergence

argument, and (3-40) follows by Fatou’s lemma from its analogue (3-8) for the
.f j ;rf j /.

Now let f.fk ; Egk/g�H be bounded in W
1;p
�;� .�;Q/ norm and apply Theorem 1.4

with X.�/DL
p
� .�/�L

p
�.�;Q/ to the set S defined by

SD f.fk ; .fk ; Egk//gk ;

and with f.E�
l
;F �

l
/gl chosen to be a finite number of pairs f.Br .yl/;Bc0r .yl/gl

as in (3-40), but now with r fixed depending on �, and with �0 �
S

l Br .yl/. Such
a finite choice exists by (3-2) and the Heine–Borel theorem since �0 is compact;
cf. the proof of Lemma 3.12. Since�0 is completely covered by

S
l E�

l
, assumption

(i) of Theorem 1.4 is fulfilled. Moreover, the collection fF �
l
g has bounded overlaps

uniformly in � by the geometric doubling argument used to prove Lemma 3.12.
Finally, (1-15) follows from (3-39) applied to the bounded sequence f.fk ; Egk/g

since
S

l;� E�
l
��00. Thus Theorem 1.4 implies that there is a subsequence ffki

g of
ffkg and a function f 2L

p�
w .�0/ such that fki

! f a.e.-w in �0 and in L
q
w.�

0/

norm, 1� q < p� . This completes the proof of Theorem 3.20. �

For functions which are compactly supported in a fixed bounded open �0 with
�0 ��, the proof of Theorem 3.20 can be modified to yield compact embedding
into L

q
w.�

0/ for the same�0 without assuming (3-12). Of course we always require
(3-2). Given such �0 and a set H� LipQ;p;0.�

0/, we may view H as a subset of
LipQ;p;0.�/ simply by extending functions in H to all of � as 0 in � n�0. In
this way, the proof of Theorem 3.20 works without (3-12). For example, choosing
HD LipQ;p;0.�

0/, we obtain:
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Theorem 3.24. Let the assumptions of Section 3A hold and w � �. Let �0 be
a bounded open set with �0 � �. Fix p 2 Œ1;1/ and suppose the Poincaré
property of order p in Definition 3.5 holds for LipQ;p;0.�

0/, with LipQ;p;0.�
0/

viewed as a subset of LipQ;p;0.�/ using extension by 0, and suppose the local
Sobolev property of order p in Definition 3.16 holds. Assume the cutoff property
of some order s � p� 0 is true for �, with � as in (3-31), and that (3-33) holds for
LipQ;p;0.�

0/ with t D s=p. Then, for every sequence f.fk ; Egk/g �W
1;p
�;�;0

.�0;Q/

which is bounded in W
1;p
�;� .�

0;Q/ norm, there is a subsequence ffki
g of ffkg and

a function f 2L
p�
w .�0/ such that fki

! f pointwise a.e.-w in �0 and in L
q
w.�

0/

norm, 1� q < p� .

The full force of the local Sobolev estimate in Definition 3.16 is not needed to
prove Theorem 3.24. In fact, it is enough to assume that (3-31) holds only for balls
centered in the fixed compact set �0.

The proof of Theorem 3.24 is like that of Theorem 3.20, working with the
set �0 that occurs in the hypotheses of Theorem 3.24. However, now (3-34) in
the conclusion of Lemma 3.23 (with H D LipQ;p;0.�

0/) remains valid if �0 is
replaced on the left side by � since every f 2 LipQ;p;0.�

0/ vanishes on � n�0.
The resulting estimate serves as a replacement for (3-38), so it is not necessary
to demand that the E�

l
are subsets of a compact set �00 ��. Hence (3-12) is no

longer required. Finally, the Poincaré estimate extends as usual to W
1;p
�;�;0

.�0;Q/

(the closure of LipQ;p;0.�
0//, and due to support considerations, the E�

l
can be

restricted to subsets of�0 by replacing E�
l

by E�
l
\�0; this guarantees w.E�

l
/ <1

since w is locally finite by hypothesis.
Recalling the comments immediately after Definition 3.18 and in Remark 3.19,

we obtain a useful special case of Theorem 3.24:

Corollary 3.25. Let the assumptions of Section 3A hold,� and Q be bounded,wD
� D �, and (3-12) be true. Let �0 be an open set with �0 ��. Fix p 2 Œ1;1/ and
suppose the Poincaré property of order p in Definition 3.5 holds for LipQ;p;0.�

0/

and the local Sobolev property of order p in Definition 3.16 holds. Then, for
every f.fk ; Egk/g �W

1;p
�;�;0

.�0;Q/ which is bounded in W
1;p
�;� .�;Q/ norm, there

is a subsequence ffki
g of ffkg and a function f 2 L

p�
w .�0/ such that fki

! f

pointwise a.e.-w in �0 and in L
q
w.�

0/ norm, 1� q < p� .

In the case where p D 2 and all measures are Lebesgue measure, Corollary 3.25
is used in [Rodney 2007; 2012] to show the existence of weak solutions to Dirichlet
problems for some linear subelliptic equations. It is also used in [Rodney 2010]
to derive the following global Sobolev inequality from the local estimate (3-32),
where �0 is open and �0 ��:

(3-41) kf kL2� .�0/ � C

�Z
�0

j
p

Qrf j2 dx

�1=2

:



A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES 51

4. Precompact subsets of LN in a quasimetric space

In this section, we consider the situation of an open set � in a topological space
X when X is also endowed with a quasimetric d . As there is no easy way to
define Sobolev spaces on general quasimetric spaces, this section concentrates on
establishing a simple criterion not directly related to Sobolev spaces ensuring that
bounded subsets of LN

w .�/ are precompact in L
q
w.�/ when 1� q <N �1.

We begin by further describing the setting for our result. The topology on X is
expressed in terms of a fixed collection T of subsets of X which may not be related
to the quasimetric d . Thus when we say that a set O � X is open, we mean that
O 2 T. Given an open �, we assume the following:

(i) 8x 2X and r > 0, the d -ball Br .x/D fy 2X W d.x;y/ < rg is a Borel set.

(ii) 8x 2X and r > 0, there is an open set O such that x 2 O� Br .x/.

(iii) If X 6D�, then 8x 2�, d.x; �c/D inffd.x;y/ W y 2�cg> 0.

Property (ii) serves as a substitute for (3-2).
Unlike the situation in Section 3, d -balls centered in � may not be subsets of �

unless X D�. However, we note the following fact.

Remark 4.1. Properties (ii) and (iii) guarantee that for any compact set K ��,
there exists ".K/ > 0 such that Br .x/ � � if x 2K and r < ".K/. In fact, first
note that for any x 2�, (iii) implies that the d -ball B.x/ with center x and radius
rx D d.x; �c/=.2�/ lies in �. If K is a compact set in �, (ii) shows that K can be
covered by a finite number of such balls fB.xi/g. With ".K/ chosen to be a suitably
small multiple (depending on �) of minfrxi

g, the remark then follows easily from
the swallowing property of d -balls.

Further, we assume that .�; d/ satisfies the local geometric doubling condition
in Definition 3.3, that is, for each compact set K ��, there exists ı0.K/ > 0 such
that, for all x 2K and all 0 < r 0 < r < ı0.K/, the number of disjoint d-balls of
common radius r 0 contained in Br .x/ is at most a constant Cr=r 0 depending on
r=r 0 but not on K. We will choose ı0.K/� ".K/.

With this framework in force, we now state the main result of the section.

Theorem 4.2. Let � � X be as above, and let w be a finite Borel measure on �
such that, given any � > 0, there is a compact set K �� with w.� nK/ < �. Let
1 � p <1 and 1 <N �1, and suppose S� LN

w .�/ has the property that, for
any compact set K ��, there exists ıK > 0 such that
(4-1)
kf �fB;wkLp

w.B/
� b.f;B/ if f 2 S and B D Br .x/, x 2K, 0< r < ıK ;

where b.f;B/ is a nonnegative ball set function. Furthermore, suppose there is a
constant c0 � 1 such that for every � > 0 and every compact set K ��, there exists
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Qı�;K > 0 such that

(4-2)
X
B2F

b.f;B/p � �p for all f 2 S

for every finite family FD fBg of d-balls centered in K with common radius less
than Qı�;K for which fc0Bg is a pairwise disjoint family of subsets of �. Then any
sequence in S that is bounded in LN

w .�/ has a subsequence that converges in
L

q
w.�/ for 1� q <N to a function in LN

w .�/.

Proof. Let � > 0 and choose a compact set K �� with w.� nK/ < �. Next, for
c0� 1, as in the proof of Lemma 3.12, there is a positive constant r D r.�;K; c0/ <

minfıK ; Qı�;K ; ı0.K/; ".K/=.
 c0/g (see (4-1),(4-2), Definition 3.3 and Remark 4.1),
where 
 D � C 2�2 with � as in (3-1), and a finite family fBr .yk/gk of d-balls
centered in K satisfying K �

S
k Br .yk/ and whose dilates fBc0r .yk/gk lie in �

and have the bounded intercept property (with intercept constant M independent
of �). Since fBc0r .yk/gk has bounded intercepts with bound M , it can be written
as the union of at most M families of disjoint d -balls; see, for example, the proof
of [Chua and Wheeden 2008, Lemma 2.5]. By (4-2), we conclude thatX

k

b.f;Br .yk//
p
�M�p:

Theorem 4.2 follows then immediately from Theorem 1.2; see also Remark 1.3(1).
�

As an application of Theorem 4.2 we present a version of [Hajłasz and Koskela
2000, Theorem 8.1] in the case p� 1. Our version improves the one in [Hajłasz and
Koskela 2000] by allowing two different measures and by relaxing the assumptions
made about embedding and doubling. Furthermore, while the analogue in [Hajłasz
and Koskela 2000] of our (4-3) uses only the L1

w.B/ norm on the left side, it
automatically self-improves to the L

p
w.B/ norm due to the doubling assumption,

with a further fixed enlargement of the ball c0B on the right side; see, for example,
[Hajłasz and Koskela 2000, Theorem 5.1].

Corollary 4.3. Let X; d; �;w be as above, and let � be a Borel measure on �.
Fix 1� p <1, 1<N �1, and c0 � 1. Consider a sequence of pairs

f.fi ;gi/g �LN
w .�/�Lp

�.�/

such that, for any compact set K ��, there exists NıK > 0 with

(4-3) kfi � .fi/B;wkLp
w.B/

� a�.B/kgikLp
�.c0B/

for all i and all d-balls B centered in K with c0B � � and r.B/ < NıK , where
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a�.B/ is a nonnegative ball set function satisfying

(4-4) lim sup
r!0

f sup
y2K

a�.Br .y//g D 0:

Then if ffig and fgig are bounded in LN
w .�/ and L

p
�.�/, respectively, ffig has

a subsequence converging in L
q
w.�/ for 1 � q < N to a function belonging to

LN
w .�/.

Proof. Given � > 0 and compact set K � �, use (4-4) to choose r0 > 0 such
that a�.Br / < �=ˇ for any d-ball Br centered in K with r < r0, where ˇ D
supi kgikLp

�.�/
<1. In Theorem 4.2, choose S D ffig, ıK D NıK , b.fi ;B/ D

a�.B/kgikLp
�.c0B/, and

Qı�;K DminfNıK ; ı0.K/; r0; ".K/=c0g:

If B is a d -ball with center in K and r.B/ < Qı�;K , then c0B ��. HenceX
B2F

.a�.B/kgikLp
�.c0B//

p
� �p
kgik

p

L
p
�.�/

=ˇp
� �p

for every F as in Theorem 4.2. The conclusion now follows from Theorem 4.2. �

Remark 4.4. (1) The gi in (4-3) are usually the modulus of a fixed derivative of
the corresponding fi , such as jrfi j when X is a Riemannian manifold. More
generally, gi may be the upper gradient of fi (see [Heinonen 2001] for the
definition).

(2) Theorem 4.2 can also be used to obtain an extension of Theorem 2.4 to s-John
domains in quasimetric spaces; see [Chua and Wheeden 2011, Theorem 1.6].

Appendix

We briefly consider analogues of Theorem 3.14, Corollary 3.15, and Theorem 3.20
without assuming w � �, but adding the assumption that H is linear. In this
case, (3-27) can be extended by continuity to obtain a bounded linear map from
H into L

p�
w .�/. Here, as always, H denotes the closure of f.f;rf / W f 2 Hg

in W
1;p
�;� .�;Q/. However, when w� � fails, there is no natural way to obtain

the extension for every .f; Eg/ 2 H keeping the same f on the left side. In fact,
let .f; Eg/ 2 H and choose ffj g � H with .fj ;rfj / ! .f; Eg/ in W

1;p
�;� .�;Q/.

Linearity of H allows us to apply (3-27) to differences of the fj and conclude that
ffj g is a Cauchy sequence in L

p�
w .�/. Therefore fj ! f � in L

p�
w .�/ for some

f � 2L
p�
w .�/, and

kf �kLp�
w .�/ � Ck.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H:
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The function f � is determined by .f; Eg/, that is, f � is independent of the par-
ticular sequence ffj g � H above. Indeed, if f Qfj g is another sequence in H with
. Qfj ;r Qfj /! .f; Eg/ in W

1;p
�;� .�;Q/, and if Qfj !

Qf � in L
p�
w .�/, then, by (3-27)

and linearity of H,

k Qfj �fjkLp�
w .�/ � Ck. Qfj �fj ;r Qfj �rfj /kW 1;p

�;� .�;Q/
! 0:

Consequently k Qf ��f �kLp�
w .�/ D 0. Thus .f; Eg/ determines f � uniquely as an

element of L
p�
w .�/. Define a mapping

(A-1) T WH!Lp�
w .�/ by setting T .f; Eg/D f �:

Note that H is a linear set in W
1;p
�;� .�;Q/ since H is linear, and that T is a bounded

linear map from H into L
p�
w .�/. Also note that T satisfies T .f;rf /D f when

restricted to those .f;rf / with f 2H. Furthermore, if w� �, then T .f; Eg/D f

for all .f; Eg/ 2 H, that is, f � D f a.e.-w for all .f; Eg/ 2 H. This follows since
fj ! f in L

p
� .�/ norm and fj ! f � in L

p�
w .�/ norm. In this appendix, where

it is not assumed that w� �, f � plays a main role. One can find a function h such
that h D f � a.e.-w and h D f a.e.-�, but as this fact is not needed, we omit its
proof.

An analogue of Theorem 3.14 is given in the next result.

Theorem A.1. Let all the assumptions of Theorem 3.14 hold except that now the
set H is linear and we do not assume w � �. Then the map T W H! L

q
w.�/

defined in (A-1) is compact if 1� q < p� . Equivalently, if f.fk ; Egk/g is a sequence
in H with supk k.fk ; Egk/kW 1;p

�;�
.�;Q/ <1, then ff �

k
g has a subsequence which

converges in L
q
w.�/ for 1� q < p� , where f �

k
D T .fk ; Egk/. Moreover, the limit

of the subsequence belongs to L
p�
w .�/.

Proof. Let H satisfy the hypothesis of the theorem and let f.fk ; Egk/g � H be
bounded in W

1;p
�;� .�;Q/. For each k, choose hk 2H such that

(A-2) k.fk ; Egk/� .hk ;rhk/kW 1;p
�;� .�;Q/

� 2�k :

Set H1 D fhkgk � H. Then f.hk ;rhk/ W hk 2 H1g is bounded in W
1;p
�;� .�;Q/.

Furthermore, (3-27) implies a version of (3-14), namely,

sup
f 2H1

fkf kLp�
w .�/Ck.f;rf /kW 1;p

�;� .�;Q/
g<1:

Theorem 3.7 now applies to H1 with N D p� and gives that any sequence incH1 has a subsequence which converges in L
q
w.�/ norm for 1 � q < p� to a

function belonging to L
p�
w .�/. The sequence fhkg lies in cH1, as is easily seen by

considering, for each fixed k, the constant sequence ff j g defined by f j D hk for
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all j . We conclude that fhkg has a subsequence fhkl
g converging in L

q
w.�/ norm

for 1� q <p� to a function h2L
p�
w .�/. By linearity and boundedness of T from

H to L
p�
w .�/ together with (A-2), we have (writing f �

k
D T .fk ; Egk/)

kf �k � hkkLp�
w .�/ D kT .fk ; Egk/�T .hk ;rhk/kLp�

w .�/ � C 2�k
! 0:

Restricting k to fklg and using w.�/ <1, we conclude that ff �
kl
g also converges

to h in L
q
w.�/ for 1� q < p� , which completes the proof. �

Setting HD LipQ;p.�/ in Theorem A.1 gives an analogue of Corollary 3.15.

Corollary A.2. Let the hypotheses of Theorem A.1 hold for HD LipQ;p.�/. Then
the map T defined by (A-1) is a compact map of W

1;p
�;� .�;Q/ into L

q
w.�/ for 1�

q < p� , that is, if f.fk ; Egk/g �W
1;p
�;� .�;Q/ and supk k.fk ; Egk/kW 1;p

�;� .�;Q/
<1,

then ff �
k
g has a subsequence which converges in L

q
w.�/ for 1 � q < p� , where

f �
k
D T .fk ; Egk/. Moreover, the limit of the subsequence belongs to L

p�
w .�/.

Theorem 3.20 also has an analogue without assuming w � � provided H is
linear, and in this instance (3-27) is not required: the subsequence ffki

g of ffkg in
the conclusion is then replaced by a subsequence of ff �

k
g, where f �

k
is constructed

as above but now using bounded open �0 whose closures increase to �. Now f �

arises when (3-38) is extended to H, namely, instead of (3-39), we obtain

kf �kLp�
w .�00/ � C.�00/ k.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H

where f � is constructed for a pair .f; Eg/ 2 H by using linearity of H and (3-38)
for a particular .�0; �00/. It is easy to see that f � 2L

p�
w;loc.�/ by letting �0%�.

The Poincaré inequality analogous to (3-40) is�Z
Br .y/

jf ��f �Br .y/;w
j
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/ 2H;

obtained by extending (3-8) from H to H. Further details are omitted.
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